PR target/64876
[official-gcc.git] / gcc / graphite-scop-detection.c
blob4512fe7abf053afe3287e21bb69bb3eee748d50f
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
24 #ifdef HAVE_isl
25 #include <isl/set.h>
26 #include <isl/map.h>
27 #include <isl/union_map.h>
28 #endif
30 #include "system.h"
31 #include "coretypes.h"
32 #include "hash-set.h"
33 #include "machmode.h"
34 #include "vec.h"
35 #include "double-int.h"
36 #include "input.h"
37 #include "alias.h"
38 #include "symtab.h"
39 #include "options.h"
40 #include "wide-int.h"
41 #include "inchash.h"
42 #include "tree.h"
43 #include "fold-const.h"
44 #include "predict.h"
45 #include "tm.h"
46 #include "hard-reg-set.h"
47 #include "input.h"
48 #include "function.h"
49 #include "dominance.h"
50 #include "cfg.h"
51 #include "basic-block.h"
52 #include "tree-ssa-alias.h"
53 #include "internal-fn.h"
54 #include "gimple-expr.h"
55 #include "is-a.h"
56 #include "gimple.h"
57 #include "gimple-iterator.h"
58 #include "gimple-ssa.h"
59 #include "tree-phinodes.h"
60 #include "ssa-iterators.h"
61 #include "tree-ssa-loop-manip.h"
62 #include "tree-ssa-loop-niter.h"
63 #include "tree-ssa-loop.h"
64 #include "tree-into-ssa.h"
65 #include "tree-ssa.h"
66 #include "cfgloop.h"
67 #include "tree-chrec.h"
68 #include "tree-data-ref.h"
69 #include "tree-scalar-evolution.h"
70 #include "tree-pass.h"
71 #include "sese.h"
72 #include "tree-ssa-propagate.h"
73 #include "cp/cp-tree.h"
75 #ifdef HAVE_isl
76 #include "graphite-poly.h"
77 #include "graphite-scop-detection.h"
79 /* Forward declarations. */
80 static void make_close_phi_nodes_unique (basic_block);
82 /* The type of the analyzed basic block. */
84 typedef enum gbb_type {
85 GBB_UNKNOWN,
86 GBB_LOOP_SING_EXIT_HEADER,
87 GBB_LOOP_MULT_EXIT_HEADER,
88 GBB_LOOP_EXIT,
89 GBB_COND_HEADER,
90 GBB_SIMPLE,
91 GBB_LAST
92 } gbb_type;
94 /* Detect the type of BB. Loop headers are only marked, if they are
95 new. This means their loop_father is different to LAST_LOOP.
96 Otherwise they are treated like any other bb and their type can be
97 any other type. */
99 static gbb_type
100 get_bb_type (basic_block bb, struct loop *last_loop)
102 vec<basic_block> dom;
103 int nb_dom;
104 struct loop *loop = bb->loop_father;
106 /* Check, if we entry into a new loop. */
107 if (loop != last_loop)
109 if (single_exit (loop) != NULL)
110 return GBB_LOOP_SING_EXIT_HEADER;
111 else if (loop->num != 0)
112 return GBB_LOOP_MULT_EXIT_HEADER;
113 else
114 return GBB_COND_HEADER;
117 dom = get_dominated_by (CDI_DOMINATORS, bb);
118 nb_dom = dom.length ();
119 dom.release ();
121 if (nb_dom == 0)
122 return GBB_LAST;
124 if (nb_dom == 1 && single_succ_p (bb))
125 return GBB_SIMPLE;
127 return GBB_COND_HEADER;
130 /* A SCoP detection region, defined using bbs as borders.
132 All control flow touching this region, comes in passing basic_block
133 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
134 edges for the borders we are able to represent also regions that do
135 not have a single entry or exit edge.
137 But as they have a single entry basic_block and a single exit
138 basic_block, we are able to generate for every sd_region a single
139 entry and exit edge.
143 3 <- entry
146 / \ This region contains: {3, 4, 5, 6, 7, 8}
151 9 <- exit */
154 typedef struct sd_region_p
156 /* The entry bb dominates all bbs in the sd_region. It is part of
157 the region. */
158 basic_block entry;
160 /* The exit bb postdominates all bbs in the sd_region, but is not
161 part of the region. */
162 basic_block exit;
163 } sd_region;
167 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
169 static void
170 move_sd_regions (vec<sd_region> *source, vec<sd_region> *target)
172 sd_region *s;
173 int i;
175 FOR_EACH_VEC_ELT (*source, i, s)
176 target->safe_push (*s);
178 source->release ();
181 /* Something like "n * m" is not allowed. */
183 static bool
184 graphite_can_represent_init (tree e)
186 switch (TREE_CODE (e))
188 case POLYNOMIAL_CHREC:
189 return graphite_can_represent_init (CHREC_LEFT (e))
190 && graphite_can_represent_init (CHREC_RIGHT (e));
192 case MULT_EXPR:
193 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
194 return graphite_can_represent_init (TREE_OPERAND (e, 0))
195 && tree_fits_shwi_p (TREE_OPERAND (e, 1));
196 else
197 return graphite_can_represent_init (TREE_OPERAND (e, 1))
198 && tree_fits_shwi_p (TREE_OPERAND (e, 0));
200 case PLUS_EXPR:
201 case POINTER_PLUS_EXPR:
202 case MINUS_EXPR:
203 return graphite_can_represent_init (TREE_OPERAND (e, 0))
204 && graphite_can_represent_init (TREE_OPERAND (e, 1));
206 case NEGATE_EXPR:
207 case BIT_NOT_EXPR:
208 CASE_CONVERT:
209 case NON_LVALUE_EXPR:
210 return graphite_can_represent_init (TREE_OPERAND (e, 0));
212 default:
213 break;
216 return true;
219 /* Return true when SCEV can be represented in the polyhedral model.
