Daily bump.
[official-gcc.git] / gcc / gcse.c
blob8c6b87fbff9efaeb3c0af883f589d6c20f4e85f3
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "toplev.h"
150 #include "rtl.h"
151 #include "tm_p.h"
152 #include "regs.h"
153 #include "hard-reg-set.h"
154 #include "flags.h"
155 #include "real.h"
156 #include "insn-config.h"
157 #include "recog.h"
158 #include "basic-block.h"
159 #include "output.h"
160 #include "function.h"
161 #include "expr.h"
162 #include "except.h"
163 #include "ggc.h"
164 #include "params.h"
166 #include "obstack.h"
167 #define obstack_chunk_alloc gmalloc
168 #define obstack_chunk_free free
170 /* Propagate flow information through back edges and thus enable PRE's
171 moving loop invariant calculations out of loops.
173 Originally this tended to create worse overall code, but several
174 improvements during the development of PRE seem to have made following
175 back edges generally a win.
177 Note much of the loop invariant code motion done here would normally
178 be done by loop.c, which has more heuristics for when to move invariants
179 out of loops. At some point we might need to move some of those
180 heuristics into gcse.c. */
181 #define FOLLOW_BACK_EDGES 1
183 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
184 are a superset of those done by GCSE.
186 We perform the following steps:
188 1) Compute basic block information.
190 2) Compute table of places where registers are set.
192 3) Perform copy/constant propagation.
194 4) Perform global cse.
196 5) Perform another pass of copy/constant propagation.
198 Two passes of copy/constant propagation are done because the first one
199 enables more GCSE and the second one helps to clean up the copies that
200 GCSE creates. This is needed more for PRE than for Classic because Classic
201 GCSE will try to use an existing register containing the common
202 subexpression rather than create a new one. This is harder to do for PRE
203 because of the code motion (which Classic GCSE doesn't do).
205 Expressions we are interested in GCSE-ing are of the form
206 (set (pseudo-reg) (expression)).
207 Function want_to_gcse_p says what these are.
209 PRE handles moving invariant expressions out of loops (by treating them as
210 partially redundant).
212 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
213 assignment) based GVN (global value numbering). L. T. Simpson's paper
214 (Rice University) on value numbering is a useful reference for this.
216 **********************
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
222 the expense.
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
229 It was found doing copy propagation between each pass enables further
230 substitutions.
232 PRE is quite expensive in complicated functions because the DFA can take
233 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
234 be modified if one wants to experiment.
236 **********************
238 The steps for PRE are:
240 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
242 2) Perform the data flow analysis for PRE.
244 3) Delete the redundant instructions
246 4) Insert the required copies [if any] that make the partially
247 redundant instructions fully redundant.
249 5) For other reaching expressions, insert an instruction to copy the value
250 to a newly created pseudo that will reach the redundant instruction.
252 The deletion is done first so that when we do insertions we
253 know which pseudo reg to use.
255 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
256 argue it is not. The number of iterations for the algorithm to converge
257 is typically 2-4 so I don't view it as that expensive (relatively speaking).
259 PRE GCSE depends heavily on the second CSE pass to clean up the copies
260 we create. To make an expression reach the place where it's redundant,
261 the result of the expression is copied to a new register, and the redundant
262 expression is deleted by replacing it with this new register. Classic GCSE
263 doesn't have this problem as much as it computes the reaching defs of
264 each register in each block and thus can try to use an existing register.
266 **********************
268 A fair bit of simplicity is created by creating small functions for simple
269 tasks, even when the function is only called in one place. This may
270 measurably slow things down [or may not] by creating more function call
271 overhead than is necessary. The source is laid out so that it's trivial
272 to make the affected functions inline so that one can measure what speed
273 up, if any, can be achieved, and maybe later when things settle things can
274 be rearranged.
276 Help stamp out big monolithic functions! */
278 /* GCSE global vars. */
280 /* -dG dump file. */
281 static FILE *gcse_file;
283 /* Note whether or not we should run jump optimization after gcse. We
284 want to do this for two cases.
286 * If we changed any jumps via cprop.
288 * If we added any labels via edge splitting. */
290 static int run_jump_opt_after_gcse;
292 /* Bitmaps are normally not included in debugging dumps.
293 However it's useful to be able to print them from GDB.
294 We could create special functions for this, but it's simpler to
295 just allow passing stderr to the dump_foo fns. Since stderr can
296 be a macro, we store a copy here. */
297 static FILE *debug_stderr;
299 /* An obstack for our working variables. */
300 static struct obstack gcse_obstack;
302 /* Non-zero for each mode that supports (set (reg) (reg)).
303 This is trivially true for integer and floating point values.
304 It may or may not be true for condition codes. */
305 static char can_copy_p[(int) NUM_MACHINE_MODES];
307 /* Non-zero if can_copy_p has been initialized. */
308 static int can_copy_init_p;
310 struct reg_use {rtx reg_rtx; };
312 /* Hash table of expressions. */
314 struct expr
316 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
317 rtx expr;
318 /* Index in the available expression bitmaps. */
319 int bitmap_index;
320 /* Next entry with the same hash. */
321 struct expr *next_same_hash;
322 /* List of anticipatable occurrences in basic blocks in the function.
323 An "anticipatable occurrence" is one that is the first occurrence in the
324 basic block, the operands are not modified in the basic block prior
325 to the occurrence and the output is not used between the start of
326 the block and the occurrence. */
327 struct occr *antic_occr;
328 /* List of available occurrence in basic blocks in the function.
329 An "available occurrence" is one that is the last occurrence in the
330 basic block and the operands are not modified by following statements in
331 the basic block [including this insn]. */
332 struct occr *avail_occr;
333 /* Non-null if the computation is PRE redundant.
334 The value is the newly created pseudo-reg to record a copy of the
335 expression in all the places that reach the redundant copy. */
336 rtx reaching_reg;
339 /* Occurrence of an expression.
340 There is one per basic block. If a pattern appears more than once the
341 last appearance is used [or first for anticipatable expressions]. */
343 struct occr
345 /* Next occurrence of this expression. */
346 struct occr *next;
347 /* The insn that computes the expression. */
348 rtx insn;
349 /* Non-zero if this [anticipatable] occurrence has been deleted. */
350 char deleted_p;
351 /* Non-zero if this [available] occurrence has been copied to
352 reaching_reg. */
353 /* ??? This is mutually exclusive with deleted_p, so they could share
354 the same byte. */
355 char copied_p;
358 /* Expression and copy propagation hash tables.
359 Each hash table is an array of buckets.
360 ??? It is known that if it were an array of entries, structure elements
361 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
362 not clear whether in the final analysis a sufficient amount of memory would
363 be saved as the size of the available expression bitmaps would be larger
364 [one could build a mapping table without holes afterwards though].
365 Someday I'll perform the computation and figure it out. */
367 /* Total size of the expression hash table, in elements. */
368 static unsigned int expr_hash_table_size;
370 /* The table itself.
371 This is an array of `expr_hash_table_size' elements. */
372 static struct expr **expr_hash_table;
374 /* Total size of the copy propagation hash table, in elements. */
375 static unsigned int set_hash_table_size;
377 /* The table itself.
378 This is an array of `set_hash_table_size' elements. */
379 static struct expr **set_hash_table;
381 /* Mapping of uids to cuids.
382 Only real insns get cuids. */
383 static int *uid_cuid;
385 /* Highest UID in UID_CUID. */
386 static int max_uid;
388 /* Get the cuid of an insn. */
389 #ifdef ENABLE_CHECKING
390 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
391 #else
392 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
393 #endif
395 /* Number of cuids. */
396 static int max_cuid;
398 /* Mapping of cuids to insns. */
399 static rtx *cuid_insn;
401 /* Get insn from cuid. */
402 #define CUID_INSN(CUID) (cuid_insn[CUID])
404 /* Maximum register number in function prior to doing gcse + 1.
405 Registers created during this pass have regno >= max_gcse_regno.
406 This is named with "gcse" to not collide with global of same name. */
407 static unsigned int max_gcse_regno;
409 /* Maximum number of cse-able expressions found. */
410 static int n_exprs;
412 /* Maximum number of assignments for copy propagation found. */
413 static int n_sets;
415 /* Table of registers that are modified.
417 For each register, each element is a list of places where the pseudo-reg
418 is set.
420 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
421 requires knowledge of which blocks kill which regs [and thus could use
422 a bitmap instead of the lists `reg_set_table' uses].
424 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
425 num-regs) [however perhaps it may be useful to keep the data as is]. One
426 advantage of recording things this way is that `reg_set_table' is fairly
427 sparse with respect to pseudo regs but for hard regs could be fairly dense
428 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
429 up functions like compute_transp since in the case of pseudo-regs we only
430 need to iterate over the number of times a pseudo-reg is set, not over the
431 number of basic blocks [clearly there is a bit of a slow down in the cases
432 where a pseudo is set more than once in a block, however it is believed
433 that the net effect is to speed things up]. This isn't done for hard-regs
434 because recording call-clobbered hard-regs in `reg_set_table' at each
435 function call can consume a fair bit of memory, and iterating over
436 hard-regs stored this way in compute_transp will be more expensive. */
438 typedef struct reg_set
440 /* The next setting of this register. */
441 struct reg_set *next;
442 /* The insn where it was set. */
443 rtx insn;
444 } reg_set;
446 static reg_set **reg_set_table;
448 /* Size of `reg_set_table'.
449 The table starts out at max_gcse_regno + slop, and is enlarged as
450 necessary. */
451 static int reg_set_table_size;
453 /* Amount to grow `reg_set_table' by when it's full. */
454 #define REG_SET_TABLE_SLOP 100
456 /* This is a list of expressions which are MEMs and will be used by load
457 or store motion.
458 Load motion tracks MEMs which aren't killed by
459 anything except itself. (ie, loads and stores to a single location).
460 We can then allow movement of these MEM refs with a little special
461 allowance. (all stores copy the same value to the reaching reg used
462 for the loads). This means all values used to store into memory must have
463 no side effects so we can re-issue the setter value.
464 Store Motion uses this structure as an expression table to track stores
465 which look interesting, and might be moveable towards the exit block. */
467 struct ls_expr
469 struct expr * expr; /* Gcse expression reference for LM. */
470 rtx pattern; /* Pattern of this mem. */
471 rtx loads; /* INSN list of loads seen. */
472 rtx stores; /* INSN list of stores seen. */
473 struct ls_expr * next; /* Next in the list. */
474 int invalid; /* Invalid for some reason. */
475 int index; /* If it maps to a bitmap index. */
476 int hash_index; /* Index when in a hash table. */
477 rtx reaching_reg; /* Register to use when re-writing. */
480 /* Head of the list of load/store memory refs. */
481 static struct ls_expr * pre_ldst_mems = NULL;
483 /* Bitmap containing one bit for each register in the program.
484 Used when performing GCSE to track which registers have been set since
485 the start of the basic block. */
486 static regset reg_set_bitmap;
488 /* For each block, a bitmap of registers set in the block.
489 This is used by expr_killed_p and compute_transp.
490 It is computed during hash table computation and not by compute_sets
491 as it includes registers added since the last pass (or between cprop and
492 gcse) and it's currently not easy to realloc sbitmap vectors. */
493 static sbitmap *reg_set_in_block;
495 /* Array, indexed by basic block number for a list of insns which modify
496 memory within that block. */
497 static rtx * modify_mem_list;
498 bitmap modify_mem_list_set;
500 /* This array parallels modify_mem_list, but is kept canonicalized. */
501 static rtx * canon_modify_mem_list;
502 bitmap canon_modify_mem_list_set;
503 /* Various variables for statistics gathering. */
505 /* Memory used in a pass.
506 This isn't intended to be absolutely precise. Its intent is only
507 to keep an eye on memory usage. */
508 static int bytes_used;
510 /* GCSE substitutions made. */
511 static int gcse_subst_count;
512 /* Number of copy instructions created. */
513 static int gcse_create_count;
514 /* Number of constants propagated. */
515 static int const_prop_count;
516 /* Number of copys propagated. */
517 static int copy_prop_count;
519 /* These variables are used by classic GCSE.
520 Normally they'd be defined a bit later, but `rd_gen' needs to
521 be declared sooner. */
523 /* Each block has a bitmap of each type.
524 The length of each blocks bitmap is:
526 max_cuid - for reaching definitions
527 n_exprs - for available expressions
529 Thus we view the bitmaps as 2 dimensional arrays. i.e.
530 rd_kill[block_num][cuid_num]
531 ae_kill[block_num][expr_num] */
533 /* For reaching defs */
534 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
536 /* for available exprs */
537 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
539 /* Objects of this type are passed around by the null-pointer check
540 removal routines. */
541 struct null_pointer_info
543 /* The basic block being processed. */
544 int current_block;
545 /* The first register to be handled in this pass. */
546 unsigned int min_reg;
547 /* One greater than the last register to be handled in this pass. */
548 unsigned int max_reg;
549 sbitmap *nonnull_local;
550 sbitmap *nonnull_killed;
553 static void compute_can_copy PARAMS ((void));
554 static char *gmalloc PARAMS ((unsigned int));
555 static char *grealloc PARAMS ((char *, unsigned int));
556 static char *gcse_alloc PARAMS ((unsigned long));
557 static void alloc_gcse_mem PARAMS ((rtx));
558 static void free_gcse_mem PARAMS ((void));
559 static void alloc_reg_set_mem PARAMS ((int));
560 static void free_reg_set_mem PARAMS ((void));
561 static int get_bitmap_width PARAMS ((int, int, int));
562 static void record_one_set PARAMS ((int, rtx));
563 static void record_set_info PARAMS ((rtx, rtx, void *));
564 static void compute_sets PARAMS ((rtx));
565 static void hash_scan_insn PARAMS ((rtx, int, int));
566 static void hash_scan_set PARAMS ((rtx, rtx, int));
567 static void hash_scan_clobber PARAMS ((rtx, rtx));
568 static void hash_scan_call PARAMS ((rtx, rtx));
569 static int want_to_gcse_p PARAMS ((rtx));
570 static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
571 static int oprs_anticipatable_p PARAMS ((rtx, rtx));
572 static int oprs_available_p PARAMS ((rtx, rtx));
573 static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
574 int, int));
575 static void insert_set_in_table PARAMS ((rtx, rtx));
576 static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
577 static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
578 static unsigned int hash_string_1 PARAMS ((const char *));
579 static unsigned int hash_set PARAMS ((int, int));
580 static int expr_equiv_p PARAMS ((rtx, rtx));
581 static void record_last_reg_set_info PARAMS ((rtx, int));
582 static void record_last_mem_set_info PARAMS ((rtx));
583 static void record_last_set_info PARAMS ((rtx, rtx, void *));
584 static void compute_hash_table PARAMS ((int));
585 static void alloc_set_hash_table PARAMS ((int));
586 static void free_set_hash_table PARAMS ((void));
587 static void compute_set_hash_table PARAMS ((void));
588 static void alloc_expr_hash_table PARAMS ((unsigned int));
589 static void free_expr_hash_table PARAMS ((void));
590 static void compute_expr_hash_table PARAMS ((void));
591 static void dump_hash_table PARAMS ((FILE *, const char *, struct expr **,
592 int, int));
593 static struct expr *lookup_expr PARAMS ((rtx));
594 static struct expr *lookup_set PARAMS ((unsigned int, rtx));
595 static struct expr *next_set PARAMS ((unsigned int, struct expr *));
596 static void reset_opr_set_tables PARAMS ((void));
597 static int oprs_not_set_p PARAMS ((rtx, rtx));
598 static void mark_call PARAMS ((rtx));
599 static void mark_set PARAMS ((rtx, rtx));
600 static void mark_clobber PARAMS ((rtx, rtx));
601 static void mark_oprs_set PARAMS ((rtx));
602 static void alloc_cprop_mem PARAMS ((int, int));
603 static void free_cprop_mem PARAMS ((void));
604 static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
605 static void compute_transpout PARAMS ((void));
606 static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
607 int));
608 static void compute_cprop_data PARAMS ((void));
609 static void find_used_regs PARAMS ((rtx *, void *));
610 static int try_replace_reg PARAMS ((rtx, rtx, rtx));
611 static struct expr *find_avail_set PARAMS ((int, rtx));
612 static int cprop_jump PARAMS ((basic_block, rtx, rtx, rtx));
613 #ifdef HAVE_cc0
614 static int cprop_cc0_jump PARAMS ((basic_block, rtx, struct reg_use *, rtx));
615 #endif
616 static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *));
617 static int load_killed_in_block_p PARAMS ((basic_block, int, rtx, int));
618 static void canon_list_insert PARAMS ((rtx, rtx, void *));
619 static int cprop_insn PARAMS ((basic_block, rtx, int));
620 static int cprop PARAMS ((int));
621 static int one_cprop_pass PARAMS ((int, int));
622 static void alloc_pre_mem PARAMS ((int, int));
623 static void free_pre_mem PARAMS ((void));
624 static void compute_pre_data PARAMS ((void));
625 static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *,
626 basic_block));
627 static void insert_insn_end_bb PARAMS ((struct expr *, basic_block, int));
628 static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
629 static void pre_insert_copies PARAMS ((void));
630 static int pre_delete PARAMS ((void));
631 static int pre_gcse PARAMS ((void));
632 static int one_pre_gcse_pass PARAMS ((int));
633 static void add_label_notes PARAMS ((rtx, rtx));
634 static void alloc_code_hoist_mem PARAMS ((int, int));
635 static void free_code_hoist_mem PARAMS ((void));
636 static void compute_code_hoist_vbeinout PARAMS ((void));
637 static void compute_code_hoist_data PARAMS ((void));
638 static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block,
639 char *));
640 static void hoist_code PARAMS ((void));
641 static int one_code_hoisting_pass PARAMS ((void));
642 static void alloc_rd_mem PARAMS ((int, int));
643 static void free_rd_mem PARAMS ((void));
644 static void handle_rd_kill_set PARAMS ((rtx, int, basic_block));
645 static void compute_kill_rd PARAMS ((void));
646 static void compute_rd PARAMS ((void));
647 static void alloc_avail_expr_mem PARAMS ((int, int));
648 static void free_avail_expr_mem PARAMS ((void));
649 static void compute_ae_gen PARAMS ((void));
650 static int expr_killed_p PARAMS ((rtx, basic_block));
651 static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *));
652 static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
653 basic_block, int));
654 static rtx computing_insn PARAMS ((struct expr *, rtx));
655 static int def_reaches_here_p PARAMS ((rtx, rtx));
656 static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
657 static int handle_avail_expr PARAMS ((rtx, struct expr *));
658 static int classic_gcse PARAMS ((void));
659 static int one_classic_gcse_pass PARAMS ((int));
660 static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
661 static void delete_null_pointer_checks_1 PARAMS ((unsigned int *,
662 sbitmap *, sbitmap *,
663 struct null_pointer_info *));
664 static rtx process_insert_insn PARAMS ((struct expr *));
665 static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
666 static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
667 basic_block, int, char *));
668 static int pre_expr_reaches_here_p_work PARAMS ((basic_block, struct expr *,
669 basic_block, char *));
670 static struct ls_expr * ldst_entry PARAMS ((rtx));
671 static void free_ldst_entry PARAMS ((struct ls_expr *));
672 static void free_ldst_mems PARAMS ((void));
673 static void print_ldst_list PARAMS ((FILE *));
674 static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx));
675 static int enumerate_ldsts PARAMS ((void));
676 static inline struct ls_expr * first_ls_expr PARAMS ((void));
677 static inline struct ls_expr * next_ls_expr PARAMS ((struct ls_expr *));
678 static int simple_mem PARAMS ((rtx));
679 static void invalidate_any_buried_refs PARAMS ((rtx));
680 static void compute_ld_motion_mems PARAMS ((void));
681 static void trim_ld_motion_mems PARAMS ((void));
682 static void update_ld_motion_stores PARAMS ((struct expr *));
683 static void reg_set_info PARAMS ((rtx, rtx, void *));
684 static int store_ops_ok PARAMS ((rtx, basic_block));
685 static void find_moveable_store PARAMS ((rtx));
686 static int compute_store_table PARAMS ((void));
687 static int load_kills_store PARAMS ((rtx, rtx));
688 static int find_loads PARAMS ((rtx, rtx));
689 static int store_killed_in_insn PARAMS ((rtx, rtx));
690 static int store_killed_after PARAMS ((rtx, rtx, basic_block));
691 static int store_killed_before PARAMS ((rtx, rtx, basic_block));
692 static void build_store_vectors PARAMS ((void));
693 static void insert_insn_start_bb PARAMS ((rtx, basic_block));
694 static int insert_store PARAMS ((struct ls_expr *, edge));
695 static void replace_store_insn PARAMS ((rtx, rtx, basic_block));
696 static void delete_store PARAMS ((struct ls_expr *,
697 basic_block));
698 static void free_store_memory PARAMS ((void));
699 static void store_motion PARAMS ((void));
700 static void free_insn_expr_list_list PARAMS ((rtx *));
701 static void clear_modify_mem_tables PARAMS ((void));
702 static void free_modify_mem_tables PARAMS ((void));
704 /* Entry point for global common subexpression elimination.
705 F is the first instruction in the function. */
708 gcse_main (f, file)
709 rtx f;
710 FILE *file;
712 int changed, pass;
713 /* Bytes used at start of pass. */
714 int initial_bytes_used;
715 /* Maximum number of bytes used by a pass. */
716 int max_pass_bytes;
717 /* Point to release obstack data from for each pass. */
718 char *gcse_obstack_bottom;
720 /* Insertion of instructions on edges can create new basic blocks; we
721 need the original basic block count so that we can properly deallocate
722 arrays sized on the number of basic blocks originally in the cfg. */
723 int orig_bb_count;
724 /* We do not construct an accurate cfg in functions which call
725 setjmp, so just punt to be safe. */
726 if (current_function_calls_setjmp)
727 return 0;
729 /* Assume that we do not need to run jump optimizations after gcse. */
730 run_jump_opt_after_gcse = 0;
732 /* For calling dump_foo fns from gdb. */
733 debug_stderr = stderr;
734 gcse_file = file;
736 /* Identify the basic block information for this function, including
737 successors and predecessors. */
738 max_gcse_regno = max_reg_num ();
740 if (file)
741 dump_flow_info (file);
743 orig_bb_count = n_basic_blocks;
744 /* Return if there's nothing to do. */
745 if (n_basic_blocks <= 1)
746 return 0;
748 /* Trying to perform global optimizations on flow graphs which have
749 a high connectivity will take a long time and is unlikely to be
750 particularly useful.
752 In normal circumstances a cfg should have about twice as many edges
753 as blocks. But we do not want to punish small functions which have
754 a couple switch statements. So we require a relatively large number
755 of basic blocks and the ratio of edges to blocks to be high. */
756 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
758 if (warn_disabled_optimization)
759 warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
760 n_basic_blocks, n_edges / n_basic_blocks);
761 return 0;
764 /* If allocating memory for the cprop bitmap would take up too much
765 storage it's better just to disable the optimization. */
766 if ((n_basic_blocks
767 * SBITMAP_SET_SIZE (max_gcse_regno)
768 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
770 if (warn_disabled_optimization)
771 warning ("GCSE disabled: %d basic blocks and %d registers",
772 n_basic_blocks, max_gcse_regno);
774 return 0;
777 /* See what modes support reg/reg copy operations. */
778 if (! can_copy_init_p)
780 compute_can_copy ();
781 can_copy_init_p = 1;
784 gcc_obstack_init (&gcse_obstack);
785 bytes_used = 0;
787 /* We need alias. */
788 init_alias_analysis ();
789 /* Record where pseudo-registers are set. This data is kept accurate
790 during each pass. ??? We could also record hard-reg information here
791 [since it's unchanging], however it is currently done during hash table
792 computation.
