1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Einfo
; use Einfo
;
29 with Elists
; use Elists
;
30 with Errout
; use Errout
;
31 with Exp_Disp
; use Exp_Disp
;
32 with Exp_Tss
; use Exp_Tss
;
33 with Exp_Util
; use Exp_Util
;
34 with Freeze
; use Freeze
;
35 with Ghost
; use Ghost
;
36 with Impunit
; use Impunit
;
38 with Lib
.Load
; use Lib
.Load
;
39 with Lib
.Xref
; use Lib
.Xref
;
40 with Namet
; use Namet
;
41 with Namet
.Sp
; use Namet
.Sp
;
42 with Nlists
; use Nlists
;
43 with Nmake
; use Nmake
;
45 with Output
; use Output
;
46 with Restrict
; use Restrict
;
47 with Rident
; use Rident
;
48 with Rtsfind
; use Rtsfind
;
50 with Sem_Aux
; use Sem_Aux
;
51 with Sem_Cat
; use Sem_Cat
;
52 with Sem_Ch3
; use Sem_Ch3
;
53 with Sem_Ch4
; use Sem_Ch4
;
54 with Sem_Ch6
; use Sem_Ch6
;
55 with Sem_Ch12
; use Sem_Ch12
;
56 with Sem_Ch13
; use Sem_Ch13
;
57 with Sem_Dim
; use Sem_Dim
;
58 with Sem_Disp
; use Sem_Disp
;
59 with Sem_Dist
; use Sem_Dist
;
60 with Sem_Elab
; use Sem_Elab
;
61 with Sem_Eval
; use Sem_Eval
;
62 with Sem_Res
; use Sem_Res
;
63 with Sem_Util
; use Sem_Util
;
64 with Sem_Type
; use Sem_Type
;
65 with Stand
; use Stand
;
66 with Sinfo
; use Sinfo
;
67 with Sinfo
.CN
; use Sinfo
.CN
;
68 with Snames
; use Snames
;
71 with Tbuild
; use Tbuild
;
72 with Uintp
; use Uintp
;
74 package body Sem_Ch8
is
76 ------------------------------------
77 -- Visibility and Name Resolution --
78 ------------------------------------
80 -- This package handles name resolution and the collection of possible
81 -- interpretations for overloaded names, prior to overload resolution.
83 -- Name resolution is the process that establishes a mapping between source
84 -- identifiers and the entities they denote at each point in the program.
85 -- Each entity is represented by a defining occurrence. Each identifier
86 -- that denotes an entity points to the corresponding defining occurrence.
87 -- This is the entity of the applied occurrence. Each occurrence holds
88 -- an index into the names table, where source identifiers are stored.
90 -- Each entry in the names table for an identifier or designator uses the
91 -- Info pointer to hold a link to the currently visible entity that has
92 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
93 -- in package Sem_Util). The visibility is initialized at the beginning of
94 -- semantic processing to make entities in package Standard immediately
95 -- visible. The visibility table is used in a more subtle way when
96 -- compiling subunits (see below).
98 -- Entities that have the same name (i.e. homonyms) are chained. In the
99 -- case of overloaded entities, this chain holds all the possible meanings
100 -- of a given identifier. The process of overload resolution uses type
101 -- information to select from this chain the unique meaning of a given
104 -- Entities are also chained in their scope, through the Next_Entity link.
105 -- As a consequence, the name space is organized as a sparse matrix, where
106 -- each row corresponds to a scope, and each column to a source identifier.
107 -- Open scopes, that is to say scopes currently being compiled, have their
108 -- corresponding rows of entities in order, innermost scope first.
110 -- The scopes of packages that are mentioned in context clauses appear in
111 -- no particular order, interspersed among open scopes. This is because
112 -- in the course of analyzing the context of a compilation, a package
113 -- declaration is first an open scope, and subsequently an element of the
114 -- context. If subunits or child units are present, a parent unit may
115 -- appear under various guises at various times in the compilation.
117 -- When the compilation of the innermost scope is complete, the entities
118 -- defined therein are no longer visible. If the scope is not a package
119 -- declaration, these entities are never visible subsequently, and can be
120 -- removed from visibility chains. If the scope is a package declaration,
121 -- its visible declarations may still be accessible. Therefore the entities
122 -- defined in such a scope are left on the visibility chains, and only
123 -- their visibility (immediately visibility or potential use-visibility)
126 -- The ordering of homonyms on their chain does not necessarily follow
127 -- the order of their corresponding scopes on the scope stack. For
128 -- example, if package P and the enclosing scope both contain entities
129 -- named E, then when compiling the package body the chain for E will
130 -- hold the global entity first, and the local one (corresponding to
131 -- the current inner scope) next. As a result, name resolution routines
132 -- do not assume any relative ordering of the homonym chains, either
133 -- for scope nesting or to order of appearance of context clauses.
135 -- When compiling a child unit, entities in the parent scope are always
136 -- immediately visible. When compiling the body of a child unit, private
137 -- entities in the parent must also be made immediately visible. There
138 -- are separate routines to make the visible and private declarations
139 -- visible at various times (see package Sem_Ch7).
141 -- +--------+ +-----+
142 -- | In use |-------->| EU1 |-------------------------->
143 -- +--------+ +-----+
145 -- +--------+ +-----+ +-----+
146 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
147 -- +--------+ +-----+ +-----+
149 -- +---------+ | +-----+
150 -- | with'ed |------------------------------>| EW2 |--->
151 -- +---------+ | +-----+
153 -- +--------+ +-----+ +-----+
154 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
155 -- +--------+ +-----+ +-----+
157 -- +--------+ +-----+ +-----+
158 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
159 -- +--------+ +-----+ +-----+
163 -- | | with'ed |----------------------------------------->
167 -- (innermost first) | |
168 -- +----------------------------+
169 -- Names table => | Id1 | | | | Id2 |
170 -- +----------------------------+
172 -- Name resolution must deal with several syntactic forms: simple names,
173 -- qualified names, indexed names, and various forms of calls.
175 -- Each identifier points to an entry in the names table. The resolution
176 -- of a simple name consists in traversing the homonym chain, starting
177 -- from the names table. If an entry is immediately visible, it is the one
178 -- designated by the identifier. If only potentially use-visible entities
179 -- are on the chain, we must verify that they do not hide each other. If
180 -- the entity we find is overloadable, we collect all other overloadable
181 -- entities on the chain as long as they are not hidden.
183 -- To resolve expanded names, we must find the entity at the intersection
184 -- of the entity chain for the scope (the prefix) and the homonym chain
185 -- for the selector. In general, homonym chains will be much shorter than
186 -- entity chains, so it is preferable to start from the names table as
187 -- well. If the entity found is overloadable, we must collect all other
188 -- interpretations that are defined in the scope denoted by the prefix.
190 -- For records, protected types, and tasks, their local entities are
191 -- removed from visibility chains on exit from the corresponding scope.
192 -- From the outside, these entities are always accessed by selected
193 -- notation, and the entity chain for the record type, protected type,
194 -- etc. is traversed sequentially in order to find the designated entity.
196 -- The discriminants of a type and the operations of a protected type or
197 -- task are unchained on exit from the first view of the type, (such as
198 -- a private or incomplete type declaration, or a protected type speci-
199 -- fication) and re-chained when compiling the second view.
201 -- In the case of operators, we do not make operators on derived types
202 -- explicit. As a result, the notation P."+" may denote either a user-
203 -- defined function with name "+", or else an implicit declaration of the
204 -- operator "+" in package P. The resolution of expanded names always
205 -- tries to resolve an operator name as such an implicitly defined entity,
206 -- in addition to looking for explicit declarations.
208 -- All forms of names that denote entities (simple names, expanded names,
209 -- character literals in some cases) have a Entity attribute, which
210 -- identifies the entity denoted by the name.
212 ---------------------
213 -- The Scope Stack --
214 ---------------------
216 -- The Scope stack keeps track of the scopes currently been compiled.
217 -- Every entity that contains declarations (including records) is placed
218 -- on the scope stack while it is being processed, and removed at the end.
219 -- Whenever a non-package scope is exited, the entities defined therein
220 -- are removed from the visibility table, so that entities in outer scopes
221 -- become visible (see previous description). On entry to Sem, the scope
222 -- stack only contains the package Standard. As usual, subunits complicate
223 -- this picture ever so slightly.
225 -- The Rtsfind mechanism can force a call to Semantics while another
226 -- compilation is in progress. The unit retrieved by Rtsfind must be
227 -- compiled in its own context, and has no access to the visibility of
228 -- the unit currently being compiled. The procedures Save_Scope_Stack and
229 -- Restore_Scope_Stack make entities in current open scopes invisible
230 -- before compiling the retrieved unit, and restore the compilation
231 -- environment afterwards.
233 ------------------------
234 -- Compiling subunits --
235 ------------------------
237 -- Subunits must be compiled in the environment of the corresponding stub,
238 -- that is to say with the same visibility into the parent (and its
239 -- context) that is available at the point of the stub declaration, but
240 -- with the additional visibility provided by the context clause of the
241 -- subunit itself. As a result, compilation of a subunit forces compilation
242 -- of the parent (see description in lib-). At the point of the stub
243 -- declaration, Analyze is called recursively to compile the proper body of
244 -- the subunit, but without reinitializing the names table, nor the scope
245 -- stack (i.e. standard is not pushed on the stack). In this fashion the
246 -- context of the subunit is added to the context of the parent, and the
247 -- subunit is compiled in the correct environment. Note that in the course
248 -- of processing the context of a subunit, Standard will appear twice on
249 -- the scope stack: once for the parent of the subunit, and once for the
250 -- unit in the context clause being compiled. However, the two sets of
251 -- entities are not linked by homonym chains, so that the compilation of
252 -- any context unit happens in a fresh visibility environment.
254 -------------------------------
255 -- Processing of USE Clauses --
256 -------------------------------
258 -- Every defining occurrence has a flag indicating if it is potentially use
259 -- visible. Resolution of simple names examines this flag. The processing
260 -- of use clauses consists in setting this flag on all visible entities
261 -- defined in the corresponding package. On exit from the scope of the use
262 -- clause, the corresponding flag must be reset. However, a package may
263 -- appear in several nested use clauses (pathological but legal, alas)
264 -- which forces us to use a slightly more involved scheme:
266 -- a) The defining occurrence for a package holds a flag -In_Use- to
267 -- indicate that it is currently in the scope of a use clause. If a
268 -- redundant use clause is encountered, then the corresponding occurrence
269 -- of the package name is flagged -Redundant_Use-.
271 -- b) On exit from a scope, the use clauses in its declarative part are
272 -- scanned. The visibility flag is reset in all entities declared in
273 -- package named in a use clause, as long as the package is not flagged
274 -- as being in a redundant use clause (in which case the outer use
275 -- clause is still in effect, and the direct visibility of its entities
276 -- must be retained).
278 -- Note that entities are not removed from their homonym chains on exit
279 -- from the package specification. A subsequent use clause does not need
280 -- to rechain the visible entities, but only to establish their direct
283 -----------------------------------
284 -- Handling private declarations --
285 -----------------------------------
287 -- The principle that each entity has a single defining occurrence clashes
288 -- with the presence of two separate definitions for private types: the
289 -- first is the private type declaration, and second is the full type
290 -- declaration. It is important that all references to the type point to
291 -- the same defining occurrence, namely the first one. To enforce the two
292 -- separate views of the entity, the corresponding information is swapped
293 -- between the two declarations. Outside of the package, the defining
294 -- occurrence only contains the private declaration information, while in
295 -- the private part and the body of the package the defining occurrence
296 -- contains the full declaration. To simplify the swap, the defining
297 -- occurrence that currently holds the private declaration points to the
298 -- full declaration. During semantic processing the defining occurrence
299 -- also points to a list of private dependents, that is to say access types
300 -- or composite types whose designated types or component types are
301 -- subtypes or derived types of the private type in question. After the
302 -- full declaration has been seen, the private dependents are updated to
303 -- indicate that they have full definitions.
305 ------------------------------------
306 -- Handling of Undefined Messages --
307 ------------------------------------
309 -- In normal mode, only the first use of an undefined identifier generates
310 -- a message. The table Urefs is used to record error messages that have
311 -- been issued so that second and subsequent ones do not generate further
312 -- messages. However, the second reference causes text to be added to the
313 -- original undefined message noting "(more references follow)". The
314 -- full error list option (-gnatf) forces messages to be generated for
315 -- every reference and disconnects the use of this table.
317 type Uref_Entry
is record
319 -- Node for identifier for which original message was posted. The
320 -- Chars field of this identifier is used to detect later references
321 -- to the same identifier.
324 -- Records error message Id of original undefined message. Reset to
325 -- No_Error_Msg after the second occurrence, where it is used to add
326 -- text to the original message as described above.
329 -- Set if the message is not visible rather than undefined
332 -- Records location of error message. Used to make sure that we do
333 -- not consider a, b : undefined as two separate instances, which
334 -- would otherwise happen, since the parser converts this sequence
335 -- to a : undefined; b : undefined.
339 package Urefs
is new Table
.Table
(
340 Table_Component_Type
=> Uref_Entry
,
341 Table_Index_Type
=> Nat
,
342 Table_Low_Bound
=> 1,
344 Table_Increment
=> 100,
345 Table_Name
=> "Urefs");
347 Candidate_Renaming
: Entity_Id
;
348 -- Holds a candidate interpretation that appears in a subprogram renaming
349 -- declaration and does not match the given specification, but matches at
350 -- least on the first formal. Allows better error message when given
351 -- specification omits defaulted parameters, a common error.
353 -----------------------
354 -- Local Subprograms --
355 -----------------------
357 procedure Analyze_Generic_Renaming
360 -- Common processing for all three kinds of generic renaming declarations.
361 -- Enter new name and indicate that it renames the generic unit.
363 procedure Analyze_Renamed_Character
367 -- Renamed entity is given by a character literal, which must belong
368 -- to the return type of the new entity. Is_Body indicates whether the
369 -- declaration is a renaming_as_body. If the original declaration has
370 -- already been frozen (because of an intervening body, e.g.) the body of
371 -- the function must be built now. The same applies to the following
372 -- various renaming procedures.
374 procedure Analyze_Renamed_Dereference
378 -- Renamed entity is given by an explicit dereference. Prefix must be a
379 -- conformant access_to_subprogram type.
381 procedure Analyze_Renamed_Entry
385 -- If the renamed entity in a subprogram renaming is an entry or protected
386 -- subprogram, build a body for the new entity whose only statement is a
387 -- call to the renamed entity.
389 procedure Analyze_Renamed_Family_Member
393 -- Used when the renamed entity is an indexed component. The prefix must
394 -- denote an entry family.
396 procedure Analyze_Renamed_Primitive_Operation
400 -- If the renamed entity in a subprogram renaming is a primitive operation
401 -- or a class-wide operation in prefix form, save the target object,
402 -- which must be added to the list of actuals in any subsequent call.
403 -- The renaming operation is intrinsic because the compiler must in
404 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
406 procedure Attribute_Renaming
(N
: Node_Id
);
407 -- Analyze renaming of attribute as subprogram. The renaming declaration N
408 -- is rewritten as a subprogram body that returns the attribute reference
409 -- applied to the formals of the function.
411 procedure Set_Entity_Or_Discriminal
(N
: Node_Id
; E
: Entity_Id
);
412 -- Set Entity, with style check if need be. For a discriminant reference,
413 -- replace by the corresponding discriminal, i.e. the parameter of the
414 -- initialization procedure that corresponds to the discriminant.
416 procedure Check_Frozen_Renaming
(N
: Node_Id
; Subp
: Entity_Id
);
417 -- A renaming_as_body may occur after the entity of the original decla-
418 -- ration has been frozen. In that case, the body of the new entity must
419 -- be built now, because the usual mechanism of building the renamed
420 -- body at the point of freezing will not work. Subp is the subprogram
421 -- for which N provides the Renaming_As_Body.
423 procedure Check_In_Previous_With_Clause
426 -- N is a use_package clause and Nam the package name, or N is a use_type
427 -- clause and Nam is the prefix of the type name. In either case, verify
428 -- that the package is visible at that point in the context: either it
429 -- appears in a previous with_clause, or because it is a fully qualified
430 -- name and the root ancestor appears in a previous with_clause.
432 procedure Check_Library_Unit_Renaming
(N
: Node_Id
; Old_E
: Entity_Id
);
433 -- Verify that the entity in a renaming declaration that is a library unit
434 -- is itself a library unit and not a nested unit or subunit. Also check
435 -- that if the renaming is a child unit of a generic parent, then the
436 -- renamed unit must also be a child unit of that parent. Finally, verify
437 -- that a renamed generic unit is not an implicit child declared within
438 -- an instance of the parent.
440 procedure Chain_Use_Clause
(N
: Node_Id
);
441 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
442 -- the proper scope table entry. This is usually the current scope, but it
443 -- will be an inner scope when installing the use clauses of the private
444 -- declarations of a parent unit prior to compiling the private part of a
445 -- child unit. This chain is traversed when installing/removing use clauses
446 -- when compiling a subunit or instantiating a generic body on the fly,
447 -- when it is necessary to save and restore full environments.
449 function Enclosing_Instance
return Entity_Id
;
450 -- In an instance nested within another one, several semantic checks are
451 -- unnecessary because the legality of the nested instance has been checked
452 -- in the enclosing generic unit. This applies in particular to legality
453 -- checks on actuals for formal subprograms of the inner instance, which
454 -- are checked as subprogram renamings, and may be complicated by confusion
455 -- in private/full views. This function returns the instance enclosing the
456 -- current one if there is such, else it returns Empty.
458 -- If the renaming determines the entity for the default of a formal
459 -- subprogram nested within another instance, choose the innermost
460 -- candidate. This is because if the formal has a box, and we are within
461 -- an enclosing instance where some candidate interpretations are local
462 -- to this enclosing instance, we know that the default was properly
463 -- resolved when analyzing the generic, so we prefer the local
464 -- candidates to those that are external. This is not always the case
465 -- but is a reasonable heuristic on the use of nested generics. The
466 -- proper solution requires a full renaming model.
468 function Entity_Of_Unit
(U
: Node_Id
) return Entity_Id
;
469 -- Return the appropriate entity for determining which unit has a deeper
470 -- scope: the defining entity for U, unless U is a package instance, in
471 -- which case we retrieve the entity of the instance spec.
473 procedure Find_Expanded_Name
(N
: Node_Id
);
474 -- The input is a selected component known to be an expanded name. Verify
475 -- legality of selector given the scope denoted by prefix, and change node
476 -- N into a expanded name with a properly set Entity field.
478 function Find_Most_Prev
(Use_Clause
: Node_Id
) return Node_Id
;
479 -- Find the most previous use clause (that is, the first one to appear in
480 -- the source) by traversing the previous clause chain that exists in both
481 -- N_Use_Package_Clause nodes and N_Use_Type_Clause nodes.
482 -- ??? a better subprogram name is in order
484 function Find_Renamed_Entity
488 Is_Actual
: Boolean := False) return Entity_Id
;
489 -- Find the renamed entity that corresponds to the given parameter profile
490 -- in a subprogram renaming declaration. The renamed entity may be an
491 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
492 -- indicates that the renaming is the one generated for an actual subpro-
493 -- gram in an instance, for which special visibility checks apply.
495 function Has_Implicit_Character_Literal
(N
: Node_Id
) return Boolean;
496 -- Find a type derived from Character or Wide_Character in the prefix of N.
497 -- Used to resolved qualified names whose selector is a character literal.
499 function Has_Private_With
(E
: Entity_Id
) return Boolean;
500 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
501 -- private with on E.
503 function Has_Implicit_Operator
(N
: Node_Id
) return Boolean;
504 -- N is an expanded name whose selector is an operator name (e.g. P."+").
505 -- declarative part contains an implicit declaration of an operator if it
506 -- has a declaration of a type to which one of the predefined operators
507 -- apply. The existence of this routine is an implementation artifact. A
508 -- more straightforward but more space-consuming choice would be to make
509 -- all inherited operators explicit in the symbol table.
511 procedure Inherit_Renamed_Profile
(New_S
: Entity_Id
; Old_S
: Entity_Id
);
512 -- A subprogram defined by a renaming declaration inherits the parameter
513 -- profile of the renamed entity. The subtypes given in the subprogram
514 -- specification are discarded and replaced with those of the renamed
515 -- subprogram, which are then used to recheck the default values.
517 function Is_Appropriate_For_Entry_Prefix
(T
: Entity_Id
) return Boolean;
518 -- True if it is of a task type, a protected type, or else an access to one
521 function Is_Appropriate_For_Record
(T
: Entity_Id
) return Boolean;
522 -- Prefix is appropriate for record if it is of a record type, or an access
525 function Most_Descendant_Use_Clause
526 (Clause1
: Entity_Id
;
527 Clause2
: Entity_Id
) return Entity_Id
;
528 -- Determine which use clause parameter is the most descendant in terms of
530 -- ??? a better subprogram name is in order
532 procedure Premature_Usage
(N
: Node_Id
);
533 -- Diagnose usage of an entity before it is visible
535 procedure Use_One_Package
537 Pack_Name
: Entity_Id
:= Empty
;
538 Force
: Boolean := False);
539 -- Make visible entities declared in package P potentially use-visible
540 -- in the current context. Also used in the analysis of subunits, when
541 -- re-installing use clauses of parent units. N is the use_clause that
542 -- names P (and possibly other packages).
544 procedure Use_One_Type
546 Installed
: Boolean := False;
547 Force
: Boolean := False);
548 -- Id is the subtype mark from a use_type_clause. This procedure makes
549 -- the primitive operators of the type potentially use-visible. The
550 -- boolean flag Installed indicates that the clause is being reinstalled
551 -- after previous analysis, and primitive operations are already chained
552 -- on the Used_Operations list of the clause.
554 procedure Write_Info
;
555 -- Write debugging information on entities declared in current scope
557 --------------------------------
558 -- Analyze_Exception_Renaming --
559 --------------------------------
561 -- The language only allows a single identifier, but the tree holds an
562 -- identifier list. The parser has already issued an error message if
563 -- there is more than one element in the list.
565 procedure Analyze_Exception_Renaming
(N
: Node_Id
) is
566 Id
: constant Entity_Id
:= Defining_Entity
(N
);
567 Nam
: constant Node_Id
:= Name
(N
);
570 Check_SPARK_05_Restriction
("exception renaming is not allowed", N
);
575 Set_Ekind
(Id
, E_Exception
);
576 Set_Etype
(Id
, Standard_Exception_Type
);
577 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
579 if Is_Entity_Name
(Nam
)
580 and then Present
(Entity
(Nam
))
581 and then Ekind
(Entity
(Nam
)) = E_Exception
583 if Present
(Renamed_Object
(Entity
(Nam
))) then
584 Set_Renamed_Object
(Id
, Renamed_Object
(Entity
(Nam
)));
586 Set_Renamed_Object
(Id
, Entity
(Nam
));
589 -- The exception renaming declaration may become Ghost if it renames
592 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
594 Error_Msg_N
("invalid exception name in renaming", Nam
);
597 -- Implementation-defined aspect specifications can appear in a renaming
598 -- declaration, but not language-defined ones. The call to procedure
599 -- Analyze_Aspect_Specifications will take care of this error check.
601 if Has_Aspects
(N
) then
602 Analyze_Aspect_Specifications
(N
, Id
);
604 end Analyze_Exception_Renaming
;
606 ---------------------------
607 -- Analyze_Expanded_Name --
608 ---------------------------
610 procedure Analyze_Expanded_Name
(N
: Node_Id
) is
612 -- If the entity pointer is already set, this is an internal node, or a
613 -- node that is analyzed more than once, after a tree modification. In
614 -- such a case there is no resolution to perform, just set the type. In
615 -- either case, start by analyzing the prefix.
617 Analyze
(Prefix
(N
));
619 if Present
(Entity
(N
)) then
620 if Is_Type
(Entity
(N
)) then
621 Set_Etype
(N
, Entity
(N
));
623 Set_Etype
(N
, Etype
(Entity
(N
)));
627 Find_Expanded_Name
(N
);
630 -- In either case, propagate dimension of entity to expanded name
632 Analyze_Dimension
(N
);
633 end Analyze_Expanded_Name
;
635 ---------------------------------------
636 -- Analyze_Generic_Function_Renaming --
637 ---------------------------------------
639 procedure Analyze_Generic_Function_Renaming
(N
: Node_Id
) is
641 Analyze_Generic_Renaming
(N
, E_Generic_Function
);
642 end Analyze_Generic_Function_Renaming
;
644 --------------------------------------
645 -- Analyze_Generic_Package_Renaming --
646 --------------------------------------
648 procedure Analyze_Generic_Package_Renaming
(N
: Node_Id
) is
650 -- Test for the Text_IO special unit case here, since we may be renaming
651 -- one of the subpackages of Text_IO, then join common routine.
653 Check_Text_IO_Special_Unit
(Name
(N
));
655 Analyze_Generic_Renaming
(N
, E_Generic_Package
);
656 end Analyze_Generic_Package_Renaming
;
658 ----------------------------------------
659 -- Analyze_Generic_Procedure_Renaming --
660 ----------------------------------------
662 procedure Analyze_Generic_Procedure_Renaming
(N
: Node_Id
) is
664 Analyze_Generic_Renaming
(N
, E_Generic_Procedure
);
665 end Analyze_Generic_Procedure_Renaming
;
667 ------------------------------
668 -- Analyze_Generic_Renaming --
669 ------------------------------
671 procedure Analyze_Generic_Renaming
675 New_P
: constant Entity_Id
:= Defining_Entity
(N
);
676 Inst
: Boolean := False;
680 if Name
(N
) = Error
then
684 Check_SPARK_05_Restriction
("generic renaming is not allowed", N
);
686 Generate_Definition
(New_P
);
688 if Current_Scope
/= Standard_Standard
then
689 Set_Is_Pure
(New_P
, Is_Pure
(Current_Scope
));
692 if Nkind
(Name
(N
)) = N_Selected_Component
then
693 Check_Generic_Child_Unit
(Name
(N
), Inst
);
698 if not Is_Entity_Name
(Name
(N
)) then
699 Error_Msg_N
("expect entity name in renaming declaration", Name
(N
));
702 Old_P
:= Entity
(Name
(N
));
706 Set_Ekind
(New_P
, K
);
708 if Etype
(Old_P
) = Any_Type
then
711 elsif Ekind
(Old_P
) /= K
then
712 Error_Msg_N
("invalid generic unit name", Name
(N
));
715 if Present
(Renamed_Object
(Old_P
)) then
716 Set_Renamed_Object
(New_P
, Renamed_Object
(Old_P
));
718 Set_Renamed_Object
(New_P
, Old_P
);
721 -- The generic renaming declaration may become Ghost if it renames a
724 Mark_Ghost_Renaming
(N
, Old_P
);
726 Set_Is_Pure
(New_P
, Is_Pure
(Old_P
));
727 Set_Is_Preelaborated
(New_P
, Is_Preelaborated
(Old_P
));
729 Set_Etype
(New_P
, Etype
(Old_P
));
730 Set_Has_Completion
(New_P
);
732 if In_Open_Scopes
(Old_P
) then
733 Error_Msg_N
("within its scope, generic denotes its instance", N
);
736 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
737 -- renamings and subsequent instantiations of Unchecked_Conversion.
739 if Ekind_In
(Old_P
, E_Generic_Function
, E_Generic_Procedure
) then
740 Set_Is_Intrinsic_Subprogram
741 (New_P
, Is_Intrinsic_Subprogram
(Old_P
));
744 Check_Library_Unit_Renaming
(N
, Old_P
);
747 -- Implementation-defined aspect specifications can appear in a renaming
748 -- declaration, but not language-defined ones. The call to procedure
749 -- Analyze_Aspect_Specifications will take care of this error check.
751 if Has_Aspects
(N
) then
752 Analyze_Aspect_Specifications
(N
, New_P
);
754 end Analyze_Generic_Renaming
;
756 -----------------------------
757 -- Analyze_Object_Renaming --
758 -----------------------------
760 procedure Analyze_Object_Renaming
(N
: Node_Id
) is
761 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
762 Loc
: constant Source_Ptr
:= Sloc
(N
);
763 Nam
: constant Node_Id
:= Name
(N
);
768 procedure Check_Constrained_Object
;
769 -- If the nominal type is unconstrained but the renamed object is
770 -- constrained, as can happen with renaming an explicit dereference or
771 -- a function return, build a constrained subtype from the object. If
772 -- the renaming is for a formal in an accept statement, the analysis
773 -- has already established its actual subtype. This is only relevant
774 -- if the renamed object is an explicit dereference.
776 ------------------------------
777 -- Check_Constrained_Object --
778 ------------------------------
780 procedure Check_Constrained_Object
is
781 Typ
: constant Entity_Id
:= Etype
(Nam
);
785 if Nkind_In
(Nam
, N_Function_Call
, N_Explicit_Dereference
)
786 and then Is_Composite_Type
(Etype
(Nam
))
787 and then not Is_Constrained
(Etype
(Nam
))
788 and then not Has_Unknown_Discriminants
(Etype
(Nam
))
789 and then Expander_Active
791 -- If Actual_Subtype is already set, nothing to do
793 if Ekind_In
(Id
, E_Variable
, E_Constant
)
794 and then Present
(Actual_Subtype
(Id
))
798 -- A renaming of an unchecked union has no actual subtype
800 elsif Is_Unchecked_Union
(Typ
) then
803 -- If a record is limited its size is invariant. This is the case
804 -- in particular with record types with an access discirminant
805 -- that are used in iterators. This is an optimization, but it
806 -- also prevents typing anomalies when the prefix is further
807 -- expanded. Limited types with discriminants are included.
809 elsif Is_Limited_Record
(Typ
)
811 (Ekind
(Typ
) = E_Limited_Private_Type
812 and then Has_Discriminants
(Typ
)
813 and then Is_Access_Type
(Etype
(First_Discriminant
(Typ
))))
818 Subt
:= Make_Temporary
(Loc
, 'T');
819 Remove_Side_Effects
(Nam
);
821 Make_Subtype_Declaration
(Loc
,
822 Defining_Identifier
=> Subt
,
823 Subtype_Indication
=>
824 Make_Subtype_From_Expr
(Nam
, Typ
)));
825 Rewrite
(Subtype_Mark
(N
), New_Occurrence_Of
(Subt
, Loc
));
826 Set_Etype
(Nam
, Subt
);
828 -- Freeze subtype at once, to prevent order of elaboration
829 -- issues in the backend. The renamed object exists, so its
830 -- type is already frozen in any case.
832 Freeze_Before
(N
, Subt
);
835 end Check_Constrained_Object
;
837 -- Start of processing for Analyze_Object_Renaming
844 Check_SPARK_05_Restriction
("object renaming is not allowed", N
);
846 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
849 -- The renaming of a component that depends on a discriminant requires
850 -- an actual subtype, because in subsequent use of the object Gigi will
851 -- be unable to locate the actual bounds. This explicit step is required
852 -- when the renaming is generated in removing side effects of an
853 -- already-analyzed expression.
855 if Nkind
(Nam
) = N_Selected_Component
and then Analyzed
(Nam
) then
857 -- The object renaming declaration may become Ghost if it renames a
860 if Is_Entity_Name
(Nam
) then
861 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
865 Dec
:= Build_Actual_Subtype_Of_Component
(Etype
(Nam
), Nam
);
867 if Present
(Dec
) then
868 Insert_Action
(N
, Dec
);
869 T
:= Defining_Identifier
(Dec
);
873 -- Complete analysis of the subtype mark in any case, for ASIS use
875 if Present
(Subtype_Mark
(N
)) then
876 Find_Type
(Subtype_Mark
(N
));
879 elsif Present
(Subtype_Mark
(N
)) then
880 Find_Type
(Subtype_Mark
(N
));
881 T
:= Entity
(Subtype_Mark
(N
));
884 -- The object renaming declaration may become Ghost if it renames a
887 if Is_Entity_Name
(Nam
) then
888 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
891 -- Reject renamings of conversions unless the type is tagged, or
892 -- the conversion is implicit (which can occur for cases of anonymous
893 -- access types in Ada 2012).
895 if Nkind
(Nam
) = N_Type_Conversion
896 and then Comes_From_Source
(Nam
)
897 and then not Is_Tagged_Type
(T
)
900 ("renaming of conversion only allowed for tagged types", Nam
);
905 -- If the renamed object is a function call of a limited type,
906 -- the expansion of the renaming is complicated by the presence
907 -- of various temporaries and subtypes that capture constraints
908 -- of the renamed object. Rewrite node as an object declaration,
909 -- whose expansion is simpler. Given that the object is limited
910 -- there is no copy involved and no performance hit.
912 if Nkind
(Nam
) = N_Function_Call
913 and then Is_Limited_View
(Etype
(Nam
))
914 and then not Is_Constrained
(Etype
(Nam
))
915 and then Comes_From_Source
(N
)
918 Set_Ekind
(Id
, E_Constant
);
920 Make_Object_Declaration
(Loc
,
921 Defining_Identifier
=> Id
,
922 Constant_Present
=> True,
923 Object_Definition
=> New_Occurrence_Of
(Etype
(Nam
), Loc
),
924 Expression
=> Relocate_Node
(Nam
)));
928 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
929 -- when renaming declaration has a named access type. The Ada 2012
930 -- coverage rules allow an anonymous access type in the context of
931 -- an expected named general access type, but the renaming rules
932 -- require the types to be the same. (An exception is when the type
933 -- of the renaming is also an anonymous access type, which can only
934 -- happen due to a renaming created by the expander.)
936 if Nkind
(Nam
) = N_Type_Conversion
937 and then not Comes_From_Source
(Nam
)
938 and then Ekind
(Etype
(Expression
(Nam
))) = E_Anonymous_Access_Type
939 and then Ekind
(T
) /= E_Anonymous_Access_Type
941 Wrong_Type
(Expression
(Nam
), T
); -- Should we give better error???
944 -- Check that a class-wide object is not being renamed as an object
945 -- of a specific type. The test for access types is needed to exclude
946 -- cases where the renamed object is a dynamically tagged access
947 -- result, such as occurs in certain expansions.
949 if Is_Tagged_Type
(T
) then
950 Check_Dynamically_Tagged_Expression
956 -- Ada 2005 (AI-230/AI-254): Access renaming
958 else pragma Assert
(Present
(Access_Definition
(N
)));
962 N
=> Access_Definition
(N
));
966 -- The object renaming declaration may become Ghost if it renames a
969 if Is_Entity_Name
(Nam
) then
970 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
973 -- Ada 2005 AI05-105: if the declaration has an anonymous access
974 -- type, the renamed object must also have an anonymous type, and
975 -- this is a name resolution rule. This was implicit in the last part
976 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
979 if not Is_Overloaded
(Nam
) then
980 if Ekind
(Etype
(Nam
)) /= Ekind
(T
) then
982 ("expect anonymous access type in object renaming", N
);
989 Typ
: Entity_Id
:= Empty
;
990 Seen
: Boolean := False;
993 Get_First_Interp
(Nam
, I
, It
);
994 while Present
(It
.Typ
) loop
996 -- Renaming is ambiguous if more than one candidate
997 -- interpretation is type-conformant with the context.
999 if Ekind
(It
.Typ
) = Ekind
(T
) then
1000 if Ekind
(T
) = E_Anonymous_Access_Subprogram_Type
1003 (Designated_Type
(T
), Designated_Type
(It
.Typ
))
1009 ("ambiguous expression in renaming", Nam
);
1012 elsif Ekind
(T
) = E_Anonymous_Access_Type
1014 Covers
(Designated_Type
(T
), Designated_Type
(It
.Typ
))
1020 ("ambiguous expression in renaming", Nam
);
1024 if Covers
(T
, It
.Typ
) then
1026 Set_Etype
(Nam
, Typ
);
1027 Set_Is_Overloaded
(Nam
, False);
1031 Get_Next_Interp
(I
, It
);
1038 -- Do not perform the legality checks below when the resolution of
1039 -- the renaming name failed because the associated type is Any_Type.
1041 if Etype
(Nam
) = Any_Type
then
1044 -- Ada 2005 (AI-231): In the case where the type is defined by an
1045 -- access_definition, the renamed entity shall be of an access-to-
1046 -- constant type if and only if the access_definition defines an
1047 -- access-to-constant type. ARM 8.5.1(4)
1049 elsif Constant_Present
(Access_Definition
(N
))
1050 and then not Is_Access_Constant
(Etype
(Nam
))
1053 ("(Ada 2005): the renamed object is not access-to-constant "
1054 & "(RM 8.5.1(6))", N
);
1056 elsif not Constant_Present
(Access_Definition
(N
))
1057 and then Is_Access_Constant
(Etype
(Nam
))
1060 ("(Ada 2005): the renamed object is not access-to-variable "
1061 & "(RM 8.5.1(6))", N
);
1064 if Is_Access_Subprogram_Type
(Etype
(Nam
)) then
1065 Check_Subtype_Conformant
1066 (Designated_Type
(T
), Designated_Type
(Etype
(Nam
)));
1068 elsif not Subtypes_Statically_Match
1069 (Designated_Type
(T
),
1070 Available_View
(Designated_Type
(Etype
(Nam
))))
1073 ("subtype of renamed object does not statically match", N
);
1077 -- Special processing for renaming function return object. Some errors
1078 -- and warnings are produced only for calls that come from source.