221 An expression can be represented, if it can be expressed as an
222 affine expression. For loops (i, j) and parameters (m, n) all
223 affine expressions are of the form:
225 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
227 1 i + 20 j + (-2) m + 25
229 Something like "i * n" or "n * m" is not allowed. */
231 static bool
232 graphite_can_represent_scev (tree scev)
234 if (chrec_contains_undetermined (scev))
235 return false;
237 /* We disable the handling of pointer types, because it’s currently not
238 supported by Graphite with the ISL AST generator. SSA_NAME nodes are
239 the only nodes, which are disabled in case they are pointers to object
240 types, but this can be changed. */
242 if (TYPE_PTROB_P (TREE_TYPE (scev)) && TREE_CODE (scev) == SSA_NAME)
243 return false;
245 switch (TREE_CODE (scev))
247 case NEGATE_EXPR:
248 case BIT_NOT_EXPR:
249 CASE_CONVERT:
250 case NON_LVALUE_EXPR:
251 return graphite_can_represent_scev (TREE_OPERAND (scev, 0));
253 case PLUS_EXPR:
254 case POINTER_PLUS_EXPR:
255 case MINUS_EXPR:
256 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
257 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
259 case MULT_EXPR:
260 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
261 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
262 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
263 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
264 && graphite_can_represent_init (scev)
265 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
266 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
268 case POLYNOMIAL_CHREC:
269 /* Check for constant strides. With a non constant stride of
270 'n' we would have a value of 'iv * n'. Also check that the
271 initial value can represented: for example 'n * m' cannot be
272 represented. */
273 if (!evolution_function_right_is_integer_cst (scev)
274 || !graphite_can_represent_init (scev))
275 return false;
276 return graphite_can_represent_scev (CHREC_LEFT (scev));
278 default:
279 break;
282 /* Only affine functions can be represented. */
283 if (tree_contains_chrecs (scev, NULL)
284 || !scev_is_linear_expression (scev))
285 return false;
287 return true;
291 /* Return true when EXPR can be represented in the polyhedral model.
293 This means an expression can be represented, if it is linear with
294 respect to the loops and the strides are non parametric.
295 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
296 entry of the region we analyse. */
298 static bool
299 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
300 tree expr)
302 tree scev = analyze_scalar_evolution (loop, expr);
304 scev = instantiate_scev (scop_entry, loop, scev);
306 return graphite_can_represent_scev (scev);
309 /* Return true if the data references of STMT can be represented by
310 Graphite. */
312 static bool
313 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
314 gimple stmt)
316 data_reference_p dr;
317 unsigned i;
318 int j;
319 bool res = true;
320 vec<data_reference_p> drs = vNULL;
321 loop_p outer;
323 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
325 graphite_find_data_references_in_stmt (outer,
326 loop_containing_stmt (stmt),
327 stmt, &drs);
329 FOR_EACH_VEC_ELT (drs, j, dr)
330 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
331 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
333 res = false;
334 goto done;
337 free_data_refs (drs);
338 drs.create (0);
341 done:
342 free_data_refs (drs);
343 return res;
346 /* Return true only when STMT is simple enough for being handled by
347 Graphite. This depends on SCOP_ENTRY, as the parameters are
348 initialized relatively to this basic block, the linear functions
349 are initialized to OUTERMOST_LOOP and BB is the place where we try
350 to evaluate the STMT. */
352 static bool
353 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
354 gimple stmt, basic_block bb)
356 loop_p loop = bb->loop_father;
358 gcc_assert (scop_entry);
360 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
361 Calls have side-effects, except those to const or pure
362 functions. */
363 if (gimple_has_volatile_ops (stmt)
364 || (gimple_code (stmt) == GIMPLE_CALL
365 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
366 || (gimple_code (stmt) == GIMPLE_ASM))
367 return false;
369 if (is_gimple_debug (stmt))
370 return true;
372 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
373 return false;
375 switch (gimple_code (stmt))
377 case GIMPLE_RETURN:
378 case GIMPLE_LABEL:
379 return true;
381 case GIMPLE_COND:
383 /* We can handle all binary comparisons. Inequalities are
384 also supported as they can be represented with union of
385 polyhedra. */
386 enum tree_code code = gimple_cond_code (stmt);
387 if (!(code == LT_EXPR
388 || code == GT_EXPR
389 || code == LE_EXPR
390 || code == GE_EXPR
391 || code == EQ_EXPR
392 || code == NE_EXPR))
393 return false;
395 for (unsigned i = 0; i < 2; ++i)
397 tree op = gimple_op (stmt, i);
398 if (!graphite_can_represent_expr (scop_entry, loop, op)
399 /* We can not handle REAL_TYPE. Failed for pr39260. */
400 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
401 return false;
404 return true;
407 case GIMPLE_ASSIGN:
408 case GIMPLE_CALL:
409 return true;
411 default:
412 /* These nodes cut a new scope. */
413 return false;
416 return false;
419 /* Returns the statement of BB that contains a harmful operation: that
420 can be a function call with side effects, the induction variables
421 are not linear with respect to SCOP_ENTRY, etc. The current open
422 scop should end before this statement. The evaluation is limited using
423 OUTERMOST_LOOP as outermost loop that may change. */
425 static gimple
426 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
428 gimple_stmt_iterator gsi;
430 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
431 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
432 return gsi_stmt (gsi);
434 return NULL;
437 /* Return true if LOOP can be represented in the polyhedral
438 representation. This is evaluated taking SCOP_ENTRY and
439 OUTERMOST_LOOP in mind. */
441 static bool
442 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
444 tree niter;
445 struct tree_niter_desc niter_desc;
447 /* FIXME: For the moment, graphite cannot be used on loops that
448 iterate using induction variables that wrap. */
450 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
451 && niter_desc.control.no_overflow
452 && (niter = number_of_latch_executions (loop))
453 && !chrec_contains_undetermined (niter)
454 && graphite_can_represent_expr (scop_entry, loop, niter);
457 /* Store information needed by scopdet_* functions. */
459 struct scopdet_info
461 /* Exit of the open scop would stop if the current BB is harmful. */
462 basic_block exit;
464 /* Where the next scop would start if the current BB is harmful. */
465 basic_block next;
467 /* The bb or one of its children contains open loop exits. That means
468 loop exit nodes that are not surrounded by a loop dominated by bb. */
469 bool exits;
471 /* The bb or one of its children contains only structures we can handle. */
472 bool difficult;
475 static struct scopdet_info build_scops_1 (basic_block, loop_p,
476 vec<sd_region> *, loop_p);
478 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
479 to SCOPS. TYPE is the gbb_type of BB. */
481 static struct scopdet_info
482 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
483 vec<sd_region> *scops, gbb_type type)
485 loop_p loop = bb->loop_father;
486 struct scopdet_info result;
487 gimple stmt;
489 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
490 basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
491 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
492 result.difficult = (stmt != NULL);
493 result.exit = NULL;
495 switch (type)
497 case GBB_LAST:
498 result.next = NULL;
499 result.exits = false;
501 /* Mark bbs terminating a SESE region difficult, if they start
502 a condition or if the block it exits to cannot be split
503 with make_forwarder_block. */
504 if (!single_succ_p (bb)
505 || bb_has_abnormal_pred (single_succ (bb)))
506 result.difficult = true;
507 else
508 result.exit = single_succ (bb);
510 break;
512 case GBB_SIMPLE:
513 result.next = single_succ (bb);
514 result.exits = false;
515 result.exit = single_succ (bb);
516 break;
518 case GBB_LOOP_SING_EXIT_HEADER:
520 auto_vec<sd_region, 3> regions;
521 struct scopdet_info sinfo;
522 edge exit_e = single_exit (loop);
524 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
526 if (!graphite_can_represent_loop (entry_block, loop))
527 result.difficult = true;
529 result.difficult |= sinfo.difficult;
531 /* Try again with another loop level. */
532 if (result.difficult
533 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
535 outermost_loop = loop;
537 regions.release ();
538 regions.create (3);
540 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
542 result = sinfo;
543 result.difficult = true;
545 if (sinfo.difficult)
546 move_sd_regions (&regions, scops);
547 else
549 sd_region open_scop;
550 open_scop.entry = bb;
551 open_scop.exit = exit_e->dest;
552 scops->safe_push (open_scop);
553 regions.release ();
556 else
558 result.exit = exit_e->dest;
559 result.next = exit_e->dest;
561 /* If we do not dominate result.next, remove it. It's either
562 the exit block, or another bb dominates it and will
563 call the scop detection for this bb. */
564 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
565 result.next = NULL;
567 if (exit_e->src->loop_father != loop)
568 result.next = NULL;
570 result.exits = false;
572 if (result.difficult)
573 move_sd_regions (&regions, scops);
574 else
575 regions.release ();
578 break;
581 case GBB_LOOP_MULT_EXIT_HEADER:
583 /* XXX: For now we just do not join loops with multiple exits. If the
584 exits lead to the same bb it may be possible to join the loop. */
585 auto_vec<sd_region, 3> regions;
586 vec<edge> exits = get_loop_exit_edges (loop);
587 edge e;
588 int i;
589 build_scops_1 (bb, loop, &regions, loop);
591 /* Scan the code dominated by this loop. This means all bbs, that are
592 are dominated by a bb in this loop, but are not part of this loop.
594 The easiest case:
595 - The loop exit destination is dominated by the exit sources.
597 TODO: We miss here the more complex cases:
598 - The exit destinations are dominated by another bb inside
599 the loop.