794 It may be tempting to compute MEM set information here too, but MEM sets
795 will be subject to code motion one day and thus we need to compute
796 information about memory sets when we build the hash tables. */
798 alloc_reg_set_mem (max_gcse_regno);
799 compute_sets (f);
801 pass = 0;
802 initial_bytes_used = bytes_used;
803 max_pass_bytes = 0;
804 gcse_obstack_bottom = gcse_alloc (1);
805 changed = 1;
806 while (changed && pass < MAX_GCSE_PASSES)
808 changed = 0;
809 if (file)
810 fprintf (file, "GCSE pass %d\n\n", pass + 1);
812 /* Initialize bytes_used to the space for the pred/succ lists,
813 and the reg_set_table data. */
814 bytes_used = initial_bytes_used;
816 /* Each pass may create new registers, so recalculate each time. */
817 max_gcse_regno = max_reg_num ();
819 alloc_gcse_mem (f);
821 /* Don't allow constant propagation to modify jumps
822 during this pass. */
823 changed = one_cprop_pass (pass + 1, 0);
825 if (optimize_size)
826 changed |= one_classic_gcse_pass (pass + 1);
827 else
829 changed |= one_pre_gcse_pass (pass + 1);
830 /* We may have just created new basic blocks. Release and
831 recompute various things which are sized on the number of
832 basic blocks. */
833 if (changed)
835 free_modify_mem_tables ();
836 modify_mem_list
837 = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx));
838 canon_modify_mem_list
839 = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx));
840 memset ((char *) modify_mem_list, 0, n_basic_blocks * sizeof (rtx));
841 memset ((char *) canon_modify_mem_list, 0, n_basic_blocks * sizeof (rtx));
842 orig_bb_count = n_basic_blocks;
844 free_reg_set_mem ();
845 alloc_reg_set_mem (max_reg_num ());
846 compute_sets (f);
847 run_jump_opt_after_gcse = 1;
850 if (max_pass_bytes < bytes_used)
851 max_pass_bytes = bytes_used;
853 /* Free up memory, then reallocate for code hoisting. We can
854 not re-use the existing allocated memory because the tables
855 will not have info for the insns or registers created by
856 partial redundancy elimination. */
857 free_gcse_mem ();
859 /* It does not make sense to run code hoisting unless we optimizing
860 for code size -- it rarely makes programs faster, and can make
861 them bigger if we did partial redundancy elimination (when optimizing
862 for space, we use a classic gcse algorithm instead of partial
863 redundancy algorithms). */
864 if (optimize_size)
866 max_gcse_regno = max_reg_num ();
867 alloc_gcse_mem (f);
868 changed |= one_code_hoisting_pass ();
869 free_gcse_mem ();
871 if (max_pass_bytes < bytes_used)
872 max_pass_bytes = bytes_used;
875 if (file)
877 fprintf (file, "\n");
878 fflush (file);
881 obstack_free (&gcse_obstack, gcse_obstack_bottom);
882 pass++;
885 /* Do one last pass of copy propagation, including cprop into
886 conditional jumps. */
888 max_gcse_regno = max_reg_num ();
889 alloc_gcse_mem (f);
890 /* This time, go ahead and allow cprop to alter jumps. */
891 one_cprop_pass (pass + 1, 1);
892 free_gcse_mem ();
894 if (file)
896 fprintf (file, "GCSE of %s: %d basic blocks, ",
897 current_function_name, n_basic_blocks);
898 fprintf (file, "%d pass%s, %d bytes\n\n",
899 pass, pass > 1 ? "es" : "", max_pass_bytes);
902 obstack_free (&gcse_obstack, NULL);
903 free_reg_set_mem ();
904 /* We are finished with alias. */
905 end_alias_analysis ();
906 allocate_reg_info (max_reg_num (), FALSE, FALSE);
908 /* Store motion disabled until it is fixed. */
909 if (0 && !optimize_size && flag_gcse_sm)
910 store_motion ();
911 /* Record where pseudo-registers are set. */
912 return run_jump_opt_after_gcse;
915 /* Misc. utilities. */
917 /* Compute which modes support reg/reg copy operations. */
919 static void
920 compute_can_copy ()
922 int i;
923 #ifndef AVOID_CCMODE_COPIES
924 rtx reg, insn;
925 #endif
926 memset (can_copy_p, 0, NUM_MACHINE_MODES);
928 start_sequence ();
929 for (i = 0; i < NUM_MACHINE_MODES; i++)
930 if (GET_MODE_CLASS (i) == MODE_CC)
932 #ifdef AVOID_CCMODE_COPIES
933 can_copy_p[i] = 0;
934 #else
935 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
936 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
937 if (recog (PATTERN (insn), insn, NULL) >= 0)
938 can_copy_p[i] = 1;
939 #endif
941 else
942 can_copy_p[i] = 1;
944 end_sequence ();
947 /* Cover function to xmalloc to record bytes allocated. */
949 static char *
950 gmalloc (size)
951 unsigned int size;
953 bytes_used += size;
954 return xmalloc (size);
957 /* Cover function to xrealloc.
958 We don't record the additional size since we don't know it.
959 It won't affect memory usage stats much anyway. */
961 static char *
962 grealloc (ptr, size)
963 char *ptr;
964 unsigned int size;
966 return xrealloc (ptr, size);
969 /* Cover function to obstack_alloc.
970 We don't need to record the bytes allocated here since
971 obstack_chunk_alloc is set to gmalloc. */
973 static char *
974 gcse_alloc (size)
975 unsigned long size;
977 return (char *) obstack_alloc (&gcse_obstack, size);
980 /* Allocate memory for the cuid mapping array,
981 and reg/memory set tracking tables.
983 This is called at the start of each pass. */
985 static void
986 alloc_gcse_mem (f)
987 rtx f;
989 int i, n;
990 rtx insn;
992 /* Find the largest UID and create a mapping from UIDs to CUIDs.
993 CUIDs are like UIDs except they increase monotonically, have no gaps,
994 and only apply to real insns. */
996 max_uid = get_max_uid ();
997 n = (max_uid + 1) * sizeof (int);
998 uid_cuid = (int *) gmalloc (n);
999 memset ((char *) uid_cuid, 0, n);
1000 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1002 if (INSN_P (insn))
1003 uid_cuid[INSN_UID (insn)] = i++;
1004 else
1005 uid_cuid[INSN_UID (insn)] = i;
1008 /* Create a table mapping cuids to insns. */
1010 max_cuid = i;
1011 n = (max_cuid + 1) * sizeof (rtx);
1012 cuid_insn = (rtx *) gmalloc (n);
1013 memset ((char *) cuid_insn, 0, n);
1014 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1015 if (INSN_P (insn))
1016 CUID_INSN (i++) = insn;
1018 /* Allocate vars to track sets of regs. */
1019 reg_set_bitmap = BITMAP_XMALLOC ();
1021 /* Allocate vars to track sets of regs, memory per block. */
1022 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
1023 max_gcse_regno);
1024 /* Allocate array to keep a list of insns which modify memory in each
1025 basic block. */
1026 modify_mem_list = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx));
1027 canon_modify_mem_list = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx));
1028 memset ((char *) modify_mem_list, 0, n_basic_blocks * sizeof (rtx));
1029 memset ((char *) canon_modify_mem_list, 0, n_basic_blocks * sizeof (rtx));
1030 modify_mem_list_set = BITMAP_XMALLOC ();
1031 canon_modify_mem_list_set = BITMAP_XMALLOC ();
1034 /* Free memory allocated by alloc_gcse_mem. */
1036 static void
1037 free_gcse_mem ()
1039 free (uid_cuid);
1040 free (cuid_insn);
1042 BITMAP_XFREE (reg_set_bitmap);
1044 sbitmap_vector_free (reg_set_in_block);
1045 free_modify_mem_tables ();
1046 BITMAP_XFREE (modify_mem_list_set);
1047 BITMAP_XFREE (canon_modify_mem_list_set);
1050 /* Many of the global optimization algorithms work by solving dataflow
1051 equations for various expressions. Initially, some local value is
1052 computed for each expression in each block. Then, the values across the
1053 various blocks are combined (by following flow graph edges) to arrive at
1054 global values. Conceptually, each set of equations is independent. We
1055 may therefore solve all the equations in parallel, solve them one at a
1056 time, or pick any intermediate approach.
1058 When you're going to need N two-dimensional bitmaps, each X (say, the
1059 number of blocks) by Y (say, the number of expressions), call this
1060 function. It's not important what X and Y represent; only that Y
1061 correspond to the things that can be done in parallel. This function will
1062 return an appropriate chunking factor C; you should solve C sets of
1063 equations in parallel. By going through this function, we can easily
1064 trade space against time; by solving fewer equations in parallel we use
1065 less space. */
1067 static int
1068 get_bitmap_width (n, x, y)
1069 int n;
1070 int x;
1071 int y;
1073 /* It's not really worth figuring out *exactly* how much memory will
1074 be used by a particular choice. The important thing is to get
1075 something approximately right. */
1076 size_t max_bitmap_memory = 10 * 1024 * 1024;
1078 /* The number of bytes we'd use for a single column of minimum
1079 width. */
1080 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
1082 /* Often, it's reasonable just to solve all the equations in
1083 parallel. */
1084 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
1085 return y;
1087 /* Otherwise, pick the largest width we can, without going over the
1088 limit. */
1089 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
1090 / column_size);
1093 /* Compute the local properties of each recorded expression.
1095 Local properties are those that are defined by the block, irrespective of
1096 other blocks.
1098 An expression is transparent in a block if its operands are not modified
1099 in the block.
1101 An expression is computed (locally available) in a block if it is computed
1102 at least once and expression would contain the same value if the
1103 computation was moved to the end of the block.
1105 An expression is locally anticipatable in a block if it is computed at
1106 least once and expression would contain the same value if the computation
1107 was moved to the beginning of the block.
1109 We call this routine for cprop, pre and code hoisting. They all compute
1110 basically the same information and thus can easily share this code.
1112 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1113 properties. If NULL, then it is not necessary to compute or record that
1114 particular property.
1116 SETP controls which hash table to look at. If zero, this routine looks at
1117 the expr hash table; if nonzero this routine looks at the set hash table.
1118 Additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1119 ABSALTERED. */
1121 static void
1122 compute_local_properties (transp, comp, antloc, setp)
1123 sbitmap *transp;
1124 sbitmap *comp;
1125 sbitmap *antloc;
1126 int setp;
1128 unsigned int i, hash_table_size;
1129 struct expr **hash_table;
1131 /* Initialize any bitmaps that were passed in. */
1132 if (transp)
1134 if (setp)
1135 sbitmap_vector_zero (transp, n_basic_blocks);
1136 else
1137 sbitmap_vector_ones (transp, n_basic_blocks);
1140 if (comp)
1141 sbitmap_vector_zero (comp, n_basic_blocks);
1142 if (antloc)
1143 sbitmap_vector_zero (antloc, n_basic_blocks);
1145 /* We use the same code for cprop, pre and hoisting. For cprop
1146 we care about the set hash table, for pre and hoisting we
1147 care about the expr hash table. */
1148 hash_table_size = setp ? set_hash_table_size : expr_hash_table_size;
1149 hash_table = setp ? set_hash_table : expr_hash_table;
1151 for (i = 0; i < hash_table_size; i++)
1153 struct expr *expr;
1155 for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
1157 int indx = expr->bitmap_index;
1158 struct occr *occr;
1160 /* The expression is transparent in this block if it is not killed.
1161 We start by assuming all are transparent [none are killed], and
1162 then reset the bits for those that are. */
1163 if (transp)
1164 compute_transp (expr->expr, indx, transp, setp);
1166 /* The occurrences recorded in antic_occr are exactly those that
1167 we want to set to non-zero in ANTLOC. */
1168 if (antloc)
1169 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1171 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1173 /* While we're scanning the table, this is a good place to
1174 initialize this. */
1175 occr->deleted_p = 0;
1178 /* The occurrences recorded in avail_occr are exactly those that
1179 we want to set to non-zero in COMP. */
1180 if (comp)
1181 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1183 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1185 /* While we're scanning the table, this is a good place to
1186 initialize this. */
1187 occr->copied_p = 0;
1190 /* While we're scanning the table, this is a good place to
1191 initialize this. */
1192 expr->reaching_reg = 0;
1197 /* Register set information.
1199 `reg_set_table' records where each register is set or otherwise
1200 modified. */
1202 static struct obstack reg_set_obstack;
1204 static void
1205 alloc_reg_set_mem (n_regs)
1206 int n_regs;
1208 unsigned int n;
1210 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1211 n = reg_set_table_size * sizeof (struct reg_set *);
1212 reg_set_table = (struct reg_set **) gmalloc (n);
1213 memset ((char *) reg_set_table, 0, n);
1215 gcc_obstack_init (&reg_set_obstack);
1218 static void
1219 free_reg_set_mem ()
1221 free (reg_set_table);
1222 obstack_free (&reg_set_obstack, NULL);
1225 /* Record REGNO in the reg_set table. */
1227 static void
1228 record_one_set (regno, insn)
1229 int regno;
1230 rtx insn;
1232 /* Allocate a new reg_set element and link it onto the list. */
1233 struct reg_set *new_reg_info;
1235 /* If the table isn't big enough, enlarge it. */
1236 if (regno >= reg_set_table_size)
1238 int new_size = regno + REG_SET_TABLE_SLOP;
1240 reg_set_table
1241 = (struct reg_set **) grealloc ((char *) reg_set_table,
1242 new_size * sizeof (struct reg_set *));
1243 memset ((char *) (reg_set_table + reg_set_table_size), 0,
1244 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1245 reg_set_table_size = new_size;
1248 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1249 sizeof (struct reg_set));
1250 bytes_used += sizeof (struct reg_set);
1251 new_reg_info->insn = insn;
1252 new_reg_info->next = reg_set_table[regno];
1253 reg_set_table[regno] = new_reg_info;
1256 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1257 an insn. The DATA is really the instruction in which the SET is
1258 occurring. */
1260 static void
1261 record_set_info (dest, setter, data)
1262 rtx dest, setter ATTRIBUTE_UNUSED;
1263 void *data;
1265 rtx record_set_insn = (rtx) data;
1267 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1268 record_one_set (REGNO (dest), record_set_insn);
1271 /* Scan the function and record each set of each pseudo-register.
1273 This is called once, at the start of the gcse pass. See the comments for
1274 `reg_set_table' for further documenation. */
1276 static void
1277 compute_sets (f)
1278 rtx f;
1280 rtx insn;
1282 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1283 if (INSN_P (insn))
1284 note_stores (PATTERN (insn), record_set_info, insn);
1287 /* Hash table support. */
1289 /* For each register, the cuid of the first/last insn in the block
1290 that set it, or -1 if not set. */
1291 #define NEVER_SET -1
1293 struct reg_avail_info
1295 int last_bb;
1296 int first_set;
1297 int last_set;
1300 static struct reg_avail_info *reg_avail_info;
1301 static int current_bb;
1304 /* See whether X, the source of a set, is something we want to consider for
1305 GCSE. */
1307 static int
1308 want_to_gcse_p (x)
1309 rtx x;
1311 static rtx test_insn = 0;
1312 int num_clobbers = 0;
1313 int icode;
1315 switch (GET_CODE (x))
1317 case REG:
1318 case SUBREG:
1319 case CONST_INT:
1320 case CONST_DOUBLE:
1321 case CONST_VECTOR:
1322 case CALL:
1323 return 0;
1325 default:
1326 break;
1329 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1330 if (general_operand (x, GET_MODE (x)))
1331 return 1;
1332 else if (GET_MODE (x) == VOIDmode)
1333 return 0;
1335 /* Otherwise, check if we can make a valid insn from it. First initialize
1336 our test insn if we haven't already. */
1337 if (test_insn == 0)
1339 test_insn
1340 = make_insn_raw (gen_rtx_SET (VOIDmode,
1341 gen_rtx_REG (word_mode,
1342 FIRST_PSEUDO_REGISTER * 2),
1343 const0_rtx));
1344 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1345 ggc_add_rtx_root (&test_insn, 1);
1348 /* Now make an insn like the one we would make when GCSE'ing and see if
1349 valid. */
1350 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1351 SET_SRC (PATTERN (test_insn)) = x;
1352 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1353 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1356 /* Return non-zero if the operands of expression X are unchanged from the
1357 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1358 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1360 static int
1361 oprs_unchanged_p (x, insn, avail_p)
1362 rtx x, insn;
1363 int avail_p;
1365 int i, j;
1366 enum rtx_code code;
1367 const char *fmt;
1369 if (x == 0)
1370 return 1;
1372 code = GET_CODE (x);
1373 switch (code)
1375 case REG:
1377 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1379 if (info->last_bb != current_bb)
1380 return 1;
1381 if (avail_p)
1382 return info->last_set < INSN_CUID (insn);
1383 else
1384 return info->first_set >= INSN_CUID (insn);
1387 case MEM:
1388 if (load_killed_in_block_p (BASIC_BLOCK (current_bb), INSN_CUID (insn),
1389 x, avail_p))
1390 return 0;
1391 else
1392 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1394 case PRE_DEC:
1395 case PRE_INC:
1396 case POST_DEC:
1397 case POST_INC:
1398 case PRE_MODIFY:
1399 case POST_MODIFY:
1400 return 0;
1402 case PC:
1403 case CC0: /*FIXME*/
1404 case CONST:
1405 case CONST_INT:
1406 case CONST_DOUBLE:
1407 case CONST_VECTOR:
1408 case SYMBOL_REF:
1409 case LABEL_REF:
1410 case ADDR_VEC:
1411 case ADDR_DIFF_VEC:
1412 return 1;
1414 default:
1415 break;
1418 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1420 if (fmt[i] == 'e')
1422 /* If we are about to do the last recursive call needed at this
1423 level, change it into iteration. This function is called enough
1424 to be worth it. */
1425 if (i == 0)
1426 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1428 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1429 return 0;
1431 else if (fmt[i] == 'E')
1432 for (j = 0; j < XVECLEN (x, i); j++)
1433 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1434 return 0;
1437 return 1;
1440 /* Used for communication between mems_conflict_for_gcse_p and
1441 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1442 conflict between two memory references. */
1443 static int gcse_mems_conflict_p;
1445 /* Used for communication between mems_conflict_for_gcse_p and
1446 load_killed_in_block_p. A memory reference for a load instruction,
1447 mems_conflict_for_gcse_p will see if a memory store conflicts with
1448 this memory load. */
1449 static rtx gcse_mem_operand;
1451 /* DEST is the output of an instruction. If it is a memory reference, and
1452 possibly conflicts with the load found in gcse_mem_operand, then set
1453 gcse_mems_conflict_p to a nonzero value. */
1455 static void
1456 mems_conflict_for_gcse_p (dest, setter, data)
1457 rtx dest, setter ATTRIBUTE_UNUSED;
1458 void *data ATTRIBUTE_UNUSED;
1460 while (GET_CODE (dest) == SUBREG
1461 || GET_CODE (dest) == ZERO_EXTRACT
1462 || GET_CODE (dest) == SIGN_EXTRACT
1463 || GET_CODE (dest) == STRICT_LOW_PART)
1464 dest = XEXP (dest, 0);
1466 /* If DEST is not a MEM, then it will not conflict with the load. Note
1467 that function calls are assumed to clobber memory, but are handled
1468 elsewhere. */
1469 if (GET_CODE (dest) != MEM)
1470 return;
1472 /* If we are setting a MEM in our list of specially recognized MEMs,
1473 don't mark as killed this time. */
1475 if (dest == gcse_mem_operand && pre_ldst_mems != NULL)
1477 if (!find_rtx_in_ldst (dest))
1478 gcse_mems_conflict_p = 1;
1479 return;
1482 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1483 rtx_addr_varies_p))
1484 gcse_mems_conflict_p = 1;
1487 /* Return nonzero if the expression in X (a memory reference) is killed
1488 in block BB before or after the insn with the CUID in UID_LIMIT.
1489 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1490 before UID_LIMIT.
1492 To check the entire block, set UID_LIMIT to max_uid + 1 and
1493 AVAIL_P to 0. */
1495 static int
1496 load_killed_in_block_p (bb, uid_limit, x, avail_p)
1497 basic_block bb;
1498 int uid_limit;
1499 rtx x;
1500 int avail_p;
1502 rtx list_entry = modify_mem_list[bb->index];
1503 while (list_entry)
1505 rtx setter;
1506 /* Ignore entries in the list that do not apply. */
1507 if ((avail_p
1508 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1509 || (! avail_p
1510 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1512 list_entry = XEXP (list_entry, 1);
1513 continue;
1516 setter = XEXP (list_entry, 0);
1518 /* If SETTER is a call everything is clobbered. Note that calls
1519 to pure functions are never put on the list, so we need not
1520 worry about them. */
1521 if (GET_CODE (setter) == CALL_INSN)
1522 return 1;
1524 /* SETTER must be an INSN of some kind that sets memory. Call
1525 note_stores to examine each hunk of memory that is modified.
1527 The note_stores interface is pretty limited, so we have to
1528 communicate via global variables. Yuk. */
1529 gcse_mem_operand = x;
1530 gcse_mems_conflict_p = 0;
1531 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1532 if (gcse_mems_conflict_p)
1533 return 1;
1534 list_entry = XEXP (list_entry, 1);
1536 return 0;
1539 /* Return non-zero if the operands of expression X are unchanged from
1540 the start of INSN's basic block up to but not including INSN. */
1542 static int
1543 oprs_anticipatable_p (x, insn)
1544 rtx x, insn;
1546 return oprs_unchanged_p (x, insn, 0);
1549 /* Return non-zero if the operands of expression X are unchanged from
1550 INSN to the end of INSN's basic block. */
1552 static int
1553 oprs_available_p (x, insn)
1554 rtx x, insn;
1556 return oprs_unchanged_p (x, insn, 1);
1559 /* Hash expression X.
1561 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1562 indicating if a volatile operand is found or if the expression contains
1563 something we don't want to insert in the table.
1565 ??? One might want to merge this with canon_hash. Later. */
1567 static unsigned int
1568 hash_expr (x, mode, do_not_record_p, hash_table_size)
1569 rtx x;
1570 enum machine_mode mode;
1571 int *do_not_record_p;
1572 int hash_table_size;
1574 unsigned int hash;
1576 *do_not_record_p = 0;
1578 hash = hash_expr_1 (x, mode, do_not_record_p);
1579 return hash % hash_table_size;
1582 /* Hash a string. Just add its bytes up. */
1584 static inline unsigned
1585 hash_string_1 (ps)
1586 const char *ps;
1588 unsigned hash = 0;
1589 const unsigned char *p = (const unsigned char *) ps;
1591 if (p)
1592 while (*p)
1593 hash += *p++;
1595 return hash;
1598 /* Subroutine of hash_expr to do the actual work. */
1600 static unsigned int
1601 hash_expr_1 (x, mode, do_not_record_p)
1602 rtx x;
1603 enum machine_mode mode;
1604 int *do_not_record_p;
1606 int i, j;
1607 unsigned hash = 0;
1608 enum rtx_code code;
1609 const char *fmt;
1611 /* Used to turn recursion into iteration. We can't rely on GCC's
1612 tail-recursion eliminatio since we need to keep accumulating values
1613 in HASH. */
1615 if (x == 0)
1616 return hash;
1618 repeat:
1619 code = GET_CODE (x);
1620 switch (code)
1622 case REG:
1623 hash += ((unsigned int) REG << 7) + REGNO (x);
1624 return hash;
1626 case CONST_INT:
1627 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1628 + (unsigned int) INTVAL (x));
1629 return hash;
1631 case CONST_DOUBLE:
1632 /* This is like the general case, except that it only counts
1633 the integers representing the constant. */
1634 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1635 if (GET_MODE (x) != VOIDmode)
1636 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1637 hash += (unsigned int) XWINT (x, i);
1638 else
1639 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1640 + (unsigned int) CONST_DOUBLE_HIGH (x));
1641 return hash;
1643 case CONST_VECTOR:
1645 int units;
1646 rtx elt;
1648 units = CONST_VECTOR_NUNITS (x);
1650 for (i = 0; i < units; ++i)
1652 elt = CONST_VECTOR_ELT (x, i);
1653 hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
1656 return hash;
1659 /* Assume there is only one rtx object for any given label. */
1660 case LABEL_REF:
1661 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1662 differences and differences between each stage's debugging dumps. */
1663 hash += (((unsigned int) LABEL_REF << 7)
1664 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1665 return hash;
1667 case SYMBOL_REF:
1669 /* Don't hash on the symbol's address to avoid bootstrap differences.