1080 if Nkind
(Nam
) = N_Function_Call
then
1083 -- Usage is illegal in Ada 83, but renamings are also introduced
1084 -- during expansion, and error does not apply to those.
1087 if Comes_From_Source
(N
) then
1089 ("(Ada 83) cannot rename function return object", Nam
);
1092 -- In Ada 95, warn for odd case of renaming parameterless function
1093 -- call if this is not a limited type (where this is useful).
1096 if Warn_On_Object_Renames_Function
1097 and then No
(Parameter_Associations
(Nam
))
1098 and then not Is_Limited_Type
(Etype
(Nam
))
1099 and then Comes_From_Source
(Nam
)
1102 ("renaming function result object is suspicious?R?", Nam
);
1104 ("\function & will be called only once?R?", Nam
,
1105 Entity
(Name
(Nam
)));
1106 Error_Msg_N
-- CODEFIX
1107 ("\suggest using an initialized constant object "
1108 & "instead?R?", Nam
);
1113 Check_Constrained_Object
;
1115 -- An object renaming requires an exact match of the type. Class-wide
1116 -- matching is not allowed.
1118 if Is_Class_Wide_Type
(T
)
1119 and then Base_Type
(Etype
(Nam
)) /= Base_Type
(T
)
1121 Wrong_Type
(Nam
, T
);
1126 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1128 if Nkind
(Nam
) = N_Explicit_Dereference
1129 and then Ekind
(Etype
(T2
)) = E_Incomplete_Type
1131 Error_Msg_NE
("invalid use of incomplete type&", Id
, T2
);
1134 elsif Ekind
(Etype
(T
)) = E_Incomplete_Type
then
1135 Error_Msg_NE
("invalid use of incomplete type&", Id
, T
);
1139 -- Ada 2005 (AI-327)
1141 if Ada_Version
>= Ada_2005
1142 and then Nkind
(Nam
) = N_Attribute_Reference
1143 and then Attribute_Name
(Nam
) = Name_Priority
1147 elsif Ada_Version
>= Ada_2005
and then Nkind
(Nam
) in N_Has_Entity
then
1150 Nam_Ent
: Entity_Id
;
1153 if Nkind
(Nam
) = N_Attribute_Reference
then
1154 Nam_Ent
:= Entity
(Prefix
(Nam
));
1156 Nam_Ent
:= Entity
(Nam
);
1159 Nam_Decl
:= Parent
(Nam_Ent
);
1161 if Has_Null_Exclusion
(N
)
1162 and then not Has_Null_Exclusion
(Nam_Decl
)
1164 -- Ada 2005 (AI-423): If the object name denotes a generic
1165 -- formal object of a generic unit G, and the object renaming
1166 -- declaration occurs within the body of G or within the body
1167 -- of a generic unit declared within the declarative region
1168 -- of G, then the declaration of the formal object of G must
1169 -- have a null exclusion or a null-excluding subtype.
1171 if Is_Formal_Object
(Nam_Ent
)
1172 and then In_Generic_Scope
(Id
)
1174 if not Can_Never_Be_Null
(Etype
(Nam_Ent
)) then
1176 ("renamed formal does not exclude `NULL` "
1177 & "(RM 8.5.1(4.6/2))", N
);
1179 elsif In_Package_Body
(Scope
(Id
)) then
1181 ("formal object does not have a null exclusion"
1182 & "(RM 8.5.1(4.6/2))", N
);
1185 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1186 -- shall exclude null.
1188 elsif not Can_Never_Be_Null
(Etype
(Nam_Ent
)) then
1190 ("renamed object does not exclude `NULL` "
1191 & "(RM 8.5.1(4.6/2))", N
);
1193 -- An instance is illegal if it contains a renaming that
1194 -- excludes null, and the actual does not. The renaming
1195 -- declaration has already indicated that the declaration
1196 -- of the renamed actual in the instance will raise
1197 -- constraint_error.
1199 elsif Nkind
(Nam_Decl
) = N_Object_Declaration
1200 and then In_Instance
1202 Present
(Corresponding_Generic_Association
(Nam_Decl
))
1203 and then Nkind
(Expression
(Nam_Decl
)) =
1204 N_Raise_Constraint_Error
1207 ("renamed actual does not exclude `NULL` "
1208 & "(RM 8.5.1(4.6/2))", N
);
1210 -- Finally, if there is a null exclusion, the subtype mark
1211 -- must not be null-excluding.
1213 elsif No
(Access_Definition
(N
))
1214 and then Can_Never_Be_Null
(T
)
1217 ("`NOT NULL` not allowed (& already excludes null)",
1222 elsif Can_Never_Be_Null
(T
)
1223 and then not Can_Never_Be_Null
(Etype
(Nam_Ent
))
1226 ("renamed object does not exclude `NULL` "
1227 & "(RM 8.5.1(4.6/2))", N
);
1229 elsif Has_Null_Exclusion
(N
)
1230 and then No
(Access_Definition
(N
))
1231 and then Can_Never_Be_Null
(T
)
1234 ("`NOT NULL` not allowed (& already excludes null)", N
, T
);
1239 -- Set the Ekind of the entity, unless it has been set already, as is
1240 -- the case for the iteration object over a container with no variable
1241 -- indexing. In that case it's been marked as a constant, and we do not
1242 -- want to change it to a variable.
1244 if Ekind
(Id
) /= E_Constant
then
1245 Set_Ekind
(Id
, E_Variable
);
1248 -- Initialize the object size and alignment. Note that we used to call
1249 -- Init_Size_Align here, but that's wrong for objects which have only
1250 -- an Esize, not an RM_Size field.
1252 Init_Object_Size_Align
(Id
);
1254 if T
= Any_Type
or else Etype
(Nam
) = Any_Type
then
1257 -- Verify that the renamed entity is an object or a function call. It
1258 -- may have been rewritten in several ways.
1260 elsif Is_Object_Reference
(Nam
) then
1261 if Comes_From_Source
(N
) then
1262 if Is_Dependent_Component_Of_Mutable_Object
(Nam
) then
1264 ("illegal renaming of discriminant-dependent component", Nam
);
1267 -- If the renaming comes from source and the renamed object is a
1268 -- dereference, then mark the prefix as needing debug information,
1269 -- since it might have been rewritten hence internally generated
1270 -- and Debug_Renaming_Declaration will link the renaming to it.
1272 if Nkind
(Nam
) = N_Explicit_Dereference
1273 and then Is_Entity_Name
(Prefix
(Nam
))
1275 Set_Debug_Info_Needed
(Entity
(Prefix
(Nam
)));
1279 -- A static function call may have been folded into a literal
1281 elsif Nkind
(Original_Node
(Nam
)) = N_Function_Call
1283 -- When expansion is disabled, attribute reference is not rewritten
1284 -- as function call. Otherwise it may be rewritten as a conversion,
1285 -- so check original node.
1287 or else (Nkind
(Original_Node
(Nam
)) = N_Attribute_Reference
1288 and then Is_Function_Attribute_Name
1289 (Attribute_Name
(Original_Node
(Nam
))))
1291 -- Weird but legal, equivalent to renaming a function call. Illegal
1292 -- if the literal is the result of constant-folding an attribute
1293 -- reference that is not a function.
1295 or else (Is_Entity_Name
(Nam
)
1296 and then Ekind
(Entity
(Nam
)) = E_Enumeration_Literal
1298 Nkind
(Original_Node
(Nam
)) /= N_Attribute_Reference
)
1300 or else (Nkind
(Nam
) = N_Type_Conversion
1301 and then Is_Tagged_Type
(Entity
(Subtype_Mark
(Nam
))))
1305 elsif Nkind
(Nam
) = N_Type_Conversion
then
1307 ("renaming of conversion only allowed for tagged types", Nam
);
1309 -- Ada 2005 (AI-327)
1311 elsif Ada_Version
>= Ada_2005
1312 and then Nkind
(Nam
) = N_Attribute_Reference
1313 and then Attribute_Name
(Nam
) = Name_Priority
1317 -- Allow internally generated x'Ref resulting in N_Reference node
1319 elsif Nkind
(Nam
) = N_Reference
then
1323 Error_Msg_N
("expect object name in renaming", Nam
);
1328 if not Is_Variable
(Nam
) then
1329 Set_Ekind
(Id
, E_Constant
);
1330 Set_Never_Set_In_Source
(Id
, True);
1331 Set_Is_True_Constant
(Id
, True);
1334 -- The entity of the renaming declaration needs to reflect whether the
1335 -- renamed object is volatile. Is_Volatile is set if the renamed object
1336 -- is volatile in the RM legality sense.
1338 Set_Is_Volatile
(Id
, Is_Volatile_Object
(Nam
));
1340 -- Also copy settings of Atomic/Independent/Volatile_Full_Access
1342 if Is_Entity_Name
(Nam
) then
1343 Set_Is_Atomic
(Id
, Is_Atomic
(Entity
(Nam
)));
1344 Set_Is_Independent
(Id
, Is_Independent
(Entity
(Nam
)));
1345 Set_Is_Volatile_Full_Access
(Id
,
1346 Is_Volatile_Full_Access
(Entity
(Nam
)));
1349 -- Treat as volatile if we just set the Volatile flag
1353 -- Or if we are renaming an entity which was marked this way
1355 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1357 or else (Is_Entity_Name
(Nam
)
1358 and then Treat_As_Volatile
(Entity
(Nam
)))
1360 Set_Treat_As_Volatile
(Id
, True);
1363 -- Now make the link to the renamed object
1365 Set_Renamed_Object
(Id
, Nam
);
1367 -- Implementation-defined aspect specifications can appear in a renaming
1368 -- declaration, but not language-defined ones. The call to procedure
1369 -- Analyze_Aspect_Specifications will take care of this error check.
1371 if Has_Aspects
(N
) then
1372 Analyze_Aspect_Specifications
(N
, Id
);
1375 -- Deal with dimensions
1377 Analyze_Dimension
(N
);
1378 end Analyze_Object_Renaming
;
1380 ------------------------------
1381 -- Analyze_Package_Renaming --
1382 ------------------------------
1384 procedure Analyze_Package_Renaming
(N
: Node_Id
) is
1385 New_P
: constant Entity_Id
:= Defining_Entity
(N
);
1390 if Name
(N
) = Error
then
1394 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1396 Check_Text_IO_Special_Unit
(Name
(N
));
1398 if Current_Scope
/= Standard_Standard
then
1399 Set_Is_Pure
(New_P
, Is_Pure
(Current_Scope
));
1405 if Is_Entity_Name
(Name
(N
)) then
1406 Old_P
:= Entity
(Name
(N
));
1411 if Etype
(Old_P
) = Any_Type
then
1412 Error_Msg_N
("expect package name in renaming", Name
(N
));
1414 elsif Ekind
(Old_P
) /= E_Package
1415 and then not (Ekind
(Old_P
) = E_Generic_Package
1416 and then In_Open_Scopes
(Old_P
))
1418 if Ekind
(Old_P
) = E_Generic_Package
then
1420 ("generic package cannot be renamed as a package", Name
(N
));
1422 Error_Msg_Sloc
:= Sloc
(Old_P
);
1424 ("expect package name in renaming, found& declared#",
1428 -- Set basic attributes to minimize cascaded errors
1430 Set_Ekind
(New_P
, E_Package
);
1431 Set_Etype
(New_P
, Standard_Void_Type
);
1433 -- Here for OK package renaming
1436 -- Entities in the old package are accessible through the renaming
1437 -- entity. The simplest implementation is to have both packages share
1440 Set_Ekind
(New_P
, E_Package
);
1441 Set_Etype
(New_P
, Standard_Void_Type
);
1443 if Present
(Renamed_Object
(Old_P
)) then
1444 Set_Renamed_Object
(New_P
, Renamed_Object
(Old_P
));
1446 Set_Renamed_Object
(New_P
, Old_P
);
1449 -- The package renaming declaration may become Ghost if it renames a
1452 Mark_Ghost_Renaming
(N
, Old_P
);
1454 Set_Has_Completion
(New_P
);
1455 Set_First_Entity
(New_P
, First_Entity
(Old_P
));
1456 Set_Last_Entity
(New_P
, Last_Entity
(Old_P
));
1457 Set_First_Private_Entity
(New_P
, First_Private_Entity
(Old_P
));
1458 Check_Library_Unit_Renaming
(N
, Old_P
);
1459 Generate_Reference
(Old_P
, Name
(N
));
1461 -- If the renaming is in the visible part of a package, then we set
1462 -- Renamed_In_Spec for the renamed package, to prevent giving
1463 -- warnings about no entities referenced. Such a warning would be
1464 -- overenthusiastic, since clients can see entities in the renamed
1465 -- package via the visible package renaming.
1468 Ent
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
1470 if Ekind
(Ent
) = E_Package
1471 and then not In_Private_Part
(Ent
)
1472 and then In_Extended_Main_Source_Unit
(N
)
1473 and then Ekind
(Old_P
) = E_Package
1475 Set_Renamed_In_Spec
(Old_P
);
1479 -- If this is the renaming declaration of a package instantiation
1480 -- within itself, it is the declaration that ends the list of actuals
1481 -- for the instantiation. At this point, the subtypes that rename
1482 -- the actuals are flagged as generic, to avoid spurious ambiguities
1483 -- if the actuals for two distinct formals happen to coincide. If
1484 -- the actual is a private type, the subtype has a private completion
1485 -- that is flagged in the same fashion.
1487 -- Resolution is identical to what is was in the original generic.
1488 -- On exit from the generic instance, these are turned into regular
1489 -- subtypes again, so they are compatible with types in their class.
1491 if not Is_Generic_Instance
(Old_P
) then
1494 Spec
:= Specification
(Unit_Declaration_Node
(Old_P
));
1497 if Nkind
(Spec
) = N_Package_Specification
1498 and then Present
(Generic_Parent
(Spec
))
1499 and then Old_P
= Current_Scope
1500 and then Chars
(New_P
) = Chars
(Generic_Parent
(Spec
))
1506 E
:= First_Entity
(Old_P
);
1507 while Present
(E
) and then E
/= New_P
loop
1509 and then Nkind
(Parent
(E
)) = N_Subtype_Declaration
1511 Set_Is_Generic_Actual_Type
(E
);
1513 if Is_Private_Type
(E
)
1514 and then Present
(Full_View
(E
))
1516 Set_Is_Generic_Actual_Type
(Full_View
(E
));
1526 -- Implementation-defined aspect specifications can appear in a renaming
1527 -- declaration, but not language-defined ones. The call to procedure
1528 -- Analyze_Aspect_Specifications will take care of this error check.
1530 if Has_Aspects
(N
) then
1531 Analyze_Aspect_Specifications
(N
, New_P
);
1533 end Analyze_Package_Renaming
;
1535 -------------------------------
1536 -- Analyze_Renamed_Character --
1537 -------------------------------
1539 procedure Analyze_Renamed_Character
1544 C
: constant Node_Id
:= Name
(N
);
1547 if Ekind
(New_S
) = E_Function
then
1548 Resolve
(C
, Etype
(New_S
));
1551 Check_Frozen_Renaming
(N
, New_S
);
1555 Error_Msg_N
("character literal can only be renamed as function", N
);
1557 end Analyze_Renamed_Character
;
1559 ---------------------------------
1560 -- Analyze_Renamed_Dereference --
1561 ---------------------------------
1563 procedure Analyze_Renamed_Dereference
1568 Nam
: constant Node_Id
:= Name
(N
);
1569 P
: constant Node_Id
:= Prefix
(Nam
);
1575 if not Is_Overloaded
(P
) then
1576 if Ekind
(Etype
(Nam
)) /= E_Subprogram_Type
1577 or else not Type_Conformant
(Etype
(Nam
), New_S
)
1579 Error_Msg_N
("designated type does not match specification", P
);
1588 Get_First_Interp
(Nam
, Ind
, It
);
1590 while Present
(It
.Nam
) loop
1592 if Ekind
(It
.Nam
) = E_Subprogram_Type
1593 and then Type_Conformant
(It
.Nam
, New_S
)
1595 if Typ
/= Any_Id
then
1596 Error_Msg_N
("ambiguous renaming", P
);
1603 Get_Next_Interp
(Ind
, It
);
1606 if Typ
= Any_Type
then
1607 Error_Msg_N
("designated type does not match specification", P
);
1612 Check_Frozen_Renaming
(N
, New_S
);
1616 end Analyze_Renamed_Dereference
;
1618 ---------------------------
1619 -- Analyze_Renamed_Entry --
1620 ---------------------------
1622 procedure Analyze_Renamed_Entry
1627 Nam
: constant Node_Id
:= Name
(N
);
1628 Sel
: constant Node_Id
:= Selector_Name
(Nam
);
1629 Is_Actual
: constant Boolean := Present
(Corresponding_Formal_Spec
(N
));
1633 if Entity
(Sel
) = Any_Id
then
1635 -- Selector is undefined on prefix. Error emitted already
1637 Set_Has_Completion
(New_S
);
1641 -- Otherwise find renamed entity and build body of New_S as a call to it
1643 Old_S
:= Find_Renamed_Entity
(N
, Selector_Name
(Nam
), New_S
);
1645 if Old_S
= Any_Id
then
1646 Error_Msg_N
(" no subprogram or entry matches specification", N
);
1649 Check_Subtype_Conformant
(New_S
, Old_S
, N
);
1650 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1651 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1654 -- Only mode conformance required for a renaming_as_declaration
1656 Check_Mode_Conformant
(New_S
, Old_S
, N
);
1659 Inherit_Renamed_Profile
(New_S
, Old_S
);
1661 -- The prefix can be an arbitrary expression that yields a task or
1662 -- protected object, so it must be resolved.
1664 Resolve
(Prefix
(Nam
), Scope
(Old_S
));
1667 Set_Convention
(New_S
, Convention
(Old_S
));
1668 Set_Has_Completion
(New_S
, Inside_A_Generic
);
1670 -- AI05-0225: If the renamed entity is a procedure or entry of a
1671 -- protected object, the target object must be a variable.
1673 if Ekind
(Scope
(Old_S
)) in Protected_Kind
1674 and then Ekind
(New_S
) = E_Procedure
1675 and then not Is_Variable
(Prefix
(Nam
))
1679 ("target object of protected operation used as actual for "
1680 & "formal procedure must be a variable", Nam
);
1683 ("target object of protected operation renamed as procedure, "
1684 & "must be a variable", Nam
);
1689 Check_Frozen_Renaming
(N
, New_S
);
1691 end Analyze_Renamed_Entry
;
1693 -----------------------------------
1694 -- Analyze_Renamed_Family_Member --
1695 -----------------------------------
1697 procedure Analyze_Renamed_Family_Member
1702 Nam
: constant Node_Id
:= Name
(N
);
1703 P
: constant Node_Id
:= Prefix
(Nam
);
1707 if (Is_Entity_Name
(P
) and then Ekind
(Entity
(P
)) = E_Entry_Family
)
1708 or else (Nkind
(P
) = N_Selected_Component
1709 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Entry_Family
)
1711 if Is_Entity_Name
(P
) then
1712 Old_S
:= Entity
(P
);
1714 Old_S
:= Entity
(Selector_Name
(P
));
1717 if not Entity_Matches_Spec
(Old_S
, New_S
) then
1718 Error_Msg_N
("entry family does not match specification", N
);
1721 Check_Subtype_Conformant
(New_S
, Old_S
, N
);
1722 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1723 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1727 Error_Msg_N
("no entry family matches specification", N
);
1730 Set_Has_Completion
(New_S
, Inside_A_Generic
);
1733 Check_Frozen_Renaming
(N
, New_S
);
1735 end Analyze_Renamed_Family_Member
;
1737 -----------------------------------------
1738 -- Analyze_Renamed_Primitive_Operation --
1739 -----------------------------------------
1741 procedure Analyze_Renamed_Primitive_Operation
1750 Ctyp
: Conformance_Type
) return Boolean;
1751 -- Verify that the signatures of the renamed entity and the new entity
1752 -- match. The first formal of the renamed entity is skipped because it
1753 -- is the target object in any subsequent call.
1761 Ctyp
: Conformance_Type
) return Boolean
1767 if Ekind
(Subp
) /= Ekind
(New_S
) then
1771 Old_F
:= Next_Formal
(First_Formal
(Subp
));
1772 New_F
:= First_Formal
(New_S
);
1773 while Present
(Old_F
) and then Present
(New_F
) loop
1774 if not Conforming_Types
(Etype
(Old_F
), Etype
(New_F
), Ctyp
) then
1778 if Ctyp
>= Mode_Conformant
1779 and then Ekind
(Old_F
) /= Ekind
(New_F
)
1784 Next_Formal
(New_F
);
1785 Next_Formal
(Old_F
);
1791 -- Start of processing for Analyze_Renamed_Primitive_Operation
1794 if not Is_Overloaded
(Selector_Name
(Name
(N
))) then
1795 Old_S
:= Entity
(Selector_Name
(Name
(N
)));
1797 if not Conforms
(Old_S
, Type_Conformant
) then
1802 -- Find the operation that matches the given signature
1810 Get_First_Interp
(Selector_Name
(Name
(N
)), Ind
, It
);
1812 while Present
(It
.Nam
) loop
1813 if Conforms
(It
.Nam
, Type_Conformant
) then
1817 Get_Next_Interp
(Ind
, It
);
1822 if Old_S
= Any_Id
then
1823 Error_Msg_N
(" no subprogram or entry matches specification", N
);
1827 if not Conforms
(Old_S
, Subtype_Conformant
) then
1828 Error_Msg_N
("subtype conformance error in renaming", N
);
1831 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1832 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1835 -- Only mode conformance required for a renaming_as_declaration
1837 if not Conforms
(Old_S
, Mode_Conformant
) then
1838 Error_Msg_N
("mode conformance error in renaming", N
);
1841 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1842 -- view of a subprogram is intrinsic, because the compiler has
1843 -- to generate a wrapper for any call to it. If the name in a
1844 -- subprogram renaming is a prefixed view, the entity is thus
1845 -- intrinsic, and 'Access cannot be applied to it.
1847 Set_Convention
(New_S
, Convention_Intrinsic
);
1850 -- Inherit_Renamed_Profile (New_S, Old_S);
1852 -- The prefix can be an arbitrary expression that yields an
1853 -- object, so it must be resolved.
1855 Resolve
(Prefix
(Name
(N
)));
1857 end Analyze_Renamed_Primitive_Operation
;
1859 ---------------------------------
1860 -- Analyze_Subprogram_Renaming --
1861 ---------------------------------
1863 procedure Analyze_Subprogram_Renaming
(N
: Node_Id
) is
1864 Formal_Spec
: constant Entity_Id
:= Corresponding_Formal_Spec
(N
);
1865 Is_Actual
: constant Boolean := Present
(Formal_Spec
);
1866 Nam
: constant Node_Id
:= Name
(N
);
1867 Save_AV
: constant Ada_Version_Type
:= Ada_Version
;
1868 Save_AVP
: constant Node_Id
:= Ada_Version_Pragma
;
1869 Save_AV_Exp
: constant Ada_Version_Type
:= Ada_Version_Explicit
;
1870 Spec
: constant Node_Id
:= Specification
(N
);
1872 Old_S
: Entity_Id
:= Empty
;
1873 Rename_Spec
: Entity_Id
;
1875 procedure Build_Class_Wide_Wrapper
1876 (Ren_Id
: out Entity_Id
;
1877 Wrap_Id
: out Entity_Id
);
1878 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1879 -- type with unknown discriminants and a generic primitive operation of
1880 -- the said type with a box require special processing when the actual
1881 -- is a class-wide type:
1884 -- type Formal_Typ (<>) is private;
1885 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1886 -- package Gen is ...
1888 -- package Inst is new Gen (Actual_Typ'Class);
1890 -- In this case the general renaming mechanism used in the prologue of
1891 -- an instance no longer applies:
1893 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1895 -- The above is replaced the following wrapper/renaming combination:
1897 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1899 -- Prim_Op (Param); -- primitive
1902 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1904 -- This transformation applies only if there is no explicit visible
1905 -- class-wide operation at the point of the instantiation. Ren_Id is
1906 -- the entity of the renaming declaration. When the transformation
1907 -- applies, Wrap_Id is the entity of the generated class-wide wrapper
1908 -- (or Any_Id). Otherwise, Wrap_Id is the entity of the class-wide
1911 procedure Check_Null_Exclusion
1914 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1915 -- following AI rules:
1917 -- If Ren is a renaming of a formal subprogram and one of its
1918 -- parameters has a null exclusion, then the corresponding formal
1919 -- in Sub must also have one. Otherwise the subtype of the Sub's
1920 -- formal parameter must exclude null.
1922 -- If Ren is a renaming of a formal function and its return
1923 -- profile has a null exclusion, then Sub's return profile must
1924 -- have one. Otherwise the subtype of Sub's return profile must
1927 procedure Freeze_Actual_Profile
;
1928 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1929 -- types: a callable entity freezes its profile, unless it has an
1930 -- incomplete untagged formal (RM 13.14(10.2/3)).
1932 function Has_Class_Wide_Actual
return Boolean;
1933 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1934 -- defaulted formal subprogram where the actual for the controlling
1935 -- formal type is class-wide.
1937 function Original_Subprogram
(Subp
: Entity_Id
) return Entity_Id
;
1938 -- Find renamed entity when the declaration is a renaming_as_body and
1939 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1940 -- rule that a renaming_as_body is illegal if the declaration occurs
1941 -- before the subprogram it completes is frozen, and renaming indirectly
1942 -- renames the subprogram itself.(Defect Report 8652/0027).
1944 ------------------------------
1945 -- Build_Class_Wide_Wrapper --
1946 ------------------------------
1948 procedure Build_Class_Wide_Wrapper
1949 (Ren_Id
: out Entity_Id
;
1950 Wrap_Id
: out Entity_Id
)
1952 Loc
: constant Source_Ptr
:= Sloc
(N
);
1955 (Subp_Id
: Entity_Id
;
1956 Params
: List_Id
) return Node_Id
;
1957 -- Create a dispatching call to invoke routine Subp_Id with actuals
1958 -- built from the parameter specifications of list Params.
1960 function Build_Expr_Fun_Call
1961 (Subp_Id
: Entity_Id
;
1962 Params
: List_Id
) return Node_Id
;
1963 -- Create a dispatching call to invoke function Subp_Id with actuals
1964 -- built from the parameter specifications of list Params. Return
1965 -- directly the call, so that it can be used inside an expression
1966 -- function. This is a specificity of the GNATprove mode.
1968 function Build_Spec
(Subp_Id
: Entity_Id
) return Node_Id
;
1969 -- Create a subprogram specification based on the subprogram profile
1972 function Find_Primitive
(Typ
: Entity_Id
) return Entity_Id
;
1973 -- Find a primitive subprogram of type Typ which matches the profile
1974 -- of the renaming declaration.
1976 procedure Interpretation_Error
(Subp_Id
: Entity_Id
);
1977 -- Emit a continuation error message suggesting subprogram Subp_Id as
1978 -- a possible interpretation.
1980 function Is_Intrinsic_Equality
(Subp_Id
: Entity_Id
) return Boolean;
1981 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1984 function Is_Suitable_Candidate
(Subp_Id
: Entity_Id
) return Boolean;
1985 -- Determine whether subprogram Subp_Id is a suitable candidate for
1986 -- the role of a wrapped subprogram.
1993 (Subp_Id
: Entity_Id
;
1994 Params
: List_Id
) return Node_Id
1996 Actuals
: constant List_Id
:= New_List
;
1997 Call_Ref
: constant Node_Id
:= New_Occurrence_Of
(Subp_Id
, Loc
);
2001 -- Build the actual parameters of the call
2003 Formal
:= First
(Params
);
2004 while Present
(Formal
) loop
2006 Make_Identifier
(Loc
, Chars
(Defining_Identifier
(Formal
))));
2011 -- return Subp_Id (Actuals);
2013 if Ekind_In
(Subp_Id
, E_Function
, E_Operator
) then
2015 Make_Simple_Return_Statement
(Loc
,
2017 Make_Function_Call
(Loc
,
2019 Parameter_Associations
=> Actuals
));
2022 -- Subp_Id (Actuals);
2026 Make_Procedure_Call_Statement
(Loc
,
2028 Parameter_Associations
=> Actuals
);
2032 -------------------------
2033 -- Build_Expr_Fun_Call --
2034 -------------------------
2036 function Build_Expr_Fun_Call
2037 (Subp_Id
: Entity_Id
;
2038 Params
: List_Id
) return Node_Id
2040 Actuals
: constant List_Id
:= New_List
;
2041 Call_Ref
: constant Node_Id
:= New_Occurrence_Of
(Subp_Id
, Loc
);
2045 pragma Assert
(Ekind_In
(Subp_Id
, E_Function
, E_Operator
));
2047 -- Build the actual parameters of the call
2049 Formal
:= First
(Params
);
2050 while Present
(Formal
) loop
2052 Make_Identifier
(Loc
, Chars
(Defining_Identifier
(Formal
))));
2057 -- Subp_Id (Actuals);
2060 Make_Function_Call
(Loc
,
2062 Parameter_Associations
=> Actuals
);
2063 end Build_Expr_Fun_Call
;
2069 function Build_Spec
(Subp_Id
: Entity_Id
) return Node_Id
is
2070 Params
: constant List_Id
:= Copy_Parameter_List
(Subp_Id
);
2071 Spec_Id
: constant Entity_Id
:=
2072 Make_Defining_Identifier
(Loc
,
2073 Chars
=> New_External_Name
(Chars
(Subp_Id
), 'R'));
2076 if Ekind
(Formal_Spec
) = E_Procedure
then
2078 Make_Procedure_Specification
(Loc
,
2079 Defining_Unit_Name
=> Spec_Id
,
2080 Parameter_Specifications
=> Params
);
2083 Make_Function_Specification
(Loc
,
2084 Defining_Unit_Name
=> Spec_Id
,
2085 Parameter_Specifications
=> Params
,
2086 Result_Definition
=>
2087 New_Copy_Tree
(Result_Definition
(Spec
)));
2091 --------------------
2092 -- Find_Primitive --
2093 --------------------
2095 function Find_Primitive
(Typ
: Entity_Id
) return Entity_Id
is
2096 procedure Replace_Parameter_Types
(Spec
: Node_Id
);
2097 -- Given a specification Spec, replace all class-wide parameter
2098 -- types with reference to type Typ.
2100 -----------------------------
2101 -- Replace_Parameter_Types --
2102 -----------------------------
2104 procedure Replace_Parameter_Types
(Spec
: Node_Id
) is
2106 Formal_Id
: Entity_Id
;
2107 Formal_Typ
: Node_Id
;
2110 Formal
:= First
(Parameter_Specifications
(Spec
));
2111 while Present
(Formal
) loop
2112 Formal_Id
:= Defining_Identifier
(Formal
);
2113 Formal_Typ
:= Parameter_Type
(Formal
);
2115 -- Create a new entity for each class-wide formal to prevent
2116 -- aliasing with the original renaming. Replace the type of
2117 -- such a parameter with the candidate type.
2119 if Nkind
(Formal_Typ
) = N_Identifier
2120 and then Is_Class_Wide_Type
(Etype
(Formal_Typ
))
2122 Set_Defining_Identifier
(Formal
,
2123 Make_Defining_Identifier
(Loc
, Chars
(Formal_Id
)));
2125 Set_Parameter_Type
(Formal
, New_Occurrence_Of
(Typ
, Loc
));
2130 end Replace_Parameter_Types
;
2134 Alt_Ren
: constant Node_Id
:= New_Copy_Tree
(N
);
2135 Alt_Nam
: constant Node_Id
:= Name
(Alt_Ren
);
2136 Alt_Spec
: constant Node_Id
:= Specification
(Alt_Ren
);
2137 Subp_Id
: Entity_Id
;
2139 -- Start of processing for Find_Primitive
2142 -- Each attempt to find a suitable primitive of a particular type
2143 -- operates on its own copy of the original renaming. As a result
2144 -- the original renaming is kept decoration and side-effect free.
2146 -- Inherit the overloaded status of the renamed subprogram name
2148 if Is_Overloaded
(Nam
) then
2149 Set_Is_Overloaded
(Alt_Nam
);
2150 Save_Interps
(Nam
, Alt_Nam
);
2153 -- The copied renaming is hidden from visibility to prevent the
2154 -- pollution of the enclosing context.
2156 Set_Defining_Unit_Name
(Alt_Spec
, Make_Temporary
(Loc
, 'R'));
2158 -- The types of all class-wide parameters must be changed to the
2161 Replace_Parameter_Types
(Alt_Spec
);
2163 -- Try to find a suitable primitive which matches the altered
2164 -- profile of the renaming specification.
2169 Nam
=> Name
(Alt_Ren
),
2170 New_S
=> Analyze_Subprogram_Specification
(Alt_Spec
),
2171 Is_Actual
=> Is_Actual
);
2173 -- Do not return Any_Id if the resolion of the altered profile
2174 -- failed as this complicates further checks on the caller side,
2175 -- return Empty instead.
2177 if Subp_Id
= Any_Id
then
2184 --------------------------
2185 -- Interpretation_Error --
2186 --------------------------
2188 procedure Interpretation_Error
(Subp_Id
: Entity_Id
) is
2190 Error_Msg_Sloc
:= Sloc
(Subp_Id
);
2192 if Is_Internal
(Subp_Id
) then
2194 ("\\possible interpretation: predefined & #",
2198 ("\\possible interpretation: & defined #", Spec
, Formal_Spec
);
2200 end Interpretation_Error
;
2202 ---------------------------
2203 -- Is_Intrinsic_Equality --
2204 ---------------------------
2206 function Is_Intrinsic_Equality
(Subp_Id
: Entity_Id
) return Boolean is
2209 Ekind
(Subp_Id
) = E_Operator
2210 and then Chars
(Subp_Id
) = Name_Op_Eq
2211 and then Is_Intrinsic_Subprogram
(Subp_Id
);
2212 end Is_Intrinsic_Equality
;
2214 ---------------------------
2215 -- Is_Suitable_Candidate --
2216 ---------------------------
2218 function Is_Suitable_Candidate
(Subp_Id
: Entity_Id
) return Boolean is
2220 if No
(Subp_Id
) then
2223 -- An intrinsic subprogram is never a good candidate. This is an
2224 -- indication of a missing primitive, either defined directly or
2225 -- inherited from a parent tagged type.
2227 elsif Is_Intrinsic_Subprogram
(Subp_Id
) then
2233 end Is_Suitable_Candidate
;
2237 Actual_Typ
: Entity_Id
:= Empty
;
2238 -- The actual class-wide type for Formal_Typ
2240 CW_Prim_OK
: Boolean;
2241 CW_Prim_Op
: Entity_Id
;
2242 -- The class-wide subprogram (if available) which corresponds to the
2243 -- renamed generic formal subprogram.
2245 Formal_Typ
: Entity_Id
:= Empty
;
2246 -- The generic formal type with unknown discriminants
2248 Root_Prim_OK
: Boolean;
2249 Root_Prim_Op
: Entity_Id
;
2250 -- The root type primitive (if available) which corresponds to the
2251 -- renamed generic formal subprogram.
2253 Root_Typ
: Entity_Id
:= Empty
;
2254 -- The root type of Actual_Typ
2256 Body_Decl
: Node_Id
;
2258 Prim_Op
: Entity_Id
;
2259 Spec_Decl
: Node_Id
;
2262 -- Start of processing for Build_Class_Wide_Wrapper
2265 -- Analyze the specification of the renaming in case the generation
2266 -- of the class-wide wrapper fails.
2268 Ren_Id
:= Analyze_Subprogram_Specification
(Spec
);
2271 -- Do not attempt to build a wrapper if the renaming is in error
2273 if Error_Posted
(Nam
) then
2277 -- Analyze the renamed name, but do not resolve it. The resolution is
2278 -- completed once a suitable subprogram is found.
2282 -- When the renamed name denotes the intrinsic operator equals, the
2283 -- name must be treated as overloaded. This allows for a potential
2284 -- match against the root type's predefined equality function.
2286 if Is_Intrinsic_Equality
(Entity
(Nam
)) then
2287 Set_Is_Overloaded
(Nam
);
2288 Collect_Interps
(Nam
);
2291 -- Step 1: Find the generic formal type with unknown discriminants
2292 -- and its corresponding class-wide actual type from the renamed
2293 -- generic formal subprogram.
2295 Formal
:= First_Formal
(Formal_Spec
);
2296 while Present
(Formal
) loop
2297 if Has_Unknown_Discriminants
(Etype
(Formal
))
2298 and then not Is_Class_Wide_Type
(Etype
(Formal
))
2299 and then Is_Class_Wide_Type
(Get_Instance_Of
(Etype
(Formal
)))
2301 Formal_Typ
:= Etype
(Formal
);
2302 Actual_Typ
:= Get_Instance_Of
(Formal_Typ
);
2303 Root_Typ
:= Etype
(Actual_Typ
);
2307 Next_Formal
(Formal
);
2310 -- The specification of the generic formal subprogram should always
2311 -- contain a formal type with unknown discriminants whose actual is
2312 -- a class-wide type, otherwise this indicates a failure in routine
2313 -- Has_Class_Wide_Actual.
2315 pragma Assert
(Present
(Formal_Typ
));
2317 -- Step 2: Find the proper class-wide subprogram or primitive which
2318 -- corresponds to the renamed generic formal subprogram.
