gcc/
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob947724bceff3ea8b01fd4b3049ccf339fdde6923
1 /* Loop invariant motion.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "cfghooks.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "cfgloop.h"
40 #include "domwalk.h"
41 #include "params.h"
42 #include "tree-affine.h"
43 #include "tree-ssa-propagate.h"
44 #include "trans-mem.h"
45 #include "gimple-fold.h"
46 #include "tree-scalar-evolution.h"
48 /* TODO: Support for predicated code motion. I.e.
50 while (1)
52 if (cond)
54 a = inv;
55 something;
59 Where COND and INV are invariants, but evaluating INV may trap or be
60 invalid from some other reason if !COND. This may be transformed to
62 if (cond)
63 a = inv;
64 while (1)
66 if (cond)
67 something;
68 } */
70 /* The auxiliary data kept for each statement. */
72 struct lim_aux_data
74 struct loop *max_loop; /* The outermost loop in that the statement
75 is invariant. */
77 struct loop *tgt_loop; /* The loop out of that we want to move the
78 invariant. */
80 struct loop *always_executed_in;
81 /* The outermost loop for that we are sure
82 the statement is executed if the loop
83 is entered. */
85 unsigned cost; /* Cost of the computation performed by the
86 statement. */
88 vec<gimple *> depends; /* Vector of statements that must be also
89 hoisted out of the loop when this statement
90 is hoisted; i.e. those that define the
91 operands of the statement and are inside of
92 the MAX_LOOP loop. */
95 /* Maps statements to their lim_aux_data. */
97 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
99 /* Description of a memory reference location. */
101 struct mem_ref_loc
103 tree *ref; /* The reference itself. */
104 gimple *stmt; /* The statement in that it occurs. */
108 /* Description of a memory reference. */
110 struct im_mem_ref
112 unsigned id; /* ID assigned to the memory reference
113 (its index in memory_accesses.refs_list) */
114 hashval_t hash; /* Its hash value. */
116 /* The memory access itself and associated caching of alias-oracle
117 query meta-data. */
118 ao_ref mem;
120 bitmap stored; /* The set of loops in that this memory location
121 is stored to. */
122 vec<mem_ref_loc> accesses_in_loop;
123 /* The locations of the accesses. Vector
124 indexed by the loop number. */
126 /* The following sets are computed on demand. We keep both set and
127 its complement, so that we know whether the information was
128 already computed or not. */
129 bitmap_head indep_loop; /* The set of loops in that the memory
130 reference is independent, meaning:
131 If it is stored in the loop, this store
132 is independent on all other loads and
133 stores.
134 If it is only loaded, then it is independent
135 on all stores in the loop. */
136 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
139 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
140 to record (in)dependence against stores in the loop and its subloops, the
141 second to record (in)dependence against all references in the loop
142 and its subloops. */
143 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
145 /* Mem_ref hashtable helpers. */
147 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
149 typedef tree_node *compare_type;
150 static inline hashval_t hash (const im_mem_ref *);
151 static inline bool equal (const im_mem_ref *, const tree_node *);
154 /* A hash function for struct im_mem_ref object OBJ. */
156 inline hashval_t
157 mem_ref_hasher::hash (const im_mem_ref *mem)
159 return mem->hash;
162 /* An equality function for struct im_mem_ref object MEM1 with
163 memory reference OBJ2. */
165 inline bool
166 mem_ref_hasher::equal (const im_mem_ref *mem1, const tree_node *obj2)
168 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
172 /* Description of memory accesses in loops. */
174 static struct
176 /* The hash table of memory references accessed in loops. */
177 hash_table<mem_ref_hasher> *refs;
179 /* The list of memory references. */
180 vec<im_mem_ref *> refs_list;
182 /* The set of memory references accessed in each loop. */
183 vec<bitmap_head> refs_in_loop;
185 /* The set of memory references stored in each loop. */
186 vec<bitmap_head> refs_stored_in_loop;
188 /* The set of memory references stored in each loop, including subloops . */
189 vec<bitmap_head> all_refs_stored_in_loop;
191 /* Cache for expanding memory addresses. */
192 hash_map<tree, name_expansion *> *ttae_cache;
193 } memory_accesses;
195 /* Obstack for the bitmaps in the above data structures. */
196 static bitmap_obstack lim_bitmap_obstack;
197 static obstack mem_ref_obstack;
199 static bool ref_indep_loop_p (struct loop *, im_mem_ref *);
201 /* Minimum cost of an expensive expression. */
202 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
204 /* The outermost loop for which execution of the header guarantees that the
205 block will be executed. */
206 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
207 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
209 /* ID of the shared unanalyzable mem. */
210 #define UNANALYZABLE_MEM_ID 0
212 /* Whether the reference was analyzable. */
213 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
215 static struct lim_aux_data *
216 init_lim_data (gimple *stmt)
218 lim_aux_data *p = XCNEW (struct lim_aux_data);
219 lim_aux_data_map->put (stmt, p);
221 return p;
224 static struct lim_aux_data *
225 get_lim_data (gimple *stmt)
227 lim_aux_data **p = lim_aux_data_map->get (stmt);
228 if (!p)
229 return NULL;
231 return *p;
234 /* Releases the memory occupied by DATA. */
236 static void
237 free_lim_aux_data (struct lim_aux_data *data)
239 data->depends.release ();
240 free (data);
243 static void
244 clear_lim_data (gimple *stmt)
246 lim_aux_data **p = lim_aux_data_map->get (stmt);
247 if (!p)
248 return;
250 free_lim_aux_data (*p);
251 *p = NULL;
255 /* The possibilities of statement movement. */
256 enum move_pos
258 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
259 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
260 become executed -- memory accesses, ... */
261 MOVE_POSSIBLE /* Unlimited movement. */
265 /* If it is possible to hoist the statement STMT unconditionally,
266 returns MOVE_POSSIBLE.
267 If it is possible to hoist the statement STMT, but we must avoid making
268 it executed if it would not be executed in the original program (e.g.
269 because it may trap), return MOVE_PRESERVE_EXECUTION.
270 Otherwise return MOVE_IMPOSSIBLE. */
272 enum move_pos
273 movement_possibility (gimple *stmt)
275 tree lhs;
276 enum move_pos ret = MOVE_POSSIBLE;
278 if (flag_unswitch_loops
279 && gimple_code (stmt) == GIMPLE_COND)
281 /* If we perform unswitching, force the operands of the invariant
282 condition to be moved out of the loop. */
283 return MOVE_POSSIBLE;
286 if (gimple_code (stmt) == GIMPLE_PHI
287 && gimple_phi_num_args (stmt) <= 2
288 && !virtual_operand_p (gimple_phi_result (stmt))
289 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
290 return MOVE_POSSIBLE;
292 if (gimple_get_lhs (stmt) == NULL_TREE)
293 return MOVE_IMPOSSIBLE;
295 if (gimple_vdef (stmt))
296 return MOVE_IMPOSSIBLE;
298 if (stmt_ends_bb_p (stmt)
299 || gimple_has_volatile_ops (stmt)
300 || gimple_has_side_effects (stmt)
301 || stmt_could_throw_p (stmt))
302 return MOVE_IMPOSSIBLE;
304 if (is_gimple_call (stmt))
306 /* While pure or const call is guaranteed to have no side effects, we
307 cannot move it arbitrarily. Consider code like
309 char *s = something ();
311 while (1)
313 if (s)
314 t = strlen (s);
315 else
316 t = 0;
319 Here the strlen call cannot be moved out of the loop, even though
320 s is invariant. In addition to possibly creating a call with
321 invalid arguments, moving out a function call that is not executed
322 may cause performance regressions in case the call is costly and
323 not executed at all. */
324 ret = MOVE_PRESERVE_EXECUTION;
325 lhs = gimple_call_lhs (stmt);
327 else if (is_gimple_assign (stmt))
328 lhs = gimple_assign_lhs (stmt);
329 else
330 return MOVE_IMPOSSIBLE;
332 if (TREE_CODE (lhs) == SSA_NAME
333 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
334 return MOVE_IMPOSSIBLE;
336 if (TREE_CODE (lhs) != SSA_NAME
337 || gimple_could_trap_p (stmt))
338 return MOVE_PRESERVE_EXECUTION;
340 /* Non local loads in a transaction cannot be hoisted out. Well,
341 unless the load happens on every path out of the loop, but we
342 don't take this into account yet. */
343 if (flag_tm
344 && gimple_in_transaction (stmt)
345 && gimple_assign_single_p (stmt))
347 tree rhs = gimple_assign_rhs1 (stmt);
348 if (DECL_P (rhs) && is_global_var (rhs))
350 if (dump_file)
352 fprintf (dump_file, "Cannot hoist conditional load of ");
353 print_generic_expr (dump_file, rhs, TDF_SLIM);
354 fprintf (dump_file, " because it is in a transaction.\n");
356 return MOVE_IMPOSSIBLE;
360 return ret;
363 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
364 loop to that we could move the expression using DEF if it did not have
365 other operands, i.e. the outermost loop enclosing LOOP in that the value
366 of DEF is invariant. */
368 static struct loop *
369 outermost_invariant_loop (tree def, struct loop *loop)
371 gimple *def_stmt;
372 basic_block def_bb;
373 struct loop *max_loop;
374 struct lim_aux_data *lim_data;
376 if (!def)
377 return superloop_at_depth (loop, 1);
379 if (TREE_CODE (def) != SSA_NAME)
381 gcc_assert (is_gimple_min_invariant (def));
382 return superloop_at_depth (loop, 1);
385 def_stmt = SSA_NAME_DEF_STMT (def);
386 def_bb = gimple_bb (def_stmt);
387 if (!def_bb)
388 return superloop_at_depth (loop, 1);
390 max_loop = find_common_loop (loop, def_bb->loop_father);
392 lim_data = get_lim_data (def_stmt);
393 if (lim_data != NULL && lim_data->max_loop != NULL)
394 max_loop = find_common_loop (max_loop,
395 loop_outer (lim_data->max_loop));
396 if (max_loop == loop)
397 return NULL;
398 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
400 return max_loop;
403 /* DATA is a structure containing information associated with a statement
404 inside LOOP. DEF is one of the operands of this statement.