1670 Different hash values may cause expressions to be recorded in
1671 different orders and thus different registers to be used in the
1672 final assembler. This also avoids differences in the dump files
1673 between various stages. */
1674 unsigned int h = 0;
1675 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1677 while (*p)
1678 h += (h << 7) + *p++; /* ??? revisit */
1680 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1681 return hash;
1684 case MEM:
1685 if (MEM_VOLATILE_P (x))
1687 *do_not_record_p = 1;
1688 return 0;
1691 hash += (unsigned int) MEM;
1692 hash += MEM_ALIAS_SET (x);
1693 x = XEXP (x, 0);
1694 goto repeat;
1696 case PRE_DEC:
1697 case PRE_INC:
1698 case POST_DEC:
1699 case POST_INC:
1700 case PC:
1701 case CC0:
1702 case CALL:
1703 case UNSPEC_VOLATILE:
1704 *do_not_record_p = 1;
1705 return 0;
1707 case ASM_OPERANDS:
1708 if (MEM_VOLATILE_P (x))
1710 *do_not_record_p = 1;
1711 return 0;
1713 else
1715 /* We don't want to take the filename and line into account. */
1716 hash += (unsigned) code + (unsigned) GET_MODE (x)
1717 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1718 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1719 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1721 if (ASM_OPERANDS_INPUT_LENGTH (x))
1723 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1725 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1726 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1727 do_not_record_p)
1728 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1729 (x, i)));
1732 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1733 x = ASM_OPERANDS_INPUT (x, 0);
1734 mode = GET_MODE (x);
1735 goto repeat;
1737 return hash;
1740 default:
1741 break;
1744 hash += (unsigned) code + (unsigned) GET_MODE (x);
1745 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1747 if (fmt[i] == 'e')
1749 /* If we are about to do the last recursive call
1750 needed at this level, change it into iteration.
1751 This function is called enough to be worth it. */
1752 if (i == 0)
1754 x = XEXP (x, i);
1755 goto repeat;
1758 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1759 if (*do_not_record_p)
1760 return 0;
1763 else if (fmt[i] == 'E')
1764 for (j = 0; j < XVECLEN (x, i); j++)
1766 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1767 if (*do_not_record_p)
1768 return 0;
1771 else if (fmt[i] == 's')
1772 hash += hash_string_1 (XSTR (x, i));
1773 else if (fmt[i] == 'i')
1774 hash += (unsigned int) XINT (x, i);
1775 else
1776 abort ();
1779 return hash;
1782 /* Hash a set of register REGNO.
1784 Sets are hashed on the register that is set. This simplifies the PRE copy
1785 propagation code.
1787 ??? May need to make things more elaborate. Later, as necessary. */
1789 static unsigned int
1790 hash_set (regno, hash_table_size)
1791 int regno;
1792 int hash_table_size;
1794 unsigned int hash;
1796 hash = regno;
1797 return hash % hash_table_size;
1800 /* Return non-zero if exp1 is equivalent to exp2.
1801 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1803 static int
1804 expr_equiv_p (x, y)
1805 rtx x, y;
1807 int i, j;
1808 enum rtx_code code;
1809 const char *fmt;
1811 if (x == y)
1812 return 1;
1814 if (x == 0 || y == 0)
1815 return x == y;
1817 code = GET_CODE (x);
1818 if (code != GET_CODE (y))
1819 return 0;
1821 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1822 if (GET_MODE (x) != GET_MODE (y))
1823 return 0;
1825 switch (code)
1827 case PC:
1828 case CC0:
1829 return x == y;
1831 case CONST_INT:
1832 return INTVAL (x) == INTVAL (y);
1834 case LABEL_REF:
1835 return XEXP (x, 0) == XEXP (y, 0);
1837 case SYMBOL_REF:
1838 return XSTR (x, 0) == XSTR (y, 0);
1840 case REG:
1841 return REGNO (x) == REGNO (y);
1843 case MEM:
1844 /* Can't merge two expressions in different alias sets, since we can
1845 decide that the expression is transparent in a block when it isn't,
1846 due to it being set with the different alias set. */
1847 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1848 return 0;
1849 break;
1851 /* For commutative operations, check both orders. */
1852 case PLUS:
1853 case MULT:
1854 case AND:
1855 case IOR:
1856 case XOR:
1857 case NE:
1858 case EQ:
1859 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1860 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1861 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1862 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1864 case ASM_OPERANDS:
1865 /* We don't use the generic code below because we want to
1866 disregard filename and line numbers. */
1868 /* A volatile asm isn't equivalent to any other. */
1869 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1870 return 0;
1872 if (GET_MODE (x) != GET_MODE (y)
1873 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1874 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1875 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1876 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1877 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1878 return 0;
1880 if (ASM_OPERANDS_INPUT_LENGTH (x))
1882 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1883 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1884 ASM_OPERANDS_INPUT (y, i))
1885 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1886 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1887 return 0;
1890 return 1;
1892 default:
1893 break;
1896 /* Compare the elements. If any pair of corresponding elements
1897 fail to match, return 0 for the whole thing. */
1899 fmt = GET_RTX_FORMAT (code);
1900 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1902 switch (fmt[i])
1904 case 'e':
1905 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1906 return 0;
1907 break;
1909 case 'E':
1910 if (XVECLEN (x, i) != XVECLEN (y, i))
1911 return 0;
1912 for (j = 0; j < XVECLEN (x, i); j++)
1913 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1914 return 0;
1915 break;
1917 case 's':
1918 if (strcmp (XSTR (x, i), XSTR (y, i)))
1919 return 0;
1920 break;
1922 case 'i':
1923 if (XINT (x, i) != XINT (y, i))
1924 return 0;
1925 break;
1927 case 'w':
1928 if (XWINT (x, i) != XWINT (y, i))
1929 return 0;
1930 break;
1932 case '0':
1933 break;
1935 default:
1936 abort ();
1940 return 1;
1943 /* Insert expression X in INSN in the hash table.
1944 If it is already present, record it as the last occurrence in INSN's
1945 basic block.
1947 MODE is the mode of the value X is being stored into.
1948 It is only used if X is a CONST_INT.
1950 ANTIC_P is non-zero if X is an anticipatable expression.
1951 AVAIL_P is non-zero if X is an available expression. */
1953 static void
1954 insert_expr_in_table (x, mode, insn, antic_p, avail_p)
1955 rtx x;
1956 enum machine_mode mode;
1957 rtx insn;
1958 int antic_p, avail_p;
1960 int found, do_not_record_p;
1961 unsigned int hash;
1962 struct expr *cur_expr, *last_expr = NULL;
1963 struct occr *antic_occr, *avail_occr;
1964 struct occr *last_occr = NULL;
1966 hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);
1968 /* Do not insert expression in table if it contains volatile operands,
1969 or if hash_expr determines the expression is something we don't want
1970 to or can't handle. */
1971 if (do_not_record_p)
1972 return;
1974 cur_expr = expr_hash_table[hash];
1975 found = 0;
1977 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1979 /* If the expression isn't found, save a pointer to the end of
1980 the list. */
1981 last_expr = cur_expr;
1982 cur_expr = cur_expr->next_same_hash;
1985 if (! found)
1987 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1988 bytes_used += sizeof (struct expr);
1989 if (expr_hash_table[hash] == NULL)
1990 /* This is the first pattern that hashed to this index. */
1991 expr_hash_table[hash] = cur_expr;
1992 else
1993 /* Add EXPR to end of this hash chain. */
1994 last_expr->next_same_hash = cur_expr;
1996 /* Set the fields of the expr element. */
1997 cur_expr->expr = x;
1998 cur_expr->bitmap_index = n_exprs++;
1999 cur_expr->next_same_hash = NULL;
2000 cur_expr->antic_occr = NULL;
2001 cur_expr->avail_occr = NULL;
2004 /* Now record the occurrence(s). */
2005 if (antic_p)
2007 antic_occr = cur_expr->antic_occr;
2009 /* Search for another occurrence in the same basic block. */
2010 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
2012 /* If an occurrence isn't found, save a pointer to the end of
2013 the list. */
2014 last_occr = antic_occr;
2015 antic_occr = antic_occr->next;
2018 if (antic_occr)
2019 /* Found another instance of the expression in the same basic block.
2020 Prefer the currently recorded one. We want the first one in the
2021 block and the block is scanned from start to end. */
2022 ; /* nothing to do */
2023 else
2025 /* First occurrence of this expression in this basic block. */
2026 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2027 bytes_used += sizeof (struct occr);
2028 /* First occurrence of this expression in any block? */
2029 if (cur_expr->antic_occr == NULL)
2030 cur_expr->antic_occr = antic_occr;
2031 else
2032 last_occr->next = antic_occr;
2034 antic_occr->insn = insn;
2035 antic_occr->next = NULL;
2039 if (avail_p)
2041 avail_occr = cur_expr->avail_occr;
2043 /* Search for another occurrence in the same basic block. */
2044 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
2046 /* If an occurrence isn't found, save a pointer to the end of
2047 the list. */
2048 last_occr = avail_occr;
2049 avail_occr = avail_occr->next;
2052 if (avail_occr)
2053 /* Found another instance of the expression in the same basic block.
2054 Prefer this occurrence to the currently recorded one. We want
2055 the last one in the block and the block is scanned from start
2056 to end. */
2057 avail_occr->insn = insn;
2058 else
2060 /* First occurrence of this expression in this basic block. */
2061 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2062 bytes_used += sizeof (struct occr);
2064 /* First occurrence of this expression in any block? */
2065 if (cur_expr->avail_occr == NULL)
2066 cur_expr->avail_occr = avail_occr;
2067 else
2068 last_occr->next = avail_occr;
2070 avail_occr->insn = insn;
2071 avail_occr->next = NULL;
2076 /* Insert pattern X in INSN in the hash table.
2077 X is a SET of a reg to either another reg or a constant.
2078 If it is already present, record it as the last occurrence in INSN's
2079 basic block. */
2081 static void
2082 insert_set_in_table (x, insn)
2083 rtx x;
2084 rtx insn;
2086 int found;
2087 unsigned int hash;
2088 struct expr *cur_expr, *last_expr = NULL;
2089 struct occr *cur_occr, *last_occr = NULL;
2091 if (GET_CODE (x) != SET
2092 || GET_CODE (SET_DEST (x)) != REG)
2093 abort ();
2095 hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);
2097 cur_expr = set_hash_table[hash];
2098 found = 0;
2100 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
2102 /* If the expression isn't found, save a pointer to the end of
2103 the list. */
2104 last_expr = cur_expr;
2105 cur_expr = cur_expr->next_same_hash;
2108 if (! found)
2110 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
2111 bytes_used += sizeof (struct expr);
2112 if (set_hash_table[hash] == NULL)
2113 /* This is the first pattern that hashed to this index. */
2114 set_hash_table[hash] = cur_expr;
2115 else
2116 /* Add EXPR to end of this hash chain. */
2117 last_expr->next_same_hash = cur_expr;
2119 /* Set the fields of the expr element.
2120 We must copy X because it can be modified when copy propagation is
2121 performed on its operands. */
2122 cur_expr->expr = copy_rtx (x);
2123 cur_expr->bitmap_index = n_sets++;
2124 cur_expr->next_same_hash = NULL;
2125 cur_expr->antic_occr = NULL;
2126 cur_expr->avail_occr = NULL;
2129 /* Now record the occurrence. */
2130 cur_occr = cur_expr->avail_occr;
2132 /* Search for another occurrence in the same basic block. */
2133 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
2135 /* If an occurrence isn't found, save a pointer to the end of
2136 the list. */
2137 last_occr = cur_occr;
2138 cur_occr = cur_occr->next;
2141 if (cur_occr)
2142 /* Found another instance of the expression in the same basic block.
2143 Prefer this occurrence to the currently recorded one. We want the
2144 last one in the block and the block is scanned from start to end. */
2145 cur_occr->insn = insn;
2146 else
2148 /* First occurrence of this expression in this basic block. */
2149 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2150 bytes_used += sizeof (struct occr);
2152 /* First occurrence of this expression in any block? */
2153 if (cur_expr->avail_occr == NULL)
2154 cur_expr->avail_occr = cur_occr;
2155 else
2156 last_occr->next = cur_occr;
2158 cur_occr->insn = insn;
2159 cur_occr->next = NULL;
2163 /* Scan pattern PAT of INSN and add an entry to the hash table. If SET_P is
2164 non-zero, this is for the assignment hash table, otherwise it is for the
2165 expression hash table. */
2167 static void
2168 hash_scan_set (pat, insn, set_p)
2169 rtx pat, insn;
2170 int set_p;
2172 rtx src = SET_SRC (pat);
2173 rtx dest = SET_DEST (pat);
2174 rtx note;
2176 if (GET_CODE (src) == CALL)
2177 hash_scan_call (src, insn);
2179 else if (GET_CODE (dest) == REG)
2181 unsigned int regno = REGNO (dest);
2182 rtx tmp;
2184 /* If this is a single set and we are doing constant propagation,
2185 see if a REG_NOTE shows this equivalent to a constant. */
2186 if (set_p && (note = find_reg_equal_equiv_note (insn)) != 0
2187 && CONSTANT_P (XEXP (note, 0)))
2188 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
2190 /* Only record sets of pseudo-regs in the hash table. */
2191 if (! set_p
2192 && regno >= FIRST_PSEUDO_REGISTER
2193 /* Don't GCSE something if we can't do a reg/reg copy. */
2194 && can_copy_p [GET_MODE (dest)]
2195 /* GCSE commonly inserts instruction after the insn. We can't
2196 do that easily for EH_REGION notes so disable GCSE on these
2197 for now. */
2198 && !can_throw_internal (insn)
2199 /* Is SET_SRC something we want to gcse? */
2200 && want_to_gcse_p (src)
2201 /* Don't CSE a nop. */
2202 && ! set_noop_p (pat)
2203 /* Don't GCSE if it has attached REG_EQUIV note.
2204 At this point this only function parameters should have
2205 REG_EQUIV notes and if the argument slot is used somewhere
2206 explicitly, it means address of parameter has been taken,
2207 so we should not extend the lifetime of the pseudo. */
2208 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2209 || GET_CODE (XEXP (note, 0)) != MEM))
2211 /* An expression is not anticipatable if its operands are
2212 modified before this insn or if this is not the only SET in
2213 this insn. */
2214 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
2215 /* An expression is not available if its operands are
2216 subsequently modified, including this insn. It's also not
2217 available if this is a branch, because we can't insert
2218 a set after the branch. */
2219 int avail_p = (oprs_available_p (src, insn)
2220 && ! JUMP_P (insn));
2222 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
2225 /* Record sets for constant/copy propagation. */
2226 else if (set_p
2227 && regno >= FIRST_PSEUDO_REGISTER
2228 && ((GET_CODE (src) == REG
2229 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2230 && can_copy_p [GET_MODE (dest)]
2231 && REGNO (src) != regno)
2232 || CONSTANT_P (src))
2233 /* A copy is not available if its src or dest is subsequently
2234 modified. Here we want to search from INSN+1 on, but
2235 oprs_available_p searches from INSN on. */
2236 && (insn == BLOCK_END (BLOCK_NUM (insn))
2237 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
2238 && oprs_available_p (pat, tmp))))
2239 insert_set_in_table (pat, insn);
2243 static void
2244 hash_scan_clobber (x, insn)
2245 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2247 /* Currently nothing to do. */
2250 static void
2251 hash_scan_call (x, insn)
2252 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2254 /* Currently nothing to do. */
2257 /* Process INSN and add hash table entries as appropriate.
2259 Only available expressions that set a single pseudo-reg are recorded.
2261 Single sets in a PARALLEL could be handled, but it's an extra complication
2262 that isn't dealt with right now. The trick is handling the CLOBBERs that
2263 are also in the PARALLEL. Later.
2265 If SET_P is non-zero, this is for the assignment hash table,
2266 otherwise it is for the expression hash table.
2267 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2268 not record any expressions. */
2270 static void
2271 hash_scan_insn (insn, set_p, in_libcall_block)
2272 rtx insn;
2273 int set_p;
2274 int in_libcall_block;
2276 rtx pat = PATTERN (insn);
2277 int i;
2279 if (in_libcall_block)
2280 return;
2282 /* Pick out the sets of INSN and for other forms of instructions record
2283 what's been modified. */
2285 if (GET_CODE (pat) == SET)
2286 hash_scan_set (pat, insn, set_p);
2287 else if (GET_CODE (pat) == PARALLEL)
2288 for (i = 0; i < XVECLEN (pat, 0); i++)
2290 rtx x = XVECEXP (pat, 0, i);
2292 if (GET_CODE (x) == SET)
2293 hash_scan_set (x, insn, set_p);
2294 else if (GET_CODE (x) == CLOBBER)
2295 hash_scan_clobber (x, insn);
2296 else if (GET_CODE (x) == CALL)
2297 hash_scan_call (x, insn);
2300 else if (GET_CODE (pat) == CLOBBER)
2301 hash_scan_clobber (pat, insn);
2302 else if (GET_CODE (pat) == CALL)
2303 hash_scan_call (pat, insn);
2306 static void
2307 dump_hash_table (file, name, table, table_size, total_size)
2308 FILE *file;
2309 const char *name;
2310 struct expr **table;
2311 int table_size, total_size;
2313 int i;
2314 /* Flattened out table, so it's printed in proper order. */
2315 struct expr **flat_table;
2316 unsigned int *hash_val;
2317 struct expr *expr;
2319 flat_table
2320 = (struct expr **) xcalloc (total_size, sizeof (struct expr *));
2321 hash_val = (unsigned int *) xmalloc (total_size * sizeof (unsigned int));
2323 for (i = 0; i < table_size; i++)
2324 for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
2326 flat_table[expr->bitmap_index] = expr;
2327 hash_val[expr->bitmap_index] = i;
2330 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2331 name, table_size, total_size);
2333 for (i = 0; i < total_size; i++)
2334 if (flat_table[i] != 0)
2336 expr = flat_table[i];
2337 fprintf (file, "Index %d (hash value %d)\n ",
2338 expr->bitmap_index, hash_val[i]);
2339 print_rtl (file, expr->expr);
2340 fprintf (file, "\n");
2343 fprintf (file, "\n");
2345 free (flat_table);
2346 free (hash_val);
2349 /* Record register first/last/block set information for REGNO in INSN.
2351 first_set records the first place in the block where the register
2352 is set and is used to compute "anticipatability".
2354 last_set records the last place in the block where the register
2355 is set and is used to compute "availability".
2357 last_bb records the block for which first_set and last_set are
2358 valid, as a quick test to invalidate them.
2360 reg_set_in_block records whether the register is set in the block
2361 and is used to compute "transparency". */
2363 static void
2364 record_last_reg_set_info (insn, regno)
2365 rtx insn;
2366 int regno;
2368 struct reg_avail_info *info = &reg_avail_info[regno];
2369 int cuid = INSN_CUID (insn);
2371 info->last_set = cuid;
2372 if (info->last_bb != current_bb)
2374 info->last_bb = current_bb;
2375 info->first_set = cuid;
2376 SET_BIT (reg_set_in_block[current_bb], regno);
2381 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2382 Note we store a pair of elements in the list, so they have to be
2383 taken off pairwise. */
2385 static void
2386 canon_list_insert (dest, unused1, v_insn)
2387 rtx dest ATTRIBUTE_UNUSED;
2388 rtx unused1 ATTRIBUTE_UNUSED;
2389 void * v_insn;
2391 rtx dest_addr, insn;
2392 int bb;
2394 while (GET_CODE (dest) == SUBREG
2395 || GET_CODE (dest) == ZERO_EXTRACT
2396 || GET_CODE (dest) == SIGN_EXTRACT
2397 || GET_CODE (dest) == STRICT_LOW_PART)
2398 dest = XEXP (dest, 0);
2400 /* If DEST is not a MEM, then it will not conflict with a load. Note
2401 that function calls are assumed to clobber memory, but are handled
2402 elsewhere. */
2404 if (GET_CODE (dest) != MEM)
2405 return;
2407 dest_addr = get_addr (XEXP (dest, 0));
2408 dest_addr = canon_rtx (dest_addr);
2409 insn = (rtx) v_insn;
2410 bb = BLOCK_NUM (insn);
2412 canon_modify_mem_list[bb] =
2413 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2414 canon_modify_mem_list[bb] =
2415 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2416 bitmap_set_bit (canon_modify_mem_list_set, bb);
2419 /* Record memory modification information for INSN. We do not actually care
2420 about the memory location(s) that are set, or even how they are set (consider
2421 a CALL_INSN). We merely need to record which insns modify memory. */
2423 static void
2424 record_last_mem_set_info (insn)
2425 rtx insn;
2427 int bb = BLOCK_NUM (insn);
2429 /* load_killed_in_block_p will handle the case of calls clobbering
2430 everything. */
2431 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2432 bitmap_set_bit (modify_mem_list_set, bb);
2434 if (GET_CODE (insn) == CALL_INSN)
2436 /* Note that traversals of this loop (other than for free-ing)
2437 will break after encountering a CALL_INSN. So, there's no
2438 need to insert a pair of items, as canon_list_insert does. */
2439 canon_modify_mem_list[bb] =
2440 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2441 bitmap_set_bit (canon_modify_mem_list_set, bb);
2443 else
2444 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2447 /* Called from compute_hash_table via note_stores to handle one
2448 SET or CLOBBER in an insn. DATA is really the instruction in which
2449 the SET is taking place. */
2451 static void
2452 record_last_set_info (dest, setter, data)
2453 rtx dest, setter ATTRIBUTE_UNUSED;
2454 void *data;
2456 rtx last_set_insn = (rtx) data;
2458 if (GET_CODE (dest) == SUBREG)
2459 dest = SUBREG_REG (dest);
2461 if (GET_CODE (dest) == REG)
2462 record_last_reg_set_info (last_set_insn, REGNO (dest));
2463 else if (GET_CODE (dest) == MEM
2464 /* Ignore pushes, they clobber nothing. */
2465 && ! push_operand (dest, GET_MODE (dest)))
2466 record_last_mem_set_info (last_set_insn);
2469 /* Top level function to create an expression or assignment hash table.
2471 Expression entries are placed in the hash table if
2472 - they are of the form (set (pseudo-reg) src),
2473 - src is something we want to perform GCSE on,
2474 - none of the operands are subsequently modified in the block
2476 Assignment entries are placed in the hash table if
2477 - they are of the form (set (pseudo-reg) src),
2478 - src is something we want to perform const/copy propagation on,
2479 - none of the operands or target are subsequently modified in the block
2481 Currently src must be a pseudo-reg or a const_int.
2483 F is the first insn.
2484 SET_P is non-zero for computing the assignment hash table. */
2486 static void
2487 compute_hash_table (set_p)
2488 int set_p;
2490 unsigned int i;
2492 /* While we compute the hash table we also compute a bit array of which
2493 registers are set in which blocks.
2494 ??? This isn't needed during const/copy propagation, but it's cheap to
2495 compute. Later. */
2496 sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
2498 /* re-Cache any INSN_LIST nodes we have allocated. */
2499 clear_modify_mem_tables ();
2500 /* Some working arrays used to track first and last set in each block. */
2501 reg_avail_info = (struct reg_avail_info*)
2502 gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2504 for (i = 0; i < max_gcse_regno; ++i)
2505 reg_avail_info[i].last_bb = NEVER_SET;
2507 for (current_bb = 0; current_bb < n_basic_blocks; current_bb++)
2509 rtx insn;
2510 unsigned int regno;
2511 int in_libcall_block;
2513 /* First pass over the instructions records information used to
2514 determine when registers and memory are first and last set.
2515 ??? hard-reg reg_set_in_block computation
2516 could be moved to compute_sets since they currently don't change. */
2518 for (insn = BLOCK_HEAD (current_bb);
2519 insn && insn != NEXT_INSN (BLOCK_END (current_bb));
2520 insn = NEXT_INSN (insn))
2522 if (! INSN_P (insn))
2523 continue;
2525 if (GET_CODE (insn) == CALL_INSN)
2527 bool clobbers_all = false;
2528 #ifdef NON_SAVING_SETJMP
2529 if (NON_SAVING_SETJMP
2530 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2531 clobbers_all = true;
2532 #endif
2534 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2535 if (clobbers_all
2536 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2537 record_last_reg_set_info (insn, regno);
2539 mark_call (insn);
2542 note_stores (PATTERN (insn), record_last_set_info, insn);
2545 /* The next pass builds the hash table. */
2547 for (insn = BLOCK_HEAD (current_bb), in_libcall_block = 0;
2548 insn && insn != NEXT_INSN (BLOCK_END (current_bb));
2549 insn = NEXT_INSN (insn))
2550 if (INSN_P (insn))
2552 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2553 in_libcall_block = 1;
2554 else if (set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2555 in_libcall_block = 0;
2556 hash_scan_insn (insn, set_p, in_libcall_block);
2557 if (!set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2558 in_libcall_block = 0;
2562 free (reg_avail_info);
2563 reg_avail_info = NULL;
2566 /* Allocate space for the set hash table.