2320 CW_Prim_Op
:= Find_Primitive
(Actual_Typ
);
2321 CW_Prim_OK
:= Is_Suitable_Candidate
(CW_Prim_Op
);
2322 Root_Prim_Op
:= Find_Primitive
(Root_Typ
);
2323 Root_Prim_OK
:= Is_Suitable_Candidate
(Root_Prim_Op
);
2325 -- The class-wide actual type has two subprograms which correspond to
2326 -- the renamed generic formal subprogram:
2328 -- with procedure Prim_Op (Param : Formal_Typ);
2330 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2331 -- procedure Prim_Op (Param : Actual_Typ'Class);
2333 -- Even though the declaration of the two subprograms is legal, a
2334 -- call to either one is ambiguous and therefore illegal.
2336 if CW_Prim_OK
and Root_Prim_OK
then
2338 -- A user-defined primitive has precedence over a predefined one
2340 if Is_Internal
(CW_Prim_Op
)
2341 and then not Is_Internal
(Root_Prim_Op
)
2343 Prim_Op
:= Root_Prim_Op
;
2345 elsif Is_Internal
(Root_Prim_Op
)
2346 and then not Is_Internal
(CW_Prim_Op
)
2348 Prim_Op
:= CW_Prim_Op
;
2350 elsif CW_Prim_Op
= Root_Prim_Op
then
2351 Prim_Op
:= Root_Prim_Op
;
2353 -- Otherwise both candidate subprograms are user-defined and
2358 ("ambiguous actual for generic subprogram &",
2360 Interpretation_Error
(Root_Prim_Op
);
2361 Interpretation_Error
(CW_Prim_Op
);
2365 elsif CW_Prim_OK
and not Root_Prim_OK
then
2366 Prim_Op
:= CW_Prim_Op
;
2368 elsif not CW_Prim_OK
and Root_Prim_OK
then
2369 Prim_Op
:= Root_Prim_Op
;
2371 -- An intrinsic equality may act as a suitable candidate in the case
2372 -- of a null type extension where the parent's equality is hidden. A
2373 -- call to an intrinsic equality is expanded as dispatching.
2375 elsif Present
(Root_Prim_Op
)
2376 and then Is_Intrinsic_Equality
(Root_Prim_Op
)
2378 Prim_Op
:= Root_Prim_Op
;
2380 -- Otherwise there are no candidate subprograms. Let the caller
2381 -- diagnose the error.
2387 -- At this point resolution has taken place and the name is no longer
2388 -- overloaded. Mark the primitive as referenced.
2390 Set_Is_Overloaded
(Name
(N
), False);
2391 Set_Referenced
(Prim_Op
);
2393 -- Do not generate a wrapper when the only candidate is a class-wide
2394 -- subprogram. Instead modify the renaming to directly map the actual
2395 -- to the generic formal.
2397 if CW_Prim_OK
and then Prim_Op
= CW_Prim_Op
then
2399 Rewrite
(Nam
, New_Occurrence_Of
(Prim_Op
, Loc
));
2403 -- Step 3: Create the declaration and the body of the wrapper, insert
2404 -- all the pieces into the tree.
2406 -- In GNATprove mode, create a function wrapper in the form of an
2407 -- expression function, so that an implicit postcondition relating
2408 -- the result of calling the wrapper function and the result of the
2409 -- dispatching call to the wrapped function is known during proof.
2412 and then Ekind_In
(Ren_Id
, E_Function
, E_Operator
)
2414 New_Spec
:= Build_Spec
(Ren_Id
);
2416 Make_Expression_Function
(Loc
,
2417 Specification
=> New_Spec
,
2420 (Subp_Id
=> Prim_Op
,
2421 Params
=> Parameter_Specifications
(New_Spec
)));
2423 Wrap_Id
:= Defining_Entity
(Body_Decl
);
2425 -- Otherwise, create separate spec and body for the subprogram
2429 Make_Subprogram_Declaration
(Loc
,
2430 Specification
=> Build_Spec
(Ren_Id
));
2431 Insert_Before_And_Analyze
(N
, Spec_Decl
);
2433 Wrap_Id
:= Defining_Entity
(Spec_Decl
);
2436 Make_Subprogram_Body
(Loc
,
2437 Specification
=> Build_Spec
(Ren_Id
),
2438 Declarations
=> New_List
,
2439 Handled_Statement_Sequence
=>
2440 Make_Handled_Sequence_Of_Statements
(Loc
,
2441 Statements
=> New_List
(
2443 (Subp_Id
=> Prim_Op
,
2445 Parameter_Specifications
2446 (Specification
(Spec_Decl
))))));
2448 Set_Corresponding_Body
(Spec_Decl
, Defining_Entity
(Body_Decl
));
2451 -- If the operator carries an Eliminated pragma, indicate that the
2452 -- wrapper is also to be eliminated, to prevent spurious error when
2453 -- using gnatelim on programs that include box-initialization of
2454 -- equality operators.
2456 Set_Is_Eliminated
(Wrap_Id
, Is_Eliminated
(Prim_Op
));
2458 -- In GNATprove mode, insert the body in the tree for analysis
2460 if GNATprove_Mode
then
2461 Insert_Before_And_Analyze
(N
, Body_Decl
);
2464 -- The generated body does not freeze and must be analyzed when the
2465 -- class-wide wrapper is frozen. The body is only needed if expansion
2468 if Expander_Active
then
2469 Append_Freeze_Action
(Wrap_Id
, Body_Decl
);
2472 -- Step 4: The subprogram renaming aliases the wrapper
2474 Rewrite
(Nam
, New_Occurrence_Of
(Wrap_Id
, Loc
));
2475 end Build_Class_Wide_Wrapper
;
2477 --------------------------
2478 -- Check_Null_Exclusion --
2479 --------------------------
2481 procedure Check_Null_Exclusion
2485 Ren_Formal
: Entity_Id
;
2486 Sub_Formal
: Entity_Id
;
2491 Ren_Formal
:= First_Formal
(Ren
);
2492 Sub_Formal
:= First_Formal
(Sub
);
2493 while Present
(Ren_Formal
) and then Present
(Sub_Formal
) loop
2494 if Has_Null_Exclusion
(Parent
(Ren_Formal
))
2496 not (Has_Null_Exclusion
(Parent
(Sub_Formal
))
2497 or else Can_Never_Be_Null
(Etype
(Sub_Formal
)))
2500 ("`NOT NULL` required for parameter &",
2501 Parent
(Sub_Formal
), Sub_Formal
);
2504 Next_Formal
(Ren_Formal
);
2505 Next_Formal
(Sub_Formal
);
2508 -- Return profile check
2510 if Nkind
(Parent
(Ren
)) = N_Function_Specification
2511 and then Nkind
(Parent
(Sub
)) = N_Function_Specification
2512 and then Has_Null_Exclusion
(Parent
(Ren
))
2513 and then not (Has_Null_Exclusion
(Parent
(Sub
))
2514 or else Can_Never_Be_Null
(Etype
(Sub
)))
2517 ("return must specify `NOT NULL`",
2518 Result_Definition
(Parent
(Sub
)));
2520 end Check_Null_Exclusion
;
2522 ---------------------------
2523 -- Freeze_Actual_Profile --
2524 ---------------------------
2526 procedure Freeze_Actual_Profile
is
2528 Has_Untagged_Inc
: Boolean;
2529 Instantiation_Node
: constant Node_Id
:= Parent
(N
);
2532 if Ada_Version
>= Ada_2012
then
2533 F
:= First_Formal
(Formal_Spec
);
2534 Has_Untagged_Inc
:= False;
2535 while Present
(F
) loop
2536 if Ekind
(Etype
(F
)) = E_Incomplete_Type
2537 and then not Is_Tagged_Type
(Etype
(F
))
2539 Has_Untagged_Inc
:= True;
2543 F
:= Next_Formal
(F
);
2546 if Ekind
(Formal_Spec
) = E_Function
2547 and then not Is_Tagged_Type
(Etype
(Formal_Spec
))
2549 Has_Untagged_Inc
:= True;
2552 if not Has_Untagged_Inc
then
2553 F
:= First_Formal
(Old_S
);
2554 while Present
(F
) loop
2555 Freeze_Before
(Instantiation_Node
, Etype
(F
));
2557 if Is_Incomplete_Or_Private_Type
(Etype
(F
))
2558 and then No
(Underlying_Type
(Etype
(F
)))
2560 -- Exclude generic types, or types derived from them.
2561 -- They will be frozen in the enclosing instance.
2563 if Is_Generic_Type
(Etype
(F
))
2564 or else Is_Generic_Type
(Root_Type
(Etype
(F
)))
2568 -- A limited view of a type declared elsewhere needs no
2569 -- freezing actions.
2571 elsif From_Limited_With
(Etype
(F
)) then
2576 ("type& must be frozen before this point",
2577 Instantiation_Node
, Etype
(F
));
2581 F
:= Next_Formal
(F
);
2585 end Freeze_Actual_Profile
;
2587 ---------------------------
2588 -- Has_Class_Wide_Actual --
2589 ---------------------------
2591 function Has_Class_Wide_Actual
return Boolean is
2593 Formal_Typ
: Entity_Id
;
2597 Formal
:= First_Formal
(Formal_Spec
);
2598 while Present
(Formal
) loop
2599 Formal_Typ
:= Etype
(Formal
);
2601 if Has_Unknown_Discriminants
(Formal_Typ
)
2602 and then not Is_Class_Wide_Type
(Formal_Typ
)
2603 and then Is_Class_Wide_Type
(Get_Instance_Of
(Formal_Typ
))
2608 Next_Formal
(Formal
);
2613 end Has_Class_Wide_Actual
;
2615 -------------------------
2616 -- Original_Subprogram --
2617 -------------------------
2619 function Original_Subprogram
(Subp
: Entity_Id
) return Entity_Id
is
2620 Orig_Decl
: Node_Id
;
2621 Orig_Subp
: Entity_Id
;
2624 -- First case: renamed entity is itself a renaming
2626 if Present
(Alias
(Subp
)) then
2627 return Alias
(Subp
);
2629 elsif Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Declaration
2630 and then Present
(Corresponding_Body
(Unit_Declaration_Node
(Subp
)))
2632 -- Check if renamed entity is a renaming_as_body
2635 Unit_Declaration_Node
2636 (Corresponding_Body
(Unit_Declaration_Node
(Subp
)));
2638 if Nkind
(Orig_Decl
) = N_Subprogram_Renaming_Declaration
then
2639 Orig_Subp
:= Entity
(Name
(Orig_Decl
));
2641 if Orig_Subp
= Rename_Spec
then
2643 -- Circularity detected
2648 return (Original_Subprogram
(Orig_Subp
));
2656 end Original_Subprogram
;
2660 CW_Actual
: constant Boolean := Has_Class_Wide_Actual
;
2661 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2662 -- defaulted formal subprogram when the actual for a related formal
2663 -- type is class-wide.
2665 Inst_Node
: Node_Id
:= Empty
;
2668 -- Start of processing for Analyze_Subprogram_Renaming
2671 -- We must test for the attribute renaming case before the Analyze
2672 -- call because otherwise Sem_Attr will complain that the attribute
2673 -- is missing an argument when it is analyzed.
2675 if Nkind
(Nam
) = N_Attribute_Reference
then
2677 -- In the case of an abstract formal subprogram association, rewrite
2678 -- an actual given by a stream attribute as the name of the
2679 -- corresponding stream primitive of the type.
2681 -- In a generic context the stream operations are not generated, and
2682 -- this must be treated as a normal attribute reference, to be
2683 -- expanded in subsequent instantiations.
2686 and then Is_Abstract_Subprogram
(Formal_Spec
)
2687 and then Expander_Active
2690 Prefix_Type
: constant Entity_Id
:= Entity
(Prefix
(Nam
));
2691 Stream_Prim
: Entity_Id
;
2694 -- The class-wide forms of the stream attributes are not
2695 -- primitive dispatching operations (even though they
2696 -- internally dispatch to a stream attribute).
2698 if Is_Class_Wide_Type
(Prefix_Type
) then
2700 ("attribute must be a primitive dispatching operation",
2705 -- Retrieve the primitive subprogram associated with the
2706 -- attribute. This can only be a stream attribute, since those
2707 -- are the only ones that are dispatching (and the actual for
2708 -- an abstract formal subprogram must be dispatching
2711 case Attribute_Name
(Nam
) is
2714 Find_Optional_Prim_Op
(Prefix_Type
, TSS_Stream_Input
);
2718 Find_Optional_Prim_Op
(Prefix_Type
, TSS_Stream_Output
);
2722 Find_Optional_Prim_Op
(Prefix_Type
, TSS_Stream_Read
);
2726 Find_Optional_Prim_Op
(Prefix_Type
, TSS_Stream_Write
);
2730 ("attribute must be a primitive dispatching operation",
2735 -- If no operation was found, and the type is limited, the user
2736 -- should have defined one.
2738 if No
(Stream_Prim
) then
2739 if Is_Limited_Type
(Prefix_Type
) then
2741 ("stream operation not defined for type&",
2745 -- Otherwise, compiler should have generated default
2748 raise Program_Error
;
2752 -- Rewrite the attribute into the name of its corresponding
2753 -- primitive dispatching subprogram. We can then proceed with
2754 -- the usual processing for subprogram renamings.
2757 Prim_Name
: constant Node_Id
:=
2758 Make_Identifier
(Sloc
(Nam
),
2759 Chars
=> Chars
(Stream_Prim
));
2761 Set_Entity
(Prim_Name
, Stream_Prim
);
2762 Rewrite
(Nam
, Prim_Name
);
2767 -- Normal processing for a renaming of an attribute
2770 Attribute_Renaming
(N
);
2775 -- Check whether this declaration corresponds to the instantiation of a
2776 -- formal subprogram.
2778 -- If this is an instantiation, the corresponding actual is frozen and
2779 -- error messages can be made more precise. If this is a default
2780 -- subprogram, the entity is already established in the generic, and is
2781 -- not retrieved by visibility. If it is a default with a box, the
2782 -- candidate interpretations, if any, have been collected when building
2783 -- the renaming declaration. If overloaded, the proper interpretation is
2784 -- determined in Find_Renamed_Entity. If the entity is an operator,
2785 -- Find_Renamed_Entity applies additional visibility checks.
2788 Inst_Node
:= Unit_Declaration_Node
(Formal_Spec
);
2790 -- Check whether the renaming is for a defaulted actual subprogram
2791 -- with a class-wide actual.
2793 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2794 -- is an external axiomatization on the package.
2797 and then Box_Present
(Inst_Node
)
2801 Present
(Containing_Package_With_Ext_Axioms
(Formal_Spec
)))
2803 Build_Class_Wide_Wrapper
(New_S
, Old_S
);
2805 elsif Is_Entity_Name
(Nam
)
2806 and then Present
(Entity
(Nam
))
2807 and then not Comes_From_Source
(Nam
)
2808 and then not Is_Overloaded
(Nam
)
2810 Old_S
:= Entity
(Nam
);
2812 -- The subprogram renaming declaration may become Ghost if it
2813 -- renames a Ghost entity.
2815 Mark_Ghost_Renaming
(N
, Old_S
);
2817 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2821 if Ekind
(Old_S
) = E_Operator
then
2825 if Box_Present
(Inst_Node
) then
2826 Old_S
:= Find_Renamed_Entity
(N
, Name
(N
), New_S
, Is_Actual
);
2828 -- If there is an immediately visible homonym of the operator
2829 -- and the declaration has a default, this is worth a warning
2830 -- because the user probably did not intend to get the pre-
2831 -- defined operator, visible in the generic declaration. To
2832 -- find if there is an intended candidate, analyze the renaming
2833 -- again in the current context.
2835 elsif Scope
(Old_S
) = Standard_Standard
2836 and then Present
(Default_Name
(Inst_Node
))
2839 Decl
: constant Node_Id
:= New_Copy_Tree
(N
);
2843 Set_Entity
(Name
(Decl
), Empty
);
2844 Analyze
(Name
(Decl
));
2846 Find_Renamed_Entity
(Decl
, Name
(Decl
), New_S
, True);
2849 and then In_Open_Scopes
(Scope
(Hidden
))
2850 and then Is_Immediately_Visible
(Hidden
)
2851 and then Comes_From_Source
(Hidden
)
2852 and then Hidden
/= Old_S
2854 Error_Msg_Sloc
:= Sloc
(Hidden
);
2856 ("default subprogram is resolved in the generic "
2857 & "declaration (RM 12.6(17))??", N
);
2858 Error_Msg_NE
("\and will not use & #??", N
, Hidden
);
2867 -- The subprogram renaming declaration may become Ghost if it
2868 -- renames a Ghost entity.
2870 if Is_Entity_Name
(Nam
) then
2871 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
2874 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2878 -- Renamed entity must be analyzed first, to avoid being hidden by
2879 -- new name (which might be the same in a generic instance).
2883 -- The subprogram renaming declaration may become Ghost if it renames
2886 if Is_Entity_Name
(Nam
) then
2887 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
2890 -- The renaming defines a new overloaded entity, which is analyzed
2891 -- like a subprogram declaration.
2893 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2896 if Current_Scope
/= Standard_Standard
then
2897 Set_Is_Pure
(New_S
, Is_Pure
(Current_Scope
));
2900 -- Set SPARK mode from current context
2902 Set_SPARK_Pragma
(New_S
, SPARK_Mode_Pragma
);
2903 Set_SPARK_Pragma_Inherited
(New_S
);
2905 Rename_Spec
:= Find_Corresponding_Spec
(N
);
2907 -- Case of Renaming_As_Body
2909 if Present
(Rename_Spec
) then
2910 Check_Previous_Null_Procedure
(N
, Rename_Spec
);
2912 -- Renaming declaration is the completion of the declaration of
2913 -- Rename_Spec. We build an actual body for it at the freezing point.
2915 Set_Corresponding_Spec
(N
, Rename_Spec
);
2917 -- Deal with special case of stream functions of abstract types
2920 if Nkind
(Unit_Declaration_Node
(Rename_Spec
)) =
2921 N_Abstract_Subprogram_Declaration
2923 -- Input stream functions are abstract if the object type is
2924 -- abstract. Similarly, all default stream functions for an
2925 -- interface type are abstract. However, these subprograms may
2926 -- receive explicit declarations in representation clauses, making
2927 -- the attribute subprograms usable as defaults in subsequent
2929 -- In this case we rewrite the declaration to make the subprogram
2930 -- non-abstract. We remove the previous declaration, and insert
2931 -- the new one at the point of the renaming, to prevent premature
2932 -- access to unfrozen types. The new declaration reuses the
2933 -- specification of the previous one, and must not be analyzed.
2936 (Is_Primitive
(Entity
(Nam
))
2938 Is_Abstract_Type
(Find_Dispatching_Type
(Entity
(Nam
))));
2940 Old_Decl
: constant Node_Id
:=
2941 Unit_Declaration_Node
(Rename_Spec
);
2942 New_Decl
: constant Node_Id
:=
2943 Make_Subprogram_Declaration
(Sloc
(N
),
2945 Relocate_Node
(Specification
(Old_Decl
)));
2948 Insert_After
(N
, New_Decl
);
2949 Set_Is_Abstract_Subprogram
(Rename_Spec
, False);
2950 Set_Analyzed
(New_Decl
);
2954 Set_Corresponding_Body
(Unit_Declaration_Node
(Rename_Spec
), New_S
);
2956 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
2957 Error_Msg_N
("(Ada 83) renaming cannot serve as a body", N
);
2960 Set_Convention
(New_S
, Convention
(Rename_Spec
));
2961 Check_Fully_Conformant
(New_S
, Rename_Spec
);
2962 Set_Public_Status
(New_S
);
2964 if No_Return
(Rename_Spec
)
2965 and then not No_Return
(Entity
(Nam
))
2967 Error_Msg_N
("renaming completes a No_Return procedure", N
);
2969 ("\renamed procedure must be nonreturning (RM 6.5.1 (7/2))", N
);
2972 -- The specification does not introduce new formals, but only
2973 -- repeats the formals of the original subprogram declaration.
2974 -- For cross-reference purposes, and for refactoring tools, we
2975 -- treat the formals of the renaming declaration as body formals.
2977 Reference_Body_Formals
(Rename_Spec
, New_S
);
2979 -- Indicate that the entity in the declaration functions like the
2980 -- corresponding body, and is not a new entity. The body will be
2981 -- constructed later at the freeze point, so indicate that the
2982 -- completion has not been seen yet.
2984 Set_Ekind
(New_S
, E_Subprogram_Body
);
2985 New_S
:= Rename_Spec
;
2986 Set_Has_Completion
(Rename_Spec
, False);
2988 -- Ada 2005: check overriding indicator
2990 if Present
(Overridden_Operation
(Rename_Spec
)) then
2991 if Must_Not_Override
(Specification
(N
)) then
2993 ("subprogram& overrides inherited operation",
2997 and then not Must_Override
(Specification
(N
))
2999 Style
.Missing_Overriding
(N
, Rename_Spec
);
3002 elsif Must_Override
(Specification
(N
)) then
3003 Error_Msg_NE
("subprogram& is not overriding", N
, Rename_Spec
);
3006 -- Normal subprogram renaming (not renaming as body)
3009 Generate_Definition
(New_S
);
3010 New_Overloaded_Entity
(New_S
);
3012 if Is_Entity_Name
(Nam
)
3013 and then Is_Intrinsic_Subprogram
(Entity
(Nam
))
3017 Check_Delayed_Subprogram
(New_S
);
3021 -- There is no need for elaboration checks on the new entity, which may
3022 -- be called before the next freezing point where the body will appear.
3023 -- Elaboration checks refer to the real entity, not the one created by
3024 -- the renaming declaration.
3026 Set_Kill_Elaboration_Checks
(New_S
, True);
3028 -- If we had a previous error, indicate a completely is present to stop
3029 -- junk cascaded messages, but don't take any further action.
3031 if Etype
(Nam
) = Any_Type
then
3032 Set_Has_Completion
(New_S
);
3035 -- Case where name has the form of a selected component
3037 elsif Nkind
(Nam
) = N_Selected_Component
then
3039 -- A name which has the form A.B can designate an entry of task A, a
3040 -- protected operation of protected object A, or finally a primitive
3041 -- operation of object A. In the later case, A is an object of some
3042 -- tagged type, or an access type that denotes one such. To further
3043 -- distinguish these cases, note that the scope of a task entry or
3044 -- protected operation is type of the prefix.
3046 -- The prefix could be an overloaded function call that returns both
3047 -- kinds of operations. This overloading pathology is left to the
3048 -- dedicated reader ???
3051 T
: constant Entity_Id
:= Etype
(Prefix
(Nam
));
3059 and then Is_Tagged_Type
(Designated_Type
(T
))))
3060 and then Scope
(Entity
(Selector_Name
(Nam
))) /= T
3062 Analyze_Renamed_Primitive_Operation
3063 (N
, New_S
, Present
(Rename_Spec
));
3067 -- Renamed entity is an entry or protected operation. For those
3068 -- cases an explicit body is built (at the point of freezing of
3069 -- this entity) that contains a call to the renamed entity.
3071 -- This is not allowed for renaming as body if the renamed
3072 -- spec is already frozen (see RM 8.5.4(5) for details).
3074 if Present
(Rename_Spec
) and then Is_Frozen
(Rename_Spec
) then
3076 ("renaming-as-body cannot rename entry as subprogram", N
);
3078 ("\since & is already frozen (RM 8.5.4(5))",
3081 Analyze_Renamed_Entry
(N
, New_S
, Present
(Rename_Spec
));
3088 -- Case where name is an explicit dereference X.all
3090 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
3092 -- Renamed entity is designated by access_to_subprogram expression.
3093 -- Must build body to encapsulate call, as in the entry case.
3095 Analyze_Renamed_Dereference
(N
, New_S
, Present
(Rename_Spec
));
3098 -- Indexed component
3100 elsif Nkind
(Nam
) = N_Indexed_Component
then
3101 Analyze_Renamed_Family_Member
(N
, New_S
, Present
(Rename_Spec
));
3104 -- Character literal
3106 elsif Nkind
(Nam
) = N_Character_Literal
then
3107 Analyze_Renamed_Character
(N
, New_S
, Present
(Rename_Spec
));
3110 -- Only remaining case is where we have a non-entity name, or a renaming
3111 -- of some other non-overloadable entity.
3113 elsif not Is_Entity_Name
(Nam
)
3114 or else not Is_Overloadable
(Entity
(Nam
))
3116 -- Do not mention the renaming if it comes from an instance
3118 if not Is_Actual
then
3119 Error_Msg_N
("expect valid subprogram name in renaming", N
);
3121 Error_Msg_NE
("no visible subprogram for formal&", N
, Nam
);
3127 -- Find the renamed entity that matches the given specification. Disable
3128 -- Ada_83 because there is no requirement of full conformance between
3129 -- renamed entity and new entity, even though the same circuit is used.
3131 -- This is a bit of an odd case, which introduces a really irregular use
3132 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3135 Ada_Version
:= Ada_Version_Type
'Max (Ada_Version
, Ada_95
);
3136 Ada_Version_Pragma
:= Empty
;
3137 Ada_Version_Explicit
:= Ada_Version
;
3140 Old_S
:= Find_Renamed_Entity
(N
, Name
(N
), New_S
, Is_Actual
);
3142 -- The visible operation may be an inherited abstract operation that
3143 -- was overridden in the private part, in which case a call will
3144 -- dispatch to the overriding operation. Use the overriding one in
3145 -- the renaming declaration, to prevent spurious errors below.
3147 if Is_Overloadable
(Old_S
)
3148 and then Is_Abstract_Subprogram
(Old_S
)
3149 and then No
(DTC_Entity
(Old_S
))
3150 and then Present
(Alias
(Old_S
))
3151 and then not Is_Abstract_Subprogram
(Alias
(Old_S
))
3152 and then Present
(Overridden_Operation
(Alias
(Old_S
)))
3154 Old_S
:= Alias
(Old_S
);
3157 -- When the renamed subprogram is overloaded and used as an actual
3158 -- of a generic, its entity is set to the first available homonym.
3159 -- We must first disambiguate the name, then set the proper entity.
3161 if Is_Actual
and then Is_Overloaded
(Nam
) then
3162 Set_Entity
(Nam
, Old_S
);
3166 -- Most common case: subprogram renames subprogram. No body is generated
3167 -- in this case, so we must indicate the declaration is complete as is.
3168 -- and inherit various attributes of the renamed subprogram.
3170 if No
(Rename_Spec
) then
3171 Set_Has_Completion
(New_S
);
3172 Set_Is_Imported
(New_S
, Is_Imported
(Entity
(Nam
)));
3173 Set_Is_Pure
(New_S
, Is_Pure
(Entity
(Nam
)));
3174 Set_Is_Preelaborated
(New_S
, Is_Preelaborated
(Entity
(Nam
)));
3176 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3177 -- between a subprogram and its correct renaming.
3179 -- Note: the Any_Id check is a guard that prevents compiler crashes
3180 -- when performing a null exclusion check between a renaming and a
3181 -- renamed subprogram that has been found to be illegal.
3183 if Ada_Version
>= Ada_2005
and then Entity
(Nam
) /= Any_Id
then
3184 Check_Null_Exclusion
3186 Sub
=> Entity
(Nam
));
3189 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3190 -- overriding. The flag Requires_Overriding is set very selectively
3191 -- and misses some other illegal cases. The additional conditions
3192 -- checked below are sufficient but not necessary ???
3194 -- The rule does not apply to the renaming generated for an actual
3195 -- subprogram in an instance.
3200 -- Guard against previous errors, and omit renamings of predefined
3203 elsif not Ekind_In
(Old_S
, E_Function
, E_Procedure
) then
3206 elsif Requires_Overriding
(Old_S
)
3208 (Is_Abstract_Subprogram
(Old_S
)
3209 and then Present
(Find_Dispatching_Type
(Old_S
))
3211 not Is_Abstract_Type
(Find_Dispatching_Type
(Old_S
)))
3214 ("renamed entity cannot be subprogram that requires overriding "
3215 & "(RM 8.5.4 (5.1))", N
);
3219 Prev
: constant Entity_Id
:= Overridden_Operation
(New_S
);
3223 (Has_Non_Trivial_Precondition
(Prev
)
3224 or else Has_Non_Trivial_Precondition
(Old_S
))
3227 ("conflicting inherited classwide preconditions in renaming "
3228 & "of& (RM 6.1.1 (17)", N
, Old_S
);
3233 if Old_S
/= Any_Id
then
3234 if Is_Actual
and then From_Default
(N
) then
3236 -- This is an implicit reference to the default actual
3238 Generate_Reference
(Old_S
, Nam
, Typ
=> 'i', Force
=> True);
3241 Generate_Reference
(Old_S
, Nam
);
3244 Check_Internal_Protected_Use
(N
, Old_S
);
3246 -- For a renaming-as-body, require subtype conformance, but if the
3247 -- declaration being completed has not been frozen, then inherit the
3248 -- convention of the renamed subprogram prior to checking conformance
3249 -- (unless the renaming has an explicit convention established; the
3250 -- rule stated in the RM doesn't seem to address this ???).
3252 if Present
(Rename_Spec
) then
3253 Generate_Reference
(Rename_Spec
, Defining_Entity
(Spec
), 'b');
3254 Style
.Check_Identifier
(Defining_Entity
(Spec
), Rename_Spec
);
3256 if not Is_Frozen
(Rename_Spec
) then
3257 if not Has_Convention_Pragma
(Rename_Spec
) then
3258 Set_Convention
(New_S
, Convention
(Old_S
));
3261 if Ekind
(Old_S
) /= E_Operator
then
3262 Check_Mode_Conformant
(New_S
, Old_S
, Spec
);
3265 if Original_Subprogram
(Old_S
) = Rename_Spec
then
3266 Error_Msg_N
("unfrozen subprogram cannot rename itself ", N
);
3269 Check_Subtype_Conformant
(New_S
, Old_S
, Spec
);
3272 Check_Frozen_Renaming
(N
, Rename_Spec
);
3274 -- Check explicitly that renamed entity is not intrinsic, because
3275 -- in a generic the renamed body is not built. In this case,
3276 -- the renaming_as_body is a completion.
3278 if Inside_A_Generic
then
3279 if Is_Frozen
(Rename_Spec
)
3280 and then Is_Intrinsic_Subprogram
(Old_S
)
3283 ("subprogram in renaming_as_body cannot be intrinsic",
3287 Set_Has_Completion
(Rename_Spec
);
3290 elsif Ekind
(Old_S
) /= E_Operator
then
3292 -- If this a defaulted subprogram for a class-wide actual there is
3293 -- no check for mode conformance, given that the signatures don't
3294 -- match (the source mentions T but the actual mentions T'Class).
3298 elsif not Is_Actual
or else No
(Enclosing_Instance
) then
3299 Check_Mode_Conformant
(New_S
, Old_S
);
3302 if Is_Actual
and then Error_Posted
(New_S
) then
3303 Error_Msg_NE
("invalid actual subprogram: & #!", N
, Old_S
);
3307 if No
(Rename_Spec
) then
3309 -- The parameter profile of the new entity is that of the renamed
3310 -- entity: the subtypes given in the specification are irrelevant.
3312 Inherit_Renamed_Profile
(New_S
, Old_S
);
3314 -- A call to the subprogram is transformed into a call to the
3315 -- renamed entity. This is transitive if the renamed entity is
3316 -- itself a renaming.
3318 if Present
(Alias
(Old_S
)) then
3319 Set_Alias
(New_S
, Alias
(Old_S
));
3321 Set_Alias
(New_S
, Old_S
);
3324 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3325 -- renaming as body, since the entity in this case is not an
3326 -- intrinsic (it calls an intrinsic, but we have a real body for
3327 -- this call, and it is in this body that the required intrinsic
3328 -- processing will take place).
3330 -- Also, if this is a renaming of inequality, the renamed operator
3331 -- is intrinsic, but what matters is the corresponding equality
3332 -- operator, which may be user-defined.
3334 Set_Is_Intrinsic_Subprogram
3336 Is_Intrinsic_Subprogram
(Old_S
)
3338 (Chars
(Old_S
) /= Name_Op_Ne
3339 or else Ekind
(Old_S
) = E_Operator
3340 or else Is_Intrinsic_Subprogram
3341 (Corresponding_Equality
(Old_S
))));
3343 if Ekind
(Alias
(New_S
)) = E_Operator
then
3344 Set_Has_Delayed_Freeze
(New_S
, False);
3347 -- If the renaming corresponds to an association for an abstract
3348 -- formal subprogram, then various attributes must be set to
3349 -- indicate that the renaming is an abstract dispatching operation
3350 -- with a controlling type.
3352 if Is_Actual
and then Is_Abstract_Subprogram
(Formal_Spec
) then
3354 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3355 -- see it as corresponding to a generic association for a
3356 -- formal abstract subprogram
3358 Set_Is_Abstract_Subprogram
(New_S
);
3361 New_S_Ctrl_Type
: constant Entity_Id
:=
3362 Find_Dispatching_Type
(New_S
);
3363 Old_S_Ctrl_Type
: constant Entity_Id
:=
3364 Find_Dispatching_Type
(Old_S
);
3368 -- The actual must match the (instance of the) formal,
3369 -- and must be a controlling type.
3371 if Old_S_Ctrl_Type
/= New_S_Ctrl_Type
3372 or else No
(New_S_Ctrl_Type
)
3375 ("actual must be dispatching subprogram for type&",
3376 Nam
, New_S_Ctrl_Type
);
3379 Set_Is_Dispatching_Operation
(New_S
);
3380 Check_Controlling_Formals
(New_S_Ctrl_Type
, New_S
);
3382 -- If the actual in the formal subprogram is itself a
3383 -- formal abstract subprogram association, there's no
3384 -- dispatch table component or position to inherit.
3386 if Present
(DTC_Entity
(Old_S
)) then
3387 Set_DTC_Entity
(New_S
, DTC_Entity
(Old_S
));
3388 Set_DT_Position_Value
(New_S
, DT_Position
(Old_S
));
3398 -- The following is illegal, because F hides whatever other F may
3400 -- function F (...) renames F;
3403 or else (Nkind
(Nam
) /= N_Expanded_Name
3404 and then Chars
(Old_S
) = Chars
(New_S
))
3406 Error_Msg_N
("subprogram cannot rename itself", N
);
3408 -- This is illegal even if we use a selector:
3409 -- function F (...) renames Pkg.F;
3410 -- because F is still hidden.
3412 elsif Nkind
(Nam
) = N_Expanded_Name
3413 and then Entity
(Prefix
(Nam
)) = Current_Scope
3414 and then Chars
(Selector_Name
(Nam
)) = Chars
(New_S
)
3416 -- This is an error, but we overlook the error and accept the
3417 -- renaming if the special Overriding_Renamings mode is in effect.
3419 if not Overriding_Renamings
then
3421 ("implicit operation& is not visible (RM 8.3 (15))",
3426 Set_Convention
(New_S
, Convention
(Old_S
));
3428 if Is_Abstract_Subprogram
(Old_S
) then
3429 if Present
(Rename_Spec
) then
3431 ("a renaming-as-body cannot rename an abstract subprogram",
3433 Set_Has_Completion
(Rename_Spec
);
3435 Set_Is_Abstract_Subprogram
(New_S
);
3439 Check_Library_Unit_Renaming
(N
, Old_S
);
3441 -- Pathological case: procedure renames entry in the scope of its
3442 -- task. Entry is given by simple name, but body must be built for
3443 -- procedure. Of course if called it will deadlock.
3445 if Ekind
(Old_S
) = E_Entry
then
3446 Set_Has_Completion
(New_S
, False);
3447 Set_Alias
(New_S
, Empty
);
3450 -- Do not freeze the renaming nor the renamed entity when the context
3451 -- is an enclosing generic. Freezing is an expansion activity, and in
3452 -- addition the renamed entity may depend on the generic formals of
3453 -- the enclosing generic.
3455 if Is_Actual
and not Inside_A_Generic
then
3456 Freeze_Before
(N
, Old_S
);
3457 Freeze_Actual_Profile
;
3458 Set_Has_Delayed_Freeze
(New_S
, False);
3459 Freeze_Before
(N
, New_S
);
3461 -- An abstract subprogram is only allowed as an actual in the case
3462 -- where the formal subprogram is also abstract.
3464 if (Ekind
(Old_S
) = E_Procedure
or else Ekind
(Old_S
) = E_Function
)
3465 and then Is_Abstract_Subprogram
(Old_S
)
3466 and then not Is_Abstract_Subprogram
(Formal_Spec
)
3469 ("abstract subprogram not allowed as generic actual", Nam
);
3474 -- A common error is to assume that implicit operators for types are
3475 -- defined in Standard, or in the scope of a subtype. In those cases
3476 -- where the renamed entity is given with an expanded name, it is
3477 -- worth mentioning that operators for the type are not declared in
3478 -- the scope given by the prefix.