406 Find the outermost loop enclosing LOOP in that value of DEF is invariant
407 and record this in DATA->max_loop field. If DEF itself is defined inside
408 this loop as well (i.e. we need to hoist it out of the loop if we want
409 to hoist the statement represented by DATA), record the statement in that
410 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
411 add the cost of the computation of DEF to the DATA->cost.
413 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
415 static bool
416 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
417 bool add_cost)
419 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
420 basic_block def_bb = gimple_bb (def_stmt);
421 struct loop *max_loop;
422 struct lim_aux_data *def_data;
424 if (!def_bb)
425 return true;
427 max_loop = outermost_invariant_loop (def, loop);
428 if (!max_loop)
429 return false;
431 if (flow_loop_nested_p (data->max_loop, max_loop))
432 data->max_loop = max_loop;
434 def_data = get_lim_data (def_stmt);
435 if (!def_data)
436 return true;
438 if (add_cost
439 /* Only add the cost if the statement defining DEF is inside LOOP,
440 i.e. if it is likely that by moving the invariants dependent
441 on it, we will be able to avoid creating a new register for
442 it (since it will be only used in these dependent invariants). */
443 && def_bb->loop_father == loop)
444 data->cost += def_data->cost;
446 data->depends.safe_push (def_stmt);
448 return true;
451 /* Returns an estimate for a cost of statement STMT. The values here
452 are just ad-hoc constants, similar to costs for inlining. */
454 static unsigned
455 stmt_cost (gimple *stmt)
457 /* Always try to create possibilities for unswitching. */
458 if (gimple_code (stmt) == GIMPLE_COND
459 || gimple_code (stmt) == GIMPLE_PHI)
460 return LIM_EXPENSIVE;
462 /* We should be hoisting calls if possible. */
463 if (is_gimple_call (stmt))
465 tree fndecl;
467 /* Unless the call is a builtin_constant_p; this always folds to a
468 constant, so moving it is useless. */
469 fndecl = gimple_call_fndecl (stmt);
470 if (fndecl
471 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
472 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
473 return 0;
475 return LIM_EXPENSIVE;
478 /* Hoisting memory references out should almost surely be a win. */
479 if (gimple_references_memory_p (stmt))
480 return LIM_EXPENSIVE;
482 if (gimple_code (stmt) != GIMPLE_ASSIGN)
483 return 1;
485 switch (gimple_assign_rhs_code (stmt))
487 case MULT_EXPR:
488 case WIDEN_MULT_EXPR:
489 case WIDEN_MULT_PLUS_EXPR:
490 case WIDEN_MULT_MINUS_EXPR:
491 case DOT_PROD_EXPR:
492 case FMA_EXPR:
493 case TRUNC_DIV_EXPR:
494 case CEIL_DIV_EXPR:
495 case FLOOR_DIV_EXPR:
496 case ROUND_DIV_EXPR:
497 case EXACT_DIV_EXPR:
498 case CEIL_MOD_EXPR:
499 case FLOOR_MOD_EXPR:
500 case ROUND_MOD_EXPR:
501 case TRUNC_MOD_EXPR:
502 case RDIV_EXPR:
503 /* Division and multiplication are usually expensive. */
504 return LIM_EXPENSIVE;
506 case LSHIFT_EXPR:
507 case RSHIFT_EXPR:
508 case WIDEN_LSHIFT_EXPR:
509 case LROTATE_EXPR:
510 case RROTATE_EXPR:
511 /* Shifts and rotates are usually expensive. */
512 return LIM_EXPENSIVE;
514 case CONSTRUCTOR:
515 /* Make vector construction cost proportional to the number
516 of elements. */
517 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
519 case SSA_NAME:
520 case PAREN_EXPR:
521 /* Whether or not something is wrapped inside a PAREN_EXPR
522 should not change move cost. Nor should an intermediate
523 unpropagated SSA name copy. */
524 return 0;
526 default:
527 return 1;
531 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
532 REF is independent. If REF is not independent in LOOP, NULL is returned
533 instead. */
535 static struct loop *
536 outermost_indep_loop (struct loop *outer, struct loop *loop, im_mem_ref *ref)
538 struct loop *aloop;
540 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
541 return NULL;
543 for (aloop = outer;
544 aloop != loop;
545 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
546 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
547 && ref_indep_loop_p (aloop, ref))
548 return aloop;
550 if (ref_indep_loop_p (loop, ref))
551 return loop;
552 else
553 return NULL;
556 /* If there is a simple load or store to a memory reference in STMT, returns
557 the location of the memory reference, and sets IS_STORE according to whether
558 it is a store or load. Otherwise, returns NULL. */
560 static tree *
561 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
563 tree *lhs, *rhs;
565 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
566 if (!gimple_assign_single_p (stmt))
567 return NULL;
569 lhs = gimple_assign_lhs_ptr (stmt);
570 rhs = gimple_assign_rhs1_ptr (stmt);
572 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
574 *is_store = false;
575 return rhs;
577 else if (gimple_vdef (stmt)
578 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
580 *is_store = true;
581 return lhs;
583 else
584 return NULL;
587 /* Returns the memory reference contained in STMT. */
589 static im_mem_ref *
590 mem_ref_in_stmt (gimple *stmt)
592 bool store;
593 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
594 hashval_t hash;
595 im_mem_ref *ref;
597 if (!mem)
598 return NULL;
599 gcc_assert (!store);
601 hash = iterative_hash_expr (*mem, 0);
602 ref = memory_accesses.refs->find_with_hash (*mem, hash);
604 gcc_assert (ref != NULL);
605 return ref;
608 /* From a controlling predicate in DOM determine the arguments from
609 the PHI node PHI that are chosen if the predicate evaluates to
610 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
611 they are non-NULL. Returns true if the arguments can be determined,
612 else return false. */
614 static bool
615 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
616 tree *true_arg_p, tree *false_arg_p)
618 edge te, fe;
619 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
620 &te, &fe))
621 return false;
623 if (true_arg_p)
624 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
625 if (false_arg_p)
626 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
628 return true;
631 /* Determine the outermost loop to that it is possible to hoist a statement
632 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
633 the outermost loop in that the value computed by STMT is invariant.
634 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
635 we preserve the fact whether STMT is executed. It also fills other related
636 information to LIM_DATA (STMT).
