1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
39 #include "coretypes.h"
46 #include "hard-reg-set.h"
48 #include "insn-config.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
63 #include "diagnostic.h"
66 #include "langhooks.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
97 dwarf2out_do_frame (void)
99 return (write_symbols
== DWARF2_DEBUG
100 || write_symbols
== VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions
&& ! USING_SJLJ_EXCEPTIONS
)
111 /* The size of the target's pointer type. */
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
119 /* Version of targetm.eh_frame_section for systems with named sections. */
121 named_section_eh_frame_section (void)
123 #ifdef EH_FRAME_SECTION_NAME
124 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
125 int fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
126 int per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
127 int lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
131 || ((fde_encoding
& 0x70) != DW_EH_PE_absptr
132 && (fde_encoding
& 0x70) != DW_EH_PE_aligned
133 && (per_encoding
& 0x70) != DW_EH_PE_absptr
134 && (per_encoding
& 0x70) != DW_EH_PE_aligned
135 && (lsda_encoding
& 0x70) != DW_EH_PE_absptr
136 && (lsda_encoding
& 0x70) != DW_EH_PE_aligned
))
138 named_section_flags (EH_FRAME_SECTION_NAME
, flags
);
140 named_section_flags (EH_FRAME_SECTION_NAME
, SECTION_WRITE
);
145 /* Version of targetm.eh_frame_section for systems using collect2. */
147 collect2_eh_frame_section (void)
149 tree label
= get_file_function_name ('F');
152 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
153 targetm
.asm_out
.globalize_label (asm_out_file
, IDENTIFIER_POINTER (label
));
154 ASM_OUTPUT_LABEL (asm_out_file
, IDENTIFIER_POINTER (label
));
157 /* Default version of targetm.eh_frame_section. */
159 default_eh_frame_section (void)
161 #ifdef EH_FRAME_SECTION_NAME
162 named_section_eh_frame_section ();
164 collect2_eh_frame_section ();
168 /* Array of RTXes referenced by the debugging information, which therefore
169 must be kept around forever. */
170 static GTY(()) varray_type used_rtx_varray
;
172 /* A pointer to the base of a list of incomplete types which might be
173 completed at some later time. incomplete_types_list needs to be a VARRAY
174 because we want to tell the garbage collector about it. */
175 static GTY(()) varray_type incomplete_types
;
177 /* A pointer to the base of a table of references to declaration
178 scopes. This table is a display which tracks the nesting
179 of declaration scopes at the current scope and containing
180 scopes. This table is used to find the proper place to
181 define type declaration DIE's. */
182 static GTY(()) varray_type decl_scope_table
;
184 /* How to start an assembler comment. */
185 #ifndef ASM_COMMENT_START
186 #define ASM_COMMENT_START ";#"
189 typedef struct dw_cfi_struct
*dw_cfi_ref
;
190 typedef struct dw_fde_struct
*dw_fde_ref
;
191 typedef union dw_cfi_oprnd_struct
*dw_cfi_oprnd_ref
;
193 /* Call frames are described using a sequence of Call Frame
194 Information instructions. The register number, offset
195 and address fields are provided as possible operands;
196 their use is selected by the opcode field. */
198 enum dw_cfi_oprnd_type
{
200 dw_cfi_oprnd_reg_num
,
206 typedef union dw_cfi_oprnd_struct
GTY(())
208 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num
;
209 HOST_WIDE_INT
GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset
;
210 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr
;
211 struct dw_loc_descr_struct
* GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc
;
215 typedef struct dw_cfi_struct
GTY(())
217 dw_cfi_ref dw_cfi_next
;
218 enum dwarf_call_frame_info dw_cfi_opc
;
219 dw_cfi_oprnd
GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
221 dw_cfi_oprnd
GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
226 /* This is how we define the location of the CFA. We use to handle it
227 as REG + OFFSET all the time, but now it can be more complex.
228 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
229 Instead of passing around REG and OFFSET, we pass a copy
230 of this structure. */
231 typedef struct cfa_loc
GTY(())
234 HOST_WIDE_INT offset
;
235 HOST_WIDE_INT base_offset
;
236 int indirect
; /* 1 if CFA is accessed via a dereference. */
239 /* All call frame descriptions (FDE's) in the GCC generated DWARF
240 refer to a single Common Information Entry (CIE), defined at
241 the beginning of the .debug_frame section. This use of a single
242 CIE obviates the need to keep track of multiple CIE's
243 in the DWARF generation routines below. */
245 typedef struct dw_fde_struct
GTY(())
248 const char *dw_fde_begin
;
249 const char *dw_fde_current_label
;
250 const char *dw_fde_end
;
251 dw_cfi_ref dw_fde_cfi
;
252 unsigned funcdef_number
;
253 unsigned all_throwers_are_sibcalls
: 1;
254 unsigned nothrow
: 1;
255 unsigned uses_eh_lsda
: 1;
259 /* Maximum size (in bytes) of an artificially generated label. */
260 #define MAX_ARTIFICIAL_LABEL_BYTES 30
262 /* The size of addresses as they appear in the Dwarf 2 data.
263 Some architectures use word addresses to refer to code locations,
264 but Dwarf 2 info always uses byte addresses. On such machines,
265 Dwarf 2 addresses need to be larger than the architecture's
267 #ifndef DWARF2_ADDR_SIZE
268 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
271 /* The size in bytes of a DWARF field indicating an offset or length
272 relative to a debug info section, specified to be 4 bytes in the
273 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
276 #ifndef DWARF_OFFSET_SIZE
277 #define DWARF_OFFSET_SIZE 4
280 /* According to the (draft) DWARF 3 specification, the initial length
281 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
282 bytes are 0xffffffff, followed by the length stored in the next 8
285 However, the SGI/MIPS ABI uses an initial length which is equal to
286 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
288 #ifndef DWARF_INITIAL_LENGTH_SIZE
289 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
292 #define DWARF_VERSION 2
294 /* Round SIZE up to the nearest BOUNDARY. */
295 #define DWARF_ROUND(SIZE,BOUNDARY) \
296 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
298 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
299 #ifndef DWARF_CIE_DATA_ALIGNMENT
300 #ifdef STACK_GROWS_DOWNWARD
301 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
303 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
307 /* A pointer to the base of a table that contains frame description
308 information for each routine. */
309 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table
;
311 /* Number of elements currently allocated for fde_table. */
312 static GTY(()) unsigned fde_table_allocated
;
314 /* Number of elements in fde_table currently in use. */
315 static GTY(()) unsigned fde_table_in_use
;
317 /* Size (in elements) of increments by which we may expand the
319 #define FDE_TABLE_INCREMENT 256
321 /* A list of call frame insns for the CIE. */
322 static GTY(()) dw_cfi_ref cie_cfi_head
;
324 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
325 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
326 attribute that accelerates the lookup of the FDE associated
327 with the subprogram. This variable holds the table index of the FDE
328 associated with the current function (body) definition. */
329 static unsigned current_funcdef_fde
;
332 struct indirect_string_node
GTY(())
335 unsigned int refcount
;
340 static GTY ((param_is (struct indirect_string_node
))) htab_t debug_str_hash
;
342 static GTY(()) int dw2_string_counter
;
343 static GTY(()) unsigned long dwarf2out_cfi_label_num
;
345 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
347 /* Forward declarations for functions defined in this file. */
349 static char *stripattributes (const char *);
350 static const char *dwarf_cfi_name (unsigned);
351 static dw_cfi_ref
new_cfi (void);
352 static void add_cfi (dw_cfi_ref
*, dw_cfi_ref
);
353 static void add_fde_cfi (const char *, dw_cfi_ref
);
354 static void lookup_cfa_1 (dw_cfi_ref
, dw_cfa_location
*);
355 static void lookup_cfa (dw_cfa_location
*);
356 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT
);
357 static void initial_return_save (rtx
);
358 static HOST_WIDE_INT
stack_adjust_offset (rtx
);
359 static void output_cfi (dw_cfi_ref
, dw_fde_ref
, int);
360 static void output_call_frame_info (int);
361 static void dwarf2out_stack_adjust (rtx
);
362 static void flush_queued_reg_saves (void);
363 static bool clobbers_queued_reg_save (rtx
);
364 static void dwarf2out_frame_debug_expr (rtx
, const char *);
366 /* Support for complex CFA locations. */
367 static void output_cfa_loc (dw_cfi_ref
);
368 static void get_cfa_from_loc_descr (dw_cfa_location
*,
369 struct dw_loc_descr_struct
*);
370 static struct dw_loc_descr_struct
*build_cfa_loc
372 static void def_cfa_1 (const char *, dw_cfa_location
*);
374 /* How to start an assembler comment. */
375 #ifndef ASM_COMMENT_START
376 #define ASM_COMMENT_START ";#"
379 /* Data and reference forms for relocatable data. */
380 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
381 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
383 #ifndef DEBUG_FRAME_SECTION
384 #define DEBUG_FRAME_SECTION ".debug_frame"
387 #ifndef FUNC_BEGIN_LABEL
388 #define FUNC_BEGIN_LABEL "LFB"
391 #ifndef FUNC_END_LABEL
392 #define FUNC_END_LABEL "LFE"
395 #ifndef FRAME_BEGIN_LABEL
396 #define FRAME_BEGIN_LABEL "Lframe"
398 #define CIE_AFTER_SIZE_LABEL "LSCIE"
399 #define CIE_END_LABEL "LECIE"
400 #define FDE_LABEL "LSFDE"
401 #define FDE_AFTER_SIZE_LABEL "LASFDE"
402 #define FDE_END_LABEL "LEFDE"
403 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
404 #define LINE_NUMBER_END_LABEL "LELT"
405 #define LN_PROLOG_AS_LABEL "LASLTP"
406 #define LN_PROLOG_END_LABEL "LELTP"
407 #define DIE_LABEL_PREFIX "DW"
409 /* The DWARF 2 CFA column which tracks the return address. Normally this
410 is the column for PC, or the first column after all of the hard
412 #ifndef DWARF_FRAME_RETURN_COLUMN
414 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
416 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
420 /* The mapping from gcc register number to DWARF 2 CFA column number. By
421 default, we just provide columns for all registers. */
422 #ifndef DWARF_FRAME_REGNUM
423 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
426 /* The offset from the incoming value of %sp to the top of the stack frame
427 for the current function. */
428 #ifndef INCOMING_FRAME_SP_OFFSET
429 #define INCOMING_FRAME_SP_OFFSET 0
432 /* Hook used by __throw. */
435 expand_builtin_dwarf_sp_column (void)
437 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
));
440 /* Return a pointer to a copy of the section string name S with all
441 attributes stripped off, and an asterisk prepended (for assemble_name). */
444 stripattributes (const char *s
)
446 char *stripped
= xmalloc (strlen (s
) + 2);
451 while (*s
&& *s
!= ',')
458 /* Generate code to initialize the register size table. */
461 expand_builtin_init_dwarf_reg_sizes (tree address
)
464 enum machine_mode mode
= TYPE_MODE (char_type_node
);
465 rtx addr
= expand_expr (address
, NULL_RTX
, VOIDmode
, 0);
466 rtx mem
= gen_rtx_MEM (BLKmode
, addr
);
467 bool wrote_return_column
= false;
469 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
470 if (DWARF_FRAME_REGNUM (i
) < DWARF_FRAME_REGISTERS
)
472 HOST_WIDE_INT offset
= DWARF_FRAME_REGNUM (i
) * GET_MODE_SIZE (mode
);
473 enum machine_mode save_mode
= reg_raw_mode
[i
];
476 if (HARD_REGNO_CALL_PART_CLOBBERED (i
, save_mode
))
477 save_mode
= choose_hard_reg_mode (i
, 1, true);
478 if (DWARF_FRAME_REGNUM (i
) == DWARF_FRAME_RETURN_COLUMN
)
480 if (save_mode
== VOIDmode
)
482 wrote_return_column
= true;
484 size
= GET_MODE_SIZE (save_mode
);
488 emit_move_insn (adjust_address (mem
, mode
, offset
), GEN_INT (size
));
491 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
492 gcc_assert (wrote_return_column
);
493 i
= DWARF_ALT_FRAME_RETURN_COLUMN
;
494 wrote_return_column
= false;
496 i
= DWARF_FRAME_RETURN_COLUMN
;
499 if (! wrote_return_column
)
501 enum machine_mode save_mode
= Pmode
;
502 HOST_WIDE_INT offset
= i
* GET_MODE_SIZE (mode
);
503 HOST_WIDE_INT size
= GET_MODE_SIZE (save_mode
);
504 emit_move_insn (adjust_address (mem
, mode
, offset
), GEN_INT (size
));
508 /* Convert a DWARF call frame info. operation to its string name */
511 dwarf_cfi_name (unsigned int cfi_opc
)
515 case DW_CFA_advance_loc
:
516 return "DW_CFA_advance_loc";
518 return "DW_CFA_offset";
520 return "DW_CFA_restore";
524 return "DW_CFA_set_loc";
525 case DW_CFA_advance_loc1
:
526 return "DW_CFA_advance_loc1";
527 case DW_CFA_advance_loc2
:
528 return "DW_CFA_advance_loc2";
529 case DW_CFA_advance_loc4
:
530 return "DW_CFA_advance_loc4";
531 case DW_CFA_offset_extended
:
532 return "DW_CFA_offset_extended";
533 case DW_CFA_restore_extended
:
534 return "DW_CFA_restore_extended";
535 case DW_CFA_undefined
:
536 return "DW_CFA_undefined";
537 case DW_CFA_same_value
:
538 return "DW_CFA_same_value";
539 case DW_CFA_register
:
540 return "DW_CFA_register";
541 case DW_CFA_remember_state
:
542 return "DW_CFA_remember_state";
543 case DW_CFA_restore_state
:
544 return "DW_CFA_restore_state";
546 return "DW_CFA_def_cfa";
547 case DW_CFA_def_cfa_register
:
548 return "DW_CFA_def_cfa_register";
549 case DW_CFA_def_cfa_offset
:
550 return "DW_CFA_def_cfa_offset";
553 case DW_CFA_def_cfa_expression
:
554 return "DW_CFA_def_cfa_expression";
555 case DW_CFA_expression
:
556 return "DW_CFA_expression";
557 case DW_CFA_offset_extended_sf
:
558 return "DW_CFA_offset_extended_sf";
559 case DW_CFA_def_cfa_sf
:
560 return "DW_CFA_def_cfa_sf";
561 case DW_CFA_def_cfa_offset_sf
:
562 return "DW_CFA_def_cfa_offset_sf";
564 /* SGI/MIPS specific */
565 case DW_CFA_MIPS_advance_loc8
:
566 return "DW_CFA_MIPS_advance_loc8";
569 case DW_CFA_GNU_window_save
:
570 return "DW_CFA_GNU_window_save";
571 case DW_CFA_GNU_args_size
:
572 return "DW_CFA_GNU_args_size";
573 case DW_CFA_GNU_negative_offset_extended
:
574 return "DW_CFA_GNU_negative_offset_extended";
577 return "DW_CFA_<unknown>";
581 /* Return a pointer to a newly allocated Call Frame Instruction. */
583 static inline dw_cfi_ref
586 dw_cfi_ref cfi
= ggc_alloc (sizeof (dw_cfi_node
));
588 cfi
->dw_cfi_next
= NULL
;
589 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= 0;
590 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= 0;
595 /* Add a Call Frame Instruction to list of instructions. */
598 add_cfi (dw_cfi_ref
*list_head
, dw_cfi_ref cfi
)
602 /* Find the end of the chain. */
603 for (p
= list_head
; (*p
) != NULL
; p
= &(*p
)->dw_cfi_next
)
609 /* Generate a new label for the CFI info to refer to. */
612 dwarf2out_cfi_label (void)
614 static char label
[20];
616 ASM_GENERATE_INTERNAL_LABEL (label
, "LCFI", dwarf2out_cfi_label_num
++);
617 ASM_OUTPUT_LABEL (asm_out_file
, label
);
621 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
622 or to the CIE if LABEL is NULL. */
625 add_fde_cfi (const char *label
, dw_cfi_ref cfi
)
629 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
632 label
= dwarf2out_cfi_label ();
634 if (fde
->dw_fde_current_label
== NULL
635 || strcmp (label
, fde
->dw_fde_current_label
) != 0)
639 fde
->dw_fde_current_label
= label
= xstrdup (label
);
641 /* Set the location counter to the new label. */
643 xcfi
->dw_cfi_opc
= DW_CFA_advance_loc4
;
644 xcfi
->dw_cfi_oprnd1
.dw_cfi_addr
= label
;
645 add_cfi (&fde
->dw_fde_cfi
, xcfi
);
648 add_cfi (&fde
->dw_fde_cfi
, cfi
);
652 add_cfi (&cie_cfi_head
, cfi
);
655 /* Subroutine of lookup_cfa. */
658 lookup_cfa_1 (dw_cfi_ref cfi
, dw_cfa_location
*loc
)
660 switch (cfi
->dw_cfi_opc
)
662 case DW_CFA_def_cfa_offset
:
663 loc
->offset
= cfi
->dw_cfi_oprnd1
.dw_cfi_offset
;
665 case DW_CFA_def_cfa_register
:
666 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
669 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
670 loc
->offset
= cfi
->dw_cfi_oprnd2
.dw_cfi_offset
;
672 case DW_CFA_def_cfa_expression
:
673 get_cfa_from_loc_descr (loc
, cfi
->dw_cfi_oprnd1
.dw_cfi_loc
);
680 /* Find the previous value for the CFA. */
683 lookup_cfa (dw_cfa_location
*loc
)
687 loc
->reg
= (unsigned long) -1;
690 loc
->base_offset
= 0;
692 for (cfi
= cie_cfi_head
; cfi
; cfi
= cfi
->dw_cfi_next
)
693 lookup_cfa_1 (cfi
, loc
);
695 if (fde_table_in_use
)
697 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
698 for (cfi
= fde
->dw_fde_cfi
; cfi
; cfi
= cfi
->dw_cfi_next
)
699 lookup_cfa_1 (cfi
, loc
);
703 /* The current rule for calculating the DWARF2 canonical frame address. */
704 static dw_cfa_location cfa
;
706 /* The register used for saving registers to the stack, and its offset
708 static dw_cfa_location cfa_store
;
710 /* The running total of the size of arguments pushed onto the stack. */
711 static HOST_WIDE_INT args_size
;
713 /* The last args_size we actually output. */
714 static HOST_WIDE_INT old_args_size
;
716 /* Entry point to update the canonical frame address (CFA).
717 LABEL is passed to add_fde_cfi. The value of CFA is now to be
718 calculated from REG+OFFSET. */
721 dwarf2out_def_cfa (const char *label
, unsigned int reg
, HOST_WIDE_INT offset
)
728 def_cfa_1 (label
, &loc
);
731 /* This routine does the actual work. The CFA is now calculated from
732 the dw_cfa_location structure. */
735 def_cfa_1 (const char *label
, dw_cfa_location
*loc_p
)
738 dw_cfa_location old_cfa
, loc
;
743 if (cfa_store
.reg
== loc
.reg
&& loc
.indirect
== 0)
744 cfa_store
.offset
= loc
.offset
;
746 loc
.reg
= DWARF_FRAME_REGNUM (loc
.reg
);
747 lookup_cfa (&old_cfa
);
749 /* If nothing changed, no need to issue any call frame instructions. */
750 if (loc
.reg
== old_cfa
.reg
&& loc
.offset
== old_cfa
.offset
751 && loc
.indirect
== old_cfa
.indirect
752 && (loc
.indirect
== 0 || loc
.base_offset
== old_cfa
.base_offset
))
757 if (loc
.reg
== old_cfa
.reg
&& !loc
.indirect
)
759 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
760 indicating the CFA register did not change but the offset
762 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset
;
763 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= loc
.offset
;
766 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
767 else if (loc
.offset
== old_cfa
.offset
&& old_cfa
.reg
!= (unsigned long) -1
770 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
771 indicating the CFA register has changed to <register> but the
772 offset has not changed. */
773 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_register
;
774 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
778 else if (loc
.indirect
== 0)
780 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
781 indicating the CFA register has changed to <register> with
782 the specified offset. */
783 cfi
->dw_cfi_opc
= DW_CFA_def_cfa
;
784 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
785 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= loc
.offset
;
789 /* Construct a DW_CFA_def_cfa_expression instruction to
790 calculate the CFA using a full location expression since no
791 register-offset pair is available. */
792 struct dw_loc_descr_struct
*loc_list
;
794 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_expression
;
795 loc_list
= build_cfa_loc (&loc
);
796 cfi
->dw_cfi_oprnd1
.dw_cfi_loc
= loc_list
;
799 add_fde_cfi (label
, cfi
);
802 /* Add the CFI for saving a register. REG is the CFA column number.
803 LABEL is passed to add_fde_cfi.
804 If SREG is -1, the register is saved at OFFSET from the CFA;
805 otherwise it is saved in SREG. */
808 reg_save (const char *label
, unsigned int reg
, unsigned int sreg
, HOST_WIDE_INT offset
)
810 dw_cfi_ref cfi
= new_cfi ();
812 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
814 if (sreg
== INVALID_REGNUM
)
817 /* The register number won't fit in 6 bits, so we have to use
819 cfi
->dw_cfi_opc
= DW_CFA_offset_extended
;
821 cfi
->dw_cfi_opc
= DW_CFA_offset
;
823 #ifdef ENABLE_CHECKING
825 /* If we get an offset that is not a multiple of
826 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
827 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
829 HOST_WIDE_INT check_offset
= offset
/ DWARF_CIE_DATA_ALIGNMENT
;
831 gcc_assert (check_offset
* DWARF_CIE_DATA_ALIGNMENT
== offset
);
834 offset
/= DWARF_CIE_DATA_ALIGNMENT
;
836 cfi
->dw_cfi_opc
= DW_CFA_offset_extended_sf
;
838 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= offset
;
840 else if (sreg
== reg
)
841 cfi
->dw_cfi_opc
= DW_CFA_same_value
;
844 cfi
->dw_cfi_opc
= DW_CFA_register
;
845 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= sreg
;
848 add_fde_cfi (label
, cfi
);
851 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
852 This CFI tells the unwinder that it needs to restore the window registers
853 from the previous frame's window save area.
855 ??? Perhaps we should note in the CIE where windows are saved (instead of
856 assuming 0(cfa)) and what registers are in the window. */
859 dwarf2out_window_save (const char *label
)
861 dw_cfi_ref cfi
= new_cfi ();
863 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
864 add_fde_cfi (label
, cfi
);
867 /* Add a CFI to update the running total of the size of arguments
868 pushed onto the stack. */
871 dwarf2out_args_size (const char *label
, HOST_WIDE_INT size
)
875 if (size
== old_args_size
)
878 old_args_size
= size
;
881 cfi
->dw_cfi_opc
= DW_CFA_GNU_args_size
;
882 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= size
;
883 add_fde_cfi (label
, cfi
);
886 /* Entry point for saving a register to the stack. REG is the GCC register
887 number. LABEL and OFFSET are passed to reg_save. */
890 dwarf2out_reg_save (const char *label
, unsigned int reg
, HOST_WIDE_INT offset
)
892 reg_save (label
, DWARF_FRAME_REGNUM (reg
), INVALID_REGNUM
, offset
);
895 /* Entry point for saving the return address in the stack.
896 LABEL and OFFSET are passed to reg_save. */
899 dwarf2out_return_save (const char *label
, HOST_WIDE_INT offset
)
901 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, INVALID_REGNUM
, offset
);
904 /* Entry point for saving the return address in a register.
905 LABEL and SREG are passed to reg_save. */
908 dwarf2out_return_reg (const char *label
, unsigned int sreg
)
910 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, DWARF_FRAME_REGNUM (sreg
), 0);
913 /* Record the initial position of the return address. RTL is
914 INCOMING_RETURN_ADDR_RTX. */
917 initial_return_save (rtx rtl
)
919 unsigned int reg
= INVALID_REGNUM
;
920 HOST_WIDE_INT offset
= 0;
922 switch (GET_CODE (rtl
))
925 /* RA is in a register. */
926 reg
= DWARF_FRAME_REGNUM (REGNO (rtl
));
930 /* RA is on the stack. */
932 switch (GET_CODE (rtl
))
935 gcc_assert (REGNO (rtl
) == STACK_POINTER_REGNUM
);
940 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
941 offset
= INTVAL (XEXP (rtl
, 1));
945 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
946 offset
= -INTVAL (XEXP (rtl
, 1));
956 /* The return address is at some offset from any value we can
957 actually load. For instance, on the SPARC it is in %i7+8. Just
958 ignore the offset for now; it doesn't matter for unwinding frames. */
959 gcc_assert (GET_CODE (XEXP (rtl
, 1)) == CONST_INT
);
960 initial_return_save (XEXP (rtl
, 0));
967 if (reg
!= DWARF_FRAME_RETURN_COLUMN
)
968 reg_save (NULL
, DWARF_FRAME_RETURN_COLUMN
, reg
, offset
- cfa
.offset
);
971 /* Given a SET, calculate the amount of stack adjustment it
975 stack_adjust_offset (rtx pattern
)
977 rtx src
= SET_SRC (pattern
);
978 rtx dest
= SET_DEST (pattern
);
979 HOST_WIDE_INT offset
= 0;
982 if (dest
== stack_pointer_rtx
)
984 /* (set (reg sp) (plus (reg sp) (const_int))) */
985 code
= GET_CODE (src
);
986 if (! (code
== PLUS
|| code
== MINUS
)
987 || XEXP (src
, 0) != stack_pointer_rtx
988 || GET_CODE (XEXP (src
, 1)) != CONST_INT
)
991 offset
= INTVAL (XEXP (src
, 1));
995 else if (MEM_P (dest
))
997 /* (set (mem (pre_dec (reg sp))) (foo)) */
998 src
= XEXP (dest
, 0);
999 code
= GET_CODE (src
);
1005 if (XEXP (src
, 0) == stack_pointer_rtx
)
1007 rtx val
= XEXP (XEXP (src
, 1), 1);
1008 /* We handle only adjustments by constant amount. */
1009 gcc_assert (GET_CODE (XEXP (src
, 1)) == PLUS
1010 && GET_CODE (val
) == CONST_INT
);
1011 offset
= -INTVAL (val
);
1018 if (XEXP (src
, 0) == stack_pointer_rtx
)
1020 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1027 if (XEXP (src
, 0) == stack_pointer_rtx
)
1029 offset
= -GET_MODE_SIZE (GET_MODE (dest
));
1044 /* Check INSN to see if it looks like a push or a stack adjustment, and
1045 make a note of it if it does. EH uses this information to find out how
1046 much extra space it needs to pop off the stack. */
1049 dwarf2out_stack_adjust (rtx insn
)
1051 HOST_WIDE_INT offset
;
1055 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1056 with this function. Proper support would require all frame-related
1057 insns to be marked, and to be able to handle saving state around
1058 epilogues textually in the middle of the function. */
1059 if (prologue_epilogue_contains (insn
) || sibcall_epilogue_contains (insn
))
1062 if (!flag_asynchronous_unwind_tables
&& CALL_P (insn
))
1064 /* Extract the size of the args from the CALL rtx itself. */
1065 insn
= PATTERN (insn
);
1066 if (GET_CODE (insn
) == PARALLEL
)
1067 insn
= XVECEXP (insn
, 0, 0);
1068 if (GET_CODE (insn
) == SET
)
1069 insn
= SET_SRC (insn
);
1070 gcc_assert (GET_CODE (insn
) == CALL
);
1072 dwarf2out_args_size ("", INTVAL (XEXP (insn
, 1)));
1076 /* If only calls can throw, and we have a frame pointer,
1077 save up adjustments until we see the CALL_INSN. */
1078 else if (!flag_asynchronous_unwind_tables
&& cfa
.reg
!= STACK_POINTER_REGNUM
)
1081 if (BARRIER_P (insn
))
1083 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1084 the compiler will have already emitted a stack adjustment, but
1085 doesn't bother for calls to noreturn functions. */
1086 #ifdef STACK_GROWS_DOWNWARD
1087 offset
= -args_size
;
1092 else if (GET_CODE (PATTERN (insn
)) == SET
)
1093 offset
= stack_adjust_offset (PATTERN (insn
));
1094 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1095 || GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1097 /* There may be stack adjustments inside compound insns. Search
1099 for (offset
= 0, i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
1100 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1101 offset
+= stack_adjust_offset (XVECEXP (PATTERN (insn
), 0, i
));
1109 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1110 cfa
.offset
+= offset
;
1112 #ifndef STACK_GROWS_DOWNWARD
1116 args_size
+= offset
;
1120 label
= dwarf2out_cfi_label ();
1121 def_cfa_1 (label
, &cfa
);
1122 dwarf2out_args_size (label
, args_size
);
1127 /* We delay emitting a register save until either (a) we reach the end
1128 of the prologue or (b) the register is clobbered. This clusters
1129 register saves so that there are fewer pc advances. */
1131 struct queued_reg_save
GTY(())
1133 struct queued_reg_save
*next
;
1135 HOST_WIDE_INT cfa_offset
;
1139 static GTY(()) struct queued_reg_save
*queued_reg_saves
;
1141 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1142 struct reg_saved_in_data
GTY(()) {
1147 /* A list of registers saved in other registers.
1148 The list intentionally has a small maximum capacity of 4; if your
1149 port needs more than that, you might consider implementing a
1150 more efficient data structure. */
1151 static GTY(()) struct reg_saved_in_data regs_saved_in_regs
[4];
1152 static GTY(()) size_t num_regs_saved_in_regs
;
1154 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1155 static const char *last_reg_save_label
;
1157 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1158 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1161 queue_reg_save (const char *label
, rtx reg
, rtx sreg
, HOST_WIDE_INT offset
)
1163 struct queued_reg_save
*q
;
1165 /* Duplicates waste space, but it's also necessary to remove them
1166 for correctness, since the queue gets output in reverse
1168 for (q
= queued_reg_saves
; q
!= NULL
; q
= q
->next
)
1169 if (REGNO (q
->reg
) == REGNO (reg
))
1174 q
= ggc_alloc (sizeof (*q
));
1175 q
->next
= queued_reg_saves
;
1176 queued_reg_saves
= q
;
1180 q
->cfa_offset
= offset
;
1181 q
->saved_reg
= sreg
;
1183 last_reg_save_label
= label
;
1186 /* Output all the entries in QUEUED_REG_SAVES. */
1189 flush_queued_reg_saves (void)
1191 struct queued_reg_save
*q
;
1193 for (q
= queued_reg_saves
; q
; q
= q
->next
)
1196 unsigned int reg
, sreg
;
1198 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1199 if (REGNO (regs_saved_in_regs
[i
].orig_reg
) == REGNO (q
->reg
))
1201 if (q
->saved_reg
&& i
== num_regs_saved_in_regs
)
1203 gcc_assert (i
!= ARRAY_SIZE (regs_saved_in_regs
));
1204 num_regs_saved_in_regs
++;
1206 if (i
!= num_regs_saved_in_regs
)
1208 regs_saved_in_regs
[i
].orig_reg
= q
->reg
;
1209 regs_saved_in_regs
[i
].saved_in_reg
= q
->saved_reg
;
1212 reg
= DWARF_FRAME_REGNUM (REGNO (q
->reg
));
1214 sreg
= DWARF_FRAME_REGNUM (REGNO (q
->saved_reg
));
1216 sreg
= INVALID_REGNUM
;
1217 reg_save (last_reg_save_label
, reg
, sreg
, q
->cfa_offset
);
1220 queued_reg_saves
= NULL
;
1221 last_reg_save_label
= NULL
;
1224 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1225 location for? Or, does it clobber a register which we've previously
1226 said that some other register is saved in, and for which we now
1227 have a new location for? */
1230 clobbers_queued_reg_save (rtx insn
)
1232 struct queued_reg_save
*q
;
1234 for (q
= queued_reg_saves
; q
; q
= q
->next
)
1237 if (modified_in_p (q
->reg
, insn
))
1239 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1240 if (REGNO (q
->reg
) == REGNO (regs_saved_in_regs
[i
].orig_reg
)
1241 && modified_in_p (regs_saved_in_regs
[i
].saved_in_reg
, insn
))
1248 /* What register, if any, is currently saved in REG? */
1251 reg_saved_in (rtx reg
)
1253 unsigned int regn
= REGNO (reg
);
1255 struct queued_reg_save
*q
;
1257 for (q
= queued_reg_saves
; q
; q
= q
->next
)
1258 if (q
->saved_reg
&& regn
== REGNO (q
->saved_reg
))
1261 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1262 if (regs_saved_in_regs
[i
].saved_in_reg
1263 && regn
== REGNO (regs_saved_in_regs
[i
].saved_in_reg
))
1264 return regs_saved_in_regs
[i
].orig_reg
;
1270 /* A temporary register holding an integral value used in adjusting SP
1271 or setting up the store_reg. The "offset" field holds the integer
1272 value, not an offset. */
1273 static dw_cfa_location cfa_temp
;
1275 /* Record call frame debugging information for an expression EXPR,
1276 which either sets SP or FP (adjusting how we calculate the frame
1277 address) or saves a register to the stack or another register.
1278 LABEL indicates the address of EXPR.
1280 This function encodes a state machine mapping rtxes to actions on
1281 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1282 users need not read the source code.
1284 The High-Level Picture
1286 Changes in the register we use to calculate the CFA: Currently we
1287 assume that if you copy the CFA register into another register, we
1288 should take the other one as the new CFA register; this seems to
1289 work pretty well. If it's wrong for some target, it's simple
1290 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1292 Changes in the register we use for saving registers to the stack:
1293 This is usually SP, but not always. Again, we deduce that if you
1294 copy SP into another register (and SP is not the CFA register),
1295 then the new register is the one we will be using for register
1296 saves. This also seems to work.
1298 Register saves: There's not much guesswork about this one; if
1299 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1300 register save, and the register used to calculate the destination
1301 had better be the one we think we're using for this purpose.
1302 It's also assumed that a copy from a call-saved register to another
1303 register is saving that register if RTX_FRAME_RELATED_P is set on
1304 that instruction. If the copy is from a call-saved register to
1305 the *same* register, that means that the register is now the same
1306 value as in the caller.
1308 Except: If the register being saved is the CFA register, and the
1309 offset is nonzero, we are saving the CFA, so we assume we have to
1310 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1311 the intent is to save the value of SP from the previous frame.
1313 In addition, if a register has previously been saved to a different
1316 Invariants / Summaries of Rules
1318 cfa current rule for calculating the CFA. It usually
1319 consists of a register and an offset.
1320 cfa_store register used by prologue code to save things to the stack
1321 cfa_store.offset is the offset from the value of
1322 cfa_store.reg to the actual CFA
1323 cfa_temp register holding an integral value. cfa_temp.offset
1324 stores the value, which will be used to adjust the
1325 stack pointer. cfa_temp is also used like cfa_store,
1326 to track stores to the stack via fp or a temp reg.
1328 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1329 with cfa.reg as the first operand changes the cfa.reg and its
1330 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1333 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1334 expression yielding a constant. This sets cfa_temp.reg
1335 and cfa_temp.offset.
1337 Rule 5: Create a new register cfa_store used to save items to the
1340 Rules 10-14: Save a register to the stack. Define offset as the
1341 difference of the original location and cfa_store's
1342 location (or cfa_temp's location if cfa_temp is used).
1346 "{a,b}" indicates a choice of a xor b.
1347 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1350 (set <reg1> <reg2>:cfa.reg)
1351 effects: cfa.reg = <reg1>
1352 cfa.offset unchanged
1353 cfa_temp.reg = <reg1>
1354 cfa_temp.offset = cfa.offset
1357 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1358 {<const_int>,<reg>:cfa_temp.reg}))
1359 effects: cfa.reg = sp if fp used
1360 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1361 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1362 if cfa_store.reg==sp
1365 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1366 effects: cfa.reg = fp
1367 cfa_offset += +/- <const_int>
1370 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1371 constraints: <reg1> != fp
1373 effects: cfa.reg = <reg1>
1374 cfa_temp.reg = <reg1>
1375 cfa_temp.offset = cfa.offset
1378 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1379 constraints: <reg1> != fp
1381 effects: cfa_store.reg = <reg1>
1382 cfa_store.offset = cfa.offset - cfa_temp.offset
1385 (set <reg> <const_int>)
1386 effects: cfa_temp.reg = <reg>
1387 cfa_temp.offset = <const_int>
1390 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1391 effects: cfa_temp.reg = <reg1>
1392 cfa_temp.offset |= <const_int>
1395 (set <reg> (high <exp>))
1399 (set <reg> (lo_sum <exp> <const_int>))
1400 effects: cfa_temp.reg = <reg>
1401 cfa_temp.offset = <const_int>
1404 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1405 effects: cfa_store.offset -= <const_int>
1406 cfa.offset = cfa_store.offset if cfa.reg == sp
1408 cfa.base_offset = -cfa_store.offset
1411 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1412 effects: cfa_store.offset += -/+ mode_size(mem)
1413 cfa.offset = cfa_store.offset if cfa.reg == sp
1415 cfa.base_offset = -cfa_store.offset
1418 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1421 effects: cfa.reg = <reg1>
1422 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1425 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1426 effects: cfa.reg = <reg1>
1427 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1430 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1431 effects: cfa.reg = <reg1>
1432 cfa.base_offset = -cfa_temp.offset
1433 cfa_temp.offset -= mode_size(mem) */
1436 dwarf2out_frame_debug_expr (rtx expr
, const char *label
)
1439 HOST_WIDE_INT offset
;
1441 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1442 the PARALLEL independently. The first element is always processed if
1443 it is a SET. This is for backward compatibility. Other elements
1444 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1445 flag is set in them. */
1446 if (GET_CODE (expr
) == PARALLEL
|| GET_CODE (expr
) == SEQUENCE
)
1449 int limit
= XVECLEN (expr
, 0);
1451 for (par_index
= 0; par_index
< limit
; par_index
++)
1452 if (GET_CODE (XVECEXP (expr
, 0, par_index
)) == SET
1453 && (RTX_FRAME_RELATED_P (XVECEXP (expr
, 0, par_index
))
1455 dwarf2out_frame_debug_expr (XVECEXP (expr
, 0, par_index
), label
);
1460 gcc_assert (GET_CODE (expr
) == SET
);
1462 src
= SET_SRC (expr
);
1463 dest
= SET_DEST (expr
);
1465 if (GET_CODE (src
) == REG
)
1467 rtx rsi
= reg_saved_in (src
);
1472 switch (GET_CODE (dest
))
1475 switch (GET_CODE (src
))
1477 /* Setting FP from SP. */
1479 if (cfa
.reg
== (unsigned) REGNO (src
))
1482 /* Update the CFA rule wrt SP or FP. Make sure src is
1483 relative to the current CFA register.
1485 We used to require that dest be either SP or FP, but the
1486 ARM copies SP to a temporary register, and from there to
1487 FP. So we just rely on the backends to only set
1488 RTX_FRAME_RELATED_P on appropriate insns. */
1489 cfa
.reg
= REGNO (dest
);
1490 cfa_temp
.reg
= cfa
.reg
;
1491 cfa_temp
.offset
= cfa
.offset
;
1495 /* Saving a register in a register. */
1496 gcc_assert (call_used_regs
[REGNO (dest
)]
1497 && !fixed_regs
[REGNO (dest
)]);
1498 queue_reg_save (label
, src
, dest
, 0);
1505 if (dest
== stack_pointer_rtx
)
1509 switch (GET_CODE (XEXP (src
, 1)))
1512 offset
= INTVAL (XEXP (src
, 1));
1515 gcc_assert ((unsigned) REGNO (XEXP (src
, 1))
1517 offset
= cfa_temp
.offset
;
1523 if (XEXP (src
, 0) == hard_frame_pointer_rtx
)
1525 /* Restoring SP from FP in the epilogue. */
1526 gcc_assert (cfa
.reg
== (unsigned) HARD_FRAME_POINTER_REGNUM
);
1527 cfa
.reg
= STACK_POINTER_REGNUM
;
1529 else if (GET_CODE (src
) == LO_SUM
)
1530 /* Assume we've set the source reg of the LO_SUM from sp. */
1533 gcc_assert (XEXP (src
, 0) == stack_pointer_rtx
);
1535 if (GET_CODE (src
) != MINUS
)
1537 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1538 cfa
.offset
+= offset
;
1539 if (cfa_store
.reg
== STACK_POINTER_REGNUM
)
1540 cfa_store
.offset
+= offset
;
1542 else if (dest
== hard_frame_pointer_rtx
)
1545 /* Either setting the FP from an offset of the SP,
1546 or adjusting the FP */
1547 gcc_assert (frame_pointer_needed
);
1549 gcc_assert (REG_P (XEXP (src
, 0))
1550 && (unsigned) REGNO (XEXP (src
, 0)) == cfa
.reg
1551 && GET_CODE (XEXP (src
, 1)) == CONST_INT
);
1552 offset
= INTVAL (XEXP (src
, 1));
1553 if (GET_CODE (src
) != MINUS
)
1555 cfa
.offset
+= offset
;
1556 cfa
.reg
= HARD_FRAME_POINTER_REGNUM
;
1560 gcc_assert (GET_CODE (src
) != MINUS
);
1563 if (REG_P (XEXP (src
, 0))
1564 && REGNO (XEXP (src
, 0)) == cfa
.reg
1565 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1567 /* Setting a temporary CFA register that will be copied
1568 into the FP later on. */
1569 offset
= - INTVAL (XEXP (src
, 1));
1570 cfa
.offset
+= offset
;
1571 cfa
.reg
= REGNO (dest
);
1572 /* Or used to save regs to the stack. */
1573 cfa_temp
.reg
= cfa
.reg
;
1574 cfa_temp
.offset
= cfa
.offset
;
1578 else if (REG_P (XEXP (src
, 0))
1579 && REGNO (XEXP (src
, 0)) == cfa_temp
.reg
1580 && XEXP (src
, 1) == stack_pointer_rtx
)
1582 /* Setting a scratch register that we will use instead
1583 of SP for saving registers to the stack. */
1584 gcc_assert (cfa
.reg
== STACK_POINTER_REGNUM
);
1585 cfa_store
.reg
= REGNO (dest
);
1586 cfa_store
.offset
= cfa
.offset
- cfa_temp
.offset
;
1590 else if (GET_CODE (src
) == LO_SUM
1591 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1593 cfa_temp
.reg
= REGNO (dest
);
1594 cfa_temp
.offset
= INTVAL (XEXP (src
, 1));
1603 cfa_temp
.reg
= REGNO (dest
);
1604 cfa_temp
.offset
= INTVAL (src
);
1609 gcc_assert (REG_P (XEXP (src
, 0))
1610 && (unsigned) REGNO (XEXP (src
, 0)) == cfa_temp
.reg
1611 && GET_CODE (XEXP (src
, 1)) == CONST_INT
);
1613 if ((unsigned) REGNO (dest
) != cfa_temp
.reg
)
1614 cfa_temp
.reg
= REGNO (dest
);
1615 cfa_temp
.offset
|= INTVAL (XEXP (src
, 1));
1618 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1619 which will fill in all of the bits. */
1628 def_cfa_1 (label
, &cfa
);
1632 gcc_assert (REG_P (src
));
1634 /* Saving a register to the stack. Make sure dest is relative to the
1636 switch (GET_CODE (XEXP (dest
, 0)))
1641 /* We can't handle variable size modifications. */
1642 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest
, 0), 1), 1))
1644 offset
= -INTVAL (XEXP (XEXP (XEXP (dest
, 0), 1), 1));
1646 gcc_assert (REGNO (XEXP (XEXP (dest
, 0), 0)) == STACK_POINTER_REGNUM
1647 && cfa_store
.reg
== STACK_POINTER_REGNUM
);
1649 cfa_store
.offset
+= offset
;
1650 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1651 cfa
.offset
= cfa_store
.offset
;
1653 offset
= -cfa_store
.offset
;
1659 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1660 if (GET_CODE (XEXP (dest
, 0)) == PRE_INC
)
1663 gcc_assert (REGNO (XEXP (XEXP (dest
, 0), 0)) == STACK_POINTER_REGNUM
1664 && cfa_store
.reg
== STACK_POINTER_REGNUM
);
1666 cfa_store
.offset
+= offset
;
1667 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1668 cfa
.offset
= cfa_store
.offset
;
1670 offset
= -cfa_store
.offset
;
1674 /* With an offset. */
1681 gcc_assert (GET_CODE (XEXP (XEXP (dest
, 0), 1)) == CONST_INT
);
1682 offset
= INTVAL (XEXP (XEXP (dest
, 0), 1));
1683 if (GET_CODE (XEXP (dest
, 0)) == MINUS
)
1686 regno
= REGNO (XEXP (XEXP (dest
, 0), 0));
1688 if (cfa_store
.reg
== (unsigned) regno
)
1689 offset
-= cfa_store
.offset
;
1692 gcc_assert (cfa_temp
.reg
== (unsigned) regno
);
1693 offset
-= cfa_temp
.offset
;
1699 /* Without an offset. */
1702 int regno
= REGNO (XEXP (dest
, 0));
1704 if (cfa_store
.reg
== (unsigned) regno
)
1705 offset
= -cfa_store
.offset
;
1708 gcc_assert (cfa_temp
.reg
== (unsigned) regno
);
1709 offset
= -cfa_temp
.offset
;
1716 gcc_assert (cfa_temp
.reg
1717 == (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)));
1718 offset
= -cfa_temp
.offset
;
1719 cfa_temp
.offset
-= GET_MODE_SIZE (GET_MODE (dest
));
1726 if (REGNO (src
) != STACK_POINTER_REGNUM
1727 && REGNO (src
) != HARD_FRAME_POINTER_REGNUM
1728 && (unsigned) REGNO (src
) == cfa
.reg
)
1730 /* We're storing the current CFA reg into the stack. */
1732 if (cfa
.offset
== 0)
1734 /* If the source register is exactly the CFA, assume
1735 we're saving SP like any other register; this happens
1737 def_cfa_1 (label
, &cfa
);
1738 queue_reg_save (label
, stack_pointer_rtx
, NULL_RTX
, offset
);
1743 /* Otherwise, we'll need to look in the stack to
1744 calculate the CFA. */
1745 rtx x
= XEXP (dest
, 0);
1749 gcc_assert (REG_P (x
));
1751 cfa
.reg
= REGNO (x
);
1752 cfa
.base_offset
= offset
;
1754 def_cfa_1 (label
, &cfa
);
1759 def_cfa_1 (label
, &cfa
);
1760 queue_reg_save (label
, src
, NULL_RTX
, offset
);
1768 /* Record call frame debugging information for INSN, which either
1769 sets SP or FP (adjusting how we calculate the frame address) or saves a
1770 register to the stack. If INSN is NULL_RTX, initialize our state. */
1773 dwarf2out_frame_debug (rtx insn
)
1778 if (insn
== NULL_RTX
)
1782 /* Flush any queued register saves. */
1783 flush_queued_reg_saves ();
1785 /* Set up state for generating call frame debug info. */
1788 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
));
1790 cfa
.reg
= STACK_POINTER_REGNUM
;
1793 cfa_temp
.offset
= 0;
1795 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1797 regs_saved_in_regs
[i
].orig_reg
= NULL_RTX
;
1798 regs_saved_in_regs
[i
].saved_in_reg
= NULL_RTX
;
1800 num_regs_saved_in_regs
= 0;
1804 if (!NONJUMP_INSN_P (insn
) || clobbers_queued_reg_save (insn
))
1805 flush_queued_reg_saves ();
1807 if (! RTX_FRAME_RELATED_P (insn
))
1809 if (!ACCUMULATE_OUTGOING_ARGS
)
1810 dwarf2out_stack_adjust (insn
);
1815 label
= dwarf2out_cfi_label ();
1816 src
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
1818 insn
= XEXP (src
, 0);
1820 insn
= PATTERN (insn
);
1822 dwarf2out_frame_debug_expr (insn
, label
);
1827 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1828 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1829 (enum dwarf_call_frame_info cfi
);
1831 static enum dw_cfi_oprnd_type
1832 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi
)
1837 case DW_CFA_GNU_window_save
:
1838 return dw_cfi_oprnd_unused
;
1840 case DW_CFA_set_loc
:
1841 case DW_CFA_advance_loc1
:
1842 case DW_CFA_advance_loc2
:
1843 case DW_CFA_advance_loc4
:
1844 case DW_CFA_MIPS_advance_loc8
:
1845 return dw_cfi_oprnd_addr
;
1848 case DW_CFA_offset_extended
:
1849 case DW_CFA_def_cfa
:
1850 case DW_CFA_offset_extended_sf
:
1851 case DW_CFA_def_cfa_sf
:
1852 case DW_CFA_restore_extended
:
1853 case DW_CFA_undefined
:
1854 case DW_CFA_same_value
:
1855 case DW_CFA_def_cfa_register
:
1856 case DW_CFA_register
:
1857 return dw_cfi_oprnd_reg_num
;
1859 case DW_CFA_def_cfa_offset
:
1860 case DW_CFA_GNU_args_size
:
1861 case DW_CFA_def_cfa_offset_sf
:
1862 return dw_cfi_oprnd_offset
;
1864 case DW_CFA_def_cfa_expression
:
1865 case DW_CFA_expression
:
1866 return dw_cfi_oprnd_loc
;
1873 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1874 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1875 (enum dwarf_call_frame_info cfi
);
1877 static enum dw_cfi_oprnd_type
1878 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi
)
1882 case DW_CFA_def_cfa
:
1883 case DW_CFA_def_cfa_sf
:
1885 case DW_CFA_offset_extended_sf
:
1886 case DW_CFA_offset_extended
:
1887 return dw_cfi_oprnd_offset
;
1889 case DW_CFA_register
:
1890 return dw_cfi_oprnd_reg_num
;
1893 return dw_cfi_oprnd_unused
;
1897 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1899 /* Map register numbers held in the call frame info that gcc has
1900 collected using DWARF_FRAME_REGNUM to those that should be output in
1901 .debug_frame and .eh_frame. */
1902 #ifndef DWARF2_FRAME_REG_OUT
1903 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1906 /* Output a Call Frame Information opcode and its operand(s). */
1909 output_cfi (dw_cfi_ref cfi
, dw_fde_ref fde
, int for_eh
)
1912 if (cfi
->dw_cfi_opc
== DW_CFA_advance_loc
)
1913 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
1914 | (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
& 0x3f)),
1915 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX
,
1916 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
1917 else if (cfi
->dw_cfi_opc
== DW_CFA_offset
)
1919 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
1920 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
1921 "DW_CFA_offset, column 0x%lx", r
);
1922 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1924 else if (cfi
->dw_cfi_opc
== DW_CFA_restore
)
1926 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
1927 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
1928 "DW_CFA_restore, column 0x%lx", r
);
1932 dw2_asm_output_data (1, cfi
->dw_cfi_opc
,
1933 "%s", dwarf_cfi_name (cfi
->dw_cfi_opc
));
1935 switch (cfi
->dw_cfi_opc
)
1937 case DW_CFA_set_loc
:
1939 dw2_asm_output_encoded_addr_rtx (
1940 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1941 gen_rtx_SYMBOL_REF (Pmode
, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
),
1944 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
1945 cfi
->dw_cfi_oprnd1
.dw_cfi_addr
, NULL
);
1948 case DW_CFA_advance_loc1
:
1949 dw2_asm_output_delta (1, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1950 fde
->dw_fde_current_label
, NULL
);
1951 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1954 case DW_CFA_advance_loc2
:
1955 dw2_asm_output_delta (2, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1956 fde
->dw_fde_current_label
, NULL
);
1957 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1960 case DW_CFA_advance_loc4
:
1961 dw2_asm_output_delta (4, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1962 fde
->dw_fde_current_label
, NULL
);
1963 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1966 case DW_CFA_MIPS_advance_loc8
:
1967 dw2_asm_output_delta (8, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1968 fde
->dw_fde_current_label
, NULL
);
1969 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1972 case DW_CFA_offset_extended
:
1973 case DW_CFA_def_cfa
:
1974 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
1975 dw2_asm_output_data_uleb128 (r
, NULL
);
1976 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1979 case DW_CFA_offset_extended_sf
:
1980 case DW_CFA_def_cfa_sf
:
1981 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
1982 dw2_asm_output_data_uleb128 (r
, NULL
);
1983 dw2_asm_output_data_sleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1986 case DW_CFA_restore_extended
:
1987 case DW_CFA_undefined
:
1988 case DW_CFA_same_value
:
1989 case DW_CFA_def_cfa_register
:
1990 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
1991 dw2_asm_output_data_uleb128 (r
, NULL
);
1994 case DW_CFA_register
:
1995 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
1996 dw2_asm_output_data_uleb128 (r
, NULL
);
1997 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, for_eh
);
1998 dw2_asm_output_data_uleb128 (r
, NULL
);
2001 case DW_CFA_def_cfa_offset
:
2002 case DW_CFA_GNU_args_size
:
2003 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
2006 case DW_CFA_def_cfa_offset_sf
:
2007 dw2_asm_output_data_sleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
2010 case DW_CFA_GNU_window_save
:
2013 case DW_CFA_def_cfa_expression
:
2014 case DW_CFA_expression
:
2015 output_cfa_loc (cfi
);
2018 case DW_CFA_GNU_negative_offset_extended
:
2019 /* Obsoleted by DW_CFA_offset_extended_sf. */
2028 /* Output the call frame information used to record information
2029 that relates to calculating the frame pointer, and records the
2030 location of saved registers. */
2033 output_call_frame_info (int for_eh
)
2038 char l1
[20], l2
[20], section_start_label
[20];
2039 bool any_lsda_needed
= false;
2040 char augmentation
[6];
2041 int augmentation_size
;
2042 int fde_encoding
= DW_EH_PE_absptr
;
2043 int per_encoding
= DW_EH_PE_absptr
;
2044 int lsda_encoding
= DW_EH_PE_absptr
;
2046 /* Don't emit a CIE if there won't be any FDEs. */
2047 if (fde_table_in_use
== 0)
2050 /* If we make FDEs linkonce, we may have to emit an empty label for
2051 an FDE that wouldn't otherwise be emitted. We want to avoid
2052 having an FDE kept around when the function it refers to is
2053 discarded. (Example where this matters: a primary function
2054 template in C++ requires EH information, but an explicit
2055 specialization doesn't. */
2056 if (TARGET_USES_WEAK_UNWIND_INFO
2057 && ! flag_asynchronous_unwind_tables
2059 for (i
= 0; i
< fde_table_in_use
; i
++)
2060 if ((fde_table
[i
].nothrow
|| fde_table
[i
].all_throwers_are_sibcalls
)
2061 && !fde_table
[i
].uses_eh_lsda
2062 && ! DECL_ONE_ONLY (fde_table
[i
].decl
))
2063 targetm
.asm_out
.unwind_label (asm_out_file
, fde_table
[i
].decl
,
2064 for_eh
, /* empty */ 1);
2066 /* If we don't have any functions we'll want to unwind out of, don't
2067 emit any EH unwind information. Note that if exceptions aren't
2068 enabled, we won't have collected nothrow information, and if we
2069 asked for asynchronous tables, we always want this info. */
2072 bool any_eh_needed
= !flag_exceptions
|| flag_asynchronous_unwind_tables
;
2074 for (i
= 0; i
< fde_table_in_use
; i
++)
2075 if (fde_table
[i
].uses_eh_lsda
)
2076 any_eh_needed
= any_lsda_needed
= true;
2077 else if (TARGET_USES_WEAK_UNWIND_INFO
2078 && DECL_ONE_ONLY (fde_table
[i
].decl
))
2079 any_eh_needed
= true;
2080 else if (! fde_table
[i
].nothrow
2081 && ! fde_table
[i
].all_throwers_are_sibcalls
)
2082 any_eh_needed
= true;
2084 if (! any_eh_needed
)
2088 /* We're going to be generating comments, so turn on app. */
2093 targetm
.asm_out
.eh_frame_section ();
2095 named_section_flags (DEBUG_FRAME_SECTION
, SECTION_DEBUG
);
2097 ASM_GENERATE_INTERNAL_LABEL (section_start_label
, FRAME_BEGIN_LABEL
, for_eh
);
2098 ASM_OUTPUT_LABEL (asm_out_file
, section_start_label
);
2100 /* Output the CIE. */
2101 ASM_GENERATE_INTERNAL_LABEL (l1
, CIE_AFTER_SIZE_LABEL
, for_eh
);
2102 ASM_GENERATE_INTERNAL_LABEL (l2
, CIE_END_LABEL
, for_eh
);
2103 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
2104 "Length of Common Information Entry");
2105 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
2107 /* Now that the CIE pointer is PC-relative for EH,
2108 use 0 to identify the CIE. */
2109 dw2_asm_output_data ((for_eh
? 4 : DWARF_OFFSET_SIZE
),
2110 (for_eh
? 0 : DW_CIE_ID
),
2111 "CIE Identifier Tag");
2113 dw2_asm_output_data (1, DW_CIE_VERSION
, "CIE Version");
2115 augmentation
[0] = 0;
2116 augmentation_size
= 0;
2122 z Indicates that a uleb128 is present to size the
2123 augmentation section.