3480 if Nkind
(Nam
) = N_Expanded_Name
3481 and then Nkind
(Selector_Name
(Nam
)) = N_Operator_Symbol
3482 and then Scope
(Entity
(Nam
)) = Standard_Standard
3485 T
: constant Entity_Id
:=
3486 Base_Type
(Etype
(First_Formal
(New_S
)));
3488 Error_Msg_Node_2
:= Prefix
(Nam
);
3490 ("operator for type& is not declared in&", Prefix
(Nam
), T
);
3495 ("no visible subprogram matches the specification for&",
3499 if Present
(Candidate_Renaming
) then
3506 F1
:= First_Formal
(Candidate_Renaming
);
3507 F2
:= First_Formal
(New_S
);
3508 T1
:= First_Subtype
(Etype
(F1
));
3509 while Present
(F1
) and then Present
(F2
) loop
3514 if Present
(F1
) and then Present
(Default_Value
(F1
)) then
3515 if Present
(Next_Formal
(F1
)) then
3517 ("\missing specification for & and other formals with "
3518 & "defaults", Spec
, F1
);
3520 Error_Msg_NE
("\missing specification for &", Spec
, F1
);
3524 if Nkind
(Nam
) = N_Operator_Symbol
3525 and then From_Default
(N
)
3527 Error_Msg_Node_2
:= T1
;
3529 ("default & on & is not directly visible", Nam
, Nam
);
3535 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3536 -- controlling access parameters are known non-null for the renamed
3537 -- subprogram. Test also applies to a subprogram instantiation that
3538 -- is dispatching. Test is skipped if some previous error was detected
3539 -- that set Old_S to Any_Id.
3541 if Ada_Version
>= Ada_2005
3542 and then Old_S
/= Any_Id
3543 and then not Is_Dispatching_Operation
(Old_S
)
3544 and then Is_Dispatching_Operation
(New_S
)
3551 Old_F
:= First_Formal
(Old_S
);
3552 New_F
:= First_Formal
(New_S
);
3553 while Present
(Old_F
) loop
3554 if Ekind
(Etype
(Old_F
)) = E_Anonymous_Access_Type
3555 and then Is_Controlling_Formal
(New_F
)
3556 and then not Can_Never_Be_Null
(Old_F
)
3558 Error_Msg_N
("access parameter is controlling,", New_F
);
3560 ("\corresponding parameter of& must be explicitly null "
3561 & "excluding", New_F
, Old_S
);
3564 Next_Formal
(Old_F
);
3565 Next_Formal
(New_F
);
3570 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3571 -- is to warn if an operator is being renamed as a different operator.
3572 -- If the operator is predefined, examine the kind of the entity, not
3573 -- the abbreviated declaration in Standard.
3575 if Comes_From_Source
(N
)
3576 and then Present
(Old_S
)
3577 and then (Nkind
(Old_S
) = N_Defining_Operator_Symbol
3578 or else Ekind
(Old_S
) = E_Operator
)
3579 and then Nkind
(New_S
) = N_Defining_Operator_Symbol
3580 and then Chars
(Old_S
) /= Chars
(New_S
)
3583 ("& is being renamed as a different operator??", N
, Old_S
);
3586 -- Check for renaming of obsolescent subprogram
3588 Check_Obsolescent_2005_Entity
(Entity
(Nam
), Nam
);
3590 -- Another warning or some utility: if the new subprogram as the same
3591 -- name as the old one, the old one is not hidden by an outer homograph,
3592 -- the new one is not a public symbol, and the old one is otherwise
3593 -- directly visible, the renaming is superfluous.
3595 if Chars
(Old_S
) = Chars
(New_S
)
3596 and then Comes_From_Source
(N
)
3597 and then Scope
(Old_S
) /= Standard_Standard
3598 and then Warn_On_Redundant_Constructs
3599 and then (Is_Immediately_Visible
(Old_S
)
3600 or else Is_Potentially_Use_Visible
(Old_S
))
3601 and then Is_Overloadable
(Current_Scope
)
3602 and then Chars
(Current_Scope
) /= Chars
(Old_S
)
3605 ("redundant renaming, entity is directly visible?r?", Name
(N
));
3608 -- Implementation-defined aspect specifications can appear in a renaming
3609 -- declaration, but not language-defined ones. The call to procedure
3610 -- Analyze_Aspect_Specifications will take care of this error check.
3612 if Has_Aspects
(N
) then
3613 Analyze_Aspect_Specifications
(N
, New_S
);
3616 Ada_Version
:= Save_AV
;
3617 Ada_Version_Pragma
:= Save_AVP
;
3618 Ada_Version_Explicit
:= Save_AV_Exp
;
3620 -- In GNATprove mode, the renamings of actual subprograms are replaced
3621 -- with wrapper functions that make it easier to propagate axioms to the
3622 -- points of call within an instance. Wrappers are generated if formal
3623 -- subprogram is subject to axiomatization.
3625 -- The types in the wrapper profiles are obtained from (instances of)
3626 -- the types of the formal subprogram.
3629 and then GNATprove_Mode
3630 and then Present
(Containing_Package_With_Ext_Axioms
(Formal_Spec
))
3631 and then not Inside_A_Generic
3633 if Ekind
(Old_S
) = E_Function
then
3634 Rewrite
(N
, Build_Function_Wrapper
(Formal_Spec
, Old_S
));
3637 elsif Ekind
(Old_S
) = E_Operator
then
3638 Rewrite
(N
, Build_Operator_Wrapper
(Formal_Spec
, Old_S
));
3643 -- Check if we are looking at an Ada 2012 defaulted formal subprogram
3644 -- and mark any use_package_clauses that affect the visibility of the
3645 -- implicit generic actual.
3647 if Is_Generic_Actual_Subprogram
(New_S
)
3648 and then (Is_Intrinsic_Subprogram
(New_S
) or else From_Default
(N
))
3650 Mark_Use_Clauses
(New_S
);
3652 -- Handle overloaded subprograms
3654 if Present
(Alias
(New_S
)) then
3655 Mark_Use_Clauses
(Alias
(New_S
));
3658 end Analyze_Subprogram_Renaming
;
3660 -------------------------
3661 -- Analyze_Use_Package --
3662 -------------------------
3664 -- Resolve the package names in the use clause, and make all the visible
3665 -- entities defined in the package potentially use-visible. If the package
3666 -- is already in use from a previous use clause, its visible entities are
3667 -- already use-visible. In that case, mark the occurrence as a redundant
3668 -- use. If the package is an open scope, i.e. if the use clause occurs
3669 -- within the package itself, ignore it.
3671 procedure Analyze_Use_Package
(N
: Node_Id
; Chain
: Boolean := True) is
3672 procedure Analyze_Package_Name
(Clause
: Node_Id
);
3673 -- Perform analysis on a package name from a use_package_clause
3675 procedure Analyze_Package_Name_List
(Head_Clause
: Node_Id
);
3676 -- Similar to Analyze_Package_Name but iterates over all the names
3679 --------------------------
3680 -- Analyze_Package_Name --
3681 --------------------------
3683 procedure Analyze_Package_Name
(Clause
: Node_Id
) is
3684 Pack
: constant Node_Id
:= Name
(Clause
);
3688 pragma Assert
(Nkind
(Clause
) = N_Use_Package_Clause
);
3691 -- Verify that the package standard is not directly named in a
3692 -- use_package_clause.
3694 if Nkind
(Parent
(Clause
)) = N_Compilation_Unit
3695 and then Nkind
(Pack
) = N_Expanded_Name
3697 Pref
:= Prefix
(Pack
);
3699 while Nkind
(Pref
) = N_Expanded_Name
loop
3700 Pref
:= Prefix
(Pref
);
3703 if Entity
(Pref
) = Standard_Standard
then
3705 ("predefined package Standard cannot appear in a context "
3709 end Analyze_Package_Name
;
3711 -------------------------------
3712 -- Analyze_Package_Name_List --
3713 -------------------------------
3715 procedure Analyze_Package_Name_List
(Head_Clause
: Node_Id
) is
3719 -- Due to the way source use clauses are split during parsing we are
3720 -- forced to simply iterate through all entities in scope until the
3721 -- clause representing the last name in the list is found.
3723 Curr
:= Head_Clause
;
3724 while Present
(Curr
) loop
3725 Analyze_Package_Name
(Curr
);
3727 -- Stop iterating over the names in the use clause when we are at
3730 exit when not More_Ids
(Curr
) and then Prev_Ids
(Curr
);
3733 end Analyze_Package_Name_List
;
3737 Ghost_Id
: Entity_Id
:= Empty
;
3738 Living_Id
: Entity_Id
:= Empty
;
3741 -- Start of processing for Analyze_Use_Package
3744 Check_SPARK_05_Restriction
("use clause is not allowed", N
);
3746 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
3748 -- Use clause not allowed in a spec of a predefined package declaration
3749 -- except that packages whose file name starts a-n are OK (these are
3750 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3752 if Is_Predefined_Unit
(Current_Sem_Unit
)
3753 and then Get_Name_String
3754 (Unit_File_Name
(Current_Sem_Unit
)) (1 .. 3) /= "a-n"
3755 and then Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) =
3756 N_Package_Declaration
3758 Error_Msg_N
("use clause not allowed in predefined spec", N
);
3761 -- Loop through all package names from the original use clause in
3762 -- order to analyze referenced packages. A use_package_clause with only
3763 -- one name does not have More_Ids or Prev_Ids set, while a clause with
3764 -- More_Ids only starts the chain produced by the parser.
3766 if not More_Ids
(N
) and then not Prev_Ids
(N
) then
3767 Analyze_Package_Name
(N
);
3769 elsif More_Ids
(N
) and then not Prev_Ids
(N
) then
3770 Analyze_Package_Name_List
(N
);
3773 if not Is_Entity_Name
(Name
(N
)) then
3774 Error_Msg_N
("& is not a package", Name
(N
));
3780 Chain_Use_Clause
(N
);
3783 Pack
:= Entity
(Name
(N
));
3785 -- There are many cases where scopes are manipulated during analysis, so
3786 -- check that Pack's current use clause has not already been chained
3787 -- before setting its previous use clause.
3789 if Ekind
(Pack
) = E_Package
3790 and then Present
(Current_Use_Clause
(Pack
))
3791 and then Current_Use_Clause
(Pack
) /= N
3792 and then No
(Prev_Use_Clause
(N
))
3793 and then Prev_Use_Clause
(Current_Use_Clause
(Pack
)) /= N
3795 Set_Prev_Use_Clause
(N
, Current_Use_Clause
(Pack
));
3798 -- Mark all entities as potentially use visible.
3800 if Ekind
(Pack
) /= E_Package
and then Etype
(Pack
) /= Any_Type
then
3801 if Ekind
(Pack
) = E_Generic_Package
then
3802 Error_Msg_N
-- CODEFIX
3803 ("a generic package is not allowed in a use clause", Name
(N
));
3805 elsif Ekind_In
(Pack
, E_Generic_Function
, E_Generic_Package
)
3807 Error_Msg_N
-- CODEFIX
3808 ("a generic subprogram is not allowed in a use clause",
3811 elsif Ekind_In
(Pack
, E_Function
, E_Procedure
, E_Operator
) then
3812 Error_Msg_N
-- CODEFIX
3813 ("a subprogram is not allowed in a use clause", Name
(N
));
3816 Error_Msg_N
("& is not allowed in a use clause", Name
(N
));
3820 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3821 Check_In_Previous_With_Clause
(N
, Name
(N
));
3824 Use_One_Package
(N
, Name
(N
));
3826 -- Capture the first Ghost package and the first living package
3828 if Is_Entity_Name
(Name
(N
)) then
3829 Pack
:= Entity
(Name
(N
));
3831 if Is_Ghost_Entity
(Pack
) then
3832 if No
(Ghost_Id
) then
3836 elsif No
(Living_Id
) then
3841 end Analyze_Use_Package
;
3843 ----------------------
3844 -- Analyze_Use_Type --
3845 ----------------------
3847 procedure Analyze_Use_Type
(N
: Node_Id
; Chain
: Boolean := True) is
3852 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
3854 -- Chain clause to list of use clauses in current scope when flagged
3857 Chain_Use_Clause
(N
);
3860 -- Obtain the base type of the type denoted within the use_type_clause's
3863 Id
:= Subtype_Mark
(N
);
3865 E
:= Base_Type
(Entity
(Id
));
3867 -- There are many cases where a use_type_clause may be reanalyzed due to
3868 -- manipulation of the scope stack so we much guard against those cases
3869 -- here, otherwise, we must add the new use_type_clause to the previous
3870 -- use_type_clause chain in order to mark redundant use_type_clauses as
3873 if Present
(Current_Use_Clause
(E
))
3874 and then Current_Use_Clause
(E
) /= N
3875 and then No
(Prev_Use_Clause
(N
))
3877 Set_Prev_Use_Clause
(N
, Current_Use_Clause
(E
));
3880 -- If the Used_Operations list is already initialized, the clause has
3881 -- been analyzed previously, and it is being reinstalled, for example
3882 -- when the clause appears in a package spec and we are compiling the
3883 -- corresponding package body. In that case, make the entities on the
3884 -- existing list use_visible, and mark the corresponding types In_Use.
3886 if Present
(Used_Operations
(N
)) then
3891 Use_One_Type
(Subtype_Mark
(N
), Installed
=> True);
3893 Elmt
:= First_Elmt
(Used_Operations
(N
));
3894 while Present
(Elmt
) loop
3895 Set_Is_Potentially_Use_Visible
(Node
(Elmt
));
3903 -- Otherwise, create new list and attach to it the operations that are
3904 -- made use-visible by the clause.
3906 Set_Used_Operations
(N
, New_Elmt_List
);
3909 if E
/= Any_Type
then
3912 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3913 if Nkind
(Id
) = N_Identifier
then
3914 Error_Msg_N
("type is not directly visible", Id
);
3916 elsif Is_Child_Unit
(Scope
(E
))
3917 and then Scope
(E
) /= System_Aux_Id
3919 Check_In_Previous_With_Clause
(N
, Prefix
(Id
));
3924 -- If the use_type_clause appears in a compilation unit context,
3925 -- check whether it comes from a unit that may appear in a
3926 -- limited_with_clause, for a better error message.
3928 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3929 and then Nkind
(Id
) /= N_Identifier
3935 function Mentioned
(Nam
: Node_Id
) return Boolean;
3936 -- Check whether the prefix of expanded name for the type
3937 -- appears in the prefix of some limited_with_clause.
3943 function Mentioned
(Nam
: Node_Id
) return Boolean is
3945 return Nkind
(Name
(Item
)) = N_Selected_Component
3946 and then Chars
(Prefix
(Name
(Item
))) = Chars
(Nam
);
3950 Pref
:= Prefix
(Id
);
3951 Item
:= First
(Context_Items
(Parent
(N
)));
3952 while Present
(Item
) and then Item
/= N
loop
3953 if Nkind
(Item
) = N_With_Clause
3954 and then Limited_Present
(Item
)
3955 and then Mentioned
(Pref
)
3958 (Get_Msg_Id
, "premature usage of incomplete type");
3967 Mark_Ghost_Clause
(N
);
3968 end Analyze_Use_Type
;
3970 ------------------------
3971 -- Attribute_Renaming --
3972 ------------------------
3974 procedure Attribute_Renaming
(N
: Node_Id
) is
3975 Loc
: constant Source_Ptr
:= Sloc
(N
);
3976 Nam
: constant Node_Id
:= Name
(N
);
3977 Spec
: constant Node_Id
:= Specification
(N
);
3978 New_S
: constant Entity_Id
:= Defining_Unit_Name
(Spec
);
3979 Aname
: constant Name_Id
:= Attribute_Name
(Nam
);
3981 Form_Num
: Nat
:= 0;
3982 Expr_List
: List_Id
:= No_List
;
3984 Attr_Node
: Node_Id
;
3985 Body_Node
: Node_Id
;
3986 Param_Spec
: Node_Id
;
3989 Generate_Definition
(New_S
);
3991 -- This procedure is called in the context of subprogram renaming, and
3992 -- thus the attribute must be one that is a subprogram. All of those
3993 -- have at least one formal parameter, with the exceptions of the GNAT
3994 -- attribute 'Img, which GNAT treats as renameable.
3996 if not Is_Non_Empty_List
(Parameter_Specifications
(Spec
)) then
3997 if Aname
/= Name_Img
then
3999 ("subprogram renaming an attribute must have formals", N
);
4004 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
4005 while Present
(Param_Spec
) loop
4006 Form_Num
:= Form_Num
+ 1;
4008 if Nkind
(Parameter_Type
(Param_Spec
)) /= N_Access_Definition
then
4009 Find_Type
(Parameter_Type
(Param_Spec
));
4011 -- The profile of the new entity denotes the base type (s) of
4012 -- the types given in the specification. For access parameters
4013 -- there are no subtypes involved.
4015 Rewrite
(Parameter_Type
(Param_Spec
),
4017 (Base_Type
(Entity
(Parameter_Type
(Param_Spec
))), Loc
));
4020 if No
(Expr_List
) then
4021 Expr_List
:= New_List
;
4024 Append_To
(Expr_List
,
4025 Make_Identifier
(Loc
,
4026 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
4028 -- The expressions in the attribute reference are not freeze
4029 -- points. Neither is the attribute as a whole, see below.
4031 Set_Must_Not_Freeze
(Last
(Expr_List
));
4036 -- Immediate error if too many formals. Other mismatches in number or
4037 -- types of parameters are detected when we analyze the body of the
4038 -- subprogram that we construct.
4040 if Form_Num
> 2 then
4041 Error_Msg_N
("too many formals for attribute", N
);
4043 -- Error if the attribute reference has expressions that look like
4044 -- formal parameters.
4046 elsif Present
(Expressions
(Nam
)) then
4047 Error_Msg_N
("illegal expressions in attribute reference", Nam
);
4050 Nam_In
(Aname
, Name_Compose
, Name_Exponent
, Name_Leading_Part
,
4051 Name_Pos
, Name_Round
, Name_Scaling
,
4054 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
4055 and then Present
(Corresponding_Formal_Spec
(N
))
4058 ("generic actual cannot be attribute involving universal type",
4062 ("attribute involving a universal type cannot be renamed",
4067 -- Rewrite attribute node to have a list of expressions corresponding to
4068 -- the subprogram formals. A renaming declaration is not a freeze point,
4069 -- and the analysis of the attribute reference should not freeze the
4070 -- type of the prefix. We use the original node in the renaming so that
4071 -- its source location is preserved, and checks on stream attributes are
4072 -- properly applied.
4074 Attr_Node
:= Relocate_Node
(Nam
);
4075 Set_Expressions
(Attr_Node
, Expr_List
);
4077 Set_Must_Not_Freeze
(Attr_Node
);
4078 Set_Must_Not_Freeze
(Prefix
(Nam
));
4080 -- Case of renaming a function
4082 if Nkind
(Spec
) = N_Function_Specification
then
4083 if Is_Procedure_Attribute_Name
(Aname
) then
4084 Error_Msg_N
("attribute can only be renamed as procedure", Nam
);
4088 Find_Type
(Result_Definition
(Spec
));
4089 Rewrite
(Result_Definition
(Spec
),
4091 (Base_Type
(Entity
(Result_Definition
(Spec
))), Loc
));
4094 Make_Subprogram_Body
(Loc
,
4095 Specification
=> Spec
,
4096 Declarations
=> New_List
,
4097 Handled_Statement_Sequence
=>
4098 Make_Handled_Sequence_Of_Statements
(Loc
,
4099 Statements
=> New_List
(
4100 Make_Simple_Return_Statement
(Loc
,
4101 Expression
=> Attr_Node
))));
4103 -- Case of renaming a procedure
4106 if not Is_Procedure_Attribute_Name
(Aname
) then
4107 Error_Msg_N
("attribute can only be renamed as function", Nam
);
4112 Make_Subprogram_Body
(Loc
,
4113 Specification
=> Spec
,
4114 Declarations
=> New_List
,
4115 Handled_Statement_Sequence
=>
4116 Make_Handled_Sequence_Of_Statements
(Loc
,
4117 Statements
=> New_List
(Attr_Node
)));
4120 -- Signal the ABE mechanism that the generated subprogram body has not
4121 -- ABE ramifications.
4123 Set_Was_Attribute_Reference
(Body_Node
);
4125 -- In case of tagged types we add the body of the generated function to
4126 -- the freezing actions of the type (because in the general case such
4127 -- type is still not frozen). We exclude from this processing generic
4128 -- formal subprograms found in instantiations.
4130 -- We must exclude restricted run-time libraries because
4131 -- entity AST_Handler is defined in package System.Aux_Dec which is not
4132 -- available in those platforms. Note that we cannot use the function
4133 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
4134 -- the ZFP run-time library is not defined as a profile, and we do not
4135 -- want to deal with AST_Handler in ZFP mode.
4137 if not Configurable_Run_Time_Mode
4138 and then not Present
(Corresponding_Formal_Spec
(N
))
4139 and then Etype
(Nam
) /= RTE
(RE_AST_Handler
)
4142 P
: constant Node_Id
:= Prefix
(Nam
);
4145 -- The prefix of 'Img is an object that is evaluated for each call
4146 -- of the function that renames it.
4148 if Aname
= Name_Img
then
4149 Preanalyze_And_Resolve
(P
);
4151 -- For all other attribute renamings, the prefix is a subtype
4157 -- If the target type is not yet frozen, add the body to the
4158 -- actions to be elaborated at freeze time.
4160 if Is_Tagged_Type
(Etype
(P
))
4161 and then In_Open_Scopes
(Scope
(Etype
(P
)))
4163 Ensure_Freeze_Node
(Etype
(P
));
4164 Append_Freeze_Action
(Etype
(P
), Body_Node
);
4166 Rewrite
(N
, Body_Node
);
4168 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
4172 -- Generic formal subprograms or AST_Handler renaming
4175 Rewrite
(N
, Body_Node
);
4177 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
4180 if Is_Compilation_Unit
(New_S
) then
4182 ("a library unit can only rename another library unit", N
);
4184 end Attribute_Renaming
;
4186 ----------------------
4187 -- Chain_Use_Clause --
4188 ----------------------
4190 procedure Chain_Use_Clause
(N
: Node_Id
) is
4191 Level
: Int
:= Scope_Stack
.Last
;
4197 if not Is_Compilation_Unit
(Current_Scope
)
4198 or else not Is_Child_Unit
(Current_Scope
)
4202 -- Common case for compilation unit
4204 elsif Defining_Entity
(N
=> Parent
(N
),
4205 Empty_On_Errors
=> True) = Current_Scope
4210 -- If declaration appears in some other scope, it must be in some
4211 -- parent unit when compiling a child.
4213 Pack
:= Defining_Entity
(Parent
(N
), Empty_On_Errors
=> True);
4215 if not In_Open_Scopes
(Pack
) then
4218 -- If the use clause appears in an ancestor and we are in the
4219 -- private part of the immediate parent, the use clauses are
4220 -- already installed.
4222 elsif Pack
/= Scope
(Current_Scope
)
4223 and then In_Private_Part
(Scope
(Current_Scope
))
4228 -- Find entry for parent unit in scope stack
4230 while Scope_Stack
.Table
(Level
).Entity
/= Pack
loop
4236 Set_Next_Use_Clause
(N
,
4237 Scope_Stack
.Table
(Level
).First_Use_Clause
);
4238 Scope_Stack
.Table
(Level
).First_Use_Clause
:= N
;
4239 end Chain_Use_Clause
;
4241 ---------------------------
4242 -- Check_Frozen_Renaming --
4243 ---------------------------
4245 procedure Check_Frozen_Renaming
(N
: Node_Id
; Subp
: Entity_Id
) is
4250 if Is_Frozen
(Subp
) and then not Has_Completion
(Subp
) then
4253 (Parent
(Declaration_Node
(Subp
)), Defining_Entity
(N
));
4255 if Is_Entity_Name
(Name
(N
)) then
4256 Old_S
:= Entity
(Name
(N
));
4258 if not Is_Frozen
(Old_S
)
4259 and then Operating_Mode
/= Check_Semantics
4261 Append_Freeze_Action
(Old_S
, B_Node
);
4263 Insert_After
(N
, B_Node
);
4267 if Is_Intrinsic_Subprogram
(Old_S
) and then not In_Instance
then
4269 ("subprogram used in renaming_as_body cannot be intrinsic",
4274 Insert_After
(N
, B_Node
);
4278 end Check_Frozen_Renaming
;
4280 -------------------------------
4281 -- Set_Entity_Or_Discriminal --
4282 -------------------------------
4284 procedure Set_Entity_Or_Discriminal
(N
: Node_Id
; E
: Entity_Id
) is
4288 -- If the entity is not a discriminant, or else expansion is disabled,
4289 -- simply set the entity.
4291 if not In_Spec_Expression
4292 or else Ekind
(E
) /= E_Discriminant
4293 or else Inside_A_Generic
4295 Set_Entity_With_Checks
(N
, E
);
4297 -- The replacement of a discriminant by the corresponding discriminal
4298 -- is not done for a task discriminant that appears in a default
4299 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4300 -- for details on their handling.
4302 elsif Is_Concurrent_Type
(Scope
(E
)) then
4305 and then not Nkind_In
(P
, N_Parameter_Specification
,
4306 N_Component_Declaration
)
4312 and then Nkind
(P
) = N_Parameter_Specification
4317 Set_Entity
(N
, Discriminal
(E
));
4320 -- Otherwise, this is a discriminant in a context in which
4321 -- it is a reference to the corresponding parameter of the
4322 -- init proc for the enclosing type.
4325 Set_Entity
(N
, Discriminal
(E
));
4327 end Set_Entity_Or_Discriminal
;
4329 -----------------------------------
4330 -- Check_In_Previous_With_Clause --
4331 -----------------------------------
4333 procedure Check_In_Previous_With_Clause
4337 Pack
: constant Entity_Id
:= Entity
(Original_Node
(Nam
));
4342 Item
:= First
(Context_Items
(Parent
(N
)));
4343 while Present
(Item
) and then Item
/= N
loop
4344 if Nkind
(Item
) = N_With_Clause
4346 -- Protect the frontend against previous critical errors
4348 and then Nkind
(Name
(Item
)) /= N_Selected_Component
4349 and then Entity
(Name
(Item
)) = Pack
4353 -- Find root library unit in with_clause
4355 while Nkind
(Par
) = N_Expanded_Name
loop
4356 Par
:= Prefix
(Par
);
4359 if Is_Child_Unit
(Entity
(Original_Node
(Par
))) then
4360 Error_Msg_NE
("& is not directly visible", Par
, Entity
(Par
));
4369 -- On exit, package is not mentioned in a previous with_clause.
4370 -- Check if its prefix is.
4372 if Nkind
(Nam
) = N_Expanded_Name
then
4373 Check_In_Previous_With_Clause
(N
, Prefix
(Nam
));
4375 elsif Pack
/= Any_Id
then
4376 Error_Msg_NE
("& is not visible", Nam
, Pack
);
4378 end Check_In_Previous_With_Clause
;
4380 ---------------------------------
4381 -- Check_Library_Unit_Renaming --
4382 ---------------------------------
4384 procedure Check_Library_Unit_Renaming
(N
: Node_Id
; Old_E
: Entity_Id
) is
4388 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4391 -- Check for library unit. Note that we used to check for the scope
4392 -- being Standard here, but that was wrong for Standard itself.
4394 elsif not Is_Compilation_Unit
(Old_E
)
4395 and then not Is_Child_Unit
(Old_E
)
4397 Error_Msg_N
("renamed unit must be a library unit", Name
(N
));
4399 -- Entities defined in Standard (operators and boolean literals) cannot
4400 -- be renamed as library units.
4402 elsif Scope
(Old_E
) = Standard_Standard
4403 and then Sloc
(Old_E
) = Standard_Location
4405 Error_Msg_N
("renamed unit must be a library unit", Name
(N
));
4407 elsif Present
(Parent_Spec
(N
))
4408 and then Nkind
(Unit
(Parent_Spec
(N
))) = N_Generic_Package_Declaration
4409 and then not Is_Child_Unit
(Old_E
)
4412 ("renamed unit must be a child unit of generic parent", Name
(N
));
4414 elsif Nkind
(N
) in N_Generic_Renaming_Declaration
4415 and then Nkind
(Name
(N
)) = N_Expanded_Name
4416 and then Is_Generic_Instance
(Entity
(Prefix
(Name
(N
))))
4417 and then Is_Generic_Unit
(Old_E
)
4420 ("renamed generic unit must be a library unit", Name
(N
));
4422 elsif Is_Package_Or_Generic_Package
(Old_E
) then
4424 -- Inherit categorization flags
4426 New_E
:= Defining_Entity
(N
);
4427 Set_Is_Pure
(New_E
, Is_Pure
(Old_E
));
4428 Set_Is_Preelaborated
(New_E
, Is_Preelaborated
(Old_E
));
4429 Set_Is_Remote_Call_Interface
(New_E
,
4430 Is_Remote_Call_Interface
(Old_E
));
4431 Set_Is_Remote_Types
(New_E
, Is_Remote_Types
(Old_E
));
4432 Set_Is_Shared_Passive
(New_E
, Is_Shared_Passive
(Old_E
));
4434 end Check_Library_Unit_Renaming
;
4436 ------------------------
4437 -- Enclosing_Instance --
4438 ------------------------
4440 function Enclosing_Instance
return Entity_Id
is
4444 if not Is_Generic_Instance
(Current_Scope
) then
4448 S
:= Scope
(Current_Scope
);
4449 while S
/= Standard_Standard
loop
4450 if Is_Generic_Instance
(S
) then
4458 end Enclosing_Instance
;
4464 procedure End_Scope
is
4470 Id
:= First_Entity
(Current_Scope
);
4471 while Present
(Id
) loop
4472 -- An entity in the current scope is not necessarily the first one
4473 -- on its homonym chain. Find its predecessor if any,
4474 -- If it is an internal entity, it will not be in the visibility
4475 -- chain altogether, and there is nothing to unchain.
4477 if Id
/= Current_Entity
(Id
) then
4478 Prev
:= Current_Entity
(Id
);
4479 while Present
(Prev
)
4480 and then Present
(Homonym
(Prev
))
4481 and then Homonym
(Prev
) /= Id
4483 Prev
:= Homonym
(Prev
);
4486 -- Skip to end of loop if Id is not in the visibility chain
4488 if No
(Prev
) or else Homonym
(Prev
) /= Id
then
4496 Set_Is_Immediately_Visible
(Id
, False);
4498 Outer
:= Homonym
(Id
);
4499 while Present
(Outer
) and then Scope
(Outer
) = Current_Scope
loop
4500 Outer
:= Homonym
(Outer
);
4503 -- Reset homonym link of other entities, but do not modify link
4504 -- between entities in current scope, so that the back-end can have
4505 -- a proper count of local overloadings.
4508 Set_Name_Entity_Id
(Chars
(Id
), Outer
);
4510 elsif Scope
(Prev
) /= Scope
(Id
) then
4511 Set_Homonym
(Prev
, Outer
);
4518 -- If the scope generated freeze actions, place them before the
4519 -- current declaration and analyze them. Type declarations and
4520 -- the bodies of initialization procedures can generate such nodes.
4521 -- We follow the parent chain until we reach a list node, which is
4522 -- the enclosing list of declarations. If the list appears within
4523 -- a protected definition, move freeze nodes outside the protected
4527 (Scope_Stack
.Table
(Scope_Stack
.Last
).Pending_Freeze_Actions
)
4531 L
: constant List_Id
:= Scope_Stack
.Table
4532 (Scope_Stack
.Last
).Pending_Freeze_Actions
;
4535 if Is_Itype
(Current_Scope
) then
4536 Decl
:= Associated_Node_For_Itype
(Current_Scope
);
4538 Decl
:= Parent
(Current_Scope
);
4543 while not (Is_List_Member
(Decl
))
4544 or else Nkind_In
(Parent
(Decl
), N_Protected_Definition
,
4547 Decl
:= Parent
(Decl
);
4550 Insert_List_Before_And_Analyze
(Decl
, L
);
4558 ---------------------
4559 -- End_Use_Clauses --
4560 ---------------------
4562 procedure End_Use_Clauses
(Clause
: Node_Id
) is
4566 -- Remove use_type_clauses first, because they affect the visibility of
4567 -- operators in subsequent used packages.
4570 while Present
(U
) loop
4571 if Nkind
(U
) = N_Use_Type_Clause
then
4575 Next_Use_Clause
(U
);
4579 while Present
(U
) loop
4580 if Nkind
(U
) = N_Use_Package_Clause
then
4581 End_Use_Package
(U
);
4584 Next_Use_Clause
(U
);
4586 end End_Use_Clauses
;
4588 ---------------------
4589 -- End_Use_Package --
4590 ---------------------
4592 procedure End_Use_Package
(N
: Node_Id
) is
4594 Pack_Name
: Node_Id
;
4598 function Is_Primitive_Operator_In_Use
4600 F
: Entity_Id
) return Boolean;
4601 -- Check whether Op is a primitive operator of a use-visible type
4603 ----------------------------------
4604 -- Is_Primitive_Operator_In_Use --
4605 ----------------------------------
4607 function Is_Primitive_Operator_In_Use
4609 F
: Entity_Id
) return Boolean
4611 T
: constant Entity_Id
:= Base_Type
(Etype
(F
));
4613 return In_Use
(T
) and then Scope
(T
) = Scope
(Op
);
4614 end Is_Primitive_Operator_In_Use
;
4616 -- Start of processing for End_Use_Package
4619 Pack_Name
:= Name
(N
);
4621 -- Test that Pack_Name actually denotes a package before processing
4623 if Is_Entity_Name
(Pack_Name
)
4624 and then Ekind
(Entity
(Pack_Name
)) = E_Package
4626 Pack
:= Entity
(Pack_Name
);
4628 if In_Open_Scopes
(Pack
) then
4631 elsif not Redundant_Use
(Pack_Name
) then
4632 Set_In_Use
(Pack
, False);
4633 Set_Current_Use_Clause
(Pack
, Empty
);
4635 Id
:= First_Entity
(Pack
);
4636 while Present
(Id
) loop
4638 -- Preserve use-visibility of operators that are primitive
4639 -- operators of a type that is use-visible through an active
4642 if Nkind
(Id
) = N_Defining_Operator_Symbol
4644 (Is_Primitive_Operator_In_Use
(Id
, First_Formal
(Id
))
4646 (Present
(Next_Formal
(First_Formal
(Id
)))
4648 Is_Primitive_Operator_In_Use
4649 (Id
, Next_Formal
(First_Formal
(Id
)))))
4653 Set_Is_Potentially_Use_Visible
(Id
, False);
4656 if Is_Private_Type
(Id
)
4657 and then Present
(Full_View
(Id
))
4659 Set_Is_Potentially_Use_Visible
(Full_View
(Id
), False);
4665 if Present
(Renamed_Object
(Pack
)) then
4666 Set_In_Use
(Renamed_Object
(Pack
), False);
4667 Set_Current_Use_Clause
(Renamed_Object
(Pack
), Empty
);
4670 if Chars
(Pack
) = Name_System
4671 and then Scope
(Pack
) = Standard_Standard
4672 and then Present_System_Aux
4674 Id
:= First_Entity
(System_Aux_Id
);
4675 while Present
(Id
) loop
4676 Set_Is_Potentially_Use_Visible
(Id
, False);
4678 if Is_Private_Type
(Id
)
4679 and then Present
(Full_View
(Id
))
4681 Set_Is_Potentially_Use_Visible
(Full_View
(Id
), False);
4687 Set_In_Use
(System_Aux_Id
, False);
4690 Set_Redundant_Use
(Pack_Name
, False);
4694 if Present
(Hidden_By_Use_Clause
(N
)) then
4695 Elmt
:= First_Elmt
(Hidden_By_Use_Clause
(N
));
4696 while Present
(Elmt
) loop
4698 E
: constant Entity_Id
:= Node
(Elmt
);
4701 -- Reset either Use_Visibility or Direct_Visibility, depending
4702 -- on how the entity was hidden by the use clause.
4704 if In_Use
(Scope
(E
))
4705 and then Used_As_Generic_Actual
(Scope
(E
))
4707 Set_Is_Potentially_Use_Visible
(Node
(Elmt
));
4709 Set_Is_Immediately_Visible
(Node
(Elmt
));
4716 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
4718 end End_Use_Package
;
4724 procedure End_Use_Type
(N
: Node_Id
) is
4729 -- Start of processing for End_Use_Type
4732 Id
:= Subtype_Mark
(N
);
4734 -- A call to Rtsfind may occur while analyzing a use_type_clause, in
4735 -- which case the type marks are not resolved yet, so guard against that
4738 if Is_Entity_Name
(Id
) and then Present
(Entity
(Id
)) then
4741 if T
= Any_Type
or else From_Limited_With
(T
) then
4744 -- Note that the use_type_clause may mention a subtype of the type
4745 -- whose primitive operations have been made visible. Here as
4746 -- elsewhere, it is the base type that matters for visibility.