2567 N_INSNS is the number of instructions in the function.
2568 It is used to determine the number of buckets to use. */
2570 static void
2571 alloc_set_hash_table (n_insns)
2572 int n_insns;
2574 int n;
2576 set_hash_table_size = n_insns / 4;
2577 if (set_hash_table_size < 11)
2578 set_hash_table_size = 11;
2580 /* Attempt to maintain efficient use of hash table.
2581 Making it an odd number is simplest for now.
2582 ??? Later take some measurements. */
2583 set_hash_table_size |= 1;
2584 n = set_hash_table_size * sizeof (struct expr *);
2585 set_hash_table = (struct expr **) gmalloc (n);
2588 /* Free things allocated by alloc_set_hash_table. */
2590 static void
2591 free_set_hash_table ()
2593 free (set_hash_table);
2596 /* Compute the hash table for doing copy/const propagation. */
2598 static void
2599 compute_set_hash_table ()
2601 /* Initialize count of number of entries in hash table. */
2602 n_sets = 0;
2603 memset ((char *) set_hash_table, 0,
2604 set_hash_table_size * sizeof (struct expr *));
2606 compute_hash_table (1);
2609 /* Allocate space for the expression hash table.
2610 N_INSNS is the number of instructions in the function.
2611 It is used to determine the number of buckets to use. */
2613 static void
2614 alloc_expr_hash_table (n_insns)
2615 unsigned int n_insns;
2617 int n;
2619 expr_hash_table_size = n_insns / 2;
2620 /* Make sure the amount is usable. */
2621 if (expr_hash_table_size < 11)
2622 expr_hash_table_size = 11;
2624 /* Attempt to maintain efficient use of hash table.
2625 Making it an odd number is simplest for now.
2626 ??? Later take some measurements. */
2627 expr_hash_table_size |= 1;
2628 n = expr_hash_table_size * sizeof (struct expr *);
2629 expr_hash_table = (struct expr **) gmalloc (n);
2632 /* Free things allocated by alloc_expr_hash_table. */
2634 static void
2635 free_expr_hash_table ()
2637 free (expr_hash_table);
2640 /* Compute the hash table for doing GCSE. */
2642 static void
2643 compute_expr_hash_table ()
2645 /* Initialize count of number of entries in hash table. */
2646 n_exprs = 0;
2647 memset ((char *) expr_hash_table, 0,
2648 expr_hash_table_size * sizeof (struct expr *));
2650 compute_hash_table (0);
2653 /* Expression tracking support. */
2655 /* Lookup pattern PAT in the expression table.
2656 The result is a pointer to the table entry, or NULL if not found. */
2658 static struct expr *
2659 lookup_expr (pat)
2660 rtx pat;
2662 int do_not_record_p;
2663 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2664 expr_hash_table_size);
2665 struct expr *expr;
2667 if (do_not_record_p)
2668 return NULL;
2670 expr = expr_hash_table[hash];
2672 while (expr && ! expr_equiv_p (expr->expr, pat))
2673 expr = expr->next_same_hash;
2675 return expr;
2678 /* Lookup REGNO in the set table. If PAT is non-NULL look for the entry that
2679 matches it, otherwise return the first entry for REGNO. The result is a
2680 pointer to the table entry, or NULL if not found. */
2682 static struct expr *
2683 lookup_set (regno, pat)
2684 unsigned int regno;
2685 rtx pat;
2687 unsigned int hash = hash_set (regno, set_hash_table_size);
2688 struct expr *expr;
2690 expr = set_hash_table[hash];
2692 if (pat)
2694 while (expr && ! expr_equiv_p (expr->expr, pat))
2695 expr = expr->next_same_hash;
2697 else
2699 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2700 expr = expr->next_same_hash;
2703 return expr;
2706 /* Return the next entry for REGNO in list EXPR. */
2708 static struct expr *
2709 next_set (regno, expr)
2710 unsigned int regno;
2711 struct expr *expr;
2714 expr = expr->next_same_hash;
2715 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2717 return expr;
2720 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2721 types may be mixed. */
2723 static void
2724 free_insn_expr_list_list (listp)
2725 rtx *listp;
2727 rtx list, next;
2729 for (list = *listp; list ; list = next)
2731 next = XEXP (list, 1);
2732 if (GET_CODE (list) == EXPR_LIST)
2733 free_EXPR_LIST_node (list);
2734 else
2735 free_INSN_LIST_node (list);
2738 *listp = NULL;
2741 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2742 static void
2743 clear_modify_mem_tables ()
2745 int i;
2747 EXECUTE_IF_SET_IN_BITMAP
2748 (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
2749 bitmap_clear (modify_mem_list_set);
2751 EXECUTE_IF_SET_IN_BITMAP
2752 (canon_modify_mem_list_set, 0, i,
2753 free_insn_expr_list_list (canon_modify_mem_list + i));
2754 bitmap_clear (canon_modify_mem_list_set);
2757 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2759 static void
2760 free_modify_mem_tables ()
2762 clear_modify_mem_tables ();
2763 free (modify_mem_list);
2764 free (canon_modify_mem_list);
2765 modify_mem_list = 0;
2766 canon_modify_mem_list = 0;
2769 /* Reset tables used to keep track of what's still available [since the
2770 start of the block]. */
2772 static void
2773 reset_opr_set_tables ()
2775 /* Maintain a bitmap of which regs have been set since beginning of
2776 the block. */
2777 CLEAR_REG_SET (reg_set_bitmap);
2779 /* Also keep a record of the last instruction to modify memory.
2780 For now this is very trivial, we only record whether any memory
2781 location has been modified. */
2782 clear_modify_mem_tables ();
2785 /* Return non-zero if the operands of X are not set before INSN in
2786 INSN's basic block. */
2788 static int
2789 oprs_not_set_p (x, insn)
2790 rtx x, insn;
2792 int i, j;
2793 enum rtx_code code;
2794 const char *fmt;
2796 if (x == 0)
2797 return 1;
2799 code = GET_CODE (x);
2800 switch (code)
2802 case PC:
2803 case CC0:
2804 case CONST:
2805 case CONST_INT:
2806 case CONST_DOUBLE:
2807 case CONST_VECTOR:
2808 case SYMBOL_REF:
2809 case LABEL_REF:
2810 case ADDR_VEC:
2811 case ADDR_DIFF_VEC:
2812 return 1;
2814 case MEM:
2815 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2816 INSN_CUID (insn), x, 0))
2817 return 0;
2818 else
2819 return oprs_not_set_p (XEXP (x, 0), insn);
2821 case REG:
2822 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2824 default:
2825 break;
2828 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2830 if (fmt[i] == 'e')
2832 /* If we are about to do the last recursive call
2833 needed at this level, change it into iteration.
2834 This function is called enough to be worth it. */
2835 if (i == 0)
2836 return oprs_not_set_p (XEXP (x, i), insn);
2838 if (! oprs_not_set_p (XEXP (x, i), insn))
2839 return 0;
2841 else if (fmt[i] == 'E')
2842 for (j = 0; j < XVECLEN (x, i); j++)
2843 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2844 return 0;
2847 return 1;
2850 /* Mark things set by a CALL. */
2852 static void
2853 mark_call (insn)
2854 rtx insn;
2856 if (! CONST_OR_PURE_CALL_P (insn))
2857 record_last_mem_set_info (insn);
2860 /* Mark things set by a SET. */
2862 static void
2863 mark_set (pat, insn)
2864 rtx pat, insn;
2866 rtx dest = SET_DEST (pat);
2868 while (GET_CODE (dest) == SUBREG
2869 || GET_CODE (dest) == ZERO_EXTRACT
2870 || GET_CODE (dest) == SIGN_EXTRACT
2871 || GET_CODE (dest) == STRICT_LOW_PART)
2872 dest = XEXP (dest, 0);
2874 if (GET_CODE (dest) == REG)
2875 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2876 else if (GET_CODE (dest) == MEM)
2877 record_last_mem_set_info (insn);
2879 if (GET_CODE (SET_SRC (pat)) == CALL)
2880 mark_call (insn);
2883 /* Record things set by a CLOBBER. */
2885 static void
2886 mark_clobber (pat, insn)
2887 rtx pat, insn;
2889 rtx clob = XEXP (pat, 0);
2891 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2892 clob = XEXP (clob, 0);
2894 if (GET_CODE (clob) == REG)
2895 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2896 else
2897 record_last_mem_set_info (insn);
2900 /* Record things set by INSN.
2901 This data is used by oprs_not_set_p. */
2903 static void
2904 mark_oprs_set (insn)
2905 rtx insn;
2907 rtx pat = PATTERN (insn);
2908 int i;
2910 if (GET_CODE (pat) == SET)
2911 mark_set (pat, insn);
2912 else if (GET_CODE (pat) == PARALLEL)
2913 for (i = 0; i < XVECLEN (pat, 0); i++)
2915 rtx x = XVECEXP (pat, 0, i);
2917 if (GET_CODE (x) == SET)
2918 mark_set (x, insn);
2919 else if (GET_CODE (x) == CLOBBER)
2920 mark_clobber (x, insn);
2921 else if (GET_CODE (x) == CALL)
2922 mark_call (insn);
2925 else if (GET_CODE (pat) == CLOBBER)
2926 mark_clobber (pat, insn);
2927 else if (GET_CODE (pat) == CALL)
2928 mark_call (insn);
2932 /* Classic GCSE reaching definition support. */
2934 /* Allocate reaching def variables. */
2936 static void
2937 alloc_rd_mem (n_blocks, n_insns)
2938 int n_blocks, n_insns;
2940 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2941 sbitmap_vector_zero (rd_kill, n_basic_blocks);
2943 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2944 sbitmap_vector_zero (rd_gen, n_basic_blocks);
2946 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2947 sbitmap_vector_zero (reaching_defs, n_basic_blocks);
2949 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2950 sbitmap_vector_zero (rd_out, n_basic_blocks);
2953 /* Free reaching def variables. */
2955 static void
2956 free_rd_mem ()
2958 sbitmap_vector_free (rd_kill);
2959 sbitmap_vector_free (rd_gen);
2960 sbitmap_vector_free (reaching_defs);
2961 sbitmap_vector_free (rd_out);
2964 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2966 static void
2967 handle_rd_kill_set (insn, regno, bb)
2968 rtx insn;
2969 int regno;
2970 basic_block bb;
2972 struct reg_set *this_reg;
2974 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2975 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2976 SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
2979 /* Compute the set of kill's for reaching definitions. */
2981 static void
2982 compute_kill_rd ()
2984 int bb, cuid;
2985 unsigned int regno;
2986 int i;
2988 /* For each block
2989 For each set bit in `gen' of the block (i.e each insn which
2990 generates a definition in the block)
2991 Call the reg set by the insn corresponding to that bit regx
2992 Look at the linked list starting at reg_set_table[regx]
2993 For each setting of regx in the linked list, which is not in
2994 this block
2995 Set the bit in `kill' corresponding to that insn. */
2996 for (bb = 0; bb < n_basic_blocks; bb++)
2997 for (cuid = 0; cuid < max_cuid; cuid++)
2998 if (TEST_BIT (rd_gen[bb], cuid))
3000 rtx insn = CUID_INSN (cuid);
3001 rtx pat = PATTERN (insn);
3003 if (GET_CODE (insn) == CALL_INSN)
3005 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
3006 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
3007 handle_rd_kill_set (insn, regno, BASIC_BLOCK (bb));
3010 if (GET_CODE (pat) == PARALLEL)
3012 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
3014 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
3016 if ((code == SET || code == CLOBBER)
3017 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
3018 handle_rd_kill_set (insn,
3019 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
3020 BASIC_BLOCK (bb));
3023 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
3024 /* Each setting of this register outside of this block
3025 must be marked in the set of kills in this block. */
3026 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), BASIC_BLOCK (bb));
3030 /* Compute the reaching definitions as in
3031 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
3032 Chapter 10. It is the same algorithm as used for computing available
3033 expressions but applied to the gens and kills of reaching definitions. */
3035 static void
3036 compute_rd ()
3038 int bb, changed, passes;
3040 for (bb = 0; bb < n_basic_blocks; bb++)
3041 sbitmap_copy (rd_out[bb] /*dst*/, rd_gen[bb] /*src*/);
3043 passes = 0;
3044 changed = 1;
3045 while (changed)
3047 changed = 0;
3048 for (bb = 0; bb < n_basic_blocks; bb++)
3050 sbitmap_union_of_preds (reaching_defs[bb], rd_out, bb);
3051 changed |= sbitmap_union_of_diff (rd_out[bb], rd_gen[bb],
3052 reaching_defs[bb], rd_kill[bb]);
3054 passes++;
3057 if (gcse_file)
3058 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
3061 /* Classic GCSE available expression support. */
3063 /* Allocate memory for available expression computation. */
3065 static void
3066 alloc_avail_expr_mem (n_blocks, n_exprs)
3067 int n_blocks, n_exprs;
3069 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3070 sbitmap_vector_zero (ae_kill, n_basic_blocks);
3072 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3073 sbitmap_vector_zero (ae_gen, n_basic_blocks);
3075 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3076 sbitmap_vector_zero (ae_in, n_basic_blocks);
3078 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3079 sbitmap_vector_zero (ae_out, n_basic_blocks);
3082 static void
3083 free_avail_expr_mem ()
3085 sbitmap_vector_free (ae_kill);
3086 sbitmap_vector_free (ae_gen);
3087 sbitmap_vector_free (ae_in);
3088 sbitmap_vector_free (ae_out);
3091 /* Compute the set of available expressions generated in each basic block. */
3093 static void
3094 compute_ae_gen ()
3096 unsigned int i;
3097 struct expr *expr;
3098 struct occr *occr;
3100 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3101 This is all we have to do because an expression is not recorded if it
3102 is not available, and the only expressions we want to work with are the
3103 ones that are recorded. */
3104 for (i = 0; i < expr_hash_table_size; i++)
3105 for (expr = expr_hash_table[i]; expr != 0; expr = expr->next_same_hash)
3106 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
3107 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
3110 /* Return non-zero if expression X is killed in BB. */
3112 static int
3113 expr_killed_p (x, bb)
3114 rtx x;
3115 basic_block bb;
3117 int i, j;
3118 enum rtx_code code;
3119 const char *fmt;
3121 if (x == 0)
3122 return 1;
3124 code = GET_CODE (x);
3125 switch (code)
3127 case REG:
3128 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
3130 case MEM:
3131 if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
3132 return 1;
3133 else
3134 return expr_killed_p (XEXP (x, 0), bb);
3136 case PC:
3137 case CC0: /*FIXME*/
3138 case CONST:
3139 case CONST_INT:
3140 case CONST_DOUBLE:
3141 case CONST_VECTOR:
3142 case SYMBOL_REF:
3143 case LABEL_REF:
3144 case ADDR_VEC:
3145 case ADDR_DIFF_VEC:
3146 return 0;
3148 default:
3149 break;
3152 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3154 if (fmt[i] == 'e')
3156 /* If we are about to do the last recursive call
3157 needed at this level, change it into iteration.
3158 This function is called enough to be worth it. */
3159 if (i == 0)
3160 return expr_killed_p (XEXP (x, i), bb);
3161 else if (expr_killed_p (XEXP (x, i), bb))
3162 return 1;
3164 else if (fmt[i] == 'E')
3165 for (j = 0; j < XVECLEN (x, i); j++)
3166 if (expr_killed_p (XVECEXP (x, i, j), bb))
3167 return 1;
3170 return 0;
3173 /* Compute the set of available expressions killed in each basic block. */
3175 static void
3176 compute_ae_kill (ae_gen, ae_kill)
3177 sbitmap *ae_gen, *ae_kill;
3179 int bb;
3180 unsigned int i;
3181 struct expr *expr;
3183 for (bb = 0; bb < n_basic_blocks; bb++)
3184 for (i = 0; i < expr_hash_table_size; i++)
3185 for (expr = expr_hash_table[i]; expr; expr = expr->next_same_hash)
3187 /* Skip EXPR if generated in this block. */
3188 if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
3189 continue;
3191 if (expr_killed_p (expr->expr, BASIC_BLOCK (bb)))
3192 SET_BIT (ae_kill[bb], expr->bitmap_index);
3196 /* Actually perform the Classic GCSE optimizations. */
3198 /* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
3200 CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
3201 as a positive reach. We want to do this when there are two computations
3202 of the expression in the block.
3204 VISITED is a pointer to a working buffer for tracking which BB's have
3205 been visited. It is NULL for the top-level call.
3207 We treat reaching expressions that go through blocks containing the same
3208 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3209 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3210 2 as not reaching. The intent is to improve the probability of finding
3211 only one reaching expression and to reduce register lifetimes by picking
3212 the closest such expression. */
3214 static int
3215 expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
3216 struct occr *occr;
3217 struct expr *expr;
3218 basic_block bb;
3219 int check_self_loop;
3220 char *visited;
3222 edge pred;
3224 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
3226 basic_block pred_bb = pred->src;
3228 if (visited[pred_bb->index])
3229 /* This predecessor has already been visited. Nothing to do. */
3231 else if (pred_bb == bb)
3233 /* BB loops on itself. */
3234 if (check_self_loop
3235 && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
3236 && BLOCK_NUM (occr->insn) == pred_bb->index)
3237 return 1;
3239 visited[pred_bb->index] = 1;
3242 /* Ignore this predecessor if it kills the expression. */
3243 else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
3244 visited[pred_bb->index] = 1;
3246 /* Does this predecessor generate this expression? */
3247 else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
3249 /* Is this the occurrence we're looking for?
3250 Note that there's only one generating occurrence per block
3251 so we just need to check the block number. */
3252 if (BLOCK_NUM (occr->insn) == pred_bb->index)
3253 return 1;
3255 visited[pred_bb->index] = 1;
3258 /* Neither gen nor kill. */
3259 else
3261 visited[pred_bb->index] = 1;
3262 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
3263 visited))
3265 return 1;
3269 /* All paths have been checked. */
3270 return 0;
3273 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3274 memory allocated for that function is returned. */
3276 static int
3277 expr_reaches_here_p (occr, expr, bb, check_self_loop)
3278 struct occr *occr;
3279 struct expr *expr;
3280 basic_block bb;
3281 int check_self_loop;
3283 int rval;
3284 char *visited = (char *) xcalloc (n_basic_blocks, 1);
3286 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
3288 free (visited);
3289 return rval;
3292 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3293 If there is more than one such instruction, return NULL.
3295 Called only by handle_avail_expr. */
3297 static rtx
3298 computing_insn (expr, insn)
3299 struct expr *expr;
3300 rtx insn;
3302 basic_block bb = BLOCK_FOR_INSN (insn);
3304 if (expr->avail_occr->next == NULL)
3306 if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
3307 /* The available expression is actually itself
3308 (i.e. a loop in the flow graph) so do nothing. */
3309 return NULL;
3311 /* (FIXME) Case that we found a pattern that was created by
3312 a substitution that took place. */
3313 return expr->avail_occr->insn;
3315 else
3317 /* Pattern is computed more than once.
3318 Search backwards from this insn to see how many of these
3319 computations actually reach this insn. */
3320 struct occr *occr;
3321 rtx insn_computes_expr = NULL;
3322 int can_reach = 0;
3324 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
3326 if (BLOCK_FOR_INSN (occr->insn) == bb)
3328 /* The expression is generated in this block.
3329 The only time we care about this is when the expression
3330 is generated later in the block [and thus there's a loop].
3331 We let the normal cse pass handle the other cases. */
3332 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
3333 && expr_reaches_here_p (occr, expr, bb, 1))
3335 can_reach++;
3336 if (can_reach > 1)
3337 return NULL;
3339 insn_computes_expr = occr->insn;
3342 else if (expr_reaches_here_p (occr, expr, bb, 0))
3344 can_reach++;
3345 if (can_reach > 1)
3346 return NULL;
3348 insn_computes_expr = occr->insn;
3352 if (insn_computes_expr == NULL)
3353 abort ();
3355 return insn_computes_expr;
3359 /* Return non-zero if the definition in DEF_INSN can reach INSN.
3360 Only called by can_disregard_other_sets. */
3362 static int
3363 def_reaches_here_p (insn, def_insn)
3364 rtx insn, def_insn;
3366 rtx reg;
3368 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3369 return 1;
3371 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3373 if (INSN_CUID (def_insn) < INSN_CUID (insn))
3375 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3376 return 1;
3377 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
3378 reg = XEXP (PATTERN (def_insn), 0);
3379 else if (GET_CODE (PATTERN (def_insn)) == SET)
3380 reg = SET_DEST (PATTERN (def_insn));
3381 else
3382 abort ();
3384 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3386 else
3387 return 0;
3390 return 0;
3393 /* Return non-zero if *ADDR_THIS_REG can only have one value at INSN. The
3394 value returned is the number of definitions that reach INSN. Returning a
3395 value of zero means that [maybe] more than one definition reaches INSN and
3396 the caller can't perform whatever optimization it is trying. i.e. it is
3397 always safe to return zero. */
3399 static int
3400 can_disregard_other_sets (addr_this_reg, insn, for_combine)
3401 struct reg_set **addr_this_reg;
3402 rtx insn;
3403 int for_combine;
3405 int number_of_reaching_defs = 0;
3406 struct reg_set *this_reg;
3408 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
3409 if (def_reaches_here_p (insn, this_reg->insn))
3411 number_of_reaching_defs++;
3412 /* Ignore parallels for now. */
3413 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3414 return 0;
3416 if (!for_combine
3417 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3418 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3419 SET_SRC (PATTERN (insn)))))
3420 /* A setting of the reg to a different value reaches INSN. */
3421 return 0;
3423 if (number_of_reaching_defs > 1)
3425 /* If in this setting the value the register is being set to is
3426 equal to the previous value the register was set to and this
3427 setting reaches the insn we are trying to do the substitution
3428 on then we are ok. */
3429 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3430 return 0;
3431 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3432 SET_SRC (PATTERN (insn))))
3433 return 0;
3436 *addr_this_reg = this_reg;
3439 return number_of_reaching_defs;
3442 /* Expression computed by insn is available and the substitution is legal,
3443 so try to perform the substitution.
3445 The result is non-zero if any changes were made. */
3447 static int
3448 handle_avail_expr (insn, expr)
3449 rtx insn;
3450 struct expr *expr;
3452 rtx pat, insn_computes_expr, expr_set;
3453 rtx to;
3454 struct reg_set *this_reg;
3455 int found_setting, use_src;
3456 int changed = 0;
3458 /* We only handle the case where one computation of the expression
3459 reaches this instruction. */
3460 insn_computes_expr = computing_insn (expr, insn);
3461 if (insn_computes_expr == NULL)
3462 return 0;
3463 expr_set = single_set (insn_computes_expr);
3464 if (!expr_set)
3465 abort ();
3467 found_setting = 0;
3468 use_src = 0;
3470 /* At this point we know only one computation of EXPR outside of this
3471 block reaches this insn. Now try to find a register that the
3472 expression is computed into. */
3473 if (GET_CODE (SET_SRC (expr_set)) == REG)
3475 /* This is the case when the available expression that reaches
3476 here has already been handled as an available expression. */
3477 unsigned int regnum_for_replacing
3478 = REGNO (SET_SRC (expr_set));
3480 /* If the register was created by GCSE we can't use `reg_set_table',
3481 however we know it's set only once. */
3482 if (regnum_for_replacing >= max_gcse_regno
3483 /* If the register the expression is computed into is set only once,
3484 or only one set reaches this insn, we can use it. */
3485 || (((this_reg = reg_set_table[regnum_for_replacing]),
3486 this_reg->next == NULL)
3487 || can_disregard_other_sets (&this_reg, insn, 0)))
3489 use_src = 1;
3490 found_setting = 1;
3494 if (!found_setting)
3496 unsigned int regnum_for_replacing
3497 = REGNO (SET_DEST (expr_set));
3499 /* This shouldn't happen. */
3500 if (regnum_for_replacing >= max_gcse_regno)
3501 abort ();
3503 this_reg = reg_set_table[regnum_for_replacing];
3505 /* If the register the expression is computed into is set only once,
3506 or only one set reaches this insn, use it. */
3507 if (this_reg->next == NULL
3508 || can_disregard_other_sets (&this_reg, insn, 0))
3509 found_setting = 1;
3512 if (found_setting)
3514 pat = PATTERN (insn);
3515 if (use_src)
3516 to = SET_SRC (expr_set);
3517 else
3518 to = SET_DEST (expr_set);
3519 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3521 /* We should be able to ignore the return code from validate_change but
3522 to play it safe we check. */
3523 if (changed)
3525 gcse_subst_count++;
3526 if (gcse_file != NULL)
3528 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3529 INSN_UID (insn));
3530 fprintf (gcse_file, " reg %d %s insn %d\n",
3531 REGNO (to), use_src ? "from" : "set in",
3532 INSN_UID (insn_computes_expr));
3537 /* The register that the expr is computed into is set more than once. */
3538 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3540 /* Insert an insn after insnx that copies the reg set in insnx
3541 into a new pseudo register call this new register REGN.