2124 L Indicates the encoding (and thus presence) of
2125 an LSDA pointer in the FDE augmentation.
2126 R Indicates a non-default pointer encoding for
2128 P Indicates the presence of an encoding + language
2129 personality routine in the CIE augmentation. */
2131 fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2132 per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2133 lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2135 p
= augmentation
+ 1;
2136 if (eh_personality_libfunc
)
2139 augmentation_size
+= 1 + size_of_encoded_value (per_encoding
);
2141 if (any_lsda_needed
)
2144 augmentation_size
+= 1;
2146 if (fde_encoding
!= DW_EH_PE_absptr
)
2149 augmentation_size
+= 1;
2151 if (p
> augmentation
+ 1)
2153 augmentation
[0] = 'z';
2157 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2158 if (eh_personality_libfunc
&& per_encoding
== DW_EH_PE_aligned
)
2160 int offset
= ( 4 /* Length */
2162 + 1 /* CIE version */
2163 + strlen (augmentation
) + 1 /* Augmentation */
2164 + size_of_uleb128 (1) /* Code alignment */
2165 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT
)
2167 + 1 /* Augmentation size */
2168 + 1 /* Personality encoding */ );
2169 int pad
= -offset
& (PTR_SIZE
- 1);
2171 augmentation_size
+= pad
;
2173 /* Augmentations should be small, so there's scarce need to
2174 iterate for a solution. Die if we exceed one uleb128 byte. */
2175 gcc_assert (size_of_uleb128 (augmentation_size
) == 1);
2179 dw2_asm_output_nstring (augmentation
, -1, "CIE Augmentation");
2180 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2181 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT
,
2182 "CIE Data Alignment Factor");
2184 if (DW_CIE_VERSION
== 1)
2185 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN
, "CIE RA Column");
2187 dw2_asm_output_data_uleb128 (DWARF_FRAME_RETURN_COLUMN
, "CIE RA Column");
2189 if (augmentation
[0])
2191 dw2_asm_output_data_uleb128 (augmentation_size
, "Augmentation size");
2192 if (eh_personality_libfunc
)
2194 dw2_asm_output_data (1, per_encoding
, "Personality (%s)",
2195 eh_data_format_name (per_encoding
));
2196 dw2_asm_output_encoded_addr_rtx (per_encoding
,
2197 eh_personality_libfunc
, NULL
);
2200 if (any_lsda_needed
)
2201 dw2_asm_output_data (1, lsda_encoding
, "LSDA Encoding (%s)",
2202 eh_data_format_name (lsda_encoding
));
2204 if (fde_encoding
!= DW_EH_PE_absptr
)
2205 dw2_asm_output_data (1, fde_encoding
, "FDE Encoding (%s)",
2206 eh_data_format_name (fde_encoding
));
2209 for (cfi
= cie_cfi_head
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
2210 output_cfi (cfi
, NULL
, for_eh
);
2212 /* Pad the CIE out to an address sized boundary. */
2213 ASM_OUTPUT_ALIGN (asm_out_file
,
2214 floor_log2 (for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
));
2215 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
2217 /* Loop through all of the FDE's. */
2218 for (i
= 0; i
< fde_table_in_use
; i
++)
2220 fde
= &fde_table
[i
];
2222 /* Don't emit EH unwind info for leaf functions that don't need it. */
2223 if (for_eh
&& !flag_asynchronous_unwind_tables
&& flag_exceptions
2224 && (fde
->nothrow
|| fde
->all_throwers_are_sibcalls
)
2225 && (! TARGET_USES_WEAK_UNWIND_INFO
|| ! DECL_ONE_ONLY (fde
->decl
))
2226 && !fde
->uses_eh_lsda
)
2229 targetm
.asm_out
.unwind_label (asm_out_file
, fde
->decl
, for_eh
, /* empty */ 0);
2230 targetm
.asm_out
.internal_label (asm_out_file
, FDE_LABEL
, for_eh
+ i
* 2);
2231 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_AFTER_SIZE_LABEL
, for_eh
+ i
* 2);
2232 ASM_GENERATE_INTERNAL_LABEL (l2
, FDE_END_LABEL
, for_eh
+ i
* 2);
2233 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
2235 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
2238 dw2_asm_output_delta (4, l1
, section_start_label
, "FDE CIE offset");
2240 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, section_start_label
,
2245 rtx sym_ref
= gen_rtx_SYMBOL_REF (Pmode
, fde
->dw_fde_begin
);
2246 SYMBOL_REF_FLAGS (sym_ref
) |= SYMBOL_FLAG_LOCAL
;
2247 dw2_asm_output_encoded_addr_rtx (fde_encoding
,
2249 "FDE initial location");
2250 dw2_asm_output_delta (size_of_encoded_value (fde_encoding
),
2251 fde
->dw_fde_end
, fde
->dw_fde_begin
,
2252 "FDE address range");
2256 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, fde
->dw_fde_begin
,
2257 "FDE initial location");
2258 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
2259 fde
->dw_fde_end
, fde
->dw_fde_begin
,
2260 "FDE address range");
2263 if (augmentation
[0])
2265 if (any_lsda_needed
)
2267 int size
= size_of_encoded_value (lsda_encoding
);
2269 if (lsda_encoding
== DW_EH_PE_aligned
)
2271 int offset
= ( 4 /* Length */
2272 + 4 /* CIE offset */
2273 + 2 * size_of_encoded_value (fde_encoding
)
2274 + 1 /* Augmentation size */ );
2275 int pad
= -offset
& (PTR_SIZE
- 1);
2278 gcc_assert (size_of_uleb128 (size
) == 1);
2281 dw2_asm_output_data_uleb128 (size
, "Augmentation size");
2283 if (fde
->uses_eh_lsda
)
2285 ASM_GENERATE_INTERNAL_LABEL (l1
, "LLSDA",
2286 fde
->funcdef_number
);
2287 dw2_asm_output_encoded_addr_rtx (
2288 lsda_encoding
, gen_rtx_SYMBOL_REF (Pmode
, l1
),
2289 "Language Specific Data Area");
2293 if (lsda_encoding
== DW_EH_PE_aligned
)
2294 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
2296 (size_of_encoded_value (lsda_encoding
), 0,
2297 "Language Specific Data Area (none)");
2301 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2304 /* Loop through the Call Frame Instructions associated with
2306 fde
->dw_fde_current_label
= fde
->dw_fde_begin
;
2307 for (cfi
= fde
->dw_fde_cfi
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
2308 output_cfi (cfi
, fde
, for_eh
);
2310 /* Pad the FDE out to an address sized boundary. */
2311 ASM_OUTPUT_ALIGN (asm_out_file
,
2312 floor_log2 ((for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
)));
2313 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
2316 if (for_eh
&& targetm
.terminate_dw2_eh_frame_info
)
2317 dw2_asm_output_data (4, 0, "End of Table");
2318 #ifdef MIPS_DEBUGGING_INFO
2319 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2320 get a value of 0. Putting .align 0 after the label fixes it. */
2321 ASM_OUTPUT_ALIGN (asm_out_file
, 0);
2324 /* Turn off app to make assembly quicker. */
2329 /* Output a marker (i.e. a label) for the beginning of a function, before
2333 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED
,
2334 const char *file ATTRIBUTE_UNUSED
)
2336 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2340 current_function_func_begin_label
= NULL
;
2342 #ifdef TARGET_UNWIND_INFO
2343 /* ??? current_function_func_begin_label is also used by except.c
2344 for call-site information. We must emit this label if it might
2346 if ((! flag_exceptions
|| USING_SJLJ_EXCEPTIONS
)
2347 && ! dwarf2out_do_frame ())
2350 if (! dwarf2out_do_frame ())
2354 function_section (current_function_decl
);
2355 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_BEGIN_LABEL
,
2356 current_function_funcdef_no
);
2357 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, FUNC_BEGIN_LABEL
,
2358 current_function_funcdef_no
);
2359 dup_label
= xstrdup (label
);
2360 current_function_func_begin_label
= dup_label
;
2362 #ifdef TARGET_UNWIND_INFO
2363 /* We can elide the fde allocation if we're not emitting debug info. */
2364 if (! dwarf2out_do_frame ())
2368 /* Expand the fde table if necessary. */
2369 if (fde_table_in_use
== fde_table_allocated
)
2371 fde_table_allocated
+= FDE_TABLE_INCREMENT
;
2372 fde_table
= ggc_realloc (fde_table
,
2373 fde_table_allocated
* sizeof (dw_fde_node
));
2374 memset (fde_table
+ fde_table_in_use
, 0,
2375 FDE_TABLE_INCREMENT
* sizeof (dw_fde_node
));
2378 /* Record the FDE associated with this function. */
2379 current_funcdef_fde
= fde_table_in_use
;
2381 /* Add the new FDE at the end of the fde_table. */
2382 fde
= &fde_table
[fde_table_in_use
++];
2383 fde
->decl
= current_function_decl
;
2384 fde
->dw_fde_begin
= dup_label
;
2385 fde
->dw_fde_current_label
= NULL
;
2386 fde
->dw_fde_end
= NULL
;
2387 fde
->dw_fde_cfi
= NULL
;
2388 fde
->funcdef_number
= current_function_funcdef_no
;
2389 fde
->nothrow
= TREE_NOTHROW (current_function_decl
);
2390 fde
->uses_eh_lsda
= cfun
->uses_eh_lsda
;
2391 fde
->all_throwers_are_sibcalls
= cfun
->all_throwers_are_sibcalls
;
2393 args_size
= old_args_size
= 0;
2395 /* We only want to output line number information for the genuine dwarf2
2396 prologue case, not the eh frame case. */
2397 #ifdef DWARF2_DEBUGGING_INFO
2399 dwarf2out_source_line (line
, file
);
2403 /* Output a marker (i.e. a label) for the absolute end of the generated code
2404 for a function definition. This gets called *after* the epilogue code has
2408 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED
,
2409 const char *file ATTRIBUTE_UNUSED
)
2412 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2414 /* Output a label to mark the endpoint of the code generated for this
2416 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_END_LABEL
,
2417 current_function_funcdef_no
);
2418 ASM_OUTPUT_LABEL (asm_out_file
, label
);
2419 fde
= &fde_table
[fde_table_in_use
- 1];
2420 fde
->dw_fde_end
= xstrdup (label
);
2424 dwarf2out_frame_init (void)
2426 /* Allocate the initial hunk of the fde_table. */
2427 fde_table
= ggc_alloc_cleared (FDE_TABLE_INCREMENT
* sizeof (dw_fde_node
));
2428 fde_table_allocated
= FDE_TABLE_INCREMENT
;
2429 fde_table_in_use
= 0;
2431 /* Generate the CFA instructions common to all FDE's. Do it now for the
2432 sake of lookup_cfa. */
2434 #ifdef DWARF2_UNWIND_INFO
2435 /* On entry, the Canonical Frame Address is at SP. */
2436 dwarf2out_def_cfa (NULL
, STACK_POINTER_REGNUM
, INCOMING_FRAME_SP_OFFSET
);
2437 initial_return_save (INCOMING_RETURN_ADDR_RTX
);
2442 dwarf2out_frame_finish (void)
2444 /* Output call frame information. */
2445 if (write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
2446 output_call_frame_info (0);
2448 #ifndef TARGET_UNWIND_INFO
2449 /* Output another copy for the unwinder. */
2450 if (! USING_SJLJ_EXCEPTIONS
&& (flag_unwind_tables
|| flag_exceptions
))
2451 output_call_frame_info (1);
2456 /* And now, the subset of the debugging information support code necessary
2457 for emitting location expressions. */
2459 /* We need some way to distinguish DW_OP_addr with a direct symbol
2460 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2461 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2464 typedef struct dw_val_struct
*dw_val_ref
;
2465 typedef struct die_struct
*dw_die_ref
;
2466 typedef struct dw_loc_descr_struct
*dw_loc_descr_ref
;
2467 typedef struct dw_loc_list_struct
*dw_loc_list_ref
;
2469 /* Each DIE may have a series of attribute/value pairs. Values
2470 can take on several forms. The forms that are used in this
2471 implementation are listed below. */
2476 dw_val_class_offset
,
2478 dw_val_class_loc_list
,
2479 dw_val_class_range_list
,
2481 dw_val_class_unsigned_const
,
2482 dw_val_class_long_long
,
2485 dw_val_class_die_ref
,
2486 dw_val_class_fde_ref
,
2487 dw_val_class_lbl_id
,
2488 dw_val_class_lbl_offset
,
2492 /* Describe a double word constant value. */
2493 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2495 typedef struct dw_long_long_struct
GTY(())
2502 /* Describe a floating point constant value, or a vector constant value. */
2504 typedef struct dw_vec_struct
GTY(())
2506 unsigned char * GTY((length ("%h.length"))) array
;
2512 /* The dw_val_node describes an attribute's value, as it is
2513 represented internally. */
2515 typedef struct dw_val_struct
GTY(())
2517 enum dw_val_class val_class
;
2518 union dw_val_struct_union
2520 rtx
GTY ((tag ("dw_val_class_addr"))) val_addr
;
2521 unsigned HOST_WIDE_INT
GTY ((tag ("dw_val_class_offset"))) val_offset
;
2522 dw_loc_list_ref
GTY ((tag ("dw_val_class_loc_list"))) val_loc_list
;
2523 dw_loc_descr_ref
GTY ((tag ("dw_val_class_loc"))) val_loc
;
2524 HOST_WIDE_INT
GTY ((default)) val_int
;
2525 unsigned HOST_WIDE_INT
GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned
;
2526 dw_long_long_const
GTY ((tag ("dw_val_class_long_long"))) val_long_long
;
2527 dw_vec_const
GTY ((tag ("dw_val_class_vec"))) val_vec
;
2528 struct dw_val_die_union
2532 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref
;
2533 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index
;
2534 struct indirect_string_node
* GTY ((tag ("dw_val_class_str"))) val_str
;
2535 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id
;
2536 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag
;
2538 GTY ((desc ("%1.val_class"))) v
;
2542 /* Locations in memory are described using a sequence of stack machine
2545 typedef struct dw_loc_descr_struct
GTY(())
2547 dw_loc_descr_ref dw_loc_next
;
2548 enum dwarf_location_atom dw_loc_opc
;
2549 dw_val_node dw_loc_oprnd1
;
2550 dw_val_node dw_loc_oprnd2
;
2555 /* Location lists are ranges + location descriptions for that range,
2556 so you can track variables that are in different places over
2557 their entire life. */
2558 typedef struct dw_loc_list_struct
GTY(())
2560 dw_loc_list_ref dw_loc_next
;
2561 const char *begin
; /* Label for begin address of range */
2562 const char *end
; /* Label for end address of range */
2563 char *ll_symbol
; /* Label for beginning of location list.
2564 Only on head of list */
2565 const char *section
; /* Section this loclist is relative to */
2566 dw_loc_descr_ref expr
;
2569 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2571 static const char *dwarf_stack_op_name (unsigned);
2572 static dw_loc_descr_ref
new_loc_descr (enum dwarf_location_atom
,
2573 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
);
2574 static void add_loc_descr (dw_loc_descr_ref
*, dw_loc_descr_ref
);
2575 static unsigned long size_of_loc_descr (dw_loc_descr_ref
);
2576 static unsigned long size_of_locs (dw_loc_descr_ref
);
2577 static void output_loc_operands (dw_loc_descr_ref
);
2578 static void output_loc_sequence (dw_loc_descr_ref
);
2580 /* Convert a DWARF stack opcode into its string name. */
2583 dwarf_stack_op_name (unsigned int op
)
2588 case INTERNAL_DW_OP_tls_addr
:
2589 return "DW_OP_addr";
2591 return "DW_OP_deref";
2593 return "DW_OP_const1u";
2595 return "DW_OP_const1s";
2597 return "DW_OP_const2u";
2599 return "DW_OP_const2s";
2601 return "DW_OP_const4u";
2603 return "DW_OP_const4s";
2605 return "DW_OP_const8u";
2607 return "DW_OP_const8s";
2609 return "DW_OP_constu";
2611 return "DW_OP_consts";
2615 return "DW_OP_drop";
2617 return "DW_OP_over";
2619 return "DW_OP_pick";
2621 return "DW_OP_swap";
2625 return "DW_OP_xderef";
2633 return "DW_OP_minus";
2645 return "DW_OP_plus";
2646 case DW_OP_plus_uconst
:
2647 return "DW_OP_plus_uconst";
2653 return "DW_OP_shra";
2671 return "DW_OP_skip";
2673 return "DW_OP_lit0";
2675 return "DW_OP_lit1";
2677 return "DW_OP_lit2";
2679 return "DW_OP_lit3";
2681 return "DW_OP_lit4";
2683 return "DW_OP_lit5";
2685 return "DW_OP_lit6";
2687 return "DW_OP_lit7";
2689 return "DW_OP_lit8";
2691 return "DW_OP_lit9";
2693 return "DW_OP_lit10";
2695 return "DW_OP_lit11";
2697 return "DW_OP_lit12";
2699 return "DW_OP_lit13";
2701 return "DW_OP_lit14";
2703 return "DW_OP_lit15";
2705 return "DW_OP_lit16";
2707 return "DW_OP_lit17";
2709 return "DW_OP_lit18";
2711 return "DW_OP_lit19";
2713 return "DW_OP_lit20";
2715 return "DW_OP_lit21";
2717 return "DW_OP_lit22";
2719 return "DW_OP_lit23";
2721 return "DW_OP_lit24";
2723 return "DW_OP_lit25";
2725 return "DW_OP_lit26";
2727 return "DW_OP_lit27";
2729 return "DW_OP_lit28";
2731 return "DW_OP_lit29";
2733 return "DW_OP_lit30";
2735 return "DW_OP_lit31";
2737 return "DW_OP_reg0";
2739 return "DW_OP_reg1";
2741 return "DW_OP_reg2";
2743 return "DW_OP_reg3";
2745 return "DW_OP_reg4";
2747 return "DW_OP_reg5";
2749 return "DW_OP_reg6";
2751 return "DW_OP_reg7";
2753 return "DW_OP_reg8";
2755 return "DW_OP_reg9";
2757 return "DW_OP_reg10";
2759 return "DW_OP_reg11";
2761 return "DW_OP_reg12";
2763 return "DW_OP_reg13";
2765 return "DW_OP_reg14";
2767 return "DW_OP_reg15";
2769 return "DW_OP_reg16";
2771 return "DW_OP_reg17";
2773 return "DW_OP_reg18";
2775 return "DW_OP_reg19";
2777 return "DW_OP_reg20";
2779 return "DW_OP_reg21";
2781 return "DW_OP_reg22";
2783 return "DW_OP_reg23";
2785 return "DW_OP_reg24";
2787 return "DW_OP_reg25";
2789 return "DW_OP_reg26";
2791 return "DW_OP_reg27";
2793 return "DW_OP_reg28";
2795 return "DW_OP_reg29";
2797 return "DW_OP_reg30";
2799 return "DW_OP_reg31";
2801 return "DW_OP_breg0";
2803 return "DW_OP_breg1";
2805 return "DW_OP_breg2";
2807 return "DW_OP_breg3";
2809 return "DW_OP_breg4";
2811 return "DW_OP_breg5";
2813 return "DW_OP_breg6";
2815 return "DW_OP_breg7";
2817 return "DW_OP_breg8";
2819 return "DW_OP_breg9";
2821 return "DW_OP_breg10";
2823 return "DW_OP_breg11";
2825 return "DW_OP_breg12";
2827 return "DW_OP_breg13";
2829 return "DW_OP_breg14";
2831 return "DW_OP_breg15";
2833 return "DW_OP_breg16";
2835 return "DW_OP_breg17";
2837 return "DW_OP_breg18";
2839 return "DW_OP_breg19";
2841 return "DW_OP_breg20";
2843 return "DW_OP_breg21";
2845 return "DW_OP_breg22";
2847 return "DW_OP_breg23";
2849 return "DW_OP_breg24";
2851 return "DW_OP_breg25";
2853 return "DW_OP_breg26";
2855 return "DW_OP_breg27";
2857 return "DW_OP_breg28";
2859 return "DW_OP_breg29";
2861 return "DW_OP_breg30";
2863 return "DW_OP_breg31";
2865 return "DW_OP_regx";
2867 return "DW_OP_fbreg";
2869 return "DW_OP_bregx";
2871 return "DW_OP_piece";
2872 case DW_OP_deref_size
:
2873 return "DW_OP_deref_size";
2874 case DW_OP_xderef_size
:
2875 return "DW_OP_xderef_size";
2878 case DW_OP_push_object_address
:
2879 return "DW_OP_push_object_address";
2881 return "DW_OP_call2";
2883 return "DW_OP_call4";
2884 case DW_OP_call_ref
:
2885 return "DW_OP_call_ref";
2886 case DW_OP_GNU_push_tls_address
:
2887 return "DW_OP_GNU_push_tls_address";
2889 return "OP_<unknown>";
2893 /* Return a pointer to a newly allocated location description. Location
2894 descriptions are simple expression terms that can be strung
2895 together to form more complicated location (address) descriptions. */
2897 static inline dw_loc_descr_ref
2898 new_loc_descr (enum dwarf_location_atom op
, unsigned HOST_WIDE_INT oprnd1
,
2899 unsigned HOST_WIDE_INT oprnd2
)
2901 dw_loc_descr_ref descr
= ggc_alloc_cleared (sizeof (dw_loc_descr_node
));
2903 descr
->dw_loc_opc
= op
;
2904 descr
->dw_loc_oprnd1
.val_class
= dw_val_class_unsigned_const
;
2905 descr
->dw_loc_oprnd1
.v
.val_unsigned
= oprnd1
;
2906 descr
->dw_loc_oprnd2
.val_class
= dw_val_class_unsigned_const
;
2907 descr
->dw_loc_oprnd2
.v
.val_unsigned
= oprnd2
;
2913 /* Add a location description term to a location description expression. */
2916 add_loc_descr (dw_loc_descr_ref
*list_head
, dw_loc_descr_ref descr
)
2918 dw_loc_descr_ref
*d
;
2920 /* Find the end of the chain. */
2921 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
2927 /* Return the size of a location descriptor. */
2929 static unsigned long
2930 size_of_loc_descr (dw_loc_descr_ref loc
)
2932 unsigned long size
= 1;
2934 switch (loc
->dw_loc_opc
)
2937 case INTERNAL_DW_OP_tls_addr
:
2938 size
+= DWARF2_ADDR_SIZE
;
2957 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2960 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
2965 case DW_OP_plus_uconst
:
2966 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3004 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
3007 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3010 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
3013 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3014 size
+= size_of_sleb128 (loc
->dw_loc_oprnd2
.v
.val_int
);
3017 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3019 case DW_OP_deref_size
:
3020 case DW_OP_xderef_size
:
3029 case DW_OP_call_ref
:
3030 size
+= DWARF2_ADDR_SIZE
;
3039 /* Return the size of a series of location descriptors. */
3041 static unsigned long
3042 size_of_locs (dw_loc_descr_ref loc
)
3046 for (size
= 0; loc
!= NULL
; loc
= loc
->dw_loc_next
)
3048 loc
->dw_loc_addr
= size
;
3049 size
+= size_of_loc_descr (loc
);
3055 /* Output location description stack opcode's operands (if any). */
3058 output_loc_operands (dw_loc_descr_ref loc
)
3060 dw_val_ref val1
= &loc
->dw_loc_oprnd1
;
3061 dw_val_ref val2
= &loc
->dw_loc_oprnd2
;
3063 switch (loc
->dw_loc_opc
)
3065 #ifdef DWARF2_DEBUGGING_INFO
3067 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, val1
->v
.val_addr
, NULL
);
3071 dw2_asm_output_data (2, val1
->v
.val_int
, NULL
);
3075 dw2_asm_output_data (4, val1
->v
.val_int
, NULL
);
3079 gcc_assert (HOST_BITS_PER_LONG
>= 64);
3080 dw2_asm_output_data (8, val1
->v
.val_int
, NULL
);
3087 gcc_assert (val1
->val_class
== dw_val_class_loc
);
3088 offset
= val1
->v
.val_loc
->dw_loc_addr
- (loc
->dw_loc_addr
+ 3);
3090 dw2_asm_output_data (2, offset
, NULL
);
3103 /* We currently don't make any attempt to make sure these are
3104 aligned properly like we do for the main unwind info, so
3105 don't support emitting things larger than a byte if we're
3106 only doing unwinding. */
3111 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
3114 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3117 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3120 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
3122 case DW_OP_plus_uconst
:
3123 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3157 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3160 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3163 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3166 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3167 dw2_asm_output_data_sleb128 (val2
->v
.val_int
, NULL
);
3170 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3172 case DW_OP_deref_size
:
3173 case DW_OP_xderef_size
:
3174 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
3177 case INTERNAL_DW_OP_tls_addr
:
3178 #ifdef ASM_OUTPUT_DWARF_DTPREL
3179 ASM_OUTPUT_DWARF_DTPREL (asm_out_file
, DWARF2_ADDR_SIZE
,
3181 fputc ('\n', asm_out_file
);
3188 /* Other codes have no operands. */
3193 /* Output a sequence of location operations. */
3196 output_loc_sequence (dw_loc_descr_ref loc
)
3198 for (; loc
!= NULL
; loc
= loc
->dw_loc_next
)
3200 /* Output the opcode. */
3201 dw2_asm_output_data (1, loc
->dw_loc_opc
,
3202 "%s", dwarf_stack_op_name (loc
->dw_loc_opc
));
3204 /* Output the operand(s) (if any). */
3205 output_loc_operands (loc
);
3209 /* This routine will generate the correct assembly data for a location
3210 description based on a cfi entry with a complex address. */
3213 output_cfa_loc (dw_cfi_ref cfi
)
3215 dw_loc_descr_ref loc
;
3218 /* Output the size of the block. */
3219 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3220 size
= size_of_locs (loc
);
3221 dw2_asm_output_data_uleb128 (size
, NULL
);
3223 /* Now output the operations themselves. */
3224 output_loc_sequence (loc
);
3227 /* This function builds a dwarf location descriptor sequence from
3228 a dw_cfa_location. */
3230 static struct dw_loc_descr_struct
*
3231 build_cfa_loc (dw_cfa_location
*cfa
)
3233 struct dw_loc_descr_struct
*head
, *tmp
;
3235 gcc_assert (cfa
->indirect
);
3237 if (cfa
->base_offset
)
3240 head
= new_loc_descr (DW_OP_breg0
+ cfa
->reg
, cfa
->base_offset
, 0);
3242 head
= new_loc_descr (DW_OP_bregx
, cfa
->reg
, cfa
->base_offset
);
3244 else if (cfa
->reg
<= 31)
3245 head
= new_loc_descr (DW_OP_reg0
+ cfa
->reg
, 0, 0);
3247 head
= new_loc_descr (DW_OP_regx
, cfa
->reg
, 0);
3249 head
->dw_loc_oprnd1
.val_class
= dw_val_class_const
;
3250 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
3251 add_loc_descr (&head
, tmp
);
3252 if (cfa
->offset
!= 0)
3254 tmp
= new_loc_descr (DW_OP_plus_uconst
, cfa
->offset
, 0);
3255 add_loc_descr (&head
, tmp
);
3261 /* This function fills in aa dw_cfa_location structure from a dwarf location
3262 descriptor sequence. */
3265 get_cfa_from_loc_descr (dw_cfa_location
*cfa
, struct dw_loc_descr_struct
*loc
)
3267 struct dw_loc_descr_struct
*ptr
;
3269 cfa
->base_offset
= 0;
3273 for (ptr
= loc
; ptr
!= NULL
; ptr
= ptr
->dw_loc_next
)
3275 enum dwarf_location_atom op
= ptr
->dw_loc_opc
;
3311 cfa
->reg
= op
- DW_OP_reg0
;
3314 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3348 cfa
->reg
= op
- DW_OP_breg0
;
3349 cfa
->base_offset
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3352 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3353 cfa
->base_offset
= ptr
->dw_loc_oprnd2
.v
.val_int
;
3358 case DW_OP_plus_uconst
:
3359 cfa
->offset
= ptr
->dw_loc_oprnd1
.v
.val_unsigned
;
3362 internal_error ("DW_LOC_OP %s not implemented\n",
3363 dwarf_stack_op_name (ptr
->dw_loc_opc
));
3367 #endif /* .debug_frame support */
3369 /* And now, the support for symbolic debugging information. */
3370 #ifdef DWARF2_DEBUGGING_INFO
3372 /* .debug_str support. */
3373 static int output_indirect_string (void **, void *);
3375 static void dwarf2out_init (const char *);
3376 static void dwarf2out_finish (const char *);
3377 static void dwarf2out_define (unsigned int, const char *);
3378 static void dwarf2out_undef (unsigned int, const char *);
3379 static void dwarf2out_start_source_file (unsigned, const char *);
3380 static void dwarf2out_end_source_file (unsigned);
3381 static void dwarf2out_begin_block (unsigned, unsigned);
3382 static void dwarf2out_end_block (unsigned, unsigned);
3383 static bool dwarf2out_ignore_block (tree
);
3384 static void dwarf2out_global_decl (tree
);
3385 static void dwarf2out_type_decl (tree
, int);
3386 static void dwarf2out_imported_module_or_decl (tree
, tree
);
3387 static void dwarf2out_abstract_function (tree
);
3388 static void dwarf2out_var_location (rtx
);
3389 static void dwarf2out_begin_function (tree
);
3391 /* The debug hooks structure. */
3393 const struct gcc_debug_hooks dwarf2_debug_hooks
=
3399 dwarf2out_start_source_file
,
3400 dwarf2out_end_source_file
,
3401 dwarf2out_begin_block
,
3402 dwarf2out_end_block
,
3403 dwarf2out_ignore_block
,
3404 dwarf2out_source_line
,
3405 dwarf2out_begin_prologue
,
3406 debug_nothing_int_charstar
, /* end_prologue */
3407 dwarf2out_end_epilogue
,
3408 dwarf2out_begin_function
,
3409 debug_nothing_int
, /* end_function */
3410 dwarf2out_decl
, /* function_decl */
3411 dwarf2out_global_decl
,
3412 dwarf2out_type_decl
, /* type_decl */
3413 dwarf2out_imported_module_or_decl
,
3414 debug_nothing_tree
, /* deferred_inline_function */
3415 /* The DWARF 2 backend tries to reduce debugging bloat by not
3416 emitting the abstract description of inline functions until
3417 something tries to reference them. */
3418 dwarf2out_abstract_function
, /* outlining_inline_function */
3419 debug_nothing_rtx
, /* label */
3420 debug_nothing_int
, /* handle_pch */
3421 dwarf2out_var_location
3425 /* NOTE: In the comments in this file, many references are made to
3426 "Debugging Information Entries". This term is abbreviated as `DIE'
3427 throughout the remainder of this file. */
3429 /* An internal representation of the DWARF output is built, and then
3430 walked to generate the DWARF debugging info. The walk of the internal
3431 representation is done after the entire program has been compiled.
3432 The types below are used to describe the internal representation. */
3434 /* Various DIE's use offsets relative to the beginning of the
3435 .debug_info section to refer to each other. */
3437 typedef long int dw_offset
;
3439 /* Define typedefs here to avoid circular dependencies. */
3441 typedef struct dw_attr_struct
*dw_attr_ref
;
3442 typedef struct dw_line_info_struct
*dw_line_info_ref
;
3443 typedef struct dw_separate_line_info_struct
*dw_separate_line_info_ref
;
3444 typedef struct pubname_struct
*pubname_ref
;
3445 typedef struct dw_ranges_struct
*dw_ranges_ref
;
3447 /* Each entry in the line_info_table maintains the file and
3448 line number associated with the label generated for that
3449 entry. The label gives the PC value associated with
3450 the line number entry. */
3452 typedef struct dw_line_info_struct
GTY(())
3454 unsigned long dw_file_num
;
3455 unsigned long dw_line_num
;
3459 /* Line information for functions in separate sections; each one gets its
3461 typedef struct dw_separate_line_info_struct
GTY(())
3463 unsigned long dw_file_num
;
3464 unsigned long dw_line_num
;
3465 unsigned long function
;
3467 dw_separate_line_info_entry
;
3469 /* Each DIE attribute has a field specifying the attribute kind,
3470 a link to the next attribute in the chain, and an attribute value.
3471 Attributes are typically linked below the DIE they modify. */
3473 typedef struct dw_attr_struct
GTY(())
3475 enum dwarf_attribute dw_attr
;
3476 dw_attr_ref dw_attr_next
;
3477 dw_val_node dw_attr_val
;
3481 /* The Debugging Information Entry (DIE) structure */
3483 typedef struct die_struct
GTY(())
3485 enum dwarf_tag die_tag
;
3487 dw_attr_ref die_attr
;
3488 dw_die_ref die_parent
;
3489 dw_die_ref die_child
;
3491 dw_die_ref die_definition
; /* ref from a specification to its definition */
3492 dw_offset die_offset
;
3493 unsigned long die_abbrev
;
3495 unsigned int decl_id
;
3499 /* The pubname structure */
3501 typedef struct pubname_struct
GTY(())
3508 struct dw_ranges_struct
GTY(())
3513 /* The limbo die list structure. */
3514 typedef struct limbo_die_struct
GTY(())
3518 struct limbo_die_struct
*next
;
3522 /* How to start an assembler comment. */
3523 #ifndef ASM_COMMENT_START
3524 #define ASM_COMMENT_START ";#"
3527 /* Define a macro which returns nonzero for a TYPE_DECL which was
3528 implicitly generated for a tagged type.
3530 Note that unlike the gcc front end (which generates a NULL named
3531 TYPE_DECL node for each complete tagged type, each array type, and
3532 each function type node created) the g++ front end generates a
3533 _named_ TYPE_DECL node for each tagged type node created.
3534 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3535 generate a DW_TAG_typedef DIE for them. */
3537 #define TYPE_DECL_IS_STUB(decl) \
3538 (DECL_NAME (decl) == NULL_TREE \
3539 || (DECL_ARTIFICIAL (decl) \
3540 && is_tagged_type (TREE_TYPE (decl)) \
3541 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3542 /* This is necessary for stub decls that \
3543 appear in nested inline functions. */ \
3544 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3545 && (decl_ultimate_origin (decl) \
3546 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3548 /* Information concerning the compilation unit's programming
3549 language, and compiler version. */
3551 /* Fixed size portion of the DWARF compilation unit header. */
3552 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3553 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3555 /* Fixed size portion of public names info. */
3556 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3558 /* Fixed size portion of the address range info. */
3559 #define DWARF_ARANGES_HEADER_SIZE \
3560 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3561 DWARF2_ADDR_SIZE * 2) \
3562 - DWARF_INITIAL_LENGTH_SIZE)
3564 /* Size of padding portion in the address range info. It must be
3565 aligned to twice the pointer size. */
3566 #define DWARF_ARANGES_PAD_SIZE \
3567 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3568 DWARF2_ADDR_SIZE * 2) \
3569 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3571 /* Use assembler line directives if available. */
3572 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3573 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3574 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3576 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3580 /* Minimum line offset in a special line info. opcode.
3581 This value was chosen to give a reasonable range of values. */
3582 #define DWARF_LINE_BASE -10
3584 /* First special line opcode - leave room for the standard opcodes. */
3585 #define DWARF_LINE_OPCODE_BASE 10
3587 /* Range of line offsets in a special line info. opcode. */
3588 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3590 /* Flag that indicates the initial value of the is_stmt_start flag.
3591 In the present implementation, we do not mark any lines as
3592 the beginning of a source statement, because that information
3593 is not made available by the GCC front-end. */
3594 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3596 #ifdef DWARF2_DEBUGGING_INFO
3597 /* This location is used by calc_die_sizes() to keep track
3598 the offset of each DIE within the .debug_info section. */
3599 static unsigned long next_die_offset
;
3602 /* Record the root of the DIE's built for the current compilation unit. */
3603 static GTY(()) dw_die_ref comp_unit_die
;
3605 /* A list of DIEs with a NULL parent waiting to be relocated. */
3606 static GTY(()) limbo_die_node
*limbo_die_list
;
3608 /* Filenames referenced by this compilation unit. */
3609 static GTY(()) varray_type file_table
;
3610 static GTY(()) varray_type file_table_emitted
;
3611 static GTY(()) size_t file_table_last_lookup_index
;
3613 /* A hash table of references to DIE's that describe declarations.
