sem_dim.adb (Analyze_Dimension_Binary_Op): Accept with a warning to compare a dimensi...
[official-gcc.git] / gcc / ada / sem_ch8.adb
blob5f4cd47786a1914ecc9ff1eeae667deb833dc1cf
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Impunit; use Impunit;
37 with Lib; use Lib;
38 with Lib.Load; use Lib.Load;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Namet.Sp; use Namet.Sp;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Output; use Output;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch4; use Sem_Ch4;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch12; use Sem_Ch12;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Dim; use Sem_Dim;
58 with Sem_Disp; use Sem_Disp;
59 with Sem_Dist; use Sem_Dist;
60 with Sem_Elab; use Sem_Elab;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Res; use Sem_Res;
63 with Sem_Util; use Sem_Util;
64 with Sem_Type; use Sem_Type;
65 with Stand; use Stand;
66 with Sinfo; use Sinfo;
67 with Sinfo.CN; use Sinfo.CN;
68 with Snames; use Snames;
69 with Style;
70 with Table;
71 with Tbuild; use Tbuild;
72 with Uintp; use Uintp;
74 package body Sem_Ch8 is
76 ------------------------------------
77 -- Visibility and Name Resolution --
78 ------------------------------------
80 -- This package handles name resolution and the collection of possible
81 -- interpretations for overloaded names, prior to overload resolution.
83 -- Name resolution is the process that establishes a mapping between source
84 -- identifiers and the entities they denote at each point in the program.
85 -- Each entity is represented by a defining occurrence. Each identifier
86 -- that denotes an entity points to the corresponding defining occurrence.
87 -- This is the entity of the applied occurrence. Each occurrence holds
88 -- an index into the names table, where source identifiers are stored.
90 -- Each entry in the names table for an identifier or designator uses the
91 -- Info pointer to hold a link to the currently visible entity that has
92 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
93 -- in package Sem_Util). The visibility is initialized at the beginning of
94 -- semantic processing to make entities in package Standard immediately
95 -- visible. The visibility table is used in a more subtle way when
96 -- compiling subunits (see below).
98 -- Entities that have the same name (i.e. homonyms) are chained. In the
99 -- case of overloaded entities, this chain holds all the possible meanings
100 -- of a given identifier. The process of overload resolution uses type
101 -- information to select from this chain the unique meaning of a given
102 -- identifier.
104 -- Entities are also chained in their scope, through the Next_Entity link.
105 -- As a consequence, the name space is organized as a sparse matrix, where
106 -- each row corresponds to a scope, and each column to a source identifier.
107 -- Open scopes, that is to say scopes currently being compiled, have their
108 -- corresponding rows of entities in order, innermost scope first.
110 -- The scopes of packages that are mentioned in context clauses appear in
111 -- no particular order, interspersed among open scopes. This is because
112 -- in the course of analyzing the context of a compilation, a package
113 -- declaration is first an open scope, and subsequently an element of the
114 -- context. If subunits or child units are present, a parent unit may
115 -- appear under various guises at various times in the compilation.
117 -- When the compilation of the innermost scope is complete, the entities
118 -- defined therein are no longer visible. If the scope is not a package
119 -- declaration, these entities are never visible subsequently, and can be
120 -- removed from visibility chains. If the scope is a package declaration,
121 -- its visible declarations may still be accessible. Therefore the entities
122 -- defined in such a scope are left on the visibility chains, and only
123 -- their visibility (immediately visibility or potential use-visibility)
124 -- is affected.
126 -- The ordering of homonyms on their chain does not necessarily follow
127 -- the order of their corresponding scopes on the scope stack. For
128 -- example, if package P and the enclosing scope both contain entities
129 -- named E, then when compiling the package body the chain for E will
130 -- hold the global entity first, and the local one (corresponding to
131 -- the current inner scope) next. As a result, name resolution routines
132 -- do not assume any relative ordering of the homonym chains, either
133 -- for scope nesting or to order of appearance of context clauses.
135 -- When compiling a child unit, entities in the parent scope are always
136 -- immediately visible. When compiling the body of a child unit, private
137 -- entities in the parent must also be made immediately visible. There
138 -- are separate routines to make the visible and private declarations
139 -- visible at various times (see package Sem_Ch7).
141 -- +--------+ +-----+
142 -- | In use |-------->| EU1 |-------------------------->
143 -- +--------+ +-----+
144 -- | |
145 -- +--------+ +-----+ +-----+
146 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
147 -- +--------+ +-----+ +-----+
148 -- | |
149 -- +---------+ | +-----+
150 -- | with'ed |------------------------------>| EW2 |--->
151 -- +---------+ | +-----+
152 -- | |
153 -- +--------+ +-----+ +-----+
154 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
155 -- +--------+ +-----+ +-----+
156 -- | |
157 -- +--------+ +-----+ +-----+
158 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
159 -- +--------+ +-----+ +-----+
160 -- ^ | |
161 -- | | |
162 -- | +---------+ | |
163 -- | | with'ed |----------------------------------------->
164 -- | +---------+ | |
165 -- | | |
166 -- Scope stack | |
167 -- (innermost first) | |
168 -- +----------------------------+
169 -- Names table => | Id1 | | | | Id2 |
170 -- +----------------------------+
172 -- Name resolution must deal with several syntactic forms: simple names,
173 -- qualified names, indexed names, and various forms of calls.
175 -- Each identifier points to an entry in the names table. The resolution
176 -- of a simple name consists in traversing the homonym chain, starting
177 -- from the names table. If an entry is immediately visible, it is the one
178 -- designated by the identifier. If only potentially use-visible entities
179 -- are on the chain, we must verify that they do not hide each other. If
180 -- the entity we find is overloadable, we collect all other overloadable
181 -- entities on the chain as long as they are not hidden.
183 -- To resolve expanded names, we must find the entity at the intersection
184 -- of the entity chain for the scope (the prefix) and the homonym chain
185 -- for the selector. In general, homonym chains will be much shorter than
186 -- entity chains, so it is preferable to start from the names table as
187 -- well. If the entity found is overloadable, we must collect all other
188 -- interpretations that are defined in the scope denoted by the prefix.
190 -- For records, protected types, and tasks, their local entities are
191 -- removed from visibility chains on exit from the corresponding scope.
192 -- From the outside, these entities are always accessed by selected
193 -- notation, and the entity chain for the record type, protected type,
194 -- etc. is traversed sequentially in order to find the designated entity.
196 -- The discriminants of a type and the operations of a protected type or
197 -- task are unchained on exit from the first view of the type, (such as
198 -- a private or incomplete type declaration, or a protected type speci-
199 -- fication) and re-chained when compiling the second view.
201 -- In the case of operators, we do not make operators on derived types
202 -- explicit. As a result, the notation P."+" may denote either a user-
203 -- defined function with name "+", or else an implicit declaration of the
204 -- operator "+" in package P. The resolution of expanded names always
205 -- tries to resolve an operator name as such an implicitly defined entity,
206 -- in addition to looking for explicit declarations.
208 -- All forms of names that denote entities (simple names, expanded names,
209 -- character literals in some cases) have a Entity attribute, which
210 -- identifies the entity denoted by the name.
212 ---------------------
213 -- The Scope Stack --
214 ---------------------
216 -- The Scope stack keeps track of the scopes currently been compiled.
217 -- Every entity that contains declarations (including records) is placed
218 -- on the scope stack while it is being processed, and removed at the end.
219 -- Whenever a non-package scope is exited, the entities defined therein
220 -- are removed from the visibility table, so that entities in outer scopes
221 -- become visible (see previous description). On entry to Sem, the scope
222 -- stack only contains the package Standard. As usual, subunits complicate
223 -- this picture ever so slightly.
225 -- The Rtsfind mechanism can force a call to Semantics while another
226 -- compilation is in progress. The unit retrieved by Rtsfind must be
227 -- compiled in its own context, and has no access to the visibility of
228 -- the unit currently being compiled. The procedures Save_Scope_Stack and
229 -- Restore_Scope_Stack make entities in current open scopes invisible
230 -- before compiling the retrieved unit, and restore the compilation
231 -- environment afterwards.
233 ------------------------
234 -- Compiling subunits --
235 ------------------------
237 -- Subunits must be compiled in the environment of the corresponding stub,
238 -- that is to say with the same visibility into the parent (and its
239 -- context) that is available at the point of the stub declaration, but
240 -- with the additional visibility provided by the context clause of the
241 -- subunit itself. As a result, compilation of a subunit forces compilation
242 -- of the parent (see description in lib-). At the point of the stub
243 -- declaration, Analyze is called recursively to compile the proper body of
244 -- the subunit, but without reinitializing the names table, nor the scope
245 -- stack (i.e. standard is not pushed on the stack). In this fashion the
246 -- context of the subunit is added to the context of the parent, and the
247 -- subunit is compiled in the correct environment. Note that in the course
248 -- of processing the context of a subunit, Standard will appear twice on
249 -- the scope stack: once for the parent of the subunit, and once for the
250 -- unit in the context clause being compiled. However, the two sets of
251 -- entities are not linked by homonym chains, so that the compilation of
252 -- any context unit happens in a fresh visibility environment.
254 -------------------------------
255 -- Processing of USE Clauses --
256 -------------------------------
258 -- Every defining occurrence has a flag indicating if it is potentially use
259 -- visible. Resolution of simple names examines this flag. The processing
260 -- of use clauses consists in setting this flag on all visible entities
261 -- defined in the corresponding package. On exit from the scope of the use
262 -- clause, the corresponding flag must be reset. However, a package may
263 -- appear in several nested use clauses (pathological but legal, alas)
264 -- which forces us to use a slightly more involved scheme:
266 -- a) The defining occurrence for a package holds a flag -In_Use- to
267 -- indicate that it is currently in the scope of a use clause. If a
268 -- redundant use clause is encountered, then the corresponding occurrence
269 -- of the package name is flagged -Redundant_Use-.
271 -- b) On exit from a scope, the use clauses in its declarative part are
272 -- scanned. The visibility flag is reset in all entities declared in
273 -- package named in a use clause, as long as the package is not flagged
274 -- as being in a redundant use clause (in which case the outer use
275 -- clause is still in effect, and the direct visibility of its entities
276 -- must be retained).
278 -- Note that entities are not removed from their homonym chains on exit
279 -- from the package specification. A subsequent use clause does not need
280 -- to rechain the visible entities, but only to establish their direct
281 -- visibility.
283 -----------------------------------
284 -- Handling private declarations --
285 -----------------------------------
287 -- The principle that each entity has a single defining occurrence clashes
288 -- with the presence of two separate definitions for private types: the
289 -- first is the private type declaration, and second is the full type
290 -- declaration. It is important that all references to the type point to
291 -- the same defining occurrence, namely the first one. To enforce the two
292 -- separate views of the entity, the corresponding information is swapped
293 -- between the two declarations. Outside of the package, the defining
294 -- occurrence only contains the private declaration information, while in
295 -- the private part and the body of the package the defining occurrence
296 -- contains the full declaration. To simplify the swap, the defining
297 -- occurrence that currently holds the private declaration points to the
298 -- full declaration. During semantic processing the defining occurrence
299 -- also points to a list of private dependents, that is to say access types
300 -- or composite types whose designated types or component types are
301 -- subtypes or derived types of the private type in question. After the
302 -- full declaration has been seen, the private dependents are updated to
303 -- indicate that they have full definitions.
305 ------------------------------------
306 -- Handling of Undefined Messages --
307 ------------------------------------
309 -- In normal mode, only the first use of an undefined identifier generates
310 -- a message. The table Urefs is used to record error messages that have
311 -- been issued so that second and subsequent ones do not generate further
312 -- messages. However, the second reference causes text to be added to the
313 -- original undefined message noting "(more references follow)". The
314 -- full error list option (-gnatf) forces messages to be generated for
315 -- every reference and disconnects the use of this table.
317 type Uref_Entry is record
318 Node : Node_Id;
319 -- Node for identifier for which original message was posted. The
320 -- Chars field of this identifier is used to detect later references
321 -- to the same identifier.
323 Err : Error_Msg_Id;
324 -- Records error message Id of original undefined message. Reset to
325 -- No_Error_Msg after the second occurrence, where it is used to add
326 -- text to the original message as described above.
328 Nvis : Boolean;
329 -- Set if the message is not visible rather than undefined
331 Loc : Source_Ptr;
332 -- Records location of error message. Used to make sure that we do
333 -- not consider a, b : undefined as two separate instances, which
334 -- would otherwise happen, since the parser converts this sequence
335 -- to a : undefined; b : undefined.
337 end record;
339 package Urefs is new Table.Table (
340 Table_Component_Type => Uref_Entry,
341 Table_Index_Type => Nat,
342 Table_Low_Bound => 1,
343 Table_Initial => 10,
344 Table_Increment => 100,
345 Table_Name => "Urefs");
347 Candidate_Renaming : Entity_Id;
348 -- Holds a candidate interpretation that appears in a subprogram renaming
349 -- declaration and does not match the given specification, but matches at
350 -- least on the first formal. Allows better error message when given
351 -- specification omits defaulted parameters, a common error.
353 -----------------------
354 -- Local Subprograms --
355 -----------------------
357 procedure Analyze_Generic_Renaming
358 (N : Node_Id;
359 K : Entity_Kind);
360 -- Common processing for all three kinds of generic renaming declarations.
361 -- Enter new name and indicate that it renames the generic unit.
363 procedure Analyze_Renamed_Character
364 (N : Node_Id;
365 New_S : Entity_Id;
366 Is_Body : Boolean);
367 -- Renamed entity is given by a character literal, which must belong
368 -- to the return type of the new entity. Is_Body indicates whether the
369 -- declaration is a renaming_as_body. If the original declaration has
370 -- already been frozen (because of an intervening body, e.g.) the body of
371 -- the function must be built now. The same applies to the following
372 -- various renaming procedures.
374 procedure Analyze_Renamed_Dereference
375 (N : Node_Id;
376 New_S : Entity_Id;
377 Is_Body : Boolean);
378 -- Renamed entity is given by an explicit dereference. Prefix must be a
379 -- conformant access_to_subprogram type.
381 procedure Analyze_Renamed_Entry
382 (N : Node_Id;
383 New_S : Entity_Id;
384 Is_Body : Boolean);
385 -- If the renamed entity in a subprogram renaming is an entry or protected
386 -- subprogram, build a body for the new entity whose only statement is a
387 -- call to the renamed entity.
389 procedure Analyze_Renamed_Family_Member
390 (N : Node_Id;
391 New_S : Entity_Id;
392 Is_Body : Boolean);
393 -- Used when the renamed entity is an indexed component. The prefix must
394 -- denote an entry family.
396 procedure Analyze_Renamed_Primitive_Operation
397 (N : Node_Id;
398 New_S : Entity_Id;
399 Is_Body : Boolean);
400 -- If the renamed entity in a subprogram renaming is a primitive operation
401 -- or a class-wide operation in prefix form, save the target object,
402 -- which must be added to the list of actuals in any subsequent call.
403 -- The renaming operation is intrinsic because the compiler must in
404 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
406 procedure Attribute_Renaming (N : Node_Id);
407 -- Analyze renaming of attribute as subprogram. The renaming declaration N
408 -- is rewritten as a subprogram body that returns the attribute reference
409 -- applied to the formals of the function.