3542 From insnb until end of basic block or until REGB is set
3543 replace all uses of REGB with REGN. */
3544 rtx new_insn;
3546 to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set)));
3548 /* Generate the new insn. */
3549 /* ??? If the change fails, we return 0, even though we created
3550 an insn. I think this is ok. */
3551 new_insn
3552 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3553 SET_DEST (expr_set)),
3554 insn_computes_expr);
3556 /* Keep register set table up to date. */
3557 record_one_set (REGNO (to), new_insn);
3559 gcse_create_count++;
3560 if (gcse_file != NULL)
3562 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
3563 INSN_UID (NEXT_INSN (insn_computes_expr)),
3564 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3565 fprintf (gcse_file, ", computed in insn %d,\n",
3566 INSN_UID (insn_computes_expr));
3567 fprintf (gcse_file, " into newly allocated reg %d\n",
3568 REGNO (to));
3571 pat = PATTERN (insn);
3573 /* Do register replacement for INSN. */
3574 changed = validate_change (insn, &SET_SRC (pat),
3575 SET_DEST (PATTERN
3576 (NEXT_INSN (insn_computes_expr))),
3579 /* We should be able to ignore the return code from validate_change but
3580 to play it safe we check. */
3581 if (changed)
3583 gcse_subst_count++;
3584 if (gcse_file != NULL)
3586 fprintf (gcse_file,
3587 "GCSE: Replacing the source in insn %d with reg %d ",
3588 INSN_UID (insn),
3589 REGNO (SET_DEST (PATTERN (NEXT_INSN
3590 (insn_computes_expr)))));
3591 fprintf (gcse_file, "set in insn %d\n",
3592 INSN_UID (insn_computes_expr));
3597 return changed;
3600 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3601 the dataflow analysis has been done.
3603 The result is non-zero if a change was made. */
3605 static int
3606 classic_gcse ()
3608 int bb, changed;
3609 rtx insn;
3611 /* Note we start at block 1. */
3613 changed = 0;
3614 for (bb = 1; bb < n_basic_blocks; bb++)
3616 /* Reset tables used to keep track of what's still valid [since the
3617 start of the block]. */
3618 reset_opr_set_tables ();
3620 for (insn = BLOCK_HEAD (bb);
3621 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
3622 insn = NEXT_INSN (insn))
3624 /* Is insn of form (set (pseudo-reg) ...)? */
3625 if (GET_CODE (insn) == INSN
3626 && GET_CODE (PATTERN (insn)) == SET
3627 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3628 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3630 rtx pat = PATTERN (insn);
3631 rtx src = SET_SRC (pat);
3632 struct expr *expr;
3634 if (want_to_gcse_p (src)
3635 /* Is the expression recorded? */
3636 && ((expr = lookup_expr (src)) != NULL)
3637 /* Is the expression available [at the start of the
3638 block]? */
3639 && TEST_BIT (ae_in[bb], expr->bitmap_index)
3640 /* Are the operands unchanged since the start of the
3641 block? */
3642 && oprs_not_set_p (src, insn))
3643 changed |= handle_avail_expr (insn, expr);
3646 /* Keep track of everything modified by this insn. */
3647 /* ??? Need to be careful w.r.t. mods done to INSN. */
3648 if (INSN_P (insn))
3649 mark_oprs_set (insn);
3653 return changed;
3656 /* Top level routine to perform one classic GCSE pass.
3658 Return non-zero if a change was made. */
3660 static int
3661 one_classic_gcse_pass (pass)
3662 int pass;
3664 int changed = 0;
3666 gcse_subst_count = 0;
3667 gcse_create_count = 0;
3669 alloc_expr_hash_table (max_cuid);
3670 alloc_rd_mem (n_basic_blocks, max_cuid);
3671 compute_expr_hash_table ();
3672 if (gcse_file)
3673 dump_hash_table (gcse_file, "Expression", expr_hash_table,
3674 expr_hash_table_size, n_exprs);
3676 if (n_exprs > 0)
3678 compute_kill_rd ();
3679 compute_rd ();
3680 alloc_avail_expr_mem (n_basic_blocks, n_exprs);
3681 compute_ae_gen ();
3682 compute_ae_kill (ae_gen, ae_kill);
3683 compute_available (ae_gen, ae_kill, ae_out, ae_in);
3684 changed = classic_gcse ();
3685 free_avail_expr_mem ();
3688 free_rd_mem ();
3689 free_expr_hash_table ();
3691 if (gcse_file)
3693 fprintf (gcse_file, "\n");
3694 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3695 current_function_name, pass, bytes_used, gcse_subst_count);
3696 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
3699 return changed;
3702 /* Compute copy/constant propagation working variables. */
3704 /* Local properties of assignments. */
3705 static sbitmap *cprop_pavloc;
3706 static sbitmap *cprop_absaltered;
3708 /* Global properties of assignments (computed from the local properties). */
3709 static sbitmap *cprop_avin;
3710 static sbitmap *cprop_avout;
3712 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3713 basic blocks. N_SETS is the number of sets. */
3715 static void
3716 alloc_cprop_mem (n_blocks, n_sets)
3717 int n_blocks, n_sets;
3719 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3720 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3722 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3723 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3726 /* Free vars used by copy/const propagation. */
3728 static void
3729 free_cprop_mem ()
3731 sbitmap_vector_free (cprop_pavloc);
3732 sbitmap_vector_free (cprop_absaltered);
3733 sbitmap_vector_free (cprop_avin);
3734 sbitmap_vector_free (cprop_avout);
3737 /* For each block, compute whether X is transparent. X is either an
3738 expression or an assignment [though we don't care which, for this context
3739 an assignment is treated as an expression]. For each block where an
3740 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3741 bit in BMAP. */
3743 static void
3744 compute_transp (x, indx, bmap, set_p)
3745 rtx x;
3746 int indx;
3747 sbitmap *bmap;
3748 int set_p;
3750 int bb, i, j;
3751 enum rtx_code code;
3752 reg_set *r;
3753 const char *fmt;
3755 /* repeat is used to turn tail-recursion into iteration since GCC
3756 can't do it when there's no return value. */
3757 repeat:
3759 if (x == 0)
3760 return;
3762 code = GET_CODE (x);
3763 switch (code)
3765 case REG:
3766 if (set_p)
3768 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3770 for (bb = 0; bb < n_basic_blocks; bb++)
3771 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3772 SET_BIT (bmap[bb], indx);
3774 else
3776 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3777 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3780 else
3782 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3784 for (bb = 0; bb < n_basic_blocks; bb++)
3785 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3786 RESET_BIT (bmap[bb], indx);
3788 else
3790 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3791 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3795 return;
3797 case MEM:
3798 for (bb = 0; bb < n_basic_blocks; bb++)
3800 rtx list_entry = canon_modify_mem_list[bb];
3802 while (list_entry)
3804 rtx dest, dest_addr;
3806 if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
3808 if (set_p)
3809 SET_BIT (bmap[bb], indx);
3810 else
3811 RESET_BIT (bmap[bb], indx);
3812 break;
3814 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3815 Examine each hunk of memory that is modified. */
3817 dest = XEXP (list_entry, 0);
3818 list_entry = XEXP (list_entry, 1);
3819 dest_addr = XEXP (list_entry, 0);
3821 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
3822 x, rtx_addr_varies_p))
3824 if (set_p)
3825 SET_BIT (bmap[bb], indx);
3826 else
3827 RESET_BIT (bmap[bb], indx);
3828 break;
3830 list_entry = XEXP (list_entry, 1);
3834 x = XEXP (x, 0);
3835 goto repeat;
3837 case PC:
3838 case CC0: /*FIXME*/
3839 case CONST:
3840 case CONST_INT:
3841 case CONST_DOUBLE:
3842 case CONST_VECTOR:
3843 case SYMBOL_REF:
3844 case LABEL_REF:
3845 case ADDR_VEC:
3846 case ADDR_DIFF_VEC:
3847 return;
3849 default:
3850 break;
3853 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3855 if (fmt[i] == 'e')
3857 /* If we are about to do the last recursive call
3858 needed at this level, change it into iteration.
3859 This function is called enough to be worth it. */
3860 if (i == 0)
3862 x = XEXP (x, i);
3863 goto repeat;
3866 compute_transp (XEXP (x, i), indx, bmap, set_p);
3868 else if (fmt[i] == 'E')
3869 for (j = 0; j < XVECLEN (x, i); j++)
3870 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3874 /* Top level routine to do the dataflow analysis needed by copy/const
3875 propagation. */
3877 static void
3878 compute_cprop_data ()
3880 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
3881 compute_available (cprop_pavloc, cprop_absaltered,
3882 cprop_avout, cprop_avin);
3885 /* Copy/constant propagation. */
3887 /* Maximum number of register uses in an insn that we handle. */
3888 #define MAX_USES 8
3890 /* Table of uses found in an insn.
3891 Allocated statically to avoid alloc/free complexity and overhead. */
3892 static struct reg_use reg_use_table[MAX_USES];
3894 /* Index into `reg_use_table' while building it. */
3895 static int reg_use_count;
3897 /* Set up a list of register numbers used in INSN. The found uses are stored
3898 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3899 and contains the number of uses in the table upon exit.
3901 ??? If a register appears multiple times we will record it multiple times.
3902 This doesn't hurt anything but it will slow things down. */
3904 static void
3905 find_used_regs (xptr, data)
3906 rtx *xptr;
3907 void *data ATTRIBUTE_UNUSED;
3909 int i, j;
3910 enum rtx_code code;
3911 const char *fmt;
3912 rtx x = *xptr;
3914 /* repeat is used to turn tail-recursion into iteration since GCC
3915 can't do it when there's no return value. */
3916 repeat:
3917 if (x == 0)
3918 return;
3920 code = GET_CODE (x);
3921 if (REG_P (x))
3923 if (reg_use_count == MAX_USES)
3924 return;
3926 reg_use_table[reg_use_count].reg_rtx = x;
3927 reg_use_count++;
3930 /* Recursively scan the operands of this expression. */
3932 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3934 if (fmt[i] == 'e')
3936 /* If we are about to do the last recursive call
3937 needed at this level, change it into iteration.
3938 This function is called enough to be worth it. */
3939 if (i == 0)
3941 x = XEXP (x, 0);
3942 goto repeat;
3945 find_used_regs (&XEXP (x, i), data);
3947 else if (fmt[i] == 'E')
3948 for (j = 0; j < XVECLEN (x, i); j++)
3949 find_used_regs (&XVECEXP (x, i, j), data);
3953 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3954 Returns non-zero is successful. */
3956 static int
3957 try_replace_reg (from, to, insn)
3958 rtx from, to, insn;
3960 rtx note = find_reg_equal_equiv_note (insn);
3961 rtx src = 0;
3962 int success = 0;
3963 rtx set = single_set (insn);
3965 success = validate_replace_src (from, to, insn);
3967 /* If above failed and this is a single set, try to simplify the source of
3968 the set given our substitution. We could perhaps try this for multiple
3969 SETs, but it probably won't buy us anything. */
3970 if (!success && set != 0)
3972 src = simplify_replace_rtx (SET_SRC (set), from, to);
3974 if (!rtx_equal_p (src, SET_SRC (set))
3975 && validate_change (insn, &SET_SRC (set), src, 0))
3976 success = 1;
3979 /* If we've failed to do replacement, have a single SET, and don't already
3980 have a note, add a REG_EQUAL note to not lose information. */
3981 if (!success && note == 0 && set != 0)
3982 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3984 /* If there is already a NOTE, update the expression in it with our
3985 replacement. */
3986 else if (note != 0)
3987 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
3989 /* REG_EQUAL may get simplified into register.
3990 We don't allow that. Remove that note. This code ought
3991 not to hapen, because previous code ought to syntetize
3992 reg-reg move, but be on the safe side. */
3993 if (note && REG_P (XEXP (note, 0)))
3994 remove_note (insn, note);
3996 return success;
3999 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
4000 NULL no such set is found. */
4002 static struct expr *
4003 find_avail_set (regno, insn)
4004 int regno;
4005 rtx insn;
4007 /* SET1 contains the last set found that can be returned to the caller for
4008 use in a substitution. */
4009 struct expr *set1 = 0;
4011 /* Loops are not possible here. To get a loop we would need two sets
4012 available at the start of the block containing INSN. ie we would
4013 need two sets like this available at the start of the block:
4015 (set (reg X) (reg Y))
4016 (set (reg Y) (reg X))
4018 This can not happen since the set of (reg Y) would have killed the
4019 set of (reg X) making it unavailable at the start of this block. */
4020 while (1)
4022 rtx src;
4023 struct expr *set = lookup_set (regno, NULL_RTX);
4025 /* Find a set that is available at the start of the block
4026 which contains INSN. */
4027 while (set)
4029 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
4030 break;
4031 set = next_set (regno, set);
4034 /* If no available set was found we've reached the end of the
4035 (possibly empty) copy chain. */
4036 if (set == 0)
4037 break;
4039 if (GET_CODE (set->expr) != SET)
4040 abort ();
4042 src = SET_SRC (set->expr);
4044 /* We know the set is available.
4045 Now check that SRC is ANTLOC (i.e. none of the source operands
4046 have changed since the start of the block).
4048 If the source operand changed, we may still use it for the next
4049 iteration of this loop, but we may not use it for substitutions. */
4051 if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
4052 set1 = set;
4054 /* If the source of the set is anything except a register, then
4055 we have reached the end of the copy chain. */
4056 if (GET_CODE (src) != REG)
4057 break;
4059 /* Follow the copy chain, ie start another iteration of the loop
4060 and see if we have an available copy into SRC. */
4061 regno = REGNO (src);
4064 /* SET1 holds the last set that was available and anticipatable at
4065 INSN. */
4066 return set1;
4069 /* Subroutine of cprop_insn that tries to propagate constants into
4070 JUMP_INSNS. INSN must be a conditional jump. FROM is what we will try to
4071 replace, SRC is the constant we will try to substitute for it. Returns
4072 nonzero if a change was made. We know INSN has just a SET. */
4074 static int
4075 cprop_jump (bb, insn, from, src)
4076 rtx insn;
4077 rtx from;
4078 rtx src;
4079 basic_block bb;
4081 rtx set = PATTERN (insn);
4082 rtx new = simplify_replace_rtx (SET_SRC (set), from, src);
4084 /* If no simplification can be made, then try the next
4085 register. */
4086 if (rtx_equal_p (new, SET_SRC (set)))
4087 return 0;
4089 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
4090 if (new == pc_rtx)
4091 delete_insn (insn);
4092 else
4094 if (! validate_change (insn, &SET_SRC (set), new, 0))
4095 return 0;
4097 /* If this has turned into an unconditional jump,
4098 then put a barrier after it so that the unreachable
4099 code will be deleted. */
4100 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
4101 emit_barrier_after (insn);
4104 run_jump_opt_after_gcse = 1;
4106 const_prop_count++;
4107 if (gcse_file != NULL)
4109 fprintf (gcse_file,
4110 "CONST-PROP: Replacing reg %d in insn %d with constant ",
4111 REGNO (from), INSN_UID (insn));
4112 print_rtl (gcse_file, src);
4113 fprintf (gcse_file, "\n");
4115 purge_dead_edges (bb);
4117 return 1;
4120 #ifdef HAVE_cc0
4122 /* Subroutine of cprop_insn that tries to propagate constants into JUMP_INSNS
4123 for machines that have CC0. INSN is a single set that stores into CC0;
4124 the insn following it is a conditional jump. REG_USED is the use we will
4125 try to replace, SRC is the constant we will try to substitute for it.
4126 Returns nonzero if a change was made. */
4128 static int
4129 cprop_cc0_jump (bb, insn, reg_used, src)
4130 basic_block bb;
4131 rtx insn;
4132 struct reg_use *reg_used;
4133 rtx src;
4135 /* First substitute in the SET_SRC of INSN, then substitute that for
4136 CC0 in JUMP. */
4137 rtx jump = NEXT_INSN (insn);
4138 rtx new_src = simplify_replace_rtx (SET_SRC (PATTERN (insn)),
4139 reg_used->reg_rtx, src);
4141 if (! cprop_jump (bb, jump, cc0_rtx, new_src))
4142 return 0;
4144 /* If we succeeded, delete the cc0 setter. */
4145 delete_insn (insn);
4147 return 1;
4149 #endif
4151 /* Perform constant and copy propagation on INSN.
4152 The result is non-zero if a change was made. */
4154 static int
4155 cprop_insn (bb, insn, alter_jumps)
4156 basic_block bb;
4157 rtx insn;
4158 int alter_jumps;
4160 struct reg_use *reg_used;
4161 int changed = 0;
4162 rtx note;
4164 if (!INSN_P (insn))
4165 return 0;
4167 reg_use_count = 0;
4168 note_uses (&PATTERN (insn), find_used_regs, NULL);
4170 note = find_reg_equal_equiv_note (insn);
4172 /* We may win even when propagating constants into notes. */
4173 if (note)
4174 find_used_regs (&XEXP (note, 0), NULL);
4176 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4177 reg_used++, reg_use_count--)
4179 unsigned int regno = REGNO (reg_used->reg_rtx);
4180 rtx pat, src;
4181 struct expr *set;
4183 /* Ignore registers created by GCSE.
4184 We do this because ... */
4185 if (regno >= max_gcse_regno)
4186 continue;
4188 /* If the register has already been set in this block, there's
4189 nothing we can do. */
4190 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
4191 continue;
4193 /* Find an assignment that sets reg_used and is available
4194 at the start of the block. */
4195 set = find_avail_set (regno, insn);
4196 if (! set)
4197 continue;
4199 pat = set->expr;
4200 /* ??? We might be able to handle PARALLELs. Later. */
4201 if (GET_CODE (pat) != SET)
4202 abort ();
4204 src = SET_SRC (pat);
4206 /* Constant propagation. */
4207 if (CONSTANT_P (src))
4209 /* Handle normal insns first. */
4210 if (GET_CODE (insn) == INSN
4211 && try_replace_reg (reg_used->reg_rtx, src, insn))
4213 changed = 1;
4214 const_prop_count++;
4215 if (gcse_file != NULL)
4217 fprintf (gcse_file, "CONST-PROP: Replacing reg %d in ",
4218 regno);
4219 fprintf (gcse_file, "insn %d with constant ",
4220 INSN_UID (insn));
4221 print_rtl (gcse_file, src);
4222 fprintf (gcse_file, "\n");
4225 /* The original insn setting reg_used may or may not now be
4226 deletable. We leave the deletion to flow. */
4229 /* Try to propagate a CONST_INT into a conditional jump.
4230 We're pretty specific about what we will handle in this
4231 code, we can extend this as necessary over time.
4233 Right now the insn in question must look like
4234 (set (pc) (if_then_else ...)) */
4235 else if (alter_jumps
4236 && GET_CODE (insn) == JUMP_INSN
4237 && condjump_p (insn)
4238 && ! simplejump_p (insn))
4239 changed |= cprop_jump (bb, insn, reg_used->reg_rtx, src);
4241 #ifdef HAVE_cc0
4242 /* Similar code for machines that use a pair of CC0 setter and
4243 conditional jump insn. */
4244 else if (alter_jumps
4245 && GET_CODE (PATTERN (insn)) == SET
4246 && SET_DEST (PATTERN (insn)) == cc0_rtx
4247 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
4248 && condjump_p (NEXT_INSN (insn))
4249 && ! simplejump_p (NEXT_INSN (insn))
4250 && cprop_cc0_jump (bb, insn, reg_used, src))
4252 changed = 1;
4253 break;
4255 #endif
4257 else if (GET_CODE (src) == REG
4258 && REGNO (src) >= FIRST_PSEUDO_REGISTER
4259 && REGNO (src) != regno)
4261 if (try_replace_reg (reg_used->reg_rtx, src, insn))
4263 changed = 1;
4264 copy_prop_count++;
4265 if (gcse_file != NULL)
4267 fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d",
4268 regno, INSN_UID (insn));
4269 fprintf (gcse_file, " with reg %d\n", REGNO (src));
4272 /* The original insn setting reg_used may or may not now be
4273 deletable. We leave the deletion to flow. */
4274 /* FIXME: If it turns out that the insn isn't deletable,
4275 then we may have unnecessarily extended register lifetimes
4276 and made things worse. */
4281 return changed;
4284 /* Forward propagate copies. This includes copies and constants. Return
4285 non-zero if a change was made. */
4287 static int
4288 cprop (alter_jumps)
4289 int alter_jumps;
4291 int bb, changed;
4292 rtx insn;
4294 /* Note we start at block 1. */
4296 changed = 0;
4297 for (bb = 1; bb < n_basic_blocks; bb++)
4299 /* Reset tables used to keep track of what's still valid [since the
4300 start of the block]. */
4301 reset_opr_set_tables ();
4303 for (insn = BLOCK_HEAD (bb);
4304 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
4305 insn = NEXT_INSN (insn))
4306 if (INSN_P (insn))
4308 changed |= cprop_insn (BASIC_BLOCK (bb), insn, alter_jumps);
4310 /* Keep track of everything modified by this insn. */
4311 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4312 call mark_oprs_set if we turned the insn into a NOTE. */
4313 if (GET_CODE (insn) != NOTE)
4314 mark_oprs_set (insn);
4318 if (gcse_file != NULL)
4319 fprintf (gcse_file, "\n");
4321 return changed;
4324 /* Perform one copy/constant propagation pass.
4325 F is the first insn in the function.
4326 PASS is the pass count. */
4328 static int
4329 one_cprop_pass (pass, alter_jumps)
4330 int pass;
4331 int alter_jumps;
4333 int changed = 0;
4335 const_prop_count = 0;
4336 copy_prop_count = 0;
4338 alloc_set_hash_table (max_cuid);
4339 compute_set_hash_table ();
4340 if (gcse_file)
4341 dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
4342 n_sets);
4343 if (n_sets > 0)
4345 alloc_cprop_mem (n_basic_blocks, n_sets);
4346 compute_cprop_data ();
4347 changed = cprop (alter_jumps);
4348 free_cprop_mem ();
4351 free_set_hash_table ();
4353 if (gcse_file)
4355 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
4356 current_function_name, pass, bytes_used);
4357 fprintf (gcse_file, "%d const props, %d copy props\n\n",
4358 const_prop_count, copy_prop_count);
4361 return changed;
4364 /* Compute PRE+LCM working variables. */
4366 /* Local properties of expressions. */
4367 /* Nonzero for expressions that are transparent in the block. */
4368 static sbitmap *transp;
4370 /* Nonzero for expressions that are transparent at the end of the block.