4748 elsif In_Open_Scopes
(Scope
(Base_Type
(T
))) then
4751 elsif not Redundant_Use
(Id
) then
4752 Set_In_Use
(T
, False);
4753 Set_In_Use
(Base_Type
(T
), False);
4754 Set_Current_Use_Clause
(T
, Empty
);
4755 Set_Current_Use_Clause
(Base_Type
(T
), Empty
);
4759 if Is_Empty_Elmt_List
(Used_Operations
(N
)) then
4763 Elmt
:= First_Elmt
(Used_Operations
(N
));
4764 while Present
(Elmt
) loop
4765 Set_Is_Potentially_Use_Visible
(Node
(Elmt
), False);
4771 --------------------
4772 -- Entity_Of_Unit --
4773 --------------------
4775 function Entity_Of_Unit
(U
: Node_Id
) return Entity_Id
is
4777 if Nkind
(U
) = N_Package_Instantiation
and then Analyzed
(U
) then
4778 return Defining_Entity
(Instance_Spec
(U
));
4780 return Defining_Entity
(U
);
4784 ----------------------
4785 -- Find_Direct_Name --
4786 ----------------------
4788 procedure Find_Direct_Name
(N
: Node_Id
) is
4793 Homonyms
: Entity_Id
;
4794 -- Saves start of homonym chain
4796 Inst
: Entity_Id
:= Empty
;
4797 -- Enclosing instance, if any
4799 Nvis_Entity
: Boolean;
4800 -- Set True to indicate that there is at least one entity on the homonym
4801 -- chain which, while not visible, is visible enough from the user point
4802 -- of view to warrant an error message of "not visible" rather than
4805 Nvis_Is_Private_Subprg
: Boolean := False;
4806 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4807 -- effect concerning library subprograms has been detected. Used to
4808 -- generate the precise error message.
4810 function From_Actual_Package
(E
: Entity_Id
) return Boolean;
4811 -- Returns true if the entity is an actual for a package that is itself
4812 -- an actual for a formal package of the current instance. Such an
4813 -- entity requires special handling because it may be use-visible but
4814 -- hides directly visible entities defined outside the instance, because
4815 -- the corresponding formal did so in the generic.
4817 function Is_Actual_Parameter
return Boolean;
4818 -- This function checks if the node N is an identifier that is an actual
4819 -- parameter of a procedure call. If so it returns True, otherwise it
4820 -- return False. The reason for this check is that at this stage we do
4821 -- not know what procedure is being called if the procedure might be
4822 -- overloaded, so it is premature to go setting referenced flags or
4823 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4824 -- for that processing
4826 function Known_But_Invisible
(E
: Entity_Id
) return Boolean;
4827 -- This function determines whether a reference to the entity E, which
4828 -- is not visible, can reasonably be considered to be known to the
4829 -- writer of the reference. This is a heuristic test, used only for
4830 -- the purposes of figuring out whether we prefer to complain that an
4831 -- entity is undefined or invisible (and identify the declaration of
4832 -- the invisible entity in the latter case). The point here is that we
4833 -- don't want to complain that something is invisible and then point to
4834 -- something entirely mysterious to the writer.
4836 procedure Nvis_Messages
;
4837 -- Called if there are no visible entries for N, but there is at least
4838 -- one non-directly visible, or hidden declaration. This procedure
4839 -- outputs an appropriate set of error messages.
4841 procedure Undefined
(Nvis
: Boolean);
4842 -- This function is called if the current node has no corresponding
4843 -- visible entity or entities. The value set in Msg indicates whether
4844 -- an error message was generated (multiple error messages for the
4845 -- same variable are generally suppressed, see body for details).
4846 -- Msg is True if an error message was generated, False if not. This
4847 -- value is used by the caller to determine whether or not to output
4848 -- additional messages where appropriate. The parameter is set False
4849 -- to get the message "X is undefined", and True to get the message
4850 -- "X is not visible".
4852 -------------------------
4853 -- From_Actual_Package --
4854 -------------------------
4856 function From_Actual_Package
(E
: Entity_Id
) return Boolean is
4857 Scop
: constant Entity_Id
:= Scope
(E
);
4858 -- Declared scope of candidate entity
4860 function Declared_In_Actual
(Pack
: Entity_Id
) return Boolean;
4861 -- Recursive function that does the work and examines actuals of
4862 -- actual packages of current instance.
4864 ------------------------
4865 -- Declared_In_Actual --
4866 ------------------------
4868 function Declared_In_Actual
(Pack
: Entity_Id
) return Boolean is
4872 if No
(Associated_Formal_Package
(Pack
)) then
4876 Act
:= First_Entity
(Pack
);
4877 while Present
(Act
) loop
4878 if Renamed_Object
(Pack
) = Scop
then
4881 -- Check for end of list of actuals
4883 elsif Ekind
(Act
) = E_Package
4884 and then Renamed_Object
(Act
) = Pack
4888 elsif Ekind
(Act
) = E_Package
4889 and then Declared_In_Actual
(Act
)
4899 end Declared_In_Actual
;
4905 -- Start of processing for From_Actual_Package
4908 if not In_Instance
then
4912 Inst
:= Current_Scope
;
4913 while Present
(Inst
)
4914 and then Ekind
(Inst
) /= E_Package
4915 and then not Is_Generic_Instance
(Inst
)
4917 Inst
:= Scope
(Inst
);
4924 Act
:= First_Entity
(Inst
);
4925 while Present
(Act
) loop
4926 if Ekind
(Act
) = E_Package
4927 and then Declared_In_Actual
(Act
)
4937 end From_Actual_Package
;
4939 -------------------------
4940 -- Is_Actual_Parameter --
4941 -------------------------
4943 function Is_Actual_Parameter
return Boolean is
4946 Nkind
(N
) = N_Identifier
4948 (Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
4950 (Nkind
(Parent
(N
)) = N_Parameter_Association
4951 and then N
= Explicit_Actual_Parameter
(Parent
(N
))
4952 and then Nkind
(Parent
(Parent
(N
))) =
4953 N_Procedure_Call_Statement
));
4954 end Is_Actual_Parameter
;
4956 -------------------------
4957 -- Known_But_Invisible --
4958 -------------------------
4960 function Known_But_Invisible
(E
: Entity_Id
) return Boolean is
4961 Fname
: File_Name_Type
;
4964 -- Entities in Standard are always considered to be known
4966 if Sloc
(E
) <= Standard_Location
then
4969 -- An entity that does not come from source is always considered
4970 -- to be unknown, since it is an artifact of code expansion.
4972 elsif not Comes_From_Source
(E
) then
4975 -- In gnat internal mode, we consider all entities known. The
4976 -- historical reason behind this discrepancy is not known??? But the
4977 -- only effect is to modify the error message given, so it is not
4978 -- critical. Since it only affects the exact wording of error
4979 -- messages in illegal programs, we do not mention this as an
4980 -- effect of -gnatg, since it is not a language modification.
4982 elsif GNAT_Mode
then
4986 -- Here we have an entity that is not from package Standard, and
4987 -- which comes from Source. See if it comes from an internal file.
4989 Fname
:= Unit_File_Name
(Get_Source_Unit
(E
));
4991 -- Case of from internal file
4993 if In_Internal_Unit
(E
) then
4995 -- Private part entities in internal files are never considered
4996 -- to be known to the writer of normal application code.
4998 if Is_Hidden
(E
) then
5002 -- Entities from System packages other than System and
5003 -- System.Storage_Elements are not considered to be known.
5004 -- System.Auxxxx files are also considered known to the user.
5006 -- Should refine this at some point to generally distinguish
5007 -- between known and unknown internal files ???
5009 Get_Name_String
(Fname
);
5014 Name_Buffer
(1 .. 2) /= "s-"
5016 Name_Buffer
(3 .. 8) = "stoele"
5018 Name_Buffer
(3 .. 5) = "aux";
5020 -- If not an internal file, then entity is definitely known, even if
5021 -- it is in a private part (the message generated will note that it
5022 -- is in a private part).
5027 end Known_But_Invisible
;
5033 procedure Nvis_Messages
is
5034 Comp_Unit
: Node_Id
;
5036 Found
: Boolean := False;
5037 Hidden
: Boolean := False;
5041 -- Ada 2005 (AI-262): Generate a precise error concerning the
5042 -- Beaujolais effect that was previously detected
5044 if Nvis_Is_Private_Subprg
then
5046 pragma Assert
(Nkind
(E2
) = N_Defining_Identifier
5047 and then Ekind
(E2
) = E_Function
5048 and then Scope
(E2
) = Standard_Standard
5049 and then Has_Private_With
(E2
));
5051 -- Find the sloc corresponding to the private with'ed unit
5053 Comp_Unit
:= Cunit
(Current_Sem_Unit
);
5054 Error_Msg_Sloc
:= No_Location
;
5056 Item
:= First
(Context_Items
(Comp_Unit
));
5057 while Present
(Item
) loop
5058 if Nkind
(Item
) = N_With_Clause
5059 and then Private_Present
(Item
)
5060 and then Entity
(Name
(Item
)) = E2
5062 Error_Msg_Sloc
:= Sloc
(Item
);
5069 pragma Assert
(Error_Msg_Sloc
/= No_Location
);
5071 Error_Msg_N
("(Ada 2005): hidden by private with clause #", N
);
5075 Undefined
(Nvis
=> True);
5079 -- First loop does hidden declarations
5082 while Present
(Ent
) loop
5083 if Is_Potentially_Use_Visible
(Ent
) then
5085 Error_Msg_N
-- CODEFIX
5086 ("multiple use clauses cause hiding!", N
);
5090 Error_Msg_Sloc
:= Sloc
(Ent
);
5091 Error_Msg_N
-- CODEFIX
5092 ("hidden declaration#!", N
);
5095 Ent
:= Homonym
(Ent
);
5098 -- If we found hidden declarations, then that's enough, don't
5099 -- bother looking for non-visible declarations as well.
5105 -- Second loop does non-directly visible declarations
5108 while Present
(Ent
) loop
5109 if not Is_Potentially_Use_Visible
(Ent
) then
5111 -- Do not bother the user with unknown entities
5113 if not Known_But_Invisible
(Ent
) then
5117 Error_Msg_Sloc
:= Sloc
(Ent
);
5119 -- Output message noting that there is a non-visible
5120 -- declaration, distinguishing the private part case.
5122 if Is_Hidden
(Ent
) then
5123 Error_Msg_N
("non-visible (private) declaration#!", N
);
5125 -- If the entity is declared in a generic package, it
5126 -- cannot be visible, so there is no point in adding it
5127 -- to the list of candidates if another homograph from a
5128 -- non-generic package has been seen.
5130 elsif Ekind
(Scope
(Ent
)) = E_Generic_Package
5136 Error_Msg_N
-- CODEFIX
5137 ("non-visible declaration#!", N
);
5139 if Ekind
(Scope
(Ent
)) /= E_Generic_Package
then
5143 if Is_Compilation_Unit
(Ent
)
5145 Nkind
(Parent
(Parent
(N
))) = N_Use_Package_Clause
5147 Error_Msg_Qual_Level
:= 99;
5148 Error_Msg_NE
-- CODEFIX
5149 ("\\missing `WITH &;`", N
, Ent
);
5150 Error_Msg_Qual_Level
:= 0;
5153 if Ekind
(Ent
) = E_Discriminant
5154 and then Present
(Corresponding_Discriminant
(Ent
))
5155 and then Scope
(Corresponding_Discriminant
(Ent
)) =
5159 ("inherited discriminant not allowed here" &
5160 " (RM 3.8 (12), 3.8.1 (6))!", N
);
5164 -- Set entity and its containing package as referenced. We
5165 -- can't be sure of this, but this seems a better choice
5166 -- to avoid unused entity messages.
5168 if Comes_From_Source
(Ent
) then
5169 Set_Referenced
(Ent
);
5170 Set_Referenced
(Cunit_Entity
(Get_Source_Unit
(Ent
)));
5175 Ent
:= Homonym
(Ent
);
5184 procedure Undefined
(Nvis
: Boolean) is
5185 Emsg
: Error_Msg_Id
;
5188 -- We should never find an undefined internal name. If we do, then
5189 -- see if we have previous errors. If so, ignore on the grounds that
5190 -- it is probably a cascaded message (e.g. a block label from a badly
5191 -- formed block). If no previous errors, then we have a real internal
5192 -- error of some kind so raise an exception.
5194 if Is_Internal_Name
(Chars
(N
)) then
5195 if Total_Errors_Detected
/= 0 then
5198 raise Program_Error
;
5202 -- A very specialized error check, if the undefined variable is
5203 -- a case tag, and the case type is an enumeration type, check
5204 -- for a possible misspelling, and if so, modify the identifier
5206 -- Named aggregate should also be handled similarly ???
5208 if Nkind
(N
) = N_Identifier
5209 and then Nkind
(Parent
(N
)) = N_Case_Statement_Alternative
5212 Case_Stm
: constant Node_Id
:= Parent
(Parent
(N
));
5213 Case_Typ
: constant Entity_Id
:= Etype
(Expression
(Case_Stm
));
5218 if Is_Enumeration_Type
(Case_Typ
)
5219 and then not Is_Standard_Character_Type
(Case_Typ
)
5221 Lit
:= First_Literal
(Case_Typ
);
5222 Get_Name_String
(Chars
(Lit
));
5224 if Chars
(Lit
) /= Chars
(N
)
5225 and then Is_Bad_Spelling_Of
(Chars
(N
), Chars
(Lit
))
5227 Error_Msg_Node_2
:= Lit
;
5228 Error_Msg_N
-- CODEFIX
5229 ("& is undefined, assume misspelling of &", N
);
5230 Rewrite
(N
, New_Occurrence_Of
(Lit
, Sloc
(N
)));
5234 Lit
:= Next_Literal
(Lit
);
5239 -- Normal processing
5241 Set_Entity
(N
, Any_Id
);
5242 Set_Etype
(N
, Any_Type
);
5244 -- We use the table Urefs to keep track of entities for which we
5245 -- have issued errors for undefined references. Multiple errors
5246 -- for a single name are normally suppressed, however we modify
5247 -- the error message to alert the programmer to this effect.
5249 for J
in Urefs
.First
.. Urefs
.Last
loop
5250 if Chars
(N
) = Chars
(Urefs
.Table
(J
).Node
) then
5251 if Urefs
.Table
(J
).Err
/= No_Error_Msg
5252 and then Sloc
(N
) /= Urefs
.Table
(J
).Loc
5254 Error_Msg_Node_1
:= Urefs
.Table
(J
).Node
;
5256 if Urefs
.Table
(J
).Nvis
then
5257 Change_Error_Text
(Urefs
.Table
(J
).Err
,
5258 "& is not visible (more references follow)");
5260 Change_Error_Text
(Urefs
.Table
(J
).Err
,
5261 "& is undefined (more references follow)");
5264 Urefs
.Table
(J
).Err
:= No_Error_Msg
;
5267 -- Although we will set Msg False, and thus suppress the
5268 -- message, we also set Error_Posted True, to avoid any
5269 -- cascaded messages resulting from the undefined reference.
5272 Set_Error_Posted
(N
, True);
5277 -- If entry not found, this is first undefined occurrence
5280 Error_Msg_N
("& is not visible!", N
);
5284 Error_Msg_N
("& is undefined!", N
);
5287 -- A very bizarre special check, if the undefined identifier
5288 -- is put or put_line, then add a special error message (since
5289 -- this is a very common error for beginners to make).
5291 if Nam_In
(Chars
(N
), Name_Put
, Name_Put_Line
) then
5292 Error_Msg_N
-- CODEFIX
5293 ("\\possible missing `WITH Ada.Text_'I'O; " &
5294 "USE Ada.Text_'I'O`!", N
);
5296 -- Another special check if N is the prefix of a selected
5297 -- component which is a known unit, add message complaining
5298 -- about missing with for this unit.
5300 elsif Nkind
(Parent
(N
)) = N_Selected_Component
5301 and then N
= Prefix
(Parent
(N
))
5302 and then Is_Known_Unit
(Parent
(N
))
5304 Error_Msg_Node_2
:= Selector_Name
(Parent
(N
));
5305 Error_Msg_N
-- CODEFIX
5306 ("\\missing `WITH &.&;`", Prefix
(Parent
(N
)));
5309 -- Now check for possible misspellings
5313 Ematch
: Entity_Id
:= Empty
;
5315 Last_Name_Id
: constant Name_Id
:=
5316 Name_Id
(Nat
(First_Name_Id
) +
5317 Name_Entries_Count
- 1);
5320 for Nam
in First_Name_Id
.. Last_Name_Id
loop
5321 E
:= Get_Name_Entity_Id
(Nam
);
5324 and then (Is_Immediately_Visible
(E
)
5326 Is_Potentially_Use_Visible
(E
))
5328 if Is_Bad_Spelling_Of
(Chars
(N
), Nam
) then
5335 if Present
(Ematch
) then
5336 Error_Msg_NE
-- CODEFIX
5337 ("\possible misspelling of&", N
, Ematch
);
5342 -- Make entry in undefined references table unless the full errors
5343 -- switch is set, in which case by refraining from generating the
5344 -- table entry, we guarantee that we get an error message for every
5345 -- undefined reference. The entry is not added if we are ignoring
5348 if not All_Errors_Mode
and then Ignore_Errors_Enable
= 0 then
5361 Nested_Inst
: Entity_Id
:= Empty
;
5362 -- The entity of a nested instance which appears within Inst (if any)
5364 -- Start of processing for Find_Direct_Name
5367 -- If the entity pointer is already set, this is an internal node, or
5368 -- a node that is analyzed more than once, after a tree modification.
5369 -- In such a case there is no resolution to perform, just set the type.
5371 if Present
(Entity
(N
)) then
5372 if Is_Type
(Entity
(N
)) then
5373 Set_Etype
(N
, Entity
(N
));
5377 Entyp
: constant Entity_Id
:= Etype
(Entity
(N
));
5380 -- One special case here. If the Etype field is already set,
5381 -- and references the packed array type corresponding to the
5382 -- etype of the referenced entity, then leave it alone. This
5383 -- happens for trees generated from Exp_Pakd, where expressions
5384 -- can be deliberately "mis-typed" to the packed array type.
5386 if Is_Array_Type
(Entyp
)
5387 and then Is_Packed
(Entyp
)
5388 and then Present
(Etype
(N
))
5389 and then Etype
(N
) = Packed_Array_Impl_Type
(Entyp
)
5393 -- If not that special case, then just reset the Etype
5396 Set_Etype
(N
, Etype
(Entity
(N
)));
5401 -- Although the marking of use clauses happens at the end of
5402 -- Find_Direct_Name, a certain case where a generic actual satisfies
5403 -- a use clause must be checked here due to how the generic machinery
5404 -- handles the analysis of said actuals.
5407 and then Nkind
(Parent
(N
)) = N_Generic_Association
5409 Mark_Use_Clauses
(Entity
(N
));
5415 -- Preserve relevant elaboration-related attributes of the context which
5416 -- are no longer available or very expensive to recompute once analysis,
5417 -- resolution, and expansion are over.
5419 if Nkind
(N
) = N_Identifier
then
5420 Mark_Elaboration_Attributes
5425 -- Here if Entity pointer was not set, we need full visibility analysis
5426 -- First we generate debugging output if the debug E flag is set.
5428 if Debug_Flag_E
then
5429 Write_Str
("Looking for ");
5430 Write_Name
(Chars
(N
));
5434 Homonyms
:= Current_Entity
(N
);
5435 Nvis_Entity
:= False;
5438 while Present
(E
) loop
5440 -- If entity is immediately visible or potentially use visible, then
5441 -- process the entity and we are done.
5443 if Is_Immediately_Visible
(E
) then
5444 goto Immediately_Visible_Entity
;
5446 elsif Is_Potentially_Use_Visible
(E
) then
5447 goto Potentially_Use_Visible_Entity
;
5449 -- Note if a known but invisible entity encountered
5451 elsif Known_But_Invisible
(E
) then
5452 Nvis_Entity
:= True;
5455 -- Move to next entity in chain and continue search
5460 -- If no entries on homonym chain that were potentially visible,
5461 -- and no entities reasonably considered as non-visible, then
5462 -- we have a plain undefined reference, with no additional
5463 -- explanation required.
5465 if not Nvis_Entity
then
5466 Undefined
(Nvis
=> False);
5468 -- Otherwise there is at least one entry on the homonym chain that
5469 -- is reasonably considered as being known and non-visible.
5477 -- Processing for a potentially use visible entry found. We must search
5478 -- the rest of the homonym chain for two reasons. First, if there is a
5479 -- directly visible entry, then none of the potentially use-visible
5480 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5481 -- for the case of multiple potentially use-visible entries hiding one
5482 -- another and as a result being non-directly visible (RM 8.4(11)).
5484 <<Potentially_Use_Visible_Entity
>> declare
5485 Only_One_Visible
: Boolean := True;
5486 All_Overloadable
: Boolean := Is_Overloadable
(E
);
5490 while Present
(E2
) loop
5491 if Is_Immediately_Visible
(E2
) then
5493 -- If the use-visible entity comes from the actual for a
5494 -- formal package, it hides a directly visible entity from
5495 -- outside the instance.
5497 if From_Actual_Package
(E
)
5498 and then Scope_Depth
(E2
) < Scope_Depth
(Inst
)
5503 goto Immediately_Visible_Entity
;
5506 elsif Is_Potentially_Use_Visible
(E2
) then
5507 Only_One_Visible
:= False;
5508 All_Overloadable
:= All_Overloadable
and Is_Overloadable
(E2
);
5510 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5511 -- that can occur in private_with clauses. Example:
5514 -- private with B; package A is
5515 -- package C is function B return Integer;
5517 -- V1 : Integer := B;
5518 -- private function B return Integer;
5519 -- V2 : Integer := B;
5522 -- V1 resolves to A.B, but V2 resolves to library unit B
5524 elsif Ekind
(E2
) = E_Function
5525 and then Scope
(E2
) = Standard_Standard
5526 and then Has_Private_With
(E2
)
5528 Only_One_Visible
:= False;
5529 All_Overloadable
:= False;
5530 Nvis_Is_Private_Subprg
:= True;
5537 -- On falling through this loop, we have checked that there are no
5538 -- immediately visible entities. Only_One_Visible is set if exactly
5539 -- one potentially use visible entity exists. All_Overloadable is
5540 -- set if all the potentially use visible entities are overloadable.
5541 -- The condition for legality is that either there is one potentially
5542 -- use visible entity, or if there is more than one, then all of them
5543 -- are overloadable.
5545 if Only_One_Visible
or All_Overloadable
then
5548 -- If there is more than one potentially use-visible entity and at
5549 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5550 -- Note that E points to the first such entity on the homonym list.
5553 -- If one of the entities is declared in an actual package, it
5554 -- was visible in the generic, and takes precedence over other
5555 -- entities that are potentially use-visible. The same applies
5556 -- if the entity is declared in a local instantiation of the
5557 -- current instance.
5561 -- Find the current instance
5563 Inst
:= Current_Scope
;
5564 while Present
(Inst
) and then Inst
/= Standard_Standard
loop
5565 if Is_Generic_Instance
(Inst
) then
5569 Inst
:= Scope
(Inst
);
5572 -- Reexamine the candidate entities, giving priority to those
5573 -- that were visible within the generic.
5576 while Present
(E2
) loop
5577 Nested_Inst
:= Nearest_Enclosing_Instance
(E2
);
5579 -- The entity is declared within an actual package, or in a
5580 -- nested instance. The ">=" accounts for the case where the
5581 -- current instance and the nested instance are the same.
5583 if From_Actual_Package
(E2
)
5584 or else (Present
(Nested_Inst
)
5585 and then Scope_Depth
(Nested_Inst
) >=
5598 elsif Is_Predefined_Unit
(Current_Sem_Unit
) then
5599 -- A use clause in the body of a system file creates conflict
5600 -- with some entity in a user scope, while rtsfind is active.
5601 -- Keep only the entity coming from another predefined unit.
5604 while Present
(E2
) loop
5605 if In_Predefined_Unit
(E2
) then
5613 -- Entity must exist because predefined unit is correct
5615 raise Program_Error
;
5624 -- Come here with E set to the first immediately visible entity on
5625 -- the homonym chain. This is the one we want unless there is another
5626 -- immediately visible entity further on in the chain for an inner
5627 -- scope (RM 8.3(8)).
5629 <<Immediately_Visible_Entity
>> declare
5634 -- Find scope level of initial entity. When compiling through
5635 -- Rtsfind, the previous context is not completely invisible, and
5636 -- an outer entity may appear on the chain, whose scope is below
5637 -- the entry for Standard that delimits the current scope stack.
5638 -- Indicate that the level for this spurious entry is outside of
5639 -- the current scope stack.
5641 Level
:= Scope_Stack
.Last
;
5643 Scop
:= Scope_Stack
.Table
(Level
).Entity
;
5644 exit when Scop
= Scope
(E
);
5646 exit when Scop
= Standard_Standard
;
5649 -- Now search remainder of homonym chain for more inner entry
5650 -- If the entity is Standard itself, it has no scope, and we
5651 -- compare it with the stack entry directly.
5654 while Present
(E2
) loop
5655 if Is_Immediately_Visible
(E2
) then
5657 -- If a generic package contains a local declaration that
5658 -- has the same name as the generic, there may be a visibility
5659 -- conflict in an instance, where the local declaration must
5660 -- also hide the name of the corresponding package renaming.
5661 -- We check explicitly for a package declared by a renaming,
5662 -- whose renamed entity is an instance that is on the scope
5663 -- stack, and that contains a homonym in the same scope. Once
5664 -- we have found it, we know that the package renaming is not
5665 -- immediately visible, and that the identifier denotes the
5666 -- other entity (and its homonyms if overloaded).
5668 if Scope
(E
) = Scope
(E2
)
5669 and then Ekind
(E
) = E_Package
5670 and then Present
(Renamed_Object
(E
))
5671 and then Is_Generic_Instance
(Renamed_Object
(E
))
5672 and then In_Open_Scopes
(Renamed_Object
(E
))
5673 and then Comes_From_Source
(N
)
5675 Set_Is_Immediately_Visible
(E
, False);
5679 for J
in Level
+ 1 .. Scope_Stack
.Last
loop
5680 if Scope_Stack
.Table
(J
).Entity
= Scope
(E2
)
5681 or else Scope_Stack
.Table
(J
).Entity
= E2
5694 -- At the end of that loop, E is the innermost immediately
5695 -- visible entity, so we are all set.
5698 -- Come here with entity found, and stored in E
5702 -- Check violation of No_Wide_Characters restriction
5704 Check_Wide_Character_Restriction
(E
, N
);
5706 -- When distribution features are available (Get_PCS_Name /=
5707 -- Name_No_DSA), a remote access-to-subprogram type is converted
5708 -- into a record type holding whatever information is needed to
5709 -- perform a remote call on an RCI subprogram. In that case we
5710 -- rewrite any occurrence of the RAS type into the equivalent record
5711 -- type here. 'Access attribute references and RAS dereferences are
5712 -- then implemented using specific TSSs. However when distribution is
5713 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5714 -- generation of these TSSs, and we must keep the RAS type in its
5715 -- original access-to-subprogram form (since all calls through a
5716 -- value of such type will be local anyway in the absence of a PCS).
5718 if Comes_From_Source
(N
)
5719 and then Is_Remote_Access_To_Subprogram_Type
(E
)
5720 and then Ekind
(E
) = E_Access_Subprogram_Type
5721 and then Expander_Active
5722 and then Get_PCS_Name
/= Name_No_DSA
5724 Rewrite
(N
, New_Occurrence_Of
(Equivalent_Type
(E
), Sloc
(N
)));
5728 -- Set the entity. Note that the reason we call Set_Entity for the
5729 -- overloadable case, as opposed to Set_Entity_With_Checks is
5730 -- that in the overloaded case, the initial call can set the wrong
5731 -- homonym. The call that sets the right homonym is in Sem_Res and
5732 -- that call does use Set_Entity_With_Checks, so we don't miss
5735 if Is_Overloadable
(E
) then
5738 Set_Entity_With_Checks
(N
, E
);
5744 Set_Etype
(N
, Get_Full_View
(Etype
(E
)));
5747 if Debug_Flag_E
then
5748 Write_Str
(" found ");
5749 Write_Entity_Info
(E
, " ");
5752 -- If the Ekind of the entity is Void, it means that all homonyms
5753 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5754 -- test is skipped if the current scope is a record and the name is
5755 -- a pragma argument expression (case of Atomic and Volatile pragmas
5756 -- and possibly other similar pragmas added later, which are allowed
5757 -- to reference components in the current record).
5759 if Ekind
(E
) = E_Void
5761 (not Is_Record_Type
(Current_Scope
)
5762 or else Nkind
(Parent
(N
)) /= N_Pragma_Argument_Association
)
5764 Premature_Usage
(N
);
5766 -- If the entity is overloadable, collect all interpretations of the
5767 -- name for subsequent overload resolution. We optimize a bit here to
5768 -- do this only if we have an overloadable entity that is not on its
5769 -- own on the homonym chain.
5771 elsif Is_Overloadable
(E
)
5772 and then (Present
(Homonym
(E
)) or else Current_Entity
(N
) /= E
)
5774 Collect_Interps
(N
);
5776 -- If no homonyms were visible, the entity is unambiguous
5778 if not Is_Overloaded
(N
) then
5779 if not Is_Actual_Parameter
then
5780 Generate_Reference
(E
, N
);
5784 -- Case of non-overloadable entity, set the entity providing that
5785 -- we do not have the case of a discriminant reference within a
5786 -- default expression. Such references are replaced with the
5787 -- corresponding discriminal, which is the formal corresponding to
5788 -- to the discriminant in the initialization procedure.
5791 -- Entity is unambiguous, indicate that it is referenced here
5793 -- For a renaming of an object, always generate simple reference,
5794 -- we don't try to keep track of assignments in this case, except
5795 -- in SPARK mode where renamings are traversed for generating
5796 -- local effects of subprograms.
5799 and then Present
(Renamed_Object
(E
))
5800 and then not GNATprove_Mode
5802 Generate_Reference
(E
, N
);
5804 -- If the renamed entity is a private protected component,
5805 -- reference the original component as well. This needs to be
5806 -- done because the private renamings are installed before any
5807 -- analysis has occurred. Reference to a private component will
5808 -- resolve to the renaming and the original component will be
5809 -- left unreferenced, hence the following.
5811 if Is_Prival
(E
) then
5812 Generate_Reference
(Prival_Link
(E
), N
);
5815 -- One odd case is that we do not want to set the Referenced flag
5816 -- if the entity is a label, and the identifier is the label in
5817 -- the source, since this is not a reference from the point of
5818 -- view of the user.
5820 elsif Nkind
(Parent
(N
)) = N_Label
then
5822 R
: constant Boolean := Referenced
(E
);
5825 -- Generate reference unless this is an actual parameter
5826 -- (see comment below)
5828 if Is_Actual_Parameter
then
5829 Generate_Reference
(E
, N
);
5830 Set_Referenced
(E
, R
);
5834 -- Normal case, not a label: generate reference
5837 if not Is_Actual_Parameter
then
5839 -- Package or generic package is always a simple reference
5841 if Ekind_In
(E
, E_Package
, E_Generic_Package
) then
5842 Generate_Reference
(E
, N
, 'r');
5844 -- Else see if we have a left hand side
5849 Generate_Reference
(E
, N
, 'm');
5852 Generate_Reference
(E
, N
, 'r');
5854 -- If we don't know now, generate reference later
5857 Deferred_References
.Append
((E
, N
));
5863 Set_Entity_Or_Discriminal
(N
, E
);
5865 -- The name may designate a generalized reference, in which case
5866 -- the dereference interpretation will be included. Context is
5867 -- one in which a name is legal.
5869 if Ada_Version
>= Ada_2012
5871 (Nkind
(Parent
(N
)) in N_Subexpr
5872 or else Nkind_In
(Parent
(N
), N_Assignment_Statement
,
5873 N_Object_Declaration
,
5874 N_Parameter_Association
))
5876 Check_Implicit_Dereference
(N
, Etype
(E
));
5881 -- Mark relevant use-type and use-package clauses as effective if the
5882 -- node in question is not overloaded and therefore does not require
5885 -- Note: Generic actual subprograms do not follow the normal resolution
5886 -- path, so ignore the fact that they are overloaded and mark them
5889 if Nkind
(N
) not in N_Subexpr
or else not Is_Overloaded
(N
) then
5890 Mark_Use_Clauses
(N
);
5893 -- Come here with entity set
5896 Check_Restriction_No_Use_Of_Entity
(N
);
5898 -- Save the scenario for later examination by the ABE Processing phase
5900 Record_Elaboration_Scenario
(N
);
5901 end Find_Direct_Name
;
5903 ------------------------
5904 -- Find_Expanded_Name --
5905 ------------------------
5907 -- This routine searches the homonym chain of the entity until it finds
5908 -- an entity declared in the scope denoted by the prefix. If the entity
5909 -- is private, it may nevertheless be immediately visible, if we are in
5910 -- the scope of its declaration.
5912 procedure Find_Expanded_Name
(N
: Node_Id
) is
5913 function In_Abstract_View_Pragma
(Nod
: Node_Id
) return Boolean;
5914 -- Determine whether expanded name Nod appears within a pragma which is
5915 -- a suitable context for an abstract view of a state or variable. The
5916 -- following pragmas fall in this category:
5923 -- In addition, pragma Abstract_State is also considered suitable even
5924 -- though it is an illegal context for an abstract view as this allows
5925 -- for proper resolution of abstract views of variables. This illegal
5926 -- context is later flagged in the analysis of indicator Part_Of.
5928 -----------------------------
5929 -- In_Abstract_View_Pragma --
5930 -----------------------------
5932 function In_Abstract_View_Pragma
(Nod
: Node_Id
) return Boolean is
5936 -- Climb the parent chain looking for a pragma
5939 while Present
(Par
) loop
5940 if Nkind
(Par
) = N_Pragma
then
5941 if Nam_In
(Pragma_Name_Unmapped
(Par
),
5942 Name_Abstract_State
,
5946 Name_Refined_Depends
,
5947 Name_Refined_Global
)
5951 -- Otherwise the pragma is not a legal context for an abstract
5958 -- Prevent the search from going too far
5960 elsif Is_Body_Or_Package_Declaration
(Par
) then
5964 Par
:= Parent
(Par
);
5968 end In_Abstract_View_Pragma
;
5972 Selector
: constant Node_Id
:= Selector_Name
(N
);
5973 Candidate
: Entity_Id
:= Empty
;
5977 -- Start of processing for Find_Expanded_Name
5980 P_Name
:= Entity
(Prefix
(N
));
5982 -- If the prefix is a renamed package, look for the entity in the
5983 -- original package.
5985 if Ekind
(P_Name
) = E_Package
5986 and then Present
(Renamed_Object
(P_Name
))
5988 P_Name
:= Renamed_Object
(P_Name
);
5990 -- Rewrite node with entity field pointing to renamed object
5992 Rewrite
(Prefix
(N
), New_Copy
(Prefix
(N
)));
5993 Set_Entity
(Prefix
(N
), P_Name
);
5995 -- If the prefix is an object of a concurrent type, look for
5996 -- the entity in the associated task or protected type.
5998 elsif Is_Concurrent_Type
(Etype
(P_Name
)) then
5999 P_Name
:= Etype
(P_Name
);
6002 Id
:= Current_Entity
(Selector
);
6005 Is_New_Candidate
: Boolean;
6008 while Present
(Id
) loop
6009 if Scope
(Id
) = P_Name
then
6011 Is_New_Candidate
:= True;
6013 -- Handle abstract views of states and variables. These are
6014 -- acceptable candidates only when the reference to the view
6015 -- appears in certain pragmas.
6017 if Ekind
(Id
) = E_Abstract_State
6018 and then From_Limited_With
(Id
)
6019 and then Present
(Non_Limited_View
(Id
))
6021 if In_Abstract_View_Pragma
(N
) then
6022 Candidate
:= Non_Limited_View
(Id
);
6023 Is_New_Candidate
:= True;
6025 -- Hide the candidate because it is not used in a proper
6030 Is_New_Candidate
:= False;
6034 -- Ada 2005 (AI-217): Handle shadow entities associated with
6035 -- types declared in limited-withed nested packages. We don't need
6036 -- to handle E_Incomplete_Subtype entities because the entities
6037 -- in the limited view are always E_Incomplete_Type and
6038 -- E_Class_Wide_Type entities (see Build_Limited_Views).
6040 -- Regarding the expression used to evaluate the scope, it
6041 -- is important to note that the limited view also has shadow
6042 -- entities associated nested packages. For this reason the
6043 -- correct scope of the entity is the scope of the real entity.
6044 -- The non-limited view may itself be incomplete, in which case
6045 -- get the full view if available.
6047 elsif Ekind_In
(Id
, E_Incomplete_Type
, E_Class_Wide_Type
)
6048 and then From_Limited_With
(Id
)
6049 and then Present
(Non_Limited_View
(Id
))
6050 and then Scope
(Non_Limited_View
(Id
)) = P_Name
6052 Candidate
:= Get_Full_View
(Non_Limited_View
(Id
));
6053 Is_New_Candidate
:= True;
6055 -- An unusual case arises with a fully qualified name for an
6056 -- entity local to a generic child unit package, within an
6057 -- instantiation of that package. The name of the unit now
6058 -- denotes the renaming created within the instance. This is
6059 -- only relevant in an instance body, see below.
6061 elsif Is_Generic_Instance
(Scope
(Id
))
6062 and then In_Open_Scopes
(Scope
(Id
))
6063 and then In_Instance_Body
6064 and then Ekind
(Scope
(Id
)) = E_Package
6065 and then Ekind
(Id
) = E_Package
6066 and then Renamed_Entity
(Id
) = Scope
(Id
)
6067 and then Is_Immediately_Visible
(P_Name
)
6069 Is_New_Candidate
:= True;
6072 Is_New_Candidate
:= False;
6075 if Is_New_Candidate
then
6077 -- If entity is a child unit, either it is a visible child of
6078 -- the prefix, or we are in the body of a generic prefix, as
6079 -- will happen when a child unit is instantiated in the body
6080 -- of a generic parent. This is because the instance body does
6081 -- not restore the full compilation context, given that all
6082 -- non-local references have been captured.