411 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
412 -- Set Entity, with style check if need be. For a discriminant reference,
413 -- replace by the corresponding discriminal, i.e. the parameter of the
414 -- initialization procedure that corresponds to the discriminant.
416 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
417 -- A renaming_as_body may occur after the entity of the original decla-
418 -- ration has been frozen. In that case, the body of the new entity must
419 -- be built now, because the usual mechanism of building the renamed
420 -- body at the point of freezing will not work. Subp is the subprogram
421 -- for which N provides the Renaming_As_Body.
423 procedure Check_In_Previous_With_Clause
424 (N : Node_Id;
425 Nam : Node_Id);
426 -- N is a use_package clause and Nam the package name, or N is a use_type
427 -- clause and Nam is the prefix of the type name. In either case, verify
428 -- that the package is visible at that point in the context: either it
429 -- appears in a previous with_clause, or because it is a fully qualified
430 -- name and the root ancestor appears in a previous with_clause.
432 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
433 -- Verify that the entity in a renaming declaration that is a library unit
434 -- is itself a library unit and not a nested unit or subunit. Also check
435 -- that if the renaming is a child unit of a generic parent, then the
436 -- renamed unit must also be a child unit of that parent. Finally, verify
437 -- that a renamed generic unit is not an implicit child declared within
438 -- an instance of the parent.
440 procedure Chain_Use_Clause (N : Node_Id);
441 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
442 -- the proper scope table entry. This is usually the current scope, but it
443 -- will be an inner scope when installing the use clauses of the private
444 -- declarations of a parent unit prior to compiling the private part of a
445 -- child unit. This chain is traversed when installing/removing use clauses
446 -- when compiling a subunit or instantiating a generic body on the fly,
447 -- when it is necessary to save and restore full environments.
449 function Enclosing_Instance return Entity_Id;
450 -- In an instance nested within another one, several semantic checks are
451 -- unnecessary because the legality of the nested instance has been checked
452 -- in the enclosing generic unit. This applies in particular to legality
453 -- checks on actuals for formal subprograms of the inner instance, which
454 -- are checked as subprogram renamings, and may be complicated by confusion
455 -- in private/full views. This function returns the instance enclosing the
456 -- current one if there is such, else it returns Empty.
458 -- If the renaming determines the entity for the default of a formal
459 -- subprogram nested within another instance, choose the innermost
460 -- candidate. This is because if the formal has a box, and we are within
461 -- an enclosing instance where some candidate interpretations are local
462 -- to this enclosing instance, we know that the default was properly
463 -- resolved when analyzing the generic, so we prefer the local
464 -- candidates to those that are external. This is not always the case
465 -- but is a reasonable heuristic on the use of nested generics. The
466 -- proper solution requires a full renaming model.
468 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
469 -- Return the appropriate entity for determining which unit has a deeper
470 -- scope: the defining entity for U, unless U is a package instance, in
471 -- which case we retrieve the entity of the instance spec.
473 procedure Find_Expanded_Name (N : Node_Id);
474 -- The input is a selected component known to be an expanded name. Verify
475 -- legality of selector given the scope denoted by prefix, and change node
476 -- N into a expanded name with a properly set Entity field.
478 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id;
479 -- Find the most previous use clause (that is, the first one to appear in
480 -- the source) by traversing the previous clause chain that exists in both
481 -- N_Use_Package_Clause nodes and N_Use_Type_Clause nodes.
482 -- ??? a better subprogram name is in order
484 function Find_Renamed_Entity
485 (N : Node_Id;
486 Nam : Node_Id;
487 New_S : Entity_Id;
488 Is_Actual : Boolean := False) return Entity_Id;
489 -- Find the renamed entity that corresponds to the given parameter profile
490 -- in a subprogram renaming declaration. The renamed entity may be an
491 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
492 -- indicates that the renaming is the one generated for an actual subpro-
493 -- gram in an instance, for which special visibility checks apply.
495 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
496 -- Find a type derived from Character or Wide_Character in the prefix of N.
497 -- Used to resolved qualified names whose selector is a character literal.
499 function Has_Private_With (E : Entity_Id) return Boolean;
500 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
501 -- private with on E.
503 function Has_Implicit_Operator (N : Node_Id) return Boolean;
504 -- N is an expanded name whose selector is an operator name (e.g. P."+").
505 -- declarative part contains an implicit declaration of an operator if it
506 -- has a declaration of a type to which one of the predefined operators
507 -- apply. The existence of this routine is an implementation artifact. A
508 -- more straightforward but more space-consuming choice would be to make
509 -- all inherited operators explicit in the symbol table.
511 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
512 -- A subprogram defined by a renaming declaration inherits the parameter
513 -- profile of the renamed entity. The subtypes given in the subprogram
514 -- specification are discarded and replaced with those of the renamed
515 -- subprogram, which are then used to recheck the default values.
517 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
518 -- True if it is of a task type, a protected type, or else an access to one
519 -- of these types.
521 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
522 -- Prefix is appropriate for record if it is of a record type, or an access
523 -- to such.
525 function Most_Descendant_Use_Clause
526 (Clause1 : Entity_Id;
527 Clause2 : Entity_Id) return Entity_Id;
528 -- Determine which use clause parameter is the most descendant in terms of
529 -- scope.
530 -- ??? a better subprogram name is in order
532 procedure Premature_Usage (N : Node_Id);
533 -- Diagnose usage of an entity before it is visible
535 procedure Use_One_Package
536 (N : Node_Id;
537 Pack_Name : Entity_Id := Empty;
538 Force : Boolean := False);
539 -- Make visible entities declared in package P potentially use-visible
540 -- in the current context. Also used in the analysis of subunits, when
541 -- re-installing use clauses of parent units. N is the use_clause that
542 -- names P (and possibly other packages).
544 procedure Use_One_Type
545 (Id : Node_Id;
546 Installed : Boolean := False;
547 Force : Boolean := False);
548 -- Id is the subtype mark from a use_type_clause. This procedure makes
549 -- the primitive operators of the type potentially use-visible. The
550 -- boolean flag Installed indicates that the clause is being reinstalled
551 -- after previous analysis, and primitive operations are already chained
552 -- on the Used_Operations list of the clause.
554 procedure Write_Info;
555 -- Write debugging information on entities declared in current scope
557 --------------------------------
558 -- Analyze_Exception_Renaming --
559 --------------------------------
561 -- The language only allows a single identifier, but the tree holds an
562 -- identifier list. The parser has already issued an error message if
563 -- there is more than one element in the list.
565 procedure Analyze_Exception_Renaming (N : Node_Id) is
566 Id : constant Entity_Id := Defining_Entity (N);
567 Nam : constant Node_Id := Name (N);
569 begin
570 Check_SPARK_05_Restriction ("exception renaming is not allowed", N);
572 Enter_Name (Id);
573 Analyze (Nam);
575 Set_Ekind (Id, E_Exception);
576 Set_Etype (Id, Standard_Exception_Type);
577 Set_Is_Pure (Id, Is_Pure (Current_Scope));
579 if Is_Entity_Name (Nam)
580 and then Present (Entity (Nam))
581 and then Ekind (Entity (Nam)) = E_Exception
582 then
583 if Present (Renamed_Object (Entity (Nam))) then
584 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
585 else
586 Set_Renamed_Object (Id, Entity (Nam));
587 end if;
589 -- The exception renaming declaration may become Ghost if it renames
590 -- a Ghost entity.
592 Mark_Ghost_Renaming (N, Entity (Nam));
593 else
594 Error_Msg_N ("invalid exception name in renaming", Nam);
595 end if;
597 -- Implementation-defined aspect specifications can appear in a renaming
598 -- declaration, but not language-defined ones. The call to procedure
599 -- Analyze_Aspect_Specifications will take care of this error check.
601 if Has_Aspects (N) then
602 Analyze_Aspect_Specifications (N, Id);
603 end if;
604 end Analyze_Exception_Renaming;
606 ---------------------------
607 -- Analyze_Expanded_Name --
608 ---------------------------
610 procedure Analyze_Expanded_Name (N : Node_Id) is
611 begin
612 -- If the entity pointer is already set, this is an internal node, or a
613 -- node that is analyzed more than once, after a tree modification. In
614 -- such a case there is no resolution to perform, just set the type. In
615 -- either case, start by analyzing the prefix.
617 Analyze (Prefix (N));
619 if Present (Entity (N)) then
620 if Is_Type (Entity (N)) then
621 Set_Etype (N, Entity (N));
622 else
623 Set_Etype (N, Etype (Entity (N)));
624 end if;
626 else
627 Find_Expanded_Name (N);
628 end if;
630 -- In either case, propagate dimension of entity to expanded name
632 Analyze_Dimension (N);
633 end Analyze_Expanded_Name;
635 ---------------------------------------
636 -- Analyze_Generic_Function_Renaming --
637 ---------------------------------------
639 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
640 begin
641 Analyze_Generic_Renaming (N, E_Generic_Function);
642 end Analyze_Generic_Function_Renaming;
644 --------------------------------------
645 -- Analyze_Generic_Package_Renaming --
646 --------------------------------------
648 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
649 begin
650 -- Test for the Text_IO special unit case here, since we may be renaming
651 -- one of the subpackages of Text_IO, then join common routine.
653 Check_Text_IO_Special_Unit (Name (N));
655 Analyze_Generic_Renaming (N, E_Generic_Package);
656 end Analyze_Generic_Package_Renaming;
658 ----------------------------------------
659 -- Analyze_Generic_Procedure_Renaming --
660 ----------------------------------------
662 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
663 begin
664 Analyze_Generic_Renaming (N, E_Generic_Procedure);
665 end Analyze_Generic_Procedure_Renaming;
667 ------------------------------
668 -- Analyze_Generic_Renaming --
669 ------------------------------
671 procedure Analyze_Generic_Renaming
672 (N : Node_Id;
673 K : Entity_Kind)
675 New_P : constant Entity_Id := Defining_Entity (N);
676 Inst : Boolean := False;
677 Old_P : Entity_Id;
679 begin
680 if Name (N) = Error then
681 return;
682 end if;
684 Check_SPARK_05_Restriction ("generic renaming is not allowed", N);
686 Generate_Definition (New_P);
688 if Current_Scope /= Standard_Standard then
689 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
690 end if;
692 if Nkind (Name (N)) = N_Selected_Component then
693 Check_Generic_Child_Unit (Name (N), Inst);
694 else
695 Analyze (Name (N));
696 end if;
698 if not Is_Entity_Name (Name (N)) then
699 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
700 Old_P := Any_Id;
701 else
702 Old_P := Entity (Name (N));
703 end if;
705 Enter_Name (New_P);
706 Set_Ekind (New_P, K);
708 if Etype (Old_P) = Any_Type then
709 null;
711 elsif Ekind (Old_P) /= K then
712 Error_Msg_N ("invalid generic unit name", Name (N));
714 else
715 if Present (Renamed_Object (Old_P)) then
716 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
717 else
718 Set_Renamed_Object (New_P, Old_P);
719 end if;
721 -- The generic renaming declaration may become Ghost if it renames a
722 -- Ghost entity.
724 Mark_Ghost_Renaming (N, Old_P);
726 Set_Is_Pure (New_P, Is_Pure (Old_P));
727 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
729 Set_Etype (New_P, Etype (Old_P));
730 Set_Has_Completion (New_P);
732 if In_Open_Scopes (Old_P) then
733 Error_Msg_N ("within its scope, generic denotes its instance", N);
734 end if;
736 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
737 -- renamings and subsequent instantiations of Unchecked_Conversion.
739 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
740 Set_Is_Intrinsic_Subprogram
741 (New_P, Is_Intrinsic_Subprogram (Old_P));
742 end if;
744 Check_Library_Unit_Renaming (N, Old_P);
745 end if;
747 -- Implementation-defined aspect specifications can appear in a renaming
748 -- declaration, but not language-defined ones. The call to procedure
749 -- Analyze_Aspect_Specifications will take care of this error check.
751 if Has_Aspects (N) then
752 Analyze_Aspect_Specifications (N, New_P);
753 end if;
754 end Analyze_Generic_Renaming;
756 -----------------------------
757 -- Analyze_Object_Renaming --
758 -----------------------------
760 procedure Analyze_Object_Renaming (N : Node_Id) is
761 Id : constant Entity_Id := Defining_Identifier (N);
762 Loc : constant Source_Ptr := Sloc (N);
763 Nam : constant Node_Id := Name (N);
764 Dec : Node_Id;
765 T : Entity_Id;
766 T2 : Entity_Id;
768 procedure Check_Constrained_Object;
769 -- If the nominal type is unconstrained but the renamed object is
770 -- constrained, as can happen with renaming an explicit dereference or
771 -- a function return, build a constrained subtype from the object. If
772 -- the renaming is for a formal in an accept statement, the analysis
773 -- has already established its actual subtype. This is only relevant
774 -- if the renamed object is an explicit dereference.
776 ------------------------------
777 -- Check_Constrained_Object --
778 ------------------------------
780 procedure Check_Constrained_Object is
781 Typ : constant Entity_Id := Etype (Nam);
782 Subt : Entity_Id;
784 begin
785 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
786 and then Is_Composite_Type (Etype (Nam))
787 and then not Is_Constrained (Etype (Nam))
788 and then not Has_Unknown_Discriminants (Etype (Nam))
789 and then Expander_Active
790 then
791 -- If Actual_Subtype is already set, nothing to do
793 if Ekind_In (Id, E_Variable, E_Constant)
794 and then Present (Actual_Subtype (Id))
795 then
796 null;
798 -- A renaming of an unchecked union has no actual subtype
800 elsif Is_Unchecked_Union (Typ) then
801 null;
803 -- If a record is limited its size is invariant. This is the case
804 -- in particular with record types with an access discirminant
805 -- that are used in iterators. This is an optimization, but it
806 -- also prevents typing anomalies when the prefix is further
807 -- expanded. Limited types with discriminants are included.
809 elsif Is_Limited_Record (Typ)
810 or else
811 (Ekind (Typ) = E_Limited_Private_Type
812 and then Has_Discriminants (Typ)
813 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
814 then
815 null;
817 else
818 Subt := Make_Temporary (Loc, 'T');
819 Remove_Side_Effects (Nam);
820 Insert_Action (N,
821 Make_Subtype_Declaration (Loc,
822 Defining_Identifier => Subt,
823 Subtype_Indication =>
824 Make_Subtype_From_Expr (Nam, Typ)));
825 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
826 Set_Etype (Nam, Subt);
828 -- Freeze subtype at once, to prevent order of elaboration
829 -- issues in the backend. The renamed object exists, so its
830 -- type is already frozen in any case.
832 Freeze_Before (N, Subt);
833 end if;
834 end if;
835 end Check_Constrained_Object;
837 -- Start of processing for Analyze_Object_Renaming
839 begin
840 if Nam = Error then
841 return;
842 end if;
844 Check_SPARK_05_Restriction ("object renaming is not allowed", N);
846 Set_Is_Pure (Id, Is_Pure (Current_Scope));
847 Enter_Name (Id);
849 -- The renaming of a component that depends on a discriminant requires
850 -- an actual subtype, because in subsequent use of the object Gigi will
851 -- be unable to locate the actual bounds. This explicit step is required
852 -- when the renaming is generated in removing side effects of an
853 -- already-analyzed expression.