638 The function returns false if STMT cannot be hoisted outside of the loop it
639 is defined in, and true otherwise. */
641 static bool
642 determine_max_movement (gimple *stmt, bool must_preserve_exec)
644 basic_block bb = gimple_bb (stmt);
645 struct loop *loop = bb->loop_father;
646 struct loop *level;
647 struct lim_aux_data *lim_data = get_lim_data (stmt);
648 tree val;
649 ssa_op_iter iter;
651 if (must_preserve_exec)
652 level = ALWAYS_EXECUTED_IN (bb);
653 else
654 level = superloop_at_depth (loop, 1);
655 lim_data->max_loop = level;
657 if (gphi *phi = dyn_cast <gphi *> (stmt))
659 use_operand_p use_p;
660 unsigned min_cost = UINT_MAX;
661 unsigned total_cost = 0;
662 struct lim_aux_data *def_data;
664 /* We will end up promoting dependencies to be unconditionally
665 evaluated. For this reason the PHI cost (and thus the
666 cost we remove from the loop by doing the invariant motion)
667 is that of the cheapest PHI argument dependency chain. */
668 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
670 val = USE_FROM_PTR (use_p);
672 if (TREE_CODE (val) != SSA_NAME)
674 /* Assign const 1 to constants. */
675 min_cost = MIN (min_cost, 1);
676 total_cost += 1;
677 continue;
679 if (!add_dependency (val, lim_data, loop, false))
680 return false;
682 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
683 if (gimple_bb (def_stmt)
684 && gimple_bb (def_stmt)->loop_father == loop)
686 def_data = get_lim_data (def_stmt);
687 if (def_data)
689 min_cost = MIN (min_cost, def_data->cost);
690 total_cost += def_data->cost;
695 min_cost = MIN (min_cost, total_cost);
696 lim_data->cost += min_cost;
698 if (gimple_phi_num_args (phi) > 1)
700 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
701 gimple *cond;
702 if (gsi_end_p (gsi_last_bb (dom)))
703 return false;
704 cond = gsi_stmt (gsi_last_bb (dom));
705 if (gimple_code (cond) != GIMPLE_COND)
706 return false;
707 /* Verify that this is an extended form of a diamond and
708 the PHI arguments are completely controlled by the
709 predicate in DOM. */
710 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
711 return false;
713 /* Fold in dependencies and cost of the condition. */
714 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
716 if (!add_dependency (val, lim_data, loop, false))
717 return false;
718 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
719 if (def_data)
720 lim_data->cost += def_data->cost;
723 /* We want to avoid unconditionally executing very expensive
724 operations. As costs for our dependencies cannot be
725 negative just claim we are not invariand for this case.
726 We also are not sure whether the control-flow inside the
727 loop will vanish. */
728 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
729 && !(min_cost != 0
730 && total_cost / min_cost <= 2))
731 return false;
733 /* Assume that the control-flow in the loop will vanish.
734 ??? We should verify this and not artificially increase
735 the cost if that is not the case. */
736 lim_data->cost += stmt_cost (stmt);
739 return true;
741 else
742 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
743 if (!add_dependency (val, lim_data, loop, true))
744 return false;
746 if (gimple_vuse (stmt))
748 im_mem_ref *ref = mem_ref_in_stmt (stmt);
750 if (ref)
752 lim_data->max_loop
753 = outermost_indep_loop (lim_data->max_loop, loop, ref);
754 if (!lim_data->max_loop)
755 return false;
757 else
759 if ((val = gimple_vuse (stmt)) != NULL_TREE)
761 if (!add_dependency (val, lim_data, loop, false))
762 return false;
767 lim_data->cost += stmt_cost (stmt);
769 return true;
772 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
773 and that one of the operands of this statement is computed by STMT.
774 Ensure that STMT (together with all the statements that define its
775 operands) is hoisted at least out of the loop LEVEL. */
777 static void
778 set_level (gimple *stmt, struct loop *orig_loop, struct loop *level)
780 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
781 struct lim_aux_data *lim_data;
782 gimple *dep_stmt;
783 unsigned i;
785 stmt_loop = find_common_loop (orig_loop, stmt_loop);
786 lim_data = get_lim_data (stmt);
787 if (lim_data != NULL && lim_data->tgt_loop != NULL)
788 stmt_loop = find_common_loop (stmt_loop,
789 loop_outer (lim_data->tgt_loop));
790 if (flow_loop_nested_p (stmt_loop, level))
791 return;
793 gcc_assert (level == lim_data->max_loop
794 || flow_loop_nested_p (lim_data->max_loop, level));
796 lim_data->tgt_loop = level;
797 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
798 set_level (dep_stmt, orig_loop, level);
801 /* Determines an outermost loop from that we want to hoist the statement STMT.
802 For now we chose the outermost possible loop. TODO -- use profiling
803 information to set it more sanely. */
805 static void
806 set_profitable_level (gimple *stmt)
808 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
811 /* Returns true if STMT is a call that has side effects. */
813 static bool
814 nonpure_call_p (gimple *stmt)
816 if (gimple_code (stmt) != GIMPLE_CALL)
817 return false;
819 return gimple_has_side_effects (stmt);
822 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
824 static gimple *
825 rewrite_reciprocal (gimple_stmt_iterator *bsi)
827 gassign *stmt, *stmt1, *stmt2;
828 tree name, lhs, type;
829 tree real_one;
830 gimple_stmt_iterator gsi;
832 stmt = as_a <gassign *> (gsi_stmt (*bsi));
833 lhs = gimple_assign_lhs (stmt);
834 type = TREE_TYPE (lhs);
836 real_one = build_one_cst (type);
838 name = make_temp_ssa_name (type, NULL, "reciptmp");
839 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
840 gimple_assign_rhs2 (stmt));
841 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
842 gimple_assign_rhs1 (stmt));
844 /* Replace division stmt with reciprocal and multiply stmts.
845 The multiply stmt is not invariant, so update iterator
846 and avoid rescanning. */
847 gsi = *bsi;
848 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
849 gsi_replace (&gsi, stmt2, true);
851 /* Continue processing with invariant reciprocal statement. */
852 return stmt1;
855 /* Check if the pattern at *BSI is a bittest of the form
856 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
858 static gimple *
859 rewrite_bittest (gimple_stmt_iterator *bsi)
861 gassign *stmt;
862 gimple *stmt1;
863 gassign *stmt2;
864 gimple *use_stmt;
865 gcond *cond_stmt;
866 tree lhs, name, t, a, b;
867 use_operand_p use;
869 stmt = as_a <gassign *> (gsi_stmt (*bsi));
870 lhs = gimple_assign_lhs (stmt);
872 /* Verify that the single use of lhs is a comparison against zero. */
873 if (TREE_CODE (lhs) != SSA_NAME
874 || !single_imm_use (lhs, &use, &use_stmt))
875 return stmt;
876 cond_stmt = dyn_cast <gcond *> (use_stmt);
877 if (!cond_stmt)
878 return stmt;
879 if (gimple_cond_lhs (cond_stmt) != lhs
880 || (gimple_cond_code (cond_stmt) != NE_EXPR
881 && gimple_cond_code (cond_stmt) != EQ_EXPR)
882 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
883 return stmt;
885 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
886 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
887 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
888 return stmt;
890 /* There is a conversion in between possibly inserted by fold. */
891 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
893 t = gimple_assign_rhs1 (stmt1);
894 if (TREE_CODE (t) != SSA_NAME
895 || !has_single_use (t))
896 return stmt;
897 stmt1 = SSA_NAME_DEF_STMT (t);
898 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
899 return stmt;
902 /* Verify that B is loop invariant but A is not. Verify that with
903 all the stmt walking we are still in the same loop. */
904 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
905 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
906 return stmt;
908 a = gimple_assign_rhs1 (stmt1);
909 b = gimple_assign_rhs2 (stmt1);
911 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
912 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
914 gimple_stmt_iterator rsi;
916 /* 1 << B */
917 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
918 build_int_cst (TREE_TYPE (a), 1), b);
919 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
920 stmt1 = gimple_build_assign (name, t);
922 /* A & (1 << B) */
923 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
924 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
925 stmt2 = gimple_build_assign (name, t);
927 /* Replace the SSA_NAME we compare against zero. Adjust
928 the type of zero accordingly. */
929 SET_USE (use, name);
930 gimple_cond_set_rhs (cond_stmt,
931 build_int_cst_type (TREE_TYPE (name),
932 0));
934 /* Don't use gsi_replace here, none of the new assignments sets
935 the variable originally set in stmt. Move bsi to stmt1, and
936 then remove the original stmt, so that we get a chance to
937 retain debug info for it. */
938 rsi = *bsi;
939 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
940 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
941 gimple *to_release = gsi_stmt (rsi);
942 gsi_remove (&rsi, true);
943 release_defs (to_release);
945 return stmt1;
948 return stmt;
951 /* For each statement determines the outermost loop in that it is invariant,
952 - statements on whose motion it depends and the cost of the computation.