6084 if Is_Child_Unit
(Id
) or else P_Name
= Standard_Standard
then
6085 exit when Is_Visible_Lib_Unit
(Id
)
6086 or else (Is_Child_Unit
(Id
)
6087 and then In_Open_Scopes
(Scope
(Id
))
6088 and then In_Instance_Body
);
6090 exit when not Is_Hidden
(Id
);
6093 exit when Is_Immediately_Visible
(Id
);
6101 and then Ekind_In
(P_Name
, E_Procedure
, E_Function
)
6102 and then Is_Generic_Instance
(P_Name
)
6104 -- Expanded name denotes entity in (instance of) generic subprogram.
6105 -- The entity may be in the subprogram instance, or may denote one of
6106 -- the formals, which is declared in the enclosing wrapper package.
6108 P_Name
:= Scope
(P_Name
);
6110 Id
:= Current_Entity
(Selector
);
6111 while Present
(Id
) loop
6112 exit when Scope
(Id
) = P_Name
;
6117 if No
(Id
) or else Chars
(Id
) /= Chars
(Selector
) then
6118 Set_Etype
(N
, Any_Type
);
6120 -- If we are looking for an entity defined in System, try to find it
6121 -- in the child package that may have been provided as an extension
6122 -- to System. The Extend_System pragma will have supplied the name of
6123 -- the extension, which may have to be loaded.
6125 if Chars
(P_Name
) = Name_System
6126 and then Scope
(P_Name
) = Standard_Standard
6127 and then Present
(System_Extend_Unit
)
6128 and then Present_System_Aux
(N
)
6130 Set_Entity
(Prefix
(N
), System_Aux_Id
);
6131 Find_Expanded_Name
(N
);
6134 -- There is an implicit instance of the predefined operator in
6135 -- the given scope. The operator entity is defined in Standard.
6136 -- Has_Implicit_Operator makes the node into an Expanded_Name.
6138 elsif Nkind
(Selector
) = N_Operator_Symbol
6139 and then Has_Implicit_Operator
(N
)
6143 -- If there is no literal defined in the scope denoted by the
6144 -- prefix, the literal may belong to (a type derived from)
6145 -- Standard_Character, for which we have no explicit literals.
6147 elsif Nkind
(Selector
) = N_Character_Literal
6148 and then Has_Implicit_Character_Literal
(N
)
6153 -- If the prefix is a single concurrent object, use its name in
6154 -- the error message, rather than that of the anonymous type.
6156 if Is_Concurrent_Type
(P_Name
)
6157 and then Is_Internal_Name
(Chars
(P_Name
))
6159 Error_Msg_Node_2
:= Entity
(Prefix
(N
));
6161 Error_Msg_Node_2
:= P_Name
;
6164 if P_Name
= System_Aux_Id
then
6165 P_Name
:= Scope
(P_Name
);
6166 Set_Entity
(Prefix
(N
), P_Name
);
6169 if Present
(Candidate
) then
6171 -- If we know that the unit is a child unit we can give a more
6172 -- accurate error message.
6174 if Is_Child_Unit
(Candidate
) then
6176 -- If the candidate is a private child unit and we are in
6177 -- the visible part of a public unit, specialize the error
6178 -- message. There might be a private with_clause for it,
6179 -- but it is not currently active.
6181 if Is_Private_Descendant
(Candidate
)
6182 and then Ekind
(Current_Scope
) = E_Package
6183 and then not In_Private_Part
(Current_Scope
)
6184 and then not Is_Private_Descendant
(Current_Scope
)
6187 ("private child unit& is not visible here", Selector
);
6189 -- Normal case where we have a missing with for a child unit
6192 Error_Msg_Qual_Level
:= 99;
6193 Error_Msg_NE
-- CODEFIX
6194 ("missing `WITH &;`", Selector
, Candidate
);
6195 Error_Msg_Qual_Level
:= 0;
6198 -- Here we don't know that this is a child unit
6201 Error_Msg_NE
("& is not a visible entity of&", N
, Selector
);
6205 -- Within the instantiation of a child unit, the prefix may
6206 -- denote the parent instance, but the selector has the name
6207 -- of the original child. That is to say, when A.B appears
6208 -- within an instantiation of generic child unit B, the scope
6209 -- stack includes an instance of A (P_Name) and an instance
6210 -- of B under some other name. We scan the scope to find this
6211 -- child instance, which is the desired entity.
6212 -- Note that the parent may itself be a child instance, if
6213 -- the reference is of the form A.B.C, in which case A.B has
6214 -- already been rewritten with the proper entity.
6216 if In_Open_Scopes
(P_Name
)
6217 and then Is_Generic_Instance
(P_Name
)
6220 Gen_Par
: constant Entity_Id
:=
6221 Generic_Parent
(Specification
6222 (Unit_Declaration_Node
(P_Name
)));
6223 S
: Entity_Id
:= Current_Scope
;
6227 for J
in reverse 0 .. Scope_Stack
.Last
loop
6228 S
:= Scope_Stack
.Table
(J
).Entity
;
6230 exit when S
= Standard_Standard
;
6232 if Ekind_In
(S
, E_Function
,
6237 Generic_Parent
(Specification
6238 (Unit_Declaration_Node
(S
)));
6240 -- Check that P is a generic child of the generic
6241 -- parent of the prefix.
6244 and then Chars
(P
) = Chars
(Selector
)
6245 and then Scope
(P
) = Gen_Par
6256 -- If this is a selection from Ada, System or Interfaces, then
6257 -- we assume a missing with for the corresponding package.
6259 if Is_Known_Unit
(N
) then
6260 if not Error_Posted
(N
) then
6261 Error_Msg_Node_2
:= Selector
;
6262 Error_Msg_N
-- CODEFIX
6263 ("missing `WITH &.&;`", Prefix
(N
));
6266 -- If this is a selection from a dummy package, then suppress
6267 -- the error message, of course the entity is missing if the
6268 -- package is missing.
6270 elsif Sloc
(Error_Msg_Node_2
) = No_Location
then
6273 -- Here we have the case of an undefined component
6276 -- The prefix may hide a homonym in the context that
6277 -- declares the desired entity. This error can use a
6278 -- specialized message.
6280 if In_Open_Scopes
(P_Name
) then
6282 H
: constant Entity_Id
:= Homonym
(P_Name
);
6286 and then Is_Compilation_Unit
(H
)
6288 (Is_Immediately_Visible
(H
)
6289 or else Is_Visible_Lib_Unit
(H
))
6291 Id
:= First_Entity
(H
);
6292 while Present
(Id
) loop
6293 if Chars
(Id
) = Chars
(Selector
) then
6294 Error_Msg_Qual_Level
:= 99;
6295 Error_Msg_Name_1
:= Chars
(Selector
);
6297 ("% not declared in&", N
, P_Name
);
6299 ("\use fully qualified name starting with "
6300 & "Standard to make& visible", N
, H
);
6301 Error_Msg_Qual_Level
:= 0;
6309 -- If not found, standard error message
6311 Error_Msg_NE
("& not declared in&", N
, Selector
);
6317 -- Might be worth specializing the case when the prefix
6318 -- is a limited view.
6319 -- ... not declared in limited view of...
6321 Error_Msg_NE
("& not declared in&", N
, Selector
);
6324 -- Check for misspelling of some entity in prefix
6326 Id
:= First_Entity
(P_Name
);
6327 while Present
(Id
) loop
6328 if Is_Bad_Spelling_Of
(Chars
(Id
), Chars
(Selector
))
6329 and then not Is_Internal_Name
(Chars
(Id
))
6331 Error_Msg_NE
-- CODEFIX
6332 ("possible misspelling of&", Selector
, Id
);
6339 -- Specialize the message if this may be an instantiation
6340 -- of a child unit that was not mentioned in the context.
6342 if Nkind
(Parent
(N
)) = N_Package_Instantiation
6343 and then Is_Generic_Instance
(Entity
(Prefix
(N
)))
6344 and then Is_Compilation_Unit
6345 (Generic_Parent
(Parent
(Entity
(Prefix
(N
)))))
6347 Error_Msg_Node_2
:= Selector
;
6348 Error_Msg_N
-- CODEFIX
6349 ("\missing `WITH &.&;`", Prefix
(N
));
6359 if Comes_From_Source
(N
)
6360 and then Is_Remote_Access_To_Subprogram_Type
(Id
)
6361 and then Ekind
(Id
) = E_Access_Subprogram_Type
6362 and then Present
(Equivalent_Type
(Id
))
6364 -- If we are not actually generating distribution code (i.e. the
6365 -- current PCS is the dummy non-distributed version), then the
6366 -- Equivalent_Type will be missing, and Id should be treated as
6367 -- a regular access-to-subprogram type.
6369 Id
:= Equivalent_Type
(Id
);
6370 Set_Chars
(Selector
, Chars
(Id
));
6373 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6375 if Ekind
(P_Name
) = E_Package
and then From_Limited_With
(P_Name
) then
6376 if From_Limited_With
(Id
)
6377 or else Is_Type
(Id
)
6378 or else Ekind
(Id
) = E_Package
6383 ("limited withed package can only be used to access incomplete "
6388 if Is_Task_Type
(P_Name
)
6389 and then ((Ekind
(Id
) = E_Entry
6390 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
)
6392 (Ekind
(Id
) = E_Entry_Family
6394 Nkind
(Parent
(Parent
(N
))) /= N_Attribute_Reference
))
6396 -- If both the task type and the entry are in scope, this may still
6397 -- be the expanded name of an entry formal.
6399 if In_Open_Scopes
(Id
)
6400 and then Nkind
(Parent
(N
)) = N_Selected_Component
6405 -- It is an entry call after all, either to the current task
6406 -- (which will deadlock) or to an enclosing task.
6408 Analyze_Selected_Component
(N
);
6413 Change_Selected_Component_To_Expanded_Name
(N
);
6415 -- Preserve relevant elaboration-related attributes of the context which
6416 -- are no longer available or very expensive to recompute once analysis,
6417 -- resolution, and expansion are over.
6419 Mark_Elaboration_Attributes
6423 -- Set appropriate type
6425 if Is_Type
(Id
) then
6428 Set_Etype
(N
, Get_Full_View
(Etype
(Id
)));
6431 -- Do style check and generate reference, but skip both steps if this
6432 -- entity has homonyms, since we may not have the right homonym set yet.
6433 -- The proper homonym will be set during the resolve phase.
6435 if Has_Homonym
(Id
) then
6439 Set_Entity_Or_Discriminal
(N
, Id
);
6443 Generate_Reference
(Id
, N
, 'm');
6446 Generate_Reference
(Id
, N
, 'r');
6449 Deferred_References
.Append
((Id
, N
));
6453 -- Check for violation of No_Wide_Characters
6455 Check_Wide_Character_Restriction
(Id
, N
);
6457 -- If the Ekind of the entity is Void, it means that all homonyms are
6458 -- hidden from all visibility (RM 8.3(5,14-20)).
6460 if Ekind
(Id
) = E_Void
then
6461 Premature_Usage
(N
);
6463 elsif Is_Overloadable
(Id
) and then Present
(Homonym
(Id
)) then
6465 H
: Entity_Id
:= Homonym
(Id
);
6468 while Present
(H
) loop
6469 if Scope
(H
) = Scope
(Id
)
6470 and then (not Is_Hidden
(H
)
6471 or else Is_Immediately_Visible
(H
))
6473 Collect_Interps
(N
);
6480 -- If an extension of System is present, collect possible explicit
6481 -- overloadings declared in the extension.
6483 if Chars
(P_Name
) = Name_System
6484 and then Scope
(P_Name
) = Standard_Standard
6485 and then Present
(System_Extend_Unit
)
6486 and then Present_System_Aux
(N
)
6488 H
:= Current_Entity
(Id
);
6490 while Present
(H
) loop
6491 if Scope
(H
) = System_Aux_Id
then
6492 Add_One_Interp
(N
, H
, Etype
(H
));
6501 if Nkind
(Selector_Name
(N
)) = N_Operator_Symbol
6502 and then Scope
(Id
) /= Standard_Standard
6504 -- In addition to user-defined operators in the given scope, there
6505 -- may be an implicit instance of the predefined operator. The
6506 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6507 -- and added to the interpretations. Procedure Add_One_Interp will
6508 -- determine which hides which.
6510 if Has_Implicit_Operator
(N
) then
6515 -- If there is a single interpretation for N we can generate a
6516 -- reference to the unique entity found.
6518 if Is_Overloadable
(Id
) and then not Is_Overloaded
(N
) then
6519 Generate_Reference
(Id
, N
);
6522 -- Mark relevant use-type and use-package clauses as effective if the
6523 -- node in question is not overloaded and therefore does not require
6526 if Nkind
(N
) not in N_Subexpr
or else not Is_Overloaded
(N
) then
6527 Mark_Use_Clauses
(N
);
6530 Check_Restriction_No_Use_Of_Entity
(N
);
6532 -- Save the scenario for later examination by the ABE Processing phase
6534 Record_Elaboration_Scenario
(N
);
6535 end Find_Expanded_Name
;
6537 --------------------
6538 -- Find_Most_Prev --
6539 --------------------
6541 function Find_Most_Prev
(Use_Clause
: Node_Id
) return Node_Id
is
6545 -- Loop through the Prev_Use_Clause chain
6548 while Present
(Prev_Use_Clause
(Curr
)) loop
6549 Curr
:= Prev_Use_Clause
(Curr
);
6555 -------------------------
6556 -- Find_Renamed_Entity --
6557 -------------------------
6559 function Find_Renamed_Entity
6563 Is_Actual
: Boolean := False) return Entity_Id
6566 I1
: Interp_Index
:= 0; -- Suppress junk warnings
6572 function Is_Visible_Operation
(Op
: Entity_Id
) return Boolean;
6573 -- If the renamed entity is an implicit operator, check whether it is
6574 -- visible because its operand type is properly visible. This check
6575 -- applies to explicit renamed entities that appear in the source in a
6576 -- renaming declaration or a formal subprogram instance, but not to
6577 -- default generic actuals with a name.
6579 function Report_Overload
return Entity_Id
;
6580 -- List possible interpretations, and specialize message in the
6581 -- case of a generic actual.
6583 function Within
(Inner
, Outer
: Entity_Id
) return Boolean;
6584 -- Determine whether a candidate subprogram is defined within the
6585 -- enclosing instance. If yes, it has precedence over outer candidates.
6587 --------------------------
6588 -- Is_Visible_Operation --
6589 --------------------------
6591 function Is_Visible_Operation
(Op
: Entity_Id
) return Boolean is
6597 if Ekind
(Op
) /= E_Operator
6598 or else Scope
(Op
) /= Standard_Standard
6599 or else (In_Instance
6600 and then (not Is_Actual
6601 or else Present
(Enclosing_Instance
)))
6606 -- For a fixed point type operator, check the resulting type,
6607 -- because it may be a mixed mode integer * fixed operation.
6609 if Present
(Next_Formal
(First_Formal
(New_S
)))
6610 and then Is_Fixed_Point_Type
(Etype
(New_S
))
6612 Typ
:= Etype
(New_S
);
6614 Typ
:= Etype
(First_Formal
(New_S
));
6617 Btyp
:= Base_Type
(Typ
);
6619 if Nkind
(Nam
) /= N_Expanded_Name
then
6620 return (In_Open_Scopes
(Scope
(Btyp
))
6621 or else Is_Potentially_Use_Visible
(Btyp
)
6622 or else In_Use
(Btyp
)
6623 or else In_Use
(Scope
(Btyp
)));
6626 Scop
:= Entity
(Prefix
(Nam
));
6628 if Ekind
(Scop
) = E_Package
6629 and then Present
(Renamed_Object
(Scop
))
6631 Scop
:= Renamed_Object
(Scop
);
6634 -- Operator is visible if prefix of expanded name denotes
6635 -- scope of type, or else type is defined in System_Aux
6636 -- and the prefix denotes System.
6638 return Scope
(Btyp
) = Scop
6639 or else (Scope
(Btyp
) = System_Aux_Id
6640 and then Scope
(Scope
(Btyp
)) = Scop
);
6643 end Is_Visible_Operation
;
6649 function Within
(Inner
, Outer
: Entity_Id
) return Boolean is
6653 Sc
:= Scope
(Inner
);
6654 while Sc
/= Standard_Standard
loop
6665 ---------------------
6666 -- Report_Overload --
6667 ---------------------
6669 function Report_Overload
return Entity_Id
is
6672 Error_Msg_NE
-- CODEFIX
6673 ("ambiguous actual subprogram&, " &
6674 "possible interpretations:", N
, Nam
);
6676 Error_Msg_N
-- CODEFIX
6677 ("ambiguous subprogram, " &
6678 "possible interpretations:", N
);
6681 List_Interps
(Nam
, N
);
6683 end Report_Overload
;
6685 -- Start of processing for Find_Renamed_Entity
6689 Candidate_Renaming
:= Empty
;
6691 if Is_Overloaded
(Nam
) then
6692 Get_First_Interp
(Nam
, Ind
, It
);
6693 while Present
(It
.Nam
) loop
6694 if Entity_Matches_Spec
(It
.Nam
, New_S
)
6695 and then Is_Visible_Operation
(It
.Nam
)
6697 if Old_S
/= Any_Id
then
6699 -- Note: The call to Disambiguate only happens if a
6700 -- previous interpretation was found, in which case I1
6701 -- has received a value.
6703 It1
:= Disambiguate
(Nam
, I1
, Ind
, Etype
(Old_S
));
6705 if It1
= No_Interp
then
6706 Inst
:= Enclosing_Instance
;
6708 if Present
(Inst
) then
6709 if Within
(It
.Nam
, Inst
) then
6710 if Within
(Old_S
, Inst
) then
6712 -- Choose the innermost subprogram, which would
6713 -- have hidden the outer one in the generic.
6715 if Scope_Depth
(It
.Nam
) <
6724 elsif Within
(Old_S
, Inst
) then
6728 return Report_Overload
;
6731 -- If not within an instance, ambiguity is real
6734 return Report_Overload
;
6748 Present
(First_Formal
(It
.Nam
))
6749 and then Present
(First_Formal
(New_S
))
6750 and then (Base_Type
(Etype
(First_Formal
(It
.Nam
))) =
6751 Base_Type
(Etype
(First_Formal
(New_S
))))
6753 Candidate_Renaming
:= It
.Nam
;
6756 Get_Next_Interp
(Ind
, It
);
6759 Set_Entity
(Nam
, Old_S
);
6761 if Old_S
/= Any_Id
then
6762 Set_Is_Overloaded
(Nam
, False);
6765 -- Non-overloaded case
6769 and then Present
(Enclosing_Instance
)
6770 and then Entity_Matches_Spec
(Entity
(Nam
), New_S
)
6772 Old_S
:= Entity
(Nam
);
6774 elsif Entity_Matches_Spec
(Entity
(Nam
), New_S
) then
6775 Candidate_Renaming
:= New_S
;
6777 if Is_Visible_Operation
(Entity
(Nam
)) then
6778 Old_S
:= Entity
(Nam
);
6781 elsif Present
(First_Formal
(Entity
(Nam
)))
6782 and then Present
(First_Formal
(New_S
))
6783 and then (Base_Type
(Etype
(First_Formal
(Entity
(Nam
)))) =
6784 Base_Type
(Etype
(First_Formal
(New_S
))))
6786 Candidate_Renaming
:= Entity
(Nam
);
6791 end Find_Renamed_Entity
;
6793 -----------------------------
6794 -- Find_Selected_Component --
6795 -----------------------------
6797 procedure Find_Selected_Component
(N
: Node_Id
) is
6798 P
: constant Node_Id
:= Prefix
(N
);
6801 -- Entity denoted by prefix
6808 function Available_Subtype
return Boolean;
6809 -- A small optimization: if the prefix is constrained and the component
6810 -- is an array type we may already have a usable subtype for it, so we
6811 -- can use it rather than generating a new one, because the bounds
6812 -- will be the values of the discriminants and not discriminant refs.
6813 -- This simplifies value tracing in GNATProve. For consistency, both
6814 -- the entity name and the subtype come from the constrained component.
6816 -- This is only used in GNATProve mode: when generating code it may be
6817 -- necessary to create an itype in the scope of use of the selected
6818 -- component, e.g. in the context of a expanded record equality.
6820 function Is_Reference_In_Subunit
return Boolean;
6821 -- In a subunit, the scope depth is not a proper measure of hiding,
6822 -- because the context of the proper body may itself hide entities in
6823 -- parent units. This rare case requires inspecting the tree directly
6824 -- because the proper body is inserted in the main unit and its context
6825 -- is simply added to that of the parent.
6827 -----------------------
6828 -- Available_Subtype --
6829 -----------------------
6831 function Available_Subtype
return Boolean is
6835 if GNATprove_Mode
then
6836 Comp
:= First_Entity
(Etype
(P
));
6837 while Present
(Comp
) loop
6838 if Chars
(Comp
) = Chars
(Selector_Name
(N
)) then
6839 Set_Etype
(N
, Etype
(Comp
));
6840 Set_Entity
(Selector_Name
(N
), Comp
);
6841 Set_Etype
(Selector_Name
(N
), Etype
(Comp
));
6845 Next_Component
(Comp
);
6850 end Available_Subtype
;
6852 -----------------------------
6853 -- Is_Reference_In_Subunit --
6854 -----------------------------
6856 function Is_Reference_In_Subunit
return Boolean is
6858 Comp_Unit
: Node_Id
;
6862 while Present
(Comp_Unit
)
6863 and then Nkind
(Comp_Unit
) /= N_Compilation_Unit
6865 Comp_Unit
:= Parent
(Comp_Unit
);
6868 if No
(Comp_Unit
) or else Nkind
(Unit
(Comp_Unit
)) /= N_Subunit
then
6872 -- Now check whether the package is in the context of the subunit
6874 Clause
:= First
(Context_Items
(Comp_Unit
));
6875 while Present
(Clause
) loop
6876 if Nkind
(Clause
) = N_With_Clause
6877 and then Entity
(Name
(Clause
)) = P_Name
6882 Clause
:= Next
(Clause
);
6886 end Is_Reference_In_Subunit
;
6888 -- Start of processing for Find_Selected_Component
6893 if Nkind
(P
) = N_Error
then
6897 -- Selector name cannot be a character literal or an operator symbol in
6898 -- SPARK, except for the operator symbol in a renaming.
6900 if Restriction_Check_Required
(SPARK_05
) then
6901 if Nkind
(Selector_Name
(N
)) = N_Character_Literal
then
6902 Check_SPARK_05_Restriction
6903 ("character literal cannot be prefixed", N
);
6904 elsif Nkind
(Selector_Name
(N
)) = N_Operator_Symbol
6905 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
6907 Check_SPARK_05_Restriction
6908 ("operator symbol cannot be prefixed", N
);
6912 -- If the selector already has an entity, the node has been constructed
6913 -- in the course of expansion, and is known to be valid. Do not verify
6914 -- that it is defined for the type (it may be a private component used
6915 -- in the expansion of record equality).
6917 if Present
(Entity
(Selector_Name
(N
))) then
6918 if No
(Etype
(N
)) or else Etype
(N
) = Any_Type
then
6920 Sel_Name
: constant Node_Id
:= Selector_Name
(N
);
6921 Selector
: constant Entity_Id
:= Entity
(Sel_Name
);
6925 Set_Etype
(Sel_Name
, Etype
(Selector
));
6927 if not Is_Entity_Name
(P
) then
6931 -- Build an actual subtype except for the first parameter
6932 -- of an init proc, where this actual subtype is by
6933 -- definition incorrect, since the object is uninitialized
6934 -- (and does not even have defined discriminants etc.)
6936 if Is_Entity_Name
(P
)
6937 and then Ekind
(Entity
(P
)) = E_Function
6939 Nam
:= New_Copy
(P
);
6941 if Is_Overloaded
(P
) then
6942 Save_Interps
(P
, Nam
);
6945 Rewrite
(P
, Make_Function_Call
(Sloc
(P
), Name
=> Nam
));
6947 Analyze_Selected_Component
(N
);
6950 elsif Ekind
(Selector
) = E_Component
6951 and then (not Is_Entity_Name
(P
)
6952 or else Chars
(Entity
(P
)) /= Name_uInit
)
6954 -- Check if we already have an available subtype we can use
6956 if Ekind
(Etype
(P
)) = E_Record_Subtype
6957 and then Nkind
(Parent
(Etype
(P
))) = N_Subtype_Declaration
6958 and then Is_Array_Type
(Etype
(Selector
))
6959 and then not Is_Packed
(Etype
(Selector
))
6960 and then Available_Subtype
6964 -- Do not build the subtype when referencing components of
6965 -- dispatch table wrappers. Required to avoid generating
6966 -- elaboration code with HI runtimes.
6968 elsif RTU_Loaded
(Ada_Tags
)
6970 ((RTE_Available
(RE_Dispatch_Table_Wrapper
)
6971 and then Scope
(Selector
) =
6972 RTE
(RE_Dispatch_Table_Wrapper
))
6974 (RTE_Available
(RE_No_Dispatch_Table_Wrapper
)
6975 and then Scope
(Selector
) =
6976 RTE
(RE_No_Dispatch_Table_Wrapper
)))
6981 Build_Actual_Subtype_Of_Component
6982 (Etype
(Selector
), N
);
6989 if No
(C_Etype
) then
6990 C_Etype
:= Etype
(Selector
);
6992 Insert_Action
(N
, C_Etype
);
6993 C_Etype
:= Defining_Identifier
(C_Etype
);
6996 Set_Etype
(N
, C_Etype
);
6999 -- If this is the name of an entry or protected operation, and
7000 -- the prefix is an access type, insert an explicit dereference,
7001 -- so that entry calls are treated uniformly.
7003 if Is_Access_Type
(Etype
(P
))
7004 and then Is_Concurrent_Type
(Designated_Type
(Etype
(P
)))
7007 New_P
: constant Node_Id
:=
7008 Make_Explicit_Dereference
(Sloc
(P
),
7009 Prefix
=> Relocate_Node
(P
));
7012 Set_Etype
(P
, Designated_Type
(Etype
(Prefix
(P
))));
7016 -- If the selected component appears within a default expression
7017 -- and it has an actual subtype, the pre-analysis has not yet
7018 -- completed its analysis, because Insert_Actions is disabled in
7019 -- that context. Within the init proc of the enclosing type we
7020 -- must complete this analysis, if an actual subtype was created.
7022 elsif Inside_Init_Proc
then
7024 Typ
: constant Entity_Id
:= Etype
(N
);
7025 Decl
: constant Node_Id
:= Declaration_Node
(Typ
);
7027 if Nkind
(Decl
) = N_Subtype_Declaration
7028 and then not Analyzed
(Decl
)
7029 and then Is_List_Member
(Decl
)
7030 and then No
(Parent
(Decl
))
7033 Insert_Action
(N
, Decl
);
7040 elsif Is_Entity_Name
(P
) then
7041 P_Name
:= Entity
(P
);
7043 -- The prefix may denote an enclosing type which is the completion
7044 -- of an incomplete type declaration.
7046 if Is_Type
(P_Name
) then
7047 Set_Entity
(P
, Get_Full_View
(P_Name
));
7048 Set_Etype
(P
, Entity
(P
));
7049 P_Name
:= Entity
(P
);
7052 P_Type
:= Base_Type
(Etype
(P
));
7054 if Debug_Flag_E
then
7055 Write_Str
("Found prefix type to be ");
7056 Write_Entity_Info
(P_Type
, " "); Write_Eol
;
7059 -- The designated type may be a limited view with no components.
7060 -- Check whether the non-limited view is available, because in some
7061 -- cases this will not be set when installing the context. Rewrite
7062 -- the node by introducing an explicit dereference at once, and
7063 -- setting the type of the rewritten prefix to the non-limited view
7064 -- of the original designated type.
7066 if Is_Access_Type
(P_Type
) then
7068 Desig_Typ
: constant Entity_Id
:=
7069 Directly_Designated_Type
(P_Type
);
7072 if Is_Incomplete_Type
(Desig_Typ
)
7073 and then From_Limited_With
(Desig_Typ
)
7074 and then Present
(Non_Limited_View
(Desig_Typ
))
7077 Make_Explicit_Dereference
(Sloc
(P
),
7078 Prefix
=> Relocate_Node
(P
)));
7080 Set_Etype
(P
, Get_Full_View
(Non_Limited_View
(Desig_Typ
)));
7081 P_Type
:= Etype
(P
);
7086 -- First check for components of a record object (not the
7087 -- result of a call, which is handled below).
7089 if Is_Appropriate_For_Record
(P_Type
)
7090 and then not Is_Overloadable
(P_Name
)
7091 and then not Is_Type
(P_Name
)
7093 -- Selected component of record. Type checking will validate
7094 -- name of selector.
7096 -- ??? Could we rewrite an implicit dereference into an explicit
7099 Analyze_Selected_Component
(N
);
7101 -- Reference to type name in predicate/invariant expression
7103 elsif Is_Appropriate_For_Entry_Prefix
(P_Type
)
7104 and then not In_Open_Scopes
(P_Name
)
7105 and then (not Is_Concurrent_Type
(Etype
(P_Name
))
7106 or else not In_Open_Scopes
(Etype
(P_Name
)))
7108 -- Call to protected operation or entry. Type checking is
7109 -- needed on the prefix.
7111 Analyze_Selected_Component
(N
);
7113 elsif (In_Open_Scopes
(P_Name
)
7114 and then Ekind
(P_Name
) /= E_Void
7115 and then not Is_Overloadable
(P_Name
))
7116 or else (Is_Concurrent_Type
(Etype
(P_Name
))
7117 and then In_Open_Scopes
(Etype
(P_Name
)))
7119 -- Prefix denotes an enclosing loop, block, or task, i.e. an
7120 -- enclosing construct that is not a subprogram or accept.
7122 -- A special case: a protected body may call an operation
7123 -- on an external object of the same type, in which case it
7124 -- is not an expanded name. If the prefix is the type itself,
7125 -- or the context is a single synchronized object it can only
7126 -- be interpreted as an expanded name.
7128 if Is_Concurrent_Type
(Etype
(P_Name
)) then
7130 or else Present
(Anonymous_Object
(Etype
(P_Name
)))
7132 Find_Expanded_Name
(N
);
7135 Analyze_Selected_Component
(N
);
7140 Find_Expanded_Name
(N
);
7143 elsif Ekind
(P_Name
) = E_Package
then
7144 Find_Expanded_Name
(N
);
7146 elsif Is_Overloadable
(P_Name
) then
7148 -- The subprogram may be a renaming (of an enclosing scope) as
7149 -- in the case of the name of the generic within an instantiation.
7151 if Ekind_In
(P_Name
, E_Procedure
, E_Function
)
7152 and then Present
(Alias
(P_Name
))
7153 and then Is_Generic_Instance
(Alias
(P_Name
))
7155 P_Name
:= Alias
(P_Name
);
7158 if Is_Overloaded
(P
) then
7160 -- The prefix must resolve to a unique enclosing construct
7163 Found
: Boolean := False;
7168 Get_First_Interp
(P
, Ind
, It
);
7169 while Present
(It
.Nam
) loop
7170 if In_Open_Scopes
(It
.Nam
) then
7173 "prefix must be unique enclosing scope", N
);
7174 Set_Entity
(N
, Any_Id
);
7175 Set_Etype
(N
, Any_Type
);
7184 Get_Next_Interp
(Ind
, It
);
7189 if In_Open_Scopes
(P_Name
) then
7190 Set_Entity
(P
, P_Name
);
7191 Set_Is_Overloaded
(P
, False);
7192 Find_Expanded_Name
(N
);
7195 -- If no interpretation as an expanded name is possible, it
7196 -- must be a selected component of a record returned by a
7197 -- function call. Reformat prefix as a function call, the rest
7198 -- is done by type resolution.
7200 -- Error if the prefix is procedure or entry, as is P.X
7202 if Ekind
(P_Name
) /= E_Function
7204 (not Is_Overloaded
(P
)
7205 or else Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
)
7207 -- Prefix may mention a package that is hidden by a local
7208 -- declaration: let the user know. Scan the full homonym
7209 -- chain, the candidate package may be anywhere on it.
7211 if Present
(Homonym
(Current_Entity
(P_Name
))) then
7212 P_Name
:= Current_Entity
(P_Name
);
7214 while Present
(P_Name
) loop
7215 exit when Ekind
(P_Name
) = E_Package
;
7216 P_Name
:= Homonym
(P_Name
);
7219 if Present
(P_Name
) then
7220 if not Is_Reference_In_Subunit
then
7221 Error_Msg_Sloc
:= Sloc
(Entity
(Prefix
(N
)));
7223 ("package& is hidden by declaration#", N
, P_Name
);
7226 Set_Entity
(Prefix
(N
), P_Name
);
7227 Find_Expanded_Name
(N
);
7231 P_Name
:= Entity
(Prefix
(N
));
7236 ("invalid prefix in selected component&", N
, P_Name
);
7237 Change_Selected_Component_To_Expanded_Name
(N
);
7238 Set_Entity
(N
, Any_Id
);
7239 Set_Etype
(N
, Any_Type
);
7241 -- Here we have a function call, so do the reformatting
7244 Nam
:= New_Copy
(P
);
7245 Save_Interps
(P
, Nam
);
7247 -- We use Replace here because this is one of those cases
7248 -- where the parser has missclassified the node, and we fix
7249 -- things up and then do the semantic analysis on the fixed
7250 -- up node. Normally we do this using one of the Sinfo.CN
7251 -- routines, but this is too tricky for that.
7253 -- Note that using Rewrite would be wrong, because we would
7254 -- have a tree where the original node is unanalyzed, and
7255 -- this violates the required interface for ASIS.
7258 Make_Function_Call
(Sloc
(P
), Name
=> Nam
));
7260 -- Now analyze the reformatted node
7264 -- If the prefix is illegal after this transformation, there
7265 -- may be visibility errors on the prefix. The safest is to
7266 -- treat the selected component as an error.
7268 if Error_Posted
(P
) then
7269 Set_Etype
(N
, Any_Type
);
7273 Analyze_Selected_Component
(N
);
7278 -- Remaining cases generate various error messages
7281 -- Format node as expanded name, to avoid cascaded errors
7283 -- If the limited_with transformation was applied earlier, restore
7284 -- source for proper error reporting.
7286 if not Comes_From_Source
(P
)
7287 and then Nkind
(P
) = N_Explicit_Dereference
7289 Rewrite
(P
, Prefix
(P
));
7290 P_Type
:= Etype
(P
);
7293 Change_Selected_Component_To_Expanded_Name
(N
);
7294 Set_Entity
(N
, Any_Id
);
7295 Set_Etype
(N
, Any_Type
);
7297 -- Issue error message, but avoid this if error issued already.
7298 -- Use identifier of prefix if one is available.
7300 if P_Name
= Any_Id
then
7303 -- It is not an error if the prefix is the current instance of
7304 -- type name, e.g. the expression of a type aspect, when it is
7305 -- analyzed for ASIS use.
7307 elsif Is_Entity_Name
(P
) and then Is_Current_Instance
(P
) then
7310 elsif Ekind
(P_Name
) = E_Void
then
7311 Premature_Usage
(P
);
7313 elsif Nkind
(P
) /= N_Attribute_Reference
then
7315 -- This may have been meant as a prefixed call to a primitive
7316 -- of an untagged type. If it is a function call check type of
7317 -- its first formal and add explanation.
7320 F
: constant Entity_Id
:=
7321 Current_Entity
(Selector_Name
(N
));
7324 and then Is_Overloadable
(F
)
7325 and then Present
(First_Entity
(F
))
7326 and then not Is_Tagged_Type
(Etype
(First_Entity
(F
)))
7329 ("prefixed call is only allowed for objects of a "
7330 & "tagged type", N
);
7334 Error_Msg_N
("invalid prefix in selected component&", P
);
7336 if Is_Access_Type
(P_Type
)
7337 and then Ekind
(Designated_Type
(P_Type
)) = E_Incomplete_Type
7340 ("\dereference must not be of an incomplete type "
7341 & "(RM 3.10.1)", P
);
7345 Error_Msg_N
("invalid prefix in selected component", P
);
7349 -- Selector name is restricted in SPARK
7351 if Nkind
(N
) = N_Expanded_Name
7352 and then Restriction_Check_Required
(SPARK_05
)
7354 if Is_Subprogram
(P_Name
) then
7355 Check_SPARK_05_Restriction
7356 ("prefix of expanded name cannot be a subprogram", P
);
7357 elsif Ekind
(P_Name
) = E_Loop
then
7358 Check_SPARK_05_Restriction
7359 ("prefix of expanded name cannot be a loop statement", P
);
7364 -- If prefix is not the name of an entity, it must be an expression,
7365 -- whose type is appropriate for a record. This is determined by
7368 Analyze_Selected_Component
(N
);
7371 Analyze_Dimension
(N
);
7372 end Find_Selected_Component
;
7378 procedure Find_Type
(N
: Node_Id
) is
7388 elsif Nkind
(N
) = N_Attribute_Reference
then
7390 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7391 -- need to enforce that at this point, since the declaration of the
7392 -- tagged type in the prefix would have been flagged already.