855 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
857 -- The object renaming declaration may become Ghost if it renames a
858 -- Ghost entity.
860 if Is_Entity_Name (Nam) then
861 Mark_Ghost_Renaming (N, Entity (Nam));
862 end if;
864 T := Etype (Nam);
865 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
867 if Present (Dec) then
868 Insert_Action (N, Dec);
869 T := Defining_Identifier (Dec);
870 Set_Etype (Nam, T);
871 end if;
873 -- Complete analysis of the subtype mark in any case, for ASIS use
875 if Present (Subtype_Mark (N)) then
876 Find_Type (Subtype_Mark (N));
877 end if;
879 elsif Present (Subtype_Mark (N)) then
880 Find_Type (Subtype_Mark (N));
881 T := Entity (Subtype_Mark (N));
882 Analyze (Nam);
884 -- The object renaming declaration may become Ghost if it renames a
885 -- Ghost entity.
887 if Is_Entity_Name (Nam) then
888 Mark_Ghost_Renaming (N, Entity (Nam));
889 end if;
891 -- Reject renamings of conversions unless the type is tagged, or
892 -- the conversion is implicit (which can occur for cases of anonymous
893 -- access types in Ada 2012).
895 if Nkind (Nam) = N_Type_Conversion
896 and then Comes_From_Source (Nam)
897 and then not Is_Tagged_Type (T)
898 then
899 Error_Msg_N
900 ("renaming of conversion only allowed for tagged types", Nam);
901 end if;
903 Resolve (Nam, T);
905 -- If the renamed object is a function call of a limited type,
906 -- the expansion of the renaming is complicated by the presence
907 -- of various temporaries and subtypes that capture constraints
908 -- of the renamed object. Rewrite node as an object declaration,
909 -- whose expansion is simpler. Given that the object is limited
910 -- there is no copy involved and no performance hit.
912 if Nkind (Nam) = N_Function_Call
913 and then Is_Limited_View (Etype (Nam))
914 and then not Is_Constrained (Etype (Nam))
915 and then Comes_From_Source (N)
916 then
917 Set_Etype (Id, T);
918 Set_Ekind (Id, E_Constant);
919 Rewrite (N,
920 Make_Object_Declaration (Loc,
921 Defining_Identifier => Id,
922 Constant_Present => True,
923 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
924 Expression => Relocate_Node (Nam)));
925 return;
926 end if;
928 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
929 -- when renaming declaration has a named access type. The Ada 2012
930 -- coverage rules allow an anonymous access type in the context of
931 -- an expected named general access type, but the renaming rules
932 -- require the types to be the same. (An exception is when the type
933 -- of the renaming is also an anonymous access type, which can only
934 -- happen due to a renaming created by the expander.)
936 if Nkind (Nam) = N_Type_Conversion
937 and then not Comes_From_Source (Nam)
938 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
939 and then Ekind (T) /= E_Anonymous_Access_Type
940 then
941 Wrong_Type (Expression (Nam), T); -- Should we give better error???
942 end if;
944 -- Check that a class-wide object is not being renamed as an object
945 -- of a specific type. The test for access types is needed to exclude
946 -- cases where the renamed object is a dynamically tagged access
947 -- result, such as occurs in certain expansions.
949 if Is_Tagged_Type (T) then
950 Check_Dynamically_Tagged_Expression
951 (Expr => Nam,
952 Typ => T,
953 Related_Nod => N);
954 end if;
956 -- Ada 2005 (AI-230/AI-254): Access renaming
958 else pragma Assert (Present (Access_Definition (N)));
959 T :=
960 Access_Definition
961 (Related_Nod => N,
962 N => Access_Definition (N));
964 Analyze (Nam);
966 -- The object renaming declaration may become Ghost if it renames a
967 -- Ghost entity.
969 if Is_Entity_Name (Nam) then
970 Mark_Ghost_Renaming (N, Entity (Nam));
971 end if;
973 -- Ada 2005 AI05-105: if the declaration has an anonymous access
974 -- type, the renamed object must also have an anonymous type, and
975 -- this is a name resolution rule. This was implicit in the last part
976 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
977 -- recent AI.
979 if not Is_Overloaded (Nam) then
980 if Ekind (Etype (Nam)) /= Ekind (T) then
981 Error_Msg_N
982 ("expect anonymous access type in object renaming", N);
983 end if;
985 else
986 declare
987 I : Interp_Index;
988 It : Interp;
989 Typ : Entity_Id := Empty;
990 Seen : Boolean := False;
992 begin
993 Get_First_Interp (Nam, I, It);
994 while Present (It.Typ) loop
996 -- Renaming is ambiguous if more than one candidate
997 -- interpretation is type-conformant with the context.
999 if Ekind (It.Typ) = Ekind (T) then
1000 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
1001 and then
1002 Type_Conformant
1003 (Designated_Type (T), Designated_Type (It.Typ))
1004 then
1005 if not Seen then
1006 Seen := True;
1007 else
1008 Error_Msg_N
1009 ("ambiguous expression in renaming", Nam);
1010 end if;
1012 elsif Ekind (T) = E_Anonymous_Access_Type
1013 and then
1014 Covers (Designated_Type (T), Designated_Type (It.Typ))
1015 then
1016 if not Seen then
1017 Seen := True;
1018 else
1019 Error_Msg_N
1020 ("ambiguous expression in renaming", Nam);
1021 end if;
1022 end if;
1024 if Covers (T, It.Typ) then
1025 Typ := It.Typ;
1026 Set_Etype (Nam, Typ);
1027 Set_Is_Overloaded (Nam, False);
1028 end if;
1029 end if;
1031 Get_Next_Interp (I, It);
1032 end loop;
1033 end;
1034 end if;
1036 Resolve (Nam, T);
1038 -- Do not perform the legality checks below when the resolution of
1039 -- the renaming name failed because the associated type is Any_Type.
1041 if Etype (Nam) = Any_Type then
1042 null;
1044 -- Ada 2005 (AI-231): In the case where the type is defined by an
1045 -- access_definition, the renamed entity shall be of an access-to-
1046 -- constant type if and only if the access_definition defines an
1047 -- access-to-constant type. ARM 8.5.1(4)
1049 elsif Constant_Present (Access_Definition (N))
1050 and then not Is_Access_Constant (Etype (Nam))
1051 then
1052 Error_Msg_N
1053 ("(Ada 2005): the renamed object is not access-to-constant "
1054 & "(RM 8.5.1(6))", N);
1056 elsif not Constant_Present (Access_Definition (N))
1057 and then Is_Access_Constant (Etype (Nam))
1058 then
1059 Error_Msg_N
1060 ("(Ada 2005): the renamed object is not access-to-variable "
1061 & "(RM 8.5.1(6))", N);
1062 end if;
1064 if Is_Access_Subprogram_Type (Etype (Nam)) then
1065 Check_Subtype_Conformant
1066 (Designated_Type (T), Designated_Type (Etype (Nam)));
1068 elsif not Subtypes_Statically_Match
1069 (Designated_Type (T),
1070 Available_View (Designated_Type (Etype (Nam))))
1071 then
1072 Error_Msg_N
1073 ("subtype of renamed object does not statically match", N);
1074 end if;
1075 end if;
1077 -- Special processing for renaming function return object. Some errors
1078 -- and warnings are produced only for calls that come from source.
1080 if Nkind (Nam) = N_Function_Call then
1081 case Ada_Version is
1083 -- Usage is illegal in Ada 83, but renamings are also introduced
1084 -- during expansion, and error does not apply to those.
1086 when Ada_83 =>
1087 if Comes_From_Source (N) then
1088 Error_Msg_N
1089 ("(Ada 83) cannot rename function return object", Nam);
1090 end if;
1092 -- In Ada 95, warn for odd case of renaming parameterless function
1093 -- call if this is not a limited type (where this is useful).
1095 when others =>
1096 if Warn_On_Object_Renames_Function
1097 and then No (Parameter_Associations (Nam))
1098 and then not Is_Limited_Type (Etype (Nam))
1099 and then Comes_From_Source (Nam)
1100 then
1101 Error_Msg_N
1102 ("renaming function result object is suspicious?R?", Nam);
1103 Error_Msg_NE
1104 ("\function & will be called only once?R?", Nam,
1105 Entity (Name (Nam)));
1106 Error_Msg_N -- CODEFIX
1107 ("\suggest using an initialized constant object "
1108 & "instead?R?", Nam);
1109 end if;
1110 end case;
1111 end if;
1113 Check_Constrained_Object;
1115 -- An object renaming requires an exact match of the type. Class-wide
1116 -- matching is not allowed.
1118 if Is_Class_Wide_Type (T)
1119 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1120 then
1121 Wrong_Type (Nam, T);
1122 end if;
1124 T2 := Etype (Nam);
1126 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1128 if Nkind (Nam) = N_Explicit_Dereference
1129 and then Ekind (Etype (T2)) = E_Incomplete_Type
1130 then
1131 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1132 return;
1134 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1135 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1136 return;
1137 end if;
1139 -- Ada 2005 (AI-327)
1141 if Ada_Version >= Ada_2005
1142 and then Nkind (Nam) = N_Attribute_Reference
1143 and then Attribute_Name (Nam) = Name_Priority
1144 then
1145 null;
1147 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1148 declare
1149 Nam_Decl : Node_Id;
1150 Nam_Ent : Entity_Id;
1152 begin
1153 if Nkind (Nam) = N_Attribute_Reference then
1154 Nam_Ent := Entity (Prefix (Nam));
1155 else
1156 Nam_Ent := Entity (Nam);
1157 end if;
1159 Nam_Decl := Parent (Nam_Ent);
1161 if Has_Null_Exclusion (N)
1162 and then not Has_Null_Exclusion (Nam_Decl)
1163 then
1164 -- Ada 2005 (AI-423): If the object name denotes a generic
1165 -- formal object of a generic unit G, and the object renaming
1166 -- declaration occurs within the body of G or within the body
1167 -- of a generic unit declared within the declarative region
1168 -- of G, then the declaration of the formal object of G must
1169 -- have a null exclusion or a null-excluding subtype.
1171 if Is_Formal_Object (Nam_Ent)
1172 and then In_Generic_Scope (Id)
1173 then
1174 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1175 Error_Msg_N
1176 ("renamed formal does not exclude `NULL` "
1177 & "(RM 8.5.1(4.6/2))", N);
1179 elsif In_Package_Body (Scope (Id)) then
1180 Error_Msg_N
1181 ("formal object does not have a null exclusion"
1182 & "(RM 8.5.1(4.6/2))", N);
1183 end if;
1185 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1186 -- shall exclude null.
1188 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1189 Error_Msg_N
1190 ("renamed object does not exclude `NULL` "
1191 & "(RM 8.5.1(4.6/2))", N);
1193 -- An instance is illegal if it contains a renaming that
1194 -- excludes null, and the actual does not. The renaming
1195 -- declaration has already indicated that the declaration
1196 -- of the renamed actual in the instance will raise
1197 -- constraint_error.
1199 elsif Nkind (Nam_Decl) = N_Object_Declaration
1200 and then In_Instance
1201 and then
1202 Present (Corresponding_Generic_Association (Nam_Decl))
1203 and then Nkind (Expression (Nam_Decl)) =
1204 N_Raise_Constraint_Error
1205 then
1206 Error_Msg_N
1207 ("renamed actual does not exclude `NULL` "
1208 & "(RM 8.5.1(4.6/2))", N);
1210 -- Finally, if there is a null exclusion, the subtype mark
1211 -- must not be null-excluding.
1213 elsif No (Access_Definition (N))
1214 and then Can_Never_Be_Null (T)
1215 then
1216 Error_Msg_NE
1217 ("`NOT NULL` not allowed (& already excludes null)",
1218 N, T);
1220 end if;
1222 elsif Can_Never_Be_Null (T)
1223 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1224 then
1225 Error_Msg_N
1226 ("renamed object does not exclude `NULL` "
1227 & "(RM 8.5.1(4.6/2))", N);
1229 elsif Has_Null_Exclusion (N)
1230 and then No (Access_Definition (N))
1231 and then Can_Never_Be_Null (T)
1232 then
1233 Error_Msg_NE
1234 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1235 end if;
1236 end;
1237 end if;
1239 -- Set the Ekind of the entity, unless it has been set already, as is
1240 -- the case for the iteration object over a container with no variable
1241 -- indexing. In that case it's been marked as a constant, and we do not
1242 -- want to change it to a variable.
1244 if Ekind (Id) /= E_Constant then
1245 Set_Ekind (Id, E_Variable);
1246 end if;
1248 -- Initialize the object size and alignment. Note that we used to call
1249 -- Init_Size_Align here, but that's wrong for objects which have only
1250 -- an Esize, not an RM_Size field.
1252 Init_Object_Size_Align (Id);
1254 if T = Any_Type or else Etype (Nam) = Any_Type then
1255 return;
1257 -- Verify that the renamed entity is an object or a function call. It
1258 -- may have been rewritten in several ways.
1260 elsif Is_Object_Reference (Nam) then
1261 if Comes_From_Source (N) then
1262 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1263 Error_Msg_N
1264 ("illegal renaming of discriminant-dependent component", Nam);
1265 end if;
1267 -- If the renaming comes from source and the renamed object is a
1268 -- dereference, then mark the prefix as needing debug information,
1269 -- since it might have been rewritten hence internally generated
1270 -- and Debug_Renaming_Declaration will link the renaming to it.
1272 if Nkind (Nam) = N_Explicit_Dereference
1273 and then Is_Entity_Name (Prefix (Nam))
1274 then
1275 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1276 end if;
1277 end if;
1279 -- A static function call may have been folded into a literal
1281 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1283 -- When expansion is disabled, attribute reference is not rewritten
1284 -- as function call. Otherwise it may be rewritten as a conversion,
1285 -- so check original node.
1287 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1288 and then Is_Function_Attribute_Name
1289 (Attribute_Name (Original_Node (Nam))))
1291 -- Weird but legal, equivalent to renaming a function call. Illegal
1292 -- if the literal is the result of constant-folding an attribute
1293 -- reference that is not a function.
1295 or else (Is_Entity_Name (Nam)
1296 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1297 and then
1298 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1300 or else (Nkind (Nam) = N_Type_Conversion
1301 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1302 then
1303 null;
1305 elsif Nkind (Nam) = N_Type_Conversion then
1306 Error_Msg_N
1307 ("renaming of conversion only allowed for tagged types", Nam);
1309 -- Ada 2005 (AI-327)
1311 elsif Ada_Version >= Ada_2005
1312 and then Nkind (Nam) = N_Attribute_Reference
1313 and then Attribute_Name (Nam) = Name_Priority
1314 then
1315 null;
1317 -- Allow internally generated x'Ref resulting in N_Reference node
1319 elsif Nkind (Nam) = N_Reference then
1320 null;
1322 else
1323 Error_Msg_N ("expect object name in renaming", Nam);
1324 end if;
1326 Set_Etype (Id, T2);
1328 if not Is_Variable (Nam) then
1329 Set_Ekind (Id, E_Constant);
1330 Set_Never_Set_In_Source (Id, True);
1331 Set_Is_True_Constant (Id, True);
1332 end if;
1334 -- The entity of the renaming declaration needs to reflect whether the
1335 -- renamed object is volatile. Is_Volatile is set if the renamed object
1336 -- is volatile in the RM legality sense.