953 - This information is stored to the LIM_DATA structure associated with
954 - each statement. */
955 class invariantness_dom_walker : public dom_walker
957 public:
958 invariantness_dom_walker (cdi_direction direction)
959 : dom_walker (direction) {}
961 virtual edge before_dom_children (basic_block);
964 /* Determine the outermost loops in that statements in basic block BB are
965 invariant, and record them to the LIM_DATA associated with the statements.
966 Callback for dom_walker. */
968 edge
969 invariantness_dom_walker::before_dom_children (basic_block bb)
971 enum move_pos pos;
972 gimple_stmt_iterator bsi;
973 gimple *stmt;
974 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
975 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
976 struct lim_aux_data *lim_data;
978 if (!loop_outer (bb->loop_father))
979 return NULL;
981 if (dump_file && (dump_flags & TDF_DETAILS))
982 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
983 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
985 /* Look at PHI nodes, but only if there is at most two.
986 ??? We could relax this further by post-processing the inserted
987 code and transforming adjacent cond-exprs with the same predicate
988 to control flow again. */
989 bsi = gsi_start_phis (bb);
990 if (!gsi_end_p (bsi)
991 && ((gsi_next (&bsi), gsi_end_p (bsi))
992 || (gsi_next (&bsi), gsi_end_p (bsi))))
993 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
995 stmt = gsi_stmt (bsi);
997 pos = movement_possibility (stmt);
998 if (pos == MOVE_IMPOSSIBLE)
999 continue;
1001 lim_data = init_lim_data (stmt);
1002 lim_data->always_executed_in = outermost;
1004 if (!determine_max_movement (stmt, false))
1006 lim_data->max_loop = NULL;
1007 continue;
1010 if (dump_file && (dump_flags & TDF_DETAILS))
1012 print_gimple_stmt (dump_file, stmt, 2, 0);
1013 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1014 loop_depth (lim_data->max_loop),
1015 lim_data->cost);
1018 if (lim_data->cost >= LIM_EXPENSIVE)
1019 set_profitable_level (stmt);
1022 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1024 stmt = gsi_stmt (bsi);
1026 pos = movement_possibility (stmt);
1027 if (pos == MOVE_IMPOSSIBLE)
1029 if (nonpure_call_p (stmt))
1031 maybe_never = true;
1032 outermost = NULL;
1034 /* Make sure to note always_executed_in for stores to make
1035 store-motion work. */
1036 else if (stmt_makes_single_store (stmt))
1038 struct lim_aux_data *lim_data = init_lim_data (stmt);
1039 lim_data->always_executed_in = outermost;
1041 continue;
1044 if (is_gimple_assign (stmt)
1045 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1046 == GIMPLE_BINARY_RHS))
1048 tree op0 = gimple_assign_rhs1 (stmt);
1049 tree op1 = gimple_assign_rhs2 (stmt);
1050 struct loop *ol1 = outermost_invariant_loop (op1,
1051 loop_containing_stmt (stmt));
1053 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1054 to be hoisted out of loop, saving expensive divide. */
1055 if (pos == MOVE_POSSIBLE
1056 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1057 && flag_unsafe_math_optimizations
1058 && !flag_trapping_math
1059 && ol1 != NULL
1060 && outermost_invariant_loop (op0, ol1) == NULL)
1061 stmt = rewrite_reciprocal (&bsi);
1063 /* If the shift count is invariant, convert (A >> B) & 1 to
1064 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1065 saving an expensive shift. */
1066 if (pos == MOVE_POSSIBLE
1067 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1068 && integer_onep (op1)
1069 && TREE_CODE (op0) == SSA_NAME
1070 && has_single_use (op0))
1071 stmt = rewrite_bittest (&bsi);
1074 lim_data = init_lim_data (stmt);
1075 lim_data->always_executed_in = outermost;
1077 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1078 continue;
1080 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1082 lim_data->max_loop = NULL;
1083 continue;
1086 if (dump_file && (dump_flags & TDF_DETAILS))
1088 print_gimple_stmt (dump_file, stmt, 2, 0);
1089 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1090 loop_depth (lim_data->max_loop),
1091 lim_data->cost);
1094 if (lim_data->cost >= LIM_EXPENSIVE)
1095 set_profitable_level (stmt);
1097 return NULL;
1100 class move_computations_dom_walker : public dom_walker
1102 public:
1103 move_computations_dom_walker (cdi_direction direction)
1104 : dom_walker (direction), todo_ (0) {}
1106 virtual edge before_dom_children (basic_block);
1108 unsigned int todo_;
1111 /* Hoist the statements in basic block BB out of the loops prescribed by
1112 data stored in LIM_DATA structures associated with each statement. Callback
1113 for walk_dominator_tree. */
1115 unsigned int
1116 move_computations_worker (basic_block bb)
1118 struct loop *level;
1119 unsigned cost = 0;
1120 struct lim_aux_data *lim_data;
1121 unsigned int todo = 0;
1123 if (!loop_outer (bb->loop_father))
1124 return todo;
1126 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1128 gassign *new_stmt;
1129 gphi *stmt = bsi.phi ();
1131 lim_data = get_lim_data (stmt);
1132 if (lim_data == NULL)
1134 gsi_next (&bsi);
1135 continue;
1138 cost = lim_data->cost;
1139 level = lim_data->tgt_loop;
1140 clear_lim_data (stmt);
1142 if (!level)
1144 gsi_next (&bsi);
1145 continue;
1148 if (dump_file && (dump_flags & TDF_DETAILS))
1150 fprintf (dump_file, "Moving PHI node\n");
1151 print_gimple_stmt (dump_file, stmt, 0, 0);
1152 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1153 cost, level->num);
1156 if (gimple_phi_num_args (stmt) == 1)
1158 tree arg = PHI_ARG_DEF (stmt, 0);
1159 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1160 TREE_CODE (arg), arg);
1162 else
1164 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1165 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1166 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1167 /* Get the PHI arguments corresponding to the true and false
1168 edges of COND. */
1169 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1170 gcc_assert (arg0 && arg1);
1171 t = build2 (gimple_cond_code (cond), boolean_type_node,
1172 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1173 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1174 COND_EXPR, t, arg0, arg1);
1175 todo |= TODO_cleanup_cfg;
1177 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (new_stmt)))
1178 && (!ALWAYS_EXECUTED_IN (bb)
1179 || (ALWAYS_EXECUTED_IN (bb) != level
1180 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1182 tree lhs = gimple_assign_lhs (new_stmt);
1183 SSA_NAME_RANGE_INFO (lhs) = NULL;
1185 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1186 remove_phi_node (&bsi, false);
1189 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1191 edge e;
1193 gimple *stmt = gsi_stmt (bsi);
1195 lim_data = get_lim_data (stmt);
1196 if (lim_data == NULL)
1198 gsi_next (&bsi);
1199 continue;
1202 cost = lim_data->cost;
1203 level = lim_data->tgt_loop;
1204 clear_lim_data (stmt);
1206 if (!level)
1208 gsi_next (&bsi);
1209 continue;
1212 /* We do not really want to move conditionals out of the loop; we just
1213 placed it here to force its operands to be moved if necessary. */
1214 if (gimple_code (stmt) == GIMPLE_COND)
1215 continue;
1217 if (dump_file && (dump_flags & TDF_DETAILS))
1219 fprintf (dump_file, "Moving statement\n");
1220 print_gimple_stmt (dump_file, stmt, 0, 0);
1221 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1222 cost, level->num);
1225 e = loop_preheader_edge (level);
1226 gcc_assert (!gimple_vdef (stmt));
1227 if (gimple_vuse (stmt))
1229 /* The new VUSE is the one from the virtual PHI in the loop
1230 header or the one already present. */
1231 gphi_iterator gsi2;
1232 for (gsi2 = gsi_start_phis (e->dest);
1233 !gsi_end_p (gsi2); gsi_next (&gsi2))
1235 gphi *phi = gsi2.phi ();
1236 if (virtual_operand_p (gimple_phi_result (phi)))
1238 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1239 break;
1243 gsi_remove (&bsi, false);
1244 if (gimple_has_lhs (stmt)
1245 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1246 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_get_lhs (stmt)))
1247 && (!ALWAYS_EXECUTED_IN (bb)
1248 || !(ALWAYS_EXECUTED_IN (bb) == level
1249 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1251 tree lhs = gimple_get_lhs (stmt);
1252 SSA_NAME_RANGE_INFO (lhs) = NULL;
1254 /* In case this is a stmt that is not unconditionally executed
1255 when the target loop header is executed and the stmt may
1256 invoke undefined integer or pointer overflow rewrite it to
1257 unsigned arithmetic. */
1258 if (is_gimple_assign (stmt)
1259 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1260 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1261 && arith_code_with_undefined_signed_overflow
1262 (gimple_assign_rhs_code (stmt))
1263 && (!ALWAYS_EXECUTED_IN (bb)
1264 || !(ALWAYS_EXECUTED_IN (bb) == level
1265 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1266 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1267 else
1268 gsi_insert_on_edge (e, stmt);
1271 return todo;
1274 /* Hoist the statements out of the loops prescribed by data stored in
1275 LIM_DATA structures associated with each statement.*/
1277 static unsigned int
1278 move_computations (void)
1280 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1281 int n = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, false);
1282 unsigned todo = 0;
1284 for (int i = 0; i < n; ++i)
1285 todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (cfun, rpo[i]));
1287 free (rpo);
1289 gsi_commit_edge_inserts ();
1290 if (need_ssa_update_p (cfun))
1291 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1293 return todo;
1296 /* Checks whether the statement defining variable *INDEX can be hoisted
1297 out of the loop passed in DATA. Callback for for_each_index. */