600 - The loop dominates bbs, that are not exit destinations. */
601 FOR_EACH_VEC_ELT (exits, i, e)
602 if (e->src->loop_father == loop
603 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
605 if (loop_outer (outermost_loop))
606 outermost_loop = loop_outer (outermost_loop);
608 /* Pass loop_outer to recognize e->dest as loop header in
609 build_scops_1. */
610 if (e->dest->loop_father->header == e->dest)
611 build_scops_1 (e->dest, outermost_loop, &regions,
612 loop_outer (e->dest->loop_father));
613 else
614 build_scops_1 (e->dest, outermost_loop, &regions,
615 e->dest->loop_father);
618 result.next = NULL;
619 result.exit = NULL;
620 result.difficult = true;
621 result.exits = false;
622 move_sd_regions (&regions, scops);
623 exits.release ();
624 break;
626 case GBB_COND_HEADER:
628 auto_vec<sd_region, 3> regions;
629 struct scopdet_info sinfo;
630 vec<basic_block> dominated;
631 int i;
632 basic_block dom_bb;
633 basic_block last_exit = NULL;
634 edge e;
635 result.exits = false;
637 /* First check the successors of BB, and check if it is
638 possible to join the different branches. */
639 FOR_EACH_VEC_SAFE_ELT (bb->succs, i, e)
641 /* Ignore loop exits. They will be handled after the loop
642 body. */
643 if (loop_exits_to_bb_p (loop, e->dest))
645 result.exits = true;
646 continue;
649 /* Do not follow edges that lead to the end of the
650 conditions block. For example, in
653 | /|\
654 | 1 2 |
655 | | | |
656 | 3 4 |
657 | \|/
660 the edge from 0 => 6. Only check if all paths lead to
661 the same node 6. */
663 if (!single_pred_p (e->dest))
665 /* Check, if edge leads directly to the end of this
666 condition. */
667 if (!last_exit)
668 last_exit = e->dest;
670 if (e->dest != last_exit)
671 result.difficult = true;
673 continue;
676 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
678 result.difficult = true;
679 continue;
682 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
684 result.exits |= sinfo.exits;
685 result.difficult |= sinfo.difficult;
687 /* Checks, if all branches end at the same point.
688 If that is true, the condition stays joinable.
689 Have a look at the example above. */
690 if (sinfo.exit)
692 if (!last_exit)
693 last_exit = sinfo.exit;
695 if (sinfo.exit != last_exit)
696 result.difficult = true;
698 else
699 result.difficult = true;
702 if (!last_exit)
703 result.difficult = true;
705 /* Join the branches of the condition if possible. */
706 if (!result.exits && !result.difficult)
708 /* Only return a next pointer if we dominate this pointer.
709 Otherwise it will be handled by the bb dominating it. */
710 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
711 && last_exit != bb)
712 result.next = last_exit;
713 else
714 result.next = NULL;
716 result.exit = last_exit;
718 regions.release ();
719 break;
722 /* Scan remaining bbs dominated by BB. */
723 dominated = get_dominated_by (CDI_DOMINATORS, bb);
725 FOR_EACH_VEC_ELT (dominated, i, dom_bb)
727 /* Ignore loop exits: they will be handled after the loop body. */
728 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
729 < loop_depth (loop))
731 result.exits = true;
732 continue;
735 /* Ignore the bbs processed above. */
736 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
737 continue;
739 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
740 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
741 loop_outer (loop));
742 else
743 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
745 result.exits |= sinfo.exits;
746 result.difficult = true;
747 result.exit = NULL;
750 dominated.release ();
752 result.next = NULL;
753 move_sd_regions (&regions, scops);
755 break;
758 default:
759 gcc_unreachable ();
762 return result;
765 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
766 SCOPS. The analyse if a sd_region can be handled is based on the value
767 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
768 is the loop in which CURRENT is handled.
770 TODO: These functions got a little bit big. They definitely should be cleaned
771 up. */
773 static struct scopdet_info
774 build_scops_1 (basic_block current, loop_p outermost_loop,
775 vec<sd_region> *scops, loop_p loop)
777 bool in_scop = false;
778 sd_region open_scop;
779 struct scopdet_info sinfo;
781 /* Initialize result. */
782 struct scopdet_info result;
783 result.exits = false;
784 result.difficult = false;
785 result.next = NULL;
786 result.exit = NULL;
787 open_scop.entry = NULL;
788 open_scop.exit = NULL;
789 sinfo.exit = NULL;
791 /* Loop over the dominance tree. If we meet a difficult bb, close
792 the current SCoP. Loop and condition header start a new layer,
793 and can only be added if all bbs in deeper layers are simple. */
794 while (current != NULL)
796 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
797 get_bb_type (current, loop));
799 if (!in_scop && !(sinfo.exits || sinfo.difficult))
801 open_scop.entry = current;
802 open_scop.exit = NULL;
803 in_scop = true;
805 else if (in_scop && (sinfo.exits || sinfo.difficult))
807 open_scop.exit = current;
808 scops->safe_push (open_scop);
809 in_scop = false;
812 result.difficult |= sinfo.difficult;
813 result.exits |= sinfo.exits;
815 current = sinfo.next;
818 /* Try to close open_scop, if we are still in an open SCoP. */
819 if (in_scop)
821 open_scop.exit = sinfo.exit;
822 gcc_assert (open_scop.exit);
823 scops->safe_push (open_scop);
826 result.exit = sinfo.exit;
827 return result;
830 /* Checks if a bb is contained in REGION. */
832 static bool
833 bb_in_sd_region (basic_block bb, sd_region *region)
835 return bb_in_region (bb, region->entry, region->exit);
838 /* Returns the single entry edge of REGION, if it does not exits NULL. */
840 static edge
841 find_single_entry_edge (sd_region *region)
843 edge e;
844 edge_iterator ei;
845 edge entry = NULL;
847 FOR_EACH_EDGE (e, ei, region->entry->preds)
848 if (!bb_in_sd_region (e->src, region))
850 if (entry)
852 entry = NULL;
853 break;
856 else
857 entry = e;
860 return entry;
863 /* Returns the single exit edge of REGION, if it does not exits NULL. */
865 static edge
866 find_single_exit_edge (sd_region *region)
868 edge e;
869 edge_iterator ei;
870 edge exit = NULL;
872 FOR_EACH_EDGE (e, ei, region->exit->preds)
873 if (bb_in_sd_region (e->src, region))
875 if (exit)
877 exit = NULL;
878 break;
881 else
882 exit = e;
885 return exit;
888 /* Create a single entry edge for REGION. */
890 static void
891 create_single_entry_edge (sd_region *region)
893 if (find_single_entry_edge (region))
894 return;
896 /* There are multiple predecessors for bb_3
898 | 1 2
899 | | /
900 | |/
901 | 3 <- entry
902 | |\
903 | | |
904 | 4 ^
905 | | |
906 | |/
909 There are two edges (1->3, 2->3), that point from outside into the region,
910 and another one (5->3), a loop latch, lead to bb_3.