1338 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1340 -- Also copy settings of Atomic/Independent/Volatile_Full_Access
1342 if Is_Entity_Name (Nam) then
1343 Set_Is_Atomic (Id, Is_Atomic (Entity (Nam)));
1344 Set_Is_Independent (Id, Is_Independent (Entity (Nam)));
1345 Set_Is_Volatile_Full_Access (Id,
1346 Is_Volatile_Full_Access (Entity (Nam)));
1347 end if;
1349 -- Treat as volatile if we just set the Volatile flag
1351 if Is_Volatile (Id)
1353 -- Or if we are renaming an entity which was marked this way
1355 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1357 or else (Is_Entity_Name (Nam)
1358 and then Treat_As_Volatile (Entity (Nam)))
1359 then
1360 Set_Treat_As_Volatile (Id, True);
1361 end if;
1363 -- Now make the link to the renamed object
1365 Set_Renamed_Object (Id, Nam);
1367 -- Implementation-defined aspect specifications can appear in a renaming
1368 -- declaration, but not language-defined ones. The call to procedure
1369 -- Analyze_Aspect_Specifications will take care of this error check.
1371 if Has_Aspects (N) then
1372 Analyze_Aspect_Specifications (N, Id);
1373 end if;
1375 -- Deal with dimensions
1377 Analyze_Dimension (N);
1378 end Analyze_Object_Renaming;
1380 ------------------------------
1381 -- Analyze_Package_Renaming --
1382 ------------------------------
1384 procedure Analyze_Package_Renaming (N : Node_Id) is
1385 New_P : constant Entity_Id := Defining_Entity (N);
1386 Old_P : Entity_Id;
1387 Spec : Node_Id;
1389 begin
1390 if Name (N) = Error then
1391 return;
1392 end if;
1394 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1396 Check_Text_IO_Special_Unit (Name (N));
1398 if Current_Scope /= Standard_Standard then
1399 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1400 end if;
1402 Enter_Name (New_P);
1403 Analyze (Name (N));
1405 if Is_Entity_Name (Name (N)) then
1406 Old_P := Entity (Name (N));
1407 else
1408 Old_P := Any_Id;
1409 end if;
1411 if Etype (Old_P) = Any_Type then
1412 Error_Msg_N ("expect package name in renaming", Name (N));
1414 elsif Ekind (Old_P) /= E_Package
1415 and then not (Ekind (Old_P) = E_Generic_Package
1416 and then In_Open_Scopes (Old_P))
1417 then
1418 if Ekind (Old_P) = E_Generic_Package then
1419 Error_Msg_N
1420 ("generic package cannot be renamed as a package", Name (N));
1421 else
1422 Error_Msg_Sloc := Sloc (Old_P);
1423 Error_Msg_NE
1424 ("expect package name in renaming, found& declared#",
1425 Name (N), Old_P);
1426 end if;
1428 -- Set basic attributes to minimize cascaded errors
1430 Set_Ekind (New_P, E_Package);
1431 Set_Etype (New_P, Standard_Void_Type);
1433 -- Here for OK package renaming
1435 else
1436 -- Entities in the old package are accessible through the renaming
1437 -- entity. The simplest implementation is to have both packages share
1438 -- the entity list.
1440 Set_Ekind (New_P, E_Package);
1441 Set_Etype (New_P, Standard_Void_Type);
1443 if Present (Renamed_Object (Old_P)) then
1444 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1445 else
1446 Set_Renamed_Object (New_P, Old_P);
1447 end if;
1449 -- The package renaming declaration may become Ghost if it renames a
1450 -- Ghost entity.
1452 Mark_Ghost_Renaming (N, Old_P);
1454 Set_Has_Completion (New_P);
1455 Set_First_Entity (New_P, First_Entity (Old_P));
1456 Set_Last_Entity (New_P, Last_Entity (Old_P));
1457 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1458 Check_Library_Unit_Renaming (N, Old_P);
1459 Generate_Reference (Old_P, Name (N));
1461 -- If the renaming is in the visible part of a package, then we set
1462 -- Renamed_In_Spec for the renamed package, to prevent giving
1463 -- warnings about no entities referenced. Such a warning would be
1464 -- overenthusiastic, since clients can see entities in the renamed
1465 -- package via the visible package renaming.
1467 declare
1468 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1469 begin
1470 if Ekind (Ent) = E_Package
1471 and then not In_Private_Part (Ent)
1472 and then In_Extended_Main_Source_Unit (N)
1473 and then Ekind (Old_P) = E_Package
1474 then
1475 Set_Renamed_In_Spec (Old_P);
1476 end if;
1477 end;
1479 -- If this is the renaming declaration of a package instantiation
1480 -- within itself, it is the declaration that ends the list of actuals
1481 -- for the instantiation. At this point, the subtypes that rename
1482 -- the actuals are flagged as generic, to avoid spurious ambiguities
1483 -- if the actuals for two distinct formals happen to coincide. If
1484 -- the actual is a private type, the subtype has a private completion
1485 -- that is flagged in the same fashion.
1487 -- Resolution is identical to what is was in the original generic.
1488 -- On exit from the generic instance, these are turned into regular
1489 -- subtypes again, so they are compatible with types in their class.
1491 if not Is_Generic_Instance (Old_P) then
1492 return;
1493 else
1494 Spec := Specification (Unit_Declaration_Node (Old_P));
1495 end if;
1497 if Nkind (Spec) = N_Package_Specification
1498 and then Present (Generic_Parent (Spec))
1499 and then Old_P = Current_Scope
1500 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1501 then
1502 declare
1503 E : Entity_Id;
1505 begin
1506 E := First_Entity (Old_P);
1507 while Present (E) and then E /= New_P loop
1508 if Is_Type (E)
1509 and then Nkind (Parent (E)) = N_Subtype_Declaration
1510 then
1511 Set_Is_Generic_Actual_Type (E);
1513 if Is_Private_Type (E)
1514 and then Present (Full_View (E))
1515 then
1516 Set_Is_Generic_Actual_Type (Full_View (E));
1517 end if;
1518 end if;
1520 Next_Entity (E);
1521 end loop;
1522 end;
1523 end if;
1524 end if;
1526 -- Implementation-defined aspect specifications can appear in a renaming
1527 -- declaration, but not language-defined ones. The call to procedure
1528 -- Analyze_Aspect_Specifications will take care of this error check.
1530 if Has_Aspects (N) then
1531 Analyze_Aspect_Specifications (N, New_P);
1532 end if;
1533 end Analyze_Package_Renaming;
1535 -------------------------------
1536 -- Analyze_Renamed_Character --
1537 -------------------------------
1539 procedure Analyze_Renamed_Character
1540 (N : Node_Id;
1541 New_S : Entity_Id;
1542 Is_Body : Boolean)
1544 C : constant Node_Id := Name (N);
1546 begin
1547 if Ekind (New_S) = E_Function then
1548 Resolve (C, Etype (New_S));
1550 if Is_Body then
1551 Check_Frozen_Renaming (N, New_S);
1552 end if;
1554 else
1555 Error_Msg_N ("character literal can only be renamed as function", N);
1556 end if;
1557 end Analyze_Renamed_Character;
1559 ---------------------------------
1560 -- Analyze_Renamed_Dereference --
1561 ---------------------------------
1563 procedure Analyze_Renamed_Dereference
1564 (N : Node_Id;
1565 New_S : Entity_Id;
1566 Is_Body : Boolean)
1568 Nam : constant Node_Id := Name (N);
1569 P : constant Node_Id := Prefix (Nam);
1570 Typ : Entity_Id;
1571 Ind : Interp_Index;
1572 It : Interp;
1574 begin
1575 if not Is_Overloaded (P) then
1576 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1577 or else not Type_Conformant (Etype (Nam), New_S)
1578 then
1579 Error_Msg_N ("designated type does not match specification", P);
1580 else
1581 Resolve (P);
1582 end if;
1584 return;
1586 else
1587 Typ := Any_Type;
1588 Get_First_Interp (Nam, Ind, It);
1590 while Present (It.Nam) loop
1592 if Ekind (It.Nam) = E_Subprogram_Type
1593 and then Type_Conformant (It.Nam, New_S)
1594 then
1595 if Typ /= Any_Id then
1596 Error_Msg_N ("ambiguous renaming", P);
1597 return;
1598 else
1599 Typ := It.Nam;
1600 end if;
1601 end if;
1603 Get_Next_Interp (Ind, It);
1604 end loop;
1606 if Typ = Any_Type then
1607 Error_Msg_N ("designated type does not match specification", P);
1608 else
1609 Resolve (N, Typ);
1611 if Is_Body then
1612 Check_Frozen_Renaming (N, New_S);
1613 end if;
1614 end if;
1615 end if;
1616 end Analyze_Renamed_Dereference;
1618 ---------------------------
1619 -- Analyze_Renamed_Entry --
1620 ---------------------------
1622 procedure Analyze_Renamed_Entry
1623 (N : Node_Id;
1624 New_S : Entity_Id;
1625 Is_Body : Boolean)
1627 Nam : constant Node_Id := Name (N);
1628 Sel : constant Node_Id := Selector_Name (Nam);
1629 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1630 Old_S : Entity_Id;
1632 begin
1633 if Entity (Sel) = Any_Id then
1635 -- Selector is undefined on prefix. Error emitted already
1637 Set_Has_Completion (New_S);
1638 return;
1639 end if;
1641 -- Otherwise find renamed entity and build body of New_S as a call to it
1643 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1645 if Old_S = Any_Id then
1646 Error_Msg_N (" no subprogram or entry matches specification", N);
1647 else
1648 if Is_Body then
1649 Check_Subtype_Conformant (New_S, Old_S, N);
1650 Generate_Reference (New_S, Defining_Entity (N), 'b');
1651 Style.Check_Identifier (Defining_Entity (N), New_S);
1653 else
1654 -- Only mode conformance required for a renaming_as_declaration
1656 Check_Mode_Conformant (New_S, Old_S, N);
1657 end if;
1659 Inherit_Renamed_Profile (New_S, Old_S);
1661 -- The prefix can be an arbitrary expression that yields a task or
1662 -- protected object, so it must be resolved.
1664 Resolve (Prefix (Nam), Scope (Old_S));
1665 end if;
1667 Set_Convention (New_S, Convention (Old_S));
1668 Set_Has_Completion (New_S, Inside_A_Generic);
1670 -- AI05-0225: If the renamed entity is a procedure or entry of a
1671 -- protected object, the target object must be a variable.
1673 if Ekind (Scope (Old_S)) in Protected_Kind
1674 and then Ekind (New_S) = E_Procedure
1675 and then not Is_Variable (Prefix (Nam))
1676 then
1677 if Is_Actual then
1678 Error_Msg_N
1679 ("target object of protected operation used as actual for "
1680 & "formal procedure must be a variable", Nam);
1681 else
1682 Error_Msg_N
1683 ("target object of protected operation renamed as procedure, "
1684 & "must be a variable", Nam);
1685 end if;
1686 end if;
1688 if Is_Body then
1689 Check_Frozen_Renaming (N, New_S);
1690 end if;
1691 end Analyze_Renamed_Entry;
1693 -----------------------------------
1694 -- Analyze_Renamed_Family_Member --
1695 -----------------------------------
1697 procedure Analyze_Renamed_Family_Member
1698 (N : Node_Id;
1699 New_S : Entity_Id;
1700 Is_Body : Boolean)
1702 Nam : constant Node_Id := Name (N);
1703 P : constant Node_Id := Prefix (Nam);
1704 Old_S : Entity_Id;
1706 begin
1707 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1708 or else (Nkind (P) = N_Selected_Component
1709 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1710 then
1711 if Is_Entity_Name (P) then
1712 Old_S := Entity (P);
1713 else
1714 Old_S := Entity (Selector_Name (P));
1715 end if;
1717 if not Entity_Matches_Spec (Old_S, New_S) then
1718 Error_Msg_N ("entry family does not match specification", N);
1720 elsif Is_Body then
1721 Check_Subtype_Conformant (New_S, Old_S, N);
1722 Generate_Reference (New_S, Defining_Entity (N), 'b');
1723 Style.Check_Identifier (Defining_Entity (N), New_S);
1724 end if;
1726 else
1727 Error_Msg_N ("no entry family matches specification", N);
1728 end if;
1730 Set_Has_Completion (New_S, Inside_A_Generic);
1732 if Is_Body then
1733 Check_Frozen_Renaming (N, New_S);
1734 end if;
1735 end Analyze_Renamed_Family_Member;
1737 -----------------------------------------
1738 -- Analyze_Renamed_Primitive_Operation --
1739 -----------------------------------------
1741 procedure Analyze_Renamed_Primitive_Operation
1742 (N : Node_Id;
1743 New_S : Entity_Id;
1744 Is_Body : Boolean)
1746 Old_S : Entity_Id;
1748 function Conforms
1749 (Subp : Entity_Id;
1750 Ctyp : Conformance_Type) return Boolean;
1751 -- Verify that the signatures of the renamed entity and the new entity
1752 -- match. The first formal of the renamed entity is skipped because it
1753 -- is the target object in any subsequent call.
1755 --------------
1756 -- Conforms --
1757 --------------
1759 function Conforms
1760 (Subp : Entity_Id;
1761 Ctyp : Conformance_Type) return Boolean
1763 Old_F : Entity_Id;
1764 New_F : Entity_Id;
1766 begin
1767 if Ekind (Subp) /= Ekind (New_S) then
1768 return False;
1769 end if;
1771 Old_F := Next_Formal (First_Formal (Subp));
1772 New_F := First_Formal (New_S);
1773 while Present (Old_F) and then Present (New_F) loop
1774 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1775 return False;
1776 end if;
1778 if Ctyp >= Mode_Conformant
1779 and then Ekind (Old_F) /= Ekind (New_F)
1780 then
1781 return False;
1782 end if;
1784 Next_Formal (New_F);
1785 Next_Formal (Old_F);
1786 end loop;
1788 return True;
1789 end Conforms;
1791 -- Start of processing for Analyze_Renamed_Primitive_Operation
1793 begin
1794 if not Is_Overloaded (Selector_Name (Name (N))) then
1795 Old_S := Entity (Selector_Name (Name (N)));
1797 if not Conforms (Old_S, Type_Conformant) then
1798 Old_S := Any_Id;
1799 end if;
1801 else
1802 -- Find the operation that matches the given signature
1804 declare
1805 It : Interp;
1806 Ind : Interp_Index;
1808 begin
1809 Old_S := Any_Id;
1810 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1812 while Present (It.Nam) loop
1813 if Conforms (It.Nam, Type_Conformant) then
1814 Old_S := It.Nam;
1815 end if;
1817 Get_Next_Interp (Ind, It);
1818 end loop;
1819 end;
1820 end if;
1822 if Old_S = Any_Id then
1823 Error_Msg_N (" no subprogram or entry matches specification", N);
1825 else
1826 if Is_Body then
1827 if not Conforms (Old_S, Subtype_Conformant) then
1828 Error_Msg_N ("subtype conformance error in renaming", N);
1829 end if;
1831 Generate_Reference (New_S, Defining_Entity (N), 'b');
1832 Style.Check_Identifier (Defining_Entity (N), New_S);
1834 else
1835 -- Only mode conformance required for a renaming_as_declaration
1837 if not Conforms (Old_S, Mode_Conformant) then
1838 Error_Msg_N ("mode conformance error in renaming", N);
1839 end if;
1841 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1842 -- view of a subprogram is intrinsic, because the compiler has
1843 -- to generate a wrapper for any call to it. If the name in a
1844 -- subprogram renaming is a prefixed view, the entity is thus
1845 -- intrinsic, and 'Access cannot be applied to it.