4371 This is only zero for expressions killed by abnormal critical edge
4372 created by a calls. */
4373 static sbitmap *transpout;
4375 /* Nonzero for expressions that are computed (available) in the block. */
4376 static sbitmap *comp;
4378 /* Nonzero for expressions that are locally anticipatable in the block. */
4379 static sbitmap *antloc;
4381 /* Nonzero for expressions where this block is an optimal computation
4382 point. */
4383 static sbitmap *pre_optimal;
4385 /* Nonzero for expressions which are redundant in a particular block. */
4386 static sbitmap *pre_redundant;
4388 /* Nonzero for expressions which should be inserted on a specific edge. */
4389 static sbitmap *pre_insert_map;
4391 /* Nonzero for expressions which should be deleted in a specific block. */
4392 static sbitmap *pre_delete_map;
4394 /* Contains the edge_list returned by pre_edge_lcm. */
4395 static struct edge_list *edge_list;
4397 /* Redundant insns. */
4398 static sbitmap pre_redundant_insns;
4400 /* Allocate vars used for PRE analysis. */
4402 static void
4403 alloc_pre_mem (n_blocks, n_exprs)
4404 int n_blocks, n_exprs;
4406 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4407 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4408 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4410 pre_optimal = NULL;
4411 pre_redundant = NULL;
4412 pre_insert_map = NULL;
4413 pre_delete_map = NULL;
4414 ae_in = NULL;
4415 ae_out = NULL;
4416 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
4418 /* pre_insert and pre_delete are allocated later. */
4421 /* Free vars used for PRE analysis. */
4423 static void
4424 free_pre_mem ()
4426 sbitmap_vector_free (transp);
4427 sbitmap_vector_free (comp);
4429 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
4431 if (pre_optimal)
4432 sbitmap_vector_free (pre_optimal);
4433 if (pre_redundant)
4434 sbitmap_vector_free (pre_redundant);
4435 if (pre_insert_map)
4436 sbitmap_vector_free (pre_insert_map);
4437 if (pre_delete_map)
4438 sbitmap_vector_free (pre_delete_map);
4439 if (ae_in)
4440 sbitmap_vector_free (ae_in);
4441 if (ae_out)
4442 sbitmap_vector_free (ae_out);
4444 transp = comp = NULL;
4445 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
4446 ae_in = ae_out = NULL;
4449 /* Top level routine to do the dataflow analysis needed by PRE. */
4451 static void
4452 compute_pre_data ()
4454 sbitmap trapping_expr;
4455 int i;
4456 unsigned int ui;
4458 compute_local_properties (transp, comp, antloc, 0);
4459 sbitmap_vector_zero (ae_kill, n_basic_blocks);
4461 /* Collect expressions which might trap. */
4462 trapping_expr = sbitmap_alloc (n_exprs);
4463 sbitmap_zero (trapping_expr);
4464 for (ui = 0; ui < expr_hash_table_size; ui++)
4466 struct expr *e;
4467 for (e = expr_hash_table[ui]; e != NULL; e = e->next_same_hash)
4468 if (may_trap_p (e->expr))
4469 SET_BIT (trapping_expr, e->bitmap_index);
4472 /* Compute ae_kill for each basic block using:
4474 ~(TRANSP | COMP)
4476 This is significantly faster than compute_ae_kill. */
4478 for (i = 0; i < n_basic_blocks; i++)
4480 edge e;
4482 /* If the current block is the destination of an abnormal edge, we
4483 kill all trapping expressions because we won't be able to properly
4484 place the instruction on the edge. So make them neither
4485 anticipatable nor transparent. This is fairly conservative. */
4486 for (e = BASIC_BLOCK (i)->pred; e ; e = e->pred_next)
4487 if (e->flags & EDGE_ABNORMAL)
4489 sbitmap_difference (antloc[i], antloc[i], trapping_expr);
4490 sbitmap_difference (transp[i], transp[i], trapping_expr);
4491 break;
4494 sbitmap_a_or_b (ae_kill[i], transp[i], comp[i]);
4495 sbitmap_not (ae_kill[i], ae_kill[i]);
4498 edge_list = pre_edge_lcm (gcse_file, n_exprs, transp, comp, antloc,
4499 ae_kill, &pre_insert_map, &pre_delete_map);
4500 sbitmap_vector_free (antloc);
4501 antloc = NULL;
4502 sbitmap_vector_free (ae_kill);
4503 ae_kill = NULL;
4504 sbitmap_free (trapping_expr);
4507 /* PRE utilities */
4509 /* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
4510 block BB.
4512 VISITED is a pointer to a working buffer for tracking which BB's have
4513 been visited. It is NULL for the top-level call.
4515 We treat reaching expressions that go through blocks containing the same
4516 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4517 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4518 2 as not reaching. The intent is to improve the probability of finding
4519 only one reaching expression and to reduce register lifetimes by picking
4520 the closest such expression. */
4522 static int
4523 pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
4524 basic_block occr_bb;
4525 struct expr *expr;
4526 basic_block bb;
4527 char *visited;
4529 edge pred;
4531 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
4533 basic_block pred_bb = pred->src;
4535 if (pred->src == ENTRY_BLOCK_PTR
4536 /* Has predecessor has already been visited? */
4537 || visited[pred_bb->index])
4538 ;/* Nothing to do. */
4540 /* Does this predecessor generate this expression? */
4541 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
4543 /* Is this the occurrence we're looking for?
4544 Note that there's only one generating occurrence per block
4545 so we just need to check the block number. */
4546 if (occr_bb == pred_bb)
4547 return 1;
4549 visited[pred_bb->index] = 1;
4551 /* Ignore this predecessor if it kills the expression. */
4552 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
4553 visited[pred_bb->index] = 1;
4555 /* Neither gen nor kill. */
4556 else
4558 visited[pred_bb->index] = 1;
4559 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
4560 return 1;
4564 /* All paths have been checked. */
4565 return 0;
4568 /* The wrapper for pre_expr_reaches_here_work that ensures that any
4569 memory allocated for that function is returned. */
4571 static int
4572 pre_expr_reaches_here_p (occr_bb, expr, bb)
4573 basic_block occr_bb;
4574 struct expr *expr;
4575 basic_block bb;
4577 int rval;
4578 char *visited = (char *) xcalloc (n_basic_blocks, 1);
4580 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
4582 free (visited);
4583 return rval;
4587 /* Given an expr, generate RTL which we can insert at the end of a BB,
4588 or on an edge. Set the block number of any insns generated to
4589 the value of BB. */
4591 static rtx
4592 process_insert_insn (expr)
4593 struct expr *expr;
4595 rtx reg = expr->reaching_reg;
4596 rtx exp = copy_rtx (expr->expr);
4597 rtx pat;
4599 start_sequence ();
4601 /* If the expression is something that's an operand, like a constant,
4602 just copy it to a register. */
4603 if (general_operand (exp, GET_MODE (reg)))
4604 emit_move_insn (reg, exp);
4606 /* Otherwise, make a new insn to compute this expression and make sure the
4607 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4608 expression to make sure we don't have any sharing issues. */
4609 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
4610 abort ();
4612 pat = gen_sequence ();
4613 end_sequence ();
4615 return pat;
4618 /* Add EXPR to the end of basic block BB.
4620 This is used by both the PRE and code hoisting.
4622 For PRE, we want to verify that the expr is either transparent
4623 or locally anticipatable in the target block. This check makes
4624 no sense for code hoisting. */
4626 static void
4627 insert_insn_end_bb (expr, bb, pre)
4628 struct expr *expr;
4629 basic_block bb;
4630 int pre;
4632 rtx insn = bb->end;
4633 rtx new_insn;
4634 rtx reg = expr->reaching_reg;
4635 int regno = REGNO (reg);
4636 rtx pat;
4637 int i;
4639 pat = process_insert_insn (expr);
4641 /* If the last insn is a jump, insert EXPR in front [taking care to
4642 handle cc0, etc. properly]. Similary we need to care trapping
4643 instructions in presence of non-call exceptions. */
4645 if (GET_CODE (insn) == JUMP_INSN
4646 || (GET_CODE (insn) == INSN
4647 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
4649 #ifdef HAVE_cc0
4650 rtx note;
4651 #endif
4652 /* It should always be the case that we can put these instructions
4653 anywhere in the basic block with performing PRE optimizations.
4654 Check this. */
4655 if (GET_CODE (insn) == INSN && pre
4656 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4657 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4658 abort ();
4660 /* If this is a jump table, then we can't insert stuff here. Since
4661 we know the previous real insn must be the tablejump, we insert
4662 the new instruction just before the tablejump. */
4663 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4664 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4665 insn = prev_real_insn (insn);
4667 #ifdef HAVE_cc0
4668 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4669 if cc0 isn't set. */
4670 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4671 if (note)
4672 insn = XEXP (note, 0);
4673 else
4675 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4676 if (maybe_cc0_setter
4677 && INSN_P (maybe_cc0_setter)
4678 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4679 insn = maybe_cc0_setter;
4681 #endif
4682 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4683 new_insn = emit_insn_before (pat, insn);
4686 /* Likewise if the last insn is a call, as will happen in the presence
4687 of exception handling. */
4688 else if (GET_CODE (insn) == CALL_INSN
4689 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
4691 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4692 we search backward and place the instructions before the first
4693 parameter is loaded. Do this for everyone for consistency and a
4694 presumtion that we'll get better code elsewhere as well.
4696 It should always be the case that we can put these instructions
4697 anywhere in the basic block with performing PRE optimizations.
4698 Check this. */
4700 if (pre
4701 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4702 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4703 abort ();
4705 /* Since different machines initialize their parameter registers
4706 in different orders, assume nothing. Collect the set of all
4707 parameter registers. */
4708 insn = find_first_parameter_load (insn, bb->head);
4710 /* If we found all the parameter loads, then we want to insert
4711 before the first parameter load.
4713 If we did not find all the parameter loads, then we might have
4714 stopped on the head of the block, which could be a CODE_LABEL.
4715 If we inserted before the CODE_LABEL, then we would be putting
4716 the insn in the wrong basic block. In that case, put the insn
4717 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4718 while (GET_CODE (insn) == CODE_LABEL
4719 || NOTE_INSN_BASIC_BLOCK_P (insn))
4720 insn = NEXT_INSN (insn);
4722 new_insn = emit_insn_before (pat, insn);
4724 else
4725 new_insn = emit_insn_after (pat, insn);
4727 /* Keep block number table up to date.
4728 Note, PAT could be a multiple insn sequence, we have to make
4729 sure that each insn in the sequence is handled. */
4730 if (GET_CODE (pat) == SEQUENCE)
4732 for (i = 0; i < XVECLEN (pat, 0); i++)
4734 rtx insn = XVECEXP (pat, 0, i);
4735 if (INSN_P (insn))
4736 add_label_notes (PATTERN (insn), new_insn);
4738 note_stores (PATTERN (insn), record_set_info, insn);
4741 else
4743 add_label_notes (pat, new_insn);
4745 /* Keep register set table up to date. */
4746 record_one_set (regno, new_insn);
4749 gcse_create_count++;
4751 if (gcse_file)
4753 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4754 bb->index, INSN_UID (new_insn));
4755 fprintf (gcse_file, "copying expression %d to reg %d\n",
4756 expr->bitmap_index, regno);
4760 /* Insert partially redundant expressions on edges in the CFG to make
4761 the expressions fully redundant. */
4763 static int
4764 pre_edge_insert (edge_list, index_map)
4765 struct edge_list *edge_list;
4766 struct expr **index_map;
4768 int e, i, j, num_edges, set_size, did_insert = 0;
4769 sbitmap *inserted;
4771 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4772 if it reaches any of the deleted expressions. */
4774 set_size = pre_insert_map[0]->size;
4775 num_edges = NUM_EDGES (edge_list);
4776 inserted = sbitmap_vector_alloc (num_edges, n_exprs);
4777 sbitmap_vector_zero (inserted, num_edges);
4779 for (e = 0; e < num_edges; e++)
4781 int indx;
4782 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4784 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4786 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4788 for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
4789 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4791 struct expr *expr = index_map[j];
4792 struct occr *occr;
4794 /* Now look at each deleted occurrence of this expression. */
4795 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4797 if (! occr->deleted_p)
4798 continue;
4800 /* Insert this expression on this edge if if it would
4801 reach the deleted occurrence in BB. */
4802 if (!TEST_BIT (inserted[e], j))
4804 rtx insn;
4805 edge eg = INDEX_EDGE (edge_list, e);
4807 /* We can't insert anything on an abnormal and
4808 critical edge, so we insert the insn at the end of
4809 the previous block. There are several alternatives
4810 detailed in Morgans book P277 (sec 10.5) for
4811 handling this situation. This one is easiest for
4812 now. */
4814 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
4815 insert_insn_end_bb (index_map[j], bb, 0);
4816 else
4818 insn = process_insert_insn (index_map[j]);
4819 insert_insn_on_edge (insn, eg);
4822 if (gcse_file)
4824 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4825 bb->index,
4826 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4827 fprintf (gcse_file, "copy expression %d\n",
4828 expr->bitmap_index);
4831 update_ld_motion_stores (expr);
4832 SET_BIT (inserted[e], j);
4833 did_insert = 1;
4834 gcse_create_count++;
4841 sbitmap_vector_free (inserted);
4842 return did_insert;
4845 /* Copy the result of INSN to REG. INDX is the expression number. */
4847 static void
4848 pre_insert_copy_insn (expr, insn)
4849 struct expr *expr;
4850 rtx insn;
4852 rtx reg = expr->reaching_reg;
4853 int regno = REGNO (reg);
4854 int indx = expr->bitmap_index;
4855 rtx set = single_set (insn);
4856 rtx new_insn;
4858 if (!set)
4859 abort ();
4861 new_insn = emit_insn_after (gen_move_insn (reg, SET_DEST (set)), insn);
4863 /* Keep register set table up to date. */
4864 record_one_set (regno, new_insn);
4866 gcse_create_count++;
4868 if (gcse_file)
4869 fprintf (gcse_file,
4870 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4871 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4872 INSN_UID (insn), regno);
4873 update_ld_motion_stores (expr);
4876 /* Copy available expressions that reach the redundant expression
4877 to `reaching_reg'. */
4879 static void
4880 pre_insert_copies ()
4882 unsigned int i;
4883 struct expr *expr;
4884 struct occr *occr;
4885 struct occr *avail;
4887 /* For each available expression in the table, copy the result to
4888 `reaching_reg' if the expression reaches a deleted one.
4890 ??? The current algorithm is rather brute force.
4891 Need to do some profiling. */
4893 for (i = 0; i < expr_hash_table_size; i++)
4894 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4896 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4897 we don't want to insert a copy here because the expression may not
4898 really be redundant. So only insert an insn if the expression was
4899 deleted. This test also avoids further processing if the
4900 expression wasn't deleted anywhere. */
4901 if (expr->reaching_reg == NULL)
4902 continue;
4904 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4906 if (! occr->deleted_p)
4907 continue;
4909 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4911 rtx insn = avail->insn;
4913 /* No need to handle this one if handled already. */
4914 if (avail->copied_p)
4915 continue;
4917 /* Don't handle this one if it's a redundant one. */
4918 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4919 continue;
4921 /* Or if the expression doesn't reach the deleted one. */
4922 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4923 expr,
4924 BLOCK_FOR_INSN (occr->insn)))
4925 continue;
4927 /* Copy the result of avail to reaching_reg. */
4928 pre_insert_copy_insn (expr, insn);
4929 avail->copied_p = 1;
4935 /* Delete redundant computations.
4936 Deletion is done by changing the insn to copy the `reaching_reg' of
4937 the expression into the result of the SET. It is left to later passes
4938 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4940 Returns non-zero if a change is made. */
4942 static int
4943 pre_delete ()
4945 unsigned int i;
4946 int changed;
4947 struct expr *expr;
4948 struct occr *occr;
4950 changed = 0;
4951 for (i = 0; i < expr_hash_table_size; i++)
4952 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4954 int indx = expr->bitmap_index;
4956 /* We only need to search antic_occr since we require
4957 ANTLOC != 0. */
4959 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4961 rtx insn = occr->insn;
4962 rtx set;
4963 basic_block bb = BLOCK_FOR_INSN (insn);
4965 if (TEST_BIT (pre_delete_map[bb->index], indx))
4967 set = single_set (insn);
4968 if (! set)
4969 abort ();
4971 /* Create a pseudo-reg to store the result of reaching
4972 expressions into. Get the mode for the new pseudo from
4973 the mode of the original destination pseudo. */
4974 if (expr->reaching_reg == NULL)
4975 expr->reaching_reg
4976 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4978 /* In theory this should never fail since we're creating
4979 a reg->reg copy.
4981 However, on the x86 some of the movXX patterns actually
4982 contain clobbers of scratch regs. This may cause the
4983 insn created by validate_change to not match any pattern
4984 and thus cause validate_change to fail. */
4985 if (validate_change (insn, &SET_SRC (set),
4986 expr->reaching_reg, 0))
4988 occr->deleted_p = 1;
4989 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4990 changed = 1;
4991 gcse_subst_count++;
4994 if (gcse_file)
4996 fprintf (gcse_file,
4997 "PRE: redundant insn %d (expression %d) in ",
4998 INSN_UID (insn), indx);
4999 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
5000 bb->index, REGNO (expr->reaching_reg));
5006 return changed;
5009 /* Perform GCSE optimizations using PRE.
5010 This is called by one_pre_gcse_pass after all the dataflow analysis
5011 has been done.
5013 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5014 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5015 Compiler Design and Implementation.
5017 ??? A new pseudo reg is created to hold the reaching expression. The nice
5018 thing about the classical approach is that it would try to use an existing
5019 reg. If the register can't be adequately optimized [i.e. we introduce
5020 reload problems], one could add a pass here to propagate the new register
5021 through the block.
5023 ??? We don't handle single sets in PARALLELs because we're [currently] not
5024 able to copy the rest of the parallel when we insert copies to create full
5025 redundancies from partial redundancies. However, there's no reason why we
5026 can't handle PARALLELs in the cases where there are no partial
5027 redundancies. */
5029 static int
5030 pre_gcse ()
5032 unsigned int i;
5033 int did_insert, changed;
5034 struct expr **index_map;
5035 struct expr *expr;
5037 /* Compute a mapping from expression number (`bitmap_index') to
5038 hash table entry. */
5040 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5041 for (i = 0; i < expr_hash_table_size; i++)
5042 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5043 index_map[expr->bitmap_index] = expr;
5045 /* Reset bitmap used to track which insns are redundant. */
5046 pre_redundant_insns = sbitmap_alloc (max_cuid);
5047 sbitmap_zero (pre_redundant_insns);
5049 /* Delete the redundant insns first so that
5050 - we know what register to use for the new insns and for the other
5051 ones with reaching expressions
5052 - we know which insns are redundant when we go to create copies */
5054 changed = pre_delete ();
5056 did_insert = pre_edge_insert (edge_list, index_map);
5058 /* In other places with reaching expressions, copy the expression to the
5059 specially allocated pseudo-reg that reaches the redundant expr. */
5060 pre_insert_copies ();
5061 if (did_insert)
5063 commit_edge_insertions ();
5064 changed = 1;
5067 free (index_map);
5068 sbitmap_free (pre_redundant_insns);
5069 return changed;
5072 /* Top level routine to perform one PRE GCSE pass.
5074 Return non-zero if a change was made. */
5076 static int
5077 one_pre_gcse_pass (pass)
5078 int pass;
5080 int changed = 0;
5082 gcse_subst_count = 0;
5083 gcse_create_count = 0;
5085 alloc_expr_hash_table (max_cuid);
5086 add_noreturn_fake_exit_edges ();
5087 if (flag_gcse_lm)
5088 compute_ld_motion_mems ();
5090 compute_expr_hash_table ();
5091 trim_ld_motion_mems ();
5092 if (gcse_file)
5093 dump_hash_table (gcse_file, "Expression", expr_hash_table,
5094 expr_hash_table_size, n_exprs);
5096 if (n_exprs > 0)
5098 alloc_pre_mem (n_basic_blocks, n_exprs);
5099 compute_pre_data ();
5100 changed |= pre_gcse ();
5101 free_edge_list (edge_list);
5102 free_pre_mem ();
5105 free_ldst_mems ();
5106 remove_fake_edges ();
5107 free_expr_hash_table ();
5109 if (gcse_file)
5111 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5112 current_function_name, pass, bytes_used);
5113 fprintf (gcse_file, "%d substs, %d insns created\n",
5114 gcse_subst_count, gcse_create_count);
5117 return changed;
5120 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5121 If notes are added to an insn which references a CODE_LABEL, the
5122 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5123 because the following loop optimization pass requires them. */
5125 /* ??? This is very similar to the loop.c add_label_notes function. We
5126 could probably share code here. */
5128 /* ??? If there was a jump optimization pass after gcse and before loop,
5129 then we would not need to do this here, because jump would add the
5130 necessary REG_LABEL notes. */
5132 static void
5133 add_label_notes (x, insn)
5134 rtx x;
5135 rtx insn;
5137 enum rtx_code code = GET_CODE (x);
5138 int i, j;
5139 const char *fmt;
5141 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
5143 /* This code used to ignore labels that referred to dispatch tables to
5144 avoid flow generating (slighly) worse code.
5146 We no longer ignore such label references (see LABEL_REF handling in
5147 mark_jump_label for additional information). */
5149 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
5150 REG_NOTES (insn));
5151 if (LABEL_P (XEXP (x, 0)))
5152 LABEL_NUSES (XEXP (x, 0))++;
5153 return;
5156 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
5158 if (fmt[i] == 'e')
5159 add_label_notes (XEXP (x, i), insn);
5160 else if (fmt[i] == 'E')
5161 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5162 add_label_notes (XVECEXP (x, i, j), insn);
5166 /* Compute transparent outgoing information for each block.
5168 An expression is transparent to an edge unless it is killed by
5169 the edge itself. This can only happen with abnormal control flow,
5170 when the edge is traversed through a call. This happens with
5171 non-local labels and exceptions.
5173 This would not be necessary if we split the edge. While this is
5174 normally impossible for abnormal critical edges, with some effort
5175 it should be possible with exception handling, since we still have
5176 control over which handler should be invoked. But due to increased
5177 EH table sizes, this may not be worthwhile. */
5179 static void
5180 compute_transpout ()
5182 int bb;
5183 unsigned int i;
5184 struct expr *expr;
5186 sbitmap_vector_ones (transpout, n_basic_blocks);
5188 for (bb = 0; bb < n_basic_blocks; ++bb)
5190 /* Note that flow inserted a nop a the end of basic blocks that
5191 end in call instructions for reasons other than abnormal
5192 control flow. */
5193 if (GET_CODE (BLOCK_END (bb)) != CALL_INSN)
5194 continue;
5196 for (i = 0; i < expr_hash_table_size; i++)
5197 for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
5198 if (GET_CODE (expr->expr) == MEM)
5200 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
5201 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
5202 continue;
5204 /* ??? Optimally, we would use interprocedural alias
5205 analysis to determine if this mem is actually killed
5206 by this call. */
5207 RESET_BIT (transpout[bb], expr->bitmap_index);
5212 /* Removal of useless null pointer checks */
5214 /* Called via note_stores. X is set by SETTER. If X is a register we must
5215 invalidate nonnull_local and set nonnull_killed. DATA is really a
5216 `null_pointer_info *'.
5218 We ignore hard registers. */
5220 static void
5221 invalidate_nonnull_info (x, setter, data)
5222 rtx x;
5223 rtx setter ATTRIBUTE_UNUSED;
5224 void *data;
5226 unsigned int regno;
5227 struct null_pointer_info *npi = (struct null_pointer_info *) data;
5229 while (GET_CODE (x) == SUBREG)
5230 x = SUBREG_REG (x);
5232 /* Ignore anything that is not a register or is a hard register. */
5233 if (GET_CODE (x) != REG
5234 || REGNO (x) < npi->min_reg
5235 || REGNO (x) >= npi->max_reg)
5236 return;
5238 regno = REGNO (x) - npi->min_reg;
5240 RESET_BIT (npi->nonnull_local[npi->current_block], regno);
5241 SET_BIT (npi->nonnull_killed[npi->current_block], regno);
5244 /* Do null-pointer check elimination for the registers indicated in
5245 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5246 they are not our responsibility to free. */
5248 static void
5249 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5250 nonnull_avout, npi)
5251 unsigned int *block_reg;
5252 sbitmap *nonnull_avin;
5253 sbitmap *nonnull_avout;
5254 struct null_pointer_info *npi;
5256 int bb;
5257 int current_block;
5258 sbitmap *nonnull_local = npi->nonnull_local;
5259 sbitmap *nonnull_killed = npi->nonnull_killed;
5261 /* Compute local properties, nonnull and killed. A register will have
5262 the nonnull property if at the end of the current block its value is
5263 known to be nonnull. The killed property indicates that somewhere in
5264 the block any information we had about the register is killed.