3614 The key is a DECL_UID() which is a unique number identifying each decl. */
3615 static GTY ((param_is (struct die_struct
))) htab_t decl_die_table
;
3617 /* Node of the variable location list. */
3618 struct var_loc_node
GTY ((chain_next ("%h.next")))
3620 rtx
GTY (()) var_loc_note
;
3621 const char * GTY (()) label
;
3622 struct var_loc_node
* GTY (()) next
;
3625 /* Variable location list. */
3626 struct var_loc_list_def
GTY (())
3628 struct var_loc_node
* GTY (()) first
;
3630 /* Do not mark the last element of the chained list because
3631 it is marked through the chain. */
3632 struct var_loc_node
* GTY ((skip ("%h"))) last
;
3634 /* DECL_UID of the variable decl. */
3635 unsigned int decl_id
;
3637 typedef struct var_loc_list_def var_loc_list
;
3640 /* Table of decl location linked lists. */
3641 static GTY ((param_is (var_loc_list
))) htab_t decl_loc_table
;
3643 /* A pointer to the base of a list of references to DIE's that
3644 are uniquely identified by their tag, presence/absence of
3645 children DIE's, and list of attribute/value pairs. */
3646 static GTY((length ("abbrev_die_table_allocated")))
3647 dw_die_ref
*abbrev_die_table
;
3649 /* Number of elements currently allocated for abbrev_die_table. */
3650 static GTY(()) unsigned abbrev_die_table_allocated
;
3652 /* Number of elements in type_die_table currently in use. */
3653 static GTY(()) unsigned abbrev_die_table_in_use
;
3655 /* Size (in elements) of increments by which we may expand the
3656 abbrev_die_table. */
3657 #define ABBREV_DIE_TABLE_INCREMENT 256
3659 /* A pointer to the base of a table that contains line information
3660 for each source code line in .text in the compilation unit. */
3661 static GTY((length ("line_info_table_allocated")))
3662 dw_line_info_ref line_info_table
;
3664 /* Number of elements currently allocated for line_info_table. */
3665 static GTY(()) unsigned line_info_table_allocated
;
3667 /* Number of elements in line_info_table currently in use. */
3668 static GTY(()) unsigned line_info_table_in_use
;
3670 /* A pointer to the base of a table that contains line information
3671 for each source code line outside of .text in the compilation unit. */
3672 static GTY ((length ("separate_line_info_table_allocated")))
3673 dw_separate_line_info_ref separate_line_info_table
;
3675 /* Number of elements currently allocated for separate_line_info_table. */
3676 static GTY(()) unsigned separate_line_info_table_allocated
;
3678 /* Number of elements in separate_line_info_table currently in use. */
3679 static GTY(()) unsigned separate_line_info_table_in_use
;
3681 /* Size (in elements) of increments by which we may expand the
3683 #define LINE_INFO_TABLE_INCREMENT 1024
3685 /* A pointer to the base of a table that contains a list of publicly
3686 accessible names. */
3687 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table
;
3689 /* Number of elements currently allocated for pubname_table. */
3690 static GTY(()) unsigned pubname_table_allocated
;
3692 /* Number of elements in pubname_table currently in use. */
3693 static GTY(()) unsigned pubname_table_in_use
;
3695 /* Size (in elements) of increments by which we may expand the
3697 #define PUBNAME_TABLE_INCREMENT 64
3699 /* Array of dies for which we should generate .debug_arange info. */
3700 static GTY((length ("arange_table_allocated"))) dw_die_ref
*arange_table
;
3702 /* Number of elements currently allocated for arange_table. */
3703 static GTY(()) unsigned arange_table_allocated
;
3705 /* Number of elements in arange_table currently in use. */
3706 static GTY(()) unsigned arange_table_in_use
;
3708 /* Size (in elements) of increments by which we may expand the
3710 #define ARANGE_TABLE_INCREMENT 64
3712 /* Array of dies for which we should generate .debug_ranges info. */
3713 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table
;
3715 /* Number of elements currently allocated for ranges_table. */
3716 static GTY(()) unsigned ranges_table_allocated
;
3718 /* Number of elements in ranges_table currently in use. */
3719 static GTY(()) unsigned ranges_table_in_use
;
3721 /* Size (in elements) of increments by which we may expand the
3723 #define RANGES_TABLE_INCREMENT 64
3725 /* Whether we have location lists that need outputting */
3726 static GTY(()) unsigned have_location_lists
;
3728 /* Unique label counter. */
3729 static GTY(()) unsigned int loclabel_num
;
3731 #ifdef DWARF2_DEBUGGING_INFO
3732 /* Record whether the function being analyzed contains inlined functions. */
3733 static int current_function_has_inlines
;
3735 #if 0 && defined (MIPS_DEBUGGING_INFO)
3736 static int comp_unit_has_inlines
;
3739 /* Number of file tables emitted in maybe_emit_file(). */
3740 static GTY(()) int emitcount
= 0;
3742 /* Number of internal labels generated by gen_internal_sym(). */
3743 static GTY(()) int label_num
;
3745 #ifdef DWARF2_DEBUGGING_INFO
3747 /* Forward declarations for functions defined in this file. */
3749 static int is_pseudo_reg (rtx
);
3750 static tree
type_main_variant (tree
);
3751 static int is_tagged_type (tree
);
3752 static const char *dwarf_tag_name (unsigned);
3753 static const char *dwarf_attr_name (unsigned);
3754 static const char *dwarf_form_name (unsigned);
3756 static const char *dwarf_type_encoding_name (unsigned);
3758 static tree
decl_ultimate_origin (tree
);
3759 static tree
block_ultimate_origin (tree
);
3760 static tree
decl_class_context (tree
);
3761 static void add_dwarf_attr (dw_die_ref
, dw_attr_ref
);
3762 static inline enum dw_val_class
AT_class (dw_attr_ref
);
3763 static void add_AT_flag (dw_die_ref
, enum dwarf_attribute
, unsigned);
3764 static inline unsigned AT_flag (dw_attr_ref
);
3765 static void add_AT_int (dw_die_ref
, enum dwarf_attribute
, HOST_WIDE_INT
);
3766 static inline HOST_WIDE_INT
AT_int (dw_attr_ref
);
3767 static void add_AT_unsigned (dw_die_ref
, enum dwarf_attribute
, unsigned HOST_WIDE_INT
);
3768 static inline unsigned HOST_WIDE_INT
AT_unsigned (dw_attr_ref
);
3769 static void add_AT_long_long (dw_die_ref
, enum dwarf_attribute
, unsigned long,
3771 static inline void add_AT_vec (dw_die_ref
, enum dwarf_attribute
, unsigned int,
3772 unsigned int, unsigned char *);
3773 static hashval_t
debug_str_do_hash (const void *);
3774 static int debug_str_eq (const void *, const void *);
3775 static void add_AT_string (dw_die_ref
, enum dwarf_attribute
, const char *);
3776 static inline const char *AT_string (dw_attr_ref
);
3777 static int AT_string_form (dw_attr_ref
);
3778 static void add_AT_die_ref (dw_die_ref
, enum dwarf_attribute
, dw_die_ref
);
3779 static void add_AT_specification (dw_die_ref
, dw_die_ref
);
3780 static inline dw_die_ref
AT_ref (dw_attr_ref
);
3781 static inline int AT_ref_external (dw_attr_ref
);
3782 static inline void set_AT_ref_external (dw_attr_ref
, int);
3783 static void add_AT_fde_ref (dw_die_ref
, enum dwarf_attribute
, unsigned);
3784 static void add_AT_loc (dw_die_ref
, enum dwarf_attribute
, dw_loc_descr_ref
);
3785 static inline dw_loc_descr_ref
AT_loc (dw_attr_ref
);
3786 static void add_AT_loc_list (dw_die_ref
, enum dwarf_attribute
,
3788 static inline dw_loc_list_ref
AT_loc_list (dw_attr_ref
);
3789 static void add_AT_addr (dw_die_ref
, enum dwarf_attribute
, rtx
);
3790 static inline rtx
AT_addr (dw_attr_ref
);
3791 static void add_AT_lbl_id (dw_die_ref
, enum dwarf_attribute
, const char *);
3792 static void add_AT_lbl_offset (dw_die_ref
, enum dwarf_attribute
, const char *);
3793 static void add_AT_offset (dw_die_ref
, enum dwarf_attribute
,
3794 unsigned HOST_WIDE_INT
);
3795 static void add_AT_range_list (dw_die_ref
, enum dwarf_attribute
,
3797 static inline const char *AT_lbl (dw_attr_ref
);
3798 static dw_attr_ref
get_AT (dw_die_ref
, enum dwarf_attribute
);
3799 static const char *get_AT_low_pc (dw_die_ref
);
3800 static const char *get_AT_hi_pc (dw_die_ref
);
3801 static const char *get_AT_string (dw_die_ref
, enum dwarf_attribute
);
3802 static int get_AT_flag (dw_die_ref
, enum dwarf_attribute
);
3803 static unsigned get_AT_unsigned (dw_die_ref
, enum dwarf_attribute
);
3804 static inline dw_die_ref
get_AT_ref (dw_die_ref
, enum dwarf_attribute
);
3805 static bool is_c_family (void);
3806 static bool is_cxx (void);
3807 static bool is_java (void);
3808 static bool is_fortran (void);
3809 static bool is_ada (void);
3810 static void remove_AT (dw_die_ref
, enum dwarf_attribute
);
3811 static void remove_child_TAG (dw_die_ref
, enum dwarf_tag
);
3812 static inline void free_die (dw_die_ref
);
3813 static void remove_children (dw_die_ref
);
3814 static void add_child_die (dw_die_ref
, dw_die_ref
);
3815 static dw_die_ref
new_die (enum dwarf_tag
, dw_die_ref
, tree
);
3816 static dw_die_ref
lookup_type_die (tree
);
3817 static void equate_type_number_to_die (tree
, dw_die_ref
);
3818 static hashval_t
decl_die_table_hash (const void *);
3819 static int decl_die_table_eq (const void *, const void *);
3820 static dw_die_ref
lookup_decl_die (tree
);
3821 static hashval_t
decl_loc_table_hash (const void *);
3822 static int decl_loc_table_eq (const void *, const void *);
3823 static var_loc_list
*lookup_decl_loc (tree
);
3824 static void equate_decl_number_to_die (tree
, dw_die_ref
);
3825 static void add_var_loc_to_decl (tree
, struct var_loc_node
*);
3826 static void print_spaces (FILE *);
3827 static void print_die (dw_die_ref
, FILE *);
3828 static void print_dwarf_line_table (FILE *);
3829 static void reverse_die_lists (dw_die_ref
);
3830 static void reverse_all_dies (dw_die_ref
);
3831 static dw_die_ref
push_new_compile_unit (dw_die_ref
, dw_die_ref
);
3832 static dw_die_ref
pop_compile_unit (dw_die_ref
);
3833 static void loc_checksum (dw_loc_descr_ref
, struct md5_ctx
*);
3834 static void attr_checksum (dw_attr_ref
, struct md5_ctx
*, int *);
3835 static void die_checksum (dw_die_ref
, struct md5_ctx
*, int *);
3836 static int same_loc_p (dw_loc_descr_ref
, dw_loc_descr_ref
, int *);
3837 static int same_dw_val_p (dw_val_node
*, dw_val_node
*, int *);
3838 static int same_attr_p (dw_attr_ref
, dw_attr_ref
, int *);
3839 static int same_die_p (dw_die_ref
, dw_die_ref
, int *);
3840 static int same_die_p_wrap (dw_die_ref
, dw_die_ref
);
3841 static void compute_section_prefix (dw_die_ref
);
3842 static int is_type_die (dw_die_ref
);
3843 static int is_comdat_die (dw_die_ref
);
3844 static int is_symbol_die (dw_die_ref
);
3845 static void assign_symbol_names (dw_die_ref
);
3846 static void break_out_includes (dw_die_ref
);
3847 static hashval_t
htab_cu_hash (const void *);
3848 static int htab_cu_eq (const void *, const void *);
3849 static void htab_cu_del (void *);
3850 static int check_duplicate_cu (dw_die_ref
, htab_t
, unsigned *);
3851 static void record_comdat_symbol_number (dw_die_ref
, htab_t
, unsigned);
3852 static void add_sibling_attributes (dw_die_ref
);
3853 static void build_abbrev_table (dw_die_ref
);
3854 static void output_location_lists (dw_die_ref
);
3855 static int constant_size (long unsigned);
3856 static unsigned long size_of_die (dw_die_ref
);
3857 static void calc_die_sizes (dw_die_ref
);
3858 static void mark_dies (dw_die_ref
);
3859 static void unmark_dies (dw_die_ref
);
3860 static void unmark_all_dies (dw_die_ref
);
3861 static unsigned long size_of_pubnames (void);
3862 static unsigned long size_of_aranges (void);
3863 static enum dwarf_form
value_format (dw_attr_ref
);
3864 static void output_value_format (dw_attr_ref
);
3865 static void output_abbrev_section (void);
3866 static void output_die_symbol (dw_die_ref
);
3867 static void output_die (dw_die_ref
);
3868 static void output_compilation_unit_header (void);
3869 static void output_comp_unit (dw_die_ref
, int);
3870 static const char *dwarf2_name (tree
, int);
3871 static void add_pubname (tree
, dw_die_ref
);
3872 static void output_pubnames (void);
3873 static void add_arange (tree
, dw_die_ref
);
3874 static void output_aranges (void);
3875 static unsigned int add_ranges (tree
);
3876 static void output_ranges (void);
3877 static void output_line_info (void);
3878 static void output_file_names (void);
3879 static dw_die_ref
base_type_die (tree
);
3880 static tree
root_type (tree
);
3881 static int is_base_type (tree
);
3882 static bool is_subrange_type (tree
);
3883 static dw_die_ref
subrange_type_die (tree
, dw_die_ref
);
3884 static dw_die_ref
modified_type_die (tree
, int, int, dw_die_ref
);
3885 static int type_is_enum (tree
);
3886 static unsigned int dbx_reg_number (rtx
);
3887 static dw_loc_descr_ref
reg_loc_descriptor (rtx
);
3888 static dw_loc_descr_ref
one_reg_loc_descriptor (unsigned int);
3889 static dw_loc_descr_ref
multiple_reg_loc_descriptor (rtx
, rtx
);
3890 static dw_loc_descr_ref
int_loc_descriptor (HOST_WIDE_INT
);
3891 static dw_loc_descr_ref
based_loc_descr (unsigned, HOST_WIDE_INT
, bool);
3892 static int is_based_loc (rtx
);
3893 static dw_loc_descr_ref
mem_loc_descriptor (rtx
, enum machine_mode mode
, bool);
3894 static dw_loc_descr_ref
concat_loc_descriptor (rtx
, rtx
);
3895 static dw_loc_descr_ref
loc_descriptor (rtx
, bool);
3896 static dw_loc_descr_ref
loc_descriptor_from_tree_1 (tree
, int);
3897 static dw_loc_descr_ref
loc_descriptor_from_tree (tree
);
3898 static HOST_WIDE_INT
ceiling (HOST_WIDE_INT
, unsigned int);
3899 static tree
field_type (tree
);
3900 static unsigned int simple_type_align_in_bits (tree
);
3901 static unsigned int simple_decl_align_in_bits (tree
);
3902 static unsigned HOST_WIDE_INT
simple_type_size_in_bits (tree
);
3903 static HOST_WIDE_INT
field_byte_offset (tree
);
3904 static void add_AT_location_description (dw_die_ref
, enum dwarf_attribute
,
3906 static void add_data_member_location_attribute (dw_die_ref
, tree
);
3907 static void add_const_value_attribute (dw_die_ref
, rtx
);
3908 static void insert_int (HOST_WIDE_INT
, unsigned, unsigned char *);
3909 static HOST_WIDE_INT
extract_int (const unsigned char *, unsigned);
3910 static void insert_float (rtx
, unsigned char *);
3911 static rtx
rtl_for_decl_location (tree
);
3912 static void add_location_or_const_value_attribute (dw_die_ref
, tree
,
3913 enum dwarf_attribute
);
3914 static void tree_add_const_value_attribute (dw_die_ref
, tree
);
3915 static void add_name_attribute (dw_die_ref
, const char *);
3916 static void add_comp_dir_attribute (dw_die_ref
);
3917 static void add_bound_info (dw_die_ref
, enum dwarf_attribute
, tree
);
3918 static void add_subscript_info (dw_die_ref
, tree
);
3919 static void add_byte_size_attribute (dw_die_ref
, tree
);
3920 static void add_bit_offset_attribute (dw_die_ref
, tree
);
3921 static void add_bit_size_attribute (dw_die_ref
, tree
);
3922 static void add_prototyped_attribute (dw_die_ref
, tree
);
3923 static void add_abstract_origin_attribute (dw_die_ref
, tree
);
3924 static void add_pure_or_virtual_attribute (dw_die_ref
, tree
);
3925 static void add_src_coords_attributes (dw_die_ref
, tree
);
3926 static void add_name_and_src_coords_attributes (dw_die_ref
, tree
);
3927 static void push_decl_scope (tree
);
3928 static void pop_decl_scope (void);
3929 static dw_die_ref
scope_die_for (tree
, dw_die_ref
);
3930 static inline int local_scope_p (dw_die_ref
);
3931 static inline int class_or_namespace_scope_p (dw_die_ref
);
3932 static void add_type_attribute (dw_die_ref
, tree
, int, int, dw_die_ref
);
3933 static void add_calling_convention_attribute (dw_die_ref
, tree
);
3934 static const char *type_tag (tree
);
3935 static tree
member_declared_type (tree
);
3937 static const char *decl_start_label (tree
);
3939 static void gen_array_type_die (tree
, dw_die_ref
);
3940 static void gen_set_type_die (tree
, dw_die_ref
);
3942 static void gen_entry_point_die (tree
, dw_die_ref
);
3944 static void gen_inlined_enumeration_type_die (tree
, dw_die_ref
);
3945 static void gen_inlined_structure_type_die (tree
, dw_die_ref
);
3946 static void gen_inlined_union_type_die (tree
, dw_die_ref
);
3947 static dw_die_ref
gen_enumeration_type_die (tree
, dw_die_ref
);
3948 static dw_die_ref
gen_formal_parameter_die (tree
, dw_die_ref
);
3949 static void gen_unspecified_parameters_die (tree
, dw_die_ref
);
3950 static void gen_formal_types_die (tree
, dw_die_ref
);
3951 static void gen_subprogram_die (tree
, dw_die_ref
);
3952 static void gen_variable_die (tree
, dw_die_ref
);
3953 static void gen_label_die (tree
, dw_die_ref
);
3954 static void gen_lexical_block_die (tree
, dw_die_ref
, int);
3955 static void gen_inlined_subroutine_die (tree
, dw_die_ref
, int);
3956 static void gen_field_die (tree
, dw_die_ref
);
3957 static void gen_ptr_to_mbr_type_die (tree
, dw_die_ref
);
3958 static dw_die_ref
gen_compile_unit_die (const char *);
3959 static void gen_string_type_die (tree
, dw_die_ref
);
3960 static void gen_inheritance_die (tree
, tree
, dw_die_ref
);
3961 static void gen_member_die (tree
, dw_die_ref
);
3962 static void gen_struct_or_union_type_die (tree
, dw_die_ref
);
3963 static void gen_subroutine_type_die (tree
, dw_die_ref
);
3964 static void gen_typedef_die (tree
, dw_die_ref
);
3965 static void gen_type_die (tree
, dw_die_ref
);
3966 static void gen_tagged_type_instantiation_die (tree
, dw_die_ref
);
3967 static void gen_block_die (tree
, dw_die_ref
, int);
3968 static void decls_for_scope (tree
, dw_die_ref
, int);
3969 static int is_redundant_typedef (tree
);
3970 static void gen_namespace_die (tree
);
3971 static void gen_decl_die (tree
, dw_die_ref
);
3972 static dw_die_ref
force_decl_die (tree
);
3973 static dw_die_ref
force_type_die (tree
);
3974 static dw_die_ref
setup_namespace_context (tree
, dw_die_ref
);
3975 static void declare_in_namespace (tree
, dw_die_ref
);
3976 static unsigned lookup_filename (const char *);
3977 static void init_file_table (void);
3978 static void retry_incomplete_types (void);
3979 static void gen_type_die_for_member (tree
, tree
, dw_die_ref
);
3980 static void splice_child_die (dw_die_ref
, dw_die_ref
);
3981 static int file_info_cmp (const void *, const void *);
3982 static dw_loc_list_ref
new_loc_list (dw_loc_descr_ref
, const char *,
3983 const char *, const char *, unsigned);
3984 static void add_loc_descr_to_loc_list (dw_loc_list_ref
*, dw_loc_descr_ref
,
3985 const char *, const char *,
3987 static void output_loc_list (dw_loc_list_ref
);
3988 static char *gen_internal_sym (const char *);
3990 static void prune_unmark_dies (dw_die_ref
);
3991 static void prune_unused_types_mark (dw_die_ref
, int);
3992 static void prune_unused_types_walk (dw_die_ref
);
3993 static void prune_unused_types_walk_attribs (dw_die_ref
);
3994 static void prune_unused_types_prune (dw_die_ref
);
3995 static void prune_unused_types (void);
3996 static int maybe_emit_file (int);
3998 /* Section names used to hold DWARF debugging information. */
3999 #ifndef DEBUG_INFO_SECTION
4000 #define DEBUG_INFO_SECTION ".debug_info"
4002 #ifndef DEBUG_ABBREV_SECTION
4003 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4005 #ifndef DEBUG_ARANGES_SECTION
4006 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4008 #ifndef DEBUG_MACINFO_SECTION
4009 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4011 #ifndef DEBUG_LINE_SECTION
4012 #define DEBUG_LINE_SECTION ".debug_line"
4014 #ifndef DEBUG_LOC_SECTION
4015 #define DEBUG_LOC_SECTION ".debug_loc"
4017 #ifndef DEBUG_PUBNAMES_SECTION
4018 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4020 #ifndef DEBUG_STR_SECTION
4021 #define DEBUG_STR_SECTION ".debug_str"
4023 #ifndef DEBUG_RANGES_SECTION
4024 #define DEBUG_RANGES_SECTION ".debug_ranges"
4027 /* Standard ELF section names for compiled code and data. */
4028 #ifndef TEXT_SECTION_NAME
4029 #define TEXT_SECTION_NAME ".text"
4032 /* Section flags for .debug_str section. */
4033 #define DEBUG_STR_SECTION_FLAGS \
4034 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4035 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4038 /* Labels we insert at beginning sections we can reference instead of
4039 the section names themselves. */
4041 #ifndef TEXT_SECTION_LABEL
4042 #define TEXT_SECTION_LABEL "Ltext"
4044 #ifndef DEBUG_LINE_SECTION_LABEL
4045 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4047 #ifndef DEBUG_INFO_SECTION_LABEL
4048 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4050 #ifndef DEBUG_ABBREV_SECTION_LABEL
4051 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4053 #ifndef DEBUG_LOC_SECTION_LABEL
4054 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4056 #ifndef DEBUG_RANGES_SECTION_LABEL
4057 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4059 #ifndef DEBUG_MACINFO_SECTION_LABEL
4060 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4063 /* Definitions of defaults for formats and names of various special
4064 (artificial) labels which may be generated within this file (when the -g
4065 options is used and DWARF2_DEBUGGING_INFO is in effect.
4066 If necessary, these may be overridden from within the tm.h file, but
4067 typically, overriding these defaults is unnecessary. */
4069 static char text_end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4070 static char text_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4071 static char abbrev_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4072 static char debug_info_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4073 static char debug_line_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4074 static char macinfo_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4075 static char loc_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4076 static char ranges_section_label
[2 * MAX_ARTIFICIAL_LABEL_BYTES
];
4078 #ifndef TEXT_END_LABEL
4079 #define TEXT_END_LABEL "Letext"
4081 #ifndef BLOCK_BEGIN_LABEL
4082 #define BLOCK_BEGIN_LABEL "LBB"
4084 #ifndef BLOCK_END_LABEL
4085 #define BLOCK_END_LABEL "LBE"
4087 #ifndef LINE_CODE_LABEL
4088 #define LINE_CODE_LABEL "LM"
4090 #ifndef SEPARATE_LINE_CODE_LABEL
4091 #define SEPARATE_LINE_CODE_LABEL "LSM"
4094 /* We allow a language front-end to designate a function that is to be
4095 called to "demangle" any name before it it put into a DIE. */
4097 static const char *(*demangle_name_func
) (const char *);
4100 dwarf2out_set_demangle_name_func (const char *(*func
) (const char *))
4102 demangle_name_func
= func
;
4105 /* Test if rtl node points to a pseudo register. */
4108 is_pseudo_reg (rtx rtl
)
4110 return ((REG_P (rtl
) && REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
4111 || (GET_CODE (rtl
) == SUBREG
4112 && REGNO (SUBREG_REG (rtl
)) >= FIRST_PSEUDO_REGISTER
));
4115 /* Return a reference to a type, with its const and volatile qualifiers
4119 type_main_variant (tree type
)
4121 type
= TYPE_MAIN_VARIANT (type
);
4123 /* ??? There really should be only one main variant among any group of
4124 variants of a given type (and all of the MAIN_VARIANT values for all
4125 members of the group should point to that one type) but sometimes the C
4126 front-end messes this up for array types, so we work around that bug
4128 if (TREE_CODE (type
) == ARRAY_TYPE
)
4129 while (type
!= TYPE_MAIN_VARIANT (type
))
4130 type
= TYPE_MAIN_VARIANT (type
);
4135 /* Return nonzero if the given type node represents a tagged type. */
4138 is_tagged_type (tree type
)
4140 enum tree_code code
= TREE_CODE (type
);
4142 return (code
== RECORD_TYPE
|| code
== UNION_TYPE
4143 || code
== QUAL_UNION_TYPE
|| code
== ENUMERAL_TYPE
);
4146 /* Convert a DIE tag into its string name. */
4149 dwarf_tag_name (unsigned int tag
)
4153 case DW_TAG_padding
:
4154 return "DW_TAG_padding";
4155 case DW_TAG_array_type
:
4156 return "DW_TAG_array_type";
4157 case DW_TAG_class_type
:
4158 return "DW_TAG_class_type";
4159 case DW_TAG_entry_point
:
4160 return "DW_TAG_entry_point";
4161 case DW_TAG_enumeration_type
:
4162 return "DW_TAG_enumeration_type";
4163 case DW_TAG_formal_parameter
:
4164 return "DW_TAG_formal_parameter";
4165 case DW_TAG_imported_declaration
:
4166 return "DW_TAG_imported_declaration";
4168 return "DW_TAG_label";
4169 case DW_TAG_lexical_block
:
4170 return "DW_TAG_lexical_block";
4172 return "DW_TAG_member";
4173 case DW_TAG_pointer_type
:
4174 return "DW_TAG_pointer_type";
4175 case DW_TAG_reference_type
:
4176 return "DW_TAG_reference_type";
4177 case DW_TAG_compile_unit
:
4178 return "DW_TAG_compile_unit";
4179 case DW_TAG_string_type
:
4180 return "DW_TAG_string_type";
4181 case DW_TAG_structure_type
:
4182 return "DW_TAG_structure_type";
4183 case DW_TAG_subroutine_type
:
4184 return "DW_TAG_subroutine_type";
4185 case DW_TAG_typedef
:
4186 return "DW_TAG_typedef";
4187 case DW_TAG_union_type
:
4188 return "DW_TAG_union_type";
4189 case DW_TAG_unspecified_parameters
:
4190 return "DW_TAG_unspecified_parameters";
4191 case DW_TAG_variant
:
4192 return "DW_TAG_variant";
4193 case DW_TAG_common_block
:
4194 return "DW_TAG_common_block";
4195 case DW_TAG_common_inclusion
:
4196 return "DW_TAG_common_inclusion";
4197 case DW_TAG_inheritance
:
4198 return "DW_TAG_inheritance";
4199 case DW_TAG_inlined_subroutine
:
4200 return "DW_TAG_inlined_subroutine";
4202 return "DW_TAG_module";
4203 case DW_TAG_ptr_to_member_type
:
4204 return "DW_TAG_ptr_to_member_type";
4205 case DW_TAG_set_type
:
4206 return "DW_TAG_set_type";
4207 case DW_TAG_subrange_type
:
4208 return "DW_TAG_subrange_type";
4209 case DW_TAG_with_stmt
:
4210 return "DW_TAG_with_stmt";
4211 case DW_TAG_access_declaration
:
4212 return "DW_TAG_access_declaration";
4213 case DW_TAG_base_type
:
4214 return "DW_TAG_base_type";
4215 case DW_TAG_catch_block
:
4216 return "DW_TAG_catch_block";
4217 case DW_TAG_const_type
:
4218 return "DW_TAG_const_type";
4219 case DW_TAG_constant
:
4220 return "DW_TAG_constant";
4221 case DW_TAG_enumerator
:
4222 return "DW_TAG_enumerator";
4223 case DW_TAG_file_type
:
4224 return "DW_TAG_file_type";
4226 return "DW_TAG_friend";
4227 case DW_TAG_namelist
:
4228 return "DW_TAG_namelist";
4229 case DW_TAG_namelist_item
:
4230 return "DW_TAG_namelist_item";
4231 case DW_TAG_namespace
:
4232 return "DW_TAG_namespace";
4233 case DW_TAG_packed_type
:
4234 return "DW_TAG_packed_type";
4235 case DW_TAG_subprogram
:
4236 return "DW_TAG_subprogram";
4237 case DW_TAG_template_type_param
:
4238 return "DW_TAG_template_type_param";
4239 case DW_TAG_template_value_param
:
4240 return "DW_TAG_template_value_param";
4241 case DW_TAG_thrown_type
:
4242 return "DW_TAG_thrown_type";
4243 case DW_TAG_try_block
:
4244 return "DW_TAG_try_block";
4245 case DW_TAG_variant_part
:
4246 return "DW_TAG_variant_part";
4247 case DW_TAG_variable
:
4248 return "DW_TAG_variable";
4249 case DW_TAG_volatile_type
:
4250 return "DW_TAG_volatile_type";
4251 case DW_TAG_imported_module
:
4252 return "DW_TAG_imported_module";
4253 case DW_TAG_MIPS_loop
:
4254 return "DW_TAG_MIPS_loop";
4255 case DW_TAG_format_label
:
4256 return "DW_TAG_format_label";
4257 case DW_TAG_function_template
:
4258 return "DW_TAG_function_template";
4259 case DW_TAG_class_template
:
4260 return "DW_TAG_class_template";
4261 case DW_TAG_GNU_BINCL
:
4262 return "DW_TAG_GNU_BINCL";
4263 case DW_TAG_GNU_EINCL
:
4264 return "DW_TAG_GNU_EINCL";
4266 return "DW_TAG_<unknown>";
4270 /* Convert a DWARF attribute code into its string name. */
4273 dwarf_attr_name (unsigned int attr
)
4278 return "DW_AT_sibling";
4279 case DW_AT_location
:
4280 return "DW_AT_location";
4282 return "DW_AT_name";
4283 case DW_AT_ordering
:
4284 return "DW_AT_ordering";
4285 case DW_AT_subscr_data
:
4286 return "DW_AT_subscr_data";
4287 case DW_AT_byte_size
:
4288 return "DW_AT_byte_size";
4289 case DW_AT_bit_offset
:
4290 return "DW_AT_bit_offset";
4291 case DW_AT_bit_size
:
4292 return "DW_AT_bit_size";
4293 case DW_AT_element_list
:
4294 return "DW_AT_element_list";
4295 case DW_AT_stmt_list
:
4296 return "DW_AT_stmt_list";
4298 return "DW_AT_low_pc";
4300 return "DW_AT_high_pc";
4301 case DW_AT_language
:
4302 return "DW_AT_language";
4304 return "DW_AT_member";
4306 return "DW_AT_discr";
4307 case DW_AT_discr_value
:
4308 return "DW_AT_discr_value";
4309 case DW_AT_visibility
:
4310 return "DW_AT_visibility";
4312 return "DW_AT_import";
4313 case DW_AT_string_length
:
4314 return "DW_AT_string_length";
4315 case DW_AT_common_reference
:
4316 return "DW_AT_common_reference";
4317 case DW_AT_comp_dir
:
4318 return "DW_AT_comp_dir";
4319 case DW_AT_const_value
:
4320 return "DW_AT_const_value";
4321 case DW_AT_containing_type
:
4322 return "DW_AT_containing_type";
4323 case DW_AT_default_value
:
4324 return "DW_AT_default_value";
4326 return "DW_AT_inline";
4327 case DW_AT_is_optional
:
4328 return "DW_AT_is_optional";
4329 case DW_AT_lower_bound
:
4330 return "DW_AT_lower_bound";
4331 case DW_AT_producer
:
4332 return "DW_AT_producer";
4333 case DW_AT_prototyped
:
4334 return "DW_AT_prototyped";
4335 case DW_AT_return_addr
:
4336 return "DW_AT_return_addr";
4337 case DW_AT_start_scope
:
4338 return "DW_AT_start_scope";
4339 case DW_AT_stride_size
:
4340 return "DW_AT_stride_size";
4341 case DW_AT_upper_bound
:
4342 return "DW_AT_upper_bound";
4343 case DW_AT_abstract_origin
:
4344 return "DW_AT_abstract_origin";
4345 case DW_AT_accessibility
:
4346 return "DW_AT_accessibility";
4347 case DW_AT_address_class
:
4348 return "DW_AT_address_class";
4349 case DW_AT_artificial
:
4350 return "DW_AT_artificial";
4351 case DW_AT_base_types
:
4352 return "DW_AT_base_types";
4353 case DW_AT_calling_convention
:
4354 return "DW_AT_calling_convention";
4356 return "DW_AT_count";
4357 case DW_AT_data_member_location
:
4358 return "DW_AT_data_member_location";
4359 case DW_AT_decl_column
:
4360 return "DW_AT_decl_column";
4361 case DW_AT_decl_file
:
4362 return "DW_AT_decl_file";
4363 case DW_AT_decl_line
:
4364 return "DW_AT_decl_line";
4365 case DW_AT_declaration
:
4366 return "DW_AT_declaration";
4367 case DW_AT_discr_list
:
4368 return "DW_AT_discr_list";
4369 case DW_AT_encoding
:
4370 return "DW_AT_encoding";
4371 case DW_AT_external
:
4372 return "DW_AT_external";
4373 case DW_AT_frame_base
:
4374 return "DW_AT_frame_base";
4376 return "DW_AT_friend";
4377 case DW_AT_identifier_case
:
4378 return "DW_AT_identifier_case";
4379 case DW_AT_macro_info
:
4380 return "DW_AT_macro_info";
4381 case DW_AT_namelist_items
:
4382 return "DW_AT_namelist_items";
4383 case DW_AT_priority
:
4384 return "DW_AT_priority";
4386 return "DW_AT_segment";
4387 case DW_AT_specification
:
4388 return "DW_AT_specification";
4389 case DW_AT_static_link
:
4390 return "DW_AT_static_link";
4392 return "DW_AT_type";
4393 case DW_AT_use_location
:
4394 return "DW_AT_use_location";
4395 case DW_AT_variable_parameter
:
4396 return "DW_AT_variable_parameter";
4397 case DW_AT_virtuality
:
4398 return "DW_AT_virtuality";
4399 case DW_AT_vtable_elem_location
:
4400 return "DW_AT_vtable_elem_location";
4402 case DW_AT_allocated
:
4403 return "DW_AT_allocated";
4404 case DW_AT_associated
:
4405 return "DW_AT_associated";
4406 case DW_AT_data_location
:
4407 return "DW_AT_data_location";
4409 return "DW_AT_stride";
4410 case DW_AT_entry_pc
:
4411 return "DW_AT_entry_pc";
4412 case DW_AT_use_UTF8
:
4413 return "DW_AT_use_UTF8";
4414 case DW_AT_extension
:
4415 return "DW_AT_extension";
4417 return "DW_AT_ranges";
4418 case DW_AT_trampoline
:
4419 return "DW_AT_trampoline";
4420 case DW_AT_call_column
:
4421 return "DW_AT_call_column";
4422 case DW_AT_call_file
:
4423 return "DW_AT_call_file";
4424 case DW_AT_call_line
:
4425 return "DW_AT_call_line";
4427 case DW_AT_MIPS_fde
:
4428 return "DW_AT_MIPS_fde";
4429 case DW_AT_MIPS_loop_begin
:
4430 return "DW_AT_MIPS_loop_begin";
4431 case DW_AT_MIPS_tail_loop_begin
:
4432 return "DW_AT_MIPS_tail_loop_begin";
4433 case DW_AT_MIPS_epilog_begin
:
4434 return "DW_AT_MIPS_epilog_begin";
4435 case DW_AT_MIPS_loop_unroll_factor
:
4436 return "DW_AT_MIPS_loop_unroll_factor";
4437 case DW_AT_MIPS_software_pipeline_depth
:
4438 return "DW_AT_MIPS_software_pipeline_depth";
4439 case DW_AT_MIPS_linkage_name
:
4440 return "DW_AT_MIPS_linkage_name";
4441 case DW_AT_MIPS_stride
:
4442 return "DW_AT_MIPS_stride";
4443 case DW_AT_MIPS_abstract_name
:
4444 return "DW_AT_MIPS_abstract_name";
4445 case DW_AT_MIPS_clone_origin
:
4446 return "DW_AT_MIPS_clone_origin";
4447 case DW_AT_MIPS_has_inlines
:
4448 return "DW_AT_MIPS_has_inlines";
4450 case DW_AT_sf_names
:
4451 return "DW_AT_sf_names";
4452 case DW_AT_src_info
:
4453 return "DW_AT_src_info";
4454 case DW_AT_mac_info
:
4455 return "DW_AT_mac_info";
4456 case DW_AT_src_coords
:
4457 return "DW_AT_src_coords";
4458 case DW_AT_body_begin
:
4459 return "DW_AT_body_begin";
4460 case DW_AT_body_end
:
4461 return "DW_AT_body_end";
4462 case DW_AT_GNU_vector
:
4463 return "DW_AT_GNU_vector";
4465 case DW_AT_VMS_rtnbeg_pd_address
:
4466 return "DW_AT_VMS_rtnbeg_pd_address";
4469 return "DW_AT_<unknown>";
4473 /* Convert a DWARF value form code into its string name. */
4476 dwarf_form_name (unsigned int form
)
4481 return "DW_FORM_addr";
4482 case DW_FORM_block2
:
4483 return "DW_FORM_block2";
4484 case DW_FORM_block4
:
4485 return "DW_FORM_block4";
4487 return "DW_FORM_data2";
4489 return "DW_FORM_data4";
4491 return "DW_FORM_data8";
4492 case DW_FORM_string
:
4493 return "DW_FORM_string";
4495 return "DW_FORM_block";
4496 case DW_FORM_block1
:
4497 return "DW_FORM_block1";
4499 return "DW_FORM_data1";
4501 return "DW_FORM_flag";
4503 return "DW_FORM_sdata";
4505 return "DW_FORM_strp";
4507 return "DW_FORM_udata";
4508 case DW_FORM_ref_addr
:
4509 return "DW_FORM_ref_addr";
4511 return "DW_FORM_ref1";
4513 return "DW_FORM_ref2";
4515 return "DW_FORM_ref4";
4517 return "DW_FORM_ref8";
4518 case DW_FORM_ref_udata
:
4519 return "DW_FORM_ref_udata";
4520 case DW_FORM_indirect
:
4521 return "DW_FORM_indirect";
4523 return "DW_FORM_<unknown>";
4527 /* Convert a DWARF type code into its string name. */
4531 dwarf_type_encoding_name (unsigned enc
)
4535 case DW_ATE_address
:
4536 return "DW_ATE_address";
4537 case DW_ATE_boolean
:
4538 return "DW_ATE_boolean";
4539 case DW_ATE_complex_float
:
4540 return "DW_ATE_complex_float";
4542 return "DW_ATE_float";
4544 return "DW_ATE_signed";
4545 case DW_ATE_signed_char
:
4546 return "DW_ATE_signed_char";
4547 case DW_ATE_unsigned
:
4548 return "DW_ATE_unsigned";
4549 case DW_ATE_unsigned_char
:
4550 return "DW_ATE_unsigned_char";
4552 return "DW_ATE_<unknown>";
4557 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4558 instance of an inlined instance of a decl which is local to an inline
4559 function, so we have to trace all of the way back through the origin chain
4560 to find out what sort of node actually served as the original seed for the
4564 decl_ultimate_origin (tree decl
)
4566 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4567 nodes in the function to point to themselves; ignore that if
4568 we're trying to output the abstract instance of this function. */
4569 if (DECL_ABSTRACT (decl
) && DECL_ABSTRACT_ORIGIN (decl
) == decl
)
4572 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4573 most distant ancestor, this should never happen. */
4574 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl
)));
4576 return DECL_ABSTRACT_ORIGIN (decl
);
4579 /* Determine the "ultimate origin" of a block. The block may be an inlined
4580 instance of an inlined instance of a block which is local to an inline
4581 function, so we have to trace all of the way back through the origin chain
4582 to find out what sort of node actually served as the original seed for the
4586 block_ultimate_origin (tree block
)
4588 tree immediate_origin
= BLOCK_ABSTRACT_ORIGIN (block
);
4590 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4591 nodes in the function to point to themselves; ignore that if
4592 we're trying to output the abstract instance of this function. */
4593 if (BLOCK_ABSTRACT (block
) && immediate_origin
== block
)
4596 if (immediate_origin
== NULL_TREE
)
4601 tree lookahead
= immediate_origin
;
4605 ret_val
= lookahead
;
4606 lookahead
= (TREE_CODE (ret_val
) == BLOCK
4607 ? BLOCK_ABSTRACT_ORIGIN (ret_val
) : NULL
);
4609 while (lookahead
!= NULL
&& lookahead
!= ret_val
);
4615 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4616 of a virtual function may refer to a base class, so we check the 'this'
4620 decl_class_context (tree decl
)
4622 tree context
= NULL_TREE
;
4624 if (TREE_CODE (decl
) != FUNCTION_DECL
|| ! DECL_VINDEX (decl
))
4625 context
= DECL_CONTEXT (decl
);
4627 context
= TYPE_MAIN_VARIANT
4628 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4630 if (context
&& !TYPE_P (context
))
4631 context
= NULL_TREE
;
4636 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4637 addition order, and correct that in reverse_all_dies. */
4640 add_dwarf_attr (dw_die_ref die
, dw_attr_ref attr
)
4642 if (die
!= NULL
&& attr
!= NULL
)
4644 attr
->dw_attr_next
= die
->die_attr
;
4645 die
->die_attr
= attr
;
4649 static inline enum dw_val_class
4650 AT_class (dw_attr_ref a
)
4652 return a
->dw_attr_val
.val_class
;
4655 /* Add a flag value attribute to a DIE. */
4658 add_AT_flag (dw_die_ref die
, enum dwarf_attribute attr_kind
, unsigned int flag
)
4660 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4662 attr
->dw_attr_next
= NULL
;
4663 attr
->dw_attr
= attr_kind
;
4664 attr
->dw_attr_val
.val_class
= dw_val_class_flag
;
4665 attr
->dw_attr_val
.v
.val_flag
= flag
;
4666 add_dwarf_attr (die
, attr
);
4669 static inline unsigned
4670 AT_flag (dw_attr_ref a
)
4672 gcc_assert (a
&& AT_class (a
) == dw_val_class_flag
);
4673 return a
->dw_attr_val
.v
.val_flag
;
4676 /* Add a signed integer attribute value to a DIE. */
4679 add_AT_int (dw_die_ref die
, enum dwarf_attribute attr_kind
, HOST_WIDE_INT int_val
)
4681 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4683 attr
->dw_attr_next
= NULL
;
4684 attr
->dw_attr
= attr_kind
;
4685 attr
->dw_attr_val
.val_class
= dw_val_class_const
;
4686 attr
->dw_attr_val
.v
.val_int
= int_val
;
4687 add_dwarf_attr (die
, attr
);
4690 static inline HOST_WIDE_INT
4691 AT_int (dw_attr_ref a
)
4693 gcc_assert (a
&& AT_class (a
) == dw_val_class_const
);
4694 return a
->dw_attr_val
.v
.val_int
;
4697 /* Add an unsigned integer attribute value to a DIE. */
4700 add_AT_unsigned (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4701 unsigned HOST_WIDE_INT unsigned_val
)
4703 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4705 attr
->dw_attr_next
= NULL
;
4706 attr
->dw_attr
= attr_kind
;
4707 attr
->dw_attr_val
.val_class
= dw_val_class_unsigned_const
;
4708 attr
->dw_attr_val
.v
.val_unsigned
= unsigned_val
;
4709 add_dwarf_attr (die
, attr
);
4712 static inline unsigned HOST_WIDE_INT
4713 AT_unsigned (dw_attr_ref a
)
4715 gcc_assert (a
&& AT_class (a
) == dw_val_class_unsigned_const
);
4716 return a
->dw_attr_val
.v
.val_unsigned
;
4719 /* Add an unsigned double integer attribute value to a DIE. */
4722 add_AT_long_long (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4723 long unsigned int val_hi
, long unsigned int val_low
)
4725 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4727 attr
->dw_attr_next
= NULL
;
4728 attr
->dw_attr
= attr_kind
;
4729 attr
->dw_attr_val
.val_class
= dw_val_class_long_long
;
4730 attr
->dw_attr_val
.v
.val_long_long
.hi
= val_hi
;
4731 attr
->dw_attr_val
.v
.val_long_long
.low
= val_low
;
4732 add_dwarf_attr (die
, attr
);
4735 /* Add a floating point attribute value to a DIE and return it. */
4738 add_AT_vec (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4739 unsigned int length
, unsigned int elt_size
, unsigned char *array
)
4741 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4743 attr
->dw_attr_next
= NULL
;
4744 attr
->dw_attr
= attr_kind
;
4745 attr
->dw_attr_val
.val_class
= dw_val_class_vec
;
4746 attr
->dw_attr_val
.v
.val_vec
.length
= length
;
4747 attr
->dw_attr_val
.v
.val_vec
.elt_size
= elt_size
;
4748 attr
->dw_attr_val
.v
.val_vec
.array
= array
;
4749 add_dwarf_attr (die
, attr
);
4752 /* Hash and equality functions for debug_str_hash. */
4755 debug_str_do_hash (const void *x
)
4757 return htab_hash_string (((const struct indirect_string_node
*)x
)->str
);
4761 debug_str_eq (const void *x1
, const void *x2
)
4763 return strcmp ((((const struct indirect_string_node
*)x1
)->str
),
4764 (const char *)x2
) == 0;
4767 /* Add a string attribute value to a DIE. */
4770 add_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
, const char *str
)
4772 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4773 struct indirect_string_node
*node
;
4776 if (! debug_str_hash
)
4777 debug_str_hash
= htab_create_ggc (10, debug_str_do_hash
,
4778 debug_str_eq
, NULL
);
4780 slot
= htab_find_slot_with_hash (debug_str_hash
, str
,
4781 htab_hash_string (str
), INSERT
);
4783 *slot
= ggc_alloc_cleared (sizeof (struct indirect_string_node
));
4784 node
= (struct indirect_string_node
*) *slot
;
4785 node
->str
= ggc_strdup (str
);
4788 attr
->dw_attr_next
= NULL
;
4789 attr
->dw_attr
= attr_kind
;
4790 attr
->dw_attr_val
.val_class
= dw_val_class_str
;
4791 attr
->dw_attr_val
.v
.val_str
= node
;
4792 add_dwarf_attr (die
, attr
);
4795 static inline const char *
4796 AT_string (dw_attr_ref a
)
4798 gcc_assert (a
&& AT_class (a
) == dw_val_class_str
);
4799 return a
->dw_attr_val
.v
.val_str
->str
;
4802 /* Find out whether a string should be output inline in DIE
4803 or out-of-line in .debug_str section. */
4806 AT_string_form (dw_attr_ref a
)
4808 struct indirect_string_node
*node
;
4812 gcc_assert (a
&& AT_class (a
) == dw_val_class_str
);
4814 node
= a
->dw_attr_val
.v
.val_str
;
4818 len
= strlen (node
->str
) + 1;
4820 /* If the string is shorter or equal to the size of the reference, it is
4821 always better to put it inline. */
4822 if (len
<= DWARF_OFFSET_SIZE
|| node
->refcount
== 0)
4823 return node
->form
= DW_FORM_string
;
4825 /* If we cannot expect the linker to merge strings in .debug_str
4826 section, only put it into .debug_str if it is worth even in this
4828 if ((DEBUG_STR_SECTION_FLAGS
& SECTION_MERGE
) == 0
4829 && (len
- DWARF_OFFSET_SIZE
) * node
->refcount
<= len
)
4830 return node
->form
= DW_FORM_string
;
4832 ASM_GENERATE_INTERNAL_LABEL (label
, "LASF", dw2_string_counter
);
4833 ++dw2_string_counter
;
4834 node
->label
= xstrdup (label
);
4836 return node
->form
= DW_FORM_strp
;
4839 /* Add a DIE reference attribute value to a DIE. */
4842 add_AT_die_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_die_ref targ_die
)
4844 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4846 attr
->dw_attr_next
= NULL
;
4847 attr
->dw_attr
= attr_kind
;
4848 attr
->dw_attr_val
.val_class
= dw_val_class_die_ref
;
4849 attr
->dw_attr_val
.v
.val_die_ref
.die
= targ_die
;
4850 attr
->dw_attr_val
.v
.val_die_ref
.external
= 0;
4851 add_dwarf_attr (die
, attr
);
4854 /* Add an AT_specification attribute to a DIE, and also make the back
4855 pointer from the specification to the definition. */
4858 add_AT_specification (dw_die_ref die
, dw_die_ref targ_die
)
4860 add_AT_die_ref (die
, DW_AT_specification
, targ_die
);
4861 gcc_assert (!targ_die
->die_definition
);
4862 targ_die
->die_definition
= die
;
4865 static inline dw_die_ref
4866 AT_ref (dw_attr_ref a
)
4868 gcc_assert (a
&& AT_class (a
) == dw_val_class_die_ref
);
4869 return a
->dw_attr_val
.v
.val_die_ref
.die
;
4873 AT_ref_external (dw_attr_ref a
)
4875 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4876 return a
->dw_attr_val
.v
.val_die_ref
.external
;
4882 set_AT_ref_external (dw_attr_ref a
, int i
)
4884 gcc_assert (a
&& AT_class (a
) == dw_val_class_die_ref
);
4885 a
->dw_attr_val
.v
.val_die_ref
.external
= i
;
4888 /* Add an FDE reference attribute value to a DIE. */
4891 add_AT_fde_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
, unsigned int targ_fde
)
4893 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4895 attr
->dw_attr_next
= NULL
;
4896 attr
->dw_attr
= attr_kind
;
4897 attr
->dw_attr_val
.val_class
= dw_val_class_fde_ref
;
4898 attr
->dw_attr_val
.v
.val_fde_index
= targ_fde
;
4899 add_dwarf_attr (die
, attr
);
4902 /* Add a location description attribute value to a DIE. */
4905 add_AT_loc (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_loc_descr_ref loc
)
4907 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4909 attr
->dw_attr_next
= NULL
;
4910 attr
->dw_attr
= attr_kind
;
4911 attr
->dw_attr_val
.val_class
= dw_val_class_loc
;
4912 attr
->dw_attr_val
.v
.val_loc
= loc
;
4913 add_dwarf_attr (die
, attr
);
4916 static inline dw_loc_descr_ref
4917 AT_loc (dw_attr_ref a
)
4919 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc
);
4920 return a
->dw_attr_val
.v
.val_loc
;
4924 add_AT_loc_list (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_loc_list_ref loc_list
)
4926 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4928 attr
->dw_attr_next
= NULL
;
4929 attr
->dw_attr
= attr_kind
;
4930 attr
->dw_attr_val
.val_class
= dw_val_class_loc_list
;
4931 attr
->dw_attr_val
.v
.val_loc_list
= loc_list
;
4932 add_dwarf_attr (die
, attr
);
4933 have_location_lists
= 1;
4936 static inline dw_loc_list_ref
4937 AT_loc_list (dw_attr_ref a
)
4939 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc_list
);
4940 return a
->dw_attr_val
.v
.val_loc_list
;
4943 /* Add an address constant attribute value to a DIE. */
4946 add_AT_addr (dw_die_ref die
, enum dwarf_attribute attr_kind
, rtx addr
)
4948 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4950 attr
->dw_attr_next
= NULL
;
4951 attr
->dw_attr
= attr_kind
;
4952 attr
->dw_attr_val
.val_class
= dw_val_class_addr
;
4953 attr
->dw_attr_val
.v
.val_addr
= addr
;
4954 add_dwarf_attr (die
, attr
);
4958 AT_addr (dw_attr_ref a
)
4960 gcc_assert (a
&& AT_class (a
) == dw_val_class_addr
);
4961 return a
->dw_attr_val
.v
.val_addr
;
4964 /* Add a label identifier attribute value to a DIE. */
4967 add_AT_lbl_id (dw_die_ref die
, enum dwarf_attribute attr_kind
, const char *lbl_id
)
4969 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4971 attr
->dw_attr_next
= NULL
;
4972 attr
->dw_attr
= attr_kind
;
4973 attr
->dw_attr_val
.val_class
= dw_val_class_lbl_id
;
4974 attr
->dw_attr_val
.v
.val_lbl_id
= xstrdup (lbl_id
);
4975 add_dwarf_attr (die
, attr
);
4978 /* Add a section offset attribute value to a DIE. */
4981 add_AT_lbl_offset (dw_die_ref die
, enum dwarf_attribute attr_kind
, const char *label
)
4983 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4985 attr
->dw_attr_next
= NULL
;
4986 attr
->dw_attr
= attr_kind
;
4987 attr
->dw_attr_val
.val_class
= dw_val_class_lbl_offset
;
4988 attr
->dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
4989 add_dwarf_attr (die
, attr
);
4992 /* Add an offset attribute value to a DIE. */
4995 add_AT_offset (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4996 unsigned HOST_WIDE_INT offset
)
4998 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
5000 attr
->dw_attr_next
= NULL
;
5001 attr
->dw_attr
= attr_kind
;
5002 attr
->dw_attr_val
.val_class
= dw_val_class_offset
;
5003 attr
->dw_attr_val
.v
.val_offset
= offset
;
5004 add_dwarf_attr (die
, attr
);
5007 /* Add an range_list attribute value to a DIE. */
5010 add_AT_range_list (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5011 long unsigned int offset
)
5013 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
5015 attr
->dw_attr_next
= NULL
;
5016 attr
->dw_attr
= attr_kind
;
5017 attr
->dw_attr_val
.val_class
= dw_val_class_range_list
;
5018 attr
->dw_attr_val
.v
.val_offset
= offset
;
5019 add_dwarf_attr (die
, attr
);
5022 static inline const char *
5023 AT_lbl (dw_attr_ref a
)
5025 gcc_assert (a
&& (AT_class (a
) == dw_val_class_lbl_id
5026 || AT_class (a
) == dw_val_class_lbl_offset
));
5027 return a
->dw_attr_val
.v
.val_lbl_id
;
5030 /* Get the attribute of type attr_kind. */
5033 get_AT (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5036 dw_die_ref spec
= NULL
;
5040 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
5041 if (a
->dw_attr
== attr_kind
)
5043 else if (a
->dw_attr
== DW_AT_specification
5044 || a
->dw_attr
== DW_AT_abstract_origin
)
5048 return get_AT (spec
, attr_kind
);
5054 /* Return the "low pc" attribute value, typically associated with a subprogram
5055 DIE. Return null if the "low pc" attribute is either not present, or if it
5056 cannot be represented as an assembler label identifier. */
5058 static inline const char *
5059 get_AT_low_pc (dw_die_ref die
)
5061 dw_attr_ref a
= get_AT (die
, DW_AT_low_pc
);
5063 return a
? AT_lbl (a
) : NULL
;
5066 /* Return the "high pc" attribute value, typically associated with a subprogram
5067 DIE. Return null if the "high pc" attribute is either not present, or if it
5068 cannot be represented as an assembler label identifier. */
5070 static inline const char *
5071 get_AT_hi_pc (dw_die_ref die
)
5073 dw_attr_ref a
= get_AT (die
, DW_AT_high_pc
);
5075 return a
? AT_lbl (a
) : NULL
;
5078 /* Return the value of the string attribute designated by ATTR_KIND, or
5079 NULL if it is not present. */
5081 static inline const char *
5082 get_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5084 dw_attr_ref a
= get_AT (die
, attr_kind
);
5086 return a
? AT_string (a
) : NULL
;
5089 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5090 if it is not present. */
5093 get_AT_flag (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5095 dw_attr_ref a
= get_AT (die
, attr_kind
);
5097 return a
? AT_flag (a
) : 0;
5100 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5101 if it is not present. */
5103 static inline unsigned
5104 get_AT_unsigned (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5106 dw_attr_ref a
= get_AT (die
, attr_kind
);
5108 return a
? AT_unsigned (a
) : 0;
5111 static inline dw_die_ref
5112 get_AT_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5114 dw_attr_ref a
= get_AT (die
, attr_kind
);
5116 return a
? AT_ref (a
) : NULL
;
5119 /* Return TRUE if the language is C or C++. */
5124 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5126 return (lang
== DW_LANG_C
|| lang
== DW_LANG_C89
5127 || lang
== DW_LANG_C_plus_plus
);
5130 /* Return TRUE if the language is C++. */
5135 return (get_AT_unsigned (comp_unit_die
, DW_AT_language
)
5136 == DW_LANG_C_plus_plus
);
5139 /* Return TRUE if the language is Fortran. */
5144 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5146 return (lang
== DW_LANG_Fortran77
5147 || lang
== DW_LANG_Fortran90
5148 || lang
== DW_LANG_Fortran95
);
5151 /* Return TRUE if the language is Java. */
5156 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5158 return lang
== DW_LANG_Java
;
5161 /* Return TRUE if the language is Ada. */
5166 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5168 return lang
== DW_LANG_Ada95
|| lang
== DW_LANG_Ada83
;
5171 /* Free up the memory used by A. */
5173 static inline void free_AT (dw_attr_ref
);
5175 free_AT (dw_attr_ref a
)
5177 if (AT_class (a
) == dw_val_class_str
)
5178 if (a
->dw_attr_val
.v
.val_str
->refcount
)
5179 a
->dw_attr_val
.v
.val_str
->refcount
--;
5182 /* Remove the specified attribute if present. */
5185 remove_AT (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5188 dw_attr_ref removed
= NULL
;
5192 for (p
= &(die
->die_attr
); *p
; p
= &((*p
)->dw_attr_next
))
5193 if ((*p
)->dw_attr
== attr_kind
)
5196 *p
= (*p
)->dw_attr_next
;
5205 /* Remove child die whose die_tag is specified tag. */
5208 remove_child_TAG (dw_die_ref die
, enum dwarf_tag tag
)
5210 dw_die_ref current
, prev
, next
;
5211 current
= die
->die_child
;
5213 while (current
!= NULL
)
5215 if (current
->die_tag
== tag
)
5217 next
= current
->die_sib
;
5219 die
->die_child
= next
;
5221 prev
->die_sib
= next
;
5228 current
= current
->die_sib
;
5233 /* Free up the memory used by DIE. */
5236 free_die (dw_die_ref die
)
5238 remove_children (die
);
5241 /* Discard the children of this DIE. */
5244 remove_children (dw_die_ref die
)
5246 dw_die_ref child_die
= die
->die_child
;
5248 die
->die_child
= NULL
;
5250 while (child_die
!= NULL
)
5252 dw_die_ref tmp_die
= child_die
;
5255 child_die
= child_die
->die_sib
;
5257 for (a
= tmp_die
->die_attr
; a
!= NULL
;)
5259 dw_attr_ref tmp_a
= a
;
5261 a
= a
->dw_attr_next
;
5269 /* Add a child DIE below its parent. We build the lists up in reverse
5270 addition order, and correct that in reverse_all_dies. */
5273 add_child_die (dw_die_ref die
, dw_die_ref child_die
)
5275 if (die
!= NULL
&& child_die
!= NULL
)
5277 gcc_assert (die
!= child_die
);
5279 child_die
->die_parent
= die
;
5280 child_die
->die_sib
= die
->die_child
;
5281 die
->die_child
= child_die
;
5285 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5286 is the specification, to the front of PARENT's list of children. */
5289 splice_child_die (dw_die_ref parent
, dw_die_ref child
)
5293 /* We want the declaration DIE from inside the class, not the
5294 specification DIE at toplevel. */
5295 if (child
->die_parent
!= parent
)
5297 dw_die_ref tmp
= get_AT_ref (child
, DW_AT_specification
);
5303 gcc_assert (child
->die_parent
== parent
5304 || (child
->die_parent
5305 == get_AT_ref (parent
, DW_AT_specification
)));
5307 for (p
= &(child
->die_parent
->die_child
); *p
; p
= &((*p
)->die_sib
))
5310 *p
= child
->die_sib
;
5314 child
->die_parent
= parent
;
5315 child
->die_sib
= parent
->die_child
;
5316 parent
->die_child
= child
;
5319 /* Return a pointer to a newly created DIE node. */
5321 static inline dw_die_ref
5322 new_die (enum dwarf_tag tag_value
, dw_die_ref parent_die
, tree t
)
5324 dw_die_ref die
= ggc_alloc_cleared (sizeof (die_node
));
5326 die
->die_tag
= tag_value
;
5328 if (parent_die
!= NULL
)
5329 add_child_die (parent_die
, die
);
5332 limbo_die_node
*limbo_node
;
5334 limbo_node
= ggc_alloc_cleared (sizeof (limbo_die_node
));
5335 limbo_node
->die
= die
;
5336 limbo_node
->created_for
= t
;
5337 limbo_node
->next
= limbo_die_list
;
5338 limbo_die_list
= limbo_node
;
5344 /* Return the DIE associated with the given type specifier. */
5346 static inline dw_die_ref
5347 lookup_type_die (tree type
)
5349 return TYPE_SYMTAB_DIE (type
);
5352 /* Equate a DIE to a given type specifier. */
5355 equate_type_number_to_die (tree type
, dw_die_ref type_die
)
5357 TYPE_SYMTAB_DIE (type
) = type_die
;
5360 /* Returns a hash value for X (which really is a die_struct). */
5363 decl_die_table_hash (const void *x
)
5365 return (hashval_t
) ((const dw_die_ref
) x
)->decl_id
;
5368 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5371 decl_die_table_eq (const void *x
, const void *y
)
5373 return (((const dw_die_ref
) x
)->decl_id
== DECL_UID ((const tree
) y
));
5376 /* Return the DIE associated with a given declaration. */
5378 static inline dw_die_ref
5379 lookup_decl_die (tree decl
)
5381 return htab_find_with_hash (decl_die_table
, decl
, DECL_UID (decl
));
5384 /* Returns a hash value for X (which really is a var_loc_list). */
5387 decl_loc_table_hash (const void *x
)
5389 return (hashval_t
) ((const var_loc_list
*) x
)->decl_id
;
5392 /* Return nonzero if decl_id of var_loc_list X is the same as
5396 decl_loc_table_eq (const void *x
, const void *y
)
5398 return (((const var_loc_list
*) x
)->decl_id
== DECL_UID ((const tree
) y
));
5401 /* Return the var_loc list associated with a given declaration. */
5403 static inline var_loc_list
*
5404 lookup_decl_loc (tree decl
)
5406 return htab_find_with_hash (decl_loc_table
, decl
, DECL_UID (decl
));
5409 /* Equate a DIE to a particular declaration. */
5412 equate_decl_number_to_die (tree decl
, dw_die_ref decl_die
)
5414 unsigned int decl_id
= DECL_UID (decl
);
5417 slot
= htab_find_slot_with_hash (decl_die_table
, decl
, decl_id
, INSERT
);
5419 decl_die
->decl_id
= decl_id
;
5422 /* Add a variable location node to the linked list for DECL. */
5425 add_var_loc_to_decl (tree decl
, struct var_loc_node
*loc
)
5427 unsigned int decl_id
= DECL_UID (decl
);
5431 slot
= htab_find_slot_with_hash (decl_loc_table
, decl
, decl_id
, INSERT
);
5434 temp
= ggc_alloc_cleared (sizeof (var_loc_list
));
5435 temp
->decl_id
= decl_id
;
5443 /* If the current location is the same as the end of the list,
5444 we have nothing to do. */
5445 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp
->last
->var_loc_note
),
5446 NOTE_VAR_LOCATION_LOC (loc
->var_loc_note
)))
5448 /* Add LOC to the end of list and update LAST. */
5449 temp
->last
->next
= loc
;
5453 /* Do not add empty location to the beginning of the list. */
5454 else if (NOTE_VAR_LOCATION_LOC (loc
->var_loc_note
) != NULL_RTX
)
5461 /* Keep track of the number of spaces used to indent the
5462 output of the debugging routines that print the structure of
5463 the DIE internal representation. */
5464 static int print_indent
;
5466 /* Indent the line the number of spaces given by print_indent. */
5469 print_spaces (FILE *outfile
)
5471 fprintf (outfile
, "%*s", print_indent
, "");
5474 /* Print the information associated with a given DIE, and its children.