912 We split bb_3.
914 | 1 2
915 | | /
916 | |/
917 |3.0
918 | |\ (3.0 -> 3.1) = single entry edge
919 |3.1 | <- entry
920 | | |
921 | | |
922 | 4 ^
923 | | |
924 | |/
927 If the loop is part of the SCoP, we have to redirect the loop latches.
929 | 1 2
930 | | /
931 | |/
932 |3.0
933 | | (3.0 -> 3.1) = entry edge
934 |3.1 <- entry
935 | |\
936 | | |
937 | 4 ^
938 | | |
939 | |/
940 | 5 */
942 if (region->entry->loop_father->header != region->entry
943 || dominated_by_p (CDI_DOMINATORS,
944 loop_latch_edge (region->entry->loop_father)->src,
945 region->exit))
947 edge forwarder = split_block_after_labels (region->entry);
948 region->entry = forwarder->dest;
950 else
951 /* This case is never executed, as the loop headers seem always to have a
952 single edge pointing from outside into the loop. */
953 gcc_unreachable ();
955 gcc_checking_assert (find_single_entry_edge (region));
958 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
960 static bool
961 sd_region_without_exit (edge e)
963 sd_region *r = (sd_region *) e->aux;
965 if (r)
966 return r->exit == NULL;
967 else
968 return false;
971 /* Create a single exit edge for REGION. */
973 static void
974 create_single_exit_edge (sd_region *region)
976 edge e;
977 edge_iterator ei;
978 edge forwarder = NULL;
979 basic_block exit;
981 /* We create a forwarder bb (5) for all edges leaving this region
982 (3->5, 4->5). All other edges leading to the same bb, are moved
983 to a new bb (6). If these edges where part of another region (2->5)
984 we update the region->exit pointer, of this region.
986 To identify which edge belongs to which region we depend on the e->aux
987 pointer in every edge. It points to the region of the edge or to NULL,
988 if the edge is not part of any region.
990 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
991 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
992 5 <- exit
994 changes to
996 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
997 | | \/ 3->5 no region, 4->5 no region,
998 | | 5
999 \| / 5->6 region->exit = 6
1002 Now there is only a single exit edge (5->6). */
1003 exit = region->exit;
1004 region->exit = NULL;
1005 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
1007 /* Unmark the edges, that are no longer exit edges. */
1008 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
1009 if (e->aux)
1010 e->aux = NULL;
1012 /* Mark the new exit edge. */
1013 single_succ_edge (forwarder->src)->aux = region;
1015 /* Update the exit bb of all regions, where exit edges lead to
1016 forwarder->dest. */
1017 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
1018 if (e->aux)
1019 ((sd_region *) e->aux)->exit = forwarder->dest;
1021 gcc_checking_assert (find_single_exit_edge (region));
1024 /* Unmark the exit edges of all REGIONS.
1025 See comment in "create_single_exit_edge". */
1027 static void
1028 unmark_exit_edges (vec<sd_region> regions)
1030 int i;
1031 sd_region *s;
1032 edge e;
1033 edge_iterator ei;
1035 FOR_EACH_VEC_ELT (regions, i, s)
1036 FOR_EACH_EDGE (e, ei, s->exit->preds)
1037 e->aux = NULL;
1041 /* Mark the exit edges of all REGIONS.