1847 Set_Convention (New_S, Convention_Intrinsic);
1848 end if;
1850 -- Inherit_Renamed_Profile (New_S, Old_S);
1852 -- The prefix can be an arbitrary expression that yields an
1853 -- object, so it must be resolved.
1855 Resolve (Prefix (Name (N)));
1856 end if;
1857 end Analyze_Renamed_Primitive_Operation;
1859 ---------------------------------
1860 -- Analyze_Subprogram_Renaming --
1861 ---------------------------------
1863 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1864 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1865 Is_Actual : constant Boolean := Present (Formal_Spec);
1866 Nam : constant Node_Id := Name (N);
1867 Save_AV : constant Ada_Version_Type := Ada_Version;
1868 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1869 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1870 Spec : constant Node_Id := Specification (N);
1872 Old_S : Entity_Id := Empty;
1873 Rename_Spec : Entity_Id;
1875 procedure Build_Class_Wide_Wrapper
1876 (Ren_Id : out Entity_Id;
1877 Wrap_Id : out Entity_Id);
1878 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1879 -- type with unknown discriminants and a generic primitive operation of
1880 -- the said type with a box require special processing when the actual
1881 -- is a class-wide type:
1883 -- generic
1884 -- type Formal_Typ (<>) is private;
1885 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1886 -- package Gen is ...
1888 -- package Inst is new Gen (Actual_Typ'Class);
1890 -- In this case the general renaming mechanism used in the prologue of
1891 -- an instance no longer applies:
1893 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1895 -- The above is replaced the following wrapper/renaming combination:
1897 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1898 -- begin
1899 -- Prim_Op (Param); -- primitive
1900 -- end Wrapper;
1902 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1904 -- This transformation applies only if there is no explicit visible
1905 -- class-wide operation at the point of the instantiation. Ren_Id is
1906 -- the entity of the renaming declaration. When the transformation
1907 -- applies, Wrap_Id is the entity of the generated class-wide wrapper
1908 -- (or Any_Id). Otherwise, Wrap_Id is the entity of the class-wide
1909 -- operation.
1911 procedure Check_Null_Exclusion
1912 (Ren : Entity_Id;
1913 Sub : Entity_Id);
1914 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1915 -- following AI rules:
1917 -- If Ren is a renaming of a formal subprogram and one of its
1918 -- parameters has a null exclusion, then the corresponding formal
1919 -- in Sub must also have one. Otherwise the subtype of the Sub's
1920 -- formal parameter must exclude null.
1922 -- If Ren is a renaming of a formal function and its return
1923 -- profile has a null exclusion, then Sub's return profile must
1924 -- have one. Otherwise the subtype of Sub's return profile must
1925 -- exclude null.
1927 procedure Freeze_Actual_Profile;
1928 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1929 -- types: a callable entity freezes its profile, unless it has an
1930 -- incomplete untagged formal (RM 13.14(10.2/3)).
1932 function Has_Class_Wide_Actual return Boolean;
1933 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1934 -- defaulted formal subprogram where the actual for the controlling
1935 -- formal type is class-wide.
1937 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1938 -- Find renamed entity when the declaration is a renaming_as_body and
1939 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1940 -- rule that a renaming_as_body is illegal if the declaration occurs
1941 -- before the subprogram it completes is frozen, and renaming indirectly
1942 -- renames the subprogram itself.(Defect Report 8652/0027).
1944 ------------------------------
1945 -- Build_Class_Wide_Wrapper --
1946 ------------------------------
1948 procedure Build_Class_Wide_Wrapper
1949 (Ren_Id : out Entity_Id;
1950 Wrap_Id : out Entity_Id)
1952 Loc : constant Source_Ptr := Sloc (N);
1954 function Build_Call
1955 (Subp_Id : Entity_Id;
1956 Params : List_Id) return Node_Id;
1957 -- Create a dispatching call to invoke routine Subp_Id with actuals
1958 -- built from the parameter specifications of list Params.
1960 function Build_Expr_Fun_Call
1961 (Subp_Id : Entity_Id;
1962 Params : List_Id) return Node_Id;
1963 -- Create a dispatching call to invoke function Subp_Id with actuals
1964 -- built from the parameter specifications of list Params. Return
1965 -- directly the call, so that it can be used inside an expression
1966 -- function. This is a specificity of the GNATprove mode.
1968 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1969 -- Create a subprogram specification based on the subprogram profile
1970 -- of Subp_Id.
1972 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1973 -- Find a primitive subprogram of type Typ which matches the profile
1974 -- of the renaming declaration.
1976 procedure Interpretation_Error (Subp_Id : Entity_Id);
1977 -- Emit a continuation error message suggesting subprogram Subp_Id as
1978 -- a possible interpretation.
1980 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
1981 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1982 -- operator.
1984 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
1985 -- Determine whether subprogram Subp_Id is a suitable candidate for
1986 -- the role of a wrapped subprogram.
1988 ----------------
1989 -- Build_Call --
1990 ----------------
1992 function Build_Call
1993 (Subp_Id : Entity_Id;
1994 Params : List_Id) return Node_Id
1996 Actuals : constant List_Id := New_List;
1997 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
1998 Formal : Node_Id;
2000 begin
2001 -- Build the actual parameters of the call
2003 Formal := First (Params);
2004 while Present (Formal) loop
2005 Append_To (Actuals,
2006 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2007 Next (Formal);
2008 end loop;
2010 -- Generate:
2011 -- return Subp_Id (Actuals);
2013 if Ekind_In (Subp_Id, E_Function, E_Operator) then
2014 return
2015 Make_Simple_Return_Statement (Loc,
2016 Expression =>
2017 Make_Function_Call (Loc,
2018 Name => Call_Ref,
2019 Parameter_Associations => Actuals));
2021 -- Generate:
2022 -- Subp_Id (Actuals);
2024 else
2025 return
2026 Make_Procedure_Call_Statement (Loc,
2027 Name => Call_Ref,
2028 Parameter_Associations => Actuals);
2029 end if;
2030 end Build_Call;
2032 -------------------------
2033 -- Build_Expr_Fun_Call --
2034 -------------------------
2036 function Build_Expr_Fun_Call
2037 (Subp_Id : Entity_Id;
2038 Params : List_Id) return Node_Id
2040 Actuals : constant List_Id := New_List;
2041 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2042 Formal : Node_Id;
2044 begin
2045 pragma Assert (Ekind_In (Subp_Id, E_Function, E_Operator));
2047 -- Build the actual parameters of the call
2049 Formal := First (Params);
2050 while Present (Formal) loop
2051 Append_To (Actuals,
2052 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2053 Next (Formal);
2054 end loop;
2056 -- Generate:
2057 -- Subp_Id (Actuals);
2059 return
2060 Make_Function_Call (Loc,
2061 Name => Call_Ref,
2062 Parameter_Associations => Actuals);
2063 end Build_Expr_Fun_Call;
2065 ----------------
2066 -- Build_Spec --
2067 ----------------
2069 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2070 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2071 Spec_Id : constant Entity_Id :=
2072 Make_Defining_Identifier (Loc,
2073 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2075 begin
2076 if Ekind (Formal_Spec) = E_Procedure then
2077 return
2078 Make_Procedure_Specification (Loc,
2079 Defining_Unit_Name => Spec_Id,
2080 Parameter_Specifications => Params);
2081 else
2082 return
2083 Make_Function_Specification (Loc,
2084 Defining_Unit_Name => Spec_Id,
2085 Parameter_Specifications => Params,
2086 Result_Definition =>
2087 New_Copy_Tree (Result_Definition (Spec)));
2088 end if;
2089 end Build_Spec;
2091 --------------------
2092 -- Find_Primitive --
2093 --------------------
2095 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2096 procedure Replace_Parameter_Types (Spec : Node_Id);
2097 -- Given a specification Spec, replace all class-wide parameter
2098 -- types with reference to type Typ.
2100 -----------------------------
2101 -- Replace_Parameter_Types --
2102 -----------------------------
2104 procedure Replace_Parameter_Types (Spec : Node_Id) is
2105 Formal : Node_Id;
2106 Formal_Id : Entity_Id;
2107 Formal_Typ : Node_Id;
2109 begin
2110 Formal := First (Parameter_Specifications (Spec));
2111 while Present (Formal) loop
2112 Formal_Id := Defining_Identifier (Formal);
2113 Formal_Typ := Parameter_Type (Formal);
2115 -- Create a new entity for each class-wide formal to prevent
2116 -- aliasing with the original renaming. Replace the type of
2117 -- such a parameter with the candidate type.
2119 if Nkind (Formal_Typ) = N_Identifier
2120 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2121 then
2122 Set_Defining_Identifier (Formal,
2123 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2125 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2126 end if;
2128 Next (Formal);
2129 end loop;
2130 end Replace_Parameter_Types;
2132 -- Local variables
2134 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2135 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2136 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2137 Subp_Id : Entity_Id;
2139 -- Start of processing for Find_Primitive
2141 begin
2142 -- Each attempt to find a suitable primitive of a particular type
2143 -- operates on its own copy of the original renaming. As a result
2144 -- the original renaming is kept decoration and side-effect free.
2146 -- Inherit the overloaded status of the renamed subprogram name
2148 if Is_Overloaded (Nam) then
2149 Set_Is_Overloaded (Alt_Nam);
2150 Save_Interps (Nam, Alt_Nam);
2151 end if;
2153 -- The copied renaming is hidden from visibility to prevent the
2154 -- pollution of the enclosing context.
2156 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2158 -- The types of all class-wide parameters must be changed to the
2159 -- candidate type.
2161 Replace_Parameter_Types (Alt_Spec);
2163 -- Try to find a suitable primitive which matches the altered
2164 -- profile of the renaming specification.
2166 Subp_Id :=
2167 Find_Renamed_Entity
2168 (N => Alt_Ren,
2169 Nam => Name (Alt_Ren),
2170 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2171 Is_Actual => Is_Actual);
2173 -- Do not return Any_Id if the resolion of the altered profile
2174 -- failed as this complicates further checks on the caller side,
2175 -- return Empty instead.
2177 if Subp_Id = Any_Id then
2178 return Empty;
2179 else
2180 return Subp_Id;
2181 end if;
2182 end Find_Primitive;
2184 --------------------------
2185 -- Interpretation_Error --
2186 --------------------------
2188 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2189 begin
2190 Error_Msg_Sloc := Sloc (Subp_Id);
2192 if Is_Internal (Subp_Id) then
2193 Error_Msg_NE
2194 ("\\possible interpretation: predefined & #",
2195 Spec, Formal_Spec);
2196 else
2197 Error_Msg_NE
2198 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2199 end if;
2200 end Interpretation_Error;
2202 ---------------------------
2203 -- Is_Intrinsic_Equality --
2204 ---------------------------
2206 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2207 begin
2208 return
2209 Ekind (Subp_Id) = E_Operator
2210 and then Chars (Subp_Id) = Name_Op_Eq
2211 and then Is_Intrinsic_Subprogram (Subp_Id);
2212 end Is_Intrinsic_Equality;
2214 ---------------------------
2215 -- Is_Suitable_Candidate --
2216 ---------------------------
2218 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2219 begin
2220 if No (Subp_Id) then
2221 return False;
2223 -- An intrinsic subprogram is never a good candidate. This is an
2224 -- indication of a missing primitive, either defined directly or
2225 -- inherited from a parent tagged type.
2227 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2228 return False;
2230 else
2231 return True;
2232 end if;
2233 end Is_Suitable_Candidate;
2235 -- Local variables
2237 Actual_Typ : Entity_Id := Empty;
2238 -- The actual class-wide type for Formal_Typ
2240 CW_Prim_OK : Boolean;
2241 CW_Prim_Op : Entity_Id;
2242 -- The class-wide subprogram (if available) which corresponds to the
2243 -- renamed generic formal subprogram.
2245 Formal_Typ : Entity_Id := Empty;
2246 -- The generic formal type with unknown discriminants
2248 Root_Prim_OK : Boolean;
2249 Root_Prim_Op : Entity_Id;
2250 -- The root type primitive (if available) which corresponds to the
2251 -- renamed generic formal subprogram.
2253 Root_Typ : Entity_Id := Empty;
2254 -- The root type of Actual_Typ
2256 Body_Decl : Node_Id;
2257 Formal : Node_Id;
2258 Prim_Op : Entity_Id;
2259 Spec_Decl : Node_Id;
2260 New_Spec : Node_Id;
2262 -- Start of processing for Build_Class_Wide_Wrapper
2264 begin
2265 -- Analyze the specification of the renaming in case the generation
2266 -- of the class-wide wrapper fails.
2268 Ren_Id := Analyze_Subprogram_Specification (Spec);
2269 Wrap_Id := Any_Id;
2271 -- Do not attempt to build a wrapper if the renaming is in error
2273 if Error_Posted (Nam) then
2274 return;
2275 end if;
2277 -- Analyze the renamed name, but do not resolve it. The resolution is
2278 -- completed once a suitable subprogram is found.
2280 Analyze (Nam);
2282 -- When the renamed name denotes the intrinsic operator equals, the
2283 -- name must be treated as overloaded. This allows for a potential
2284 -- match against the root type's predefined equality function.
2286 if Is_Intrinsic_Equality (Entity (Nam)) then
2287 Set_Is_Overloaded (Nam);
2288 Collect_Interps (Nam);
2289 end if;
2291 -- Step 1: Find the generic formal type with unknown discriminants
2292 -- and its corresponding class-wide actual type from the renamed
2293 -- generic formal subprogram.
2295 Formal := First_Formal (Formal_Spec);
2296 while Present (Formal) loop
2297 if Has_Unknown_Discriminants (Etype (Formal))
2298 and then not Is_Class_Wide_Type (Etype (Formal))
2299 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2300 then
2301 Formal_Typ := Etype (Formal);
2302 Actual_Typ := Get_Instance_Of (Formal_Typ);
2303 Root_Typ := Etype (Actual_Typ);
2304 exit;
2305 end if;
2307 Next_Formal (Formal);
2308 end loop;
2310 -- The specification of the generic formal subprogram should always
2311 -- contain a formal type with unknown discriminants whose actual is
2312 -- a class-wide type, otherwise this indicates a failure in routine
2313 -- Has_Class_Wide_Actual.
2315 pragma Assert (Present (Formal_Typ));
2317 -- Step 2: Find the proper class-wide subprogram or primitive which
2318 -- corresponds to the renamed generic formal subprogram.