1299 static bool
1300 may_move_till (tree ref, tree *index, void *data)
1302 struct loop *loop = (struct loop *) data, *max_loop;
1304 /* If REF is an array reference, check also that the step and the lower
1305 bound is invariant in LOOP. */
1306 if (TREE_CODE (ref) == ARRAY_REF)
1308 tree step = TREE_OPERAND (ref, 3);
1309 tree lbound = TREE_OPERAND (ref, 2);
1311 max_loop = outermost_invariant_loop (step, loop);
1312 if (!max_loop)
1313 return false;
1315 max_loop = outermost_invariant_loop (lbound, loop);
1316 if (!max_loop)
1317 return false;
1320 max_loop = outermost_invariant_loop (*index, loop);
1321 if (!max_loop)
1322 return false;
1324 return true;
1327 /* If OP is SSA NAME, force the statement that defines it to be
1328 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1330 static void
1331 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1333 gimple *stmt;
1335 if (!op
1336 || is_gimple_min_invariant (op))
1337 return;
1339 gcc_assert (TREE_CODE (op) == SSA_NAME);
1341 stmt = SSA_NAME_DEF_STMT (op);
1342 if (gimple_nop_p (stmt))
1343 return;
1345 set_level (stmt, orig_loop, loop);
1348 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1349 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1350 for_each_index. */
1352 struct fmt_data
1354 struct loop *loop;
1355 struct loop *orig_loop;
1358 static bool
1359 force_move_till (tree ref, tree *index, void *data)
1361 struct fmt_data *fmt_data = (struct fmt_data *) data;
1363 if (TREE_CODE (ref) == ARRAY_REF)
1365 tree step = TREE_OPERAND (ref, 3);
1366 tree lbound = TREE_OPERAND (ref, 2);
1368 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1369 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1372 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1374 return true;
1377 /* A function to free the mem_ref object OBJ. */
1379 static void
1380 memref_free (struct im_mem_ref *mem)
1382 mem->accesses_in_loop.release ();
1385 /* Allocates and returns a memory reference description for MEM whose hash
1386 value is HASH and id is ID. */
1388 static im_mem_ref *
1389 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1391 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref);
1392 ao_ref_init (&ref->mem, mem);
1393 ref->id = id;
1394 ref->hash = hash;
1395 ref->stored = NULL;
1396 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1397 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1398 ref->accesses_in_loop.create (1);
1400 return ref;
1403 /* Records memory reference location *LOC in LOOP to the memory reference
1404 description REF. The reference occurs in statement STMT. */
1406 static void
1407 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1409 mem_ref_loc aref;
1410 aref.stmt = stmt;
1411 aref.ref = loc;
1412 ref->accesses_in_loop.safe_push (aref);
1415 /* Set the LOOP bit in REF stored bitmap and allocate that if
1416 necessary. Return whether a bit was changed. */
1418 static bool
1419 set_ref_stored_in_loop (im_mem_ref *ref, struct loop *loop)
1421 if (!ref->stored)
1422 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1423 return bitmap_set_bit (ref->stored, loop->num);
1426 /* Marks reference REF as stored in LOOP. */
1428 static void
1429 mark_ref_stored (im_mem_ref *ref, struct loop *loop)
1431 while (loop != current_loops->tree_root
1432 && set_ref_stored_in_loop (ref, loop))
1433 loop = loop_outer (loop);
1436 /* Gathers memory references in statement STMT in LOOP, storing the
1437 information about them in the memory_accesses structure. Marks
1438 the vops accessed through unrecognized statements there as
1439 well. */
1441 static void
1442 gather_mem_refs_stmt (struct loop *loop, gimple *stmt)
1444 tree *mem = NULL;
1445 hashval_t hash;
1446 im_mem_ref **slot;
1447 im_mem_ref *ref;
1448 bool is_stored;
1449 unsigned id;
1451 if (!gimple_vuse (stmt))
1452 return;
1454 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1455 if (!mem)
1457 /* We use the shared mem_ref for all unanalyzable refs. */
1458 id = UNANALYZABLE_MEM_ID;
1459 ref = memory_accesses.refs_list[id];
1460 if (dump_file && (dump_flags & TDF_DETAILS))
1462 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1463 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1465 is_stored = gimple_vdef (stmt);
1467 else
1469 hash = iterative_hash_expr (*mem, 0);
1470 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT);
1471 if (*slot)
1473 ref = *slot;
1474 id = ref->id;
1476 else
1478 id = memory_accesses.refs_list.length ();
1479 ref = mem_ref_alloc (*mem, hash, id);
1480 memory_accesses.refs_list.safe_push (ref);
1481 *slot = ref;
1483 if (dump_file && (dump_flags & TDF_DETAILS))
1485 fprintf (dump_file, "Memory reference %u: ", id);
1486 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1487 fprintf (dump_file, "\n");
1491 record_mem_ref_loc (ref, stmt, mem);
1493 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1494 if (is_stored)
1496 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1497 mark_ref_stored (ref, loop);
1499 return;
1502 static unsigned *bb_loop_postorder;
1504 /* qsort sort function to sort blocks after their loop fathers postorder. */
1506 static int
1507 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1509 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1510 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1511 struct loop *loop1 = bb1->loop_father;
1512 struct loop *loop2 = bb2->loop_father;
1513 if (loop1->num == loop2->num)
1514 return 0;
1515 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1518 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1520 static int
1521 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1523 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1524 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1525 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1526 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1527 if (loop1->num == loop2->num)
1528 return 0;
1529 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1532 /* Gathers memory references in loops. */
1534 static void
1535 analyze_memory_references (void)
1537 gimple_stmt_iterator bsi;
1538 basic_block bb, *bbs;
1539 struct loop *loop, *outer;
1540 unsigned i, n;
1542 /* Collect all basic-blocks in loops and sort them after their
1543 loops postorder. */
1544 i = 0;
1545 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1546 FOR_EACH_BB_FN (bb, cfun)
1547 if (bb->loop_father != current_loops->tree_root)
1548 bbs[i++] = bb;
1549 n = i;
1550 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1552 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1553 That results in better locality for all the bitmaps. */
1554 for (i = 0; i < n; ++i)
1556 basic_block bb = bbs[i];
1557 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1558 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1561 /* Sort the location list of gathered memory references after their
1562 loop postorder number. */
1563 im_mem_ref *ref;
1564 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1565 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1567 free (bbs);
1568 // free (bb_loop_postorder);
1570 /* Propagate the information about accessed memory references up
1571 the loop hierarchy. */
1572 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1574 /* Finalize the overall touched references (including subloops). */
1575 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1576 &memory_accesses.refs_stored_in_loop[loop->num]);
1578 /* Propagate the information about accessed memory references up
1579 the loop hierarchy. */
1580 outer = loop_outer (loop);
1581 if (outer == current_loops->tree_root)
1582 continue;
1584 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1585 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1589 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1590 tree_to_aff_combination_expand. */
1592 static bool
1593 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1594 hash_map<tree, name_expansion *> **ttae_cache)
1596 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1597 object and their offset differ in such a way that the locations cannot
1598 overlap, then they cannot alias. */
1599 widest_int size1, size2;
1600 aff_tree off1, off2;
1602 /* Perform basic offset and type-based disambiguation. */
1603 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1604 return false;
1606 /* The expansion of addresses may be a bit expensive, thus we only do
1607 the check at -O2 and higher optimization levels. */
1608 if (optimize < 2)
1609 return true;
1611 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1612 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1613 aff_combination_expand (&off1, ttae_cache);
1614 aff_combination_expand (&off2, ttae_cache);
1615 aff_combination_scale (&off1, -1);
1616 aff_combination_add (&off2, &off1);
1618 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1619 return false;
1621 return true;
1624 /* Compare function for bsearch searching for reference locations
1625 in a loop. */
1627 static int
1628 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1630 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1631 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1632 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1633 if (loop->num == loc_loop->num
1634 || flow_loop_nested_p (loop, loc_loop))
1635 return 0;
1636 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1637 ? -1 : 1);
1640 /* Iterates over all locations of REF in LOOP and its subloops calling
1641 fn.operator() with the location as argument. When that operator
1642 returns true the iteration is stopped and true is returned.