1042 See comment in "create_single_exit_edge". */
1044 static void
1045 mark_exit_edges (vec<sd_region> regions)
1047 int i;
1048 sd_region *s;
1049 edge e;
1050 edge_iterator ei;
1052 FOR_EACH_VEC_ELT (regions, i, s)
1053 FOR_EACH_EDGE (e, ei, s->exit->preds)
1054 if (bb_in_sd_region (e->src, s))
1055 e->aux = s;
1058 /* Create for all scop regions a single entry and a single exit edge. */
1060 static void
1061 create_sese_edges (vec<sd_region> regions)
1063 int i;
1064 sd_region *s;
1066 FOR_EACH_VEC_ELT (regions, i, s)
1067 create_single_entry_edge (s);
1069 mark_exit_edges (regions);
1071 FOR_EACH_VEC_ELT (regions, i, s)
1072 /* Don't handle multiple edges exiting the function. */
1073 if (!find_single_exit_edge (s)
1074 && s->exit != EXIT_BLOCK_PTR_FOR_FN (cfun))
1075 create_single_exit_edge (s);
1077 unmark_exit_edges (regions);
1079 calculate_dominance_info (CDI_DOMINATORS);
1080 fix_loop_structure (NULL);
1082 #ifdef ENABLE_CHECKING
1083 verify_loop_structure ();
1084 verify_ssa (false, true);
1085 #endif
1088 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1090 static void
1091 build_graphite_scops (vec<sd_region> regions,
1092 vec<scop_p> *scops)
1094 int i;
1095 sd_region *s;
1097 FOR_EACH_VEC_ELT (regions, i, s)
1099 edge entry = find_single_entry_edge (s);
1100 edge exit = find_single_exit_edge (s);
1101 scop_p scop;
1103 if (!exit)
1104 continue;
1106 scop = new_scop (new_sese (entry, exit));
1107 scops->safe_push (scop);
1109 /* Are there overlapping SCoPs? */
1110 #ifdef ENABLE_CHECKING
1112 int j;
1113 sd_region *s2;
1115 FOR_EACH_VEC_ELT (regions, j, s2)
1116 if (s != s2)
1117 gcc_assert (!bb_in_sd_region (s->entry, s2));
1119 #endif
1123 /* Returns true when BB contains only close phi nodes. */
1125 static bool
1126 contains_only_close_phi_nodes (basic_block bb)
1128 gimple_stmt_iterator gsi;
1130 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1131 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1132 return false;
1134 return true;
1137 /* Print statistics for SCOP to FILE. */
1139 static void
1140 print_graphite_scop_statistics (FILE* file, scop_p scop)
1142 long n_bbs = 0;
1143 long n_loops = 0;
1144 long n_stmts = 0;
1145 long n_conditions = 0;
1146 long n_p_bbs = 0;
1147 long n_p_loops = 0;
1148 long n_p_stmts = 0;
1149 long n_p_conditions = 0;
1151 basic_block bb;
1153 FOR_ALL_BB_FN (bb, cfun)
1155 gimple_stmt_iterator psi;
1156 loop_p loop = bb->loop_father;
1158 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1159 continue;
1161 n_bbs++;
1162 n_p_bbs += bb->count;
1164 if (EDGE_COUNT (bb->succs) > 1)
1166 n_conditions++;
1167 n_p_conditions += bb->count;
1170 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1172 n_stmts++;
1173 n_p_stmts += bb->count;
1176 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1178 n_loops++;
1179 n_p_loops += bb->count;
1184 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1185 fprintf (file, "BBS:%ld, ", n_bbs);
1186 fprintf (file, "LOOPS:%ld, ", n_loops);
1187 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1188 fprintf (file, "STMTS:%ld)\n", n_stmts);
1189 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1190 fprintf (file, "BBS:%ld, ", n_p_bbs);
1191 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1192 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1193 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1196 /* Print statistics for SCOPS to FILE. */
1198 static void
1199 print_graphite_statistics (FILE* file, vec<scop_p> scops)
1201 int i;
1202 scop_p scop;
1204 FOR_EACH_VEC_ELT (scops, i, scop)
1205 print_graphite_scop_statistics (file, scop);
1208 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1210 Example:
1212 for (i |
1214 for (j | SCoP 1
1215 for (k |
1218 * SCoP frontier, as this line is not surrounded by any loop. *
1220 for (l | SCoP 2
1222 This is necessary as scalar evolution and parameter detection need a
1223 outermost loop to initialize parameters correctly.