2320 CW_Prim_Op := Find_Primitive (Actual_Typ);
2321 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2322 Root_Prim_Op := Find_Primitive (Root_Typ);
2323 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2325 -- The class-wide actual type has two subprograms which correspond to
2326 -- the renamed generic formal subprogram:
2328 -- with procedure Prim_Op (Param : Formal_Typ);
2330 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2331 -- procedure Prim_Op (Param : Actual_Typ'Class);
2333 -- Even though the declaration of the two subprograms is legal, a
2334 -- call to either one is ambiguous and therefore illegal.
2336 if CW_Prim_OK and Root_Prim_OK then
2338 -- A user-defined primitive has precedence over a predefined one
2340 if Is_Internal (CW_Prim_Op)
2341 and then not Is_Internal (Root_Prim_Op)
2342 then
2343 Prim_Op := Root_Prim_Op;
2345 elsif Is_Internal (Root_Prim_Op)
2346 and then not Is_Internal (CW_Prim_Op)
2347 then
2348 Prim_Op := CW_Prim_Op;
2350 elsif CW_Prim_Op = Root_Prim_Op then
2351 Prim_Op := Root_Prim_Op;
2353 -- Otherwise both candidate subprograms are user-defined and
2354 -- ambiguous.
2356 else
2357 Error_Msg_NE
2358 ("ambiguous actual for generic subprogram &",
2359 Spec, Formal_Spec);
2360 Interpretation_Error (Root_Prim_Op);
2361 Interpretation_Error (CW_Prim_Op);
2362 return;
2363 end if;
2365 elsif CW_Prim_OK and not Root_Prim_OK then
2366 Prim_Op := CW_Prim_Op;
2368 elsif not CW_Prim_OK and Root_Prim_OK then
2369 Prim_Op := Root_Prim_Op;
2371 -- An intrinsic equality may act as a suitable candidate in the case
2372 -- of a null type extension where the parent's equality is hidden. A
2373 -- call to an intrinsic equality is expanded as dispatching.
2375 elsif Present (Root_Prim_Op)
2376 and then Is_Intrinsic_Equality (Root_Prim_Op)
2377 then
2378 Prim_Op := Root_Prim_Op;
2380 -- Otherwise there are no candidate subprograms. Let the caller
2381 -- diagnose the error.
2383 else
2384 return;
2385 end if;
2387 -- At this point resolution has taken place and the name is no longer
2388 -- overloaded. Mark the primitive as referenced.
2390 Set_Is_Overloaded (Name (N), False);
2391 Set_Referenced (Prim_Op);
2393 -- Do not generate a wrapper when the only candidate is a class-wide
2394 -- subprogram. Instead modify the renaming to directly map the actual
2395 -- to the generic formal.
2397 if CW_Prim_OK and then Prim_Op = CW_Prim_Op then
2398 Wrap_Id := Prim_Op;
2399 Rewrite (Nam, New_Occurrence_Of (Prim_Op, Loc));
2400 return;
2401 end if;
2403 -- Step 3: Create the declaration and the body of the wrapper, insert
2404 -- all the pieces into the tree.
2406 -- In GNATprove mode, create a function wrapper in the form of an
2407 -- expression function, so that an implicit postcondition relating
2408 -- the result of calling the wrapper function and the result of the
2409 -- dispatching call to the wrapped function is known during proof.
2411 if GNATprove_Mode
2412 and then Ekind_In (Ren_Id, E_Function, E_Operator)
2413 then
2414 New_Spec := Build_Spec (Ren_Id);
2415 Body_Decl :=
2416 Make_Expression_Function (Loc,
2417 Specification => New_Spec,
2418 Expression =>
2419 Build_Expr_Fun_Call
2420 (Subp_Id => Prim_Op,
2421 Params => Parameter_Specifications (New_Spec)));
2423 Wrap_Id := Defining_Entity (Body_Decl);
2425 -- Otherwise, create separate spec and body for the subprogram
2427 else
2428 Spec_Decl :=
2429 Make_Subprogram_Declaration (Loc,
2430 Specification => Build_Spec (Ren_Id));
2431 Insert_Before_And_Analyze (N, Spec_Decl);
2433 Wrap_Id := Defining_Entity (Spec_Decl);
2435 Body_Decl :=
2436 Make_Subprogram_Body (Loc,
2437 Specification => Build_Spec (Ren_Id),
2438 Declarations => New_List,
2439 Handled_Statement_Sequence =>
2440 Make_Handled_Sequence_Of_Statements (Loc,
2441 Statements => New_List (
2442 Build_Call
2443 (Subp_Id => Prim_Op,
2444 Params =>
2445 Parameter_Specifications
2446 (Specification (Spec_Decl))))));
2448 Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
2449 end if;
2451 -- If the operator carries an Eliminated pragma, indicate that the
2452 -- wrapper is also to be eliminated, to prevent spurious error when
2453 -- using gnatelim on programs that include box-initialization of
2454 -- equality operators.
2456 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2458 -- In GNATprove mode, insert the body in the tree for analysis
2460 if GNATprove_Mode then
2461 Insert_Before_And_Analyze (N, Body_Decl);
2462 end if;
2464 -- The generated body does not freeze and must be analyzed when the
2465 -- class-wide wrapper is frozen. The body is only needed if expansion
2466 -- is enabled.
2468 if Expander_Active then
2469 Append_Freeze_Action (Wrap_Id, Body_Decl);
2470 end if;
2472 -- Step 4: The subprogram renaming aliases the wrapper
2474 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2475 end Build_Class_Wide_Wrapper;
2477 --------------------------
2478 -- Check_Null_Exclusion --
2479 --------------------------
2481 procedure Check_Null_Exclusion
2482 (Ren : Entity_Id;
2483 Sub : Entity_Id)
2485 Ren_Formal : Entity_Id;
2486 Sub_Formal : Entity_Id;
2488 begin
2489 -- Parameter check
2491 Ren_Formal := First_Formal (Ren);
2492 Sub_Formal := First_Formal (Sub);
2493 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2494 if Has_Null_Exclusion (Parent (Ren_Formal))
2495 and then
2496 not (Has_Null_Exclusion (Parent (Sub_Formal))
2497 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2498 then
2499 Error_Msg_NE
2500 ("`NOT NULL` required for parameter &",
2501 Parent (Sub_Formal), Sub_Formal);
2502 end if;
2504 Next_Formal (Ren_Formal);
2505 Next_Formal (Sub_Formal);
2506 end loop;
2508 -- Return profile check
2510 if Nkind (Parent (Ren)) = N_Function_Specification
2511 and then Nkind (Parent (Sub)) = N_Function_Specification
2512 and then Has_Null_Exclusion (Parent (Ren))
2513 and then not (Has_Null_Exclusion (Parent (Sub))
2514 or else Can_Never_Be_Null (Etype (Sub)))
2515 then
2516 Error_Msg_N
2517 ("return must specify `NOT NULL`",
2518 Result_Definition (Parent (Sub)));
2519 end if;
2520 end Check_Null_Exclusion;
2522 ---------------------------
2523 -- Freeze_Actual_Profile --
2524 ---------------------------
2526 procedure Freeze_Actual_Profile is
2527 F : Entity_Id;
2528 Has_Untagged_Inc : Boolean;
2529 Instantiation_Node : constant Node_Id := Parent (N);
2531 begin
2532 if Ada_Version >= Ada_2012 then
2533 F := First_Formal (Formal_Spec);
2534 Has_Untagged_Inc := False;
2535 while Present (F) loop
2536 if Ekind (Etype (F)) = E_Incomplete_Type
2537 and then not Is_Tagged_Type (Etype (F))
2538 then
2539 Has_Untagged_Inc := True;
2540 exit;
2541 end if;
2543 F := Next_Formal (F);
2544 end loop;
2546 if Ekind (Formal_Spec) = E_Function
2547 and then not Is_Tagged_Type (Etype (Formal_Spec))
2548 then
2549 Has_Untagged_Inc := True;
2550 end if;
2552 if not Has_Untagged_Inc then
2553 F := First_Formal (Old_S);
2554 while Present (F) loop
2555 Freeze_Before (Instantiation_Node, Etype (F));
2557 if Is_Incomplete_Or_Private_Type (Etype (F))
2558 and then No (Underlying_Type (Etype (F)))
2559 then
2560 -- Exclude generic types, or types derived from them.
2561 -- They will be frozen in the enclosing instance.
2563 if Is_Generic_Type (Etype (F))
2564 or else Is_Generic_Type (Root_Type (Etype (F)))
2565 then
2566 null;
2568 -- A limited view of a type declared elsewhere needs no
2569 -- freezing actions.
2571 elsif From_Limited_With (Etype (F)) then
2572 null;
2574 else
2575 Error_Msg_NE
2576 ("type& must be frozen before this point",
2577 Instantiation_Node, Etype (F));
2578 end if;
2579 end if;
2581 F := Next_Formal (F);
2582 end loop;
2583 end if;
2584 end if;
2585 end Freeze_Actual_Profile;
2587 ---------------------------
2588 -- Has_Class_Wide_Actual --
2589 ---------------------------
2591 function Has_Class_Wide_Actual return Boolean is
2592 Formal : Entity_Id;
2593 Formal_Typ : Entity_Id;
2595 begin
2596 if Is_Actual then
2597 Formal := First_Formal (Formal_Spec);
2598 while Present (Formal) loop
2599 Formal_Typ := Etype (Formal);
2601 if Has_Unknown_Discriminants (Formal_Typ)
2602 and then not Is_Class_Wide_Type (Formal_Typ)
2603 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2604 then
2605 return True;
2606 end if;
2608 Next_Formal (Formal);
2609 end loop;
2610 end if;
2612 return False;
2613 end Has_Class_Wide_Actual;
2615 -------------------------
2616 -- Original_Subprogram --
2617 -------------------------
2619 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2620 Orig_Decl : Node_Id;
2621 Orig_Subp : Entity_Id;
2623 begin
2624 -- First case: renamed entity is itself a renaming
2626 if Present (Alias (Subp)) then
2627 return Alias (Subp);
2629 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2630 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2631 then
2632 -- Check if renamed entity is a renaming_as_body
2634 Orig_Decl :=
2635 Unit_Declaration_Node
2636 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2638 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2639 Orig_Subp := Entity (Name (Orig_Decl));
2641 if Orig_Subp = Rename_Spec then
2643 -- Circularity detected
2645 return Orig_Subp;
2647 else
2648 return (Original_Subprogram (Orig_Subp));
2649 end if;
2650 else
2651 return Subp;
2652 end if;
2653 else
2654 return Subp;
2655 end if;
2656 end Original_Subprogram;
2658 -- Local variables
2660 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2661 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2662 -- defaulted formal subprogram when the actual for a related formal
2663 -- type is class-wide.
2665 Inst_Node : Node_Id := Empty;
2666 New_S : Entity_Id;
2668 -- Start of processing for Analyze_Subprogram_Renaming
2670 begin
2671 -- We must test for the attribute renaming case before the Analyze
2672 -- call because otherwise Sem_Attr will complain that the attribute
2673 -- is missing an argument when it is analyzed.
2675 if Nkind (Nam) = N_Attribute_Reference then
2677 -- In the case of an abstract formal subprogram association, rewrite
2678 -- an actual given by a stream attribute as the name of the
2679 -- corresponding stream primitive of the type.
2681 -- In a generic context the stream operations are not generated, and
2682 -- this must be treated as a normal attribute reference, to be
2683 -- expanded in subsequent instantiations.
2685 if Is_Actual
2686 and then Is_Abstract_Subprogram (Formal_Spec)
2687 and then Expander_Active
2688 then
2689 declare
2690 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2691 Stream_Prim : Entity_Id;
2693 begin
2694 -- The class-wide forms of the stream attributes are not
2695 -- primitive dispatching operations (even though they
2696 -- internally dispatch to a stream attribute).
2698 if Is_Class_Wide_Type (Prefix_Type) then
2699 Error_Msg_N
2700 ("attribute must be a primitive dispatching operation",
2701 Nam);
2702 return;
2703 end if;
2705 -- Retrieve the primitive subprogram associated with the
2706 -- attribute. This can only be a stream attribute, since those
2707 -- are the only ones that are dispatching (and the actual for
2708 -- an abstract formal subprogram must be dispatching
2709 -- operation).
2711 case Attribute_Name (Nam) is
2712 when Name_Input =>
2713 Stream_Prim :=
2714 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Input);
2716 when Name_Output =>
2717 Stream_Prim :=
2718 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Output);
2720 when Name_Read =>
2721 Stream_Prim :=
2722 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Read);
2724 when Name_Write =>
2725 Stream_Prim :=
2726 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Write);
2728 when others =>
2729 Error_Msg_N
2730 ("attribute must be a primitive dispatching operation",
2731 Nam);
2732 return;
2733 end case;
2735 -- If no operation was found, and the type is limited, the user
2736 -- should have defined one.
2738 if No (Stream_Prim) then
2739 if Is_Limited_Type (Prefix_Type) then
2740 Error_Msg_NE
2741 ("stream operation not defined for type&",
2742 N, Prefix_Type);
2743 return;
2745 -- Otherwise, compiler should have generated default
2747 else
2748 raise Program_Error;
2749 end if;
2750 end if;
2752 -- Rewrite the attribute into the name of its corresponding
2753 -- primitive dispatching subprogram. We can then proceed with
2754 -- the usual processing for subprogram renamings.
2756 declare
2757 Prim_Name : constant Node_Id :=
2758 Make_Identifier (Sloc (Nam),
2759 Chars => Chars (Stream_Prim));
2760 begin
2761 Set_Entity (Prim_Name, Stream_Prim);
2762 Rewrite (Nam, Prim_Name);
2763 Analyze (Nam);
2764 end;
2765 end;
2767 -- Normal processing for a renaming of an attribute
2769 else
2770 Attribute_Renaming (N);
2771 return;
2772 end if;
2773 end if;
2775 -- Check whether this declaration corresponds to the instantiation of a
2776 -- formal subprogram.
2778 -- If this is an instantiation, the corresponding actual is frozen and
2779 -- error messages can be made more precise. If this is a default
2780 -- subprogram, the entity is already established in the generic, and is
2781 -- not retrieved by visibility. If it is a default with a box, the
2782 -- candidate interpretations, if any, have been collected when building
2783 -- the renaming declaration. If overloaded, the proper interpretation is
2784 -- determined in Find_Renamed_Entity. If the entity is an operator,
2785 -- Find_Renamed_Entity applies additional visibility checks.
2787 if Is_Actual then
2788 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2790 -- Check whether the renaming is for a defaulted actual subprogram
2791 -- with a class-wide actual.
2793 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2794 -- is an external axiomatization on the package.
2796 if CW_Actual
2797 and then Box_Present (Inst_Node)
2798 and then not
2799 (GNATprove_Mode
2800 and then
2801 Present (Containing_Package_With_Ext_Axioms (Formal_Spec)))
2802 then
2803 Build_Class_Wide_Wrapper (New_S, Old_S);
2805 elsif Is_Entity_Name (Nam)
2806 and then Present (Entity (Nam))
2807 and then not Comes_From_Source (Nam)
2808 and then not Is_Overloaded (Nam)
2809 then
2810 Old_S := Entity (Nam);
2812 -- The subprogram renaming declaration may become Ghost if it
2813 -- renames a Ghost entity.