7394 if Attribute_Name
(N
) = Name_Class
then
7395 Check_Restriction
(No_Dispatch
, N
);
7396 Find_Type
(Prefix
(N
));
7398 -- Propagate error from bad prefix
7400 if Etype
(Prefix
(N
)) = Any_Type
then
7401 Set_Entity
(N
, Any_Type
);
7402 Set_Etype
(N
, Any_Type
);
7406 T
:= Base_Type
(Entity
(Prefix
(N
)));
7408 -- Case where type is not known to be tagged. Its appearance in
7409 -- the prefix of the 'Class attribute indicates that the full view
7412 if not Is_Tagged_Type
(T
) then
7413 if Ekind
(T
) = E_Incomplete_Type
then
7415 -- It is legal to denote the class type of an incomplete
7416 -- type. The full type will have to be tagged, of course.
7417 -- In Ada 2005 this usage is declared obsolescent, so we
7418 -- warn accordingly. This usage is only legal if the type
7419 -- is completed in the current scope, and not for a limited
7422 if Ada_Version
>= Ada_2005
then
7424 -- Test whether the Available_View of a limited type view
7425 -- is tagged, since the limited view may not be marked as
7426 -- tagged if the type itself has an untagged incomplete
7427 -- type view in its package.
7429 if From_Limited_With
(T
)
7430 and then not Is_Tagged_Type
(Available_View
(T
))
7433 ("prefix of Class attribute must be tagged", N
);
7434 Set_Etype
(N
, Any_Type
);
7435 Set_Entity
(N
, Any_Type
);
7438 -- ??? This test is temporarily disabled (always
7439 -- False) because it causes an unwanted warning on
7440 -- GNAT sources (built with -gnatg, which includes
7441 -- Warn_On_Obsolescent_ Feature). Once this issue
7442 -- is cleared in the sources, it can be enabled.
7444 elsif Warn_On_Obsolescent_Feature
and then False then
7446 ("applying 'Class to an untagged incomplete type"
7447 & " is an obsolescent feature (RM J.11)?r?", N
);
7451 Set_Is_Tagged_Type
(T
);
7452 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
7453 Make_Class_Wide_Type
(T
);
7454 Set_Entity
(N
, Class_Wide_Type
(T
));
7455 Set_Etype
(N
, Class_Wide_Type
(T
));
7457 elsif Ekind
(T
) = E_Private_Type
7458 and then not Is_Generic_Type
(T
)
7459 and then In_Private_Part
(Scope
(T
))
7461 -- The Class attribute can be applied to an untagged private
7462 -- type fulfilled by a tagged type prior to the full type
7463 -- declaration (but only within the parent package's private
7464 -- part). Create the class-wide type now and check that the
7465 -- full type is tagged later during its analysis. Note that
7466 -- we do not mark the private type as tagged, unlike the
7467 -- case of incomplete types, because the type must still
7468 -- appear untagged to outside units.
7470 if No
(Class_Wide_Type
(T
)) then
7471 Make_Class_Wide_Type
(T
);
7474 Set_Entity
(N
, Class_Wide_Type
(T
));
7475 Set_Etype
(N
, Class_Wide_Type
(T
));
7478 -- Should we introduce a type Any_Tagged and use Wrong_Type
7479 -- here, it would be a bit more consistent???
7482 ("tagged type required, found}",
7483 Prefix
(N
), First_Subtype
(T
));
7484 Set_Entity
(N
, Any_Type
);
7488 -- Case of tagged type
7491 if Is_Concurrent_Type
(T
) then
7492 if No
(Corresponding_Record_Type
(Entity
(Prefix
(N
)))) then
7494 -- Previous error. Create a class-wide type for the
7495 -- synchronized type itself, with minimal semantic
7496 -- attributes, to catch other errors in some ACATS tests.
7498 pragma Assert
(Serious_Errors_Detected
/= 0);
7499 Make_Class_Wide_Type
(T
);
7500 C
:= Class_Wide_Type
(T
);
7501 Set_First_Entity
(C
, First_Entity
(T
));
7504 C
:= Class_Wide_Type
7505 (Corresponding_Record_Type
(Entity
(Prefix
(N
))));
7509 C
:= Class_Wide_Type
(Entity
(Prefix
(N
)));
7512 Set_Entity_With_Checks
(N
, C
);
7513 Generate_Reference
(C
, N
);
7517 -- Base attribute, not allowed in Ada 83
7519 elsif Attribute_Name
(N
) = Name_Base
then
7520 Error_Msg_Name_1
:= Name_Base
;
7521 Check_SPARK_05_Restriction
7522 ("attribute% is only allowed as prefix of another attribute", N
);
7524 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
7526 ("(Ada 83) Base attribute not allowed in subtype mark", N
);
7529 Find_Type
(Prefix
(N
));
7530 Typ
:= Entity
(Prefix
(N
));
7532 if Ada_Version
>= Ada_95
7533 and then not Is_Scalar_Type
(Typ
)
7534 and then not Is_Generic_Type
(Typ
)
7537 ("prefix of Base attribute must be scalar type",
7540 elsif Warn_On_Redundant_Constructs
7541 and then Base_Type
(Typ
) = Typ
7543 Error_Msg_NE
-- CODEFIX
7544 ("redundant attribute, & is its own base type?r?", N
, Typ
);
7547 T
:= Base_Type
(Typ
);
7549 -- Rewrite attribute reference with type itself (see similar
7550 -- processing in Analyze_Attribute, case Base). Preserve prefix
7551 -- if present, for other legality checks.
7553 if Nkind
(Prefix
(N
)) = N_Expanded_Name
then
7555 Make_Expanded_Name
(Sloc
(N
),
7557 Prefix
=> New_Copy
(Prefix
(Prefix
(N
))),
7558 Selector_Name
=> New_Occurrence_Of
(T
, Sloc
(N
))));
7561 Rewrite
(N
, New_Occurrence_Of
(T
, Sloc
(N
)));
7568 elsif Attribute_Name
(N
) = Name_Stub_Type
then
7570 -- This is handled in Analyze_Attribute
7574 -- All other attributes are invalid in a subtype mark
7577 Error_Msg_N
("invalid attribute in subtype mark", N
);
7583 if Is_Entity_Name
(N
) then
7584 T_Name
:= Entity
(N
);
7586 Error_Msg_N
("subtype mark required in this context", N
);
7587 Set_Etype
(N
, Any_Type
);
7591 if T_Name
= Any_Id
or else Etype
(N
) = Any_Type
then
7593 -- Undefined id. Make it into a valid type
7595 Set_Entity
(N
, Any_Type
);
7597 elsif not Is_Type
(T_Name
)
7598 and then T_Name
/= Standard_Void_Type
7600 Error_Msg_Sloc
:= Sloc
(T_Name
);
7601 Error_Msg_N
("subtype mark required in this context", N
);
7602 Error_Msg_NE
("\\found & declared#", N
, T_Name
);
7603 Set_Entity
(N
, Any_Type
);
7606 -- If the type is an incomplete type created to handle
7607 -- anonymous access components of a record type, then the
7608 -- incomplete type is the visible entity and subsequent
7609 -- references will point to it. Mark the original full
7610 -- type as referenced, to prevent spurious warnings.
7612 if Is_Incomplete_Type
(T_Name
)
7613 and then Present
(Full_View
(T_Name
))
7614 and then not Comes_From_Source
(T_Name
)
7616 Set_Referenced
(Full_View
(T_Name
));
7619 T_Name
:= Get_Full_View
(T_Name
);
7621 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7622 -- limited-with clauses
7624 if From_Limited_With
(T_Name
)
7625 and then Ekind
(T_Name
) in Incomplete_Kind
7626 and then Present
(Non_Limited_View
(T_Name
))
7627 and then Is_Interface
(Non_Limited_View
(T_Name
))
7629 T_Name
:= Non_Limited_View
(T_Name
);
7632 if In_Open_Scopes
(T_Name
) then
7633 if Ekind
(Base_Type
(T_Name
)) = E_Task_Type
then
7635 -- In Ada 2005, a task name can be used in an access
7636 -- definition within its own body. It cannot be used
7637 -- in the discriminant part of the task declaration,
7638 -- nor anywhere else in the declaration because entries
7639 -- cannot have access parameters.
7641 if Ada_Version
>= Ada_2005
7642 and then Nkind
(Parent
(N
)) = N_Access_Definition
7644 Set_Entity
(N
, T_Name
);
7645 Set_Etype
(N
, T_Name
);
7647 if Has_Completion
(T_Name
) then
7652 ("task type cannot be used as type mark " &
7653 "within its own declaration", N
);
7658 ("task type cannot be used as type mark " &
7659 "within its own spec or body", N
);
7662 elsif Ekind
(Base_Type
(T_Name
)) = E_Protected_Type
then
7664 -- In Ada 2005, a protected name can be used in an access
7665 -- definition within its own body.
7667 if Ada_Version
>= Ada_2005
7668 and then Nkind
(Parent
(N
)) = N_Access_Definition
7670 Set_Entity
(N
, T_Name
);
7671 Set_Etype
(N
, T_Name
);
7676 ("protected type cannot be used as type mark " &
7677 "within its own spec or body", N
);
7681 Error_Msg_N
("type declaration cannot refer to itself", N
);
7684 Set_Etype
(N
, Any_Type
);
7685 Set_Entity
(N
, Any_Type
);
7686 Set_Error_Posted
(T_Name
);
7690 Set_Entity
(N
, T_Name
);
7691 Set_Etype
(N
, T_Name
);
7695 if Present
(Etype
(N
)) and then Comes_From_Source
(N
) then
7696 if Is_Fixed_Point_Type
(Etype
(N
)) then
7697 Check_Restriction
(No_Fixed_Point
, N
);
7698 elsif Is_Floating_Point_Type
(Etype
(N
)) then
7699 Check_Restriction
(No_Floating_Point
, N
);
7702 -- A Ghost type must appear in a specific context
7704 if Is_Ghost_Entity
(Etype
(N
)) then
7705 Check_Ghost_Context
(Etype
(N
), N
);
7710 ------------------------------------
7711 -- Has_Implicit_Character_Literal --
7712 ------------------------------------
7714 function Has_Implicit_Character_Literal
(N
: Node_Id
) return Boolean is
7716 Found
: Boolean := False;
7717 P
: constant Entity_Id
:= Entity
(Prefix
(N
));
7718 Priv_Id
: Entity_Id
:= Empty
;
7721 if Ekind
(P
) = E_Package
and then not In_Open_Scopes
(P
) then
7722 Priv_Id
:= First_Private_Entity
(P
);
7725 if P
= Standard_Standard
then
7726 Change_Selected_Component_To_Expanded_Name
(N
);
7727 Rewrite
(N
, Selector_Name
(N
));
7729 Set_Etype
(Original_Node
(N
), Standard_Character
);
7733 Id
:= First_Entity
(P
);
7734 while Present
(Id
) and then Id
/= Priv_Id
loop
7735 if Is_Standard_Character_Type
(Id
) and then Is_Base_Type
(Id
) then
7737 -- We replace the node with the literal itself, resolve as a
7738 -- character, and set the type correctly.
7741 Change_Selected_Component_To_Expanded_Name
(N
);
7742 Rewrite
(N
, Selector_Name
(N
));
7745 Set_Etype
(Original_Node
(N
), Id
);
7749 -- More than one type derived from Character in given scope.
7750 -- Collect all possible interpretations.
7752 Add_One_Interp
(N
, Id
, Id
);
7760 end Has_Implicit_Character_Literal
;
7762 ----------------------
7763 -- Has_Private_With --
7764 ----------------------
7766 function Has_Private_With
(E
: Entity_Id
) return Boolean is
7767 Comp_Unit
: constant Node_Id
:= Cunit
(Current_Sem_Unit
);
7771 Item
:= First
(Context_Items
(Comp_Unit
));
7772 while Present
(Item
) loop
7773 if Nkind
(Item
) = N_With_Clause
7774 and then Private_Present
(Item
)
7775 and then Entity
(Name
(Item
)) = E
7784 end Has_Private_With
;
7786 ---------------------------
7787 -- Has_Implicit_Operator --
7788 ---------------------------
7790 function Has_Implicit_Operator
(N
: Node_Id
) return Boolean is
7791 Op_Id
: constant Name_Id
:= Chars
(Selector_Name
(N
));
7792 P
: constant Entity_Id
:= Entity
(Prefix
(N
));
7794 Priv_Id
: Entity_Id
:= Empty
;
7796 procedure Add_Implicit_Operator
7798 Op_Type
: Entity_Id
:= Empty
);
7799 -- Add implicit interpretation to node N, using the type for which a
7800 -- predefined operator exists. If the operator yields a boolean type,
7801 -- the Operand_Type is implicitly referenced by the operator, and a
7802 -- reference to it must be generated.
7804 ---------------------------
7805 -- Add_Implicit_Operator --
7806 ---------------------------
7808 procedure Add_Implicit_Operator
7810 Op_Type
: Entity_Id
:= Empty
)
7812 Predef_Op
: Entity_Id
;
7815 Predef_Op
:= Current_Entity
(Selector_Name
(N
));
7816 while Present
(Predef_Op
)
7817 and then Scope
(Predef_Op
) /= Standard_Standard
7819 Predef_Op
:= Homonym
(Predef_Op
);
7822 if Nkind
(N
) = N_Selected_Component
then
7823 Change_Selected_Component_To_Expanded_Name
(N
);
7826 -- If the context is an unanalyzed function call, determine whether
7827 -- a binary or unary interpretation is required.
7829 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
7831 Is_Binary_Call
: constant Boolean :=
7833 (Next
(First
(Expressions
(Parent
(N
)))));
7834 Is_Binary_Op
: constant Boolean :=
7836 (Predef_Op
) /= Last_Entity
(Predef_Op
);
7837 Predef_Op2
: constant Entity_Id
:= Homonym
(Predef_Op
);
7840 if Is_Binary_Call
then
7841 if Is_Binary_Op
then
7842 Add_One_Interp
(N
, Predef_Op
, T
);
7844 Add_One_Interp
(N
, Predef_Op2
, T
);
7848 if not Is_Binary_Op
then
7849 Add_One_Interp
(N
, Predef_Op
, T
);
7851 Add_One_Interp
(N
, Predef_Op2
, T
);
7857 Add_One_Interp
(N
, Predef_Op
, T
);
7859 -- For operators with unary and binary interpretations, if
7860 -- context is not a call, add both
7862 if Present
(Homonym
(Predef_Op
)) then
7863 Add_One_Interp
(N
, Homonym
(Predef_Op
), T
);
7867 -- The node is a reference to a predefined operator, and
7868 -- an implicit reference to the type of its operands.
7870 if Present
(Op_Type
) then
7871 Generate_Operator_Reference
(N
, Op_Type
);
7873 Generate_Operator_Reference
(N
, T
);
7875 end Add_Implicit_Operator
;
7877 -- Start of processing for Has_Implicit_Operator
7880 if Ekind
(P
) = E_Package
and then not In_Open_Scopes
(P
) then
7881 Priv_Id
:= First_Private_Entity
(P
);
7884 Id
:= First_Entity
(P
);
7888 -- Boolean operators: an implicit declaration exists if the scope
7889 -- contains a declaration for a derived Boolean type, or for an
7890 -- array of Boolean type.
7897 while Id
/= Priv_Id
loop
7898 if Valid_Boolean_Arg
(Id
) and then Is_Base_Type
(Id
) then
7899 Add_Implicit_Operator
(Id
);
7906 -- Equality: look for any non-limited type (result is Boolean)
7911 while Id
/= Priv_Id
loop
7913 and then not Is_Limited_Type
(Id
)
7914 and then Is_Base_Type
(Id
)
7916 Add_Implicit_Operator
(Standard_Boolean
, Id
);
7923 -- Comparison operators: scalar type, or array of scalar
7930 while Id
/= Priv_Id
loop
7931 if (Is_Scalar_Type
(Id
)
7932 or else (Is_Array_Type
(Id
)
7933 and then Is_Scalar_Type
(Component_Type
(Id
))))
7934 and then Is_Base_Type
(Id
)
7936 Add_Implicit_Operator
(Standard_Boolean
, Id
);
7943 -- Arithmetic operators: any numeric type
7954 while Id
/= Priv_Id
loop
7955 if Is_Numeric_Type
(Id
) and then Is_Base_Type
(Id
) then
7956 Add_Implicit_Operator
(Id
);
7963 -- Concatenation: any one-dimensional array type
7965 when Name_Op_Concat
=>
7966 while Id
/= Priv_Id
loop
7967 if Is_Array_Type
(Id
)
7968 and then Number_Dimensions
(Id
) = 1
7969 and then Is_Base_Type
(Id
)
7971 Add_Implicit_Operator
(Id
);
7978 -- What is the others condition here? Should we be using a
7979 -- subtype of Name_Id that would restrict to operators ???
7985 -- If we fall through, then we do not have an implicit operator
7988 end Has_Implicit_Operator
;
7990 -----------------------------------
7991 -- Has_Loop_In_Inner_Open_Scopes --
7992 -----------------------------------
7994 function Has_Loop_In_Inner_Open_Scopes
(S
: Entity_Id
) return Boolean is
7996 -- Several scope stacks are maintained by Scope_Stack. The base of the
7997 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7998 -- flag in the scope stack entry. Note that the scope stacks used to
7999 -- simply be delimited implicitly by the presence of Standard_Standard
8000 -- at their base, but there now are cases where this is not sufficient
8001 -- because Standard_Standard actually may appear in the middle of the
8002 -- active set of scopes.
8004 for J
in reverse 0 .. Scope_Stack
.Last
loop
8006 -- S was reached without seing a loop scope first
8008 if Scope_Stack
.Table
(J
).Entity
= S
then
8011 -- S was not yet reached, so it contains at least one inner loop
8013 elsif Ekind
(Scope_Stack
.Table
(J
).Entity
) = E_Loop
then
8017 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8018 -- cases where Standard_Standard appears in the middle of the active
8019 -- set of scopes. This affects the declaration and overriding of
8020 -- private inherited operations in instantiations of generic child
8023 pragma Assert
(not Scope_Stack
.Table
(J
).Is_Active_Stack_Base
);
8026 raise Program_Error
; -- unreachable
8027 end Has_Loop_In_Inner_Open_Scopes
;
8029 --------------------
8030 -- In_Open_Scopes --
8031 --------------------
8033 function In_Open_Scopes
(S
: Entity_Id
) return Boolean is
8035 -- Several scope stacks are maintained by Scope_Stack. The base of the
8036 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8037 -- flag in the scope stack entry. Note that the scope stacks used to
8038 -- simply be delimited implicitly by the presence of Standard_Standard
8039 -- at their base, but there now are cases where this is not sufficient
8040 -- because Standard_Standard actually may appear in the middle of the
8041 -- active set of scopes.
8043 for J
in reverse 0 .. Scope_Stack
.Last
loop
8044 if Scope_Stack
.Table
(J
).Entity
= S
then
8048 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8049 -- cases where Standard_Standard appears in the middle of the active
8050 -- set of scopes. This affects the declaration and overriding of
8051 -- private inherited operations in instantiations of generic child
8054 exit when Scope_Stack
.Table
(J
).Is_Active_Stack_Base
;
8060 -----------------------------
8061 -- Inherit_Renamed_Profile --
8062 -----------------------------
8064 procedure Inherit_Renamed_Profile
(New_S
: Entity_Id
; Old_S
: Entity_Id
) is
8071 if Ekind
(Old_S
) = E_Operator
then
8072 New_F
:= First_Formal
(New_S
);
8074 while Present
(New_F
) loop
8075 Set_Etype
(New_F
, Base_Type
(Etype
(New_F
)));
8076 Next_Formal
(New_F
);
8079 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
8082 New_F
:= First_Formal
(New_S
);
8083 Old_F
:= First_Formal
(Old_S
);
8085 while Present
(New_F
) loop
8086 New_T
:= Etype
(New_F
);
8087 Old_T
:= Etype
(Old_F
);
8089 -- If the new type is a renaming of the old one, as is the case
8090 -- for actuals in instances, retain its name, to simplify later
8093 if Nkind
(Parent
(New_T
)) = N_Subtype_Declaration
8094 and then Is_Entity_Name
(Subtype_Indication
(Parent
(New_T
)))
8095 and then Entity
(Subtype_Indication
(Parent
(New_T
))) = Old_T
8099 Set_Etype
(New_F
, Old_T
);
8102 Next_Formal
(New_F
);
8103 Next_Formal
(Old_F
);
8106 pragma Assert
(No
(Old_F
));
8108 if Ekind_In
(Old_S
, E_Function
, E_Enumeration_Literal
) then
8109 Set_Etype
(New_S
, Etype
(Old_S
));
8112 end Inherit_Renamed_Profile
;
8118 procedure Initialize
is
8123 -------------------------
8124 -- Install_Use_Clauses --
8125 -------------------------
8127 procedure Install_Use_Clauses
8129 Force_Installation
: Boolean := False)
8135 while Present
(U
) loop
8137 -- Case of USE package
8139 if Nkind
(U
) = N_Use_Package_Clause
then
8140 Use_One_Package
(U
, Name
(U
), True);
8145 Use_One_Type
(Subtype_Mark
(U
), Force
=> Force_Installation
);
8149 Next_Use_Clause
(U
);
8151 end Install_Use_Clauses
;
8153 -------------------------------------
8154 -- Is_Appropriate_For_Entry_Prefix --
8155 -------------------------------------
8157 function Is_Appropriate_For_Entry_Prefix
(T
: Entity_Id
) return Boolean is
8158 P_Type
: Entity_Id
:= T
;
8161 if Is_Access_Type
(P_Type
) then
8162 P_Type
:= Designated_Type
(P_Type
);
8165 return Is_Task_Type
(P_Type
) or else Is_Protected_Type
(P_Type
);
8166 end Is_Appropriate_For_Entry_Prefix
;
8168 -------------------------------
8169 -- Is_Appropriate_For_Record --
8170 -------------------------------
8172 function Is_Appropriate_For_Record
(T
: Entity_Id
) return Boolean is
8174 function Has_Components
(T1
: Entity_Id
) return Boolean;
8175 -- Determine if given type has components (i.e. is either a record
8176 -- type or a type that has discriminants).
8178 --------------------
8179 -- Has_Components --
8180 --------------------
8182 function Has_Components
(T1
: Entity_Id
) return Boolean is
8184 return Is_Record_Type
(T1
)
8185 or else (Is_Private_Type
(T1
) and then Has_Discriminants
(T1
))
8186 or else (Is_Task_Type
(T1
) and then Has_Discriminants
(T1
))
8187 or else (Is_Incomplete_Type
(T1
)
8188 and then From_Limited_With
(T1
)
8189 and then Present
(Non_Limited_View
(T1
))
8190 and then Is_Record_Type
8191 (Get_Full_View
(Non_Limited_View
(T1
))));
8194 -- Start of processing for Is_Appropriate_For_Record
8199 and then (Has_Components
(T
)
8200 or else (Is_Access_Type
(T
)
8201 and then Has_Components
(Designated_Type
(T
))));
8202 end Is_Appropriate_For_Record
;
8204 ----------------------
8205 -- Mark_Use_Clauses --
8206 ----------------------
8208 procedure Mark_Use_Clauses
(Id
: Node_Or_Entity_Id
) is
8209 procedure Mark_Parameters
(Call
: Entity_Id
);
8210 -- Perform use_type_clause marking for all parameters in a subprogram
8211 -- or operator call.
8213 procedure Mark_Use_Package
(Pak
: Entity_Id
);
8214 -- Move up the Prev_Use_Clause chain for packages denoted by Pak -
8215 -- marking each clause in the chain as effective in the process.
8217 procedure Mark_Use_Type
(E
: Entity_Id
);
8218 -- Similar to Do_Use_Package_Marking except we move up the
8219 -- Prev_Use_Clause chain for the type denoted by E.
8221 ---------------------
8222 -- Mark_Parameters --
8223 ---------------------
8225 procedure Mark_Parameters
(Call
: Entity_Id
) is
8229 -- Move through all of the formals
8231 Curr
:= First_Formal
(Call
);
8232 while Present
(Curr
) loop
8233 Mark_Use_Type
(Curr
);
8235 Curr
:= Next_Formal
(Curr
);
8238 -- Handle the return type
8240 Mark_Use_Type
(Call
);
8241 end Mark_Parameters
;
8243 ----------------------
8244 -- Mark_Use_Package --
8245 ----------------------
8247 procedure Mark_Use_Package
(Pak
: Entity_Id
) is
8251 -- Ignore cases where the scope of the type is not a package (e.g.
8252 -- Standard_Standard).
8254 if Ekind
(Pak
) /= E_Package
then
8258 Curr
:= Current_Use_Clause
(Pak
);
8259 while Present
(Curr
)
8260 and then not Is_Effective_Use_Clause
(Curr
)
8262 -- We need to mark the previous use clauses as effective, but
8263 -- each use clause may in turn render other use_package_clauses
8264 -- effective. Additionally, it is possible to have a parent
8265 -- package renamed as a child of itself so we must check the
8266 -- prefix entity is not the same as the package we are marking.
8268 if Nkind
(Name
(Curr
)) /= N_Identifier
8269 and then Present
(Prefix
(Name
(Curr
)))
8270 and then Entity
(Prefix
(Name
(Curr
))) /= Pak
8272 Mark_Use_Package
(Entity
(Prefix
(Name
(Curr
))));
8274 -- It is also possible to have a child package without a prefix
8275 -- that relies on a previous use_package_clause.
8277 elsif Nkind
(Name
(Curr
)) = N_Identifier
8278 and then Is_Child_Unit
(Entity
(Name
(Curr
)))
8280 Mark_Use_Package
(Scope
(Entity
(Name
(Curr
))));
8283 -- Mark the use_package_clause as effective and move up the chain
8285 Set_Is_Effective_Use_Clause
(Curr
);
8287 Curr
:= Prev_Use_Clause
(Curr
);
8289 end Mark_Use_Package
;
8295 procedure Mark_Use_Type
(E
: Entity_Id
) is
8299 -- Ignore void types and unresolved string literals and primitives
8301 if Nkind
(E
) = N_String_Literal
8302 or else Nkind
(Etype
(E
)) not in N_Entity
8303 or else not Is_Type
(Etype
(E
))
8308 -- The package containing the type or operator function being used
8309 -- may be in use as well, so mark any use_package_clauses for it as
8310 -- effective. There are also additional sanity checks performed here
8311 -- for ignoring previous errors.
8313 Mark_Use_Package
(Scope
(Base_Type
(Etype
(E
))));
8315 if Nkind
(E
) in N_Op
8316 and then Present
(Entity
(E
))
8317 and then Present
(Scope
(Entity
(E
)))
8319 Mark_Use_Package
(Scope
(Entity
(E
)));
8322 Curr
:= Current_Use_Clause
(Base_Type
(Etype
(E
)));
8323 while Present
(Curr
)
8324 and then not Is_Effective_Use_Clause
(Curr
)
8326 -- Current use_type_clause may render other use_package_clauses
8329 if Nkind
(Subtype_Mark
(Curr
)) /= N_Identifier
8330 and then Present
(Prefix
(Subtype_Mark
(Curr
)))
8332 Mark_Use_Package
(Entity
(Prefix
(Subtype_Mark
(Curr
))));
8335 -- Mark the use_type_clause as effective and move up the chain
8337 Set_Is_Effective_Use_Clause
(Curr
);
8339 Curr
:= Prev_Use_Clause
(Curr
);
8343 -- Start of processing for Mark_Use_Clauses
8346 -- Use clauses in and of themselves do not count as a "use" of a
8349 if Nkind_In
(Parent
(Id
), N_Use_Package_Clause
, N_Use_Type_Clause
) then
8355 if Nkind
(Id
) in N_Entity
then
8357 -- Mark the entity's package
8359 if Is_Potentially_Use_Visible
(Id
) then
8360 Mark_Use_Package
(Scope
(Id
));
8363 -- Mark enumeration literals
8365 if Ekind
(Id
) = E_Enumeration_Literal
then
8370 elsif (Ekind
(Id
) in Overloadable_Kind
8371 or else Ekind_In
(Id
, E_Generic_Function
,
8372 E_Generic_Procedure
))
8373 and then (Is_Potentially_Use_Visible
(Id
)
8374 or else Is_Intrinsic_Subprogram
(Id
))
8376 Mark_Parameters
(Id
);
8384 if Nkind
(Id
) in N_Op
then
8386 -- At this point the left operand may not be resolved if we are
8387 -- encountering multiple operators next to eachother in an
8390 if Nkind
(Id
) in N_Binary_Op
8391 and then not (Nkind
(Left_Opnd
(Id
)) in N_Op
)
8393 Mark_Use_Type
(Left_Opnd
(Id
));
8396 Mark_Use_Type
(Right_Opnd
(Id
));
8399 -- Mark entity identifiers
8401 elsif Nkind
(Id
) in N_Has_Entity
8402 and then (Is_Potentially_Use_Visible
(Entity
(Id
))
8403 or else (Is_Generic_Instance
(Entity
(Id
))
8404 and then Is_Immediately_Visible
(Entity
(Id
))))
8406 -- Ignore fully qualified names as they do not count as a "use" of
8409 if Nkind_In
(Id
, N_Identifier
, N_Operator_Symbol
)
8410 or else (Present
(Prefix
(Id
))
8411 and then Scope
(Entity
(Id
)) /= Entity
(Prefix
(Id
)))
8413 Mark_Use_Clauses
(Entity
(Id
));
8417 end Mark_Use_Clauses
;
8419 --------------------------------
8420 -- Most_Descendant_Use_Clause --
8421 --------------------------------
8423 function Most_Descendant_Use_Clause
8424 (Clause1
: Entity_Id
;
8425 Clause2
: Entity_Id
) return Entity_Id
8427 Scope1
, Scope2
: Entity_Id
;
8430 if Clause1
= Clause2
then
8434 -- We determine which one is the most descendant by the scope distance
8435 -- to the ultimate parent unit.
8437 Scope1
:= Entity_Of_Unit
(Unit
(Parent
(Clause1
)));
8438 Scope2
:= Entity_Of_Unit
(Unit
(Parent
(Clause2
)));
8439 while Scope1
/= Standard_Standard
8440 and then Scope2
/= Standard_Standard
8442 Scope1
:= Scope
(Scope1
);
8443 Scope2
:= Scope
(Scope2
);
8445 if not Present
(Scope1
) then
8447 elsif not Present
(Scope2
) then
8452 if Scope1
= Standard_Standard
then
8457 end Most_Descendant_Use_Clause
;
8463 procedure Pop_Scope
is
8464 SST
: Scope_Stack_Entry
renames Scope_Stack
.Table
(Scope_Stack
.Last
);
8465 S
: constant Entity_Id
:= SST
.Entity
;
8468 if Debug_Flag_E
then
8472 -- Set Default_Storage_Pool field of the library unit if necessary
8474 if Ekind_In
(S
, E_Package
, E_Generic_Package
)
8476 Nkind
(Parent
(Unit_Declaration_Node
(S
))) = N_Compilation_Unit
8479 Aux
: constant Node_Id
:=
8480 Aux_Decls_Node
(Parent
(Unit_Declaration_Node
(S
)));
8482 if No
(Default_Storage_Pool
(Aux
)) then
8483 Set_Default_Storage_Pool
(Aux
, Default_Pool
);
8488 Scope_Suppress
:= SST
.Save_Scope_Suppress
;
8489 Local_Suppress_Stack_Top
:= SST
.Save_Local_Suppress_Stack_Top
;
8490 Check_Policy_List
:= SST
.Save_Check_Policy_List
;
8491 Default_Pool
:= SST
.Save_Default_Storage_Pool
;
8492 No_Tagged_Streams
:= SST
.Save_No_Tagged_Streams
;
8493 SPARK_Mode
:= SST
.Save_SPARK_Mode
;
8494 SPARK_Mode_Pragma
:= SST
.Save_SPARK_Mode_Pragma
;
8495 Default_SSO
:= SST
.Save_Default_SSO
;
8496 Uneval_Old
:= SST
.Save_Uneval_Old
;
8498 if Debug_Flag_W
then
8499 Write_Str
("<-- exiting scope: ");
8500 Write_Name
(Chars
(Current_Scope
));
8501 Write_Str
(", Depth=");
8502 Write_Int
(Int
(Scope_Stack
.Last
));
8506 End_Use_Clauses
(SST
.First_Use_Clause
);
8508 -- If the actions to be wrapped are still there they will get lost
8509 -- causing incomplete code to be generated. It is better to abort in
8510 -- this case (and we do the abort even with assertions off since the
8511 -- penalty is incorrect code generation).
8513 if SST
.Actions_To_Be_Wrapped
/= Scope_Actions
'(others => No_List) then
8514 raise Program_Error;
8517 -- Free last subprogram name if allocated, and pop scope
8519 Free (SST.Last_Subprogram_Name);
8520 Scope_Stack.Decrement_Last;
8527 procedure Push_Scope (S : Entity_Id) is
8528 E : constant Entity_Id := Scope (S);
8531 if Ekind (S) = E_Void then
8534 -- Set scope depth if not a non-concurrent type, and we have not yet set
8535 -- the scope depth. This means that we have the first occurrence of the
8536 -- scope, and this is where the depth is set.
8538 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8539 and then not Scope_Depth_Set (S)
8541 if S = Standard_Standard then
8542 Set_Scope_Depth_Value (S, Uint_0);
8544 elsif Is_Child_Unit (S) then
8545 Set_Scope_Depth_Value (S, Uint_1);
8547 elsif not Is_Record_Type (Current_Scope) then
8548 if Ekind (S) = E_Loop then
8549 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8551 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8556 Scope_Stack.Increment_Last;
8559 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8563 SST.Save_Scope_Suppress := Scope_Suppress;
8564 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8565 SST.Save_Check_Policy_List := Check_Policy_List;
8566 SST.Save_Default_Storage_Pool := Default_Pool;
8567 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8568 SST.Save_SPARK_Mode := SPARK_Mode;
8569 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8570 SST.Save_Default_SSO := Default_SSO;
8571 SST.Save_Uneval_Old := Uneval_Old;
8573 -- Each new scope pushed onto the scope stack inherits the component
8574 -- alignment of the previous scope. This emulates the "visibility"
8575 -- semantics of pragma Component_Alignment.
8577 if Scope_Stack.Last > Scope_Stack.First then
8578 SST.Component_Alignment_Default :=
8580 (Scope_Stack.Last - 1). Component_Alignment_Default;
8582 -- Otherwise, this is the first scope being pushed on the scope
8583 -- stack. Inherit the component alignment from the configuration
8584 -- form of pragma Component_Alignment (if any).
8587 SST.Component_Alignment_Default :=
8588 Configuration_Component_Alignment;
8591 SST.Last_Subprogram_Name := null;
8592 SST.Is_Transient := False;
8593 SST.Node_To_Be_Wrapped := Empty;
8594 SST.Pending_Freeze_Actions := No_List;
8595 SST.Actions_To_Be_Wrapped := (others => No_List);
8596 SST.First_Use_Clause := Empty;
8597 SST.Is_Active_Stack_Base := False;
8598 SST.Previous_Visibility := False;
8599 SST.Locked_Shared_Objects := No_Elist;
8602 if Debug_Flag_W then
8603 Write_Str ("--> new scope: ");
8604 Write_Name (Chars (Current_Scope));
8605 Write_Str (", Id=");
8606 Write_Int (Int (Current_Scope));
8607 Write_Str (", Depth=");
8608 Write_Int (Int (Scope_Stack.Last));
8612 -- Deal with copying flags from the previous scope to this one. This is
8613 -- not necessary if either scope is standard, or if the new scope is a
8616 if S /= Standard_Standard
8617 and then Scope (S) /= Standard_Standard
8618 and then not Is_Child_Unit (S)
8620 if Nkind (E) not in N_Entity then
8624 -- Copy categorization flags from Scope (S) to S, this is not done
8625 -- when Scope (S) is Standard_Standard since propagation is from
8626 -- library unit entity inwards. Copy other relevant attributes as
8627 -- well (Discard_Names in particular).
8629 -- We only propagate inwards for library level entities,
8630 -- inner level subprograms do not inherit the categorization.
8632 if Is_Library_Level_Entity (S) then
8633 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8634 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8635 Set_Discard_Names (S, Discard_Names (E));
8636 Set_Suppress_Value_Tracking_On_Call
8637 (S, Suppress_Value_Tracking_On_Call (E));
8638 Set_Categorization_From_Scope (E => S, Scop => E);
8642 if Is_Child_Unit (S)
8643 and then Present (E)
8644 and then Ekind_In (E, E_Package, E_Generic_Package)
8646 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8649 Aux : constant Node_Id :=
8650 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8652 if Present (Default_Storage_Pool (Aux)) then
8653 Default_Pool := Default_Storage_Pool (Aux);
8659 ---------------------
8660 -- Premature_Usage --
8661 ---------------------
8663 procedure Premature_Usage (N : Node_Id) is
8664 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8665 E : Entity_Id := Entity (N);
8668 -- Within an instance, the analysis of the actual for a formal object
8669 -- does not see the name of the object itself. This is significant only
8670 -- if the object is an aggregate, where its analysis does not do any
8671 -- name resolution on component associations. (see 4717-008). In such a
8672 -- case, look for the visible homonym on the chain.