1225 TODO: FIX scalar evolution and parameter detection to allow more flexible
1226 SCoP frontiers. */
1228 static void
1229 limit_scops (vec<scop_p> *scops)
1231 auto_vec<sd_region, 3> regions;
1233 int i;
1234 scop_p scop;
1236 FOR_EACH_VEC_ELT (*scops, i, scop)
1238 int j;
1239 loop_p loop;
1240 sese region = SCOP_REGION (scop);
1241 build_sese_loop_nests (region);
1243 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), j, loop)
1244 if (!loop_in_sese_p (loop_outer (loop), region)
1245 && single_exit (loop))
1247 sd_region open_scop;
1248 open_scop.entry = loop->header;
1249 open_scop.exit = single_exit (loop)->dest;
1251 /* This is a hack on top of the limit_scops hack. The
1252 limit_scops hack should disappear all together. */
1253 if (single_succ_p (open_scop.exit)
1254 && contains_only_close_phi_nodes (open_scop.exit))
1255 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1257 regions.safe_push (open_scop);
1261 free_scops (*scops);
1262 scops->create (3);
1264 create_sese_edges (regions);
1265 build_graphite_scops (regions, scops);
1268 /* Returns true when P1 and P2 are close phis with the same
1269 argument. */
1271 static inline bool
1272 same_close_phi_node (gphi *p1, gphi *p2)
1274 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1275 gimple_phi_arg_def (p2, 0), 0);
1278 /* Remove the close phi node at GSI and replace its rhs with the rhs
1279 of PHI. */
1281 static void
1282 remove_duplicate_close_phi (gphi *phi, gphi_iterator *gsi)
1284 gimple use_stmt;
1285 use_operand_p use_p;
1286 imm_use_iterator imm_iter;
1287 tree res = gimple_phi_result (phi);
1288 tree def = gimple_phi_result (gsi->phi ());
1290 gcc_assert (same_close_phi_node (phi, gsi->phi ()));
1292 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1294 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1295 SET_USE (use_p, res);
1297 update_stmt (use_stmt);
1299 /* It is possible that we just created a duplicate close-phi
1300 for an already-processed containing loop. Check for this
1301 case and clean it up. */
1302 if (gimple_code (use_stmt) == GIMPLE_PHI
1303 && gimple_phi_num_args (use_stmt) == 1)
1304 make_close_phi_nodes_unique (gimple_bb (use_stmt));
1307 remove_phi_node (gsi, true);
1310 /* Removes all the close phi duplicates from BB. */
1312 static void
1313 make_close_phi_nodes_unique (basic_block bb)
1315 gphi_iterator psi;
1317 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1319 gphi_iterator gsi = psi;
1320 gphi *phi = psi.phi ();
1322 /* At this point, PHI should be a close phi in normal form. */
1323 gcc_assert (gimple_phi_num_args (phi) == 1);
1325 /* Iterate over the next phis and remove duplicates. */
1326 gsi_next (&gsi);
1327 while (!gsi_end_p (gsi))
1328 if (same_close_phi_node (phi, gsi.phi ()))
1329 remove_duplicate_close_phi (phi, &gsi);
1330 else
1331 gsi_next (&gsi);
1335 /* Transforms LOOP to the canonical loop closed SSA form. */
1337 static void
1338 canonicalize_loop_closed_ssa (loop_p loop)
1340 edge e = single_exit (loop);
1341 basic_block bb;
1343 if (!e || e->flags & EDGE_ABNORMAL)
1344 return;
1346 bb = e->dest;
1348 if (single_pred_p (bb))
1350 e = split_block_after_labels (bb);
1351 make_close_phi_nodes_unique (e->src);
1353 else
1355 gphi_iterator psi;
1356 basic_block close = split_edge (e);
1358 e = single_succ_edge (close);
1360 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1362 gphi *phi = psi.phi ();
1363 unsigned i;
1365 for (i = 0; i < gimple_phi_num_args (phi); i++)
1366 if (gimple_phi_arg_edge (phi, i) == e)
1368 tree res, arg = gimple_phi_arg_def (phi, i);
1369 use_operand_p use_p;
1370 gphi *close_phi;
1372 if (TREE_CODE (arg) != SSA_NAME)
1373 continue;
1375 close_phi = create_phi_node (NULL_TREE, close);
1376 res = create_new_def_for (arg, close_phi,
1377 gimple_phi_result_ptr (close_phi));
1378 add_phi_arg (close_phi, arg,
1379 gimple_phi_arg_edge (close_phi, 0),
1380 UNKNOWN_LOCATION);
1381 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1382 replace_exp (use_p, res);
1383 update_stmt (phi);
1387 make_close_phi_nodes_unique (close);
1390 /* The code above does not properly handle changes in the post dominance
1391 information (yet). */
1392 free_dominance_info (CDI_POST_DOMINATORS);
1395 /* Converts the current loop closed SSA form to a canonical form
1396 expected by the Graphite code generation.
1398 The loop closed SSA form has the following invariant: a variable
1399 defined in a loop that is used outside the loop appears only in the
1400 phi nodes in the destination of the loop exit. These phi nodes are
1401 called close phi nodes.
1403 The canonical loop closed SSA form contains the extra invariants:
1405 - when the loop contains only one exit, the close phi nodes contain
1406 only one argument. That implies that the basic block that contains
1407 the close phi nodes has only one predecessor, that is a basic block
1408 in the loop.
1410 - the basic block containing the close phi nodes does not contain
1411 other statements.
1413 - there exist only one phi node per definition in the loop.
1416 static void
1417 canonicalize_loop_closed_ssa_form (void)
1419 loop_p loop;
1421 #ifdef ENABLE_CHECKING
1422 verify_loop_closed_ssa (true);
1423 #endif
1425 FOR_EACH_LOOP (loop, 0)
1426 canonicalize_loop_closed_ssa (loop);
1428 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1429 update_ssa (TODO_update_ssa);
1431 #ifdef ENABLE_CHECKING
1432 verify_loop_closed_ssa (true);
1433 #endif
1436 /* Find Static Control Parts (SCoP) in the current function and pushes
1437 them to SCOPS. */
1439 void
1440 build_scops (vec<scop_p> *scops)
1442 struct loop *loop = current_loops->tree_root;
1443 auto_vec<sd_region, 3> regions;
1445 canonicalize_loop_closed_ssa_form ();
1446 build_scops_1 (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1447 ENTRY_BLOCK_PTR_FOR_FN (cfun)->loop_father,
1448 &regions, loop);
1449 create_sese_edges (regions);
1450 build_graphite_scops (regions, scops);
1452 if (dump_file && (dump_flags & TDF_DETAILS))
1453 print_graphite_statistics (dump_file, *scops);
1455 limit_scops (scops);
1456 regions.release ();
1458 if (dump_file && (dump_flags & TDF_DETAILS))
1459 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1460 scops ? scops->length () : 0);
1463 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1464 different colors. If there are not enough colors, paint the
1465 remaining SCoPs in gray.