2815 Mark_Ghost_Renaming (N, Old_S);
2817 New_S := Analyze_Subprogram_Specification (Spec);
2819 -- Operator case
2821 if Ekind (Old_S) = E_Operator then
2823 -- Box present
2825 if Box_Present (Inst_Node) then
2826 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2828 -- If there is an immediately visible homonym of the operator
2829 -- and the declaration has a default, this is worth a warning
2830 -- because the user probably did not intend to get the pre-
2831 -- defined operator, visible in the generic declaration. To
2832 -- find if there is an intended candidate, analyze the renaming
2833 -- again in the current context.
2835 elsif Scope (Old_S) = Standard_Standard
2836 and then Present (Default_Name (Inst_Node))
2837 then
2838 declare
2839 Decl : constant Node_Id := New_Copy_Tree (N);
2840 Hidden : Entity_Id;
2842 begin
2843 Set_Entity (Name (Decl), Empty);
2844 Analyze (Name (Decl));
2845 Hidden :=
2846 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2848 if Present (Hidden)
2849 and then In_Open_Scopes (Scope (Hidden))
2850 and then Is_Immediately_Visible (Hidden)
2851 and then Comes_From_Source (Hidden)
2852 and then Hidden /= Old_S
2853 then
2854 Error_Msg_Sloc := Sloc (Hidden);
2855 Error_Msg_N
2856 ("default subprogram is resolved in the generic "
2857 & "declaration (RM 12.6(17))??", N);
2858 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2859 end if;
2860 end;
2861 end if;
2862 end if;
2864 else
2865 Analyze (Nam);
2867 -- The subprogram renaming declaration may become Ghost if it
2868 -- renames a Ghost entity.
2870 if Is_Entity_Name (Nam) then
2871 Mark_Ghost_Renaming (N, Entity (Nam));
2872 end if;
2874 New_S := Analyze_Subprogram_Specification (Spec);
2875 end if;
2877 else
2878 -- Renamed entity must be analyzed first, to avoid being hidden by
2879 -- new name (which might be the same in a generic instance).
2881 Analyze (Nam);
2883 -- The subprogram renaming declaration may become Ghost if it renames
2884 -- a Ghost entity.
2886 if Is_Entity_Name (Nam) then
2887 Mark_Ghost_Renaming (N, Entity (Nam));
2888 end if;
2890 -- The renaming defines a new overloaded entity, which is analyzed
2891 -- like a subprogram declaration.
2893 New_S := Analyze_Subprogram_Specification (Spec);
2894 end if;
2896 if Current_Scope /= Standard_Standard then
2897 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2898 end if;
2900 -- Set SPARK mode from current context
2902 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2903 Set_SPARK_Pragma_Inherited (New_S);
2905 Rename_Spec := Find_Corresponding_Spec (N);
2907 -- Case of Renaming_As_Body
2909 if Present (Rename_Spec) then
2910 Check_Previous_Null_Procedure (N, Rename_Spec);
2912 -- Renaming declaration is the completion of the declaration of
2913 -- Rename_Spec. We build an actual body for it at the freezing point.
2915 Set_Corresponding_Spec (N, Rename_Spec);
2917 -- Deal with special case of stream functions of abstract types
2918 -- and interfaces.
2920 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2921 N_Abstract_Subprogram_Declaration
2922 then
2923 -- Input stream functions are abstract if the object type is
2924 -- abstract. Similarly, all default stream functions for an
2925 -- interface type are abstract. However, these subprograms may
2926 -- receive explicit declarations in representation clauses, making
2927 -- the attribute subprograms usable as defaults in subsequent
2928 -- type extensions.
2929 -- In this case we rewrite the declaration to make the subprogram
2930 -- non-abstract. We remove the previous declaration, and insert
2931 -- the new one at the point of the renaming, to prevent premature
2932 -- access to unfrozen types. The new declaration reuses the
2933 -- specification of the previous one, and must not be analyzed.
2935 pragma Assert
2936 (Is_Primitive (Entity (Nam))
2937 and then
2938 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2939 declare
2940 Old_Decl : constant Node_Id :=
2941 Unit_Declaration_Node (Rename_Spec);
2942 New_Decl : constant Node_Id :=
2943 Make_Subprogram_Declaration (Sloc (N),
2944 Specification =>
2945 Relocate_Node (Specification (Old_Decl)));
2946 begin
2947 Remove (Old_Decl);
2948 Insert_After (N, New_Decl);
2949 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2950 Set_Analyzed (New_Decl);
2951 end;
2952 end if;
2954 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
2956 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2957 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
2958 end if;
2960 Set_Convention (New_S, Convention (Rename_Spec));
2961 Check_Fully_Conformant (New_S, Rename_Spec);
2962 Set_Public_Status (New_S);
2964 if No_Return (Rename_Spec)
2965 and then not No_Return (Entity (Nam))
2966 then
2967 Error_Msg_N ("renaming completes a No_Return procedure", N);
2968 Error_Msg_N
2969 ("\renamed procedure must be nonreturning (RM 6.5.1 (7/2))", N);
2970 end if;
2972 -- The specification does not introduce new formals, but only
2973 -- repeats the formals of the original subprogram declaration.
2974 -- For cross-reference purposes, and for refactoring tools, we
2975 -- treat the formals of the renaming declaration as body formals.
2977 Reference_Body_Formals (Rename_Spec, New_S);
2979 -- Indicate that the entity in the declaration functions like the
2980 -- corresponding body, and is not a new entity. The body will be
2981 -- constructed later at the freeze point, so indicate that the
2982 -- completion has not been seen yet.
2984 Set_Ekind (New_S, E_Subprogram_Body);
2985 New_S := Rename_Spec;
2986 Set_Has_Completion (Rename_Spec, False);
2988 -- Ada 2005: check overriding indicator
2990 if Present (Overridden_Operation (Rename_Spec)) then
2991 if Must_Not_Override (Specification (N)) then
2992 Error_Msg_NE
2993 ("subprogram& overrides inherited operation",
2994 N, Rename_Spec);
2996 elsif Style_Check
2997 and then not Must_Override (Specification (N))
2998 then
2999 Style.Missing_Overriding (N, Rename_Spec);
3000 end if;
3002 elsif Must_Override (Specification (N)) then
3003 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
3004 end if;
3006 -- Normal subprogram renaming (not renaming as body)
3008 else
3009 Generate_Definition (New_S);
3010 New_Overloaded_Entity (New_S);
3012 if Is_Entity_Name (Nam)
3013 and then Is_Intrinsic_Subprogram (Entity (Nam))
3014 then
3015 null;
3016 else
3017 Check_Delayed_Subprogram (New_S);
3018 end if;
3019 end if;
3021 -- There is no need for elaboration checks on the new entity, which may
3022 -- be called before the next freezing point where the body will appear.
3023 -- Elaboration checks refer to the real entity, not the one created by
3024 -- the renaming declaration.
3026 Set_Kill_Elaboration_Checks (New_S, True);
3028 -- If we had a previous error, indicate a completely is present to stop
3029 -- junk cascaded messages, but don't take any further action.
3031 if Etype (Nam) = Any_Type then
3032 Set_Has_Completion (New_S);
3033 return;
3035 -- Case where name has the form of a selected component
3037 elsif Nkind (Nam) = N_Selected_Component then
3039 -- A name which has the form A.B can designate an entry of task A, a
3040 -- protected operation of protected object A, or finally a primitive
3041 -- operation of object A. In the later case, A is an object of some
3042 -- tagged type, or an access type that denotes one such. To further
3043 -- distinguish these cases, note that the scope of a task entry or
3044 -- protected operation is type of the prefix.
3046 -- The prefix could be an overloaded function call that returns both
3047 -- kinds of operations. This overloading pathology is left to the
3048 -- dedicated reader ???
3050 declare
3051 T : constant Entity_Id := Etype (Prefix (Nam));
3053 begin
3054 if Present (T)
3055 and then
3056 (Is_Tagged_Type (T)
3057 or else
3058 (Is_Access_Type (T)
3059 and then Is_Tagged_Type (Designated_Type (T))))
3060 and then Scope (Entity (Selector_Name (Nam))) /= T
3061 then
3062 Analyze_Renamed_Primitive_Operation
3063 (N, New_S, Present (Rename_Spec));
3064 return;
3066 else
3067 -- Renamed entity is an entry or protected operation. For those
3068 -- cases an explicit body is built (at the point of freezing of
3069 -- this entity) that contains a call to the renamed entity.
3071 -- This is not allowed for renaming as body if the renamed
3072 -- spec is already frozen (see RM 8.5.4(5) for details).
3074 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
3075 Error_Msg_N
3076 ("renaming-as-body cannot rename entry as subprogram", N);
3077 Error_Msg_NE
3078 ("\since & is already frozen (RM 8.5.4(5))",
3079 N, Rename_Spec);
3080 else
3081 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
3082 end if;
3084 return;
3085 end if;
3086 end;
3088 -- Case where name is an explicit dereference X.all
3090 elsif Nkind (Nam) = N_Explicit_Dereference then
3092 -- Renamed entity is designated by access_to_subprogram expression.
3093 -- Must build body to encapsulate call, as in the entry case.
3095 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
3096 return;
3098 -- Indexed component
3100 elsif Nkind (Nam) = N_Indexed_Component then
3101 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
3102 return;
3104 -- Character literal
3106 elsif Nkind (Nam) = N_Character_Literal then
3107 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
3108 return;
3110 -- Only remaining case is where we have a non-entity name, or a renaming
3111 -- of some other non-overloadable entity.
3113 elsif not Is_Entity_Name (Nam)
3114 or else not Is_Overloadable (Entity (Nam))
3115 then
3116 -- Do not mention the renaming if it comes from an instance
3118 if not Is_Actual then
3119 Error_Msg_N ("expect valid subprogram name in renaming", N);
3120 else
3121 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3122 end if;
3124 return;
3125 end if;
3127 -- Find the renamed entity that matches the given specification. Disable
3128 -- Ada_83 because there is no requirement of full conformance between
3129 -- renamed entity and new entity, even though the same circuit is used.
3131 -- This is a bit of an odd case, which introduces a really irregular use
3132 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3133 -- this. ???
3135 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3136 Ada_Version_Pragma := Empty;
3137 Ada_Version_Explicit := Ada_Version;
3139 if No (Old_S) then
3140 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3142 -- The visible operation may be an inherited abstract operation that
3143 -- was overridden in the private part, in which case a call will
3144 -- dispatch to the overriding operation. Use the overriding one in
3145 -- the renaming declaration, to prevent spurious errors below.
3147 if Is_Overloadable (Old_S)
3148 and then Is_Abstract_Subprogram (Old_S)
3149 and then No (DTC_Entity (Old_S))
3150 and then Present (Alias (Old_S))
3151 and then not Is_Abstract_Subprogram (Alias (Old_S))
3152 and then Present (Overridden_Operation (Alias (Old_S)))
3153 then
3154 Old_S := Alias (Old_S);
3155 end if;
3157 -- When the renamed subprogram is overloaded and used as an actual
3158 -- of a generic, its entity is set to the first available homonym.
3159 -- We must first disambiguate the name, then set the proper entity.
3161 if Is_Actual and then Is_Overloaded (Nam) then
3162 Set_Entity (Nam, Old_S);
3163 end if;
3164 end if;
3166 -- Most common case: subprogram renames subprogram. No body is generated
3167 -- in this case, so we must indicate the declaration is complete as is.
3168 -- and inherit various attributes of the renamed subprogram.
3170 if No (Rename_Spec) then
3171 Set_Has_Completion (New_S);
3172 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3173 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3174 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3176 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3177 -- between a subprogram and its correct renaming.
3179 -- Note: the Any_Id check is a guard that prevents compiler crashes
3180 -- when performing a null exclusion check between a renaming and a
3181 -- renamed subprogram that has been found to be illegal.
3183 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3184 Check_Null_Exclusion
3185 (Ren => New_S,
3186 Sub => Entity (Nam));
3187 end if;
3189 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3190 -- overriding. The flag Requires_Overriding is set very selectively
3191 -- and misses some other illegal cases. The additional conditions
3192 -- checked below are sufficient but not necessary ???
3194 -- The rule does not apply to the renaming generated for an actual
3195 -- subprogram in an instance.
3197 if Is_Actual then
3198 null;
3200 -- Guard against previous errors, and omit renamings of predefined
3201 -- operators.
3203 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3204 null;
3206 elsif Requires_Overriding (Old_S)
3207 or else
3208 (Is_Abstract_Subprogram (Old_S)
3209 and then Present (Find_Dispatching_Type (Old_S))
3210 and then
3211 not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3212 then
3213 Error_Msg_N
3214 ("renamed entity cannot be subprogram that requires overriding "
3215 & "(RM 8.5.4 (5.1))", N);
3216 end if;
3218 declare
3219 Prev : constant Entity_Id := Overridden_Operation (New_S);
3220 begin
3221 if Present (Prev)
3222 and then
3223 (Has_Non_Trivial_Precondition (Prev)
3224 or else Has_Non_Trivial_Precondition (Old_S))
3225 then
3226 Error_Msg_NE
3227 ("conflicting inherited classwide preconditions in renaming "
3228 & "of& (RM 6.1.1 (17)", N, Old_S);
3229 end if;
3230 end;
3231 end if;
3233 if Old_S /= Any_Id then
3234 if Is_Actual and then From_Default (N) then
3236 -- This is an implicit reference to the default actual
3238 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3240 else
3241 Generate_Reference (Old_S, Nam);
3242 end if;
3244 Check_Internal_Protected_Use (N, Old_S);
3246 -- For a renaming-as-body, require subtype conformance, but if the
3247 -- declaration being completed has not been frozen, then inherit the
3248 -- convention of the renamed subprogram prior to checking conformance
3249 -- (unless the renaming has an explicit convention established; the
3250 -- rule stated in the RM doesn't seem to address this ???).
3252 if Present (Rename_Spec) then
3253 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3254 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3256 if not Is_Frozen (Rename_Spec) then
3257 if not Has_Convention_Pragma (Rename_Spec) then
3258 Set_Convention (New_S, Convention (Old_S));
3259 end if;
3261 if Ekind (Old_S) /= E_Operator then
3262 Check_Mode_Conformant (New_S, Old_S, Spec);
3263 end if;
3265 if Original_Subprogram (Old_S) = Rename_Spec then
3266 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3267 end if;
3268 else
3269 Check_Subtype_Conformant (New_S, Old_S, Spec);
3270 end if;
3272 Check_Frozen_Renaming (N, Rename_Spec);
3274 -- Check explicitly that renamed entity is not intrinsic, because
3275 -- in a generic the renamed body is not built. In this case,
3276 -- the renaming_as_body is a completion.
3278 if Inside_A_Generic then
3279 if Is_Frozen (Rename_Spec)
3280 and then Is_Intrinsic_Subprogram (Old_S)
3281 then
3282 Error_Msg_N
3283 ("subprogram in renaming_as_body cannot be intrinsic",
3284 Name (N));
3285 end if;
3287 Set_Has_Completion (Rename_Spec);
3288 end if;
3290 elsif Ekind (Old_S) /= E_Operator then
3292 -- If this a defaulted subprogram for a class-wide actual there is
3293 -- no check for mode conformance, given that the signatures don't
3294 -- match (the source mentions T but the actual mentions T'Class).