1643 Otherwise false is returned. */
1645 template <typename FN>
1646 static bool
1647 for_all_locs_in_loop (struct loop *loop, im_mem_ref *ref, FN fn)
1649 unsigned i;
1650 mem_ref_loc *loc;
1652 /* Search for the cluster of locs in the accesses_in_loop vector
1653 which is sorted after postorder index of the loop father. */
1654 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1655 if (!loc)
1656 return false;
1658 /* We have found one location inside loop or its sub-loops. Iterate
1659 both forward and backward to cover the whole cluster. */
1660 i = loc - ref->accesses_in_loop.address ();
1661 while (i > 0)
1663 --i;
1664 mem_ref_loc *l = &ref->accesses_in_loop[i];
1665 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1666 break;
1667 if (fn (l))
1668 return true;
1670 for (i = loc - ref->accesses_in_loop.address ();
1671 i < ref->accesses_in_loop.length (); ++i)
1673 mem_ref_loc *l = &ref->accesses_in_loop[i];
1674 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1675 break;
1676 if (fn (l))
1677 return true;
1680 return false;
1683 /* Rewrites location LOC by TMP_VAR. */
1685 struct rewrite_mem_ref_loc
1687 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1688 bool operator () (mem_ref_loc *loc);
1689 tree tmp_var;
1692 bool
1693 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1695 *loc->ref = tmp_var;
1696 update_stmt (loc->stmt);
1697 return false;
1700 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1702 static void
1703 rewrite_mem_refs (struct loop *loop, im_mem_ref *ref, tree tmp_var)
1705 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1708 /* Stores the first reference location in LOCP. */
1710 struct first_mem_ref_loc_1
1712 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1713 bool operator () (mem_ref_loc *loc);
1714 mem_ref_loc **locp;
1717 bool
1718 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1720 *locp = loc;
1721 return true;
1724 /* Returns the first reference location to REF in LOOP. */
1726 static mem_ref_loc *
1727 first_mem_ref_loc (struct loop *loop, im_mem_ref *ref)
1729 mem_ref_loc *locp = NULL;
1730 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1731 return locp;
1734 struct prev_flag_edges {
1735 /* Edge to insert new flag comparison code. */
1736 edge append_cond_position;
1738 /* Edge for fall through from previous flag comparison. */
1739 edge last_cond_fallthru;
1742 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1743 MEM along edge EX.
1745 The store is only done if MEM has changed. We do this so no
1746 changes to MEM occur on code paths that did not originally store
1747 into it.
1749 The common case for execute_sm will transform:
1751 for (...) {
1752 if (foo)
1753 stuff;
1754 else
1755 MEM = TMP_VAR;
1758 into:
1760 lsm = MEM;
1761 for (...) {
1762 if (foo)
1763 stuff;
1764 else
1765 lsm = TMP_VAR;
1767 MEM = lsm;
1769 This function will generate:
1771 lsm = MEM;
1773 lsm_flag = false;
1775 for (...) {
1776 if (foo)
1777 stuff;
1778 else {
1779 lsm = TMP_VAR;
1780 lsm_flag = true;
1783 if (lsm_flag) <--
1784 MEM = lsm; <--
1787 static void
1788 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1790 basic_block new_bb, then_bb, old_dest;
1791 bool loop_has_only_one_exit;
1792 edge then_old_edge, orig_ex = ex;
1793 gimple_stmt_iterator gsi;
1794 gimple *stmt;
1795 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1796 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1798 /* ?? Insert store after previous store if applicable. See note
1799 below. */
1800 if (prev_edges)
1801 ex = prev_edges->append_cond_position;
1803 loop_has_only_one_exit = single_pred_p (ex->dest);
1805 if (loop_has_only_one_exit)
1806 ex = split_block_after_labels (ex->dest);
1807 else
1809 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
1810 !gsi_end_p (gpi); gsi_next (&gpi))
1812 gphi *phi = gpi.phi ();
1813 if (virtual_operand_p (gimple_phi_result (phi)))
1814 continue;
1816 /* When the destination has a non-virtual PHI node with multiple
1817 predecessors make sure we preserve the PHI structure by
1818 forcing a forwarder block so that hoisting of that PHI will
1819 still work. */
1820 split_edge (ex);
1821 break;
1825 old_dest = ex->dest;
1826 new_bb = split_edge (ex);
1827 then_bb = create_empty_bb (new_bb);
1828 if (irr)
1829 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1830 add_bb_to_loop (then_bb, new_bb->loop_father);
1832 gsi = gsi_start_bb (new_bb);
1833 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1834 NULL_TREE, NULL_TREE);
1835 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1837 gsi = gsi_start_bb (then_bb);
1838 /* Insert actual store. */
1839 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1840 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1842 make_edge (new_bb, then_bb,
1843 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1844 make_edge (new_bb, old_dest,
1845 EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1846 then_old_edge = make_edge (then_bb, old_dest,
1847 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1849 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1851 if (prev_edges)
1853 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1854 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1855 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1856 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1857 recompute_dominator (CDI_DOMINATORS, old_dest));
1860 /* ?? Because stores may alias, they must happen in the exact
1861 sequence they originally happened. Save the position right after
1862 the (_lsm) store we just created so we can continue appending after
1863 it and maintain the original order. */
1865 struct prev_flag_edges *p;
1867 if (orig_ex->aux)
1868 orig_ex->aux = NULL;
1869 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1870 p = (struct prev_flag_edges *) orig_ex->aux;
1871 p->append_cond_position = then_old_edge;
1872 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1873 orig_ex->aux = (void *) p;
1876 if (!loop_has_only_one_exit)
1877 for (gphi_iterator gpi = gsi_start_phis (old_dest);
1878 !gsi_end_p (gpi); gsi_next (&gpi))
1880 gphi *phi = gpi.phi ();
1881 unsigned i;
1883 for (i = 0; i < gimple_phi_num_args (phi); i++)
1884 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1886 tree arg = gimple_phi_arg_def (phi, i);
1887 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1888 update_stmt (phi);
1891 /* Remove the original fall through edge. This was the
1892 single_succ_edge (new_bb). */
1893 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1896 /* When REF is set on the location, set flag indicating the store. */
1898 struct sm_set_flag_if_changed
1900 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
1901 bool operator () (mem_ref_loc *loc);
1902 tree flag;
1905 bool
1906 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
1908 /* Only set the flag for writes. */
1909 if (is_gimple_assign (loc->stmt)
1910 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1912 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1913 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
1914 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1916 return false;
1919 /* Helper function for execute_sm. On every location where REF is
1920 set, set an appropriate flag indicating the store. */
1922 static tree
1923 execute_sm_if_changed_flag_set (struct loop *loop, im_mem_ref *ref)
1925 tree flag;
1926 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1927 flag = create_tmp_reg (boolean_type_node, str);
1928 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
1929 return flag;
1932 /* Executes store motion of memory reference REF from LOOP.