1467 Special nodes:
1468 - "*" after the node number denotes the entry of a SCoP,
1469 - "#" after the node number denotes the exit of a SCoP,
1470 - "()" around the node number denotes the entry or the
1471 exit nodes of the SCOP. These are not part of SCoP. */
1473 static void
1474 dot_all_scops_1 (FILE *file, vec<scop_p> scops)
1476 basic_block bb;
1477 edge e;
1478 edge_iterator ei;
1479 scop_p scop;
1480 const char* color;
1481 int i;
1483 /* Disable debugging while printing graph. */
1484 int tmp_dump_flags = dump_flags;
1485 dump_flags = 0;
1487 fprintf (file, "digraph all {\n");
1489 FOR_ALL_BB_FN (bb, cfun)
1491 int part_of_scop = false;
1493 /* Use HTML for every bb label. So we are able to print bbs
1494 which are part of two different SCoPs, with two different
1495 background colors. */
1496 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1497 bb->index);
1498 fprintf (file, "CELLSPACING=\"0\">\n");
1500 /* Select color for SCoP. */
1501 FOR_EACH_VEC_ELT (scops, i, scop)
1503 sese region = SCOP_REGION (scop);
1504 if (bb_in_sese_p (bb, region)
1505 || (SESE_EXIT_BB (region) == bb)
1506 || (SESE_ENTRY_BB (region) == bb))
1508 switch (i % 17)
1510 case 0: /* red */
1511 color = "#e41a1c";
1512 break;
1513 case 1: /* blue */
1514 color = "#377eb8";
1515 break;
1516 case 2: /* green */
1517 color = "#4daf4a";
1518 break;
1519 case 3: /* purple */
1520 color = "#984ea3";
1521 break;
1522 case 4: /* orange */
1523 color = "#ff7f00";
1524 break;
1525 case 5: /* yellow */
1526 color = "#ffff33";
1527 break;
1528 case 6: /* brown */
1529 color = "#a65628";
1530 break;
1531 case 7: /* rose */
1532 color = "#f781bf";
1533 break;
1534 case 8:
1535 color = "#8dd3c7";
1536 break;
1537 case 9:
1538 color = "#ffffb3";
1539 break;
1540 case 10:
1541 color = "#bebada";
1542 break;
1543 case 11:
1544 color = "#fb8072";
1545 break;
1546 case 12:
1547 color = "#80b1d3";
1548 break;
1549 case 13:
1550 color = "#fdb462";
1551 break;
1552 case 14:
1553 color = "#b3de69";
1554 break;
1555 case 15:
1556 color = "#fccde5";
1557 break;
1558 case 16:
1559 color = "#bc80bd";
1560 break;
1561 default: /* gray */
1562 color = "#999999";
1565 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1567 if (!bb_in_sese_p (bb, region))
1568 fprintf (file, " (");
1570 if (bb == SESE_ENTRY_BB (region)
1571 && bb == SESE_EXIT_BB (region))
1572 fprintf (file, " %d*# ", bb->index);
1573 else if (bb == SESE_ENTRY_BB (region))
1574 fprintf (file, " %d* ", bb->index);
1575 else if (bb == SESE_EXIT_BB (region))
1576 fprintf (file, " %d# ", bb->index);
1577 else
1578 fprintf (file, " %d ", bb->index);
1580 if (!bb_in_sese_p (bb,region))
1581 fprintf (file, ")");
1583 fprintf (file, "</TD></TR>\n");
1584 part_of_scop = true;
1588 if (!part_of_scop)
1590 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1591 fprintf (file, " %d </TD></TR>\n", bb->index);
1593 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1596 FOR_ALL_BB_FN (bb, cfun)
1598 FOR_EACH_EDGE (e, ei, bb->succs)
1599 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1602 fputs ("}\n\n", file);
1604 /* Enable debugging again. */
1605 dump_flags = tmp_dump_flags;
1608 /* Display all SCoPs using dotty. */
1610 DEBUG_FUNCTION void
1611 dot_all_scops (vec<scop_p> scops)
1613 /* When debugging, enable the following code. This cannot be used
1614 in production compilers because it calls "system". */
1615 #if 0
1616 int x;
1617 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1618 gcc_assert (stream);
1620 dot_all_scops_1 (stream, scops);
1621 fclose (stream);
1623 x = system ("dotty /tmp/allscops.dot &");
1624 #else
1625 dot_all_scops_1 (stderr, scops);
1626 #endif
1629 /* Display all SCoPs using dotty. */
1631 DEBUG_FUNCTION void
1632 dot_scop (scop_p scop)
1634 auto_vec<scop_p, 1> scops;
1636 if (scop)
1637 scops.safe_push (scop);
1639 /* When debugging, enable the following code. This cannot be used
1640 in production compilers because it calls "system". */
1641 #if 0
1643 int x;
1644 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1645 gcc_assert (stream);
1647 dot_all_scops_1 (stream, scops);
1648 fclose (stream);
1649 x = system ("dotty /tmp/allscops.dot &");
1651 #else
1652 dot_all_scops_1 (stderr, scops);
1653 #endif
1656 #endif