8674 if In_Instance and then Present (Homonym (E)) then
8676 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8682 Set_Etype (N, Etype (E));
8687 if Kind = N_Component_Declaration then
8689 ("component&! cannot be used before end of record declaration", N);
8691 elsif Kind = N_Parameter_Specification then
8693 ("formal parameter&! cannot be used before end of specification",
8696 elsif Kind = N_Discriminant_Specification then
8698 ("discriminant&! cannot be used before end of discriminant part",
8701 elsif Kind = N_Procedure_Specification
8702 or else Kind = N_Function_Specification
8705 ("subprogram&! cannot be used before end of its declaration",
8708 elsif Kind = N_Full_Type_Declaration then
8710 ("type& cannot be used before end of its declaration!", N);
8714 ("object& cannot be used before end of its declaration!", N);
8716 -- If the premature reference appears as the expression in its own
8717 -- declaration, rewrite it to prevent compiler loops in subsequent
8718 -- uses of this mangled declaration in address clauses.
8720 if Nkind (Parent (N)) = N_Object_Declaration then
8721 Set_Entity (N, Any_Id);
8724 end Premature_Usage;
8726 ------------------------
8727 -- Present_System_Aux --
8728 ------------------------
8730 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8732 Aux_Name : Unit_Name_Type;
8733 Unum : Unit_Number_Type;
8738 function Find_System (C_Unit : Node_Id) return Entity_Id;
8739 -- Scan context clause of compilation unit to find with_clause
8746 function Find_System (C_Unit : Node_Id) return Entity_Id is
8747 With_Clause : Node_Id;
8750 With_Clause := First (Context_Items (C_Unit));
8751 while Present (With_Clause) loop
8752 if (Nkind (With_Clause) = N_With_Clause
8753 and then Chars (Name (With_Clause)) = Name_System)
8754 and then Comes_From_Source (With_Clause)
8765 -- Start of processing for Present_System_Aux
8768 -- The child unit may have been loaded and analyzed already
8770 if Present (System_Aux_Id) then
8773 -- If no previous pragma for System.Aux, nothing to load
8775 elsif No (System_Extend_Unit) then
8778 -- Use the unit name given in the pragma to retrieve the unit.
8779 -- Verify that System itself appears in the context clause of the
8780 -- current compilation. If System is not present, an error will
8781 -- have been reported already.
8784 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8786 The_Unit := Unit (Cunit (Current_Sem_Unit));
8790 (Nkind (The_Unit) = N_Package_Body
8791 or else (Nkind (The_Unit) = N_Subprogram_Body
8792 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8794 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8797 if No (With_Sys) and then Present (N) then
8799 -- If we are compiling a subunit, we need to examine its
8800 -- context as well (Current_Sem_Unit is the parent unit);
8802 The_Unit := Parent (N);
8803 while Nkind (The_Unit) /= N_Compilation_Unit loop
8804 The_Unit := Parent (The_Unit);
8807 if Nkind (Unit (The_Unit)) = N_Subunit then
8808 With_Sys := Find_System (The_Unit);
8812 if No (With_Sys) then
8816 Loc := Sloc (With_Sys);
8817 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8818 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8819 Name_Buffer (1 .. 7) := "system.";
8820 Name_Buffer (Name_Len + 8) := '%';
8821 Name_Buffer (Name_Len + 9) := 's
';
8822 Name_Len := Name_Len + 9;
8823 Aux_Name := Name_Find;
8827 (Load_Name => Aux_Name,
8830 Error_Node => With_Sys);
8832 if Unum /= No_Unit then
8833 Semantics (Cunit (Unum));
8835 Defining_Entity (Specification (Unit (Cunit (Unum))));
8838 Make_With_Clause (Loc,
8840 Make_Expanded_Name (Loc,
8841 Chars => Chars (System_Aux_Id),
8842 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8843 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8845 Set_Entity (Name (Withn), System_Aux_Id);
8847 Set_Library_Unit (Withn, Cunit (Unum));
8848 Set_Corresponding_Spec (Withn, System_Aux_Id);
8849 Set_First_Name (Withn, True);
8850 Set_Implicit_With (Withn, True);
8852 Insert_After (With_Sys, Withn);
8853 Mark_Rewrite_Insertion (Withn);
8854 Set_Context_Installed (Withn);
8858 -- Here if unit load failed
8861 Error_Msg_Name_1 := Name_System;
8862 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8864 ("extension package `%.%` does not exist",
8865 Opt.System_Extend_Unit);
8869 end Present_System_Aux;
8871 -------------------------
8872 -- Restore_Scope_Stack --
8873 -------------------------
8875 procedure Restore_Scope_Stack
8877 Handle_Use : Boolean := True)
8879 SS_Last : constant Int := Scope_Stack.Last;
8883 -- Restore visibility of previous scope stack, if any, using the list
8884 -- we saved (we use Remove, since this list will not be used again).
8887 Elmt := Last_Elmt (List);
8888 exit when Elmt = No_Elmt;
8889 Set_Is_Immediately_Visible (Node (Elmt));
8890 Remove_Last_Elmt (List);
8893 -- Restore use clauses
8895 if SS_Last >= Scope_Stack.First
8896 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8900 (Scope_Stack.Table (SS_Last).First_Use_Clause,
8901 Force_Installation => True);
8903 end Restore_Scope_Stack;
8905 ----------------------
8906 -- Save_Scope_Stack --
8907 ----------------------
8909 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8910 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8911 -- from immediate visibility entities and Restore_Scope_Stack took care
8912 -- of restoring their visibility analyzing the context of each entity. The
8913 -- problem of such approach is that it was fragile and caused unexpected
8914 -- visibility problems, and indeed one test was found where there was a
8917 -- Furthermore, the following experiment was carried out:
8919 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8920 -- entities whose attribute Is_Immediately_Visible is modified
8921 -- from True to False.
8923 -- - Restore_Scope_Stack was modified to store in another Elist2
8924 -- all the entities whose attribute Is_Immediately_Visible is
8925 -- modified from False to True.
8927 -- - Extra code was added to verify that all the elements of Elist1
8928 -- are found in Elist2
8930 -- This test shows that there may be more occurrences of this problem which
8931 -- have not yet been detected. As a result, we replaced that approach by
8932 -- the current one in which Save_Scope_Stack returns the list of entities
8933 -- whose visibility is changed, and that list is passed to Restore_Scope_
8934 -- Stack to undo that change. This approach is simpler and safer, although
8935 -- it consumes more memory.
8937 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8938 Result : constant Elist_Id := New_Elmt_List;
8941 SS_Last : constant Int := Scope_Stack.Last;
8943 procedure Remove_From_Visibility (E : Entity_Id);
8944 -- If E is immediately visible then append it to the result and remove
8945 -- it temporarily from visibility.
8947 ----------------------------
8948 -- Remove_From_Visibility --
8949 ----------------------------
8951 procedure Remove_From_Visibility (E : Entity_Id) is
8953 if Is_Immediately_Visible (E) then
8954 Append_Elmt (E, Result);
8955 Set_Is_Immediately_Visible (E, False);
8957 end Remove_From_Visibility;
8959 -- Start of processing for Save_Scope_Stack
8962 if SS_Last >= Scope_Stack.First
8963 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8966 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8969 -- If the call is from within a compilation unit, as when called from
8970 -- Rtsfind, make current entries in scope stack invisible while we
8971 -- analyze the new unit.
8973 for J in reverse 0 .. SS_Last loop
8974 exit when Scope_Stack.Table (J).Entity = Standard_Standard
8975 or else No (Scope_Stack.Table (J).Entity);
8977 S := Scope_Stack.Table (J).Entity;
8979 Remove_From_Visibility (S);
8981 E := First_Entity (S);
8982 while Present (E) loop
8983 Remove_From_Visibility (E);
8991 end Save_Scope_Stack;
8997 procedure Set_Use (L : List_Id) is
9003 while Present (Decl) loop
9004 if Nkind (Decl) = N_Use_Package_Clause then
9005 Chain_Use_Clause (Decl);
9006 Use_One_Package (Decl, Name (Decl));
9008 elsif Nkind (Decl) = N_Use_Type_Clause then
9009 Chain_Use_Clause (Decl);
9010 Use_One_Type (Subtype_Mark (Decl));
9019 -----------------------------
9020 -- Update_Use_Clause_Chain --
9021 -----------------------------
9023 procedure Update_Use_Clause_Chain is
9024 procedure Update_Chain_In_Scope (Level : Int);
9025 -- Iterate through one level in the scope stack verifying each use-type
9026 -- clause within said level is used then reset the Current_Use_Clause
9027 -- to a redundant use clause outside of the current ending scope if such
9030 ---------------------------
9031 -- Update_Chain_In_Scope --
9032 ---------------------------
9034 procedure Update_Chain_In_Scope (Level : Int) is
9039 -- Loop through all use clauses within the scope dictated by Level
9041 Curr := Scope_Stack.Table (Level).First_Use_Clause;
9042 while Present (Curr) loop
9044 -- Retrieve the subtype mark or name within the current current
9047 if Nkind (Curr) = N_Use_Type_Clause then
9048 N := Subtype_Mark (Curr);
9053 -- If warnings for unreferenced entities are enabled and the
9054 -- current use clause has not been marked effective.
9056 if Check_Unreferenced
9057 and then Comes_From_Source (Curr)
9058 and then not Is_Effective_Use_Clause (Curr)
9059 and then not In_Instance
9061 -- We are dealing with a potentially unused use_package_clause
9063 if Nkind (Curr) = N_Use_Package_Clause then
9065 -- Renamings and formal subprograms may cause the associated
9066 -- to be marked as effective instead of the original.
9068 if not (Present (Associated_Node (N))
9071 (Associated_Node (N)))
9072 and then Is_Effective_Use_Clause
9074 (Associated_Node (N))))
9076 Error_Msg_Node_1 := Entity (N);
9078 ("use clause for package & has no effect?u?",
9082 -- We are dealing with an unused use_type_clause
9085 Error_Msg_Node_1 := Etype (N);
9087 ("use clause for } has no effect?u?", Curr, Etype (N));
9091 -- Verify that we haven't already processed a redundant
9092 -- use_type_clause within the same scope before we move the
9093 -- current use clause up to a previous one for type T.
9095 if Present (Prev_Use_Clause (Curr)) then
9096 Set_Current_Use_Clause (Entity (N), Prev_Use_Clause (Curr));
9099 Curr := Next_Use_Clause (Curr);
9101 end Update_Chain_In_Scope;
9103 -- Start of processing for Update_Use_Clause_Chain
9106 Update_Chain_In_Scope (Scope_Stack.Last);
9108 -- Deal with use clauses within the context area if the current
9109 -- scope is a compilation unit.
9111 if Is_Compilation_Unit (Current_Scope) then
9113 pragma Assert (Scope_Stack.Last /= Scope_Stack.First);
9115 Update_Chain_In_Scope (Scope_Stack.Last - 1);
9117 end Update_Use_Clause_Chain;
9119 ---------------------
9120 -- Use_One_Package --
9121 ---------------------
9123 procedure Use_One_Package
9125 Pack_Name : Entity_Id := Empty;
9126 Force : Boolean := False)
9128 procedure Note_Redundant_Use (Clause : Node_Id);
9129 -- Mark the name in a use clause as redundant if the corresponding
9130 -- entity is already use-visible. Emit a warning if the use clause comes
9131 -- from source and the proper warnings are enabled.
9133 ------------------------
9134 -- Note_Redundant_Use --
9135 ------------------------
9137 procedure Note_Redundant_Use (Clause : Node_Id) is
9138 Decl : constant Node_Id := Parent (Clause);
9139 Pack_Name : constant Entity_Id := Entity (Clause);
9141 Cur_Use : Node_Id := Current_Use_Clause (Pack_Name);
9142 Prev_Use : Node_Id := Empty;
9143 Redundant : Node_Id := Empty;
9144 -- The Use_Clause which is actually redundant. In the simplest case
9145 -- it is Pack itself, but when we compile a body we install its
9146 -- context before that of its spec, in which case it is the
9147 -- use_clause in the spec that will appear to be redundant, and we
9148 -- want the warning to be placed on the body. Similar complications
9149 -- appear when the redundancy is between a child unit and one of its
9153 -- Could be renamed...
9155 if No (Cur_Use) then
9156 Cur_Use := Current_Use_Clause (Renamed_Entity (Pack_Name));
9159 Set_Redundant_Use (Clause, True);
9161 if not Comes_From_Source (Clause)
9163 or else not Warn_On_Redundant_Constructs
9168 if not Is_Compilation_Unit (Current_Scope) then
9170 -- If the use_clause is in an inner scope, it is made redundant by
9171 -- some clause in the current context, with one exception: If we
9172 -- are compiling a nested package body, and the use_clause comes
9173 -- from then corresponding spec, the clause is not necessarily
9174 -- fully redundant, so we should not warn. If a warning was
9175 -- warranted, it would have been given when the spec was
9178 if Nkind (Parent (Decl)) = N_Package_Specification then
9180 Package_Spec_Entity : constant Entity_Id :=
9181 Defining_Unit_Name (Parent (Decl));
9183 if In_Package_Body (Package_Spec_Entity) then
9189 Redundant := Clause;
9190 Prev_Use := Cur_Use;
9192 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9194 Cur_Unit : constant Unit_Number_Type :=
9195 Get_Source_Unit (Cur_Use);
9196 New_Unit : constant Unit_Number_Type :=
9197 Get_Source_Unit (Clause);
9202 if Cur_Unit = New_Unit then
9204 -- Redundant clause in same body
9206 Redundant := Clause;
9207 Prev_Use := Cur_Use;
9209 elsif Cur_Unit = Current_Sem_Unit then
9211 -- If the new clause is not in the current unit it has been
9212 -- analyzed first, and it makes the other one redundant.
9213 -- However, if the new clause appears in a subunit, Cur_Unit
9214 -- is still the parent, and in that case the redundant one
9215 -- is the one appearing in the subunit.
9217 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
9218 Redundant := Clause;
9219 Prev_Use := Cur_Use;
9221 -- Most common case: redundant clause in body, original
9222 -- clause in spec. Current scope is spec entity.
9224 elsif Current_Scope = Cunit_Entity (Current_Sem_Unit) then
9225 Redundant := Cur_Use;
9229 -- The new clause may appear in an unrelated unit, when
9230 -- the parents of a generic are being installed prior to
9231 -- instantiation. In this case there must be no warning.
9232 -- We detect this case by checking whether the current
9233 -- top of the stack is related to the current
9236 Scop := Current_Scope;
9237 while Present (Scop)
9238 and then Scop /= Standard_Standard
9240 if Is_Compilation_Unit (Scop)
9241 and then not Is_Child_Unit (Scop)
9245 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
9249 Scop := Scope (Scop);
9252 Redundant := Cur_Use;
9256 elsif New_Unit = Current_Sem_Unit then
9257 Redundant := Clause;
9258 Prev_Use := Cur_Use;
9261 -- Neither is the current unit, so they appear in parent or
9262 -- sibling units. Warning will be emitted elsewhere.
9268 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
9269 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
9271 -- Use_clause is in child unit of current unit, and the child unit
9272 -- appears in the context of the body of the parent, so it has
9273 -- been installed first, even though it is the redundant one.
9274 -- Depending on their placement in the context, the visible or the
9275 -- private parts of the two units, either might appear as
9276 -- redundant, but the message has to be on the current unit.
9278 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
9279 Redundant := Cur_Use;
9282 Redundant := Clause;
9283 Prev_Use := Cur_Use;
9286 -- If the new use clause appears in the private part of a parent
9287 -- unit it may appear to be redundant w.r.t. a use clause in a
9288 -- child unit, but the previous use clause was needed in the
9289 -- visible part of the child, and no warning should be emitted.
9291 if Nkind (Parent (Decl)) = N_Package_Specification
9292 and then List_Containing (Decl) =
9293 Private_Declarations (Parent (Decl))
9296 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
9297 Spec : constant Node_Id :=
9298 Specification (Unit (Cunit (Current_Sem_Unit)));
9301 if Is_Compilation_Unit (Par)
9302 and then Par /= Cunit_Entity (Current_Sem_Unit)
9303 and then Parent (Cur_Use) = Spec
9304 and then List_Containing (Cur_Use) =
9305 Visible_Declarations (Spec)
9312 -- Finally, if the current use clause is in the context then the
9313 -- clause is redundant when it is nested within the unit.
9315 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
9316 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
9317 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
9319 Redundant := Clause;
9320 Prev_Use := Cur_Use;
9324 if Present (Redundant) and then Parent (Redundant) /= Prev_Use then
9326 -- Make sure we are looking at most-descendant use_package_clause
9327 -- by traversing the chain with Find_Most_Prev and then verifying
9328 -- there is no scope manipulation via Most_Descendant_Use_Clause.
9330 if Nkind (Prev_Use) = N_Use_Package_Clause
9332 (Nkind (Parent (Prev_Use)) /= N_Compilation_Unit
9333 or else Most_Descendant_Use_Clause
9334 (Prev_Use, Find_Most_Prev (Prev_Use)) /= Prev_Use)
9336 Prev_Use := Find_Most_Prev (Prev_Use);
9339 Error_Msg_Sloc := Sloc (Prev_Use);
9340 Error_Msg_NE -- CODEFIX
9341 ("& is already use-visible through previous use_clause #??",
9342 Redundant, Pack_Name);
9344 end Note_Redundant_Use;
9348 Current_Instance : Entity_Id := Empty;
9352 Private_With_OK : Boolean := False;
9355 -- Start of processing for Use_One_Package
9358 -- Use_One_Package may have been called recursively to handle an
9359 -- implicit use for a auxiliary system package, so set P accordingly
9360 -- and skip redundancy checks.
9362 if No (Pack_Name) and then Present_System_Aux (N) then
9365 -- Check for redundant use_package_clauses
9368 -- Ignore cases where we are dealing with a non user defined package
9369 -- like Standard_Standard or something other than a valid package.
9371 if not Is_Entity_Name (Pack_Name)
9372 or else No (Entity (Pack_Name))
9373 or else Ekind (Entity (Pack_Name)) /= E_Package
9378 -- When a renaming exists we must check it for redundancy. The
9379 -- original package would have already been seen at this point.
9381 if Present (Renamed_Object (Entity (Pack_Name))) then
9382 P := Renamed_Object (Entity (Pack_Name));
9384 P := Entity (Pack_Name);
9387 -- Check for redundant clauses then set the current use clause for
9388 -- P if were are not "forcing" an installation from a scope
9389 -- reinstallation that is done throughout analysis for various
9393 Note_Redundant_Use (Pack_Name);
9396 Set_Current_Use_Clause (P, N);
9401 -- Warn about detected redundant clauses
9403 elsif In_Open_Scopes (P) and not Force then
9404 if Warn_On_Redundant_Constructs and then P = Current_Scope then
9405 Error_Msg_NE -- CODEFIX
9406 ("& is already use-visible within itself?r?",
9413 -- Set P back to the non-renamed package so that visiblilty of the
9414 -- entities within the package can be properly set below.
9416 P := Entity (Pack_Name);
9420 Set_Current_Use_Clause (P, N);
9422 -- Ada 2005 (AI-50217): Check restriction
9424 if From_Limited_With (P) then
9425 Error_Msg_N ("limited withed package cannot appear in use clause", N);
9428 -- Find enclosing instance, if any
9431 Current_Instance := Current_Scope;
9432 while not Is_Generic_Instance (Current_Instance) loop
9433 Current_Instance := Scope (Current_Instance);
9436 if No (Hidden_By_Use_Clause (N)) then
9437 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
9441 -- If unit is a package renaming, indicate that the renamed package is
9442 -- also in use (the flags on both entities must remain consistent, and a
9443 -- subsequent use of either of them should be recognized as redundant).
9445 if Present (Renamed_Object (P)) then
9446 Set_In_Use (Renamed_Object (P));
9447 Set_Current_Use_Clause (Renamed_Object (P), N);
9448 Real_P := Renamed_Object (P);
9453 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
9454 -- found in the private part of a package specification
9456 if In_Private_Part (Current_Scope)
9457 and then Has_Private_With (P)
9458 and then Is_Child_Unit (Current_Scope)
9459 and then Is_Child_Unit (P)
9460 and then Is_Ancestor_Package (Scope (Current_Scope), P)
9462 Private_With_OK := True;
9465 -- Loop through entities in one package making them potentially
9468 Id := First_Entity (P);
9470 and then (Id /= First_Private_Entity (P)
9471 or else Private_With_OK) -- Ada 2005 (AI-262)
9473 Prev := Current_Entity (Id);
9474 while Present (Prev) loop
9475 if Is_Immediately_Visible (Prev)
9476 and then (not Is_Overloadable (Prev)
9477 or else not Is_Overloadable (Id)
9478 or else (Type_Conformant (Id, Prev)))
9480 if No (Current_Instance) then
9482 -- Potentially use-visible entity remains hidden
9484 goto Next_Usable_Entity;
9486 -- A use clause within an instance hides outer global entities,
9487 -- which are not used to resolve local entities in the
9488 -- instance. Note that the predefined entities in Standard
9489 -- could not have been hidden in the generic by a use clause,
9490 -- and therefore remain visible. Other compilation units whose
9491 -- entities appear in Standard must be hidden in an instance.
9493 -- To determine whether an entity is external to the instance
9494 -- we compare the scope depth of its scope with that of the
9495 -- current instance. However, a generic actual of a subprogram
9496 -- instance is declared in the wrapper package but will not be
9497 -- hidden by a use-visible entity. similarly, an entity that is
9498 -- declared in an enclosing instance will not be hidden by an
9499 -- an entity declared in a generic actual, which can only have
9500 -- been use-visible in the generic and will not have hidden the
9501 -- entity in the generic parent.
9503 -- If Id is called Standard, the predefined package with the
9504 -- same name is in the homonym chain. It has to be ignored
9505 -- because it has no defined scope (being the only entity in
9506 -- the system with this mandated behavior).
9508 elsif not Is_Hidden (Id)
9509 and then Present (Scope (Prev))
9510 and then not Is_Wrapper_Package (Scope (Prev))
9511 and then Scope_Depth (Scope (Prev)) <
9512 Scope_Depth (Current_Instance)
9513 and then (Scope (Prev) /= Standard_Standard
9514 or else Sloc (Prev) > Standard_Location)
9516 if In_Open_Scopes (Scope (Prev))
9517 and then Is_Generic_Instance (Scope (Prev))
9518 and then Present (Associated_Formal_Package (P))
9523 Set_Is_Potentially_Use_Visible (Id);
9524 Set_Is_Immediately_Visible (Prev, False);
9525 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9529 -- A user-defined operator is not use-visible if the predefined
9530 -- operator for the type is immediately visible, which is the case
9531 -- if the type of the operand is in an open scope. This does not
9532 -- apply to user-defined operators that have operands of different
9533 -- types, because the predefined mixed mode operations (multiply
9534 -- and divide) apply to universal types and do not hide anything.
9536 elsif Ekind (Prev) = E_Operator
9537 and then Operator_Matches_Spec (Prev, Id)
9538 and then In_Open_Scopes
9539 (Scope (Base_Type (Etype (First_Formal (Id)))))
9540 and then (No (Next_Formal (First_Formal (Id)))
9541 or else Etype (First_Formal (Id)) =
9542 Etype (Next_Formal (First_Formal (Id)))
9543 or else Chars (Prev) = Name_Op_Expon)
9545 goto Next_Usable_Entity;
9547 -- In an instance, two homonyms may become use_visible through the
9548 -- actuals of distinct formal packages. In the generic, only the
9549 -- current one would have been visible, so make the other one
9552 elsif Present (Current_Instance)
9553 and then Is_Potentially_Use_Visible (Prev)
9554 and then not Is_Overloadable (Prev)
9555 and then Scope (Id) /= Scope (Prev)
9556 and then Used_As_Generic_Actual (Scope (Prev))
9557 and then Used_As_Generic_Actual (Scope (Id))
9558 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
9559 Current_Use_Clause (Scope (Id)))
9561 Set_Is_Potentially_Use_Visible (Prev, False);
9562 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9565 Prev := Homonym (Prev);
9568 -- On exit, we know entity is not hidden, unless it is private
9570 if not Is_Hidden (Id)
9571 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
9573 Set_Is_Potentially_Use_Visible (Id);
9575 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
9576 Set_Is_Potentially_Use_Visible (Full_View (Id));
9580 <<Next_Usable_Entity>>
9584 -- Child units are also made use-visible by a use clause, but they may
9585 -- appear after all visible declarations in the parent entity list.
9587 while Present (Id) loop
9588 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
9589 Set_Is_Potentially_Use_Visible (Id);
9595 if Chars (Real_P) = Name_System
9596 and then Scope (Real_P) = Standard_Standard
9597 and then Present_System_Aux (N)
9599 Use_One_Package (N);
9601 end Use_One_Package;
9607 procedure Use_One_Type
9609 Installed : Boolean := False;
9610 Force : Boolean := False)
9612 function Spec_Reloaded_For_Body return Boolean;
9613 -- Determine whether the compilation unit is a package body and the use
9614 -- type clause is in the spec of the same package. Even though the spec
9615 -- was analyzed first, its context is reloaded when analysing the body.
9617 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
9618 -- AI05-150: if the use_type_clause carries the "all" qualifier,
9619 -- class-wide operations of ancestor types are use-visible if the
9620 -- ancestor type is visible.
9622 ----------------------------
9623 -- Spec_Reloaded_For_Body --
9624 ----------------------------
9626 function Spec_Reloaded_For_Body return Boolean is
9628 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9630 Spec : constant Node_Id :=
9631 Parent (List_Containing (Parent (Id)));
9634 -- Check whether type is declared in a package specification,
9635 -- and current unit is the corresponding package body. The
9636 -- use clauses themselves may be within a nested package.
9639 Nkind (Spec) = N_Package_Specification
9640 and then In_Same_Source_Unit
9641 (Corresponding_Body (Parent (Spec)),
9642 Cunit_Entity (Current_Sem_Unit));
9647 end Spec_Reloaded_For_Body;
9649 -------------------------------
9650 -- Use_Class_Wide_Operations --
9651 -------------------------------
9653 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
9654 function Is_Class_Wide_Operation_Of
9656 T : Entity_Id) return Boolean;
9657 -- Determine whether a subprogram has a class-wide parameter or
9658 -- result that is T'Class.
9660 ---------------------------------
9661 -- Is_Class_Wide_Operation_Of --
9662 ---------------------------------
9664 function Is_Class_Wide_Operation_Of
9666 T : Entity_Id) return Boolean
9671 Formal := First_Formal (Op);
9672 while Present (Formal) loop
9673 if Etype (Formal) = Class_Wide_Type (T) then
9677 Next_Formal (Formal);
9680 if Etype (Op) = Class_Wide_Type (T) then
9685 end Is_Class_Wide_Operation_Of;
9692 -- Start of processing for Use_Class_Wide_Operations
9695 Scop := Scope (Typ);
9696 if not Is_Hidden (Scop) then
9697 Ent := First_Entity (Scop);
9698 while Present (Ent) loop
9699 if Is_Overloadable (Ent)
9700 and then Is_Class_Wide_Operation_Of (Ent, Typ)
9701 and then not Is_Potentially_Use_Visible (Ent)
9703 Set_Is_Potentially_Use_Visible (Ent);
9704 Append_Elmt (Ent, Used_Operations (Parent (Id)));
9711 if Is_Derived_Type (Typ) then
9712 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
9714 end Use_Class_Wide_Operations;
9719 Is_Known_Used : Boolean;
9723 -- Start of processing for Use_One_Type
9726 if Entity (Id) = Any_Type then
9730 -- It is the type determined by the subtype mark (8.4(8)) whose
9731 -- operations become potentially use-visible.
9733 T := Base_Type (Entity (Id));
9735 -- Either the type itself is used, the package where it is declared is
9736 -- in use or the entity is declared in the current package, thus
9741 and then ((Present (Current_Use_Clause (T))
9742 and then All_Present (Current_Use_Clause (T)))
9743 or else not All_Present (Parent (Id))))
9744 or else In_Use (Scope (T))
9745 or else Scope (T) = Current_Scope;
9747 Set_Redundant_Use (Id,
9748 Is_Known_Used or else Is_Potentially_Use_Visible (T));
9750 if Ekind (T) = E_Incomplete_Type then
9751 Error_Msg_N ("premature usage of incomplete type", Id);
9753 elsif In_Open_Scopes (Scope (T)) then
9756 -- A limited view cannot appear in a use_type_clause. However, an access
9757 -- type whose designated type is limited has the flag but is not itself
9758 -- a limited view unless we only have a limited view of its enclosing
9761 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
9763 ("incomplete type from limited view cannot appear in use clause",
9766 -- If the use clause is redundant, Used_Operations will usually be
9767 -- empty, but we need to set it to empty here in one case: If we are
9768 -- instantiating a generic library unit, then we install the ancestors
9769 -- of that unit in the scope stack, which involves reprocessing use
9770 -- clauses in those ancestors. Such a use clause will typically have a
9771 -- nonempty Used_Operations unless it was redundant in the generic unit,
9772 -- even if it is redundant at the place of the instantiation.
9774 elsif Redundant_Use (Id) then
9776 -- We must avoid incorrectly setting the Current_Use_Clause when we
9777 -- are working with a redundant clause that has already been linked
9778 -- in the Prev_Use_Clause chain, otherwise the chain will break.
9780 if Present (Current_Use_Clause (T))
9781 and then Present (Prev_Use_Clause (Current_Use_Clause (T)))
9782 and then Parent (Id) = Prev_Use_Clause (Current_Use_Clause (T))
9786 Set_Current_Use_Clause (T, Parent (Id));
9789 Set_Used_Operations (Parent (Id), New_Elmt_List);
9791 -- If the subtype mark designates a subtype in a different package,
9792 -- we have to check that the parent type is visible, otherwise the
9793 -- use_type_clause is a no-op. Not clear how to do that???
9796 Set_Current_Use_Clause (T, Parent (Id));
9799 -- If T is tagged, primitive operators on class-wide operands are
9802 if Is_Tagged_Type (T) then
9803 Set_In_Use (Class_Wide_Type (T));
9806 -- Iterate over primitive operations of the type. If an operation is
9807 -- already use_visible, it is the result of a previous use_clause,
9808 -- and already appears on the corresponding entity chain. If the
9809 -- clause is being reinstalled, operations are already use-visible.
9815 Op_List := Collect_Primitive_Operations (T);
9816 Elmt := First_Elmt (Op_List);
9817 while Present (Elmt) loop
9818 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
9819 or else Chars (Node (Elmt)) in Any_Operator_Name)
9820 and then not Is_Hidden (Node (Elmt))
9821 and then not Is_Potentially_Use_Visible (Node (Elmt))
9823 Set_Is_Potentially_Use_Visible (Node (Elmt));
9824 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9826 elsif Ada_Version >= Ada_2012
9827 and then All_Present (Parent (Id))
9828 and then not Is_Hidden (Node (Elmt))
9829 and then not Is_Potentially_Use_Visible (Node (Elmt))
9831 Set_Is_Potentially_Use_Visible (Node (Elmt));
9832 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9839 if Ada_Version >= Ada_2012
9840 and then All_Present (Parent (Id))
9841 and then Is_Tagged_Type (T)
9843 Use_Class_Wide_Operations (T);
9847 -- If warning on redundant constructs, check for unnecessary WITH
9850 and then Warn_On_Redundant_Constructs
9851 and then Is_Known_Used
9853 -- with P; with P; use P;
9854 -- package P is package X is package body X is
9855 -- type T ... use P.T;
9857 -- The compilation unit is the body of X. GNAT first compiles the
9858 -- spec of X, then proceeds to the body. At that point P is marked
9859 -- as use visible. The analysis then reinstalls the spec along with
9860 -- its context. The use clause P.T is now recognized as redundant,
9861 -- but in the wrong context. Do not emit a warning in such cases.
9862 -- Do not emit a warning either if we are in an instance, there is
9863 -- no redundancy between an outer use_clause and one that appears
9864 -- within the generic.
9866 and then not Spec_Reloaded_For_Body
9867 and then not In_Instance
9869 -- The type already has a use clause
9873 -- Case where we know the current use clause for the type
9875 if Present (Current_Use_Clause (T)) then
9876 Use_Clause_Known : declare
9877 Clause1 : constant Node_Id :=
9878 Find_Most_Prev (Current_Use_Clause (T));
9879 Clause2 : constant Node_Id := Parent (Id);
9886 -- Start of processing for Use_Clause_Known
9889 -- If both current use_type_clause and the use_type_clause
9890 -- for the type are at the compilation unit level, one of
9891 -- the units must be an ancestor of the other, and the
9892 -- warning belongs on the descendant.
9894 if Nkind (Parent (Clause1)) = N_Compilation_Unit
9896 Nkind (Parent (Clause2)) = N_Compilation_Unit
9898 -- If the unit is a subprogram body that acts as spec,
9899 -- the context clause is shared with the constructed
9900 -- subprogram spec. Clearly there is no redundancy.
9902 if Clause1 = Clause2 then
9906 Unit1 := Unit (Parent (Clause1));
9907 Unit2 := Unit (Parent (Clause2));
9909 -- If both clauses are on same unit, or one is the body
9910 -- of the other, or one of them is in a subunit, report
9911 -- redundancy on the later one.
9913 if Unit1 = Unit2 or else Nkind (Unit1) = N_Subunit then
9914 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9915 Error_Msg_NE -- CODEFIX
9916 ("& is already use-visible through previous "
9917 & "use_type_clause #??", Clause1, T);
9920 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
9921 and then Nkind (Unit1) /= Nkind (Unit2)
9922 and then Nkind (Unit1) /= N_Subunit
9924 Error_Msg_Sloc := Sloc (Clause1);
9925 Error_Msg_NE -- CODEFIX
9926 ("& is already use-visible through previous "
9927 & "use_type_clause #??", Current_Use_Clause (T), T);
9931 -- There is a redundant use_type_clause in a child unit.
9932 -- Determine which of the units is more deeply nested.
9933 -- If a unit is a package instance, retrieve the entity
9934 -- and its scope from the instance spec.
9936 Ent1 := Entity_Of_Unit (Unit1);
9937 Ent2 := Entity_Of_Unit (Unit2);
9939 if Scope (Ent2) = Standard_Standard then
9940 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9943 elsif Scope (Ent1) = Standard_Standard then
9944 Error_Msg_Sloc := Sloc (Id);
9947 -- If both units are child units, we determine which one
9948 -- is the descendant by the scope distance to the
9949 -- ultimate parent unit.
9960 and then Present (S2)
9961 and then S1 /= Standard_Standard
9962 and then S2 /= Standard_Standard
9968 if S1 = Standard_Standard then
9969 Error_Msg_Sloc := Sloc (Id);
9972 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9978 if Parent (Id) /= Err_No then
9979 if Most_Descendant_Use_Clause
9980 (Err_No, Parent (Id)) = Parent (Id)
9982 Error_Msg_Sloc := Sloc (Err_No);
9983 Err_No := Parent (Id);
9986 Error_Msg_NE -- CODEFIX
9987 ("& is already use-visible through previous "
9988 & "use_type_clause #??", Err_No, Id);
9991 -- Case where current use_type_clause and use_type_clause
9992 -- for the type are not both at the compilation unit level.
9993 -- In this case we don't have location information.
9996 Error_Msg_NE -- CODEFIX
9997 ("& is already use-visible through previous "
9998 & "use_type_clause??", Id, T);
10000 end Use_Clause_Known;
10002 -- Here if Current_Use_Clause is not set for T, another case where
10003 -- we do not have the location information available.
10006 Error_Msg_NE -- CODEFIX
10007 ("& is already use-visible through previous "
10008 & "use_type_clause??", Id, T);
10011 -- The package where T is declared is already used
10013 elsif In_Use (Scope (T)) then
10015 Sloc (Find_Most_Prev (Current_Use_Clause (Scope (T))));
10016 Error_Msg_NE -- CODEFIX
10017 ("& is already use-visible through package use clause #??",
10020 -- The current scope is the package where T is declared
10023 Error_Msg_Node_2 := Scope (T);
10024 Error_Msg_NE -- CODEFIX
10025 ("& is already use-visible inside package &??", Id, T);
10034 procedure Write_Info is
10035 Id : Entity_Id := First_Entity (Current_Scope);
10038 -- No point in dumping standard entities
10040 if Current_Scope = Standard_Standard then
10044 Write_Str ("========================================================");
10046 Write_Str (" Defined Entities in ");
10047 Write_Name (Chars (Current_Scope));
10049 Write_Str ("========================================================");
10053 Write_Str ("-- none --");
10057 while Present (Id) loop
10058 Write_Entity_Info (Id, " ");
10063 if Scope (Current_Scope) = Standard_Standard then
10065 -- Print information on the current unit itself
10067 Write_Entity_Info (Current_Scope, " ");
10080 for J in reverse 1 .. Scope_Stack.Last loop
10081 S := Scope_Stack.Table (J).Entity;
10082 Write_Int (Int (S));
10083 Write_Str (" === ");
10084 Write_Name (Chars (S));
10093 procedure we (S : Entity_Id) is
10096 E := First_Entity (S);
10097 while Present (E) loop
10098 Write_Int (Int (E));
10099 Write_Str (" === ");
10100 Write_Name (Chars (E));