1933 Exits from the LOOP are stored in EXITS. The initialization of the
1934 temporary variable is put to the preheader of the loop, and assignments
1935 to the reference from the temporary variable are emitted to exits. */
1937 static void
1938 execute_sm (struct loop *loop, vec<edge> exits, im_mem_ref *ref)
1940 tree tmp_var, store_flag = NULL_TREE;
1941 unsigned i;
1942 gassign *load;
1943 struct fmt_data fmt_data;
1944 edge ex;
1945 struct lim_aux_data *lim_data;
1946 bool multi_threaded_model_p = false;
1947 gimple_stmt_iterator gsi;
1949 if (dump_file && (dump_flags & TDF_DETAILS))
1951 fprintf (dump_file, "Executing store motion of ");
1952 print_generic_expr (dump_file, ref->mem.ref, 0);
1953 fprintf (dump_file, " from loop %d\n", loop->num);
1956 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1957 get_lsm_tmp_name (ref->mem.ref, ~0));
1959 fmt_data.loop = loop;
1960 fmt_data.orig_loop = loop;
1961 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1963 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1964 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
1965 multi_threaded_model_p = true;
1967 if (multi_threaded_model_p)
1968 store_flag = execute_sm_if_changed_flag_set (loop, ref);
1970 rewrite_mem_refs (loop, ref, tmp_var);
1972 /* Emit the load code on a random exit edge or into the latch if
1973 the loop does not exit, so that we are sure it will be processed
1974 by move_computations after all dependencies. */
1975 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
1977 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
1978 load altogether, since the store is predicated by a flag. We
1979 could, do the load only if it was originally in the loop. */
1980 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
1981 lim_data = init_lim_data (load);
1982 lim_data->max_loop = loop;
1983 lim_data->tgt_loop = loop;
1984 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1986 if (multi_threaded_model_p)
1988 load = gimple_build_assign (store_flag, boolean_false_node);
1989 lim_data = init_lim_data (load);
1990 lim_data->max_loop = loop;
1991 lim_data->tgt_loop = loop;
1992 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1995 /* Sink the store to every exit from the loop. */
1996 FOR_EACH_VEC_ELT (exits, i, ex)
1997 if (!multi_threaded_model_p)
1999 gassign *store;
2000 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2001 gsi_insert_on_edge (ex, store);
2003 else
2004 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
2007 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2008 edges of the LOOP. */
2010 static void
2011 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2012 vec<edge> exits)
2014 im_mem_ref *ref;
2015 unsigned i;
2016 bitmap_iterator bi;
2018 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2020 ref = memory_accesses.refs_list[i];
2021 execute_sm (loop, exits, ref);
2025 struct ref_always_accessed
2027 ref_always_accessed (struct loop *loop_, bool stored_p_)
2028 : loop (loop_), stored_p (stored_p_) {}
2029 bool operator () (mem_ref_loc *loc);
2030 struct loop *loop;
2031 bool stored_p;
2034 bool
2035 ref_always_accessed::operator () (mem_ref_loc *loc)
2037 struct loop *must_exec;
2039 if (!get_lim_data (loc->stmt))
2040 return false;
2042 /* If we require an always executed store make sure the statement
2043 stores to the reference. */
2044 if (stored_p)
2046 tree lhs = gimple_get_lhs (loc->stmt);
2047 if (!lhs
2048 || lhs != *loc->ref)
2049 return false;
2052 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2053 if (!must_exec)
2054 return false;
2056 if (must_exec == loop
2057 || flow_loop_nested_p (must_exec, loop))
2058 return true;
2060 return false;
2063 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2064 make sure REF is always stored to in LOOP. */
2066 static bool
2067 ref_always_accessed_p (struct loop *loop, im_mem_ref *ref, bool stored_p)
2069 return for_all_locs_in_loop (loop, ref,
2070 ref_always_accessed (loop, stored_p));
2073 /* Returns true if REF1 and REF2 are independent. */
2075 static bool
2076 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2)
2078 if (ref1 == ref2)
2079 return true;
2081 if (dump_file && (dump_flags & TDF_DETAILS))
2082 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2083 ref1->id, ref2->id);
2085 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2087 if (dump_file && (dump_flags & TDF_DETAILS))
2088 fprintf (dump_file, "dependent.\n");
2089 return false;
2091 else
2093 if (dump_file && (dump_flags & TDF_DETAILS))
2094 fprintf (dump_file, "independent.\n");
2095 return true;
2099 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2100 and its super-loops. */
2102 static void
2103 record_dep_loop (struct loop *loop, im_mem_ref *ref, bool stored_p)
2105 /* We can propagate dependent-in-loop bits up the loop
2106 hierarchy to all outer loops. */
2107 while (loop != current_loops->tree_root
2108 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2109 loop = loop_outer (loop);
2112 /* Returns true if REF in REF_LOOP is independent on all other memory
2113 references in LOOP. */
2115 static bool
2116 ref_indep_loop_p_1 (int safelen, struct loop *loop,
2117 im_mem_ref *ref, bool stored_p)
2119 bitmap refs_to_check;
2120 unsigned i;
2121 bitmap_iterator bi;
2122 im_mem_ref *aref;
2124 if (stored_p)
2125 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2126 else
2127 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2129 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2130 return false;
2132 if (safelen > 1)
2134 if (dump_file && (dump_flags & TDF_DETAILS))
2136 fprintf (dump_file,"REF is independent due to safelen %d\n",
2137 safelen);
2138 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
2139 fprintf (dump_file, "\n");
2141 return true;
2144 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2146 aref = memory_accesses.refs_list[i];
2147 if (!refs_independent_p (ref, aref))
2148 return false;
2151 return true;
2154 /* Returns true if REF in REF_LOOP is independent on all other memory
2155 references in LOOP. Wrapper over ref_indep_loop_p_1, caching its
2156 results. */
2158 static bool
2159 ref_indep_loop_p_2 (int safelen, struct loop *loop,
2160 im_mem_ref *ref, bool stored_p)
2162 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2164 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2165 return true;
2166 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2167 return false;
2169 if (loop->safelen > safelen)
2170 safelen = loop->safelen;
2172 struct loop *inner = loop->inner;
2173 while (inner)
2175 if (!ref_indep_loop_p_2 (safelen, inner, ref, stored_p))
2176 return false;
2177 inner = inner->next;
2180 bool indep_p = ref_indep_loop_p_1 (safelen, loop, ref, stored_p);
2182 if (dump_file && (dump_flags & TDF_DETAILS))
2183 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2184 ref->id, loop->num, indep_p ? "independent" : "dependent");
2186 /* Record the computed result in the cache. */
2187 if (indep_p)
2189 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2190 && stored_p)
2192 /* If it's independend against all refs then it's independent
2193 against stores, too. */
2194 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2197 else
2199 record_dep_loop (loop, ref, stored_p);
2200 if (!stored_p)
2202 /* If it's dependent against stores it's dependent against
2203 all refs, too. */
2204 record_dep_loop (loop, ref, true);
2208 return indep_p;
2211 /* Returns true if REF is independent on all other memory references in
2212 LOOP. */
2214 static bool
2215 ref_indep_loop_p (struct loop *loop, im_mem_ref *ref)
2217 gcc_checking_assert (MEM_ANALYZABLE (ref));
2219 return ref_indep_loop_p_2 (0, loop, ref, false);
2222 /* Returns true if we can perform store motion of REF from LOOP. */
2224 static bool
2225 can_sm_ref_p (struct loop *loop, im_mem_ref *ref)
2227 tree base;
2229 /* Can't hoist unanalyzable refs. */
2230 if (!MEM_ANALYZABLE (ref))
2231 return false;
2233 /* It should be movable. */
2234 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2235 || TREE_THIS_VOLATILE (ref->mem.ref)
2236 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2237 return false;
2239 /* If it can throw fail, we do not properly update EH info. */
2240 if (tree_could_throw_p (ref->mem.ref))
2241 return false;
2243 /* If it can trap, it must be always executed in LOOP.