5266 Note that a register can have both properties in a single block. That
5267 indicates that it's killed, then later in the block a new value is
5268 computed. */
5269 sbitmap_vector_zero (nonnull_local, n_basic_blocks);
5270 sbitmap_vector_zero (nonnull_killed, n_basic_blocks);
5272 for (current_block = 0; current_block < n_basic_blocks; current_block++)
5274 rtx insn, stop_insn;
5276 /* Set the current block for invalidate_nonnull_info. */
5277 npi->current_block = current_block;
5279 /* Scan each insn in the basic block looking for memory references and
5280 register sets. */
5281 stop_insn = NEXT_INSN (BLOCK_END (current_block));
5282 for (insn = BLOCK_HEAD (current_block);
5283 insn != stop_insn;
5284 insn = NEXT_INSN (insn))
5286 rtx set;
5287 rtx reg;
5289 /* Ignore anything that is not a normal insn. */
5290 if (! INSN_P (insn))
5291 continue;
5293 /* Basically ignore anything that is not a simple SET. We do have
5294 to make sure to invalidate nonnull_local and set nonnull_killed
5295 for such insns though. */
5296 set = single_set (insn);
5297 if (!set)
5299 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5300 continue;
5303 /* See if we've got a usable memory load. We handle it first
5304 in case it uses its address register as a dest (which kills
5305 the nonnull property). */
5306 if (GET_CODE (SET_SRC (set)) == MEM
5307 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
5308 && REGNO (reg) >= npi->min_reg
5309 && REGNO (reg) < npi->max_reg)
5310 SET_BIT (nonnull_local[current_block],
5311 REGNO (reg) - npi->min_reg);
5313 /* Now invalidate stuff clobbered by this insn. */
5314 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5316 /* And handle stores, we do these last since any sets in INSN can
5317 not kill the nonnull property if it is derived from a MEM
5318 appearing in a SET_DEST. */
5319 if (GET_CODE (SET_DEST (set)) == MEM
5320 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
5321 && REGNO (reg) >= npi->min_reg
5322 && REGNO (reg) < npi->max_reg)
5323 SET_BIT (nonnull_local[current_block],
5324 REGNO (reg) - npi->min_reg);
5328 /* Now compute global properties based on the local properties. This
5329 is a classic global availablity algorithm. */
5330 compute_available (nonnull_local, nonnull_killed,
5331 nonnull_avout, nonnull_avin);
5333 /* Now look at each bb and see if it ends with a compare of a value
5334 against zero. */
5335 for (bb = 0; bb < n_basic_blocks; bb++)
5337 rtx last_insn = BLOCK_END (bb);
5338 rtx condition, earliest;
5339 int compare_and_branch;
5341 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
5342 since BLOCK_REG[BB] is zero if this block did not end with a
5343 comparison against zero, this condition works. */
5344 if (block_reg[bb] < npi->min_reg
5345 || block_reg[bb] >= npi->max_reg)
5346 continue;
5348 /* LAST_INSN is a conditional jump. Get its condition. */
5349 condition = get_condition (last_insn, &earliest);
5351 /* If we can't determine the condition then skip. */
5352 if (! condition)
5353 continue;
5355 /* Is the register known to have a nonzero value? */
5356 if (!TEST_BIT (nonnull_avout[bb], block_reg[bb] - npi->min_reg))
5357 continue;
5359 /* Try to compute whether the compare/branch at the loop end is one or
5360 two instructions. */
5361 if (earliest == last_insn)
5362 compare_and_branch = 1;
5363 else if (earliest == prev_nonnote_insn (last_insn))
5364 compare_and_branch = 2;
5365 else
5366 continue;
5368 /* We know the register in this comparison is nonnull at exit from
5369 this block. We can optimize this comparison. */
5370 if (GET_CODE (condition) == NE)
5372 rtx new_jump;
5374 new_jump = emit_jump_insn_before (gen_jump (JUMP_LABEL (last_insn)),
5375 last_insn);
5376 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
5377 LABEL_NUSES (JUMP_LABEL (new_jump))++;
5378 emit_barrier_after (new_jump);
5381 delete_insn (last_insn);
5382 if (compare_and_branch == 2)
5383 delete_insn (earliest);
5384 purge_dead_edges (BASIC_BLOCK (bb));
5386 /* Don't check this block again. (Note that BLOCK_END is
5387 invalid here; we deleted the last instruction in the
5388 block.) */
5389 block_reg[bb] = 0;
5393 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
5394 at compile time.
5396 This is conceptually similar to global constant/copy propagation and
5397 classic global CSE (it even uses the same dataflow equations as cprop).
5399 If a register is used as memory address with the form (mem (reg)), then we
5400 know that REG can not be zero at that point in the program. Any instruction
5401 which sets REG "kills" this property.
5403 So, if every path leading to a conditional branch has an available memory
5404 reference of that form, then we know the register can not have the value
5405 zero at the conditional branch.
5407 So we merely need to compute the local properies and propagate that data
5408 around the cfg, then optimize where possible.
5410 We run this pass two times. Once before CSE, then again after CSE. This
5411 has proven to be the most profitable approach. It is rare for new
5412 optimization opportunities of this nature to appear after the first CSE
5413 pass.
5415 This could probably be integrated with global cprop with a little work. */
5417 void
5418 delete_null_pointer_checks (f)
5419 rtx f ATTRIBUTE_UNUSED;
5421 sbitmap *nonnull_avin, *nonnull_avout;
5422 unsigned int *block_reg;
5423 int bb;
5424 int reg;
5425 int regs_per_pass;
5426 int max_reg;
5427 struct null_pointer_info npi;
5429 /* If we have only a single block, then there's nothing to do. */
5430 if (n_basic_blocks <= 1)
5431 return;
5433 /* Trying to perform global optimizations on flow graphs which have
5434 a high connectivity will take a long time and is unlikely to be
5435 particularly useful.
5437 In normal circumstances a cfg should have about twice as many edges
5438 as blocks. But we do not want to punish small functions which have
5439 a couple switch statements. So we require a relatively large number
5440 of basic blocks and the ratio of edges to blocks to be high. */
5441 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
5442 return;
5444 /* We need four bitmaps, each with a bit for each register in each
5445 basic block. */
5446 max_reg = max_reg_num ();
5447 regs_per_pass = get_bitmap_width (4, n_basic_blocks, max_reg);
5449 /* Allocate bitmaps to hold local and global properties. */
5450 npi.nonnull_local = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5451 npi.nonnull_killed = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5452 nonnull_avin = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5453 nonnull_avout = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5455 /* Go through the basic blocks, seeing whether or not each block
5456 ends with a conditional branch whose condition is a comparison
5457 against zero. Record the register compared in BLOCK_REG. */
5458 block_reg = (unsigned int *) xcalloc (n_basic_blocks, sizeof (int));
5459 for (bb = 0; bb < n_basic_blocks; bb++)
5461 rtx last_insn = BLOCK_END (bb);
5462 rtx condition, earliest, reg;
5464 /* We only want conditional branches. */
5465 if (GET_CODE (last_insn) != JUMP_INSN
5466 || !any_condjump_p (last_insn)
5467 || !onlyjump_p (last_insn))
5468 continue;
5470 /* LAST_INSN is a conditional jump. Get its condition. */
5471 condition = get_condition (last_insn, &earliest);
5473 /* If we were unable to get the condition, or it is not an equality
5474 comparison against zero then there's nothing we can do. */
5475 if (!condition
5476 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
5477 || GET_CODE (XEXP (condition, 1)) != CONST_INT
5478 || (XEXP (condition, 1)
5479 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
5480 continue;
5482 /* We must be checking a register against zero. */
5483 reg = XEXP (condition, 0);
5484 if (GET_CODE (reg) != REG)
5485 continue;
5487 block_reg[bb] = REGNO (reg);
5490 /* Go through the algorithm for each block of registers. */
5491 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
5493 npi.min_reg = reg;
5494 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
5495 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5496 nonnull_avout, &npi);
5499 /* Free the table of registers compared at the end of every block. */
5500 free (block_reg);
5502 /* Free bitmaps. */
5503 sbitmap_vector_free (npi.nonnull_local);
5504 sbitmap_vector_free (npi.nonnull_killed);
5505 sbitmap_vector_free (nonnull_avin);
5506 sbitmap_vector_free (nonnull_avout);
5509 /* Code Hoisting variables and subroutines. */
5511 /* Very busy expressions. */
5512 static sbitmap *hoist_vbein;
5513 static sbitmap *hoist_vbeout;
5515 /* Hoistable expressions. */
5516 static sbitmap *hoist_exprs;
5518 /* Dominator bitmaps. */
5519 static sbitmap *dominators;
5521 /* ??? We could compute post dominators and run this algorithm in
5522 reverse to to perform tail merging, doing so would probably be
5523 more effective than the tail merging code in jump.c.
5525 It's unclear if tail merging could be run in parallel with
5526 code hoisting. It would be nice. */
5528 /* Allocate vars used for code hoisting analysis. */
5530 static void
5531 alloc_code_hoist_mem (n_blocks, n_exprs)
5532 int n_blocks, n_exprs;
5534 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5535 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5536 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5538 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5539 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5540 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5541 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5543 dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
5546 /* Free vars used for code hoisting analysis. */
5548 static void
5549 free_code_hoist_mem ()
5551 sbitmap_vector_free (antloc);
5552 sbitmap_vector_free (transp);
5553 sbitmap_vector_free (comp);
5555 sbitmap_vector_free (hoist_vbein);
5556 sbitmap_vector_free (hoist_vbeout);
5557 sbitmap_vector_free (hoist_exprs);
5558 sbitmap_vector_free (transpout);
5560 sbitmap_vector_free (dominators);
5563 /* Compute the very busy expressions at entry/exit from each block.
5565 An expression is very busy if all paths from a given point
5566 compute the expression. */
5568 static void
5569 compute_code_hoist_vbeinout ()
5571 int bb, changed, passes;
5573 sbitmap_vector_zero (hoist_vbeout, n_basic_blocks);
5574 sbitmap_vector_zero (hoist_vbein, n_basic_blocks);
5576 passes = 0;
5577 changed = 1;
5579 while (changed)
5581 changed = 0;
5583 /* We scan the blocks in the reverse order to speed up
5584 the convergence. */
5585 for (bb = n_basic_blocks - 1; bb >= 0; bb--)
5587 changed |= sbitmap_a_or_b_and_c (hoist_vbein[bb], antloc[bb],
5588 hoist_vbeout[bb], transp[bb]);
5589 if (bb != n_basic_blocks - 1)
5590 sbitmap_intersection_of_succs (hoist_vbeout[bb], hoist_vbein, bb);
5593 passes++;
5596 if (gcse_file)
5597 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
5600 /* Top level routine to do the dataflow analysis needed by code hoisting. */
5602 static void
5603 compute_code_hoist_data ()
5605 compute_local_properties (transp, comp, antloc, 0);
5606 compute_transpout ();
5607 compute_code_hoist_vbeinout ();
5608 calculate_dominance_info (NULL, dominators, CDI_DOMINATORS);
5609 if (gcse_file)
5610 fprintf (gcse_file, "\n");
5613 /* Determine if the expression identified by EXPR_INDEX would
5614 reach BB unimpared if it was placed at the end of EXPR_BB.
5616 It's unclear exactly what Muchnick meant by "unimpared". It seems
5617 to me that the expression must either be computed or transparent in
5618 *every* block in the path(s) from EXPR_BB to BB. Any other definition
5619 would allow the expression to be hoisted out of loops, even if
5620 the expression wasn't a loop invariant.
5622 Contrast this to reachability for PRE where an expression is
5623 considered reachable if *any* path reaches instead of *all*
5624 paths. */
5626 static int
5627 hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
5628 basic_block expr_bb;
5629 int expr_index;
5630 basic_block bb;
5631 char *visited;
5633 edge pred;
5634 int visited_allocated_locally = 0;
5637 if (visited == NULL)
5639 visited_allocated_locally = 1;
5640 visited = xcalloc (n_basic_blocks, 1);
5643 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
5645 basic_block pred_bb = pred->src;
5647 if (pred->src == ENTRY_BLOCK_PTR)
5648 break;
5649 else if (visited[pred_bb->index])
5650 continue;
5652 /* Does this predecessor generate this expression? */
5653 else if (TEST_BIT (comp[pred_bb->index], expr_index))
5654 break;
5655 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
5656 break;
5658 /* Not killed. */
5659 else
5661 visited[pred_bb->index] = 1;
5662 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
5663 pred_bb, visited))
5664 break;
5667 if (visited_allocated_locally)
5668 free (visited);
5670 return (pred == NULL);
5673 /* Actually perform code hoisting. */
5675 static void
5676 hoist_code ()
5678 int bb, dominated;
5679 unsigned int i;
5680 struct expr **index_map;
5681 struct expr *expr;
5683 sbitmap_vector_zero (hoist_exprs, n_basic_blocks);
5685 /* Compute a mapping from expression number (`bitmap_index') to
5686 hash table entry. */
5688 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5689 for (i = 0; i < expr_hash_table_size; i++)
5690 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5691 index_map[expr->bitmap_index] = expr;
5693 /* Walk over each basic block looking for potentially hoistable
5694 expressions, nothing gets hoisted from the entry block. */
5695 for (bb = 0; bb < n_basic_blocks; bb++)
5697 int found = 0;
5698 int insn_inserted_p;
5700 /* Examine each expression that is very busy at the exit of this
5701 block. These are the potentially hoistable expressions. */
5702 for (i = 0; i < hoist_vbeout[bb]->n_bits; i++)
5704 int hoistable = 0;
5706 if (TEST_BIT (hoist_vbeout[bb], i) && TEST_BIT (transpout[bb], i))
5708 /* We've found a potentially hoistable expression, now
5709 we look at every block BB dominates to see if it
5710 computes the expression. */
5711 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5713 /* Ignore self dominance. */
5714 if (bb == dominated
5715 || ! TEST_BIT (dominators[dominated], bb))
5716 continue;
5718 /* We've found a dominated block, now see if it computes
5719 the busy expression and whether or not moving that
5720 expression to the "beginning" of that block is safe. */
5721 if (!TEST_BIT (antloc[dominated], i))
5722 continue;
5724 /* Note if the expression would reach the dominated block
5725 unimpared if it was placed at the end of BB.
5727 Keep track of how many times this expression is hoistable
5728 from a dominated block into BB. */
5729 if (hoist_expr_reaches_here_p (BASIC_BLOCK (bb), i,
5730 BASIC_BLOCK (dominated), NULL))
5731 hoistable++;
5734 /* If we found more than one hoistable occurrence of this
5735 expression, then note it in the bitmap of expressions to
5736 hoist. It makes no sense to hoist things which are computed
5737 in only one BB, and doing so tends to pessimize register
5738 allocation. One could increase this value to try harder
5739 to avoid any possible code expansion due to register
5740 allocation issues; however experiments have shown that
5741 the vast majority of hoistable expressions are only movable
5742 from two successors, so raising this threshhold is likely
5743 to nullify any benefit we get from code hoisting. */
5744 if (hoistable > 1)
5746 SET_BIT (hoist_exprs[bb], i);
5747 found = 1;
5752 /* If we found nothing to hoist, then quit now. */
5753 if (! found)
5754 continue;
5756 /* Loop over all the hoistable expressions. */
5757 for (i = 0; i < hoist_exprs[bb]->n_bits; i++)
5759 /* We want to insert the expression into BB only once, so
5760 note when we've inserted it. */
5761 insn_inserted_p = 0;
5763 /* These tests should be the same as the tests above. */
5764 if (TEST_BIT (hoist_vbeout[bb], i))
5766 /* We've found a potentially hoistable expression, now
5767 we look at every block BB dominates to see if it
5768 computes the expression. */
5769 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5771 /* Ignore self dominance. */
5772 if (bb == dominated
5773 || ! TEST_BIT (dominators[dominated], bb))
5774 continue;
5776 /* We've found a dominated block, now see if it computes
5777 the busy expression and whether or not moving that
5778 expression to the "beginning" of that block is safe. */
5779 if (!TEST_BIT (antloc[dominated], i))
5780 continue;
5782 /* The expression is computed in the dominated block and
5783 it would be safe to compute it at the start of the
5784 dominated block. Now we have to determine if the
5785 expression would reach the dominated block if it was
5786 placed at the end of BB. */
5787 if (hoist_expr_reaches_here_p (BASIC_BLOCK (bb), i,
5788 BASIC_BLOCK (dominated), NULL))
5790 struct expr *expr = index_map[i];
5791 struct occr *occr = expr->antic_occr;
5792 rtx insn;
5793 rtx set;
5795 /* Find the right occurrence of this expression. */
5796 while (BLOCK_NUM (occr->insn) != dominated && occr)
5797 occr = occr->next;
5799 /* Should never happen. */
5800 if (!occr)
5801 abort ();
5803 insn = occr->insn;
5805 set = single_set (insn);
5806 if (! set)
5807 abort ();
5809 /* Create a pseudo-reg to store the result of reaching
5810 expressions into. Get the mode for the new pseudo
5811 from the mode of the original destination pseudo. */
5812 if (expr->reaching_reg == NULL)
5813 expr->reaching_reg
5814 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5816 /* In theory this should never fail since we're creating
5817 a reg->reg copy.
5819 However, on the x86 some of the movXX patterns
5820 actually contain clobbers of scratch regs. This may
5821 cause the insn created by validate_change to not
5822 match any pattern and thus cause validate_change to
5823 fail. */
5824 if (validate_change (insn, &SET_SRC (set),
5825 expr->reaching_reg, 0))
5827 occr->deleted_p = 1;
5828 if (!insn_inserted_p)
5830 insert_insn_end_bb (index_map[i],
5831 BASIC_BLOCK (bb), 0);
5832 insn_inserted_p = 1;
5841 free (index_map);
5844 /* Top level routine to perform one code hoisting (aka unification) pass
5846 Return non-zero if a change was made. */
5848 static int
5849 one_code_hoisting_pass ()
5851 int changed = 0;
5853 alloc_expr_hash_table (max_cuid);
5854 compute_expr_hash_table ();
5855 if (gcse_file)
5856 dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table,
5857 expr_hash_table_size, n_exprs);
5859 if (n_exprs > 0)
5861 alloc_code_hoist_mem (n_basic_blocks, n_exprs);
5862 compute_code_hoist_data ();
5863 hoist_code ();
5864 free_code_hoist_mem ();
5867 free_expr_hash_table ();
5869 return changed;
5872 /* Here we provide the things required to do store motion towards
5873 the exit. In order for this to be effective, gcse also needed to
5874 be taught how to move a load when it is kill only by a store to itself.
5876 int i;
5877 float a[10];
5879 void foo(float scale)
5881 for (i=0; i<10; i++)
5882 a[i] *= scale;
5885 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5886 the load out since its live around the loop, and stored at the bottom
5887 of the loop.
5889 The 'Load Motion' referred to and implemented in this file is
5890 an enhancement to gcse which when using edge based lcm, recognizes
5891 this situation and allows gcse to move the load out of the loop.
5893 Once gcse has hoisted the load, store motion can then push this
5894 load towards the exit, and we end up with no loads or stores of 'i'
5895 in the loop. */
5897 /* This will search the ldst list for a matching expression. If it
5898 doesn't find one, we create one and initialize it. */
5900 static struct ls_expr *
5901 ldst_entry (x)
5902 rtx x;
5904 struct ls_expr * ptr;
5906 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5907 if (expr_equiv_p (ptr->pattern, x))
5908 break;
5910 if (!ptr)
5912 ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr));
5914 ptr->next = pre_ldst_mems;
5915 ptr->expr = NULL;
5916 ptr->pattern = x;
5917 ptr->loads = NULL_RTX;
5918 ptr->stores = NULL_RTX;
5919 ptr->reaching_reg = NULL_RTX;
5920 ptr->invalid = 0;
5921 ptr->index = 0;
5922 ptr->hash_index = 0;
5923 pre_ldst_mems = ptr;
5926 return ptr;
5929 /* Free up an individual ldst entry. */
5931 static void
5932 free_ldst_entry (ptr)
5933 struct ls_expr * ptr;
5935 free_INSN_LIST_list (& ptr->loads);
5936 free_INSN_LIST_list (& ptr->stores);
5938 free (ptr);
5941 /* Free up all memory associated with the ldst list. */
5943 static void
5944 free_ldst_mems ()
5946 while (pre_ldst_mems)
5948 struct ls_expr * tmp = pre_ldst_mems;
5950 pre_ldst_mems = pre_ldst_mems->next;
5952 free_ldst_entry (tmp);
5955 pre_ldst_mems = NULL;
5958 /* Dump debugging info about the ldst list. */
5960 static void
5961 print_ldst_list (file)
5962 FILE * file;
5964 struct ls_expr * ptr;
5966 fprintf (file, "LDST list: \n");
5968 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5970 fprintf (file, " Pattern (%3d): ", ptr->index);
5972 print_rtl (file, ptr->pattern);
5974 fprintf (file, "\n Loads : ");
5976 if (ptr->loads)
5977 print_rtl (file, ptr->loads);
5978 else
5979 fprintf (file, "(nil)");
5981 fprintf (file, "\n Stores : ");
5983 if (ptr->stores)
5984 print_rtl (file, ptr->stores);
5985 else
5986 fprintf (file, "(nil)");
5988 fprintf (file, "\n\n");
5991 fprintf (file, "\n");
5994 /* Returns 1 if X is in the list of ldst only expressions. */
5996 static struct ls_expr *
5997 find_rtx_in_ldst (x)
5998 rtx x;
6000 struct ls_expr * ptr;
6002 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6003 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
6004 return ptr;
6006 return NULL;
6009 /* Assign each element of the list of mems a monotonically increasing value. */
6011 static int
6012 enumerate_ldsts ()
6014 struct ls_expr * ptr;
6015 int n = 0;
6017 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6018 ptr->index = n++;
6020 return n;
6023 /* Return first item in the list. */
6025 static inline struct ls_expr *
6026 first_ls_expr ()
6028 return pre_ldst_mems;
6031 /* Return the next item in ther list after the specified one. */
6033 static inline struct ls_expr *
6034 next_ls_expr (ptr)
6035 struct ls_expr * ptr;
6037 return ptr->next;
6040 /* Load Motion for loads which only kill themselves. */
6042 /* Return true if x is a simple MEM operation, with no registers or
6043 side effects. These are the types of loads we consider for the
6044 ld_motion list, otherwise we let the usual aliasing take care of it. */
6046 static int
6047 simple_mem (x)
6048 rtx x;
6050 if (GET_CODE (x) != MEM)
6051 return 0;
6053 if (MEM_VOLATILE_P (x))
6054 return 0;
6056 if (GET_MODE (x) == BLKmode)
6057 return 0;
6059 if (!rtx_varies_p (XEXP (x, 0), 0))
6060 return 1;
6062 return 0;
6065 /* Make sure there isn't a buried reference in this pattern anywhere.