5475 This routine is a debugging aid only. */
5478 print_die (dw_die_ref die
, FILE *outfile
)
5483 print_spaces (outfile
);
5484 fprintf (outfile
, "DIE %4lu: %s\n",
5485 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
5486 print_spaces (outfile
);
5487 fprintf (outfile
, " abbrev id: %lu", die
->die_abbrev
);
5488 fprintf (outfile
, " offset: %lu\n", die
->die_offset
);
5490 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
5492 print_spaces (outfile
);
5493 fprintf (outfile
, " %s: ", dwarf_attr_name (a
->dw_attr
));
5495 switch (AT_class (a
))
5497 case dw_val_class_addr
:
5498 fprintf (outfile
, "address");
5500 case dw_val_class_offset
:
5501 fprintf (outfile
, "offset");
5503 case dw_val_class_loc
:
5504 fprintf (outfile
, "location descriptor");
5506 case dw_val_class_loc_list
:
5507 fprintf (outfile
, "location list -> label:%s",
5508 AT_loc_list (a
)->ll_symbol
);
5510 case dw_val_class_range_list
:
5511 fprintf (outfile
, "range list");
5513 case dw_val_class_const
:
5514 fprintf (outfile
, HOST_WIDE_INT_PRINT_DEC
, AT_int (a
));
5516 case dw_val_class_unsigned_const
:
5517 fprintf (outfile
, HOST_WIDE_INT_PRINT_UNSIGNED
, AT_unsigned (a
));
5519 case dw_val_class_long_long
:
5520 fprintf (outfile
, "constant (%lu,%lu)",
5521 a
->dw_attr_val
.v
.val_long_long
.hi
,
5522 a
->dw_attr_val
.v
.val_long_long
.low
);
5524 case dw_val_class_vec
:
5525 fprintf (outfile
, "floating-point or vector constant");
5527 case dw_val_class_flag
:
5528 fprintf (outfile
, "%u", AT_flag (a
));
5530 case dw_val_class_die_ref
:
5531 if (AT_ref (a
) != NULL
)
5533 if (AT_ref (a
)->die_symbol
)
5534 fprintf (outfile
, "die -> label: %s", AT_ref (a
)->die_symbol
);
5536 fprintf (outfile
, "die -> %lu", AT_ref (a
)->die_offset
);
5539 fprintf (outfile
, "die -> <null>");
5541 case dw_val_class_lbl_id
:
5542 case dw_val_class_lbl_offset
:
5543 fprintf (outfile
, "label: %s", AT_lbl (a
));
5545 case dw_val_class_str
:
5546 if (AT_string (a
) != NULL
)
5547 fprintf (outfile
, "\"%s\"", AT_string (a
));
5549 fprintf (outfile
, "<null>");
5555 fprintf (outfile
, "\n");
5558 if (die
->die_child
!= NULL
)
5561 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5562 print_die (c
, outfile
);
5566 if (print_indent
== 0)
5567 fprintf (outfile
, "\n");
5570 /* Print the contents of the source code line number correspondence table.
5571 This routine is a debugging aid only. */
5574 print_dwarf_line_table (FILE *outfile
)
5577 dw_line_info_ref line_info
;
5579 fprintf (outfile
, "\n\nDWARF source line information\n");
5580 for (i
= 1; i
< line_info_table_in_use
; i
++)
5582 line_info
= &line_info_table
[i
];
5583 fprintf (outfile
, "%5d: ", i
);
5584 fprintf (outfile
, "%-20s",
5585 VARRAY_CHAR_PTR (file_table
, line_info
->dw_file_num
));
5586 fprintf (outfile
, "%6ld", line_info
->dw_line_num
);
5587 fprintf (outfile
, "\n");
5590 fprintf (outfile
, "\n\n");
5593 /* Print the information collected for a given DIE. */
5596 debug_dwarf_die (dw_die_ref die
)
5598 print_die (die
, stderr
);
5601 /* Print all DWARF information collected for the compilation unit.
5602 This routine is a debugging aid only. */
5608 print_die (comp_unit_die
, stderr
);
5609 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
5610 print_dwarf_line_table (stderr
);
5613 /* We build up the lists of children and attributes by pushing new ones
5614 onto the beginning of the list. Reverse the lists for DIE so that
5615 they are in order of addition. */
5618 reverse_die_lists (dw_die_ref die
)
5620 dw_die_ref c
, cp
, cn
;
5621 dw_attr_ref a
, ap
, an
;
5623 for (a
= die
->die_attr
, ap
= 0; a
; a
= an
)
5625 an
= a
->dw_attr_next
;
5626 a
->dw_attr_next
= ap
;
5632 for (c
= die
->die_child
, cp
= 0; c
; c
= cn
)
5639 die
->die_child
= cp
;
5642 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5643 reverse all dies in add_sibling_attributes, which runs through all the dies,
5644 it would reverse all the dies. Now, however, since we don't call
5645 reverse_die_lists in add_sibling_attributes, we need a routine to
5646 recursively reverse all the dies. This is that routine. */
5649 reverse_all_dies (dw_die_ref die
)
5653 reverse_die_lists (die
);
5655 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5656 reverse_all_dies (c
);
5659 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5660 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5661 DIE that marks the start of the DIEs for this include file. */
5664 push_new_compile_unit (dw_die_ref old_unit
, dw_die_ref bincl_die
)
5666 const char *filename
= get_AT_string (bincl_die
, DW_AT_name
);
5667 dw_die_ref new_unit
= gen_compile_unit_die (filename
);
5669 new_unit
->die_sib
= old_unit
;
5673 /* Close an include-file CU and reopen the enclosing one. */
5676 pop_compile_unit (dw_die_ref old_unit
)
5678 dw_die_ref new_unit
= old_unit
->die_sib
;
5680 old_unit
->die_sib
= NULL
;
5684 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5685 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5687 /* Calculate the checksum of a location expression. */
5690 loc_checksum (dw_loc_descr_ref loc
, struct md5_ctx
*ctx
)
5692 CHECKSUM (loc
->dw_loc_opc
);
5693 CHECKSUM (loc
->dw_loc_oprnd1
);
5694 CHECKSUM (loc
->dw_loc_oprnd2
);
5697 /* Calculate the checksum of an attribute. */
5700 attr_checksum (dw_attr_ref at
, struct md5_ctx
*ctx
, int *mark
)
5702 dw_loc_descr_ref loc
;
5705 CHECKSUM (at
->dw_attr
);
5707 /* We don't care about differences in file numbering. */
5708 if (at
->dw_attr
== DW_AT_decl_file
5709 /* Or that this was compiled with a different compiler snapshot; if
5710 the output is the same, that's what matters. */
5711 || at
->dw_attr
== DW_AT_producer
)
5714 switch (AT_class (at
))
5716 case dw_val_class_const
:
5717 CHECKSUM (at
->dw_attr_val
.v
.val_int
);
5719 case dw_val_class_unsigned_const
:
5720 CHECKSUM (at
->dw_attr_val
.v
.val_unsigned
);
5722 case dw_val_class_long_long
:
5723 CHECKSUM (at
->dw_attr_val
.v
.val_long_long
);
5725 case dw_val_class_vec
:
5726 CHECKSUM (at
->dw_attr_val
.v
.val_vec
);
5728 case dw_val_class_flag
:
5729 CHECKSUM (at
->dw_attr_val
.v
.val_flag
);
5731 case dw_val_class_str
:
5732 CHECKSUM_STRING (AT_string (at
));
5735 case dw_val_class_addr
:
5737 gcc_assert (GET_CODE (r
) == SYMBOL_REF
);
5738 CHECKSUM_STRING (XSTR (r
, 0));
5741 case dw_val_class_offset
:
5742 CHECKSUM (at
->dw_attr_val
.v
.val_offset
);
5745 case dw_val_class_loc
:
5746 for (loc
= AT_loc (at
); loc
; loc
= loc
->dw_loc_next
)
5747 loc_checksum (loc
, ctx
);
5750 case dw_val_class_die_ref
:
5751 die_checksum (AT_ref (at
), ctx
, mark
);
5754 case dw_val_class_fde_ref
:
5755 case dw_val_class_lbl_id
:
5756 case dw_val_class_lbl_offset
:
5764 /* Calculate the checksum of a DIE. */
5767 die_checksum (dw_die_ref die
, struct md5_ctx
*ctx
, int *mark
)
5772 /* To avoid infinite recursion. */
5775 CHECKSUM (die
->die_mark
);
5778 die
->die_mark
= ++(*mark
);
5780 CHECKSUM (die
->die_tag
);
5782 for (a
= die
->die_attr
; a
; a
= a
->dw_attr_next
)
5783 attr_checksum (a
, ctx
, mark
);
5785 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5786 die_checksum (c
, ctx
, mark
);
5790 #undef CHECKSUM_STRING
5792 /* Do the location expressions look same? */
5794 same_loc_p (dw_loc_descr_ref loc1
, dw_loc_descr_ref loc2
, int *mark
)
5796 return loc1
->dw_loc_opc
== loc2
->dw_loc_opc
5797 && same_dw_val_p (&loc1
->dw_loc_oprnd1
, &loc2
->dw_loc_oprnd1
, mark
)
5798 && same_dw_val_p (&loc1
->dw_loc_oprnd2
, &loc2
->dw_loc_oprnd2
, mark
);
5801 /* Do the values look the same? */
5803 same_dw_val_p (dw_val_node
*v1
, dw_val_node
*v2
, int *mark
)
5805 dw_loc_descr_ref loc1
, loc2
;
5808 if (v1
->val_class
!= v2
->val_class
)
5811 switch (v1
->val_class
)
5813 case dw_val_class_const
:
5814 return v1
->v
.val_int
== v2
->v
.val_int
;
5815 case dw_val_class_unsigned_const
:
5816 return v1
->v
.val_unsigned
== v2
->v
.val_unsigned
;
5817 case dw_val_class_long_long
:
5818 return v1
->v
.val_long_long
.hi
== v2
->v
.val_long_long
.hi
5819 && v1
->v
.val_long_long
.low
== v2
->v
.val_long_long
.low
;
5820 case dw_val_class_vec
:
5821 if (v1
->v
.val_vec
.length
!= v2
->v
.val_vec
.length
5822 || v1
->v
.val_vec
.elt_size
!= v2
->v
.val_vec
.elt_size
)
5824 if (memcmp (v1
->v
.val_vec
.array
, v2
->v
.val_vec
.array
,
5825 v1
->v
.val_vec
.length
* v1
->v
.val_vec
.elt_size
))
5828 case dw_val_class_flag
:
5829 return v1
->v
.val_flag
== v2
->v
.val_flag
;
5830 case dw_val_class_str
:
5831 return !strcmp(v1
->v
.val_str
->str
, v2
->v
.val_str
->str
);
5833 case dw_val_class_addr
:
5834 r1
= v1
->v
.val_addr
;
5835 r2
= v2
->v
.val_addr
;
5836 if (GET_CODE (r1
) != GET_CODE (r2
))
5838 gcc_assert (GET_CODE (r1
) == SYMBOL_REF
);
5839 return !strcmp (XSTR (r1
, 0), XSTR (r2
, 0));
5841 case dw_val_class_offset
:
5842 return v1
->v
.val_offset
== v2
->v
.val_offset
;
5844 case dw_val_class_loc
:
5845 for (loc1
= v1
->v
.val_loc
, loc2
= v2
->v
.val_loc
;
5847 loc1
= loc1
->dw_loc_next
, loc2
= loc2
->dw_loc_next
)
5848 if (!same_loc_p (loc1
, loc2
, mark
))
5850 return !loc1
&& !loc2
;
5852 case dw_val_class_die_ref
:
5853 return same_die_p (v1
->v
.val_die_ref
.die
, v2
->v
.val_die_ref
.die
, mark
);
5855 case dw_val_class_fde_ref
:
5856 case dw_val_class_lbl_id
:
5857 case dw_val_class_lbl_offset
:
5865 /* Do the attributes look the same? */
5868 same_attr_p (dw_attr_ref at1
, dw_attr_ref at2
, int *mark
)
5870 if (at1
->dw_attr
!= at2
->dw_attr
)
5873 /* We don't care about differences in file numbering. */
5874 if (at1
->dw_attr
== DW_AT_decl_file
5875 /* Or that this was compiled with a different compiler snapshot; if
5876 the output is the same, that's what matters. */
5877 || at1
->dw_attr
== DW_AT_producer
)
5880 return same_dw_val_p (&at1
->dw_attr_val
, &at2
->dw_attr_val
, mark
);
5883 /* Do the dies look the same? */
5886 same_die_p (dw_die_ref die1
, dw_die_ref die2
, int *mark
)
5891 /* To avoid infinite recursion. */
5893 return die1
->die_mark
== die2
->die_mark
;
5894 die1
->die_mark
= die2
->die_mark
= ++(*mark
);
5896 if (die1
->die_tag
!= die2
->die_tag
)
5899 for (a1
= die1
->die_attr
, a2
= die2
->die_attr
;
5901 a1
= a1
->dw_attr_next
, a2
= a2
->dw_attr_next
)
5902 if (!same_attr_p (a1
, a2
, mark
))
5907 for (c1
= die1
->die_child
, c2
= die2
->die_child
;
5909 c1
= c1
->die_sib
, c2
= c2
->die_sib
)
5910 if (!same_die_p (c1
, c2
, mark
))
5918 /* Do the dies look the same? Wrapper around same_die_p. */
5921 same_die_p_wrap (dw_die_ref die1
, dw_die_ref die2
)
5924 int ret
= same_die_p (die1
, die2
, &mark
);
5926 unmark_all_dies (die1
);
5927 unmark_all_dies (die2
);
5932 /* The prefix to attach to symbols on DIEs in the current comdat debug
5934 static char *comdat_symbol_id
;
5936 /* The index of the current symbol within the current comdat CU. */
5937 static unsigned int comdat_symbol_number
;
5939 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5940 children, and set comdat_symbol_id accordingly. */
5943 compute_section_prefix (dw_die_ref unit_die
)
5945 const char *die_name
= get_AT_string (unit_die
, DW_AT_name
);
5946 const char *base
= die_name
? lbasename (die_name
) : "anonymous";
5947 char *name
= alloca (strlen (base
) + 64);
5950 unsigned char checksum
[16];
5953 /* Compute the checksum of the DIE, then append part of it as hex digits to
5954 the name filename of the unit. */
5956 md5_init_ctx (&ctx
);
5958 die_checksum (unit_die
, &ctx
, &mark
);
5959 unmark_all_dies (unit_die
);
5960 md5_finish_ctx (&ctx
, checksum
);
5962 sprintf (name
, "%s.", base
);
5963 clean_symbol_name (name
);
5965 p
= name
+ strlen (name
);
5966 for (i
= 0; i
< 4; i
++)
5968 sprintf (p
, "%.2x", checksum
[i
]);
5972 comdat_symbol_id
= unit_die
->die_symbol
= xstrdup (name
);
5973 comdat_symbol_number
= 0;
5976 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5979 is_type_die (dw_die_ref die
)
5981 switch (die
->die_tag
)
5983 case DW_TAG_array_type
:
5984 case DW_TAG_class_type
:
5985 case DW_TAG_enumeration_type
:
5986 case DW_TAG_pointer_type
:
5987 case DW_TAG_reference_type
:
5988 case DW_TAG_string_type
:
5989 case DW_TAG_structure_type
:
5990 case DW_TAG_subroutine_type
:
5991 case DW_TAG_union_type
:
5992 case DW_TAG_ptr_to_member_type
:
5993 case DW_TAG_set_type
:
5994 case DW_TAG_subrange_type
:
5995 case DW_TAG_base_type
:
5996 case DW_TAG_const_type
:
5997 case DW_TAG_file_type
:
5998 case DW_TAG_packed_type
:
5999 case DW_TAG_volatile_type
:
6000 case DW_TAG_typedef
:
6007 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6008 Basically, we want to choose the bits that are likely to be shared between
6009 compilations (types) and leave out the bits that are specific to individual
6010 compilations (functions). */
6013 is_comdat_die (dw_die_ref c
)
6015 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6016 we do for stabs. The advantage is a greater likelihood of sharing between
6017 objects that don't include headers in the same order (and therefore would
6018 put the base types in a different comdat). jason 8/28/00 */
6020 if (c
->die_tag
== DW_TAG_base_type
)
6023 if (c
->die_tag
== DW_TAG_pointer_type
6024 || c
->die_tag
== DW_TAG_reference_type
6025 || c
->die_tag
== DW_TAG_const_type
6026 || c
->die_tag
== DW_TAG_volatile_type
)
6028 dw_die_ref t
= get_AT_ref (c
, DW_AT_type
);
6030 return t
? is_comdat_die (t
) : 0;
6033 return is_type_die (c
);
6036 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6037 compilation unit. */
6040 is_symbol_die (dw_die_ref c
)
6042 return (is_type_die (c
)
6043 || (get_AT (c
, DW_AT_declaration
)
6044 && !get_AT (c
, DW_AT_specification
)));
6048 gen_internal_sym (const char *prefix
)
6052 ASM_GENERATE_INTERNAL_LABEL (buf
, prefix
, label_num
++);
6053 return xstrdup (buf
);
6056 /* Assign symbols to all worthy DIEs under DIE. */
6059 assign_symbol_names (dw_die_ref die
)
6063 if (is_symbol_die (die
))
6065 if (comdat_symbol_id
)
6067 char *p
= alloca (strlen (comdat_symbol_id
) + 64);
6069 sprintf (p
, "%s.%s.%x", DIE_LABEL_PREFIX
,
6070 comdat_symbol_id
, comdat_symbol_number
++);
6071 die
->die_symbol
= xstrdup (p
);
6074 die
->die_symbol
= gen_internal_sym ("LDIE");
6077 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6078 assign_symbol_names (c
);
6081 struct cu_hash_table_entry
6084 unsigned min_comdat_num
, max_comdat_num
;
6085 struct cu_hash_table_entry
*next
;
6088 /* Routines to manipulate hash table of CUs. */
6090 htab_cu_hash (const void *of
)
6092 const struct cu_hash_table_entry
*entry
= of
;
6094 return htab_hash_string (entry
->cu
->die_symbol
);
6098 htab_cu_eq (const void *of1
, const void *of2
)
6100 const struct cu_hash_table_entry
*entry1
= of1
;
6101 const struct die_struct
*entry2
= of2
;
6103 return !strcmp (entry1
->cu
->die_symbol
, entry2
->die_symbol
);
6107 htab_cu_del (void *what
)
6109 struct cu_hash_table_entry
*next
, *entry
= what
;
6119 /* Check whether we have already seen this CU and set up SYM_NUM
6122 check_duplicate_cu (dw_die_ref cu
, htab_t htable
, unsigned int *sym_num
)
6124 struct cu_hash_table_entry dummy
;
6125 struct cu_hash_table_entry
**slot
, *entry
, *last
= &dummy
;
6127 dummy
.max_comdat_num
= 0;
6129 slot
= (struct cu_hash_table_entry
**)
6130 htab_find_slot_with_hash (htable
, cu
, htab_hash_string (cu
->die_symbol
),
6134 for (; entry
; last
= entry
, entry
= entry
->next
)
6136 if (same_die_p_wrap (cu
, entry
->cu
))
6142 *sym_num
= entry
->min_comdat_num
;
6146 entry
= xcalloc (1, sizeof (struct cu_hash_table_entry
));
6148 entry
->min_comdat_num
= *sym_num
= last
->max_comdat_num
;
6149 entry
->next
= *slot
;
6155 /* Record SYM_NUM to record of CU in HTABLE. */
6157 record_comdat_symbol_number (dw_die_ref cu
, htab_t htable
, unsigned int sym_num
)
6159 struct cu_hash_table_entry
**slot
, *entry
;
6161 slot
= (struct cu_hash_table_entry
**)
6162 htab_find_slot_with_hash (htable
, cu
, htab_hash_string (cu
->die_symbol
),
6166 entry
->max_comdat_num
= sym_num
;
6169 /* Traverse the DIE (which is always comp_unit_die), and set up
6170 additional compilation units for each of the include files we see
6171 bracketed by BINCL/EINCL. */
6174 break_out_includes (dw_die_ref die
)
6177 dw_die_ref unit
= NULL
;
6178 limbo_die_node
*node
, **pnode
;
6179 htab_t cu_hash_table
;
6181 for (ptr
= &(die
->die_child
); *ptr
;)
6183 dw_die_ref c
= *ptr
;
6185 if (c
->die_tag
== DW_TAG_GNU_BINCL
|| c
->die_tag
== DW_TAG_GNU_EINCL
6186 || (unit
&& is_comdat_die (c
)))
6188 /* This DIE is for a secondary CU; remove it from the main one. */
6191 if (c
->die_tag
== DW_TAG_GNU_BINCL
)
6193 unit
= push_new_compile_unit (unit
, c
);
6196 else if (c
->die_tag
== DW_TAG_GNU_EINCL
)
6198 unit
= pop_compile_unit (unit
);
6202 add_child_die (unit
, c
);
6206 /* Leave this DIE in the main CU. */
6207 ptr
= &(c
->die_sib
);
6213 /* We can only use this in debugging, since the frontend doesn't check
6214 to make sure that we leave every include file we enter. */
6218 assign_symbol_names (die
);
6219 cu_hash_table
= htab_create (10, htab_cu_hash
, htab_cu_eq
, htab_cu_del
);
6220 for (node
= limbo_die_list
, pnode
= &limbo_die_list
;
6226 compute_section_prefix (node
->die
);
6227 is_dupl
= check_duplicate_cu (node
->die
, cu_hash_table
,
6228 &comdat_symbol_number
);
6229 assign_symbol_names (node
->die
);
6231 *pnode
= node
->next
;
6234 pnode
= &node
->next
;
6235 record_comdat_symbol_number (node
->die
, cu_hash_table
,
6236 comdat_symbol_number
);
6239 htab_delete (cu_hash_table
);
6242 /* Traverse the DIE and add a sibling attribute if it may have the
6243 effect of speeding up access to siblings. To save some space,
6244 avoid generating sibling attributes for DIE's without children. */
6247 add_sibling_attributes (dw_die_ref die
)
6251 if (die
->die_tag
!= DW_TAG_compile_unit
6252 && die
->die_sib
&& die
->die_child
!= NULL
)
6253 /* Add the sibling link to the front of the attribute list. */
6254 add_AT_die_ref (die
, DW_AT_sibling
, die
->die_sib
);
6256 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6257 add_sibling_attributes (c
);
6260 /* Output all location lists for the DIE and its children. */
6263 output_location_lists (dw_die_ref die
)
6268 for (d_attr
= die
->die_attr
; d_attr
; d_attr
= d_attr
->dw_attr_next
)
6269 if (AT_class (d_attr
) == dw_val_class_loc_list
)
6270 output_loc_list (AT_loc_list (d_attr
));
6272 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6273 output_location_lists (c
);
6277 /* The format of each DIE (and its attribute value pairs) is encoded in an
6278 abbreviation table. This routine builds the abbreviation table and assigns
6279 a unique abbreviation id for each abbreviation entry. The children of each
6280 die are visited recursively. */
6283 build_abbrev_table (dw_die_ref die
)
6285 unsigned long abbrev_id
;
6286 unsigned int n_alloc
;
6288 dw_attr_ref d_attr
, a_attr
;
6290 /* Scan the DIE references, and mark as external any that refer to
6291 DIEs from other CUs (i.e. those which are not marked). */
6292 for (d_attr
= die
->die_attr
; d_attr
; d_attr
= d_attr
->dw_attr_next
)
6293 if (AT_class (d_attr
) == dw_val_class_die_ref
6294 && AT_ref (d_attr
)->die_mark
== 0)
6296 gcc_assert (AT_ref (d_attr
)->die_symbol
);
6298 set_AT_ref_external (d_attr
, 1);
6301 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
6303 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
6305 if (abbrev
->die_tag
== die
->die_tag
)
6307 if ((abbrev
->die_child
!= NULL
) == (die
->die_child
!= NULL
))
6309 a_attr
= abbrev
->die_attr
;
6310 d_attr
= die
->die_attr
;
6312 while (a_attr
!= NULL
&& d_attr
!= NULL
)
6314 if ((a_attr
->dw_attr
!= d_attr
->dw_attr
)
6315 || (value_format (a_attr
) != value_format (d_attr
)))
6318 a_attr
= a_attr
->dw_attr_next
;
6319 d_attr
= d_attr
->dw_attr_next
;
6322 if (a_attr
== NULL
&& d_attr
== NULL
)
6328 if (abbrev_id
>= abbrev_die_table_in_use
)
6330 if (abbrev_die_table_in_use
>= abbrev_die_table_allocated
)
6332 n_alloc
= abbrev_die_table_allocated
+ ABBREV_DIE_TABLE_INCREMENT
;
6333 abbrev_die_table
= ggc_realloc (abbrev_die_table
,
6334 sizeof (dw_die_ref
) * n_alloc
);
6336 memset (&abbrev_die_table
[abbrev_die_table_allocated
], 0,
6337 (n_alloc
- abbrev_die_table_allocated
) * sizeof (dw_die_ref
));
6338 abbrev_die_table_allocated
= n_alloc
;
6341 ++abbrev_die_table_in_use
;
6342 abbrev_die_table
[abbrev_id
] = die
;
6345 die
->die_abbrev
= abbrev_id
;
6346 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6347 build_abbrev_table (c
);
6350 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6353 constant_size (long unsigned int value
)
6360 log
= floor_log2 (value
);
6363 log
= 1 << (floor_log2 (log
) + 1);
6368 /* Return the size of a DIE as it is represented in the
6369 .debug_info section. */
6371 static unsigned long
6372 size_of_die (dw_die_ref die
)
6374 unsigned long size
= 0;
6377 size
+= size_of_uleb128 (die
->die_abbrev
);
6378 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
6380 switch (AT_class (a
))
6382 case dw_val_class_addr
:
6383 size
+= DWARF2_ADDR_SIZE
;
6385 case dw_val_class_offset
:
6386 size
+= DWARF_OFFSET_SIZE
;
6388 case dw_val_class_loc
:
6390 unsigned long lsize
= size_of_locs (AT_loc (a
));
6393 size
+= constant_size (lsize
);
6397 case dw_val_class_loc_list
:
6398 size
+= DWARF_OFFSET_SIZE
;
6400 case dw_val_class_range_list
:
6401 size
+= DWARF_OFFSET_SIZE
;
6403 case dw_val_class_const
:
6404 size
+= size_of_sleb128 (AT_int (a
));
6406 case dw_val_class_unsigned_const
:
6407 size
+= constant_size (AT_unsigned (a
));
6409 case dw_val_class_long_long
:
6410 size
+= 1 + 2*HOST_BITS_PER_LONG
/HOST_BITS_PER_CHAR
; /* block */
6412 case dw_val_class_vec
:
6413 size
+= 1 + (a
->dw_attr_val
.v
.val_vec
.length
6414 * a
->dw_attr_val
.v
.val_vec
.elt_size
); /* block */
6416 case dw_val_class_flag
:
6419 case dw_val_class_die_ref
:
6420 if (AT_ref_external (a
))
6421 size
+= DWARF2_ADDR_SIZE
;
6423 size
+= DWARF_OFFSET_SIZE
;
6425 case dw_val_class_fde_ref
:
6426 size
+= DWARF_OFFSET_SIZE
;
6428 case dw_val_class_lbl_id
:
6429 size
+= DWARF2_ADDR_SIZE
;
6431 case dw_val_class_lbl_offset
:
6432 size
+= DWARF_OFFSET_SIZE
;
6434 case dw_val_class_str
:
6435 if (AT_string_form (a
) == DW_FORM_strp
)
6436 size
+= DWARF_OFFSET_SIZE
;
6438 size
+= strlen (a
->dw_attr_val
.v
.val_str
->str
) + 1;
6448 /* Size the debugging information associated with a given DIE. Visits the
6449 DIE's children recursively. Updates the global variable next_die_offset, on
6450 each time through. Uses the current value of next_die_offset to update the
6451 die_offset field in each DIE. */
6454 calc_die_sizes (dw_die_ref die
)
6458 die
->die_offset
= next_die_offset
;
6459 next_die_offset
+= size_of_die (die
);
6461 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6464 if (die
->die_child
!= NULL
)
6465 /* Count the null byte used to terminate sibling lists. */
6466 next_die_offset
+= 1;
6469 /* Set the marks for a die and its children. We do this so
6470 that we know whether or not a reference needs to use FORM_ref_addr; only
6471 DIEs in the same CU will be marked. We used to clear out the offset
6472 and use that as the flag, but ran into ordering problems. */
6475 mark_dies (dw_die_ref die
)
6479 gcc_assert (!die
->die_mark
);
6482 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
6486 /* Clear the marks for a die and its children. */
6489 unmark_dies (dw_die_ref die
)
6493 gcc_assert (die
->die_mark
);
6496 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
6500 /* Clear the marks for a die, its children and referred dies. */
6503 unmark_all_dies (dw_die_ref die
)
6512 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
6513 unmark_all_dies (c
);
6515 for (a
= die
->die_attr
; a
; a
= a
->dw_attr_next
)
6516 if (AT_class (a
) == dw_val_class_die_ref
)
6517 unmark_all_dies (AT_ref (a
));
6520 /* Return the size of the .debug_pubnames table generated for the
6521 compilation unit. */
6523 static unsigned long
6524 size_of_pubnames (void)
6529 size
= DWARF_PUBNAMES_HEADER_SIZE
;
6530 for (i
= 0; i
< pubname_table_in_use
; i
++)
6532 pubname_ref p
= &pubname_table
[i
];
6533 size
+= DWARF_OFFSET_SIZE
+ strlen (p
->name
) + 1;
6536 size
+= DWARF_OFFSET_SIZE
;
6540 /* Return the size of the information in the .debug_aranges section. */
6542 static unsigned long
6543 size_of_aranges (void)
6547 size
= DWARF_ARANGES_HEADER_SIZE
;
6549 /* Count the address/length pair for this compilation unit. */
6550 size
+= 2 * DWARF2_ADDR_SIZE
;
6551 size
+= 2 * DWARF2_ADDR_SIZE
* arange_table_in_use
;
6553 /* Count the two zero words used to terminated the address range table. */
6554 size
+= 2 * DWARF2_ADDR_SIZE
;
6558 /* Select the encoding of an attribute value. */
6560 static enum dwarf_form
6561 value_format (dw_attr_ref a
)
6563 switch (a
->dw_attr_val
.val_class
)
6565 case dw_val_class_addr
:
6566 return DW_FORM_addr
;
6567 case dw_val_class_range_list
:
6568 case dw_val_class_offset
:
6569 switch (DWARF_OFFSET_SIZE
)
6572 return DW_FORM_data4
;
6574 return DW_FORM_data8
;
6578 case dw_val_class_loc_list
:
6579 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6580 .debug_loc section */
6581 return DW_FORM_data4
;
6582 case dw_val_class_loc
:
6583 switch (constant_size (size_of_locs (AT_loc (a
))))
6586 return DW_FORM_block1
;
6588 return DW_FORM_block2
;
6592 case dw_val_class_const
:
6593 return DW_FORM_sdata
;
6594 case dw_val_class_unsigned_const
:
6595 switch (constant_size (AT_unsigned (a
)))
6598 return DW_FORM_data1
;
6600 return DW_FORM_data2
;
6602 return DW_FORM_data4
;
6604 return DW_FORM_data8
;
6608 case dw_val_class_long_long
:
6609 return DW_FORM_block1
;
6610 case dw_val_class_vec
:
6611 return DW_FORM_block1
;
6612 case dw_val_class_flag
:
6613 return DW_FORM_flag
;
6614 case dw_val_class_die_ref
:
6615 if (AT_ref_external (a
))
6616 return DW_FORM_ref_addr
;
6619 case dw_val_class_fde_ref
:
6620 return DW_FORM_data
;
6621 case dw_val_class_lbl_id
:
6622 return DW_FORM_addr
;
6623 case dw_val_class_lbl_offset
:
6624 return DW_FORM_data
;
6625 case dw_val_class_str
:
6626 return AT_string_form (a
);
6633 /* Output the encoding of an attribute value. */
6636 output_value_format (dw_attr_ref a
)
6638 enum dwarf_form form
= value_format (a
);
6640 dw2_asm_output_data_uleb128 (form
, "(%s)", dwarf_form_name (form
));
6643 /* Output the .debug_abbrev section which defines the DIE abbreviation
6647 output_abbrev_section (void)
6649 unsigned long abbrev_id
;
6653 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
6655 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
6657 dw2_asm_output_data_uleb128 (abbrev_id
, "(abbrev code)");
6658 dw2_asm_output_data_uleb128 (abbrev
->die_tag
, "(TAG: %s)",
6659 dwarf_tag_name (abbrev
->die_tag
));
6661 if (abbrev
->die_child
!= NULL
)
6662 dw2_asm_output_data (1, DW_children_yes
, "DW_children_yes");
6664 dw2_asm_output_data (1, DW_children_no
, "DW_children_no");
6666 for (a_attr
= abbrev
->die_attr
; a_attr
!= NULL
;
6667 a_attr
= a_attr
->dw_attr_next
)
6669 dw2_asm_output_data_uleb128 (a_attr
->dw_attr
, "(%s)",
6670 dwarf_attr_name (a_attr
->dw_attr
));
6671 output_value_format (a_attr
);
6674 dw2_asm_output_data (1, 0, NULL
);
6675 dw2_asm_output_data (1, 0, NULL
);
6678 /* Terminate the table. */
6679 dw2_asm_output_data (1, 0, NULL
);
6682 /* Output a symbol we can use to refer to this DIE from another CU. */
6685 output_die_symbol (dw_die_ref die
)
6687 char *sym
= die
->die_symbol
;
6692 if (strncmp (sym
, DIE_LABEL_PREFIX
, sizeof (DIE_LABEL_PREFIX
) - 1) == 0)
6693 /* We make these global, not weak; if the target doesn't support
6694 .linkonce, it doesn't support combining the sections, so debugging
6696 targetm
.asm_out
.globalize_label (asm_out_file
, sym
);
6698 ASM_OUTPUT_LABEL (asm_out_file
, sym
);
6701 /* Return a new location list, given the begin and end range, and the
6702 expression. gensym tells us whether to generate a new internal symbol for
6703 this location list node, which is done for the head of the list only. */
6705 static inline dw_loc_list_ref
6706 new_loc_list (dw_loc_descr_ref expr
, const char *begin
, const char *end
,
6707 const char *section
, unsigned int gensym
)
6709 dw_loc_list_ref retlist
= ggc_alloc_cleared (sizeof (dw_loc_list_node
));
6711 retlist
->begin
= begin
;
6713 retlist
->expr
= expr
;
6714 retlist
->section
= section
;
6716 retlist
->ll_symbol
= gen_internal_sym ("LLST");
6721 /* Add a location description expression to a location list. */
6724 add_loc_descr_to_loc_list (dw_loc_list_ref
*list_head
, dw_loc_descr_ref descr
,
6725 const char *begin
, const char *end
,
6726 const char *section
)
6730 /* Find the end of the chain. */
6731 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
6734 /* Add a new location list node to the list. */
6735 *d
= new_loc_list (descr
, begin
, end
, section
, 0);
6738 /* Output the location list given to us. */
6741 output_loc_list (dw_loc_list_ref list_head
)
6743 dw_loc_list_ref curr
= list_head
;
6745 ASM_OUTPUT_LABEL (asm_out_file
, list_head
->ll_symbol
);
6747 /* Walk the location list, and output each range + expression. */
6748 for (curr
= list_head
; curr
!= NULL
; curr
= curr
->dw_loc_next
)
6751 if (separate_line_info_table_in_use
== 0)
6753 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->begin
, curr
->section
,
6754 "Location list begin address (%s)",
6755 list_head
->ll_symbol
);
6756 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->end
, curr
->section
,
6757 "Location list end address (%s)",
6758 list_head
->ll_symbol
);
6762 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->begin
,
6763 "Location list begin address (%s)",
6764 list_head
->ll_symbol
);
6765 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->end
,
6766 "Location list end address (%s)",
6767 list_head
->ll_symbol
);
6769 size
= size_of_locs (curr
->expr
);
6771 /* Output the block length for this list of location operations. */
6772 gcc_assert (size
<= 0xffff);
6773 dw2_asm_output_data (2, size
, "%s", "Location expression size");
6775 output_loc_sequence (curr
->expr
);
6778 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0,
6779 "Location list terminator begin (%s)",
6780 list_head
->ll_symbol
);
6781 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0,
6782 "Location list terminator end (%s)",
6783 list_head
->ll_symbol
);
6786 /* Output the DIE and its attributes. Called recursively to generate
6787 the definitions of each child DIE. */
6790 output_die (dw_die_ref die
)
6796 /* If someone in another CU might refer to us, set up a symbol for
6797 them to point to. */
6798 if (die
->die_symbol
)
6799 output_die_symbol (die
);
6801 dw2_asm_output_data_uleb128 (die
->die_abbrev
, "(DIE (0x%lx) %s)",
6802 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
6804 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
6806 const char *name
= dwarf_attr_name (a
->dw_attr
);
6808 switch (AT_class (a
))
6810 case dw_val_class_addr
:
6811 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, AT_addr (a
), "%s", name
);
6814 case dw_val_class_offset
:
6815 dw2_asm_output_data (DWARF_OFFSET_SIZE
, a
->dw_attr_val
.v
.val_offset
,
6819 case dw_val_class_range_list
:
6821 char *p
= strchr (ranges_section_label
, '\0');
6823 sprintf (p
, "+" HOST_WIDE_INT_PRINT_HEX
,
6824 a
->dw_attr_val
.v
.val_offset
);
6825 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, ranges_section_label
,
6831 case dw_val_class_loc
:
6832 size
= size_of_locs (AT_loc (a
));
6834 /* Output the block length for this list of location operations. */
6835 dw2_asm_output_data (constant_size (size
), size
, "%s", name
);
6837 output_loc_sequence (AT_loc (a
));
6840 case dw_val_class_const
:
6841 /* ??? It would be slightly more efficient to use a scheme like is
6842 used for unsigned constants below, but gdb 4.x does not sign
6843 extend. Gdb 5.x does sign extend. */
6844 dw2_asm_output_data_sleb128 (AT_int (a
), "%s", name
);
6847 case dw_val_class_unsigned_const
:
6848 dw2_asm_output_data (constant_size (AT_unsigned (a
)),
6849 AT_unsigned (a
), "%s", name
);
6852 case dw_val_class_long_long
:
6854 unsigned HOST_WIDE_INT first
, second
;
6856 dw2_asm_output_data (1,
6857 2 * HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6860 if (WORDS_BIG_ENDIAN
)
6862 first
= a
->dw_attr_val
.v
.val_long_long
.hi
;
6863 second
= a
->dw_attr_val
.v
.val_long_long
.low
;
6867 first
= a
->dw_attr_val
.v
.val_long_long
.low
;
6868 second
= a
->dw_attr_val
.v
.val_long_long
.hi
;
6871 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6872 first
, "long long constant");
6873 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6878 case dw_val_class_vec
:
6880 unsigned int elt_size
= a
->dw_attr_val
.v
.val_vec
.elt_size
;
6881 unsigned int len
= a
->dw_attr_val
.v
.val_vec
.length
;
6885 dw2_asm_output_data (1, len
* elt_size
, "%s", name
);
6886 if (elt_size
> sizeof (HOST_WIDE_INT
))
6891 for (i
= 0, p
= a
->dw_attr_val
.v
.val_vec
.array
;
6894 dw2_asm_output_data (elt_size
, extract_int (p
, elt_size
),
6895 "fp or vector constant word %u", i
);
6899 case dw_val_class_flag
:
6900 dw2_asm_output_data (1, AT_flag (a
), "%s", name
);
6903 case dw_val_class_loc_list
:
6905 char *sym
= AT_loc_list (a
)->ll_symbol
;
6908 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, sym
, "%s", name
);
6912 case dw_val_class_die_ref
:
6913 if (AT_ref_external (a
))
6915 char *sym
= AT_ref (a
)->die_symbol
;
6918 dw2_asm_output_offset (DWARF2_ADDR_SIZE
, sym
, "%s", name
);
6922 gcc_assert (AT_ref (a
)->die_offset
);
6923 dw2_asm_output_data (DWARF_OFFSET_SIZE
, AT_ref (a
)->die_offset
,
6928 case dw_val_class_fde_ref
:
6932 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_LABEL
,
6933 a
->dw_attr_val
.v
.val_fde_index
* 2);
6934 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, l1
, "%s", name
);
6938 case dw_val_class_lbl_id
:
6939 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, AT_lbl (a
), "%s", name
);
6942 case dw_val_class_lbl_offset
:
6943 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, AT_lbl (a
), "%s", name
);
6946 case dw_val_class_str
:
6947 if (AT_string_form (a
) == DW_FORM_strp
)
6948 dw2_asm_output_offset (DWARF_OFFSET_SIZE
,
6949 a
->dw_attr_val
.v
.val_str
->label
,
6950 "%s: \"%s\"", name
, AT_string (a
));
6952 dw2_asm_output_nstring (AT_string (a
), -1, "%s", name
);
6960 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6963 /* Add null byte to terminate sibling list. */
6964 if (die
->die_child
!= NULL
)
6965 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6969 /* Output the compilation unit that appears at the beginning of the
6970 .debug_info section, and precedes the DIE descriptions. */
6973 output_compilation_unit_header (void)
6975 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
6976 dw2_asm_output_data (4, 0xffffffff,
6977 "Initial length escape value indicating 64-bit DWARF extension");
6978 dw2_asm_output_data (DWARF_OFFSET_SIZE
,
6979 next_die_offset
- DWARF_INITIAL_LENGTH_SIZE
,
6980 "Length of Compilation Unit Info");
6981 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF version number");
6982 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, abbrev_section_label
,
6983 "Offset Into Abbrev. Section");
6984 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
6987 /* Output the compilation unit DIE and its children. */
6990 output_comp_unit (dw_die_ref die
, int output_if_empty
)
6992 const char *secname
;
6995 /* Unless we are outputting main CU, we may throw away empty ones. */
6996 if (!output_if_empty
&& die
->die_child
== NULL
)
6999 /* Even if there are no children of this DIE, we must output the information
7000 about the compilation unit. Otherwise, on an empty translation unit, we
7001 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7002 will then complain when examining the file. First mark all the DIEs in
7003 this CU so we know which get local refs. */
7006 build_abbrev_table (die
);
7008 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7009 next_die_offset
= DWARF_COMPILE_UNIT_HEADER_SIZE
;
7010 calc_die_sizes (die
);
7012 oldsym
= die
->die_symbol
;
7015 tmp
= alloca (strlen (oldsym
) + 24);
7017 sprintf (tmp
, ".gnu.linkonce.wi.%s", oldsym
);
7019 die
->die_symbol
= NULL
;
7022 secname
= (const char *) DEBUG_INFO_SECTION
;
7024 /* Output debugging information. */
7025 named_section_flags (secname
, SECTION_DEBUG
);
7026 output_compilation_unit_header ();
7029 /* Leave the marks on the main CU, so we can check them in
7034 die
->die_symbol
= oldsym
;
7038 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7039 output of lang_hooks.decl_printable_name for C++ looks like
7040 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7043 dwarf2_name (tree decl
, int scope
)
7045 return lang_hooks
.decl_printable_name (decl
, scope
? 1 : 0);
7048 /* Add a new entry to .debug_pubnames if appropriate. */
7051 add_pubname (tree decl
, dw_die_ref die
)
7055 if (! TREE_PUBLIC (decl
))
7058 if (pubname_table_in_use
== pubname_table_allocated
)
7060 pubname_table_allocated
+= PUBNAME_TABLE_INCREMENT
;
7062 = ggc_realloc (pubname_table
,
7063 (pubname_table_allocated
* sizeof (pubname_entry
)));
7064 memset (pubname_table
+ pubname_table_in_use
, 0,
7065 PUBNAME_TABLE_INCREMENT
* sizeof (pubname_entry
));
7068 p
= &pubname_table
[pubname_table_in_use
++];
7070 p
->name
= xstrdup (dwarf2_name (decl
, 1));
7073 /* Output the public names table used to speed up access to externally
7074 visible names. For now, only generate entries for externally
7075 visible procedures. */
7078 output_pubnames (void)
7081 unsigned long pubnames_length
= size_of_pubnames ();
7083 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7084 dw2_asm_output_data (4, 0xffffffff,
7085 "Initial length escape value indicating 64-bit DWARF extension");
7086 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pubnames_length
,
7087 "Length of Public Names Info");
7088 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7089 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
7090 "Offset of Compilation Unit Info");
7091 dw2_asm_output_data (DWARF_OFFSET_SIZE
, next_die_offset
,
7092 "Compilation Unit Length");
7094 for (i
= 0; i
< pubname_table_in_use
; i
++)
7096 pubname_ref pub
= &pubname_table
[i
];
7098 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7099 gcc_assert (pub
->die
->die_mark
);
7101 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pub
->die
->die_offset
,
7104 dw2_asm_output_nstring (pub
->name
, -1, "external name");
7107 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0, NULL
);
7110 /* Add a new entry to .debug_aranges if appropriate. */
7113 add_arange (tree decl
, dw_die_ref die
)
7115 if (! DECL_SECTION_NAME (decl
))
7118 if (arange_table_in_use
== arange_table_allocated
)
7120 arange_table_allocated
+= ARANGE_TABLE_INCREMENT
;
7121 arange_table
= ggc_realloc (arange_table
,
7122 (arange_table_allocated
7123 * sizeof (dw_die_ref
)));
7124 memset (arange_table
+ arange_table_in_use
, 0,
7125 ARANGE_TABLE_INCREMENT
* sizeof (dw_die_ref
));
7128 arange_table
[arange_table_in_use
++] = die
;
7131 /* Output the information that goes into the .debug_aranges table.