2244 Readonly memory locations may trap when storing to them, but
2245 tree_could_trap_p is a predicate for rvalues, so check that
2246 explicitly. */
2247 base = get_base_address (ref->mem.ref);
2248 if ((tree_could_trap_p (ref->mem.ref)
2249 || (DECL_P (base) && TREE_READONLY (base)))
2250 && !ref_always_accessed_p (loop, ref, true))
2251 return false;
2253 /* And it must be independent on all other memory references
2254 in LOOP. */
2255 if (!ref_indep_loop_p (loop, ref))
2256 return false;
2258 return true;
2261 /* Marks the references in LOOP for that store motion should be performed
2262 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2263 motion was performed in one of the outer loops. */
2265 static void
2266 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2268 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2269 unsigned i;
2270 bitmap_iterator bi;
2271 im_mem_ref *ref;
2273 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2275 ref = memory_accesses.refs_list[i];
2276 if (can_sm_ref_p (loop, ref))
2277 bitmap_set_bit (refs_to_sm, i);
2281 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2282 for a store motion optimization (i.e. whether we can insert statement
2283 on its exits). */
2285 static bool
2286 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2287 vec<edge> exits)
2289 unsigned i;
2290 edge ex;
2292 FOR_EACH_VEC_ELT (exits, i, ex)
2293 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2294 return false;
2296 return true;
2299 /* Try to perform store motion for all memory references modified inside
2300 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2301 store motion was executed in one of the outer loops. */
2303 static void
2304 store_motion_loop (struct loop *loop, bitmap sm_executed)
2306 vec<edge> exits = get_loop_exit_edges (loop);
2307 struct loop *subloop;
2308 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2310 if (loop_suitable_for_sm (loop, exits))
2312 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2313 hoist_memory_references (loop, sm_in_loop, exits);
2315 exits.release ();
2317 bitmap_ior_into (sm_executed, sm_in_loop);
2318 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2319 store_motion_loop (subloop, sm_executed);
2320 bitmap_and_compl_into (sm_executed, sm_in_loop);
2321 BITMAP_FREE (sm_in_loop);
2324 /* Try to perform store motion for all memory references modified inside
2325 loops. */
2327 static void
2328 store_motion (void)
2330 struct loop *loop;
2331 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2333 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2334 store_motion_loop (loop, sm_executed);
2336 BITMAP_FREE (sm_executed);
2337 gsi_commit_edge_inserts ();
2340 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2341 for each such basic block bb records the outermost loop for that execution
2342 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2343 blocks that contain a nonpure call. */
2345 static void
2346 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2348 basic_block bb = NULL, *bbs, last = NULL;
2349 unsigned i;
2350 edge e;
2351 struct loop *inn_loop = loop;
2353 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2355 bbs = get_loop_body_in_dom_order (loop);
2357 for (i = 0; i < loop->num_nodes; i++)
2359 edge_iterator ei;
2360 bb = bbs[i];
2362 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2363 last = bb;
2365 if (bitmap_bit_p (contains_call, bb->index))
2366 break;
2368 FOR_EACH_EDGE (e, ei, bb->succs)
2369 if (!flow_bb_inside_loop_p (loop, e->dest))
2370 break;
2371 if (e)
2372 break;
2374 /* A loop might be infinite (TODO use simple loop analysis
2375 to disprove this if possible). */
2376 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2377 break;
2379 if (!flow_bb_inside_loop_p (inn_loop, bb))
2380 break;
2382 if (bb->loop_father->header == bb)
2384 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2385 break;
2387 /* In a loop that is always entered we may proceed anyway.
2388 But record that we entered it and stop once we leave it. */
2389 inn_loop = bb->loop_father;
2393 while (1)
2395 SET_ALWAYS_EXECUTED_IN (last, loop);
2396 if (last == loop->header)
2397 break;
2398 last = get_immediate_dominator (CDI_DOMINATORS, last);
2401 free (bbs);
2404 for (loop = loop->inner; loop; loop = loop->next)
2405 fill_always_executed_in_1 (loop, contains_call);
2408 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2409 for each such basic block bb records the outermost loop for that execution
2410 of its header implies execution of bb. */
2412 static void
2413 fill_always_executed_in (void)
2415 basic_block bb;
2416 struct loop *loop;
2418 auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
2419 bitmap_clear (contains_call);
2420 FOR_EACH_BB_FN (bb, cfun)
2422 gimple_stmt_iterator gsi;
2423 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2425 if (nonpure_call_p (gsi_stmt (gsi)))
2426 break;
2429 if (!gsi_end_p (gsi))
2430 bitmap_set_bit (contains_call, bb->index);
2433 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2434 fill_always_executed_in_1 (loop, contains_call);
2438 /* Compute the global information needed by the loop invariant motion pass. */
2440 static void
2441 tree_ssa_lim_initialize (void)
2443 struct loop *loop;
2444 unsigned i;
2446 bitmap_obstack_initialize (&lim_bitmap_obstack);
2447 gcc_obstack_init (&mem_ref_obstack);
2448 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
2450 if (flag_tm)
2451 compute_transaction_bits ();
2453 alloc_aux_for_edges (0);
2455 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2456 memory_accesses.refs_list.create (100);
2457 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2458 memory_accesses.refs_list.quick_push
2459 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2461 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2462 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2463 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2464 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2465 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2466 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2468 for (i = 0; i < number_of_loops (cfun); i++)
2470 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2471 &lim_bitmap_obstack);
2472 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2473 &lim_bitmap_obstack);
2474 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2475 &lim_bitmap_obstack);
2478 memory_accesses.ttae_cache = NULL;
2480 /* Initialize bb_loop_postorder with a mapping from loop->num to
2481 its postorder index. */
2482 i = 0;
2483 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2484 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2485 bb_loop_postorder[loop->num] = i++;
2488 /* Cleans up after the invariant motion pass. */
2490 static void
2491 tree_ssa_lim_finalize (void)
2493 basic_block bb;
2494 unsigned i;
2495 im_mem_ref *ref;
2497 free_aux_for_edges ();
2499 FOR_EACH_BB_FN (bb, cfun)
2500 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2502 bitmap_obstack_release (&lim_bitmap_obstack);
2503 delete lim_aux_data_map;
2505 delete memory_accesses.refs;
2506 memory_accesses.refs = NULL;
2508 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2509 memref_free (ref);
2510 memory_accesses.refs_list.release ();
2511 obstack_free (&mem_ref_obstack, NULL);
2513 memory_accesses.refs_in_loop.release ();
2514 memory_accesses.refs_stored_in_loop.release ();
2515 memory_accesses.all_refs_stored_in_loop.release ();
2517 if (memory_accesses.ttae_cache)
2518 free_affine_expand_cache (&memory_accesses.ttae_cache);
2520 free (bb_loop_postorder);
2523 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2524 i.e. those that are likely to be win regardless of the register pressure. */
2526 static unsigned int
2527 tree_ssa_lim (void)
2529 unsigned int todo;
2531 tree_ssa_lim_initialize ();
2533 /* Gathers information about memory accesses in the loops. */
2534 analyze_memory_references ();
2536 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2537 fill_always_executed_in ();
2539 /* For each statement determine the outermost loop in that it is
2540 invariant and cost for computing the invariant. */
2541 invariantness_dom_walker (CDI_DOMINATORS)
2542 .walk (cfun->cfg->x_entry_block_ptr);
2544 /* Execute store motion. Force the necessary invariants to be moved
2545 out of the loops as well. */
2546 store_motion ();
2548 /* Move the expressions that are expensive enough. */
2549 todo = move_computations ();
2551 tree_ssa_lim_finalize ();
2553 return todo;
2556 /* Loop invariant motion pass. */
2558 namespace {
2560 const pass_data pass_data_lim =
2562 GIMPLE_PASS, /* type */
2563 "lim", /* name */
2564 OPTGROUP_LOOP, /* optinfo_flags */
2565 TV_LIM, /* tv_id */
2566 PROP_cfg, /* properties_required */
2567 0, /* properties_provided */
2568 0, /* properties_destroyed */
2569 0, /* todo_flags_start */
2570 0, /* todo_flags_finish */
2573 class pass_lim : public gimple_opt_pass
2575 public:
2576 pass_lim (gcc::context *ctxt)
2577 : gimple_opt_pass (pass_data_lim, ctxt)
2580 /* opt_pass methods: */
2581 opt_pass * clone () { return new pass_lim (m_ctxt); }
2582 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2583 virtual unsigned int execute (function *);
2585 }; // class pass_lim
2587 unsigned int
2588 pass_lim::execute (function *fun)
2590 bool in_loop_pipeline = scev_initialized_p ();
2591 if (!in_loop_pipeline)
2592 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2594 if (number_of_loops (fun) <= 1)
2595 return 0;
2596 unsigned int todo = tree_ssa_lim ();
2598 if (!in_loop_pipeline)
2599 loop_optimizer_finalize ();
2600 return todo;
2603 } // anon namespace
2605 gimple_opt_pass *
2606 make_pass_lim (gcc::context *ctxt)
2608 return new pass_lim (ctxt);