6066 If there is, invalidate the entry for it since we're not capable
6067 of fixing it up just yet.. We have to be sure we know about ALL
6068 loads since the aliasing code will allow all entries in the
6069 ld_motion list to not-alias itself. If we miss a load, we will get
6070 the wrong value since gcse might common it and we won't know to
6071 fix it up. */
6073 static void
6074 invalidate_any_buried_refs (x)
6075 rtx x;
6077 const char * fmt;
6078 int i, j;
6079 struct ls_expr * ptr;
6081 /* Invalidate it in the list. */
6082 if (GET_CODE (x) == MEM && simple_mem (x))
6084 ptr = ldst_entry (x);
6085 ptr->invalid = 1;
6088 /* Recursively process the insn. */
6089 fmt = GET_RTX_FORMAT (GET_CODE (x));
6091 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6093 if (fmt[i] == 'e')
6094 invalidate_any_buried_refs (XEXP (x, i));
6095 else if (fmt[i] == 'E')
6096 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6097 invalidate_any_buried_refs (XVECEXP (x, i, j));
6101 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6102 being defined as MEM loads and stores to symbols, with no
6103 side effects and no registers in the expression. If there are any
6104 uses/defs which don't match this criteria, it is invalidated and
6105 trimmed out later. */
6107 static void
6108 compute_ld_motion_mems ()
6110 struct ls_expr * ptr;
6111 int bb;
6112 rtx insn;
6114 pre_ldst_mems = NULL;
6116 for (bb = 0; bb < n_basic_blocks; bb++)
6118 for (insn = BLOCK_HEAD (bb);
6119 insn && insn != NEXT_INSN (BLOCK_END (bb));
6120 insn = NEXT_INSN (insn))
6122 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
6124 if (GET_CODE (PATTERN (insn)) == SET)
6126 rtx src = SET_SRC (PATTERN (insn));
6127 rtx dest = SET_DEST (PATTERN (insn));
6129 /* Check for a simple LOAD... */
6130 if (GET_CODE (src) == MEM && simple_mem (src))
6132 ptr = ldst_entry (src);
6133 if (GET_CODE (dest) == REG)
6134 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
6135 else
6136 ptr->invalid = 1;
6138 else
6140 /* Make sure there isn't a buried load somewhere. */
6141 invalidate_any_buried_refs (src);
6144 /* Check for stores. Don't worry about aliased ones, they
6145 will block any movement we might do later. We only care
6146 about this exact pattern since those are the only
6147 circumstance that we will ignore the aliasing info. */
6148 if (GET_CODE (dest) == MEM && simple_mem (dest))
6150 ptr = ldst_entry (dest);
6152 if (GET_CODE (src) != MEM
6153 && GET_CODE (src) != ASM_OPERANDS)
6154 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6155 else
6156 ptr->invalid = 1;
6159 else
6160 invalidate_any_buried_refs (PATTERN (insn));
6166 /* Remove any references that have been either invalidated or are not in the
6167 expression list for pre gcse. */
6169 static void
6170 trim_ld_motion_mems ()
6172 struct ls_expr * last = NULL;
6173 struct ls_expr * ptr = first_ls_expr ();
6175 while (ptr != NULL)
6177 int del = ptr->invalid;
6178 struct expr * expr = NULL;
6180 /* Delete if entry has been made invalid. */
6181 if (!del)
6183 unsigned int i;
6185 del = 1;
6186 /* Delete if we cannot find this mem in the expression list. */
6187 for (i = 0; i < expr_hash_table_size && del; i++)
6189 for (expr = expr_hash_table[i];
6190 expr != NULL;
6191 expr = expr->next_same_hash)
6192 if (expr_equiv_p (expr->expr, ptr->pattern))
6194 del = 0;
6195 break;
6200 if (del)
6202 if (last != NULL)
6204 last->next = ptr->next;
6205 free_ldst_entry (ptr);
6206 ptr = last->next;
6208 else
6210 pre_ldst_mems = pre_ldst_mems->next;
6211 free_ldst_entry (ptr);
6212 ptr = pre_ldst_mems;
6215 else
6217 /* Set the expression field if we are keeping it. */
6218 last = ptr;
6219 ptr->expr = expr;
6220 ptr = ptr->next;
6224 /* Show the world what we've found. */
6225 if (gcse_file && pre_ldst_mems != NULL)
6226 print_ldst_list (gcse_file);
6229 /* This routine will take an expression which we are replacing with
6230 a reaching register, and update any stores that are needed if
6231 that expression is in the ld_motion list. Stores are updated by
6232 copying their SRC to the reaching register, and then storeing
6233 the reaching register into the store location. These keeps the
6234 correct value in the reaching register for the loads. */
6236 static void
6237 update_ld_motion_stores (expr)
6238 struct expr * expr;
6240 struct ls_expr * mem_ptr;
6242 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
6244 /* We can try to find just the REACHED stores, but is shouldn't
6245 matter to set the reaching reg everywhere... some might be
6246 dead and should be eliminated later. */
6248 /* We replace SET mem = expr with
6249 SET reg = expr
6250 SET mem = reg , where reg is the
6251 reaching reg used in the load. */
6252 rtx list = mem_ptr->stores;
6254 for ( ; list != NULL_RTX; list = XEXP (list, 1))
6256 rtx insn = XEXP (list, 0);
6257 rtx pat = PATTERN (insn);
6258 rtx src = SET_SRC (pat);
6259 rtx reg = expr->reaching_reg;
6260 rtx copy, new;
6262 /* If we've already copied it, continue. */
6263 if (expr->reaching_reg == src)
6264 continue;
6266 if (gcse_file)
6268 fprintf (gcse_file, "PRE: store updated with reaching reg ");
6269 print_rtl (gcse_file, expr->reaching_reg);
6270 fprintf (gcse_file, ":\n ");
6271 print_inline_rtx (gcse_file, insn, 8);
6272 fprintf (gcse_file, "\n");
6275 copy = gen_move_insn ( reg, SET_SRC (pat));
6276 new = emit_insn_before (copy, insn);
6277 record_one_set (REGNO (reg), new);
6278 SET_SRC (pat) = reg;
6280 /* un-recognize this pattern since it's probably different now. */
6281 INSN_CODE (insn) = -1;
6282 gcse_create_count++;
6287 /* Store motion code. */
6289 /* This is used to communicate the target bitvector we want to use in the
6290 reg_set_info routine when called via the note_stores mechanism. */
6291 static sbitmap * regvec;
6293 /* Used in computing the reverse edge graph bit vectors. */
6294 static sbitmap * st_antloc;
6296 /* Global holding the number of store expressions we are dealing with. */
6297 static int num_stores;
6299 /* Checks to set if we need to mark a register set. Called from note_stores. */
6301 static void
6302 reg_set_info (dest, setter, data)
6303 rtx dest, setter ATTRIBUTE_UNUSED;
6304 void * data ATTRIBUTE_UNUSED;
6306 if (GET_CODE (dest) == SUBREG)
6307 dest = SUBREG_REG (dest);
6309 if (GET_CODE (dest) == REG)
6310 SET_BIT (*regvec, REGNO (dest));
6313 /* Return non-zero if the register operands of expression X are killed
6314 anywhere in basic block BB. */
6316 static int
6317 store_ops_ok (x, bb)
6318 rtx x;
6319 basic_block bb;
6321 int i;
6322 enum rtx_code code;
6323 const char * fmt;
6325 /* Repeat is used to turn tail-recursion into iteration. */
6326 repeat:
6328 if (x == 0)
6329 return 1;
6331 code = GET_CODE (x);
6332 switch (code)
6334 case REG:
6335 /* If a reg has changed after us in this
6336 block, the operand has been killed. */
6337 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
6339 case MEM:
6340 x = XEXP (x, 0);
6341 goto repeat;
6343 case PRE_DEC:
6344 case PRE_INC:
6345 case POST_DEC:
6346 case POST_INC:
6347 return 0;
6349 case PC:
6350 case CC0: /*FIXME*/
6351 case CONST:
6352 case CONST_INT:
6353 case CONST_DOUBLE:
6354 case CONST_VECTOR:
6355 case SYMBOL_REF:
6356 case LABEL_REF:
6357 case ADDR_VEC:
6358 case ADDR_DIFF_VEC:
6359 return 1;
6361 default:
6362 break;
6365 i = GET_RTX_LENGTH (code) - 1;
6366 fmt = GET_RTX_FORMAT (code);
6368 for (; i >= 0; i--)
6370 if (fmt[i] == 'e')
6372 rtx tem = XEXP (x, i);
6374 /* If we are about to do the last recursive call
6375 needed at this level, change it into iteration.
6376 This function is called enough to be worth it. */
6377 if (i == 0)
6379 x = tem;
6380 goto repeat;
6383 if (! store_ops_ok (tem, bb))
6384 return 0;
6386 else if (fmt[i] == 'E')
6388 int j;
6390 for (j = 0; j < XVECLEN (x, i); j++)
6392 if (! store_ops_ok (XVECEXP (x, i, j), bb))
6393 return 0;
6398 return 1;
6401 /* Determine whether insn is MEM store pattern that we will consider moving. */
6403 static void
6404 find_moveable_store (insn)
6405 rtx insn;
6407 struct ls_expr * ptr;
6408 rtx dest = PATTERN (insn);
6410 if (GET_CODE (dest) != SET
6411 || GET_CODE (SET_SRC (dest)) == ASM_OPERANDS)
6412 return;
6414 dest = SET_DEST (dest);
6416 if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
6417 || GET_MODE (dest) == BLKmode)
6418 return;
6420 if (GET_CODE (XEXP (dest, 0)) != SYMBOL_REF)
6421 return;
6423 if (rtx_varies_p (XEXP (dest, 0), 0))
6424 return;
6426 ptr = ldst_entry (dest);
6427 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6430 /* Perform store motion. Much like gcse, except we move expressions the
6431 other way by looking at the flowgraph in reverse. */
6433 static int
6434 compute_store_table ()
6436 int bb, ret;
6437 unsigned regno;
6438 rtx insn, pat;
6440 max_gcse_regno = max_reg_num ();
6442 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
6443 max_gcse_regno);
6444 sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
6445 pre_ldst_mems = 0;
6447 /* Find all the stores we care about. */
6448 for (bb = 0; bb < n_basic_blocks; bb++)
6450 regvec = & (reg_set_in_block[bb]);
6451 for (insn = BLOCK_END (bb);
6452 insn && insn != PREV_INSN (BLOCK_HEAD (bb));
6453 insn = PREV_INSN (insn))
6455 /* Ignore anything that is not a normal insn. */
6456 if (! INSN_P (insn))
6457 continue;
6459 if (GET_CODE (insn) == CALL_INSN)
6461 bool clobbers_all = false;
6462 #ifdef NON_SAVING_SETJMP
6463 if (NON_SAVING_SETJMP
6464 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
6465 clobbers_all = true;
6466 #endif
6468 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6469 if (clobbers_all
6470 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
6471 SET_BIT (reg_set_in_block[bb], regno);
6474 pat = PATTERN (insn);
6475 note_stores (pat, reg_set_info, NULL);
6477 /* Now that we've marked regs, look for stores. */
6478 if (GET_CODE (pat) == SET)
6479 find_moveable_store (insn);
6483 ret = enumerate_ldsts ();
6485 if (gcse_file)
6487 fprintf (gcse_file, "Store Motion Expressions.\n");
6488 print_ldst_list (gcse_file);
6491 return ret;
6494 /* Check to see if the load X is aliased with STORE_PATTERN. */
6496 static int
6497 load_kills_store (x, store_pattern)
6498 rtx x, store_pattern;
6500 if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p))
6501 return 1;
6502 return 0;
6505 /* Go through the entire insn X, looking for any loads which might alias
6506 STORE_PATTERN. Return 1 if found. */
6508 static int
6509 find_loads (x, store_pattern)
6510 rtx x, store_pattern;
6512 const char * fmt;
6513 int i, j;
6514 int ret = 0;
6516 if (!x)
6517 return 0;
6519 if (GET_CODE (x) == SET)
6520 x = SET_SRC (x);
6522 if (GET_CODE (x) == MEM)
6524 if (load_kills_store (x, store_pattern))
6525 return 1;
6528 /* Recursively process the insn. */
6529 fmt = GET_RTX_FORMAT (GET_CODE (x));
6531 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
6533 if (fmt[i] == 'e')
6534 ret |= find_loads (XEXP (x, i), store_pattern);
6535 else if (fmt[i] == 'E')
6536 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6537 ret |= find_loads (XVECEXP (x, i, j), store_pattern);
6539 return ret;
6542 /* Check if INSN kills the store pattern X (is aliased with it).
6543 Return 1 if it it does. */
6545 static int
6546 store_killed_in_insn (x, insn)
6547 rtx x, insn;
6549 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6550 return 0;
6552 if (GET_CODE (insn) == CALL_INSN)
6554 /* A normal or pure call might read from pattern,
6555 but a const call will not. */
6556 return ! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn);
6559 if (GET_CODE (PATTERN (insn)) == SET)
6561 rtx pat = PATTERN (insn);
6562 /* Check for memory stores to aliased objects. */
6563 if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x))
6564 /* pretend its a load and check for aliasing. */
6565 if (find_loads (SET_DEST (pat), x))
6566 return 1;
6567 return find_loads (SET_SRC (pat), x);
6569 else
6570 return find_loads (PATTERN (insn), x);
6573 /* Returns 1 if the expression X is loaded or clobbered on or after INSN
6574 within basic block BB. */
6576 static int
6577 store_killed_after (x, insn, bb)
6578 rtx x, insn;
6579 basic_block bb;
6581 rtx last = bb->end;
6583 if (insn == last)
6584 return 0;
6586 /* Check if the register operands of the store are OK in this block.
6587 Note that if registers are changed ANYWHERE in the block, we'll
6588 decide we can't move it, regardless of whether it changed above
6589 or below the store. This could be improved by checking the register
6590 operands while lookinng for aliasing in each insn. */
6591 if (!store_ops_ok (XEXP (x, 0), bb))
6592 return 1;
6594 for ( ; insn && insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
6595 if (store_killed_in_insn (x, insn))
6596 return 1;
6598 return 0;
6601 /* Returns 1 if the expression X is loaded or clobbered on or before INSN
6602 within basic block BB. */
6603 static int
6604 store_killed_before (x, insn, bb)
6605 rtx x, insn;
6606 basic_block bb;
6608 rtx first = bb->head;
6610 if (insn == first)
6611 return store_killed_in_insn (x, insn);
6613 /* Check if the register operands of the store are OK in this block.
6614 Note that if registers are changed ANYWHERE in the block, we'll
6615 decide we can't move it, regardless of whether it changed above
6616 or below the store. This could be improved by checking the register
6617 operands while lookinng for aliasing in each insn. */
6618 if (!store_ops_ok (XEXP (x, 0), bb))
6619 return 1;
6621 for ( ; insn && insn != PREV_INSN (first); insn = PREV_INSN (insn))
6622 if (store_killed_in_insn (x, insn))
6623 return 1;
6625 return 0;
6628 #define ANTIC_STORE_LIST(x) ((x)->loads)
6629 #define AVAIL_STORE_LIST(x) ((x)->stores)
6631 /* Given the table of available store insns at the end of blocks,
6632 determine which ones are not killed by aliasing, and generate
6633 the appropriate vectors for gen and killed. */
6634 static void
6635 build_store_vectors ()
6637 basic_block bb;
6638 int b;
6639 rtx insn, st;
6640 struct ls_expr * ptr;
6642 /* Build the gen_vector. This is any store in the table which is not killed
6643 by aliasing later in its block. */
6644 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6645 sbitmap_vector_zero (ae_gen, n_basic_blocks);
6647 st_antloc = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6648 sbitmap_vector_zero (st_antloc, n_basic_blocks);
6650 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6652 /* Put all the stores into either the antic list, or the avail list,
6653 or both. */
6654 rtx store_list = ptr->stores;
6655 ptr->stores = NULL_RTX;
6657 for (st = store_list; st != NULL; st = XEXP (st, 1))
6659 insn = XEXP (st, 0);
6660 bb = BLOCK_FOR_INSN (insn);
6662 if (!store_killed_after (ptr->pattern, insn, bb))
6664 /* If we've already seen an availale expression in this block,
6665 we can delete the one we saw already (It occurs earlier in
6666 the block), and replace it with this one). We'll copy the
6667 old SRC expression to an unused register in case there
6668 are any side effects. */
6669 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6671 /* Find previous store. */
6672 rtx st;
6673 for (st = AVAIL_STORE_LIST (ptr); st ; st = XEXP (st, 1))
6674 if (BLOCK_FOR_INSN (XEXP (st, 0)) == bb)
6675 break;
6676 if (st)
6678 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6679 if (gcse_file)
6680 fprintf (gcse_file, "Removing redundant store:\n");
6681 replace_store_insn (r, XEXP (st, 0), bb);
6682 XEXP (st, 0) = insn;
6683 continue;
6686 SET_BIT (ae_gen[bb->index], ptr->index);
6687 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6688 AVAIL_STORE_LIST (ptr));
6691 if (!store_killed_before (ptr->pattern, insn, bb))
6693 SET_BIT (st_antloc[BLOCK_NUM (insn)], ptr->index);
6694 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6695 ANTIC_STORE_LIST (ptr));
6699 /* Free the original list of store insns. */
6700 free_INSN_LIST_list (&store_list);
6703 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6704 sbitmap_vector_zero (ae_kill, n_basic_blocks);
6706 transp = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6707 sbitmap_vector_zero (transp, n_basic_blocks);
6709 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6710 for (b = 0; b < n_basic_blocks; b++)
6712 if (store_killed_after (ptr->pattern, BLOCK_HEAD (b), BASIC_BLOCK (b)))
6714 /* The anticipatable expression is not killed if it's gen'd. */
6716 We leave this check out for now. If we have a code sequence
6717 in a block which looks like:
6718 ST MEMa = x
6719 L y = MEMa
6720 ST MEMa = z
6721 We should flag this as having an ANTIC expression, NOT
6722 transparent, NOT killed, and AVAIL.
6723 Unfortunately, since we haven't re-written all loads to
6724 use the reaching reg, we'll end up doing an incorrect
6725 Load in the middle here if we push the store down. It happens in
6726 gcc.c-torture/execute/960311-1.c with -O3
6727 If we always kill it in this case, we'll sometimes do
6728 uneccessary work, but it shouldn't actually hurt anything.
6729 if (!TEST_BIT (ae_gen[b], ptr->index)). */
6730 SET_BIT (ae_kill[b], ptr->index);
6732 else
6733 SET_BIT (transp[b], ptr->index);
6736 /* Any block with no exits calls some non-returning function, so
6737 we better mark the store killed here, or we might not store to
6738 it at all. If we knew it was abort, we wouldn't have to store,
6739 but we don't know that for sure. */
6740 if (gcse_file)
6742 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
6743 print_ldst_list (gcse_file);
6744 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, n_basic_blocks);
6745 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, n_basic_blocks);
6746 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, n_basic_blocks);
6747 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, n_basic_blocks);
6751 /* Insert an instruction at the begining of a basic block, and update
6752 the BLOCK_HEAD if needed. */
6754 static void
6755 insert_insn_start_bb (insn, bb)
6756 rtx insn;
6757 basic_block bb;
6759 /* Insert at start of successor block. */
6760 rtx prev = PREV_INSN (bb->head);
6761 rtx before = bb->head;
6762 while (before != 0)
6764 if (GET_CODE (before) != CODE_LABEL
6765 && (GET_CODE (before) != NOTE
6766 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6767 break;
6768 prev = before;
6769 if (prev == bb->end)
6770 break;
6771 before = NEXT_INSN (before);
6774 insn = emit_insn_after (insn, prev);
6776 if (gcse_file)
6778 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6779 bb->index);
6780 print_inline_rtx (gcse_file, insn, 6);
6781 fprintf (gcse_file, "\n");
6785 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6786 the memory reference, and E is the edge to insert it on. Returns non-zero
6787 if an edge insertion was performed. */
6789 static int
6790 insert_store (expr, e)
6791 struct ls_expr * expr;
6792 edge e;
6794 rtx reg, insn;
6795 basic_block bb;
6796 edge tmp;
6798 /* We did all the deleted before this insert, so if we didn't delete a
6799 store, then we haven't set the reaching reg yet either. */
6800 if (expr->reaching_reg == NULL_RTX)
6801 return 0;
6803 reg = expr->reaching_reg;
6804 insn = gen_move_insn (expr->pattern, reg);
6806 /* If we are inserting this expression on ALL predecessor edges of a BB,
6807 insert it at the start of the BB, and reset the insert bits on the other
6808 edges so we don't try to insert it on the other edges. */
6809 bb = e->dest;
6810 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6812 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6813 if (index == EDGE_INDEX_NO_EDGE)
6814 abort ();
6815 if (! TEST_BIT (pre_insert_map[index], expr->index))
6816 break;
6819 /* If tmp is NULL, we found an insertion on every edge, blank the
6820 insertion vector for these edges, and insert at the start of the BB. */
6821 if (!tmp && bb != EXIT_BLOCK_PTR)
6823 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6825 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6826 RESET_BIT (pre_insert_map[index], expr->index);
6828 insert_insn_start_bb (insn, bb);
6829 return 0;
6832 /* We can't insert on this edge, so we'll insert at the head of the
6833 successors block. See Morgan, sec 10.5. */
6834 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
6836 insert_insn_start_bb (insn, bb);
6837 return 0;
6840 insert_insn_on_edge (insn, e);
6842 if (gcse_file)
6844 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6845 e->src->index, e->dest->index);
6846 print_inline_rtx (gcse_file, insn, 6);
6847 fprintf (gcse_file, "\n");
6850 return 1;
6853 /* This routine will replace a store with a SET to a specified register. */
6855 static void
6856 replace_store_insn (reg, del, bb)
6857 rtx reg, del;
6858 basic_block bb;
6860 rtx insn;
6862 insn = gen_move_insn (reg, SET_SRC (PATTERN (del)));
6863 insn = emit_insn_after (insn, del);
6865 if (gcse_file)
6867 fprintf (gcse_file,
6868 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6869 print_inline_rtx (gcse_file, del, 6);
6870 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6871 print_inline_rtx (gcse_file, insn, 6);
6872 fprintf (gcse_file, "\n");
6875 delete_insn (del);
6879 /* Delete a store, but copy the value that would have been stored into
6880 the reaching_reg for later storing. */
6882 static void
6883 delete_store (expr, bb)
6884 struct ls_expr * expr;
6885 basic_block bb;
6887 rtx reg, i, del;
6889 if (expr->reaching_reg == NULL_RTX)
6890 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6893 /* If there is more than 1 store, the earlier ones will be dead,
6894 but it doesn't hurt to replace them here. */
6895 reg = expr->reaching_reg;
6897 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6899 del = XEXP (i, 0);
6900 if (BLOCK_FOR_INSN (del) == bb)
6902 /* We know there is only one since we deleted redundant
6903 ones during the available computation. */
6904 replace_store_insn (reg, del, bb);
6905 break;
6910 /* Free memory used by store motion. */
6912 static void
6913 free_store_memory ()
6915 free_ldst_mems ();
6917 if (ae_gen)
6918 sbitmap_vector_free (ae_gen);
6919 if (ae_kill)
6920 sbitmap_vector_free (ae_kill);
6921 if (transp)
6922 sbitmap_vector_free (transp);
6923 if (st_antloc)
6924 sbitmap_vector_free (st_antloc);
6925 if (pre_insert_map)
6926 sbitmap_vector_free (pre_insert_map);
6927 if (pre_delete_map)
6928 sbitmap_vector_free (pre_delete_map);
6929 if (reg_set_in_block)
6930 sbitmap_vector_free (reg_set_in_block);
6932 ae_gen = ae_kill = transp = st_antloc = NULL;
6933 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6936 /* Perform store motion. Much like gcse, except we move expressions the
6937 other way by looking at the flowgraph in reverse. */
6939 static void
6940 store_motion ()
6942 int x;
6943 struct ls_expr * ptr;
6944 int update_flow = 0;
6946 if (gcse_file)
6948 fprintf (gcse_file, "before store motion\n");
6949 print_rtl (gcse_file, get_insns ());
6953 init_alias_analysis ();
6955 /* Find all the stores that are live to the end of their block. */
6956 num_stores = compute_store_table ();
6957 if (num_stores == 0)
6959 sbitmap_vector_free (reg_set_in_block);
6960 end_alias_analysis ();
6961 return;
6964 /* Now compute whats actually available to move. */
6965 add_noreturn_fake_exit_edges ();
6966 build_store_vectors ();
6968 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6969 st_antloc, ae_kill, &pre_insert_map,
6970 &pre_delete_map);
6972 /* Now we want to insert the new stores which are going to be needed. */
6973 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6975 for (x = 0; x < n_basic_blocks; x++)
6976 if (TEST_BIT (pre_delete_map[x], ptr->index))
6977 delete_store (ptr, BASIC_BLOCK (x));
6979 for (x = 0; x < NUM_EDGES (edge_list); x++)
6980 if (TEST_BIT (pre_insert_map[x], ptr->index))
6981 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6984 if (update_flow)
6985 commit_edge_insertions ();
6987 free_store_memory ();
6988 free_edge_list (edge_list);
6989 remove_fake_edges ();
6990 end_alias_analysis ();