7132 Namely, define the beginning and ending address range of the
7133 text section generated for this compilation unit. */
7136 output_aranges (void)
7139 unsigned long aranges_length
= size_of_aranges ();
7141 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7142 dw2_asm_output_data (4, 0xffffffff,
7143 "Initial length escape value indicating 64-bit DWARF extension");
7144 dw2_asm_output_data (DWARF_OFFSET_SIZE
, aranges_length
,
7145 "Length of Address Ranges Info");
7146 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7147 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
7148 "Offset of Compilation Unit Info");
7149 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Size of Address");
7150 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7152 /* We need to align to twice the pointer size here. */
7153 if (DWARF_ARANGES_PAD_SIZE
)
7155 /* Pad using a 2 byte words so that padding is correct for any
7157 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7158 2 * DWARF2_ADDR_SIZE
);
7159 for (i
= 2; i
< (unsigned) DWARF_ARANGES_PAD_SIZE
; i
+= 2)
7160 dw2_asm_output_data (2, 0, NULL
);
7163 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_section_label
, "Address");
7164 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, text_end_label
,
7165 text_section_label
, "Length");
7167 for (i
= 0; i
< arange_table_in_use
; i
++)
7169 dw_die_ref die
= arange_table
[i
];
7171 /* We shouldn't see aranges for DIEs outside of the main CU. */
7172 gcc_assert (die
->die_mark
);
7174 if (die
->die_tag
== DW_TAG_subprogram
)
7176 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, get_AT_low_pc (die
),
7178 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, get_AT_hi_pc (die
),
7179 get_AT_low_pc (die
), "Length");
7183 /* A static variable; extract the symbol from DW_AT_location.
7184 Note that this code isn't currently hit, as we only emit
7185 aranges for functions (jason 9/23/99). */
7186 dw_attr_ref a
= get_AT (die
, DW_AT_location
);
7187 dw_loc_descr_ref loc
;
7189 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc
);
7192 gcc_assert (loc
->dw_loc_opc
== DW_OP_addr
);
7194 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
,
7195 loc
->dw_loc_oprnd1
.v
.val_addr
, "Address");
7196 dw2_asm_output_data (DWARF2_ADDR_SIZE
,
7197 get_AT_unsigned (die
, DW_AT_byte_size
),
7202 /* Output the terminator words. */
7203 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7204 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7207 /* Add a new entry to .debug_ranges. Return the offset at which it
7211 add_ranges (tree block
)
7213 unsigned int in_use
= ranges_table_in_use
;
7215 if (in_use
== ranges_table_allocated
)
7217 ranges_table_allocated
+= RANGES_TABLE_INCREMENT
;
7219 = ggc_realloc (ranges_table
, (ranges_table_allocated
7220 * sizeof (struct dw_ranges_struct
)));
7221 memset (ranges_table
+ ranges_table_in_use
, 0,
7222 RANGES_TABLE_INCREMENT
* sizeof (struct dw_ranges_struct
));
7225 ranges_table
[in_use
].block_num
= (block
? BLOCK_NUMBER (block
) : 0);
7226 ranges_table_in_use
= in_use
+ 1;
7228 return in_use
* 2 * DWARF2_ADDR_SIZE
;
7232 output_ranges (void)
7235 static const char *const start_fmt
= "Offset 0x%x";
7236 const char *fmt
= start_fmt
;
7238 for (i
= 0; i
< ranges_table_in_use
; i
++)
7240 int block_num
= ranges_table
[i
].block_num
;
7244 char blabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
7245 char elabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
7247 ASM_GENERATE_INTERNAL_LABEL (blabel
, BLOCK_BEGIN_LABEL
, block_num
);
7248 ASM_GENERATE_INTERNAL_LABEL (elabel
, BLOCK_END_LABEL
, block_num
);
7250 /* If all code is in the text section, then the compilation
7251 unit base address defaults to DW_AT_low_pc, which is the
7252 base of the text section. */
7253 if (separate_line_info_table_in_use
== 0)
7255 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, blabel
,
7257 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
7258 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, elabel
,
7259 text_section_label
, NULL
);
7262 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7263 compilation unit base address to zero, which allows us to
7264 use absolute addresses, and not worry about whether the
7265 target supports cross-section arithmetic. */
7268 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
7269 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
7270 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, elabel
, NULL
);
7277 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7278 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7284 /* Data structure containing information about input files. */
7287 char *path
; /* Complete file name. */
7288 char *fname
; /* File name part. */
7289 int length
; /* Length of entire string. */
7290 int file_idx
; /* Index in input file table. */
7291 int dir_idx
; /* Index in directory table. */
7294 /* Data structure containing information about directories with source
7298 char *path
; /* Path including directory name. */
7299 int length
; /* Path length. */
7300 int prefix
; /* Index of directory entry which is a prefix. */
7301 int count
; /* Number of files in this directory. */
7302 int dir_idx
; /* Index of directory used as base. */
7303 int used
; /* Used in the end? */
7306 /* Callback function for file_info comparison. We sort by looking at
7307 the directories in the path. */
7310 file_info_cmp (const void *p1
, const void *p2
)
7312 const struct file_info
*s1
= p1
;
7313 const struct file_info
*s2
= p2
;
7317 /* Take care of file names without directories. We need to make sure that
7318 we return consistent values to qsort since some will get confused if
7319 we return the same value when identical operands are passed in opposite
7320 orders. So if neither has a directory, return 0 and otherwise return
7321 1 or -1 depending on which one has the directory. */
7322 if ((s1
->path
== s1
->fname
|| s2
->path
== s2
->fname
))
7323 return (s2
->path
== s2
->fname
) - (s1
->path
== s1
->fname
);
7325 cp1
= (unsigned char *) s1
->path
;
7326 cp2
= (unsigned char *) s2
->path
;
7332 /* Reached the end of the first path? If so, handle like above. */
7333 if ((cp1
== (unsigned char *) s1
->fname
)
7334 || (cp2
== (unsigned char *) s2
->fname
))
7335 return ((cp2
== (unsigned char *) s2
->fname
)
7336 - (cp1
== (unsigned char *) s1
->fname
));
7338 /* Character of current path component the same? */
7339 else if (*cp1
!= *cp2
)
7344 /* Output the directory table and the file name table. We try to minimize
7345 the total amount of memory needed. A heuristic is used to avoid large
7346 slowdowns with many input files. */
7349 output_file_names (void)
7351 struct file_info
*files
;
7352 struct dir_info
*dirs
;
7361 /* Handle the case where file_table is empty. */
7362 if (VARRAY_ACTIVE_SIZE (file_table
) <= 1)
7364 dw2_asm_output_data (1, 0, "End directory table");
7365 dw2_asm_output_data (1, 0, "End file name table");
7369 /* Allocate the various arrays we need. */
7370 files
= alloca (VARRAY_ACTIVE_SIZE (file_table
) * sizeof (struct file_info
));
7371 dirs
= alloca (VARRAY_ACTIVE_SIZE (file_table
) * sizeof (struct dir_info
));
7373 /* Sort the file names. */
7374 for (i
= 1; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
7378 /* Skip all leading "./". */
7379 f
= VARRAY_CHAR_PTR (file_table
, i
);
7380 while (f
[0] == '.' && f
[1] == '/')
7383 /* Create a new array entry. */
7385 files
[i
].length
= strlen (f
);
7386 files
[i
].file_idx
= i
;
7388 /* Search for the file name part. */
7389 f
= strrchr (f
, '/');
7390 files
[i
].fname
= f
== NULL
? files
[i
].path
: f
+ 1;
7393 qsort (files
+ 1, VARRAY_ACTIVE_SIZE (file_table
) - 1,
7394 sizeof (files
[0]), file_info_cmp
);
7396 /* Find all the different directories used. */
7397 dirs
[0].path
= files
[1].path
;
7398 dirs
[0].length
= files
[1].fname
- files
[1].path
;
7399 dirs
[0].prefix
= -1;
7401 dirs
[0].dir_idx
= 0;
7403 files
[1].dir_idx
= 0;
7406 for (i
= 2; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
7407 if (files
[i
].fname
- files
[i
].path
== dirs
[ndirs
- 1].length
7408 && memcmp (dirs
[ndirs
- 1].path
, files
[i
].path
,
7409 dirs
[ndirs
- 1].length
) == 0)
7411 /* Same directory as last entry. */
7412 files
[i
].dir_idx
= ndirs
- 1;
7413 ++dirs
[ndirs
- 1].count
;
7419 /* This is a new directory. */
7420 dirs
[ndirs
].path
= files
[i
].path
;
7421 dirs
[ndirs
].length
= files
[i
].fname
- files
[i
].path
;
7422 dirs
[ndirs
].count
= 1;
7423 dirs
[ndirs
].dir_idx
= ndirs
;
7424 dirs
[ndirs
].used
= 0;
7425 files
[i
].dir_idx
= ndirs
;
7427 /* Search for a prefix. */
7428 dirs
[ndirs
].prefix
= -1;
7429 for (j
= 0; j
< ndirs
; j
++)
7430 if (dirs
[j
].length
< dirs
[ndirs
].length
7431 && dirs
[j
].length
> 1
7432 && (dirs
[ndirs
].prefix
== -1
7433 || dirs
[j
].length
> dirs
[dirs
[ndirs
].prefix
].length
)
7434 && memcmp (dirs
[j
].path
, dirs
[ndirs
].path
, dirs
[j
].length
) == 0)
7435 dirs
[ndirs
].prefix
= j
;
7440 /* Now to the actual work. We have to find a subset of the directories which
7441 allow expressing the file name using references to the directory table
7442 with the least amount of characters. We do not do an exhaustive search
7443 where we would have to check out every combination of every single
7444 possible prefix. Instead we use a heuristic which provides nearly optimal
7445 results in most cases and never is much off. */
7446 saved
= alloca (ndirs
* sizeof (int));
7447 savehere
= alloca (ndirs
* sizeof (int));
7449 memset (saved
, '\0', ndirs
* sizeof (saved
[0]));
7450 for (i
= 0; i
< ndirs
; i
++)
7455 /* We can always save some space for the current directory. But this
7456 does not mean it will be enough to justify adding the directory. */
7457 savehere
[i
] = dirs
[i
].length
;
7458 total
= (savehere
[i
] - saved
[i
]) * dirs
[i
].count
;
7460 for (j
= i
+ 1; j
< ndirs
; j
++)
7463 if (saved
[j
] < dirs
[i
].length
)
7465 /* Determine whether the dirs[i] path is a prefix of the
7470 while (k
!= -1 && k
!= (int) i
)
7475 /* Yes it is. We can possibly safe some memory but
7476 writing the filenames in dirs[j] relative to
7478 savehere
[j
] = dirs
[i
].length
;
7479 total
+= (savehere
[j
] - saved
[j
]) * dirs
[j
].count
;
7484 /* Check whether we can safe enough to justify adding the dirs[i]
7486 if (total
> dirs
[i
].length
+ 1)
7488 /* It's worthwhile adding. */
7489 for (j
= i
; j
< ndirs
; j
++)
7490 if (savehere
[j
] > 0)
7492 /* Remember how much we saved for this directory so far. */
7493 saved
[j
] = savehere
[j
];
7495 /* Remember the prefix directory. */
7496 dirs
[j
].dir_idx
= i
;
7501 /* We have to emit them in the order they appear in the file_table array
7502 since the index is used in the debug info generation. To do this
7503 efficiently we generate a back-mapping of the indices first. */
7504 backmap
= alloca (VARRAY_ACTIVE_SIZE (file_table
) * sizeof (int));
7505 for (i
= 1; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
7507 backmap
[files
[i
].file_idx
] = i
;
7509 /* Mark this directory as used. */
7510 dirs
[dirs
[files
[i
].dir_idx
].dir_idx
].used
= 1;
7513 /* That was it. We are ready to emit the information. First emit the
7514 directory name table. We have to make sure the first actually emitted
7515 directory name has index one; zero is reserved for the current working
7516 directory. Make sure we do not confuse these indices with the one for the
7517 constructed table (even though most of the time they are identical). */
7519 idx_offset
= dirs
[0].length
> 0 ? 1 : 0;
7520 for (i
= 1 - idx_offset
; i
< ndirs
; i
++)
7521 if (dirs
[i
].used
!= 0)
7523 dirs
[i
].used
= idx
++;
7524 dw2_asm_output_nstring (dirs
[i
].path
, dirs
[i
].length
- 1,
7525 "Directory Entry: 0x%x", dirs
[i
].used
);
7528 dw2_asm_output_data (1, 0, "End directory table");
7530 /* Correct the index for the current working directory entry if it
7532 if (idx_offset
== 0)
7535 /* Now write all the file names. */
7536 for (i
= 1; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
7538 int file_idx
= backmap
[i
];
7539 int dir_idx
= dirs
[files
[file_idx
].dir_idx
].dir_idx
;
7541 dw2_asm_output_nstring (files
[file_idx
].path
+ dirs
[dir_idx
].length
, -1,
7542 "File Entry: 0x%lx", (unsigned long) i
);
7544 /* Include directory index. */
7545 dw2_asm_output_data_uleb128 (dirs
[dir_idx
].used
, NULL
);
7547 /* Modification time. */
7548 dw2_asm_output_data_uleb128 (0, NULL
);
7550 /* File length in bytes. */
7551 dw2_asm_output_data_uleb128 (0, NULL
);
7554 dw2_asm_output_data (1, 0, "End file name table");
7558 /* Output the source line number correspondence information. This
7559 information goes into the .debug_line section. */
7562 output_line_info (void)
7564 char l1
[20], l2
[20], p1
[20], p2
[20];
7565 char line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
7566 char prev_line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
7569 unsigned long lt_index
;
7570 unsigned long current_line
;
7573 unsigned long current_file
;
7574 unsigned long function
;
7576 ASM_GENERATE_INTERNAL_LABEL (l1
, LINE_NUMBER_BEGIN_LABEL
, 0);
7577 ASM_GENERATE_INTERNAL_LABEL (l2
, LINE_NUMBER_END_LABEL
, 0);
7578 ASM_GENERATE_INTERNAL_LABEL (p1
, LN_PROLOG_AS_LABEL
, 0);
7579 ASM_GENERATE_INTERNAL_LABEL (p2
, LN_PROLOG_END_LABEL
, 0);
7581 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7582 dw2_asm_output_data (4, 0xffffffff,
7583 "Initial length escape value indicating 64-bit DWARF extension");
7584 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, l2
, l1
,
7585 "Length of Source Line Info");
7586 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
7588 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7589 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, p2
, p1
, "Prolog Length");
7590 ASM_OUTPUT_LABEL (asm_out_file
, p1
);
7592 /* Define the architecture-dependent minimum instruction length (in
7593 bytes). In this implementation of DWARF, this field is used for
7594 information purposes only. Since GCC generates assembly language,
7595 we have no a priori knowledge of how many instruction bytes are
7596 generated for each source line, and therefore can use only the
7597 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7598 commands. Accordingly, we fix this as `1', which is "correct
7599 enough" for all architectures, and don't let the target override. */
7600 dw2_asm_output_data (1, 1,
7601 "Minimum Instruction Length");
7603 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START
,
7604 "Default is_stmt_start flag");
7605 dw2_asm_output_data (1, DWARF_LINE_BASE
,
7606 "Line Base Value (Special Opcodes)");
7607 dw2_asm_output_data (1, DWARF_LINE_RANGE
,
7608 "Line Range Value (Special Opcodes)");
7609 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
,
7610 "Special Opcode Base");
7612 for (opc
= 1; opc
< DWARF_LINE_OPCODE_BASE
; opc
++)
7616 case DW_LNS_advance_pc
:
7617 case DW_LNS_advance_line
:
7618 case DW_LNS_set_file
:
7619 case DW_LNS_set_column
:
7620 case DW_LNS_fixed_advance_pc
:
7628 dw2_asm_output_data (1, n_op_args
, "opcode: 0x%x has %d args",
7632 /* Write out the information about the files we use. */
7633 output_file_names ();
7634 ASM_OUTPUT_LABEL (asm_out_file
, p2
);
7636 /* We used to set the address register to the first location in the text
7637 section here, but that didn't accomplish anything since we already
7638 have a line note for the opening brace of the first function. */
7640 /* Generate the line number to PC correspondence table, encoded as
7641 a series of state machine operations. */
7644 strcpy (prev_line_label
, text_section_label
);
7645 for (lt_index
= 1; lt_index
< line_info_table_in_use
; ++lt_index
)
7647 dw_line_info_ref line_info
= &line_info_table
[lt_index
];
7650 /* Disable this optimization for now; GDB wants to see two line notes
7651 at the beginning of a function so it can find the end of the
7654 /* Don't emit anything for redundant notes. Just updating the
7655 address doesn't accomplish anything, because we already assume
7656 that anything after the last address is this line. */
7657 if (line_info
->dw_line_num
== current_line
7658 && line_info
->dw_file_num
== current_file
)
7662 /* Emit debug info for the address of the current line.
7664 Unfortunately, we have little choice here currently, and must always
7665 use the most general form. GCC does not know the address delta
7666 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7667 attributes which will give an upper bound on the address range. We
7668 could perhaps use length attributes to determine when it is safe to
7669 use DW_LNS_fixed_advance_pc. */
7671 ASM_GENERATE_INTERNAL_LABEL (line_label
, LINE_CODE_LABEL
, lt_index
);
7674 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7675 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7676 "DW_LNS_fixed_advance_pc");
7677 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7681 /* This can handle any delta. This takes
7682 4+DWARF2_ADDR_SIZE bytes. */
7683 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7684 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7685 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7686 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7689 strcpy (prev_line_label
, line_label
);
7691 /* Emit debug info for the source file of the current line, if
7692 different from the previous line. */
7693 if (line_info
->dw_file_num
!= current_file
)
7695 current_file
= line_info
->dw_file_num
;
7696 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
7697 dw2_asm_output_data_uleb128 (current_file
, "(\"%s\")",
7698 VARRAY_CHAR_PTR (file_table
,
7702 /* Emit debug info for the current line number, choosing the encoding
7703 that uses the least amount of space. */
7704 if (line_info
->dw_line_num
!= current_line
)
7706 line_offset
= line_info
->dw_line_num
- current_line
;
7707 line_delta
= line_offset
- DWARF_LINE_BASE
;
7708 current_line
= line_info
->dw_line_num
;
7709 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
7710 /* This can handle deltas from -10 to 234, using the current
7711 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7713 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
7714 "line %lu", current_line
);
7717 /* This can handle any delta. This takes at least 4 bytes,
7718 depending on the value being encoded. */
7719 dw2_asm_output_data (1, DW_LNS_advance_line
,
7720 "advance to line %lu", current_line
);
7721 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
7722 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7726 /* We still need to start a new row, so output a copy insn. */
7727 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7730 /* Emit debug info for the address of the end of the function. */
7733 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7734 "DW_LNS_fixed_advance_pc");
7735 dw2_asm_output_delta (2, text_end_label
, prev_line_label
, NULL
);
7739 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7740 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7741 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7742 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_end_label
, NULL
);
7745 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7746 dw2_asm_output_data_uleb128 (1, NULL
);
7747 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
7752 for (lt_index
= 0; lt_index
< separate_line_info_table_in_use
;)
7754 dw_separate_line_info_ref line_info
7755 = &separate_line_info_table
[lt_index
];
7758 /* Don't emit anything for redundant notes. */
7759 if (line_info
->dw_line_num
== current_line
7760 && line_info
->dw_file_num
== current_file
7761 && line_info
->function
== function
)
7765 /* Emit debug info for the address of the current line. If this is
7766 a new function, or the first line of a function, then we need
7767 to handle it differently. */
7768 ASM_GENERATE_INTERNAL_LABEL (line_label
, SEPARATE_LINE_CODE_LABEL
,
7770 if (function
!= line_info
->function
)
7772 function
= line_info
->function
;
7774 /* Set the address register to the first line in the function. */
7775 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7776 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7777 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7778 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7782 /* ??? See the DW_LNS_advance_pc comment above. */
7785 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7786 "DW_LNS_fixed_advance_pc");
7787 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7791 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7792 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7793 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7794 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7798 strcpy (prev_line_label
, line_label
);
7800 /* Emit debug info for the source file of the current line, if
7801 different from the previous line. */
7802 if (line_info
->dw_file_num
!= current_file
)
7804 current_file
= line_info
->dw_file_num
;
7805 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
7806 dw2_asm_output_data_uleb128 (current_file
, "(\"%s\")",
7807 VARRAY_CHAR_PTR (file_table
,
7811 /* Emit debug info for the current line number, choosing the encoding
7812 that uses the least amount of space. */
7813 if (line_info
->dw_line_num
!= current_line
)
7815 line_offset
= line_info
->dw_line_num
- current_line
;
7816 line_delta
= line_offset
- DWARF_LINE_BASE
;
7817 current_line
= line_info
->dw_line_num
;
7818 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
7819 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
7820 "line %lu", current_line
);
7823 dw2_asm_output_data (1, DW_LNS_advance_line
,
7824 "advance to line %lu", current_line
);
7825 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
7826 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7830 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7838 /* If we're done with a function, end its sequence. */
7839 if (lt_index
== separate_line_info_table_in_use
7840 || separate_line_info_table
[lt_index
].function
!= function
)
7845 /* Emit debug info for the address of the end of the function. */
7846 ASM_GENERATE_INTERNAL_LABEL (line_label
, FUNC_END_LABEL
, function
);
7849 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7850 "DW_LNS_fixed_advance_pc");
7851 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7855 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7856 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7857 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7858 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7861 /* Output the marker for the end of this sequence. */
7862 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7863 dw2_asm_output_data_uleb128 (1, NULL
);
7864 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
7868 /* Output the marker for the end of the line number info. */
7869 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
7872 /* Given a pointer to a tree node for some base type, return a pointer to
7873 a DIE that describes the given type.
7875 This routine must only be called for GCC type nodes that correspond to
7876 Dwarf base (fundamental) types. */
7879 base_type_die (tree type
)
7881 dw_die_ref base_type_result
;
7882 const char *type_name
;
7883 enum dwarf_type encoding
;
7884 tree name
= TYPE_NAME (type
);
7886 if (TREE_CODE (type
) == ERROR_MARK
|| TREE_CODE (type
) == VOID_TYPE
)
7891 if (TREE_CODE (name
) == TYPE_DECL
)
7892 name
= DECL_NAME (name
);
7894 type_name
= IDENTIFIER_POINTER (name
);
7897 type_name
= "__unknown__";
7899 switch (TREE_CODE (type
))
7902 /* Carefully distinguish the C character types, without messing
7903 up if the language is not C. Note that we check only for the names
7904 that contain spaces; other names might occur by coincidence in other
7906 if (! (TYPE_PRECISION (type
) == CHAR_TYPE_SIZE
7907 && (type
== char_type_node
7908 || ! strcmp (type_name
, "signed char")
7909 || ! strcmp (type_name
, "unsigned char"))))
7911 if (TYPE_UNSIGNED (type
))
7912 encoding
= DW_ATE_unsigned
;
7914 encoding
= DW_ATE_signed
;
7917 /* else fall through. */
7920 /* GNU Pascal/Ada CHAR type. Not used in C. */
7921 if (TYPE_UNSIGNED (type
))
7922 encoding
= DW_ATE_unsigned_char
;
7924 encoding
= DW_ATE_signed_char
;
7928 encoding
= DW_ATE_float
;
7931 /* Dwarf2 doesn't know anything about complex ints, so use
7932 a user defined type for it. */
7934 if (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
)
7935 encoding
= DW_ATE_complex_float
;
7937 encoding
= DW_ATE_lo_user
;
7941 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7942 encoding
= DW_ATE_boolean
;
7946 /* No other TREE_CODEs are Dwarf fundamental types. */
7950 base_type_result
= new_die (DW_TAG_base_type
, comp_unit_die
, type
);
7951 if (demangle_name_func
)
7952 type_name
= (*demangle_name_func
) (type_name
);
7954 add_AT_string (base_type_result
, DW_AT_name
, type_name
);
7955 add_AT_unsigned (base_type_result
, DW_AT_byte_size
,
7956 int_size_in_bytes (type
));
7957 add_AT_unsigned (base_type_result
, DW_AT_encoding
, encoding
);
7959 return base_type_result
;
7962 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7963 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7964 a given type is generally the same as the given type, except that if the
7965 given type is a pointer or reference type, then the root type of the given
7966 type is the root type of the "basis" type for the pointer or reference
7967 type. (This definition of the "root" type is recursive.) Also, the root
7968 type of a `const' qualified type or a `volatile' qualified type is the
7969 root type of the given type without the qualifiers. */
7972 root_type (tree type
)
7974 if (TREE_CODE (type
) == ERROR_MARK
)
7975 return error_mark_node
;
7977 switch (TREE_CODE (type
))
7980 return error_mark_node
;
7983 case REFERENCE_TYPE
:
7984 return type_main_variant (root_type (TREE_TYPE (type
)));
7987 return type_main_variant (type
);
7991 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7992 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7995 is_base_type (tree type
)
7997 switch (TREE_CODE (type
))
8012 case QUAL_UNION_TYPE
:
8017 case REFERENCE_TYPE
:
8031 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8032 node, return the size in bits for the type if it is a constant, or else
8033 return the alignment for the type if the type's size is not constant, or
8034 else return BITS_PER_WORD if the type actually turns out to be an
8037 static inline unsigned HOST_WIDE_INT
8038 simple_type_size_in_bits (tree type
)
8040 if (TREE_CODE (type
) == ERROR_MARK
)
8041 return BITS_PER_WORD
;
8042 else if (TYPE_SIZE (type
) == NULL_TREE
)
8044 else if (host_integerp (TYPE_SIZE (type
), 1))
8045 return tree_low_cst (TYPE_SIZE (type
), 1);
8047 return TYPE_ALIGN (type
);
8050 /* Return true if the debug information for the given type should be
8051 emitted as a subrange type. */
8054 is_subrange_type (tree type
)
8056 tree subtype
= TREE_TYPE (type
);
8058 /* Subrange types are identified by the fact that they are integer
8059 types, and that they have a subtype which is either an integer type
8060 or an enumeral type. */
8062 if (TREE_CODE (type
) != INTEGER_TYPE
8063 || subtype
== NULL_TREE
)
8066 if (TREE_CODE (subtype
) != INTEGER_TYPE
8067 && TREE_CODE (subtype
) != ENUMERAL_TYPE
)
8070 if (TREE_CODE (type
) == TREE_CODE (subtype
)
8071 && int_size_in_bytes (type
) == int_size_in_bytes (subtype
)
8072 && TYPE_MIN_VALUE (type
) != NULL
8073 && TYPE_MIN_VALUE (subtype
) != NULL
8074 && tree_int_cst_equal (TYPE_MIN_VALUE (type
), TYPE_MIN_VALUE (subtype
))
8075 && TYPE_MAX_VALUE (type
) != NULL
8076 && TYPE_MAX_VALUE (subtype
) != NULL
8077 && tree_int_cst_equal (TYPE_MAX_VALUE (type
), TYPE_MAX_VALUE (subtype
)))
8079 /* The type and its subtype have the same representation. If in
8080 addition the two types also have the same name, then the given
8081 type is not a subrange type, but rather a plain base type. */
8082 /* FIXME: brobecker/2004-03-22:
8083 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8084 therefore be sufficient to check the TYPE_SIZE node pointers
8085 rather than checking the actual size. Unfortunately, we have
8086 found some cases, such as in the Ada "integer" type, where
8087 this is not the case. Until this problem is solved, we need to
8088 keep checking the actual size. */
8089 tree type_name
= TYPE_NAME (type
);
8090 tree subtype_name
= TYPE_NAME (subtype
);
8092 if (type_name
!= NULL
&& TREE_CODE (type_name
) == TYPE_DECL
)
8093 type_name
= DECL_NAME (type_name
);
8095 if (subtype_name
!= NULL
&& TREE_CODE (subtype_name
) == TYPE_DECL
)
8096 subtype_name
= DECL_NAME (subtype_name
);
8098 if (type_name
== subtype_name
)
8105 /* Given a pointer to a tree node for a subrange type, return a pointer
8106 to a DIE that describes the given type. */
8109 subrange_type_die (tree type
, dw_die_ref context_die
)
8111 dw_die_ref subtype_die
;
8112 dw_die_ref subrange_die
;
8113 tree name
= TYPE_NAME (type
);
8114 const HOST_WIDE_INT size_in_bytes
= int_size_in_bytes (type
);
8115 tree subtype
= TREE_TYPE (type
);
8117 if (context_die
== NULL
)
8118 context_die
= comp_unit_die
;
8120 if (TREE_CODE (subtype
) == ENUMERAL_TYPE
)
8121 subtype_die
= gen_enumeration_type_die (subtype
, context_die
);
8123 subtype_die
= base_type_die (subtype
);
8125 subrange_die
= new_die (DW_TAG_subrange_type
, context_die
, type
);
8129 if (TREE_CODE (name
) == TYPE_DECL
)
8130 name
= DECL_NAME (name
);
8131 add_name_attribute (subrange_die
, IDENTIFIER_POINTER (name
));
8134 if (int_size_in_bytes (subtype
) != size_in_bytes
)
8136 /* The size of the subrange type and its base type do not match,
8137 so we need to generate a size attribute for the subrange type. */
8138 add_AT_unsigned (subrange_die
, DW_AT_byte_size
, size_in_bytes
);
8141 if (TYPE_MIN_VALUE (type
) != NULL
)
8142 add_bound_info (subrange_die
, DW_AT_lower_bound
,
8143 TYPE_MIN_VALUE (type
));
8144 if (TYPE_MAX_VALUE (type
) != NULL
)
8145 add_bound_info (subrange_die
, DW_AT_upper_bound
,
8146 TYPE_MAX_VALUE (type
));
8147 add_AT_die_ref (subrange_die
, DW_AT_type
, subtype_die
);
8149 return subrange_die
;
8152 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8153 entry that chains various modifiers in front of the given type. */
8156 modified_type_die (tree type
, int is_const_type
, int is_volatile_type
,
8157 dw_die_ref context_die
)
8159 enum tree_code code
= TREE_CODE (type
);
8160 dw_die_ref mod_type_die
= NULL
;
8161 dw_die_ref sub_die
= NULL
;
8162 tree item_type
= NULL
;
8164 if (code
!= ERROR_MARK
)
8166 tree qualified_type
;
8168 /* See if we already have the appropriately qualified variant of
8171 = get_qualified_type (type
,
8172 ((is_const_type
? TYPE_QUAL_CONST
: 0)
8174 ? TYPE_QUAL_VOLATILE
: 0)));
8176 /* If we do, then we can just use its DIE, if it exists. */
8179 mod_type_die
= lookup_type_die (qualified_type
);
8181 return mod_type_die
;
8184 /* Handle C typedef types. */
8185 if (qualified_type
&& TYPE_NAME (qualified_type
)
8186 && TREE_CODE (TYPE_NAME (qualified_type
)) == TYPE_DECL
8187 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type
)))
8189 tree type_name
= TYPE_NAME (qualified_type
);
8190 tree dtype
= TREE_TYPE (type_name
);
8192 if (qualified_type
== dtype
)
8194 /* For a named type, use the typedef. */
8195 gen_type_die (qualified_type
, context_die
);
8196 mod_type_die
= lookup_type_die (qualified_type
);
8198 else if (is_const_type
< TYPE_READONLY (dtype
)
8199 || is_volatile_type
< TYPE_VOLATILE (dtype
))
8200 /* cv-unqualified version of named type. Just use the unnamed
8201 type to which it refers. */
8203 = modified_type_die (DECL_ORIGINAL_TYPE (type_name
),
8204 is_const_type
, is_volatile_type
,
8207 /* Else cv-qualified version of named type; fall through. */
8213 else if (is_const_type
)
8215 mod_type_die
= new_die (DW_TAG_const_type
, comp_unit_die
, type
);
8216 sub_die
= modified_type_die (type
, 0, is_volatile_type
, context_die
);
8218 else if (is_volatile_type
)
8220 mod_type_die
= new_die (DW_TAG_volatile_type
, comp_unit_die
, type
);
8221 sub_die
= modified_type_die (type
, 0, 0, context_die
);
8223 else if (code
== POINTER_TYPE
)
8225 mod_type_die
= new_die (DW_TAG_pointer_type
, comp_unit_die
, type
);
8226 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
,
8227 simple_type_size_in_bits (type
) / BITS_PER_UNIT
);
8229 add_AT_unsigned (mod_type_die
, DW_AT_address_class
, 0);
8231 item_type
= TREE_TYPE (type
);
8233 else if (code
== REFERENCE_TYPE
)
8235 mod_type_die
= new_die (DW_TAG_reference_type
, comp_unit_die
, type
);
8236 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
,
8237 simple_type_size_in_bits (type
) / BITS_PER_UNIT
);
8239 add_AT_unsigned (mod_type_die
, DW_AT_address_class
, 0);
8241 item_type
= TREE_TYPE (type
);
8243 else if (is_subrange_type (type
))
8244 mod_type_die
= subrange_type_die (type
, context_die
);
8245 else if (is_base_type (type
))
8246 mod_type_die
= base_type_die (type
);
8249 gen_type_die (type
, context_die
);
8251 /* We have to get the type_main_variant here (and pass that to the
8252 `lookup_type_die' routine) because the ..._TYPE node we have
8253 might simply be a *copy* of some original type node (where the
8254 copy was created to help us keep track of typedef names) and
8255 that copy might have a different TYPE_UID from the original
8257 if (TREE_CODE (type
) != VECTOR_TYPE
)
8258 mod_type_die
= lookup_type_die (type_main_variant (type
));
8260 /* Vectors have the debugging information in the type,
8261 not the main variant. */
8262 mod_type_die
= lookup_type_die (type
);
8263 gcc_assert (mod_type_die
);
8266 /* We want to equate the qualified type to the die below. */
8267 type
= qualified_type
;
8271 equate_type_number_to_die (type
, mod_type_die
);
8273 /* We must do this after the equate_type_number_to_die call, in case
8274 this is a recursive type. This ensures that the modified_type_die
8275 recursion will terminate even if the type is recursive. Recursive
8276 types are possible in Ada. */
8277 sub_die
= modified_type_die (item_type
,
8278 TYPE_READONLY (item_type
),
8279 TYPE_VOLATILE (item_type
),
8282 if (sub_die
!= NULL
)
8283 add_AT_die_ref (mod_type_die
, DW_AT_type
, sub_die
);
8285 return mod_type_die
;
8288 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8289 an enumerated type. */
8292 type_is_enum (tree type
)
8294 return TREE_CODE (type
) == ENUMERAL_TYPE
;
8297 /* Return the DBX register number described by a given RTL node. */
8300 dbx_reg_number (rtx rtl
)
8302 unsigned regno
= REGNO (rtl
);
8304 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
);
8306 return DBX_REGISTER_NUMBER (regno
);
8309 /* Return a location descriptor that designates a machine register or
8310 zero if there is none. */
8312 static dw_loc_descr_ref
8313 reg_loc_descriptor (rtx rtl
)
8318 if (REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
8321 reg
= dbx_reg_number (rtl
);
8322 regs
= targetm
.dwarf_register_span (rtl
);
8324 if (hard_regno_nregs
[REGNO (rtl
)][GET_MODE (rtl
)] > 1
8326 return multiple_reg_loc_descriptor (rtl
, regs
);
8328 return one_reg_loc_descriptor (reg
);
8331 /* Return a location descriptor that designates a machine register for
8332 a given hard register number. */
8334 static dw_loc_descr_ref
8335 one_reg_loc_descriptor (unsigned int regno
)
8338 return new_loc_descr (DW_OP_reg0
+ regno
, 0, 0);
8340 return new_loc_descr (DW_OP_regx
, regno
, 0);
8343 /* Given an RTL of a register, return a location descriptor that
8344 designates a value that spans more than one register. */
8346 static dw_loc_descr_ref
8347 multiple_reg_loc_descriptor (rtx rtl
, rtx regs
)
8351 dw_loc_descr_ref loc_result
= NULL
;
8353 reg
= dbx_reg_number (rtl
);
8354 nregs
= hard_regno_nregs
[REGNO (rtl
)][GET_MODE (rtl
)];
8356 /* Simple, contiguous registers. */
8357 if (regs
== NULL_RTX
)
8359 size
= GET_MODE_SIZE (GET_MODE (rtl
)) / nregs
;
8366 t
= one_reg_loc_descriptor (reg
);
8367 add_loc_descr (&loc_result
, t
);
8368 add_loc_descr (&loc_result
, new_loc_descr (DW_OP_piece
, size
, 0));
8374 /* Now onto stupid register sets in non contiguous locations. */
8376 gcc_assert (GET_CODE (regs
) == PARALLEL
);
8378 size
= GET_MODE_SIZE (GET_MODE (XVECEXP (regs
, 0, 0)));
8381 for (i
= 0; i
< XVECLEN (regs
, 0); ++i
)
8385 t
= one_reg_loc_descriptor (REGNO (XVECEXP (regs
, 0, i
)));
8386 add_loc_descr (&loc_result
, t
);
8387 size
= GET_MODE_SIZE (GET_MODE (XVECEXP (regs
, 0, 0)));
8388 add_loc_descr (&loc_result
, new_loc_descr (DW_OP_piece
, size
, 0));
8393 /* Return a location descriptor that designates a constant. */
8395 static dw_loc_descr_ref
8396 int_loc_descriptor (HOST_WIDE_INT i
)
8398 enum dwarf_location_atom op
;
8400 /* Pick the smallest representation of a constant, rather than just
8401 defaulting to the LEB encoding. */
8405 op
= DW_OP_lit0
+ i
;
8408 else if (i
<= 0xffff)
8410 else if (HOST_BITS_PER_WIDE_INT
== 32
8420 else if (i
>= -0x8000)
8422 else if (HOST_BITS_PER_WIDE_INT
== 32
8423 || i
>= -0x80000000)
8429 return new_loc_descr (op
, i
, 0);
8432 /* Return a location descriptor that designates a base+offset location. */
8434 static dw_loc_descr_ref
8435 based_loc_descr (unsigned int reg
, HOST_WIDE_INT offset
, bool can_use_fbreg
)
8437 dw_loc_descr_ref loc_result
;
8438 /* For the "frame base", we use the frame pointer or stack pointer
8439 registers, since the RTL for local variables is relative to one of
8441 unsigned fp_reg
= DBX_REGISTER_NUMBER (frame_pointer_needed
8442 ? HARD_FRAME_POINTER_REGNUM
8443 : STACK_POINTER_REGNUM
);
8445 if (reg
== fp_reg
&& can_use_fbreg
)
8446 loc_result
= new_loc_descr (DW_OP_fbreg
, offset
, 0);
8448 loc_result
= new_loc_descr (DW_OP_breg0
+ reg
, offset
, 0);
8450 loc_result
= new_loc_descr (DW_OP_bregx
, reg
, offset
);
8455 /* Return true if this RTL expression describes a base+offset calculation. */
8458 is_based_loc (rtx rtl
)
8460 return (GET_CODE (rtl
) == PLUS
8461 && ((REG_P (XEXP (rtl
, 0))
8462 && REGNO (XEXP (rtl
, 0)) < FIRST_PSEUDO_REGISTER
8463 && GET_CODE (XEXP (rtl
, 1)) == CONST_INT
)));
8466 /* The following routine converts the RTL for a variable or parameter
8467 (resident in memory) into an equivalent Dwarf representation of a
8468 mechanism for getting the address of that same variable onto the top of a
8469 hypothetical "address evaluation" stack.
8471 When creating memory location descriptors, we are effectively transforming
8472 the RTL for a memory-resident object into its Dwarf postfix expression
8473 equivalent. This routine recursively descends an RTL tree, turning
8474 it into Dwarf postfix code as it goes.
8476 MODE is the mode of the memory reference, needed to handle some
8477 autoincrement addressing modes.
8479 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8480 list for RTL. We can't use it when we are emitting location list for
8481 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8482 which describes how frame base changes when !frame_pointer_needed.
8484 Return 0 if we can't represent the location. */
8486 static dw_loc_descr_ref
8487 mem_loc_descriptor (rtx rtl
, enum machine_mode mode
, bool can_use_fbreg
)
8489 dw_loc_descr_ref mem_loc_result
= NULL
;
8490 enum dwarf_location_atom op
;
8492 /* Note that for a dynamically sized array, the location we will generate a
8493 description of here will be the lowest numbered location which is
8494 actually within the array. That's *not* necessarily the same as the
8495 zeroth element of the array. */
8497 rtl
= targetm
.delegitimize_address (rtl
);
8499 switch (GET_CODE (rtl
))
8504 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8505 just fall into the SUBREG code. */
8507 /* ... fall through ... */
8510 /* The case of a subreg may arise when we have a local (register)
8511 variable or a formal (register) parameter which doesn't quite fill
8512 up an entire register. For now, just assume that it is
8513 legitimate to make the Dwarf info refer to the whole register which
8514 contains the given subreg. */
8515 rtl
= SUBREG_REG (rtl
);
8517 /* ... fall through ... */
8520 /* Whenever a register number forms a part of the description of the
8521 method for calculating the (dynamic) address of a memory resident
8522 object, DWARF rules require the register number be referred to as
8523 a "base register". This distinction is not based in any way upon
8524 what category of register the hardware believes the given register
8525 belongs to. This is strictly DWARF terminology we're dealing with
8526 here. Note that in cases where the location of a memory-resident
8527 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8528 OP_CONST (0)) the actual DWARF location descriptor that we generate
8529 may just be OP_BASEREG (basereg). This may look deceptively like
8530 the object in question was allocated to a register (rather than in
8531 memory) so DWARF consumers need to be aware of the subtle
8532 distinction between OP_REG and OP_BASEREG. */
8533 if (REGNO (rtl
) < FIRST_PSEUDO_REGISTER
)
8534 mem_loc_result
= based_loc_descr (dbx_reg_number (rtl
), 0,
8539 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
),
8541 if (mem_loc_result
!= 0)
8542 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_deref
, 0, 0));
8546 rtl
= XEXP (rtl
, 1);
8548 /* ... fall through ... */
8551 /* Some ports can transform a symbol ref into a label ref, because
8552 the symbol ref is too far away and has to be dumped into a constant
8556 /* Alternatively, the symbol in the constant pool might be referenced
8557 by a different symbol. */
8558 if (GET_CODE (rtl
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (rtl
))
8561 rtx tmp
= get_pool_constant_mark (rtl
, &marked
);
8563 if (GET_CODE (tmp
) == SYMBOL_REF
)
8566 if (CONSTANT_POOL_ADDRESS_P (tmp
))
8567 get_pool_constant_mark (tmp
, &marked
);
8572 /* If all references to this pool constant were optimized away,
8573 it was not output and thus we can't represent it.
8574 FIXME: might try to use DW_OP_const_value here, though
8575 DW_OP_piece complicates it. */
8580 mem_loc_result
= new_loc_descr (DW_OP_addr
, 0, 0);
8581 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
8582 mem_loc_result
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
8583 VARRAY_PUSH_RTX (used_rtx_varray
, rtl
);
8587 /* Extract the PLUS expression nested inside and fall into
8589 rtl
= XEXP (rtl
, 1);
8594 /* Turn these into a PLUS expression and fall into the PLUS code
8596 rtl
= gen_rtx_PLUS (word_mode
, XEXP (rtl
, 0),
8597 GEN_INT (GET_CODE (rtl
) == PRE_INC
8598 ? GET_MODE_UNIT_SIZE (mode
)
8599 : -GET_MODE_UNIT_SIZE (mode
)));
8601 /* ... fall through ... */
8605 if (is_based_loc (rtl
))
8606 mem_loc_result
= based_loc_descr (dbx_reg_number (XEXP (rtl
, 0)),
8607 INTVAL (XEXP (rtl
, 1)),
8611 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), mode
,
8613 if (mem_loc_result
== 0)
8616 if (GET_CODE (XEXP (rtl
, 1)) == CONST_INT
8617 && INTVAL (XEXP (rtl
, 1)) >= 0)
8618 add_loc_descr (&mem_loc_result
,
8619 new_loc_descr (DW_OP_plus_uconst
,
8620 INTVAL (XEXP (rtl
, 1)), 0));
8623 add_loc_descr (&mem_loc_result
,
8624 mem_loc_descriptor (XEXP (rtl
, 1), mode
,
8626 add_loc_descr (&mem_loc_result
,
8627 new_loc_descr (DW_OP_plus
, 0, 0));
8632 /* If a pseudo-reg is optimized away, it is possible for it to
8633 be replaced with a MEM containing a multiply or shift. */
8652 dw_loc_descr_ref op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
,
8654 dw_loc_descr_ref op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
,
8657 if (op0
== 0 || op1
== 0)
8660 mem_loc_result
= op0
;
8661 add_loc_descr (&mem_loc_result
, op1
);
8662 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
8667 mem_loc_result
= int_loc_descriptor (INTVAL (rtl
));
8674 return mem_loc_result
;
8677 /* Return a descriptor that describes the concatenation of two locations.
8678 This is typically a complex variable. */
8680 static dw_loc_descr_ref
8681 concat_loc_descriptor (rtx x0
, rtx x1
)
8683 dw_loc_descr_ref cc_loc_result
= NULL
;
8684 dw_loc_descr_ref x0_ref
= loc_descriptor (x0
, true);
8685 dw_loc_descr_ref x1_ref
= loc_descriptor (x1
, true);
8687 if (x0_ref
== 0 || x1_ref
== 0)
8690 cc_loc_result
= x0_ref
;
8691 add_loc_descr (&cc_loc_result
,
8692 new_loc_descr (DW_OP_piece
,
8693 GET_MODE_SIZE (GET_MODE (x0
)), 0));
8695 add_loc_descr (&cc_loc_result
, x1_ref
);
8696 add_loc_descr (&cc_loc_result
,
8697 new_loc_descr (DW_OP_piece
,
8698 GET_MODE_SIZE (GET_MODE (x1
)), 0));
8700 return cc_loc_result
;
8703 /* Output a proper Dwarf location descriptor for a variable or parameter
8704 which is either allocated in a register or in a memory location. For a
8705 register, we just generate an OP_REG and the register number. For a
8706 memory location we provide a Dwarf postfix expression describing how to
8707 generate the (dynamic) address of the object onto the address stack.
8709 If we don't know how to describe it, return 0. */
8711 static dw_loc_descr_ref
8712 loc_descriptor (rtx rtl
, bool can_use_fbreg
)
8714 dw_loc_descr_ref loc_result
= NULL
;
8716 switch (GET_CODE (rtl
))
8719 /* The case of a subreg may arise when we have a local (register)
8720 variable or a formal (register) parameter which doesn't quite fill
8721 up an entire register. For now, just assume that it is
8722 legitimate to make the Dwarf info refer to the whole register which
8723 contains the given subreg. */
8724 rtl
= SUBREG_REG (rtl
);
8726 /* ... fall through ... */
8729 loc_result
= reg_loc_descriptor (rtl
);
8733 loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
),
8738 loc_result
= concat_loc_descriptor (XEXP (rtl
, 0), XEXP (rtl
, 1));
8743 if (GET_CODE (XEXP (rtl
, 1)) != PARALLEL
)
8745 loc_result
= loc_descriptor (XEXP (XEXP (rtl
, 1), 0), can_use_fbreg
);
8749 rtl
= XEXP (rtl
, 1);
8754 rtvec par_elems
= XVEC (rtl
, 0);
8755 int num_elem
= GET_NUM_ELEM (par_elems
);
8756 enum machine_mode mode
;
8759 /* Create the first one, so we have something to add to. */
8760 loc_result
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, 0), 0),
8762 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, 0), 0));
8763 add_loc_descr (&loc_result
,
8764 new_loc_descr (DW_OP_piece
, GET_MODE_SIZE (mode
), 0));
8765 for (i
= 1; i
< num_elem
; i
++)
8767 dw_loc_descr_ref temp
;
8769 temp
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, i
), 0),
8771 add_loc_descr (&loc_result
, temp
);
8772 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, i
), 0));
8773 add_loc_descr (&loc_result
,
8774 new_loc_descr (DW_OP_piece
,
8775 GET_MODE_SIZE (mode
), 0));
8787 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8788 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8789 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8790 top-level invocation, and we require the address of LOC; is 0 if we require
8791 the value of LOC. */
8793 static dw_loc_descr_ref
8794 loc_descriptor_from_tree_1 (tree loc
, int want_address
)
8796 dw_loc_descr_ref ret
, ret1
;
8797 int have_address
= 0;
8798 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (loc
));
8799 enum dwarf_location_atom op
;
8801 /* ??? Most of the time we do not take proper care for sign/zero
8802 extending the values properly. Hopefully this won't be a real
8805 switch (TREE_CODE (loc
))
8810 case PLACEHOLDER_EXPR
:
8811 /* This case involves extracting fields from an object to determine the
8812 position of other fields. We don't try to encode this here. The
8813 only user of this is Ada, which encodes the needed information using
8814 the names of types. */
8820 case PREINCREMENT_EXPR
:
8821 case PREDECREMENT_EXPR
:
8822 case POSTINCREMENT_EXPR
:
8823 case POSTDECREMENT_EXPR
:
8824 /* There are no opcodes for these operations. */
8828 /* If we already want an address, there's nothing we can do. */
8832 /* Otherwise, process the argument and look for the address. */
8833 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 1);
8836 if (DECL_THREAD_LOCAL (loc
))
8840 #ifndef ASM_OUTPUT_DWARF_DTPREL
8841 /* If this is not defined, we have no way to emit the data. */
8845 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8846 look up addresses of objects in the current module. */
8847 if (DECL_EXTERNAL (loc
))
8850 rtl
= rtl_for_decl_location (loc
);
8851 if (rtl
== NULL_RTX
)
8856 rtl
= XEXP (rtl
, 0);
8857 if (! CONSTANT_P (rtl
))
8860 ret
= new_loc_descr (INTERNAL_DW_OP_tls_addr
, 0, 0);
8861 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
8862 ret
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
8864 ret1
= new_loc_descr (DW_OP_GNU_push_tls_address
, 0, 0);
8865 add_loc_descr (&ret
, ret1
);
8873 if (DECL_VALUE_EXPR (loc
))
8874 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc
), want_address
);
8879 rtx rtl
= rtl_for_decl_location (loc
);
8881 if (rtl
== NULL_RTX
)
8883 else if (GET_CODE (rtl
) == CONST_INT
)
8885 HOST_WIDE_INT val
= INTVAL (rtl
);
8886 if (TYPE_UNSIGNED (TREE_TYPE (loc
)))
8887 val
&= GET_MODE_MASK (DECL_MODE (loc
));
8888 ret
= int_loc_descriptor (val
);
8890 else if (GET_CODE (rtl
) == CONST_STRING
)
8892 else if (CONSTANT_P (rtl
))
8894 ret
= new_loc_descr (DW_OP_addr
, 0, 0);
8895 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
8896 ret
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
8900 enum machine_mode mode
;
8902 /* Certain constructs can only be represented at top-level. */
8903 if (want_address
== 2)
8904 return loc_descriptor (rtl
, true);
8906 mode
= GET_MODE (rtl
);
8909 rtl
= XEXP (rtl
, 0);
8912 ret
= mem_loc_descriptor (rtl
, mode
, true);
8918 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
8923 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 1), want_address
);
8927 case NON_LVALUE_EXPR
:
8928 case VIEW_CONVERT_EXPR
:
8931 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), want_address
);
8936 case ARRAY_RANGE_REF
:
8939 HOST_WIDE_INT bitsize
, bitpos
, bytepos
;
8940 enum machine_mode mode
;
8943 obj
= get_inner_reference (loc
, &bitsize
, &bitpos
, &offset
, &mode
,
8944 &unsignedp
, &volatilep
);
8949 ret
= loc_descriptor_from_tree_1 (obj
, 1);
8951 || bitpos
% BITS_PER_UNIT
!= 0 || bitsize
% BITS_PER_UNIT
!= 0)
8954 if (offset
!= NULL_TREE
)
8956 /* Variable offset. */
8957 add_loc_descr (&ret
, loc_descriptor_from_tree_1 (offset
, 0));
8958 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
8961 bytepos
= bitpos
/ BITS_PER_UNIT
;
8963 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus_uconst
, bytepos
, 0));
8964 else if (bytepos
< 0)
8966 add_loc_descr (&ret
, int_loc_descriptor (bytepos
));
8967 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
8975 if (host_integerp (loc
, 0))
8976 ret
= int_loc_descriptor (tree_low_cst (loc
, 0));
8983 /* Get an RTL for this, if something has been emitted. */
8984 rtx rtl
= lookup_constant_def (loc
);
8985 enum machine_mode mode
;
8987 if (!rtl
|| !MEM_P (rtl
))
8989 mode
= GET_MODE (rtl
);
8990 rtl
= XEXP (rtl
, 0);
8991 ret
= mem_loc_descriptor (rtl
, mode
, true);
8996 case TRUTH_AND_EXPR
:
8997 case TRUTH_ANDIF_EXPR
:
9002 case TRUTH_XOR_EXPR
:
9008 case TRUTH_ORIF_EXPR
:
9013 case FLOOR_DIV_EXPR
:
9015 case ROUND_DIV_EXPR
:
9016 case TRUNC_DIV_EXPR
:
9024 case FLOOR_MOD_EXPR
:
9026 case ROUND_MOD_EXPR
:
9027 case TRUNC_MOD_EXPR
:
9040 op
= (unsignedp
? DW_OP_shr
: DW_OP_shra
);
9044 if (TREE_CODE (TREE_OPERAND (loc
, 1)) == INTEGER_CST
9045 && host_integerp (TREE_OPERAND (loc
, 1), 0))
9047 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9051 add_loc_descr (&ret
,
9052 new_loc_descr (DW_OP_plus_uconst
,
9053 tree_low_cst (TREE_OPERAND (loc
, 1),
9063 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9070 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9077 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9084 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9099 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9100 ret1
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 1), 0);
9101 if (ret
== 0 || ret1
== 0)
9104 add_loc_descr (&ret
, ret1
);
9105 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
9108 case TRUTH_NOT_EXPR
:
9122 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9126 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
9132 const enum tree_code code
=
9133 TREE_CODE (loc
) == MIN_EXPR
? GT_EXPR
: LT_EXPR
;
9135 loc
= build3 (COND_EXPR
, TREE_TYPE (loc
),
9136 build2 (code
, integer_type_node
,
9137 TREE_OPERAND (loc
, 0), TREE_OPERAND (loc
, 1)),
9138 TREE_OPERAND (loc
, 1), TREE_OPERAND (loc
, 0));
9141 /* ... fall through ... */
9145 dw_loc_descr_ref lhs
9146 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 1), 0);
9147 dw_loc_descr_ref rhs
9148 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 2), 0);
9149 dw_loc_descr_ref bra_node
, jump_node
, tmp
;
9151 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9152 if (ret
== 0 || lhs
== 0 || rhs
== 0)
9155 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
9156 add_loc_descr (&ret
, bra_node
);
9158 add_loc_descr (&ret
, rhs
);
9159 jump_node
= new_loc_descr (DW_OP_skip
, 0, 0);
9160 add_loc_descr (&ret
, jump_node
);
9162 add_loc_descr (&ret
, lhs
);
9163 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
9164 bra_node
->dw_loc_oprnd1
.v
.val_loc
= lhs
;
9166 /* ??? Need a node to point the skip at. Use a nop. */
9167 tmp
= new_loc_descr (DW_OP_nop
, 0, 0);
9168 add_loc_descr (&ret
, tmp
);
9169 jump_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
9170 jump_node
->dw_loc_oprnd1
.v
.val_loc
= tmp
;
9175 /* Leave front-end specific codes as simply unknown. This comes
9176 up, for instance, with the C STMT_EXPR. */
9177 if ((unsigned int) TREE_CODE (loc
)
9178 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
)
9181 #ifdef ENABLE_CHECKING
9182 /* Otherwise this is a generic code; we should just lists all of
9183 these explicitly. Aborting means we forgot one. */
9186 /* In a release build, we want to degrade gracefully: better to
9187 generate incomplete debugging information than to crash. */
9192 /* Show if we can't fill the request for an address. */
9193 if (want_address
&& !have_address
)
9196 /* If we've got an address and don't want one, dereference. */
9197 if (!want_address
&& have_address
)
9199 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (loc
));
9201 if (size
> DWARF2_ADDR_SIZE
|| size
== -1)
9203 else if (size
== DWARF2_ADDR_SIZE
)
9206 op
= DW_OP_deref_size
;
9208 add_loc_descr (&ret
, new_loc_descr (op
, size
, 0));
9214 static inline dw_loc_descr_ref
9215 loc_descriptor_from_tree (tree loc
)
9217 return loc_descriptor_from_tree_1 (loc
, 2);
9220 /* Given a value, round it up to the lowest multiple of `boundary'
9221 which is not less than the value itself. */
9223 static inline HOST_WIDE_INT
9224 ceiling (HOST_WIDE_INT value
, unsigned int boundary
)
9226 return (((value
+ boundary
- 1) / boundary
) * boundary
);
9229 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9230 pointer to the declared type for the relevant field variable, or return
9231 `integer_type_node' if the given node turns out to be an
9235 field_type (tree decl
)
9239 if (TREE_CODE (decl
) == ERROR_MARK
)
9240 return integer_type_node
;
9242 type
= DECL_BIT_FIELD_TYPE (decl
);
9243 if (type
== NULL_TREE
)
9244 type
= TREE_TYPE (decl
);
9249 /* Given a pointer to a tree node, return the alignment in bits for
9250 it, or else return BITS_PER_WORD if the node actually turns out to
9251 be an ERROR_MARK node. */
9253 static inline unsigned
9254 simple_type_align_in_bits (tree type
)
9256 return (TREE_CODE (type
) != ERROR_MARK
) ? TYPE_ALIGN (type
) : BITS_PER_WORD
;
9259 static inline unsigned
9260 simple_decl_align_in_bits (tree decl
)
9262 return (TREE_CODE (decl
) != ERROR_MARK
) ? DECL_ALIGN (decl
) : BITS_PER_WORD
;
9265 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9266 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9267 or return 0 if we are unable to determine what that offset is, either
9268 because the argument turns out to be a pointer to an ERROR_MARK node, or
9269 because the offset is actually variable. (We can't handle the latter case
9272 static HOST_WIDE_INT
9273 field_byte_offset (tree decl
)
9275 unsigned int type_align_in_bits
;
9276 unsigned int decl_align_in_bits
;
9277 unsigned HOST_WIDE_INT type_size_in_bits
;
9278 HOST_WIDE_INT object_offset_in_bits
;
9280 tree field_size_tree
;
9281 HOST_WIDE_INT bitpos_int
;
9282 HOST_WIDE_INT deepest_bitpos
;
9283 unsigned HOST_WIDE_INT field_size_in_bits
;
9285 if (TREE_CODE (decl
) == ERROR_MARK
)
9288 gcc_assert (TREE_CODE (decl
) == FIELD_DECL
);
9290 type
= field_type (decl
);
9291 field_size_tree
= DECL_SIZE (decl
);
9293 /* The size could be unspecified if there was an error, or for
9294 a flexible array member. */
9295 if (! field_size_tree
)
9296 field_size_tree
= bitsize_zero_node
;
9298 /* We cannot yet cope with fields whose positions are variable, so
9299 for now, when we see such things, we simply return 0. Someday, we may
9300 be able to handle such cases, but it will be damn difficult. */
9301 if (! host_integerp (bit_position (decl
), 0))
9304 bitpos_int
= int_bit_position (decl
);
9306 /* If we don't know the size of the field, pretend it's a full word. */
9307 if (host_integerp (field_size_tree
, 1))
9308 field_size_in_bits
= tree_low_cst (field_size_tree
, 1);
9310 field_size_in_bits
= BITS_PER_WORD
;
9312 type_size_in_bits
= simple_type_size_in_bits (type
);
9313 type_align_in_bits
= simple_type_align_in_bits (type
);
9314 decl_align_in_bits
= simple_decl_align_in_bits (decl
);
9316 /* The GCC front-end doesn't make any attempt to keep track of the starting
9317 bit offset (relative to the start of the containing structure type) of the
9318 hypothetical "containing object" for a bit-field. Thus, when computing
9319 the byte offset value for the start of the "containing object" of a
9320 bit-field, we must deduce this information on our own. This can be rather
9321 tricky to do in some cases. For example, handling the following structure
9322 type definition when compiling for an i386/i486 target (which only aligns
9323 long long's to 32-bit boundaries) can be very tricky:
9325 struct S { int field1; long long field2:31; };
9327 Fortunately, there is a simple rule-of-thumb which can be used in such
9328 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9329 structure shown above. It decides to do this based upon one simple rule
9330 for bit-field allocation. GCC allocates each "containing object" for each
9331 bit-field at the first (i.e. lowest addressed) legitimate alignment
9332 boundary (based upon the required minimum alignment for the declared type
9333 of the field) which it can possibly use, subject to the condition that
9334 there is still enough available space remaining in the containing object
9335 (when allocated at the selected point) to fully accommodate all of the
9336 bits of the bit-field itself.
9338 This simple rule makes it obvious why GCC allocates 8 bytes for each
9339 object of the structure type shown above. When looking for a place to
9340 allocate the "containing object" for `field2', the compiler simply tries
9341 to allocate a 64-bit "containing object" at each successive 32-bit
9342 boundary (starting at zero) until it finds a place to allocate that 64-
9343 bit field such that at least 31 contiguous (and previously unallocated)
9344 bits remain within that selected 64 bit field. (As it turns out, for the
9345 example above, the compiler finds it is OK to allocate the "containing
9346 object" 64-bit field at bit-offset zero within the structure type.)
9348 Here we attempt to work backwards from the limited set of facts we're
9349 given, and we try to deduce from those facts, where GCC must have believed
9350 that the containing object started (within the structure type). The value
9351 we deduce is then used (by the callers of this routine) to generate
9352 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9353 and, in the case of DW_AT_location, regular fields as well). */
9355 /* Figure out the bit-distance from the start of the structure to the
9356 "deepest" bit of the bit-field. */
9357 deepest_bitpos
= bitpos_int
+ field_size_in_bits
;
9359 /* This is the tricky part. Use some fancy footwork to deduce where the
9360 lowest addressed bit of the containing object must be. */
9361 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
9363 /* Round up to type_align by default. This works best for bitfields. */
9364 object_offset_in_bits
+= type_align_in_bits
- 1;
9365 object_offset_in_bits
/= type_align_in_bits
;
9366 object_offset_in_bits
*= type_align_in_bits
;
9368 if (object_offset_in_bits
> bitpos_int
)
9370 /* Sigh, the decl must be packed. */
9371 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
9373 /* Round up to decl_align instead. */
9374 object_offset_in_bits
+= decl_align_in_bits
- 1;
9375 object_offset_in_bits
/= decl_align_in_bits
;
9376 object_offset_in_bits
*= decl_align_in_bits
;
9379 return object_offset_in_bits
/ BITS_PER_UNIT
;
9382 /* The following routines define various Dwarf attributes and any data
9383 associated with them. */
9385 /* Add a location description attribute value to a DIE.
9387 This emits location attributes suitable for whole variables and
9388 whole parameters. Note that the location attributes for struct fields are
9389 generated by the routine `data_member_location_attribute' below. */
9392 add_AT_location_description (dw_die_ref die
, enum dwarf_attribute attr_kind
,
9393 dw_loc_descr_ref descr
)
9396 add_AT_loc (die
, attr_kind
, descr
);
9399 /* Attach the specialized form of location attribute used for data members of
9400 struct and union types. In the special case of a FIELD_DECL node which
9401 represents a bit-field, the "offset" part of this special location
9402 descriptor must indicate the distance in bytes from the lowest-addressed
9403 byte of the containing struct or union type to the lowest-addressed byte of
9404 the "containing object" for the bit-field. (See the `field_byte_offset'
9407 For any given bit-field, the "containing object" is a hypothetical object
9408 (of some integral or enum type) within which the given bit-field lives. The
9409 type of this hypothetical "containing object" is always the same as the
9410 declared type of the individual bit-field itself (for GCC anyway... the
9411 DWARF spec doesn't actually mandate this). Note that it is the size (in
9412 bytes) of the hypothetical "containing object" which will be given in the
9413 DW_AT_byte_size attribute for this bit-field. (See the
9414 `byte_size_attribute' function below.) It is also used when calculating the
9415 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9419 add_data_member_location_attribute (dw_die_ref die
, tree decl
)
9421 HOST_WIDE_INT offset
;
9422 dw_loc_descr_ref loc_descr
= 0;
9424 if (TREE_CODE (decl
) == TREE_BINFO
)
9426 /* We're working on the TAG_inheritance for a base class. */
9427 if (BINFO_VIRTUAL_P (decl
) && is_cxx ())
9429 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9430 aren't at a fixed offset from all (sub)objects of the same
9431 type. We need to extract the appropriate offset from our
9432 vtable. The following dwarf expression means
9434 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9436 This is specific to the V3 ABI, of course. */
9438 dw_loc_descr_ref tmp
;
9440 /* Make a copy of the object address. */
9441 tmp
= new_loc_descr (DW_OP_dup
, 0, 0);
9442 add_loc_descr (&loc_descr
, tmp
);
9444 /* Extract the vtable address. */
9445 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
9446 add_loc_descr (&loc_descr
, tmp
);
9448 /* Calculate the address of the offset. */
9449 offset
= tree_low_cst (BINFO_VPTR_FIELD (decl
), 0);
9450 gcc_assert (offset
< 0);
9452 tmp
= int_loc_descriptor (-offset
);
9453 add_loc_descr (&loc_descr
, tmp
);
9454 tmp
= new_loc_descr (DW_OP_minus
, 0, 0);
9455 add_loc_descr (&loc_descr
, tmp
);
9457 /* Extract the offset. */
9458 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
9459 add_loc_descr (&loc_descr
, tmp
);
9461 /* Add it to the object address. */
9462 tmp
= new_loc_descr (DW_OP_plus
, 0, 0);
9463 add_loc_descr (&loc_descr
, tmp
);
9466 offset
= tree_low_cst (BINFO_OFFSET (decl
), 0);
9469 offset
= field_byte_offset (decl
);
9473 enum dwarf_location_atom op
;
9475 /* The DWARF2 standard says that we should assume that the structure
9476 address is already on the stack, so we can specify a structure field
9477 address by using DW_OP_plus_uconst. */
9479 #ifdef MIPS_DEBUGGING_INFO
9480 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9481 operator correctly. It works only if we leave the offset on the
9485 op
= DW_OP_plus_uconst
;
9488 loc_descr
= new_loc_descr (op
, offset
, 0);
9491 add_AT_loc (die
, DW_AT_data_member_location
, loc_descr
);
9494 /* Writes integer values to dw_vec_const array. */
9497 insert_int (HOST_WIDE_INT val
, unsigned int size
, unsigned char *dest
)
9501 *dest
++ = val
& 0xff;
9507 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9509 static HOST_WIDE_INT
9510 extract_int (const unsigned char *src
, unsigned int size
)
9512 HOST_WIDE_INT val
= 0;
9518 val
|= *--src
& 0xff;
9524 /* Writes floating point values to dw_vec_const array. */
9527 insert_float (rtx rtl
, unsigned char *array
)
9533 REAL_VALUE_FROM_CONST_DOUBLE (rv
, rtl
);
9534 real_to_target (val
, &rv
, GET_MODE (rtl
));
9536 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9537 for (i
= 0; i
< GET_MODE_SIZE (GET_MODE (rtl
)) / 4; i
++)
9539 insert_int (val
[i
], 4, array
);
9544 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9545 does not have a "location" either in memory or in a register. These
9546 things can arise in GNU C when a constant is passed as an actual parameter
9547 to an inlined function. They can also arise in C++ where declared
9548 constants do not necessarily get memory "homes". */
9551 add_const_value_attribute (dw_die_ref die
, rtx rtl
)
9553 switch (GET_CODE (rtl
))
9557 HOST_WIDE_INT val
= INTVAL (rtl
);
9560 add_AT_int (die
, DW_AT_const_value
, val
);
9562 add_AT_unsigned (die
, DW_AT_const_value
, (unsigned HOST_WIDE_INT
) val
);
9567 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9568 floating-point constant. A CONST_DOUBLE is used whenever the
9569 constant requires more than one word in order to be adequately
9570 represented. We output CONST_DOUBLEs as blocks. */
9572 enum machine_mode mode
= GET_MODE (rtl
);
9574 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
9576 unsigned int length
= GET_MODE_SIZE (mode
);
9577 unsigned char *array
= ggc_alloc (length
);
9579 insert_float (rtl
, array
);
9580 add_AT_vec (die
, DW_AT_const_value
, length
/ 4, 4, array
);
9584 /* ??? We really should be using HOST_WIDE_INT throughout. */
9585 gcc_assert (HOST_BITS_PER_LONG
== HOST_BITS_PER_WIDE_INT
);
9587 add_AT_long_long (die
, DW_AT_const_value
,
9588 CONST_DOUBLE_HIGH (rtl
), CONST_DOUBLE_LOW (rtl
));
9595 enum machine_mode mode
= GET_MODE (rtl
);
9596 unsigned int elt_size
= GET_MODE_UNIT_SIZE (mode
);
9597 unsigned int length
= CONST_VECTOR_NUNITS (rtl
);
9598 unsigned char *array
= ggc_alloc (length
* elt_size
);
9602 switch (GET_MODE_CLASS (mode
))
9604 case MODE_VECTOR_INT
:
9605 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
9607 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
9608 HOST_WIDE_INT lo
, hi
;
9610 switch (GET_CODE (elt
))
9618 lo
= CONST_DOUBLE_LOW (elt
);
9619 hi
= CONST_DOUBLE_HIGH (elt
);
9626 if (elt_size
<= sizeof (HOST_WIDE_INT
))
9627 insert_int (lo
, elt_size
, p
);
9630 unsigned char *p0
= p
;
9631 unsigned char *p1
= p
+ sizeof (HOST_WIDE_INT
);
9633 gcc_assert (elt_size
== 2 * sizeof (HOST_WIDE_INT
));
9634 if (WORDS_BIG_ENDIAN
)
9639 insert_int (lo
, sizeof (HOST_WIDE_INT
), p0
);
9640 insert_int (hi
, sizeof (HOST_WIDE_INT
), p1
);
9645 case MODE_VECTOR_FLOAT
:
9646 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
9648 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
9649 insert_float (elt
, p
);
9657 add_AT_vec (die
, DW_AT_const_value
, length
, elt_size
, array
);
9662 add_AT_string (die
, DW_AT_const_value
, XSTR (rtl
, 0));
9668 add_AT_addr (die
, DW_AT_const_value
, rtl
);
9669 VARRAY_PUSH_RTX (used_rtx_varray
, rtl
);
9673 /* In cases where an inlined instance of an inline function is passed
9674 the address of an `auto' variable (which is local to the caller) we
9675 can get a situation where the DECL_RTL of the artificial local
9676 variable (for the inlining) which acts as a stand-in for the
9677 corresponding formal parameter (of the inline function) will look
9678 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9679 exactly a compile-time constant expression, but it isn't the address
9680 of the (artificial) local variable either. Rather, it represents the
9681 *value* which the artificial local variable always has during its
9682 lifetime. We currently have no way to represent such quasi-constant
9683 values in Dwarf, so for now we just punt and generate nothing. */
9687 /* No other kinds of rtx should be possible here. */
9694 rtl_for_decl_location (tree decl
)
9698 /* Here we have to decide where we are going to say the parameter "lives"
9699 (as far as the debugger is concerned). We only have a couple of
9700 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9702 DECL_RTL normally indicates where the parameter lives during most of the
9703 activation of the function. If optimization is enabled however, this
9704 could be either NULL or else a pseudo-reg. Both of those cases indicate
9705 that the parameter doesn't really live anywhere (as far as the code
9706 generation parts of GCC are concerned) during most of the function's
9707 activation. That will happen (for example) if the parameter is never
9708 referenced within the function.
9710 We could just generate a location descriptor here for all non-NULL
9711 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9712 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9713 where DECL_RTL is NULL or is a pseudo-reg.
9715 Note however that we can only get away with using DECL_INCOMING_RTL as
9716 a backup substitute for DECL_RTL in certain limited cases. In cases
9717 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9718 we can be sure that the parameter was passed using the same type as it is
9719 declared to have within the function, and that its DECL_INCOMING_RTL
9720 points us to a place where a value of that type is passed.
9722 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9723 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9724 because in these cases DECL_INCOMING_RTL points us to a value of some
9725 type which is *different* from the type of the parameter itself. Thus,
9726 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9727 such cases, the debugger would end up (for example) trying to fetch a
9728 `float' from a place which actually contains the first part of a
9729 `double'. That would lead to really incorrect and confusing
9730 output at debug-time.
9732 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9733 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9734 are a couple of exceptions however. On little-endian machines we can
9735 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9736 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9737 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9738 when (on a little-endian machine) a non-prototyped function has a
9739 parameter declared to be of type `short' or `char'. In such cases,
9740 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9741 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9742 passed `int' value. If the debugger then uses that address to fetch
9743 a `short' or a `char' (on a little-endian machine) the result will be
9744 the correct data, so we allow for such exceptional cases below.
9746 Note that our goal here is to describe the place where the given formal
9747 parameter lives during most of the function's activation (i.e. between the
9748 end of the prologue and the start of the epilogue). We'll do that as best
9749 as we can. Note however that if the given formal parameter is modified
9750 sometime during the execution of the function, then a stack backtrace (at
9751 debug-time) will show the function as having been called with the *new*
9752 value rather than the value which was originally passed in. This happens
9753 rarely enough that it is not a major problem, but it *is* a problem, and
9756 A future version of dwarf2out.c may generate two additional attributes for
9757 any given DW_TAG_formal_parameter DIE which will describe the "passed
9758 type" and the "passed location" for the given formal parameter in addition
9759 to the attributes we now generate to indicate the "declared type" and the
9760 "active location" for each parameter. This additional set of attributes
9761 could be used by debuggers for stack backtraces. Separately, note that
9762 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9763 This happens (for example) for inlined-instances of inline function formal
9764 parameters which are never referenced. This really shouldn't be
9765 happening. All PARM_DECL nodes should get valid non-NULL
9766 DECL_INCOMING_RTL values. FIXME. */
9768 /* Use DECL_RTL as the "location" unless we find something better. */
9769 rtl
= DECL_RTL_IF_SET (decl
);
9771 /* When generating abstract instances, ignore everything except
9772 constants, symbols living in memory, and symbols living in
9774 if (! reload_completed
)
9777 && (CONSTANT_P (rtl
)
9779 && CONSTANT_P (XEXP (rtl
, 0)))
9781 && TREE_CODE (decl
) == VAR_DECL
9782 && TREE_STATIC (decl
))))
9784 rtl
= targetm
.delegitimize_address (rtl
);
9789 else if (TREE_CODE (decl
) == PARM_DECL
)
9791 if (rtl
== NULL_RTX
|| is_pseudo_reg (rtl
))
9793 tree declared_type
= type_main_variant (TREE_TYPE (decl
));
9794 tree passed_type
= type_main_variant (DECL_ARG_TYPE (decl
));
9796 /* This decl represents a formal parameter which was optimized out.
9797 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9798 all cases where (rtl == NULL_RTX) just below. */
9799 if (declared_type
== passed_type
)
9800 rtl
= DECL_INCOMING_RTL (decl
);
9801 else if (! BYTES_BIG_ENDIAN
9802 && TREE_CODE (declared_type
) == INTEGER_TYPE
9803 && (GET_MODE_SIZE (TYPE_MODE (declared_type
))
9804 <= GET_MODE_SIZE (TYPE_MODE (passed_type
))))
9805 rtl
= DECL_INCOMING_RTL (decl
);
9808 /* If the parm was passed in registers, but lives on the stack, then
9809 make a big endian correction if the mode of the type of the
9810 parameter is not the same as the mode of the rtl. */
9811 /* ??? This is the same series of checks that are made in dbxout.c before
9812 we reach the big endian correction code there. It isn't clear if all
9813 of these checks are necessary here, but keeping them all is the safe
9815 else if (MEM_P (rtl
)
9816 && XEXP (rtl
, 0) != const0_rtx
9817 && ! CONSTANT_P (XEXP (rtl
, 0))
9818 /* Not passed in memory. */
9819 && !MEM_P (DECL_INCOMING_RTL (decl
))
9820 /* Not passed by invisible reference. */
9821 && (!REG_P (XEXP (rtl
, 0))
9822 || REGNO (XEXP (rtl
, 0)) == HARD_FRAME_POINTER_REGNUM
9823 || REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
9824 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9825 || REGNO (XEXP (rtl
, 0)) == ARG_POINTER_REGNUM
9828 /* Big endian correction check. */
9830 && TYPE_MODE (TREE_TYPE (decl
)) != GET_MODE (rtl
)
9831 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
)))
9834 int offset
= (UNITS_PER_WORD
9835 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
))));
9837 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
9838 plus_constant (XEXP (rtl
, 0), offset
));
9841 else if (TREE_CODE (decl
) == VAR_DECL
9844 && GET_MODE (rtl
) != TYPE_MODE (TREE_TYPE (decl
))
9845 && BYTES_BIG_ENDIAN
)
9847 int rsize
= GET_MODE_SIZE (GET_MODE (rtl
));
9848 int dsize
= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
)));
9850 /* If a variable is declared "register" yet is smaller than
9851 a register, then if we store the variable to memory, it
9852 looks like we're storing a register-sized value, when in
9853 fact we are not. We need to adjust the offset of the
9854 storage location to reflect the actual value's bytes,
9855 else gdb will not be able to display it. */
9857 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
9858 plus_constant (XEXP (rtl
, 0), rsize
-dsize
));
9861 if (rtl
!= NULL_RTX
)
9863 rtl
= eliminate_regs (rtl
, 0, NULL_RTX
);
9864 #ifdef LEAF_REG_REMAP
9865 if (current_function_uses_only_leaf_regs
)
9866 leaf_renumber_regs_insn (rtl
);
9870 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9871 and will have been substituted directly into all expressions that use it.
9872 C does not have such a concept, but C++ and other languages do. */
9873 else if (TREE_CODE (decl
) == VAR_DECL
&& DECL_INITIAL (decl
))
9875 /* If a variable is initialized with a string constant without embedded
9876 zeros, build CONST_STRING. */
9877 if (TREE_CODE (DECL_INITIAL (decl
)) == STRING_CST
9878 && TREE_CODE (TREE_TYPE (decl
)) == ARRAY_TYPE
)
9880 tree arrtype
= TREE_TYPE (decl
);
9881 tree enttype
= TREE_TYPE (arrtype
);
9882 tree domain
= TYPE_DOMAIN (arrtype
);
9883 tree init
= DECL_INITIAL (decl
);
9884 enum machine_mode mode
= TYPE_MODE (enttype
);
9886 if (GET_MODE_CLASS (mode
) == MODE_INT
&& GET_MODE_SIZE (mode
) == 1
9888 && integer_zerop (TYPE_MIN_VALUE (domain
))
9889 && compare_tree_int (TYPE_MAX_VALUE (domain
),
9890 TREE_STRING_LENGTH (init
) - 1) == 0
9891 && ((size_t) TREE_STRING_LENGTH (init
)
9892 == strlen (TREE_STRING_POINTER (init
)) + 1))
9893 rtl
= gen_rtx_CONST_STRING (VOIDmode
,
9894 ggc_strdup (TREE_STRING_POINTER (init
)));
9896 /* If the initializer is something that we know will expand into an
9897 immediate RTL constant, expand it now. Expanding anything else
9898 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9899 else if (TREE_CODE (DECL_INITIAL (decl
)) == INTEGER_CST
9900 || TREE_CODE (DECL_INITIAL (decl
)) == REAL_CST
)
9902 rtl
= expand_expr (DECL_INITIAL (decl
), NULL_RTX
, VOIDmode
,
9903 EXPAND_INITIALIZER
);
9904 /* If expand_expr returns a MEM, it wasn't immediate. */
9905 gcc_assert (!rtl
|| !MEM_P (rtl
));
9910 rtl
= targetm
.delegitimize_address (rtl
);
9912 /* If we don't look past the constant pool, we risk emitting a
9913 reference to a constant pool entry that isn't referenced from
9914 code, and thus is not emitted. */
9916 rtl
= avoid_constant_pool_reference (rtl
);
9921 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9922 data attribute for a variable or a parameter. We generate the
9923 DW_AT_const_value attribute only in those cases where the given variable
9924 or parameter does not have a true "location" either in memory or in a
9925 register. This can happen (for example) when a constant is passed as an
9926 actual argument in a call to an inline function. (It's possible that
9927 these things can crop up in other ways also.) Note that one type of
9928 constant value which can be passed into an inlined function is a constant
9929 pointer. This can happen for example if an actual argument in an inlined
9930 function call evaluates to a compile-time constant address. */
9933 add_location_or_const_value_attribute (dw_die_ref die
, tree decl
,
9934 enum dwarf_attribute attr
)
9937 dw_loc_descr_ref descr
;
9938 var_loc_list
*loc_list
;
9940 if (TREE_CODE (decl
) == ERROR_MARK
)
9943 gcc_assert (TREE_CODE (decl
) == VAR_DECL
|| TREE_CODE (decl
) == PARM_DECL
9944 || TREE_CODE (decl
) == RESULT_DECL
);
9946 /* See if we possibly have multiple locations for this variable. */
9947 loc_list
= lookup_decl_loc (decl
);
9949 /* If it truly has multiple locations, the first and last node will
9951 if (loc_list
&& loc_list
->first
!= loc_list
->last
)
9953 const char *secname
;
9954 const char *endname
;
9955 dw_loc_list_ref list
;
9957 struct var_loc_node
*node
;
9959 /* We need to figure out what section we should use as the base
9960 for the address ranges where a given location is valid.
9961 1. If this particular DECL has a section associated with it,
9963 2. If this function has a section associated with it, use
9965 3. Otherwise, use the text section.
9966 XXX: If you split a variable across multiple sections, this
9969 if (DECL_SECTION_NAME (decl
))
9971 tree sectree
= DECL_SECTION_NAME (decl
);
9972 secname
= TREE_STRING_POINTER (sectree
);
9974 else if (current_function_decl
9975 && DECL_SECTION_NAME (current_function_decl
))
9977 tree sectree
= DECL_SECTION_NAME (current_function_decl
);
9978 secname
= TREE_STRING_POINTER (sectree
);
9981 secname
= text_section_label
;
9983 /* Now that we know what section we are using for a base,
9984 actually construct the list of locations.
9985 The first location information is what is passed to the
9986 function that creates the location list, and the remaining
9987 locations just get added on to that list.
9988 Note that we only know the start address for a location
9989 (IE location changes), so to build the range, we use
9990 the range [current location start, next location start].
9991 This means we have to special case the last node, and generate
9992 a range of [last location start, end of function label]. */
9994 node
= loc_list
->first
;
9995 varloc
= NOTE_VAR_LOCATION (node
->var_loc_note
);
9996 list
= new_loc_list (loc_descriptor (varloc
, attr
!= DW_AT_frame_base
),
9997 node
->label
, node
->next
->label
, secname
, 1);
10000 for (; node
->next
; node
= node
->next
)
10001 if (NOTE_VAR_LOCATION_LOC (node
->var_loc_note
) != NULL_RTX
)
10003 /* The variable has a location between NODE->LABEL and
10004 NODE->NEXT->LABEL. */
10005 varloc
= NOTE_VAR_LOCATION (node
->var_loc_note
);
10006 add_loc_descr_to_loc_list (&list
,
10007 loc_descriptor (varloc
,
10008 attr
!= DW_AT_frame_base
),
10009 node
->label
, node
->next
->label
, secname
);
10012 /* If the variable has a location at the last label
10013 it keeps its location until the end of function. */
10014 if (NOTE_VAR_LOCATION_LOC (node
->var_loc_note
) != NULL_RTX
)
10016 char label_id
[MAX_ARTIFICIAL_LABEL_BYTES
];
10018 varloc
= NOTE_VAR_LOCATION (node
->var_loc_note
);
10019 if (!current_function_decl
)
10020 endname
= text_end_label
;
10023 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_END_LABEL
,
10024 current_function_funcdef_no
);
10025 endname
= ggc_strdup (label_id
);
10027 add_loc_descr_to_loc_list (&list
,
10028 loc_descriptor (varloc
,
10029 attr
!= DW_AT_frame_base
),
10030 node
->label
, endname
, secname
);
10033 /* Finally, add the location list to the DIE, and we are done. */
10034 add_AT_loc_list (die
, attr
, list
);
10038 rtl
= rtl_for_decl_location (decl
);
10039 if (rtl
&& (CONSTANT_P (rtl
) || GET_CODE (rtl
) == CONST_STRING
))
10041 add_const_value_attribute (die
, rtl
);
10045 descr
= loc_descriptor_from_tree (decl
);
10047 add_AT_location_description (die
, attr
, descr
);
10050 /* If we don't have a copy of this variable in memory for some reason (such
10051 as a C++ member constant that doesn't have an out-of-line definition),
10052 we should tell the debugger about the constant value. */
10055 tree_add_const_value_attribute (dw_die_ref var_die
, tree decl
)
10057 tree init
= DECL_INITIAL (decl
);
10058 tree type
= TREE_TYPE (decl
);
10060 if (TREE_READONLY (decl
) && ! TREE_THIS_VOLATILE (decl
) && init
10061 && initializer_constant_valid_p (init
, type
) == null_pointer_node
)
10066 switch (TREE_CODE (type
))
10069 if (host_integerp (init
, 0))
10070 add_AT_unsigned (var_die
, DW_AT_const_value
,
10071 tree_low_cst (init
, 0));
10073 add_AT_long_long (var_die
, DW_AT_const_value
,
10074 TREE_INT_CST_HIGH (init
),
10075 TREE_INT_CST_LOW (init
));
10082 /* Generate a DW_AT_name attribute given some string value to be included as
10083 the value of the attribute. */
10086 add_name_attribute (dw_die_ref die
, const char *name_string
)
10088 if (name_string
!= NULL
&& *name_string
!= 0)
10090 if (demangle_name_func
)
10091 name_string
= (*demangle_name_func
) (name_string
);
10093 add_AT_string (die
, DW_AT_name
, name_string
);
10097 /* Generate a DW_AT_comp_dir attribute for DIE. */
10100 add_comp_dir_attribute (dw_die_ref die
)
10102 const char *wd
= get_src_pwd ();
10104 add_AT_string (die
, DW_AT_comp_dir
, wd
);
10107 /* Given a tree node describing an array bound (either lower or upper) output
10108 a representation for that bound. */
10111 add_bound_info (dw_die_ref subrange_die
, enum dwarf_attribute bound_attr
, tree bound
)
10113 switch (TREE_CODE (bound
))
10118 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10120 if (! host_integerp (bound
, 0)
10121 || (bound_attr
== DW_AT_lower_bound
10122 && (((is_c_family () || is_java ()) && integer_zerop (bound
))
10123 || (is_fortran () && integer_onep (bound
)))))
10124 /* Use the default. */
10127 add_AT_unsigned (subrange_die
, bound_attr
, tree_low_cst (bound
, 0));
10132 case NON_LVALUE_EXPR
:
10133 case VIEW_CONVERT_EXPR
:
10134 add_bound_info (subrange_die
, bound_attr
, TREE_OPERAND (bound
, 0));
10144 dw_die_ref decl_die
= lookup_decl_die (bound
);
10146 /* ??? Can this happen, or should the variable have been bound
10147 first? Probably it can, since I imagine that we try to create
10148 the types of parameters in the order in which they exist in
10149 the list, and won't have created a forward reference to a
10150 later parameter. */
10151 if (decl_die
!= NULL
)
10152 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
10158 /* Otherwise try to create a stack operation procedure to
10159 evaluate the value of the array bound. */
10161 dw_die_ref ctx
, decl_die
;
10162 dw_loc_descr_ref loc
;
10164 loc
= loc_descriptor_from_tree (bound
);
10168 if (current_function_decl
== 0)
10169 ctx
= comp_unit_die
;
10171 ctx
= lookup_decl_die (current_function_decl
);
10173 decl_die
= new_die (DW_TAG_variable
, ctx
, bound
);
10174 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
10175 add_type_attribute (decl_die
, TREE_TYPE (bound
), 1, 0, ctx
);
10176 add_AT_loc (decl_die
, DW_AT_location
, loc
);
10178 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
10184 /* Note that the block of subscript information for an array type also
10185 includes information about the element type of type given array type. */
10188 add_subscript_info (dw_die_ref type_die
, tree type
)
10190 #ifndef MIPS_DEBUGGING_INFO
10191 unsigned dimension_number
;
10194 dw_die_ref subrange_die
;
10196 /* The GNU compilers represent multidimensional array types as sequences of
10197 one dimensional array types whose element types are themselves array
10198 types. Here we squish that down, so that each multidimensional array
10199 type gets only one array_type DIE in the Dwarf debugging info. The draft
10200 Dwarf specification say that we are allowed to do this kind of
10201 compression in C (because there is no difference between an array or
10202 arrays and a multidimensional array in C) but for other source languages
10203 (e.g. Ada) we probably shouldn't do this. */
10205 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10206 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10207 We work around this by disabling this feature. See also
10208 gen_array_type_die. */
10209 #ifndef MIPS_DEBUGGING_INFO
10210 for (dimension_number
= 0;
10211 TREE_CODE (type
) == ARRAY_TYPE
;
10212 type
= TREE_TYPE (type
), dimension_number
++)
10215 tree domain
= TYPE_DOMAIN (type
);
10217 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10218 and (in GNU C only) variable bounds. Handle all three forms
10220 subrange_die
= new_die (DW_TAG_subrange_type
, type_die
, NULL
);
10223 /* We have an array type with specified bounds. */
10224 lower
= TYPE_MIN_VALUE (domain
);
10225 upper
= TYPE_MAX_VALUE (domain
);
10227 /* Define the index type. */
10228 if (TREE_TYPE (domain
))
10230 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10231 TREE_TYPE field. We can't emit debug info for this
10232 because it is an unnamed integral type. */
10233 if (TREE_CODE (domain
) == INTEGER_TYPE
10234 && TYPE_NAME (domain
) == NULL_TREE
10235 && TREE_CODE (TREE_TYPE (domain
)) == INTEGER_TYPE
10236 && TYPE_NAME (TREE_TYPE (domain
)) == NULL_TREE
)
10239 add_type_attribute (subrange_die
, TREE_TYPE (domain
), 0, 0,
10243 /* ??? If upper is NULL, the array has unspecified length,
10244 but it does have a lower bound. This happens with Fortran
10246 Since the debugger is definitely going to need to know N
10247 to produce useful results, go ahead and output the lower
10248 bound solo, and hope the debugger can cope. */
10250 add_bound_info (subrange_die
, DW_AT_lower_bound
, lower
);
10252 add_bound_info (subrange_die
, DW_AT_upper_bound
, upper
);
10255 /* Otherwise we have an array type with an unspecified length. The
10256 DWARF-2 spec does not say how to handle this; let's just leave out the
10262 add_byte_size_attribute (dw_die_ref die
, tree tree_node
)
10266 switch (TREE_CODE (tree_node
))
10271 case ENUMERAL_TYPE
:
10274 case QUAL_UNION_TYPE
:
10275 size
= int_size_in_bytes (tree_node
);
10278 /* For a data member of a struct or union, the DW_AT_byte_size is
10279 generally given as the number of bytes normally allocated for an
10280 object of the *declared* type of the member itself. This is true
10281 even for bit-fields. */
10282 size
= simple_type_size_in_bits (field_type (tree_node
)) / BITS_PER_UNIT
;
10285 gcc_unreachable ();
10288 /* Note that `size' might be -1 when we get to this point. If it is, that
10289 indicates that the byte size of the entity in question is variable. We
10290 have no good way of expressing this fact in Dwarf at the present time,
10291 so just let the -1 pass on through. */
10292 add_AT_unsigned (die
, DW_AT_byte_size
, size
);
10295 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10296 which specifies the distance in bits from the highest order bit of the
10297 "containing object" for the bit-field to the highest order bit of the
10300 For any given bit-field, the "containing object" is a hypothetical object
10301 (of some integral or enum type) within which the given bit-field lives. The
10302 type of this hypothetical "containing object" is always the same as the
10303 declared type of the individual bit-field itself. The determination of the
10304 exact location of the "containing object" for a bit-field is rather
10305 complicated. It's handled by the `field_byte_offset' function (above).
10307 Note that it is the size (in bytes) of the hypothetical "containing object"
10308 which will be given in the DW_AT_byte_size attribute for this bit-field.
10309 (See `byte_size_attribute' above). */
10312 add_bit_offset_attribute (dw_die_ref die
, tree decl
)
10314 HOST_WIDE_INT object_offset_in_bytes
= field_byte_offset (decl
);
10315 tree type
= DECL_BIT_FIELD_TYPE (decl
);
10316 HOST_WIDE_INT bitpos_int
;
10317 HOST_WIDE_INT highest_order_object_bit_offset
;
10318 HOST_WIDE_INT highest_order_field_bit_offset
;
10319 HOST_WIDE_INT
unsigned bit_offset
;
10321 /* Must be a field and a bit field. */
10322 gcc_assert (type
&& TREE_CODE (decl
) == FIELD_DECL
);
10324 /* We can't yet handle bit-fields whose offsets are variable, so if we
10325 encounter such things, just return without generating any attribute
10326 whatsoever. Likewise for variable or too large size. */
10327 if (! host_integerp (bit_position (decl
), 0)
10328 || ! host_integerp (DECL_SIZE (decl
), 1))
10331 bitpos_int
= int_bit_position (decl
);
10333 /* Note that the bit offset is always the distance (in bits) from the
10334 highest-order bit of the "containing object" to the highest-order bit of
10335 the bit-field itself. Since the "high-order end" of any object or field
10336 is different on big-endian and little-endian machines, the computation
10337 below must take account of these differences. */
10338 highest_order_object_bit_offset
= object_offset_in_bytes
* BITS_PER_UNIT
;
10339 highest_order_field_bit_offset
= bitpos_int
;
10341 if (! BYTES_BIG_ENDIAN
)
10343 highest_order_field_bit_offset
+= tree_low_cst (DECL_SIZE (decl
), 0);
10344 highest_order_object_bit_offset
+= simple_type_size_in_bits (type
);
10348 = (! BYTES_BIG_ENDIAN
10349 ? highest_order_object_bit_offset
- highest_order_field_bit_offset
10350 : highest_order_field_bit_offset
- highest_order_object_bit_offset
);
10352 add_AT_unsigned (die
, DW_AT_bit_offset
, bit_offset
);
10355 /* For a FIELD_DECL node which represents a bit field, output an attribute
10356 which specifies the length in bits of the given field. */
10359 add_bit_size_attribute (dw_die_ref die
, tree decl
)
10361 /* Must be a field and a bit field. */
10362 gcc_assert (TREE_CODE (decl
) == FIELD_DECL
10363 && DECL_BIT_FIELD_TYPE (decl
));
10365 if (host_integerp (DECL_SIZE (decl
), 1))
10366 add_AT_unsigned (die
, DW_AT_bit_size
, tree_low_cst (DECL_SIZE (decl
), 1));
10369 /* If the compiled language is ANSI C, then add a 'prototyped'
10370 attribute, if arg types are given for the parameters of a function. */
10373 add_prototyped_attribute (dw_die_ref die
, tree func_type
)
10375 if (get_AT_unsigned (comp_unit_die
, DW_AT_language
) == DW_LANG_C89
10376 && TYPE_ARG_TYPES (func_type
) != NULL
)
10377 add_AT_flag (die
, DW_AT_prototyped
, 1);
10380 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10381 by looking in either the type declaration or object declaration
10385 add_abstract_origin_attribute (dw_die_ref die
, tree origin
)
10387 dw_die_ref origin_die
= NULL
;
10389 if (TREE_CODE (origin
) != FUNCTION_DECL
)
10391 /* We may have gotten separated from the block for the inlined
10392 function, if we're in an exception handler or some such; make
10393 sure that the abstract function has been written out.
10395 Doing this for nested functions is wrong, however; functions are
10396 distinct units, and our context might not even be inline. */
10400 fn
= TYPE_STUB_DECL (fn
);
10402 fn
= decl_function_context (fn
);
10404 dwarf2out_abstract_function (fn
);
10407 if (DECL_P (origin
))
10408 origin_die
= lookup_decl_die (origin
);
10409 else if (TYPE_P (origin
))
10410 origin_die
= lookup_type_die (origin
);
10412 gcc_assert (origin_die
);
10414 add_AT_die_ref (die
, DW_AT_abstract_origin
, origin_die
);
10417 /* We do not currently support the pure_virtual attribute. */
10420 add_pure_or_virtual_attribute (dw_die_ref die
, tree func_decl
)
10422 if (DECL_VINDEX (func_decl
))
10424 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
10426 if (host_integerp (DECL_VINDEX (func_decl
), 0))
10427 add_AT_loc (die
, DW_AT_vtable_elem_location
,
10428 new_loc_descr (DW_OP_constu
,
10429 tree_low_cst (DECL_VINDEX (func_decl
), 0),
10432 /* GNU extension: Record what type this method came from originally. */
10433 if (debug_info_level
> DINFO_LEVEL_TERSE
)
10434 add_AT_die_ref (die
, DW_AT_containing_type
,
10435 lookup_type_die (DECL_CONTEXT (func_decl
)));
10439 /* Add source coordinate attributes for the given decl. */
10442 add_src_coords_attributes (dw_die_ref die
, tree decl
)
10444 expanded_location s
= expand_location (DECL_SOURCE_LOCATION (decl
));
10445 unsigned file_index
= lookup_filename (s
.file
);
10447 add_AT_unsigned (die
, DW_AT_decl_file
, file_index
);
10448 add_AT_unsigned (die
, DW_AT_decl_line
, s
.line
);
10451 /* Add a DW_AT_name attribute and source coordinate attribute for the
10452 given decl, but only if it actually has a name. */
10455 add_name_and_src_coords_attributes (dw_die_ref die
, tree decl
)
10459 decl_name
= DECL_NAME (decl
);
10460 if (decl_name
!= NULL
&& IDENTIFIER_POINTER (decl_name
) != NULL
)
10462 add_name_attribute (die
, dwarf2_name (decl
, 0));
10463 if (! DECL_ARTIFICIAL (decl
))
10464 add_src_coords_attributes (die
, decl
);
10466 if ((TREE_CODE (decl
) == FUNCTION_DECL
|| TREE_CODE (decl
) == VAR_DECL
)
10467 && TREE_PUBLIC (decl
)
10468 && DECL_ASSEMBLER_NAME (decl
) != DECL_NAME (decl
)
10469 && !DECL_ABSTRACT (decl
))
10470 add_AT_string (die
, DW_AT_MIPS_linkage_name
,
10471 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
)));
10474 #ifdef VMS_DEBUGGING_INFO
10475 /* Get the function's name, as described by its RTL. This may be different
10476 from the DECL_NAME name used in the source file. */
10477 if (TREE_CODE (decl
) == FUNCTION_DECL
&& TREE_ASM_WRITTEN (decl
))
10479 add_AT_addr (die
, DW_AT_VMS_rtnbeg_pd_address
,
10480 XEXP (DECL_RTL (decl
), 0));
10481 VARRAY_PUSH_RTX (used_rtx_varray
, XEXP (DECL_RTL (decl
), 0));
10486 /* Push a new declaration scope. */
10489 push_decl_scope (tree scope
)
10491 VARRAY_PUSH_TREE (decl_scope_table
, scope
);
10494 /* Pop a declaration scope. */
10497 pop_decl_scope (void)
10499 gcc_assert (VARRAY_ACTIVE_SIZE (decl_scope_table
) > 0);
10501 VARRAY_POP (decl_scope_table
);
10504 /* Return the DIE for the scope that immediately contains this type.
10505 Non-named types get global scope. Named types nested in other
10506 types get their containing scope if it's open, or global scope
10507 otherwise. All other types (i.e. function-local named types) get
10508 the current active scope. */
10511 scope_die_for (tree t
, dw_die_ref context_die
)
10513 dw_die_ref scope_die
= NULL
;
10514 tree containing_scope
;
10517 /* Non-types always go in the current scope. */
10518 gcc_assert (TYPE_P (t
));
10520 containing_scope
= TYPE_CONTEXT (t
);
10522 /* Use the containing namespace if it was passed in (for a declaration). */
10523 if (containing_scope
&& TREE_CODE (containing_scope
) == NAMESPACE_DECL
)
10525 if (context_die
== lookup_decl_die (containing_scope
))
10528 containing_scope
= NULL_TREE
;
10531 /* Ignore function type "scopes" from the C frontend. They mean that
10532 a tagged type is local to a parmlist of a function declarator, but
10533 that isn't useful to DWARF. */
10534 if (containing_scope
&& TREE_CODE (containing_scope
) == FUNCTION_TYPE
)
10535 containing_scope
= NULL_TREE
;
10537 if (containing_scope
== NULL_TREE
)
10538 scope_die
= comp_unit_die
;
10539 else if (TYPE_P (containing_scope
))
10541 /* For types, we can just look up the appropriate DIE. But
10542 first we check to see if we're in the middle of emitting it
10543 so we know where the new DIE should go. */
10544 for (i
= VARRAY_ACTIVE_SIZE (decl_scope_table
) - 1; i
>= 0; --i
)
10545 if (VARRAY_TREE (decl_scope_table
, i
) == containing_scope
)
10550 gcc_assert (debug_info_level
<= DINFO_LEVEL_TERSE
10551 || TREE_ASM_WRITTEN (containing_scope
));
10553 /* If none of the current dies are suitable, we get file scope. */
10554 scope_die
= comp_unit_die
;
10557 scope_die
= lookup_type_die (containing_scope
);
10560 scope_die
= context_die
;
10565 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10568 local_scope_p (dw_die_ref context_die
)
10570 for (; context_die
; context_die
= context_die
->die_parent
)
10571 if (context_die
->die_tag
== DW_TAG_inlined_subroutine
10572 || context_die
->die_tag
== DW_TAG_subprogram
)
10578 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10579 whether or not to treat a DIE in this context as a declaration. */
10582 class_or_namespace_scope_p (dw_die_ref context_die
)
10584 return (context_die
10585 && (context_die
->die_tag
== DW_TAG_structure_type
10586 || context_die
->die_tag
== DW_TAG_union_type
10587 || context_die
->die_tag
== DW_TAG_namespace
));
10590 /* Many forms of DIEs require a "type description" attribute. This
10591 routine locates the proper "type descriptor" die for the type given
10592 by 'type', and adds a DW_AT_type attribute below the given die. */
10595 add_type_attribute (dw_die_ref object_die
, tree type
, int decl_const
,
10596 int decl_volatile
, dw_die_ref context_die
)
10598 enum tree_code code
= TREE_CODE (type
);
10599 dw_die_ref type_die
= NULL
;
10601 /* ??? If this type is an unnamed subrange type of an integral or
10602 floating-point type, use the inner type. This is because we have no
10603 support for unnamed types in base_type_die. This can happen if this is
10604 an Ada subrange type. Correct solution is emit a subrange type die. */
10605 if ((code
== INTEGER_TYPE
|| code
== REAL_TYPE
)
10606 && TREE_TYPE (type
) != 0 && TYPE_NAME (type
) == 0)
10607 type
= TREE_TYPE (type
), code
= TREE_CODE (type
);
10609 if (code
== ERROR_MARK
10610 /* Handle a special case. For functions whose return type is void, we
10611 generate *no* type attribute. (Note that no object may have type
10612 `void', so this only applies to function return types). */
10613 || code
== VOID_TYPE
)
10616 type_die
= modified_type_die (type
,
10617 decl_const
|| TYPE_READONLY (type
),
10618 decl_volatile
|| TYPE_VOLATILE (type
),
10621 if (type_die
!= NULL
)
10622 add_AT_die_ref (object_die
, DW_AT_type
, type_die
);
10625 /* Given an object die, add the calling convention attribute for the
10626 function call type. */
10628 add_calling_convention_attribute (dw_die_ref subr_die
, tree type
)
10630 enum dwarf_calling_convention value
= DW_CC_normal
;
10632 value
= targetm
.dwarf_calling_convention (type
);
10634 /* Only add the attribute if the backend requests it. */
10636 add_AT_unsigned (subr_die
, DW_AT_calling_convention
, value
);
10639 /* Given a tree pointer to a struct, class, union, or enum type node, return
10640 a pointer to the (string) tag name for the given type, or zero if the type
10641 was declared without a tag. */
10643 static const char *
10644 type_tag (tree type
)
10646 const char *name
= 0;
10648 if (TYPE_NAME (type
) != 0)
10652 /* Find the IDENTIFIER_NODE for the type name. */
10653 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
)
10654 t
= TYPE_NAME (type
);
10656 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10657 a TYPE_DECL node, regardless of whether or not a `typedef' was
10659 else if (TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
10660 && ! DECL_IGNORED_P (TYPE_NAME (type
)))
10661 t
= DECL_NAME (TYPE_NAME (type
));
10663 /* Now get the name as a string, or invent one. */
10665 name
= IDENTIFIER_POINTER (t
);
10668 return (name
== 0 || *name
== '\0') ? 0 : name
;
10671 /* Return the type associated with a data member, make a special check
10672 for bit field types. */
10675 member_declared_type (tree member
)
10677 return (DECL_BIT_FIELD_TYPE (member
)
10678 ? DECL_BIT_FIELD_TYPE (member
) : TREE_TYPE (member
));
10681 /* Get the decl's label, as described by its RTL. This may be different
10682 from the DECL_NAME name used in the source file. */
10685 static const char *
10686 decl_start_label (tree decl
)
10689 const char *fnname
;
10691 x
= DECL_RTL (decl
);
10692 gcc_assert (MEM_P (x
));
10695 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
10697 fnname
= XSTR (x
, 0);
10702 /* These routines generate the internal representation of the DIE's for
10703 the compilation unit. Debugging information is collected by walking
10704 the declaration trees passed in from dwarf2out_decl(). */
10707 gen_array_type_die (tree type
, dw_die_ref context_die
)
10709 dw_die_ref scope_die
= scope_die_for (type
, context_die
);
10710 dw_die_ref array_die
;
10713 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10714 the inner array type comes before the outer array type. Thus we must
10715 call gen_type_die before we call new_die. See below also. */
10716 #ifdef MIPS_DEBUGGING_INFO
10717 gen_type_die (TREE_TYPE (type
), context_die
);
10720 array_die
= new_die (DW_TAG_array_type
, scope_die
, type
);
10721 add_name_attribute (array_die
, type_tag (type
));
10722 equate_type_number_to_die (type
, array_die
);
10724 if (TREE_CODE (type
) == VECTOR_TYPE
)
10726 /* The frontend feeds us a representation for the vector as a struct
10727 containing an array. Pull out the array type. */
10728 type
= TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type
)));
10729 add_AT_flag (array_die
, DW_AT_GNU_vector
, 1);
10733 /* We default the array ordering. SDB will probably do
10734 the right things even if DW_AT_ordering is not present. It's not even
10735 an issue until we start to get into multidimensional arrays anyway. If
10736 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10737 then we'll have to put the DW_AT_ordering attribute back in. (But if
10738 and when we find out that we need to put these in, we will only do so
10739 for multidimensional arrays. */
10740 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_row_major
);
10743 #ifdef MIPS_DEBUGGING_INFO
10744 /* The SGI compilers handle arrays of unknown bound by setting
10745 AT_declaration and not emitting any subrange DIEs. */
10746 if (! TYPE_DOMAIN (type
))
10747 add_AT_flag (array_die
, DW_AT_declaration
, 1);
10750 add_subscript_info (array_die
, type
);
10752 /* Add representation of the type of the elements of this array type. */
10753 element_type
= TREE_TYPE (type
);
10755 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10756 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10757 We work around this by disabling this feature. See also
10758 add_subscript_info. */
10759 #ifndef MIPS_DEBUGGING_INFO
10760 while (TREE_CODE (element_type
) == ARRAY_TYPE
)
10761 element_type
= TREE_TYPE (element_type
);
10763 gen_type_die (element_type
, context_die
);
10766 add_type_attribute (array_die
, element_type
, 0, 0, context_die
);
10770 gen_set_type_die (tree type
, dw_die_ref context_die
)
10772 dw_die_ref type_die
10773 = new_die (DW_TAG_set_type
, scope_die_for (type
, context_die
), type
);
10775 equate_type_number_to_die (type
, type_die
);
10776 add_type_attribute (type_die
, TREE_TYPE (type
), 0, 0, context_die
);
10781 gen_entry_point_die (tree decl
, dw_die_ref context_die
)
10783 tree origin
= decl_ultimate_origin (decl
);
10784 dw_die_ref decl_die
= new_die (DW_TAG_entry_point
, context_die
, decl
);
10786 if (origin
!= NULL
)
10787 add_abstract_origin_attribute (decl_die
, origin
);
10790 add_name_and_src_coords_attributes (decl_die
, decl
);
10791 add_type_attribute (decl_die
, TREE_TYPE (TREE_TYPE (decl
)),
10792 0, 0, context_die
);
10795 if (DECL_ABSTRACT (decl
))
10796 equate_decl_number_to_die (decl
, decl_die
);
10798 add_AT_lbl_id (decl_die
, DW_AT_low_pc
, decl_start_label (decl
));
10802 /* Walk through the list of incomplete types again, trying once more to
10803 emit full debugging info for them. */
10806 retry_incomplete_types (void)
10810 for (i
= VARRAY_ACTIVE_SIZE (incomplete_types
) - 1; i
>= 0; i
--)
10811 gen_type_die (VARRAY_TREE (incomplete_types
, i
), comp_unit_die
);
10814 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10817 gen_inlined_enumeration_type_die (tree type
, dw_die_ref context_die
)
10819 dw_die_ref type_die
= new_die (DW_TAG_enumeration_type
, context_die
, type
);
10821 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10822 be incomplete and such types are not marked. */
10823 add_abstract_origin_attribute (type_die
, type
);
10826 /* Generate a DIE to represent an inlined instance of a structure type. */
10829 gen_inlined_structure_type_die (tree type
, dw_die_ref context_die
)
10831 dw_die_ref type_die
= new_die (DW_TAG_structure_type
, context_die
, type
);
10833 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10834 be incomplete and such types are not marked. */
10835 add_abstract_origin_attribute (type_die
, type
);
10838 /* Generate a DIE to represent an inlined instance of a union type. */
10841 gen_inlined_union_type_die (tree type
, dw_die_ref context_die
)
10843 dw_die_ref type_die
= new_die (DW_TAG_union_type
, context_die
, type
);
10845 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10846 be incomplete and such types are not marked. */
10847 add_abstract_origin_attribute (type_die
, type
);
10850 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10851 include all of the information about the enumeration values also. Each
10852 enumerated type name/value is listed as a child of the enumerated type
10856 gen_enumeration_type_die (tree type
, dw_die_ref context_die
)
10858 dw_die_ref type_die
= lookup_type_die (type
);
10860 if (type_die
== NULL
)
10862 type_die
= new_die (DW_TAG_enumeration_type
,
10863 scope_die_for (type
, context_die
), type
);
10864 equate_type_number_to_die (type
, type_die
);
10865 add_name_attribute (type_die
, type_tag (type
));
10867 else if (! TYPE_SIZE (type
))
10870 remove_AT (type_die
, DW_AT_declaration
);
10872 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10873 given enum type is incomplete, do not generate the DW_AT_byte_size
10874 attribute or the DW_AT_element_list attribute. */
10875 if (TYPE_SIZE (type
))
10879 TREE_ASM_WRITTEN (type
) = 1;
10880 add_byte_size_attribute (type_die
, type
);
10881 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
10882 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
10884 /* If the first reference to this type was as the return type of an
10885 inline function, then it may not have a parent. Fix this now. */
10886 if (type_die
->die_parent
== NULL
)
10887 add_child_die (scope_die_for (type
, context_die
), type_die
);
10889 for (link
= TYPE_VALUES (type
);
10890 link
!= NULL
; link
= TREE_CHAIN (link
))
10892 dw_die_ref enum_die
= new_die (DW_TAG_enumerator
, type_die
, link
);
10893 tree value
= TREE_VALUE (link
);
10895 add_name_attribute (enum_die
,
10896 IDENTIFIER_POINTER (TREE_PURPOSE (link
)));
10898 if (host_integerp (value
, TYPE_UNSIGNED (TREE_TYPE (value
))))
10899 /* DWARF2 does not provide a way of indicating whether or
10900 not enumeration constants are signed or unsigned. GDB
10901 always assumes the values are signed, so we output all
10902 values as if they were signed. That means that
10903 enumeration constants with very large unsigned values
10904 will appear to have negative values in the debugger. */
10905 add_AT_int (enum_die
, DW_AT_const_value
,
10906 tree_low_cst (value
, tree_int_cst_sgn (value
) > 0));
10910 add_AT_flag (type_die
, DW_AT_declaration
, 1);
10915 /* Generate a DIE to represent either a real live formal parameter decl or to
10916 represent just the type of some formal parameter position in some function
10919 Note that this routine is a bit unusual because its argument may be a
10920 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10921 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10922 node. If it's the former then this function is being called to output a
10923 DIE to represent a formal parameter object (or some inlining thereof). If
10924 it's the latter, then this function is only being called to output a
10925 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10926 argument type of some subprogram type. */
10929 gen_formal_parameter_die (tree node
, dw_die_ref context_die
)
10931 dw_die_ref parm_die
10932 = new_die (DW_TAG_formal_parameter
, context_die
, node
);
10935 switch (TREE_CODE_CLASS (TREE_CODE (node
)))
10937 case tcc_declaration
:
10938 origin
= decl_ultimate_origin (node
);
10939 if (origin
!= NULL
)
10940 add_abstract_origin_attribute (parm_die
, origin
);
10943 add_name_and_src_coords_attributes (parm_die
, node
);
10944 add_type_attribute (parm_die
, TREE_TYPE (node
),
10945 TREE_READONLY (node
),
10946 TREE_THIS_VOLATILE (node
),
10948 if (DECL_ARTIFICIAL (node
))
10949 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
10952 equate_decl_number_to_die (node
, parm_die
);
10953 if (! DECL_ABSTRACT (node
))
10954 add_location_or_const_value_attribute (parm_die
, node
, DW_AT_location
);
10959 /* We were called with some kind of a ..._TYPE node. */
10960 add_type_attribute (parm_die
, node
, 0, 0, context_die
);
10964 gcc_unreachable ();
10970 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10971 at the end of an (ANSI prototyped) formal parameters list. */
10974 gen_unspecified_parameters_die (tree decl_or_type
, dw_die_ref context_die
)
10976 new_die (DW_TAG_unspecified_parameters
, context_die
, decl_or_type
);
10979 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10980 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10981 parameters as specified in some function type specification (except for
10982 those which appear as part of a function *definition*). */
10985 gen_formal_types_die (tree function_or_method_type
, dw_die_ref context_die
)
10988 tree formal_type
= NULL
;
10989 tree first_parm_type
;
10992 if (TREE_CODE (function_or_method_type
) == FUNCTION_DECL
)
10994 arg
= DECL_ARGUMENTS (function_or_method_type
);
10995 function_or_method_type
= TREE_TYPE (function_or_method_type
);
11000 first_parm_type
= TYPE_ARG_TYPES (function_or_method_type
);
11002 /* Make our first pass over the list of formal parameter types and output a
11003 DW_TAG_formal_parameter DIE for each one. */
11004 for (link
= first_parm_type
; link
; )
11006 dw_die_ref parm_die
;
11008 formal_type
= TREE_VALUE (link
);
11009 if (formal_type
== void_type_node
)
11012 /* Output a (nameless) DIE to represent the formal parameter itself. */
11013 parm_die
= gen_formal_parameter_die (formal_type
, context_die
);
11014 if ((TREE_CODE (function_or_method_type
) == METHOD_TYPE
11015 && link
== first_parm_type
)
11016 || (arg
&& DECL_ARTIFICIAL (arg
)))
11017 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
11019 link
= TREE_CHAIN (link
);
11021 arg
= TREE_CHAIN (arg
);
11024 /* If this function type has an ellipsis, add a
11025 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11026 if (formal_type
!= void_type_node
)
11027 gen_unspecified_parameters_die (function_or_method_type
, context_die
);
11029 /* Make our second (and final) pass over the list of formal parameter types
11030 and output DIEs to represent those types (as necessary). */
11031 for (link
= TYPE_ARG_TYPES (function_or_method_type
);
11032 link
&& TREE_VALUE (link
);
11033 link
= TREE_CHAIN (link
))
11034 gen_type_die (TREE_VALUE (link
), context_die
);
11037 /* We want to generate the DIE for TYPE so that we can generate the
11038 die for MEMBER, which has been defined; we will need to refer back
11039 to the member declaration nested within TYPE. If we're trying to
11040 generate minimal debug info for TYPE, processing TYPE won't do the
11041 trick; we need to attach the member declaration by hand. */
11044 gen_type_die_for_member (tree type
, tree member
, dw_die_ref context_die
)
11046 gen_type_die (type
, context_die
);
11048 /* If we're trying to avoid duplicate debug info, we may not have
11049 emitted the member decl for this function. Emit it now. */
11050 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))
11051 && ! lookup_decl_die (member
))
11053 gcc_assert (!decl_ultimate_origin (member
));
11055 push_decl_scope (type
);
11056 if (TREE_CODE (member
) == FUNCTION_DECL
)
11057 gen_subprogram_die (member
, lookup_type_die (type
));
11059 gen_variable_die (member
, lookup_type_die (type
));
11065 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11066 may later generate inlined and/or out-of-line instances of. */
11069 dwarf2out_abstract_function (tree decl
)
11071 dw_die_ref old_die
;
11074 int was_abstract
= DECL_ABSTRACT (decl
);
11076 /* Make sure we have the actual abstract inline, not a clone. */
11077 decl
= DECL_ORIGIN (decl
);
11079 old_die
= lookup_decl_die (decl
);
11080 if (old_die
&& get_AT (old_die
, DW_AT_inline
))
11081 /* We've already generated the abstract instance. */
11084 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11085 we don't get confused by DECL_ABSTRACT. */
11086 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11088 context
= decl_class_context (decl
);
11090 gen_type_die_for_member
11091 (context
, decl
, decl_function_context (decl
) ? NULL
: comp_unit_die
);
11094 /* Pretend we've just finished compiling this function. */
11095 save_fn
= current_function_decl
;
11096 current_function_decl
= decl
;
11098 set_decl_abstract_flags (decl
, 1);
11099 dwarf2out_decl (decl
);
11100 if (! was_abstract
)
11101 set_decl_abstract_flags (decl
, 0);
11103 current_function_decl
= save_fn
;
11106 /* Generate a DIE to represent a declared function (either file-scope or
11110 gen_subprogram_die (tree decl
, dw_die_ref context_die
)
11112 char label_id
[MAX_ARTIFICIAL_LABEL_BYTES
];
11113 tree origin
= decl_ultimate_origin (decl
);
11114 dw_die_ref subr_die
;
11118 dw_die_ref old_die
= lookup_decl_die (decl
);
11119 int declaration
= (current_function_decl
!= decl
11120 || class_or_namespace_scope_p (context_die
));
11122 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11123 started to generate the abstract instance of an inline, decided to output
11124 its containing class, and proceeded to emit the declaration of the inline
11125 from the member list for the class. If so, DECLARATION takes priority;
11126 we'll get back to the abstract instance when done with the class. */
11128 /* The class-scope declaration DIE must be the primary DIE. */
11129 if (origin
&& declaration
&& class_or_namespace_scope_p (context_die
))
11132 gcc_assert (!old_die
);
11135 if (origin
!= NULL
)
11137 gcc_assert (!declaration
|| local_scope_p (context_die
));
11139 /* Fixup die_parent for the abstract instance of a nested
11140 inline function. */
11141 if (old_die
&& old_die
->die_parent
== NULL
)
11142 add_child_die (context_die
, old_die
);
11144 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
11145 add_abstract_origin_attribute (subr_die
, origin
);
11149 expanded_location s
= expand_location (DECL_SOURCE_LOCATION (decl
));
11150 unsigned file_index
= lookup_filename (s
.file
);
11152 if (!get_AT_flag (old_die
, DW_AT_declaration
)
11153 /* We can have a normal definition following an inline one in the
11154 case of redefinition of GNU C extern inlines.
11155 It seems reasonable to use AT_specification in this case. */
11156 && !get_AT (old_die
, DW_AT_inline
))
11158 /* ??? This can happen if there is a bug in the program, for
11159 instance, if it has duplicate function definitions. Ideally,
11160 we should detect this case and ignore it. For now, if we have
11161 already reported an error, any error at all, then assume that
11162 we got here because of an input error, not a dwarf2 bug. */
11163 gcc_assert (errorcount
);
11167 /* If the definition comes from the same place as the declaration,
11168 maybe use the old DIE. We always want the DIE for this function
11169 that has the *_pc attributes to be under comp_unit_die so the
11170 debugger can find it. We also need to do this for abstract
11171 instances of inlines, since the spec requires the out-of-line copy
11172 to have the same parent. For local class methods, this doesn't
11173 apply; we just use the old DIE. */
11174 if ((old_die
->die_parent
== comp_unit_die
|| context_die
== NULL
)
11175 && (DECL_ARTIFICIAL (decl
)
11176 || (get_AT_unsigned (old_die
, DW_AT_decl_file
) == file_index
11177 && (get_AT_unsigned (old_die
, DW_AT_decl_line
)
11178 == (unsigned) s
.line
))))
11180 subr_die
= old_die
;
11182 /* Clear out the declaration attribute and the formal parameters.
11183 Do not remove all children, because it is possible that this
11184 declaration die was forced using force_decl_die(). In such
11185 cases die that forced declaration die (e.g. TAG_imported_module)
11186 is one of the children that we do not want to remove. */
11187 remove_AT (subr_die
, DW_AT_declaration
);
11188 remove_child_TAG (subr_die
, DW_TAG_formal_parameter
);
11192 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
11193 add_AT_specification (subr_die
, old_die
);
11194 if (get_AT_unsigned (old_die
, DW_AT_decl_file
) != file_index
)
11195 add_AT_unsigned (subr_die
, DW_AT_decl_file
, file_index
);
11196 if (get_AT_unsigned (old_die
, DW_AT_decl_line
)
11197 != (unsigned) s
.line
)
11199 (subr_die
, DW_AT_decl_line
, s
.line
);
11204 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
11206 if (TREE_PUBLIC (decl
))
11207 add_AT_flag (subr_die
, DW_AT_external
, 1);
11209 add_name_and_src_coords_attributes (subr_die
, decl
);
11210 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11212 add_prototyped_attribute (subr_die
, TREE_TYPE (decl
));
11213 add_type_attribute (subr_die
, TREE_TYPE (TREE_TYPE (decl
)),
11214 0, 0, context_die
);
11217 add_pure_or_virtual_attribute (subr_die
, decl
);
11218 if (DECL_ARTIFICIAL (decl
))
11219 add_AT_flag (subr_die
, DW_AT_artificial
, 1);
11221 if (TREE_PROTECTED (decl
))
11222 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
11223 else if (TREE_PRIVATE (decl
))
11224 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_private
);
11229 if (!old_die
|| !get_AT (old_die
, DW_AT_inline
))
11231 add_AT_flag (subr_die
, DW_AT_declaration
, 1);
11233 /* The first time we see a member function, it is in the context of
11234 the class to which it belongs. We make sure of this by emitting
11235 the class first. The next time is the definition, which is
11236 handled above. The two may come from the same source text.
11238 Note that force_decl_die() forces function declaration die. It is
11239 later reused to represent definition. */
11240 equate_decl_number_to_die (decl
, subr_die
);
11243 else if (DECL_ABSTRACT (decl
))
11245 if (DECL_DECLARED_INLINE_P (decl
))
11247 if (cgraph_function_possibly_inlined_p (decl
))
11248 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_inlined
);
11250 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_not_inlined
);
11254 if (cgraph_function_possibly_inlined_p (decl
))
11255 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_inlined
);
11257 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_not_inlined
);
11260 equate_decl_number_to_die (decl
, subr_die
);
11262 else if (!DECL_EXTERNAL (decl
))
11264 if (!old_die
|| !get_AT (old_die
, DW_AT_inline
))
11265 equate_decl_number_to_die (decl
, subr_die
);
11267 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_BEGIN_LABEL
,
11268 current_function_funcdef_no
);
11269 add_AT_lbl_id (subr_die
, DW_AT_low_pc
, label_id
);
11270 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_END_LABEL
,
11271 current_function_funcdef_no
);
11272 add_AT_lbl_id (subr_die
, DW_AT_high_pc
, label_id
);
11274 add_pubname (decl
, subr_die
);
11275 add_arange (decl
, subr_die
);
11277 #ifdef MIPS_DEBUGGING_INFO
11278 /* Add a reference to the FDE for this routine. */
11279 add_AT_fde_ref (subr_die
, DW_AT_MIPS_fde
, current_funcdef_fde
);
11282 /* Define the "frame base" location for this routine. We use the
11283 frame pointer or stack pointer registers, since the RTL for local
11284 variables is relative to one of them. */
11285 if (frame_base_decl
&& lookup_decl_loc (frame_base_decl
) != NULL
)
11287 add_location_or_const_value_attribute (subr_die
, frame_base_decl
,
11293 = frame_pointer_needed
? hard_frame_pointer_rtx
: stack_pointer_rtx
;
11294 add_AT_loc (subr_die
, DW_AT_frame_base
, reg_loc_descriptor (fp_reg
));
11297 if (cfun
->static_chain_decl
)
11298 add_AT_location_description (subr_die
, DW_AT_static_link
,
11299 loc_descriptor_from_tree (cfun
->static_chain_decl
));
11302 /* Now output descriptions of the arguments for this function. This gets
11303 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11304 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11305 `...' at the end of the formal parameter list. In order to find out if
11306 there was a trailing ellipsis or not, we must instead look at the type
11307 associated with the FUNCTION_DECL. This will be a node of type
11308 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11309 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11310 an ellipsis at the end. */
11312 /* In the case where we are describing a mere function declaration, all we
11313 need to do here (and all we *can* do here) is to describe the *types* of
11314 its formal parameters. */
11315 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
11317 else if (declaration
)
11318 gen_formal_types_die (decl
, subr_die
);
11321 /* Generate DIEs to represent all known formal parameters. */
11322 tree arg_decls
= DECL_ARGUMENTS (decl
);
11325 /* When generating DIEs, generate the unspecified_parameters DIE
11326 instead if we come across the arg "__builtin_va_alist" */
11327 for (parm
= arg_decls
; parm
; parm
= TREE_CHAIN (parm
))
11328 if (TREE_CODE (parm
) == PARM_DECL
)
11330 if (DECL_NAME (parm
)
11331 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm
)),
11332 "__builtin_va_alist"))
11333 gen_unspecified_parameters_die (parm
, subr_die
);
11335 gen_decl_die (parm
, subr_die
);
11338 /* Decide whether we need an unspecified_parameters DIE at the end.
11339 There are 2 more cases to do this for: 1) the ansi ... declaration -
11340 this is detectable when the end of the arg list is not a
11341 void_type_node 2) an unprototyped function declaration (not a
11342 definition). This just means that we have no info about the
11343 parameters at all. */
11344 fn_arg_types
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
11345 if (fn_arg_types
!= NULL
)
11347 /* This is the prototyped case, check for.... */
11348 if (TREE_VALUE (tree_last (fn_arg_types
)) != void_type_node
)
11349 gen_unspecified_parameters_die (decl
, subr_die
);
11351 else if (DECL_INITIAL (decl
) == NULL_TREE
)
11352 gen_unspecified_parameters_die (decl
, subr_die
);
11355 /* Output Dwarf info for all of the stuff within the body of the function
11356 (if it has one - it may be just a declaration). */
11357 outer_scope
= DECL_INITIAL (decl
);
11359 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11360 a function. This BLOCK actually represents the outermost binding contour
11361 for the function, i.e. the contour in which the function's formal
11362 parameters and labels get declared. Curiously, it appears that the front
11363 end doesn't actually put the PARM_DECL nodes for the current function onto
11364 the BLOCK_VARS list for this outer scope, but are strung off of the
11365 DECL_ARGUMENTS list for the function instead.
11367 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11368 the LABEL_DECL nodes for the function however, and we output DWARF info
11369 for those in decls_for_scope. Just within the `outer_scope' there will be
11370 a BLOCK node representing the function's outermost pair of curly braces,
11371 and any blocks used for the base and member initializers of a C++
11372 constructor function. */
11373 if (! declaration
&& TREE_CODE (outer_scope
) != ERROR_MARK
)
11375 /* Emit a DW_TAG_variable DIE for a named return value. */
11376 if (DECL_NAME (DECL_RESULT (decl
)))
11377 gen_decl_die (DECL_RESULT (decl
), subr_die
);
11379 current_function_has_inlines
= 0;
11380 decls_for_scope (outer_scope
, subr_die
, 0);
11382 #if 0 && defined (MIPS_DEBUGGING_INFO)
11383 if (current_function_has_inlines
)
11385 add_AT_flag (subr_die
, DW_AT_MIPS_has_inlines
, 1);
11386 if (! comp_unit_has_inlines
)
11388 add_AT_flag (comp_unit_die
, DW_AT_MIPS_has_inlines
, 1);
11389 comp_unit_has_inlines
= 1;
11396 /* Generate a DIE to represent a declared data object. */
11399 gen_variable_die (tree decl
, dw_die_ref context_die
)
11401 tree origin
= decl_ultimate_origin (decl
);
11402 dw_die_ref var_die
= new_die (DW_TAG_variable
, context_die
, decl
);
11404 dw_die_ref old_die
= lookup_decl_die (decl
);
11405 int declaration
= (DECL_EXTERNAL (decl
)
11406 || class_or_namespace_scope_p (context_die
));
11408 if (origin
!= NULL
)
11409 add_abstract_origin_attribute (var_die
, origin
);
11411 /* Loop unrolling can create multiple blocks that refer to the same
11412 static variable, so we must test for the DW_AT_declaration flag.
11414 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11415 copy decls and set the DECL_ABSTRACT flag on them instead of
11418 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11419 else if (old_die
&& TREE_STATIC (decl
)
11420 && get_AT_flag (old_die
, DW_AT_declaration
) == 1)
11422 /* This is a definition of a C++ class level static. */
11423 add_AT_specification (var_die
, old_die
);
11424 if (DECL_NAME (decl
))
11426 expanded_location s
= expand_location (DECL_SOURCE_LOCATION (decl
));
11427 unsigned file_index
= lookup_filename (s
.file
);
11429 if (get_AT_unsigned (old_die
, DW_AT_decl_file
) != file_index
)
11430 add_AT_unsigned (var_die
, DW_AT_decl_file
, file_index
);
11432 if (get_AT_unsigned (old_die
, DW_AT_decl_line
)
11433 != (unsigned) s
.line
)
11435 add_AT_unsigned (var_die
, DW_AT_decl_line
, s
.line
);
11440 add_name_and_src_coords_attributes (var_die
, decl
);
11441 add_type_attribute (var_die
, TREE_TYPE (decl
), TREE_READONLY (decl
),
11442 TREE_THIS_VOLATILE (decl
), context_die
);
11444 if (TREE_PUBLIC (decl
))
11445 add_AT_flag (var_die
, DW_AT_external
, 1);
11447 if (DECL_ARTIFICIAL (decl
))
11448 add_AT_flag (var_die
, DW_AT_artificial
, 1);
11450 if (TREE_PROTECTED (decl
))
11451 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
11452 else if (TREE_PRIVATE (decl
))
11453 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_private
);
11457 add_AT_flag (var_die
, DW_AT_declaration
, 1);
11459 if (DECL_ABSTRACT (decl
) || declaration
)
11460 equate_decl_number_to_die (decl
, var_die
);
11462 if (! declaration
&& ! DECL_ABSTRACT (decl
))
11464 add_location_or_const_value_attribute (var_die
, decl
, DW_AT_location
);
11465 add_pubname (decl
, var_die
);
11468 tree_add_const_value_attribute (var_die
, decl
);
11471 /* Generate a DIE to represent a label identifier. */
11474 gen_label_die (tree decl
, dw_die_ref context_die
)
11476 tree origin
= decl_ultimate_origin (decl
);
11477 dw_die_ref lbl_die
= new_die (DW_TAG_label
, context_die
, decl
);
11479 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
11481 if (origin
!= NULL
)
11482 add_abstract_origin_attribute (lbl_die
, origin
);
11484 add_name_and_src_coords_attributes (lbl_die
, decl
);
11486 if (DECL_ABSTRACT (decl
))
11487 equate_decl_number_to_die (decl
, lbl_die
);
11490 insn
= DECL_RTL_IF_SET (decl
);
11492 /* Deleted labels are programmer specified labels which have been
11493 eliminated because of various optimizations. We still emit them
11494 here so that it is possible to put breakpoints on them. */
11498 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_DELETED_LABEL
))))
11500 /* When optimization is enabled (via -O) some parts of the compiler
11501 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11502 represent source-level labels which were explicitly declared by
11503 the user. This really shouldn't be happening though, so catch
11504 it if it ever does happen. */
11505 gcc_assert (!INSN_DELETED_P (insn
));
11507 ASM_GENERATE_INTERNAL_LABEL (label
, "L", CODE_LABEL_NUMBER (insn
));
11508 add_AT_lbl_id (lbl_die
, DW_AT_low_pc
, label
);
11513 /* Generate a DIE for a lexical block. */
11516 gen_lexical_block_die (tree stmt
, dw_die_ref context_die
, int depth
)
11518 dw_die_ref stmt_die
= new_die (DW_TAG_lexical_block
, context_die
, stmt
);
11519 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
11521 if (! BLOCK_ABSTRACT (stmt
))
11523 if (BLOCK_FRAGMENT_CHAIN (stmt
))
11527 add_AT_range_list (stmt_die
, DW_AT_ranges
, add_ranges (stmt
));
11529 chain
= BLOCK_FRAGMENT_CHAIN (stmt
);
11532 add_ranges (chain
);
11533 chain
= BLOCK_FRAGMENT_CHAIN (chain
);
11540 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
11541 BLOCK_NUMBER (stmt
));
11542 add_AT_lbl_id (stmt_die
, DW_AT_low_pc
, label
);
11543 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_END_LABEL
,
11544 BLOCK_NUMBER (stmt
));
11545 add_AT_lbl_id (stmt_die
, DW_AT_high_pc
, label
);
11549 decls_for_scope (stmt
, stmt_die
, depth
);
11552 /* Generate a DIE for an inlined subprogram. */
11555 gen_inlined_subroutine_die (tree stmt
, dw_die_ref context_die
, int depth
)
11557 tree decl
= block_ultimate_origin (stmt
);
11559 /* Emit info for the abstract instance first, if we haven't yet. We
11560 must emit this even if the block is abstract, otherwise when we
11561 emit the block below (or elsewhere), we may end up trying to emit
11562 a die whose origin die hasn't been emitted, and crashing. */
11563 dwarf2out_abstract_function (decl
);
11565 if (! BLOCK_ABSTRACT (stmt
))
11567 dw_die_ref subr_die
11568 = new_die (DW_TAG_inlined_subroutine
, context_die
, stmt
);
11569 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
11571 add_abstract_origin_attribute (subr_die
, decl
);
11572 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
11573 BLOCK_NUMBER (stmt
));
11574 add_AT_lbl_id (subr_die
, DW_AT_low_pc
, label
);
11575 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_END_LABEL
,
11576 BLOCK_NUMBER (stmt
));
11577 add_AT_lbl_id (subr_die
, DW_AT_high_pc
, label
);
11578 decls_for_scope (stmt
, subr_die
, depth
);
11579 current_function_has_inlines
= 1;
11582 /* We may get here if we're the outer block of function A that was
11583 inlined into function B that was inlined into function C. When
11584 generating debugging info for C, dwarf2out_abstract_function(B)
11585 would mark all inlined blocks as abstract, including this one.
11586 So, we wouldn't (and shouldn't) expect labels to be generated
11587 for this one. Instead, just emit debugging info for
11588 declarations within the block. This is particularly important
11589 in the case of initializers of arguments passed from B to us:
11590 if they're statement expressions containing declarations, we
11591 wouldn't generate dies for their abstract variables, and then,
11592 when generating dies for the real variables, we'd die (pun
11594 gen_lexical_block_die (stmt
, context_die
, depth
);
11597 /* Generate a DIE for a field in a record, or structure. */
11600 gen_field_die (tree decl
, dw_die_ref context_die
)
11602 dw_die_ref decl_die
;
11604 if (TREE_TYPE (decl
) == error_mark_node
)
11607 decl_die
= new_die (DW_TAG_member
, context_die
, decl
);
11608 add_name_and_src_coords_attributes (decl_die
, decl
);
11609 add_type_attribute (decl_die
, member_declared_type (decl
),
11610 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
),
11613 if (DECL_BIT_FIELD_TYPE (decl
))
11615 add_byte_size_attribute (decl_die
, decl
);
11616 add_bit_size_attribute (decl_die
, decl
);
11617 add_bit_offset_attribute (decl_die
, decl
);
11620 if (TREE_CODE (DECL_FIELD_CONTEXT (decl
)) != UNION_TYPE
)
11621 add_data_member_location_attribute (decl_die
, decl
);
11623 if (DECL_ARTIFICIAL (decl
))
11624 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
11626 if (TREE_PROTECTED (decl
))
11627 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
11628 else if (TREE_PRIVATE (decl
))
11629 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_private
);
11631 /* Equate decl number to die, so that we can look up this decl later on. */
11632 equate_decl_number_to_die (decl
, decl_die
);
11636 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11637 Use modified_type_die instead.
11638 We keep this code here just in case these types of DIEs may be needed to
11639 represent certain things in other languages (e.g. Pascal) someday. */
11642 gen_pointer_type_die (tree type
, dw_die_ref context_die
)
11645 = new_die (DW_TAG_pointer_type
, scope_die_for (type
, context_die
), type
);
11647 equate_type_number_to_die (type
, ptr_die
);
11648 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
11649 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
11652 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11653 Use modified_type_die instead.
11654 We keep this code here just in case these types of DIEs may be needed to
11655 represent certain things in other languages (e.g. Pascal) someday. */
11658 gen_reference_type_die (tree type
, dw_die_ref context_die
)
11661 = new_die (DW_TAG_reference_type
, scope_die_for (type
, context_die
), type
);
11663 equate_type_number_to_die (type
, ref_die
);
11664 add_type_attribute (ref_die
, TREE_TYPE (type
), 0, 0, context_die
);
11665 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
11669 /* Generate a DIE for a pointer to a member type. */
11672 gen_ptr_to_mbr_type_die (tree type
, dw_die_ref context_die
)
11675 = new_die (DW_TAG_ptr_to_member_type
,
11676 scope_die_for (type
, context_die
), type
);
11678 equate_type_number_to_die (type
, ptr_die
);
11679 add_AT_die_ref (ptr_die
, DW_AT_containing_type
,
11680 lookup_type_die (TYPE_OFFSET_BASETYPE (type
)));
11681 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
11684 /* Generate the DIE for the compilation unit. */
11687 gen_compile_unit_die (const char *filename
)
11690 char producer
[250];
11691 const char *language_string
= lang_hooks
.name
;
11694 die
= new_die (DW_TAG_compile_unit
, NULL
, NULL
);
11698 add_name_attribute (die
, filename
);
11699 /* Don't add cwd for <built-in>. */
11700 if (filename
[0] != DIR_SEPARATOR
&& filename
[0] != '<')
11701 add_comp_dir_attribute (die
);
11704 sprintf (producer
, "%s %s", language_string
, version_string
);
11706 #ifdef MIPS_DEBUGGING_INFO
11707 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11708 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11709 not appear in the producer string, the debugger reaches the conclusion
11710 that the object file is stripped and has no debugging information.
11711 To get the MIPS/SGI debugger to believe that there is debugging
11712 information in the object file, we add a -g to the producer string. */
11713 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11714 strcat (producer
, " -g");
11717 add_AT_string (die
, DW_AT_producer
, producer
);
11719 if (strcmp (language_string
, "GNU C++") == 0)
11720 language
= DW_LANG_C_plus_plus
;
11721 else if (strcmp (language_string
, "GNU Ada") == 0)
11722 language
= DW_LANG_Ada95
;
11723 else if (strcmp (language_string
, "GNU F77") == 0)
11724 language
= DW_LANG_Fortran77
;
11725 else if (strcmp (language_string
, "GNU F95") == 0)
11726 language
= DW_LANG_Fortran95
;
11727 else if (strcmp (language_string
, "GNU Pascal") == 0)
11728 language
= DW_LANG_Pascal83
;
11729 else if (strcmp (language_string
, "GNU Java") == 0)
11730 language
= DW_LANG_Java
;
11732 language
= DW_LANG_C89
;
11734 add_AT_unsigned (die
, DW_AT_language
, language
);
11738 /* Generate a DIE for a string type. */
11741 gen_string_type_die (tree type
, dw_die_ref context_die
)
11743 dw_die_ref type_die
11744 = new_die (DW_TAG_string_type
, scope_die_for (type
, context_die
), type
);
11746 equate_type_number_to_die (type
, type_die
);
11748 /* ??? Fudge the string length attribute for now.
11749 TODO: add string length info. */
11751 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type
)));
11752 bound_representation (upper_bound
, 0, 'u');
11756 /* Generate the DIE for a base class. */
11759 gen_inheritance_die (tree binfo
, tree access
, dw_die_ref context_die
)
11761 dw_die_ref die
= new_die (DW_TAG_inheritance
, context_die
, binfo
);
11763 add_type_attribute (die
, BINFO_TYPE (binfo
), 0, 0, context_die
);
11764 add_data_member_location_attribute (die
, binfo
);
11766 if (BINFO_VIRTUAL_P (binfo
))
11767 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
11769 if (access
== access_public_node
)
11770 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_public
);
11771 else if (access
== access_protected_node
)
11772 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_protected
);
11775 /* Generate a DIE for a class member. */
11778 gen_member_die (tree type
, dw_die_ref context_die
)
11781 tree binfo
= TYPE_BINFO (type
);
11784 /* If this is not an incomplete type, output descriptions of each of its
11785 members. Note that as we output the DIEs necessary to represent the
11786 members of this record or union type, we will also be trying to output
11787 DIEs to represent the *types* of those members. However the `type'
11788 function (above) will specifically avoid generating type DIEs for member
11789 types *within* the list of member DIEs for this (containing) type except
11790 for those types (of members) which are explicitly marked as also being
11791 members of this (containing) type themselves. The g++ front- end can
11792 force any given type to be treated as a member of some other (containing)
11793 type by setting the TYPE_CONTEXT of the given (member) type to point to
11794 the TREE node representing the appropriate (containing) type. */
11796 /* First output info about the base classes. */
11799 VEC (tree
) *accesses
= BINFO_BASE_ACCESSES (binfo
);
11803 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base
); i
++)
11804 gen_inheritance_die (base
,
11805 (accesses
? VEC_index (tree
, accesses
, i
)
11806 : access_public_node
), context_die
);
11809 /* Now output info about the data members and type members. */
11810 for (member
= TYPE_FIELDS (type
); member
; member
= TREE_CHAIN (member
))
11812 /* If we thought we were generating minimal debug info for TYPE
11813 and then changed our minds, some of the member declarations
11814 may have already been defined. Don't define them again, but
11815 do put them in the right order. */
11817 child
= lookup_decl_die (member
);
11819 splice_child_die (context_die
, child
);
11821 gen_decl_die (member
, context_die
);
11824 /* Now output info about the function members (if any). */
11825 for (member
= TYPE_METHODS (type
); member
; member
= TREE_CHAIN (member
))
11827 /* Don't include clones in the member list. */
11828 if (DECL_ABSTRACT_ORIGIN (member
))
11831 child
= lookup_decl_die (member
);
11833 splice_child_die (context_die
, child
);
11835 gen_decl_die (member
, context_die
);
11839 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11840 is set, we pretend that the type was never defined, so we only get the
11841 member DIEs needed by later specification DIEs. */
11844 gen_struct_or_union_type_die (tree type
, dw_die_ref context_die
)
11846 dw_die_ref type_die
= lookup_type_die (type
);
11847 dw_die_ref scope_die
= 0;
11849 int complete
= (TYPE_SIZE (type
)
11850 && (! TYPE_STUB_DECL (type
)
11851 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))));
11852 int ns_decl
= (context_die
&& context_die
->die_tag
== DW_TAG_namespace
);
11854 if (type_die
&& ! complete
)
11857 if (TYPE_CONTEXT (type
) != NULL_TREE
11858 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
11859 || TREE_CODE (TYPE_CONTEXT (type
)) == NAMESPACE_DECL
))
11862 scope_die
= scope_die_for (type
, context_die
);
11864 if (! type_die
|| (nested
&& scope_die
== comp_unit_die
))
11865 /* First occurrence of type or toplevel definition of nested class. */
11867 dw_die_ref old_die
= type_die
;
11869 type_die
= new_die (TREE_CODE (type
) == RECORD_TYPE
11870 ? DW_TAG_structure_type
: DW_TAG_union_type
,
11872 equate_type_number_to_die (type
, type_die
);
11874 add_AT_specification (type_die
, old_die
);
11876 add_name_attribute (type_die
, type_tag (type
));
11879 remove_AT (type_die
, DW_AT_declaration
);
11881 /* If this type has been completed, then give it a byte_size attribute and
11882 then give a list of members. */
11883 if (complete
&& !ns_decl
)
11885 /* Prevent infinite recursion in cases where the type of some member of
11886 this type is expressed in terms of this type itself. */
11887 TREE_ASM_WRITTEN (type
) = 1;
11888 add_byte_size_attribute (type_die
, type
);
11889 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
11890 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
11892 /* If the first reference to this type was as the return type of an
11893 inline function, then it may not have a parent. Fix this now. */
11894 if (type_die
->die_parent
== NULL
)
11895 add_child_die (scope_die
, type_die
);
11897 push_decl_scope (type
);
11898 gen_member_die (type
, type_die
);
11901 /* GNU extension: Record what type our vtable lives in. */
11902 if (TYPE_VFIELD (type
))
11904 tree vtype
= DECL_FCONTEXT (TYPE_VFIELD (type
));
11906 gen_type_die (vtype
, context_die
);
11907 add_AT_die_ref (type_die
, DW_AT_containing_type
,
11908 lookup_type_die (vtype
));
11913 add_AT_flag (type_die
, DW_AT_declaration
, 1);
11915 /* We don't need to do this for function-local types. */
11916 if (TYPE_STUB_DECL (type
)
11917 && ! decl_function_context (TYPE_STUB_DECL (type
)))
11918 VARRAY_PUSH_TREE (incomplete_types
, type
);
11922 /* Generate a DIE for a subroutine _type_. */
11925 gen_subroutine_type_die (tree type
, dw_die_ref context_die
)
11927 tree return_type
= TREE_TYPE (type
);
11928 dw_die_ref subr_die
11929 = new_die (DW_TAG_subroutine_type
,
11930 scope_die_for (type
, context_die
), type
);
11932 equate_type_number_to_die (type
, subr_die
);
11933 add_prototyped_attribute (subr_die
, type
);
11934 add_type_attribute (subr_die
, return_type
, 0, 0, context_die
);
11935 add_calling_convention_attribute (subr_die
, type
);
11936 gen_formal_types_die (type
, subr_die
);
11939 /* Generate a DIE for a type definition. */
11942 gen_typedef_die (tree decl
, dw_die_ref context_die
)
11944 dw_die_ref type_die
;
11947 if (TREE_ASM_WRITTEN (decl
))
11950 TREE_ASM_WRITTEN (decl
) = 1;
11951 type_die
= new_die (DW_TAG_typedef
, context_die
, decl
);
11952 origin
= decl_ultimate_origin (decl
);
11953 if (origin
!= NULL
)
11954 add_abstract_origin_attribute (type_die
, origin
);
11959 add_name_and_src_coords_attributes (type_die
, decl
);
11960 if (DECL_ORIGINAL_TYPE (decl
))
11962 type
= DECL_ORIGINAL_TYPE (decl
);
11964 gcc_assert (type
!= TREE_TYPE (decl
));
11965 equate_type_number_to_die (TREE_TYPE (decl
), type_die
);
11968 type
= TREE_TYPE (decl
);
11970 add_type_attribute (type_die
, type
, TREE_READONLY (decl
),
11971 TREE_THIS_VOLATILE (decl
), context_die
);
11974 if (DECL_ABSTRACT (decl
))
11975 equate_decl_number_to_die (decl
, type_die
);
11978 /* Generate a type description DIE. */
11981 gen_type_die (tree type
, dw_die_ref context_die
)
11985 if (type
== NULL_TREE
|| type
== error_mark_node
)
11988 if (TYPE_NAME (type
) && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
11989 && DECL_ORIGINAL_TYPE (TYPE_NAME (type
)))
11991 if (TREE_ASM_WRITTEN (type
))
11994 /* Prevent broken recursion; we can't hand off to the same type. */
11995 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type
)) != type
);
11997 TREE_ASM_WRITTEN (type
) = 1;
11998 gen_decl_die (TYPE_NAME (type
), context_die
);
12002 /* We are going to output a DIE to represent the unqualified version
12003 of this type (i.e. without any const or volatile qualifiers) so
12004 get the main variant (i.e. the unqualified version) of this type
12005 now. (Vectors are special because the debugging info is in the
12006 cloned type itself). */
12007 if (TREE_CODE (type
) != VECTOR_TYPE
)
12008 type
= type_main_variant (type
);
12010 if (TREE_ASM_WRITTEN (type
))
12013 switch (TREE_CODE (type
))
12019 case REFERENCE_TYPE
:
12020 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12021 ensures that the gen_type_die recursion will terminate even if the
12022 type is recursive. Recursive types are possible in Ada. */
12023 /* ??? We could perhaps do this for all types before the switch
12025 TREE_ASM_WRITTEN (type
) = 1;
12027 /* For these types, all that is required is that we output a DIE (or a
12028 set of DIEs) to represent the "basis" type. */
12029 gen_type_die (TREE_TYPE (type
), context_die
);
12033 /* This code is used for C++ pointer-to-data-member types.
12034 Output a description of the relevant class type. */
12035 gen_type_die (TYPE_OFFSET_BASETYPE (type
), context_die
);
12037 /* Output a description of the type of the object pointed to. */
12038 gen_type_die (TREE_TYPE (type
), context_die
);
12040 /* Now output a DIE to represent this pointer-to-data-member type
12042 gen_ptr_to_mbr_type_die (type
, context_die
);
12046 gen_type_die (TYPE_DOMAIN (type
), context_die
);
12047 gen_set_type_die (type
, context_die
);
12051 gen_type_die (TREE_TYPE (type
), context_die
);
12052 /* No way to represent these in Dwarf yet! */
12053 gcc_unreachable ();
12056 case FUNCTION_TYPE
:
12057 /* Force out return type (in case it wasn't forced out already). */
12058 gen_type_die (TREE_TYPE (type
), context_die
);
12059 gen_subroutine_type_die (type
, context_die
);
12063 /* Force out return type (in case it wasn't forced out already). */
12064 gen_type_die (TREE_TYPE (type
), context_die
);
12065 gen_subroutine_type_die (type
, context_die
);
12069 if (TYPE_STRING_FLAG (type
) && TREE_CODE (TREE_TYPE (type
)) == CHAR_TYPE
)
12071 gen_type_die (TREE_TYPE (type
), context_die
);
12072 gen_string_type_die (type
, context_die
);
12075 gen_array_type_die (type
, context_die
);
12079 gen_array_type_die (type
, context_die
);
12082 case ENUMERAL_TYPE
:
12085 case QUAL_UNION_TYPE
:
12086 /* If this is a nested type whose containing class hasn't been written
12087 out yet, writing it out will cover this one, too. This does not apply
12088 to instantiations of member class templates; they need to be added to
12089 the containing class as they are generated. FIXME: This hurts the
12090 idea of combining type decls from multiple TUs, since we can't predict
12091 what set of template instantiations we'll get. */
12092 if (TYPE_CONTEXT (type
)
12093 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
12094 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type
)))
12096 gen_type_die (TYPE_CONTEXT (type
), context_die
);
12098 if (TREE_ASM_WRITTEN (type
))
12101 /* If that failed, attach ourselves to the stub. */
12102 push_decl_scope (TYPE_CONTEXT (type
));
12103 context_die
= lookup_type_die (TYPE_CONTEXT (type
));
12108 declare_in_namespace (type
, context_die
);
12112 if (TREE_CODE (type
) == ENUMERAL_TYPE
)
12113 gen_enumeration_type_die (type
, context_die
);
12115 gen_struct_or_union_type_die (type
, context_die
);
12120 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12121 it up if it is ever completed. gen_*_type_die will set it for us
12122 when appropriate. */
12131 /* No DIEs needed for fundamental types. */
12135 /* No Dwarf representation currently defined. */
12139 gcc_unreachable ();
12142 TREE_ASM_WRITTEN (type
) = 1;
12145 /* Generate a DIE for a tagged type instantiation. */
12148 gen_tagged_type_instantiation_die (tree type
, dw_die_ref context_die
)
12150 if (type
== NULL_TREE
|| type
== error_mark_node
)
12153 /* We are going to output a DIE to represent the unqualified version of
12154 this type (i.e. without any const or volatile qualifiers) so make sure
12155 that we have the main variant (i.e. the unqualified version) of this
12157 gcc_assert (type
== type_main_variant (type
));
12159 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12160 an instance of an unresolved type. */
12162 switch (TREE_CODE (type
))
12167 case ENUMERAL_TYPE
:
12168 gen_inlined_enumeration_type_die (type
, context_die
);
12172 gen_inlined_structure_type_die (type
, context_die
);
12176 case QUAL_UNION_TYPE
:
12177 gen_inlined_union_type_die (type
, context_die
);
12181 gcc_unreachable ();
12185 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12186 things which are local to the given block. */
12189 gen_block_die (tree stmt
, dw_die_ref context_die
, int depth
)
12191 int must_output_die
= 0;
12194 enum tree_code origin_code
;
12196 /* Ignore blocks never really used to make RTL. */
12197 if (stmt
== NULL_TREE
|| !TREE_USED (stmt
)
12198 || (!TREE_ASM_WRITTEN (stmt
) && !BLOCK_ABSTRACT (stmt
)))
12201 /* If the block is one fragment of a non-contiguous block, do not
12202 process the variables, since they will have been done by the
12203 origin block. Do process subblocks. */
12204 if (BLOCK_FRAGMENT_ORIGIN (stmt
))
12208 for (sub
= BLOCK_SUBBLOCKS (stmt
); sub
; sub
= BLOCK_CHAIN (sub
))
12209 gen_block_die (sub
, context_die
, depth
+ 1);
12214 /* Determine the "ultimate origin" of this block. This block may be an
12215 inlined instance of an inlined instance of inline function, so we have
12216 to trace all of the way back through the origin chain to find out what
12217 sort of node actually served as the original seed for the creation of
12218 the current block. */
12219 origin
= block_ultimate_origin (stmt
);
12220 origin_code
= (origin
!= NULL
) ? TREE_CODE (origin
) : ERROR_MARK
;
12222 /* Determine if we need to output any Dwarf DIEs at all to represent this
12224 if (origin_code
== FUNCTION_DECL
)
12225 /* The outer scopes for inlinings *must* always be represented. We
12226 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12227 must_output_die
= 1;
12230 /* In the case where the current block represents an inlining of the
12231 "body block" of an inline function, we must *NOT* output any DIE for
12232 this block because we have already output a DIE to represent the whole
12233 inlined function scope and the "body block" of any function doesn't
12234 really represent a different scope according to ANSI C rules. So we
12235 check here to make sure that this block does not represent a "body
12236 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12237 if (! is_body_block (origin
? origin
: stmt
))
12239 /* Determine if this block directly contains any "significant"
12240 local declarations which we will need to output DIEs for. */
12241 if (debug_info_level
> DINFO_LEVEL_TERSE
)
12242 /* We are not in terse mode so *any* local declaration counts
12243 as being a "significant" one. */
12244 must_output_die
= (BLOCK_VARS (stmt
) != NULL
);
12246 /* We are in terse mode, so only local (nested) function
12247 definitions count as "significant" local declarations. */
12248 for (decl
= BLOCK_VARS (stmt
);
12249 decl
!= NULL
; decl
= TREE_CHAIN (decl
))
12250 if (TREE_CODE (decl
) == FUNCTION_DECL
12251 && DECL_INITIAL (decl
))
12253 must_output_die
= 1;
12259 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12260 DIE for any block which contains no significant local declarations at
12261 all. Rather, in such cases we just call `decls_for_scope' so that any
12262 needed Dwarf info for any sub-blocks will get properly generated. Note
12263 that in terse mode, our definition of what constitutes a "significant"
12264 local declaration gets restricted to include only inlined function
12265 instances and local (nested) function definitions. */
12266 if (must_output_die
)
12268 if (origin_code
== FUNCTION_DECL
)
12269 gen_inlined_subroutine_die (stmt
, context_die
, depth
);
12271 gen_lexical_block_die (stmt
, context_die
, depth
);
12274 decls_for_scope (stmt
, context_die
, depth
);
12277 /* Generate all of the decls declared within a given scope and (recursively)
12278 all of its sub-blocks. */
12281 decls_for_scope (tree stmt
, dw_die_ref context_die
, int depth
)
12286 /* Ignore blocks never really used to make RTL. */
12287 if (stmt
== NULL_TREE
|| ! TREE_USED (stmt
))
12290 /* Output the DIEs to represent all of the data objects and typedefs
12291 declared directly within this block but not within any nested
12292 sub-blocks. Also, nested function and tag DIEs have been
12293 generated with a parent of NULL; fix that up now. */
12294 for (decl
= BLOCK_VARS (stmt
); decl
!= NULL
; decl
= TREE_CHAIN (decl
))
12298 if (TREE_CODE (decl
) == FUNCTION_DECL
)
12299 die
= lookup_decl_die (decl
);
12300 else if (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
))
12301 die
= lookup_type_die (TREE_TYPE (decl
));
12305 if (die
!= NULL
&& die
->die_parent
== NULL
)
12306 add_child_die (context_die
, die
);
12308 gen_decl_die (decl
, context_die
);
12311 /* If we're at -g1, we're not interested in subblocks. */
12312 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12315 /* Output the DIEs to represent all sub-blocks (and the items declared
12316 therein) of this block. */
12317 for (subblocks
= BLOCK_SUBBLOCKS (stmt
);
12319 subblocks
= BLOCK_CHAIN (subblocks
))
12320 gen_block_die (subblocks
, context_die
, depth
+ 1);
12323 /* Is this a typedef we can avoid emitting? */
12326 is_redundant_typedef (tree decl
)
12328 if (TYPE_DECL_IS_STUB (decl
))
12331 if (DECL_ARTIFICIAL (decl
)
12332 && DECL_CONTEXT (decl
)
12333 && is_tagged_type (DECL_CONTEXT (decl
))
12334 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl
))) == TYPE_DECL
12335 && DECL_NAME (decl
) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl
))))
12336 /* Also ignore the artificial member typedef for the class name. */
12342 /* Returns the DIE for decl or aborts. */
12345 force_decl_die (tree decl
)
12347 dw_die_ref decl_die
;
12348 unsigned saved_external_flag
;
12349 tree save_fn
= NULL_TREE
;
12350 decl_die
= lookup_decl_die (decl
);
12353 dw_die_ref context_die
;
12354 tree decl_context
= DECL_CONTEXT (decl
);
12357 /* Find die that represents this context. */
12358 if (TYPE_P (decl_context
))
12359 context_die
= force_type_die (decl_context
);
12361 context_die
= force_decl_die (decl_context
);
12364 context_die
= comp_unit_die
;
12366 switch (TREE_CODE (decl
))
12368 case FUNCTION_DECL
:
12369 /* Clear current_function_decl, so that gen_subprogram_die thinks
12370 that this is a declaration. At this point, we just want to force
12371 declaration die. */
12372 save_fn
= current_function_decl
;
12373 current_function_decl
= NULL_TREE
;
12374 gen_subprogram_die (decl
, context_die
);
12375 current_function_decl
= save_fn
;
12379 /* Set external flag to force declaration die. Restore it after
12380 gen_decl_die() call. */
12381 saved_external_flag
= DECL_EXTERNAL (decl
);
12382 DECL_EXTERNAL (decl
) = 1;
12383 gen_decl_die (decl
, context_die
);
12384 DECL_EXTERNAL (decl
) = saved_external_flag
;
12387 case NAMESPACE_DECL
:
12388 dwarf2out_decl (decl
);
12392 gcc_unreachable ();
12395 /* See if we can find the die for this deci now.
12396 If not then abort. */
12398 decl_die
= lookup_decl_die (decl
);
12399 gcc_assert (decl_die
);
12405 /* Returns the DIE for decl or aborts. */
12408 force_type_die (tree type
)
12410 dw_die_ref type_die
;
12412 type_die
= lookup_type_die (type
);
12415 dw_die_ref context_die
;
12416 if (TYPE_CONTEXT (type
))
12417 if (TYPE_P (TYPE_CONTEXT (type
)))
12418 context_die
= force_type_die (TYPE_CONTEXT (type
));
12420 context_die
= force_decl_die (TYPE_CONTEXT (type
));
12422 context_die
= comp_unit_die
;
12424 gen_type_die (type
, context_die
);
12425 type_die
= lookup_type_die (type
);
12426 gcc_assert (type_die
);
12431 /* Force out any required namespaces to be able to output DECL,
12432 and return the new context_die for it, if it's changed. */
12435 setup_namespace_context (tree thing
, dw_die_ref context_die
)
12437 tree context
= (DECL_P (thing
)
12438 ? DECL_CONTEXT (thing
) : TYPE_CONTEXT (thing
));
12439 if (context
&& TREE_CODE (context
) == NAMESPACE_DECL
)
12440 /* Force out the namespace. */
12441 context_die
= force_decl_die (context
);
12443 return context_die
;
12446 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12447 type) within its namespace, if appropriate.
12449 For compatibility with older debuggers, namespace DIEs only contain
12450 declarations; all definitions are emitted at CU scope. */
12453 declare_in_namespace (tree thing
, dw_die_ref context_die
)
12455 dw_die_ref ns_context
;
12457 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12460 ns_context
= setup_namespace_context (thing
, context_die
);
12462 if (ns_context
!= context_die
)
12464 if (DECL_P (thing
))
12465 gen_decl_die (thing
, ns_context
);
12467 gen_type_die (thing
, ns_context
);
12471 /* Generate a DIE for a namespace or namespace alias. */
12474 gen_namespace_die (tree decl
)
12476 dw_die_ref context_die
= setup_namespace_context (decl
, comp_unit_die
);
12478 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12479 they are an alias of. */
12480 if (DECL_ABSTRACT_ORIGIN (decl
) == NULL
)
12482 /* Output a real namespace. */
12483 dw_die_ref namespace_die
12484 = new_die (DW_TAG_namespace
, context_die
, decl
);
12485 add_name_and_src_coords_attributes (namespace_die
, decl
);
12486 equate_decl_number_to_die (decl
, namespace_die
);
12490 /* Output a namespace alias. */
12492 /* Force out the namespace we are an alias of, if necessary. */
12493 dw_die_ref origin_die
12494 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl
));
12496 /* Now create the namespace alias DIE. */
12497 dw_die_ref namespace_die
12498 = new_die (DW_TAG_imported_declaration
, context_die
, decl
);
12499 add_name_and_src_coords_attributes (namespace_die
, decl
);
12500 add_AT_die_ref (namespace_die
, DW_AT_import
, origin_die
);
12501 equate_decl_number_to_die (decl
, namespace_die
);
12505 /* Generate Dwarf debug information for a decl described by DECL. */
12508 gen_decl_die (tree decl
, dw_die_ref context_die
)
12512 if (DECL_P (decl
) && DECL_IGNORED_P (decl
))
12515 switch (TREE_CODE (decl
))
12521 /* The individual enumerators of an enum type get output when we output
12522 the Dwarf representation of the relevant enum type itself. */
12525 case FUNCTION_DECL
:
12526 /* Don't output any DIEs to represent mere function declarations,
12527 unless they are class members or explicit block externs. */
12528 if (DECL_INITIAL (decl
) == NULL_TREE
&& DECL_CONTEXT (decl
) == NULL_TREE
12529 && (current_function_decl
== NULL_TREE
|| DECL_ARTIFICIAL (decl
)))
12534 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12535 on local redeclarations of global functions. That seems broken. */
12536 if (current_function_decl
!= decl
)
12537 /* This is only a declaration. */;
12540 /* If we're emitting a clone, emit info for the abstract instance. */
12541 if (DECL_ORIGIN (decl
) != decl
)
12542 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl
));
12544 /* If we're emitting an out-of-line copy of an inline function,
12545 emit info for the abstract instance and set up to refer to it. */
12546 else if (cgraph_function_possibly_inlined_p (decl
)
12547 && ! DECL_ABSTRACT (decl
)
12548 && ! class_or_namespace_scope_p (context_die
)
12549 /* dwarf2out_abstract_function won't emit a die if this is just
12550 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12551 that case, because that works only if we have a die. */
12552 && DECL_INITIAL (decl
) != NULL_TREE
)
12554 dwarf2out_abstract_function (decl
);
12555 set_decl_origin_self (decl
);
12558 /* Otherwise we're emitting the primary DIE for this decl. */
12559 else if (debug_info_level
> DINFO_LEVEL_TERSE
)
12561 /* Before we describe the FUNCTION_DECL itself, make sure that we
12562 have described its return type. */
12563 gen_type_die (TREE_TYPE (TREE_TYPE (decl
)), context_die
);
12565 /* And its virtual context. */
12566 if (DECL_VINDEX (decl
) != NULL_TREE
)
12567 gen_type_die (DECL_CONTEXT (decl
), context_die
);
12569 /* And its containing type. */
12570 origin
= decl_class_context (decl
);
12571 if (origin
!= NULL_TREE
)
12572 gen_type_die_for_member (origin
, decl
, context_die
);
12574 /* And its containing namespace. */
12575 declare_in_namespace (decl
, context_die
);
12578 /* Now output a DIE to represent the function itself. */
12579 gen_subprogram_die (decl
, context_die
);
12583 /* If we are in terse mode, don't generate any DIEs to represent any
12584 actual typedefs. */
12585 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12588 /* In the special case of a TYPE_DECL node representing the declaration
12589 of some type tag, if the given TYPE_DECL is marked as having been
12590 instantiated from some other (original) TYPE_DECL node (e.g. one which
12591 was generated within the original definition of an inline function) we
12592 have to generate a special (abbreviated) DW_TAG_structure_type,
12593 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12594 if (TYPE_DECL_IS_STUB (decl
) && decl_ultimate_origin (decl
) != NULL_TREE
)
12596 gen_tagged_type_instantiation_die (TREE_TYPE (decl
), context_die
);
12600 if (is_redundant_typedef (decl
))
12601 gen_type_die (TREE_TYPE (decl
), context_die
);
12603 /* Output a DIE to represent the typedef itself. */
12604 gen_typedef_die (decl
, context_die
);
12608 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
12609 gen_label_die (decl
, context_die
);
12614 /* If we are in terse mode, don't generate any DIEs to represent any
12615 variable declarations or definitions. */
12616 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12619 /* Output any DIEs that are needed to specify the type of this data
12621 gen_type_die (TREE_TYPE (decl
), context_die
);
12623 /* And its containing type. */
12624 origin
= decl_class_context (decl
);
12625 if (origin
!= NULL_TREE
)
12626 gen_type_die_for_member (origin
, decl
, context_die
);
12628 /* And its containing namespace. */
12629 declare_in_namespace (decl
, context_die
);
12631 /* Now output the DIE to represent the data object itself. This gets
12632 complicated because of the possibility that the VAR_DECL really
12633 represents an inlined instance of a formal parameter for an inline
12635 origin
= decl_ultimate_origin (decl
);
12636 if (origin
!= NULL_TREE
&& TREE_CODE (origin
) == PARM_DECL
)
12637 gen_formal_parameter_die (decl
, context_die
);
12639 gen_variable_die (decl
, context_die
);
12643 /* Ignore the nameless fields that are used to skip bits but handle C++
12644 anonymous unions and structs. */
12645 if (DECL_NAME (decl
) != NULL_TREE
12646 || TREE_CODE (TREE_TYPE (decl
)) == UNION_TYPE
12647 || TREE_CODE (TREE_TYPE (decl
)) == RECORD_TYPE
)
12649 gen_type_die (member_declared_type (decl
), context_die
);
12650 gen_field_die (decl
, context_die
);
12655 gen_type_die (TREE_TYPE (decl
), context_die
);
12656 gen_formal_parameter_die (decl
, context_die
);
12659 case NAMESPACE_DECL
:
12660 gen_namespace_die (decl
);
12664 /* Probably some frontend-internal decl. Assume we don't care. */
12665 gcc_assert ((int)TREE_CODE (decl
) > NUM_TREE_CODES
);
12670 /* Add Ada "use" clause information for SGI Workshop debugger. */
12673 dwarf2out_add_library_unit_info (const char *filename
, const char *context_list
)
12675 unsigned int file_index
;
12677 if (filename
!= NULL
)
12679 dw_die_ref unit_die
= new_die (DW_TAG_module
, comp_unit_die
, NULL
);
12680 tree context_list_decl
12681 = build_decl (LABEL_DECL
, get_identifier (context_list
),
12684 TREE_PUBLIC (context_list_decl
) = TRUE
;
12685 add_name_attribute (unit_die
, context_list
);
12686 file_index
= lookup_filename (filename
);
12687 add_AT_unsigned (unit_die
, DW_AT_decl_file
, file_index
);
12688 add_pubname (context_list_decl
, unit_die
);
12692 /* Output debug information for global decl DECL. Called from toplev.c after
12693 compilation proper has finished. */
12696 dwarf2out_global_decl (tree decl
)
12698 /* Output DWARF2 information for file-scope tentative data object
12699 declarations, file-scope (extern) function declarations (which had no
12700 corresponding body) and file-scope tagged type declarations and
12701 definitions which have not yet been forced out. */
12702 if (TREE_CODE (decl
) != FUNCTION_DECL
|| !DECL_INITIAL (decl
))
12703 dwarf2out_decl (decl
);
12706 /* Output debug information for type decl DECL. Called from toplev.c
12707 and from language front ends (to record built-in types). */
12709 dwarf2out_type_decl (tree decl
, int local
)
12712 dwarf2out_decl (decl
);
12715 /* Output debug information for imported module or decl. */
12718 dwarf2out_imported_module_or_decl (tree decl
, tree context
)
12720 dw_die_ref imported_die
, at_import_die
;
12721 dw_die_ref scope_die
;
12722 unsigned file_index
;
12723 expanded_location xloc
;
12725 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12730 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12731 We need decl DIE for reference and scope die. First, get DIE for the decl
12734 /* Get the scope die for decl context. Use comp_unit_die for global module
12735 or decl. If die is not found for non globals, force new die. */
12737 scope_die
= comp_unit_die
;
12738 else if (TYPE_P (context
))
12739 scope_die
= force_type_die (context
);
12741 scope_die
= force_decl_die (context
);
12743 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12744 if (TREE_CODE (decl
) == TYPE_DECL
|| TREE_CODE (decl
) == CONST_DECL
)
12745 at_import_die
= force_type_die (TREE_TYPE (decl
));
12747 at_import_die
= force_decl_die (decl
);
12749 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12750 if (TREE_CODE (decl
) == NAMESPACE_DECL
)
12751 imported_die
= new_die (DW_TAG_imported_module
, scope_die
, context
);
12753 imported_die
= new_die (DW_TAG_imported_declaration
, scope_die
, context
);
12755 xloc
= expand_location (input_location
);
12756 file_index
= lookup_filename (xloc
.file
);
12757 add_AT_unsigned (imported_die
, DW_AT_decl_file
, file_index
);
12758 add_AT_unsigned (imported_die
, DW_AT_decl_line
, xloc
.line
);
12759 add_AT_die_ref (imported_die
, DW_AT_import
, at_import_die
);
12762 /* Write the debugging output for DECL. */
12765 dwarf2out_decl (tree decl
)
12767 dw_die_ref context_die
= comp_unit_die
;
12769 switch (TREE_CODE (decl
))
12774 case FUNCTION_DECL
:
12775 /* What we would really like to do here is to filter out all mere
12776 file-scope declarations of file-scope functions which are never
12777 referenced later within this translation unit (and keep all of ones
12778 that *are* referenced later on) but we aren't clairvoyant, so we have
12779 no idea which functions will be referenced in the future (i.e. later
12780 on within the current translation unit). So here we just ignore all
12781 file-scope function declarations which are not also definitions. If
12782 and when the debugger needs to know something about these functions,
12783 it will have to hunt around and find the DWARF information associated
12784 with the definition of the function.
12786 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12787 nodes represent definitions and which ones represent mere
12788 declarations. We have to check DECL_INITIAL instead. That's because
12789 the C front-end supports some weird semantics for "extern inline"
12790 function definitions. These can get inlined within the current
12791 translation unit (an thus, we need to generate Dwarf info for their
12792 abstract instances so that the Dwarf info for the concrete inlined
12793 instances can have something to refer to) but the compiler never
12794 generates any out-of-lines instances of such things (despite the fact
12795 that they *are* definitions).
12797 The important point is that the C front-end marks these "extern
12798 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12799 them anyway. Note that the C++ front-end also plays some similar games
12800 for inline function definitions appearing within include files which
12801 also contain `#pragma interface' pragmas. */
12802 if (DECL_INITIAL (decl
) == NULL_TREE
)
12805 /* If we're a nested function, initially use a parent of NULL; if we're
12806 a plain function, this will be fixed up in decls_for_scope. If
12807 we're a method, it will be ignored, since we already have a DIE. */
12808 if (decl_function_context (decl
)
12809 /* But if we're in terse mode, we don't care about scope. */
12810 && debug_info_level
> DINFO_LEVEL_TERSE
)
12811 context_die
= NULL
;
12815 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12816 declaration and if the declaration was never even referenced from
12817 within this entire compilation unit. We suppress these DIEs in
12818 order to save space in the .debug section (by eliminating entries
12819 which are probably useless). Note that we must not suppress
12820 block-local extern declarations (whether used or not) because that
12821 would screw-up the debugger's name lookup mechanism and cause it to
12822 miss things which really ought to be in scope at a given point. */
12823 if (DECL_EXTERNAL (decl
) && !TREE_USED (decl
))
12826 /* If we are in terse mode, don't generate any DIEs to represent any
12827 variable declarations or definitions. */
12828 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12832 case NAMESPACE_DECL
:
12833 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12835 if (lookup_decl_die (decl
) != NULL
)
12840 /* Don't emit stubs for types unless they are needed by other DIEs. */
12841 if (TYPE_DECL_SUPPRESS_DEBUG (decl
))
12844 /* Don't bother trying to generate any DIEs to represent any of the
12845 normal built-in types for the language we are compiling. */
12846 if (DECL_IS_BUILTIN (decl
))
12848 /* OK, we need to generate one for `bool' so GDB knows what type
12849 comparisons have. */
12850 if ((get_AT_unsigned (comp_unit_die
, DW_AT_language
)
12851 == DW_LANG_C_plus_plus
)
12852 && TREE_CODE (TREE_TYPE (decl
)) == BOOLEAN_TYPE
12853 && ! DECL_IGNORED_P (decl
))
12854 modified_type_die (TREE_TYPE (decl
), 0, 0, NULL
);
12859 /* If we are in terse mode, don't generate any DIEs for types. */
12860 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12863 /* If we're a function-scope tag, initially use a parent of NULL;
12864 this will be fixed up in decls_for_scope. */
12865 if (decl_function_context (decl
))
12866 context_die
= NULL
;
12874 gen_decl_die (decl
, context_die
);
12877 /* Output a marker (i.e. a label) for the beginning of the generated code for
12878 a lexical block. */
12881 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED
,
12882 unsigned int blocknum
)
12884 function_section (current_function_decl
);
12885 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_BEGIN_LABEL
, blocknum
);
12888 /* Output a marker (i.e. a label) for the end of the generated code for a
12892 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED
, unsigned int blocknum
)
12894 function_section (current_function_decl
);
12895 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_END_LABEL
, blocknum
);
12898 /* Returns nonzero if it is appropriate not to emit any debugging
12899 information for BLOCK, because it doesn't contain any instructions.
12901 Don't allow this for blocks with nested functions or local classes
12902 as we would end up with orphans, and in the presence of scheduling
12903 we may end up calling them anyway. */
12906 dwarf2out_ignore_block (tree block
)
12910 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
12911 if (TREE_CODE (decl
) == FUNCTION_DECL
12912 || (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
)))
12918 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12919 dwarf2out.c) and return its "index". The index of each (known) filename is
12920 just a unique number which is associated with only that one filename. We
12921 need such numbers for the sake of generating labels (in the .debug_sfnames
12922 section) and references to those files numbers (in the .debug_srcinfo
12923 and.debug_macinfo sections). If the filename given as an argument is not
12924 found in our current list, add it to the list and assign it the next
12925 available unique index number. In order to speed up searches, we remember
12926 the index of the filename was looked up last. This handles the majority of
12930 lookup_filename (const char *file_name
)
12933 char *save_file_name
;
12935 /* Check to see if the file name that was searched on the previous
12936 call matches this file name. If so, return the index. */
12937 if (file_table_last_lookup_index
!= 0)
12940 = VARRAY_CHAR_PTR (file_table
, file_table_last_lookup_index
);
12941 if (strcmp (file_name
, last
) == 0)
12942 return file_table_last_lookup_index
;
12945 /* Didn't match the previous lookup, search the table. */
12946 n
= VARRAY_ACTIVE_SIZE (file_table
);
12947 for (i
= 1; i
< n
; i
++)
12948 if (strcmp (file_name
, VARRAY_CHAR_PTR (file_table
, i
)) == 0)
12950 file_table_last_lookup_index
= i
;
12954 /* Add the new entry to the end of the filename table. */
12955 file_table_last_lookup_index
= n
;
12956 save_file_name
= (char *) ggc_strdup (file_name
);
12957 VARRAY_PUSH_CHAR_PTR (file_table
, save_file_name
);
12958 VARRAY_PUSH_UINT (file_table_emitted
, 0);
12964 maybe_emit_file (int fileno
)
12966 if (DWARF2_ASM_LINE_DEBUG_INFO
&& fileno
> 0)
12968 if (!VARRAY_UINT (file_table_emitted
, fileno
))
12970 VARRAY_UINT (file_table_emitted
, fileno
) = ++emitcount
;
12971 fprintf (asm_out_file
, "\t.file %u ",
12972 VARRAY_UINT (file_table_emitted
, fileno
));
12973 output_quoted_string (asm_out_file
,
12974 VARRAY_CHAR_PTR (file_table
, fileno
));
12975 fputc ('\n', asm_out_file
);
12977 return VARRAY_UINT (file_table_emitted
, fileno
);
12984 init_file_table (void)
12986 /* Allocate the initial hunk of the file_table. */
12987 VARRAY_CHAR_PTR_INIT (file_table
, 64, "file_table");
12988 VARRAY_UINT_INIT (file_table_emitted
, 64, "file_table_emitted");
12990 /* Skip the first entry - file numbers begin at 1. */
12991 VARRAY_PUSH_CHAR_PTR (file_table
, NULL
);
12992 VARRAY_PUSH_UINT (file_table_emitted
, 0);
12993 file_table_last_lookup_index
= 0;
12996 /* Called by the final INSN scan whenever we see a var location. We
12997 use it to drop labels in the right places, and throw the location in
12998 our lookup table. */
13001 dwarf2out_var_location (rtx loc_note
)
13003 char loclabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
13004 struct var_loc_node
*newloc
;
13006 static rtx last_insn
;
13007 static const char *last_label
;
13009 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note
)))
13011 prev_insn
= PREV_INSN (loc_note
);
13013 newloc
= ggc_alloc_cleared (sizeof (struct var_loc_node
));
13014 /* If the insn we processed last time is the previous insn
13015 and it is also a var location note, use the label we emitted
13017 if (last_insn
!= NULL_RTX
13018 && last_insn
== prev_insn
13019 && NOTE_P (prev_insn
)
13020 && NOTE_LINE_NUMBER (prev_insn
) == NOTE_INSN_VAR_LOCATION
)
13022 newloc
->label
= last_label
;
13026 ASM_GENERATE_INTERNAL_LABEL (loclabel
, "LVL", loclabel_num
);
13027 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LVL", loclabel_num
);
13029 newloc
->label
= ggc_strdup (loclabel
);
13031 newloc
->var_loc_note
= loc_note
;
13032 newloc
->next
= NULL
;
13034 last_insn
= loc_note
;
13035 last_label
= newloc
->label
;
13037 add_var_loc_to_decl (NOTE_VAR_LOCATION_DECL (loc_note
), newloc
);
13040 /* We need to reset the locations at the beginning of each
13041 function. We can't do this in the end_function hook, because the
13042 declarations that use the locations won't have been outputted when
13043 that hook is called. */
13046 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED
)
13048 htab_empty (decl_loc_table
);
13051 /* Output a label to mark the beginning of a source code line entry
13052 and record information relating to this source line, in
13053 'line_info_table' for later output of the .debug_line section. */
13056 dwarf2out_source_line (unsigned int line
, const char *filename
)
13058 if (debug_info_level
>= DINFO_LEVEL_NORMAL
13061 function_section (current_function_decl
);
13063 /* If requested, emit something human-readable. */
13064 if (flag_debug_asm
)
13065 fprintf (asm_out_file
, "\t%s %s:%d\n", ASM_COMMENT_START
,
13068 if (DWARF2_ASM_LINE_DEBUG_INFO
)
13070 unsigned file_num
= lookup_filename (filename
);
13072 file_num
= maybe_emit_file (file_num
);
13074 /* Emit the .loc directive understood by GNU as. */
13075 fprintf (asm_out_file
, "\t.loc %d %d 0\n", file_num
, line
);
13077 /* Indicate that line number info exists. */
13078 line_info_table_in_use
++;
13080 /* Indicate that multiple line number tables exist. */
13081 if (DECL_SECTION_NAME (current_function_decl
))
13082 separate_line_info_table_in_use
++;
13084 else if (DECL_SECTION_NAME (current_function_decl
))
13086 dw_separate_line_info_ref line_info
;
13087 targetm
.asm_out
.internal_label (asm_out_file
, SEPARATE_LINE_CODE_LABEL
,
13088 separate_line_info_table_in_use
);
13090 /* Expand the line info table if necessary. */
13091 if (separate_line_info_table_in_use
13092 == separate_line_info_table_allocated
)
13094 separate_line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
13095 separate_line_info_table
13096 = ggc_realloc (separate_line_info_table
,
13097 separate_line_info_table_allocated
13098 * sizeof (dw_separate_line_info_entry
));
13099 memset (separate_line_info_table
13100 + separate_line_info_table_in_use
,
13102 (LINE_INFO_TABLE_INCREMENT
13103 * sizeof (dw_separate_line_info_entry
)));
13106 /* Add the new entry at the end of the line_info_table. */
13108 = &separate_line_info_table
[separate_line_info_table_in_use
++];
13109 line_info
->dw_file_num
= lookup_filename (filename
);
13110 line_info
->dw_line_num
= line
;
13111 line_info
->function
= current_function_funcdef_no
;
13115 dw_line_info_ref line_info
;
13117 targetm
.asm_out
.internal_label (asm_out_file
, LINE_CODE_LABEL
,
13118 line_info_table_in_use
);
13120 /* Expand the line info table if necessary. */
13121 if (line_info_table_in_use
== line_info_table_allocated
)
13123 line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
13125 = ggc_realloc (line_info_table
,
13126 (line_info_table_allocated
13127 * sizeof (dw_line_info_entry
)));
13128 memset (line_info_table
+ line_info_table_in_use
, 0,
13129 LINE_INFO_TABLE_INCREMENT
* sizeof (dw_line_info_entry
));
13132 /* Add the new entry at the end of the line_info_table. */
13133 line_info
= &line_info_table
[line_info_table_in_use
++];
13134 line_info
->dw_file_num
= lookup_filename (filename
);
13135 line_info
->dw_line_num
= line
;
13140 /* Record the beginning of a new source file. */
13143 dwarf2out_start_source_file (unsigned int lineno
, const char *filename
)
13145 if (flag_eliminate_dwarf2_dups
)
13147 /* Record the beginning of the file for break_out_includes. */
13148 dw_die_ref bincl_die
;
13150 bincl_die
= new_die (DW_TAG_GNU_BINCL
, comp_unit_die
, NULL
);
13151 add_AT_string (bincl_die
, DW_AT_name
, filename
);
13154 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13156 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
13157 dw2_asm_output_data (1, DW_MACINFO_start_file
, "Start new file");
13158 dw2_asm_output_data_uleb128 (lineno
, "Included from line number %d",
13160 maybe_emit_file (lookup_filename (filename
));
13161 dw2_asm_output_data_uleb128 (lookup_filename (filename
),
13162 "Filename we just started");
13166 /* Record the end of a source file. */
13169 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED
)
13171 if (flag_eliminate_dwarf2_dups
)
13172 /* Record the end of the file for break_out_includes. */
13173 new_die (DW_TAG_GNU_EINCL
, comp_unit_die
, NULL
);
13175 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13177 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
13178 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
13182 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13183 the tail part of the directive line, i.e. the part which is past the
13184 initial whitespace, #, whitespace, directive-name, whitespace part. */
13187 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED
,
13188 const char *buffer ATTRIBUTE_UNUSED
)
13190 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13192 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
13193 dw2_asm_output_data (1, DW_MACINFO_define
, "Define macro");
13194 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
13195 dw2_asm_output_nstring (buffer
, -1, "The macro");
13199 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13200 the tail part of the directive line, i.e. the part which is past the
13201 initial whitespace, #, whitespace, directive-name, whitespace part. */
13204 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED
,
13205 const char *buffer ATTRIBUTE_UNUSED
)
13207 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13209 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
13210 dw2_asm_output_data (1, DW_MACINFO_undef
, "Undefine macro");
13211 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
13212 dw2_asm_output_nstring (buffer
, -1, "The macro");
13216 /* Set up for Dwarf output at the start of compilation. */
13219 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED
)
13221 init_file_table ();
13223 /* Allocate the decl_die_table. */
13224 decl_die_table
= htab_create_ggc (10, decl_die_table_hash
,
13225 decl_die_table_eq
, NULL
);
13227 /* Allocate the decl_loc_table. */
13228 decl_loc_table
= htab_create_ggc (10, decl_loc_table_hash
,
13229 decl_loc_table_eq
, NULL
);
13231 /* Allocate the initial hunk of the decl_scope_table. */
13232 VARRAY_TREE_INIT (decl_scope_table
, 256, "decl_scope_table");
13234 /* Allocate the initial hunk of the abbrev_die_table. */
13235 abbrev_die_table
= ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13236 * sizeof (dw_die_ref
));
13237 abbrev_die_table_allocated
= ABBREV_DIE_TABLE_INCREMENT
;
13238 /* Zero-th entry is allocated, but unused. */
13239 abbrev_die_table_in_use
= 1;
13241 /* Allocate the initial hunk of the line_info_table. */
13242 line_info_table
= ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13243 * sizeof (dw_line_info_entry
));
13244 line_info_table_allocated
= LINE_INFO_TABLE_INCREMENT
;
13246 /* Zero-th entry is allocated, but unused. */
13247 line_info_table_in_use
= 1;
13249 /* Generate the initial DIE for the .debug section. Note that the (string)
13250 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13251 will (typically) be a relative pathname and that this pathname should be
13252 taken as being relative to the directory from which the compiler was
13253 invoked when the given (base) source file was compiled. We will fill
13254 in this value in dwarf2out_finish. */
13255 comp_unit_die
= gen_compile_unit_die (NULL
);
13257 VARRAY_TREE_INIT (incomplete_types
, 64, "incomplete_types");
13259 VARRAY_RTX_INIT (used_rtx_varray
, 32, "used_rtx_varray");
13261 ASM_GENERATE_INTERNAL_LABEL (text_end_label
, TEXT_END_LABEL
, 0);
13262 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label
,
13263 DEBUG_ABBREV_SECTION_LABEL
, 0);
13264 if (DWARF2_GENERATE_TEXT_SECTION_LABEL
)
13265 ASM_GENERATE_INTERNAL_LABEL (text_section_label
, TEXT_SECTION_LABEL
, 0);
13267 strcpy (text_section_label
, stripattributes (TEXT_SECTION_NAME
));
13269 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label
,
13270 DEBUG_INFO_SECTION_LABEL
, 0);
13271 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label
,
13272 DEBUG_LINE_SECTION_LABEL
, 0);
13273 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label
,
13274 DEBUG_RANGES_SECTION_LABEL
, 0);
13275 named_section_flags (DEBUG_ABBREV_SECTION
, SECTION_DEBUG
);
13276 ASM_OUTPUT_LABEL (asm_out_file
, abbrev_section_label
);
13277 named_section_flags (DEBUG_INFO_SECTION
, SECTION_DEBUG
);
13278 ASM_OUTPUT_LABEL (asm_out_file
, debug_info_section_label
);
13279 named_section_flags (DEBUG_LINE_SECTION
, SECTION_DEBUG
);
13280 ASM_OUTPUT_LABEL (asm_out_file
, debug_line_section_label
);
13282 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13284 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
13285 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label
,
13286 DEBUG_MACINFO_SECTION_LABEL
, 0);
13287 ASM_OUTPUT_LABEL (asm_out_file
, macinfo_section_label
);
13290 if (DWARF2_GENERATE_TEXT_SECTION_LABEL
)
13293 ASM_OUTPUT_LABEL (asm_out_file
, text_section_label
);
13297 /* A helper function for dwarf2out_finish called through
13298 ht_forall. Emit one queued .debug_str string. */
13301 output_indirect_string (void **h
, void *v ATTRIBUTE_UNUSED
)
13303 struct indirect_string_node
*node
= (struct indirect_string_node
*) *h
;
13305 if (node
->form
== DW_FORM_strp
)
13307 named_section_flags (DEBUG_STR_SECTION
, DEBUG_STR_SECTION_FLAGS
);
13308 ASM_OUTPUT_LABEL (asm_out_file
, node
->label
);
13309 assemble_string (node
->str
, strlen (node
->str
) + 1);
13317 /* Clear the marks for a die and its children.
13318 Be cool if the mark isn't set. */
13321 prune_unmark_dies (dw_die_ref die
)
13325 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
13326 prune_unmark_dies (c
);
13330 /* Given DIE that we're marking as used, find any other dies
13331 it references as attributes and mark them as used. */
13334 prune_unused_types_walk_attribs (dw_die_ref die
)
13338 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
13340 if (a
->dw_attr_val
.val_class
== dw_val_class_die_ref
)
13342 /* A reference to another DIE.
13343 Make sure that it will get emitted. */
13344 prune_unused_types_mark (a
->dw_attr_val
.v
.val_die_ref
.die
, 1);
13346 else if (a
->dw_attr
== DW_AT_decl_file
)
13348 /* A reference to a file. Make sure the file name is emitted. */
13349 a
->dw_attr_val
.v
.val_unsigned
=
13350 maybe_emit_file (a
->dw_attr_val
.v
.val_unsigned
);
13356 /* Mark DIE as being used. If DOKIDS is true, then walk down
13357 to DIE's children. */
13360 prune_unused_types_mark (dw_die_ref die
, int dokids
)
13364 if (die
->die_mark
== 0)
13366 /* We haven't done this node yet. Mark it as used. */
13369 /* We also have to mark its parents as used.
13370 (But we don't want to mark our parents' kids due to this.) */
13371 if (die
->die_parent
)
13372 prune_unused_types_mark (die
->die_parent
, 0);
13374 /* Mark any referenced nodes. */
13375 prune_unused_types_walk_attribs (die
);
13377 /* If this node is a specification,
13378 also mark the definition, if it exists. */
13379 if (get_AT_flag (die
, DW_AT_declaration
) && die
->die_definition
)
13380 prune_unused_types_mark (die
->die_definition
, 1);
13383 if (dokids
&& die
->die_mark
!= 2)
13385 /* We need to walk the children, but haven't done so yet.
13386 Remember that we've walked the kids. */
13390 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
13392 /* If this is an array type, we need to make sure our
13393 kids get marked, even if they're types. */
13394 if (die
->die_tag
== DW_TAG_array_type
)
13395 prune_unused_types_mark (c
, 1);
13397 prune_unused_types_walk (c
);
13403 /* Walk the tree DIE and mark types that we actually use. */
13406 prune_unused_types_walk (dw_die_ref die
)
13410 /* Don't do anything if this node is already marked. */
13414 switch (die
->die_tag
) {
13415 case DW_TAG_const_type
:
13416 case DW_TAG_packed_type
:
13417 case DW_TAG_pointer_type
:
13418 case DW_TAG_reference_type
:
13419 case DW_TAG_volatile_type
:
13420 case DW_TAG_typedef
:
13421 case DW_TAG_array_type
:
13422 case DW_TAG_structure_type
:
13423 case DW_TAG_union_type
:
13424 case DW_TAG_class_type
:
13425 case DW_TAG_friend
:
13426 case DW_TAG_variant_part
:
13427 case DW_TAG_enumeration_type
:
13428 case DW_TAG_subroutine_type
:
13429 case DW_TAG_string_type
:
13430 case DW_TAG_set_type
:
13431 case DW_TAG_subrange_type
:
13432 case DW_TAG_ptr_to_member_type
:
13433 case DW_TAG_file_type
:
13434 /* It's a type node --- don't mark it. */
13438 /* Mark everything else. */
13444 /* Now, mark any dies referenced from here. */
13445 prune_unused_types_walk_attribs (die
);
13447 /* Mark children. */
13448 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
13449 prune_unused_types_walk (c
);
13453 /* Remove from the tree DIE any dies that aren't marked. */
13456 prune_unused_types_prune (dw_die_ref die
)
13458 dw_die_ref c
, p
, n
;
13460 gcc_assert (die
->die_mark
);
13463 for (c
= die
->die_child
; c
; c
= n
)
13468 prune_unused_types_prune (c
);
13476 die
->die_child
= n
;
13483 /* Remove dies representing declarations that we never use. */
13486 prune_unused_types (void)
13489 limbo_die_node
*node
;
13491 /* Clear all the marks. */
13492 prune_unmark_dies (comp_unit_die
);
13493 for (node
= limbo_die_list
; node
; node
= node
->next
)
13494 prune_unmark_dies (node
->die
);
13496 /* Set the mark on nodes that are actually used. */
13497 prune_unused_types_walk (comp_unit_die
);
13498 for (node
= limbo_die_list
; node
; node
= node
->next
)
13499 prune_unused_types_walk (node
->die
);
13501 /* Also set the mark on nodes referenced from the
13502 pubname_table or arange_table. */
13503 for (i
= 0; i
< pubname_table_in_use
; i
++)
13504 prune_unused_types_mark (pubname_table
[i
].die
, 1);
13505 for (i
= 0; i
< arange_table_in_use
; i
++)
13506 prune_unused_types_mark (arange_table
[i
], 1);
13508 /* Get rid of nodes that aren't marked. */
13509 prune_unused_types_prune (comp_unit_die
);
13510 for (node
= limbo_die_list
; node
; node
= node
->next
)
13511 prune_unused_types_prune (node
->die
);
13513 /* Leave the marks clear. */
13514 prune_unmark_dies (comp_unit_die
);
13515 for (node
= limbo_die_list
; node
; node
= node
->next
)
13516 prune_unmark_dies (node
->die
);
13519 /* Output stuff that dwarf requires at the end of every file,
13520 and generate the DWARF-2 debugging info. */
13523 dwarf2out_finish (const char *filename
)
13525 limbo_die_node
*node
, *next_node
;
13526 dw_die_ref die
= 0;
13528 /* Add the name for the main input file now. We delayed this from
13529 dwarf2out_init to avoid complications with PCH. */
13530 add_name_attribute (comp_unit_die
, filename
);
13531 if (filename
[0] != DIR_SEPARATOR
)
13532 add_comp_dir_attribute (comp_unit_die
);
13533 else if (get_AT (comp_unit_die
, DW_AT_comp_dir
) == NULL
)
13536 for (i
= 1; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
13537 if (VARRAY_CHAR_PTR (file_table
, i
)[0] != DIR_SEPARATOR
13538 /* Don't add cwd for <built-in>. */
13539 && VARRAY_CHAR_PTR (file_table
, i
)[0] != '<')
13541 add_comp_dir_attribute (comp_unit_die
);
13546 /* Traverse the limbo die list, and add parent/child links. The only
13547 dies without parents that should be here are concrete instances of
13548 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13549 For concrete instances, we can get the parent die from the abstract
13551 for (node
= limbo_die_list
; node
; node
= next_node
)
13553 next_node
= node
->next
;
13556 if (die
->die_parent
== NULL
)
13558 dw_die_ref origin
= get_AT_ref (die
, DW_AT_abstract_origin
);
13561 add_child_die (origin
->die_parent
, die
);
13562 else if (die
== comp_unit_die
)
13564 else if (errorcount
> 0 || sorrycount
> 0)
13565 /* It's OK to be confused by errors in the input. */
13566 add_child_die (comp_unit_die
, die
);
13569 /* In certain situations, the lexical block containing a
13570 nested function can be optimized away, which results
13571 in the nested function die being orphaned. Likewise
13572 with the return type of that nested function. Force
13573 this to be a child of the containing function.
13575 It may happen that even the containing function got fully
13576 inlined and optimized out. In that case we are lost and
13577 assign the empty child. This should not be big issue as
13578 the function is likely unreachable too. */
13579 tree context
= NULL_TREE
;
13581 gcc_assert (node
->created_for
);
13583 if (DECL_P (node
->created_for
))
13584 context
= DECL_CONTEXT (node
->created_for
);
13585 else if (TYPE_P (node
->created_for
))
13586 context
= TYPE_CONTEXT (node
->created_for
);
13588 gcc_assert (context
&& TREE_CODE (context
) == FUNCTION_DECL
);
13590 origin
= lookup_decl_die (context
);
13592 add_child_die (origin
, die
);
13594 add_child_die (comp_unit_die
, die
);
13599 limbo_die_list
= NULL
;
13601 /* Walk through the list of incomplete types again, trying once more to
13602 emit full debugging info for them. */
13603 retry_incomplete_types ();
13605 /* We need to reverse all the dies before break_out_includes, or
13606 we'll see the end of an include file before the beginning. */
13607 reverse_all_dies (comp_unit_die
);
13609 if (flag_eliminate_unused_debug_types
)
13610 prune_unused_types ();
13612 /* Generate separate CUs for each of the include files we've seen.
13613 They will go into limbo_die_list. */
13614 if (flag_eliminate_dwarf2_dups
)
13615 break_out_includes (comp_unit_die
);
13617 /* Traverse the DIE's and add add sibling attributes to those DIE's
13618 that have children. */
13619 add_sibling_attributes (comp_unit_die
);
13620 for (node
= limbo_die_list
; node
; node
= node
->next
)
13621 add_sibling_attributes (node
->die
);
13623 /* Output a terminator label for the .text section. */
13625 targetm
.asm_out
.internal_label (asm_out_file
, TEXT_END_LABEL
, 0);
13627 /* Output the source line correspondence table. We must do this
13628 even if there is no line information. Otherwise, on an empty
13629 translation unit, we will generate a present, but empty,
13630 .debug_info section. IRIX 6.5 `nm' will then complain when
13631 examining the file. */
13632 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
13634 named_section_flags (DEBUG_LINE_SECTION
, SECTION_DEBUG
);
13635 output_line_info ();
13638 /* Output location list section if necessary. */
13639 if (have_location_lists
)
13641 /* Output the location lists info. */
13642 named_section_flags (DEBUG_LOC_SECTION
, SECTION_DEBUG
);
13643 ASM_GENERATE_INTERNAL_LABEL (loc_section_label
,
13644 DEBUG_LOC_SECTION_LABEL
, 0);
13645 ASM_OUTPUT_LABEL (asm_out_file
, loc_section_label
);
13646 output_location_lists (die
);
13647 have_location_lists
= 0;
13650 /* We can only use the low/high_pc attributes if all of the code was
13652 if (separate_line_info_table_in_use
== 0)
13654 add_AT_lbl_id (comp_unit_die
, DW_AT_low_pc
, text_section_label
);
13655 add_AT_lbl_id (comp_unit_die
, DW_AT_high_pc
, text_end_label
);
13658 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13659 "base address". Use zero so that these addresses become absolute. */
13660 else if (have_location_lists
|| ranges_table_in_use
)
13661 add_AT_addr (comp_unit_die
, DW_AT_entry_pc
, const0_rtx
);
13663 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
13664 add_AT_lbl_offset (comp_unit_die
, DW_AT_stmt_list
,
13665 debug_line_section_label
);
13667 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13668 add_AT_lbl_offset (comp_unit_die
, DW_AT_macro_info
, macinfo_section_label
);
13670 /* Output all of the compilation units. We put the main one last so that
13671 the offsets are available to output_pubnames. */
13672 for (node
= limbo_die_list
; node
; node
= node
->next
)
13673 output_comp_unit (node
->die
, 0);
13675 output_comp_unit (comp_unit_die
, 0);
13677 /* Output the abbreviation table. */
13678 named_section_flags (DEBUG_ABBREV_SECTION
, SECTION_DEBUG
);
13679 output_abbrev_section ();
13681 /* Output public names table if necessary. */
13682 if (pubname_table_in_use
)
13684 named_section_flags (DEBUG_PUBNAMES_SECTION
, SECTION_DEBUG
);
13685 output_pubnames ();
13688 /* Output the address range information. We only put functions in the arange
13689 table, so don't write it out if we don't have any. */
13690 if (fde_table_in_use
)
13692 named_section_flags (DEBUG_ARANGES_SECTION
, SECTION_DEBUG
);
13696 /* Output ranges section if necessary. */
13697 if (ranges_table_in_use
)
13699 named_section_flags (DEBUG_RANGES_SECTION
, SECTION_DEBUG
);
13700 ASM_OUTPUT_LABEL (asm_out_file
, ranges_section_label
);
13704 /* Have to end the primary source file. */
13705 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13707 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
13708 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
13709 dw2_asm_output_data (1, 0, "End compilation unit");
13712 /* If we emitted any DW_FORM_strp form attribute, output the string
13714 if (debug_str_hash
)
13715 htab_traverse (debug_str_hash
, output_indirect_string
, NULL
);
13719 /* This should never be used, but its address is needed for comparisons. */
13720 const struct gcc_debug_hooks dwarf2_debug_hooks
;
13722 #endif /* DWARF2_DEBUGGING_INFO */
13724 #include "gt-dwarf2out.h"