3296 if CW_Actual then
3297 null;
3298 elsif not Is_Actual or else No (Enclosing_Instance) then
3299 Check_Mode_Conformant (New_S, Old_S);
3300 end if;
3302 if Is_Actual and then Error_Posted (New_S) then
3303 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3304 end if;
3305 end if;
3307 if No (Rename_Spec) then
3309 -- The parameter profile of the new entity is that of the renamed
3310 -- entity: the subtypes given in the specification are irrelevant.
3312 Inherit_Renamed_Profile (New_S, Old_S);
3314 -- A call to the subprogram is transformed into a call to the
3315 -- renamed entity. This is transitive if the renamed entity is
3316 -- itself a renaming.
3318 if Present (Alias (Old_S)) then
3319 Set_Alias (New_S, Alias (Old_S));
3320 else
3321 Set_Alias (New_S, Old_S);
3322 end if;
3324 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3325 -- renaming as body, since the entity in this case is not an
3326 -- intrinsic (it calls an intrinsic, but we have a real body for
3327 -- this call, and it is in this body that the required intrinsic
3328 -- processing will take place).
3330 -- Also, if this is a renaming of inequality, the renamed operator
3331 -- is intrinsic, but what matters is the corresponding equality
3332 -- operator, which may be user-defined.
3334 Set_Is_Intrinsic_Subprogram
3335 (New_S,
3336 Is_Intrinsic_Subprogram (Old_S)
3337 and then
3338 (Chars (Old_S) /= Name_Op_Ne
3339 or else Ekind (Old_S) = E_Operator
3340 or else Is_Intrinsic_Subprogram
3341 (Corresponding_Equality (Old_S))));
3343 if Ekind (Alias (New_S)) = E_Operator then
3344 Set_Has_Delayed_Freeze (New_S, False);
3345 end if;
3347 -- If the renaming corresponds to an association for an abstract
3348 -- formal subprogram, then various attributes must be set to
3349 -- indicate that the renaming is an abstract dispatching operation
3350 -- with a controlling type.
3352 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3354 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3355 -- see it as corresponding to a generic association for a
3356 -- formal abstract subprogram
3358 Set_Is_Abstract_Subprogram (New_S);
3360 declare
3361 New_S_Ctrl_Type : constant Entity_Id :=
3362 Find_Dispatching_Type (New_S);
3363 Old_S_Ctrl_Type : constant Entity_Id :=
3364 Find_Dispatching_Type (Old_S);
3366 begin
3368 -- The actual must match the (instance of the) formal,
3369 -- and must be a controlling type.
3371 if Old_S_Ctrl_Type /= New_S_Ctrl_Type
3372 or else No (New_S_Ctrl_Type)
3373 then
3374 Error_Msg_NE
3375 ("actual must be dispatching subprogram for type&",
3376 Nam, New_S_Ctrl_Type);
3378 else
3379 Set_Is_Dispatching_Operation (New_S);
3380 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3382 -- If the actual in the formal subprogram is itself a
3383 -- formal abstract subprogram association, there's no
3384 -- dispatch table component or position to inherit.
3386 if Present (DTC_Entity (Old_S)) then
3387 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3388 Set_DT_Position_Value (New_S, DT_Position (Old_S));
3389 end if;
3390 end if;
3391 end;
3392 end if;
3393 end if;
3395 if Is_Actual then
3396 null;
3398 -- The following is illegal, because F hides whatever other F may
3399 -- be around:
3400 -- function F (...) renames F;
3402 elsif Old_S = New_S
3403 or else (Nkind (Nam) /= N_Expanded_Name
3404 and then Chars (Old_S) = Chars (New_S))
3405 then
3406 Error_Msg_N ("subprogram cannot rename itself", N);
3408 -- This is illegal even if we use a selector:
3409 -- function F (...) renames Pkg.F;
3410 -- because F is still hidden.
3412 elsif Nkind (Nam) = N_Expanded_Name
3413 and then Entity (Prefix (Nam)) = Current_Scope
3414 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3415 then
3416 -- This is an error, but we overlook the error and accept the
3417 -- renaming if the special Overriding_Renamings mode is in effect.
3419 if not Overriding_Renamings then
3420 Error_Msg_NE
3421 ("implicit operation& is not visible (RM 8.3 (15))",
3422 Nam, Old_S);
3423 end if;
3424 end if;
3426 Set_Convention (New_S, Convention (Old_S));
3428 if Is_Abstract_Subprogram (Old_S) then
3429 if Present (Rename_Spec) then
3430 Error_Msg_N
3431 ("a renaming-as-body cannot rename an abstract subprogram",
3433 Set_Has_Completion (Rename_Spec);
3434 else
3435 Set_Is_Abstract_Subprogram (New_S);
3436 end if;
3437 end if;
3439 Check_Library_Unit_Renaming (N, Old_S);
3441 -- Pathological case: procedure renames entry in the scope of its
3442 -- task. Entry is given by simple name, but body must be built for
3443 -- procedure. Of course if called it will deadlock.
3445 if Ekind (Old_S) = E_Entry then
3446 Set_Has_Completion (New_S, False);
3447 Set_Alias (New_S, Empty);
3448 end if;
3450 -- Do not freeze the renaming nor the renamed entity when the context
3451 -- is an enclosing generic. Freezing is an expansion activity, and in
3452 -- addition the renamed entity may depend on the generic formals of
3453 -- the enclosing generic.
3455 if Is_Actual and not Inside_A_Generic then
3456 Freeze_Before (N, Old_S);
3457 Freeze_Actual_Profile;
3458 Set_Has_Delayed_Freeze (New_S, False);
3459 Freeze_Before (N, New_S);
3461 -- An abstract subprogram is only allowed as an actual in the case
3462 -- where the formal subprogram is also abstract.
3464 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3465 and then Is_Abstract_Subprogram (Old_S)
3466 and then not Is_Abstract_Subprogram (Formal_Spec)
3467 then
3468 Error_Msg_N
3469 ("abstract subprogram not allowed as generic actual", Nam);
3470 end if;
3471 end if;
3473 else
3474 -- A common error is to assume that implicit operators for types are
3475 -- defined in Standard, or in the scope of a subtype. In those cases
3476 -- where the renamed entity is given with an expanded name, it is
3477 -- worth mentioning that operators for the type are not declared in
3478 -- the scope given by the prefix.
3480 if Nkind (Nam) = N_Expanded_Name
3481 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3482 and then Scope (Entity (Nam)) = Standard_Standard
3483 then
3484 declare
3485 T : constant Entity_Id :=
3486 Base_Type (Etype (First_Formal (New_S)));
3487 begin
3488 Error_Msg_Node_2 := Prefix (Nam);
3489 Error_Msg_NE
3490 ("operator for type& is not declared in&", Prefix (Nam), T);
3491 end;
3493 else
3494 Error_Msg_NE
3495 ("no visible subprogram matches the specification for&",
3496 Spec, New_S);
3497 end if;
3499 if Present (Candidate_Renaming) then
3500 declare
3501 F1 : Entity_Id;
3502 F2 : Entity_Id;
3503 T1 : Entity_Id;
3505 begin
3506 F1 := First_Formal (Candidate_Renaming);
3507 F2 := First_Formal (New_S);
3508 T1 := First_Subtype (Etype (F1));
3509 while Present (F1) and then Present (F2) loop
3510 Next_Formal (F1);
3511 Next_Formal (F2);
3512 end loop;
3514 if Present (F1) and then Present (Default_Value (F1)) then
3515 if Present (Next_Formal (F1)) then
3516 Error_Msg_NE
3517 ("\missing specification for & and other formals with "
3518 & "defaults", Spec, F1);
3519 else
3520 Error_Msg_NE ("\missing specification for &", Spec, F1);
3521 end if;
3522 end if;
3524 if Nkind (Nam) = N_Operator_Symbol
3525 and then From_Default (N)
3526 then
3527 Error_Msg_Node_2 := T1;
3528 Error_Msg_NE
3529 ("default & on & is not directly visible", Nam, Nam);
3530 end if;
3531 end;
3532 end if;
3533 end if;
3535 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3536 -- controlling access parameters are known non-null for the renamed
3537 -- subprogram. Test also applies to a subprogram instantiation that
3538 -- is dispatching. Test is skipped if some previous error was detected
3539 -- that set Old_S to Any_Id.
3541 if Ada_Version >= Ada_2005
3542 and then Old_S /= Any_Id
3543 and then not Is_Dispatching_Operation (Old_S)
3544 and then Is_Dispatching_Operation (New_S)
3545 then
3546 declare
3547 Old_F : Entity_Id;
3548 New_F : Entity_Id;
3550 begin
3551 Old_F := First_Formal (Old_S);
3552 New_F := First_Formal (New_S);
3553 while Present (Old_F) loop
3554 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3555 and then Is_Controlling_Formal (New_F)
3556 and then not Can_Never_Be_Null (Old_F)
3557 then
3558 Error_Msg_N ("access parameter is controlling,", New_F);
3559 Error_Msg_NE
3560 ("\corresponding parameter of& must be explicitly null "
3561 & "excluding", New_F, Old_S);
3562 end if;
3564 Next_Formal (Old_F);
3565 Next_Formal (New_F);
3566 end loop;
3567 end;
3568 end if;
3570 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3571 -- is to warn if an operator is being renamed as a different operator.
3572 -- If the operator is predefined, examine the kind of the entity, not
3573 -- the abbreviated declaration in Standard.
3575 if Comes_From_Source (N)
3576 and then Present (Old_S)
3577 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3578 or else Ekind (Old_S) = E_Operator)
3579 and then Nkind (New_S) = N_Defining_Operator_Symbol
3580 and then Chars (Old_S) /= Chars (New_S)
3581 then
3582 Error_Msg_NE
3583 ("& is being renamed as a different operator??", N, Old_S);
3584 end if;
3586 -- Check for renaming of obsolescent subprogram
3588 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3590 -- Another warning or some utility: if the new subprogram as the same
3591 -- name as the old one, the old one is not hidden by an outer homograph,
3592 -- the new one is not a public symbol, and the old one is otherwise
3593 -- directly visible, the renaming is superfluous.
3595 if Chars (Old_S) = Chars (New_S)
3596 and then Comes_From_Source (N)
3597 and then Scope (Old_S) /= Standard_Standard
3598 and then Warn_On_Redundant_Constructs
3599 and then (Is_Immediately_Visible (Old_S)
3600 or else Is_Potentially_Use_Visible (Old_S))
3601 and then Is_Overloadable (Current_Scope)
3602 and then Chars (Current_Scope) /= Chars (Old_S)
3603 then
3604 Error_Msg_N
3605 ("redundant renaming, entity is directly visible?r?", Name (N));
3606 end if;
3608 -- Implementation-defined aspect specifications can appear in a renaming
3609 -- declaration, but not language-defined ones. The call to procedure
3610 -- Analyze_Aspect_Specifications will take care of this error check.
3612 if Has_Aspects (N) then
3613 Analyze_Aspect_Specifications (N, New_S);
3614 end if;
3616 Ada_Version := Save_AV;
3617 Ada_Version_Pragma := Save_AVP;
3618 Ada_Version_Explicit := Save_AV_Exp;
3620 -- In GNATprove mode, the renamings of actual subprograms are replaced
3621 -- with wrapper functions that make it easier to propagate axioms to the
3622 -- points of call within an instance. Wrappers are generated if formal
3623 -- subprogram is subject to axiomatization.
3625 -- The types in the wrapper profiles are obtained from (instances of)
3626 -- the types of the formal subprogram.
3628 if Is_Actual
3629 and then GNATprove_Mode
3630 and then Present (Containing_Package_With_Ext_Axioms (Formal_Spec))
3631 and then not Inside_A_Generic
3632 then
3633 if Ekind (Old_S) = E_Function then
3634 Rewrite (N, Build_Function_Wrapper (Formal_Spec, Old_S));
3635 Analyze (N);
3637 elsif Ekind (Old_S) = E_Operator then
3638 Rewrite (N, Build_Operator_Wrapper (Formal_Spec, Old_S));
3639 Analyze (N);
3640 end if;
3641 end if;
3643 -- Check if we are looking at an Ada 2012 defaulted formal subprogram
3644 -- and mark any use_package_clauses that affect the visibility of the
3645 -- implicit generic actual.
3647 if Is_Generic_Actual_Subprogram (New_S)
3648 and then (Is_Intrinsic_Subprogram (New_S) or else From_Default (N))
3649 then
3650 Mark_Use_Clauses (New_S);
3652 -- Handle overloaded subprograms
3654 if Present (Alias (New_S)) then
3655 Mark_Use_Clauses (Alias (New_S));
3656 end if;
3657 end if;
3658 end Analyze_Subprogram_Renaming;
3660 -------------------------
3661 -- Analyze_Use_Package --
3662 -------------------------
3664 -- Resolve the package names in the use clause, and make all the visible
3665 -- entities defined in the package potentially use-visible. If the package
3666 -- is already in use from a previous use clause, its visible entities are
3667 -- already use-visible. In that case, mark the occurrence as a redundant
3668 -- use. If the package is an open scope, i.e. if the use clause occurs
3669 -- within the package itself, ignore it.
3671 procedure Analyze_Use_Package (N : Node_Id; Chain : Boolean := True) is
3672 procedure Analyze_Package_Name (Clause : Node_Id);
3673 -- Perform analysis on a package name from a use_package_clause
3675 procedure Analyze_Package_Name_List (Head_Clause : Node_Id);
3676 -- Similar to Analyze_Package_Name but iterates over all the names
3677 -- in a use clause.
3679 --------------------------
3680 -- Analyze_Package_Name --
3681 --------------------------
3683 procedure Analyze_Package_Name (Clause : Node_Id) is
3684 Pack : constant Node_Id := Name (Clause);
3685 Pref : Node_Id;
3687 begin
3688 pragma Assert (Nkind (Clause) = N_Use_Package_Clause);
3689 Analyze (Pack);
3691 -- Verify that the package standard is not directly named in a
3692 -- use_package_clause.
3694 if Nkind (Parent (Clause)) = N_Compilation_Unit
3695 and then Nkind (Pack) = N_Expanded_Name
3696 then
3697 Pref := Prefix (Pack);
3699 while Nkind (Pref) = N_Expanded_Name loop
3700 Pref := Prefix (Pref);
3701 end loop;
3703 if Entity (Pref) = Standard_Standard then
3704 Error_Msg_N
3705 ("predefined package Standard cannot appear in a context "
3706 & "clause", Pref);
3707 end if;
3708 end if;
3709 end Analyze_Package_Name;
3711 -------------------------------
3712 -- Analyze_Package_Name_List --
3713 -------------------------------
3715 procedure Analyze_Package_Name_List (Head_Clause : Node_Id) is
3716 Curr : Node_Id;
3718 begin
3719 -- Due to the way source use clauses are split during parsing we are
3720 -- forced to simply iterate through all entities in scope until the
3721 -- clause representing the last name in the list is found.
3723 Curr := Head_Clause;
3724 while Present (Curr) loop
3725 Analyze_Package_Name (Curr);
3727 -- Stop iterating over the names in the use clause when we are at
3728 -- the last one.
3730 exit when not More_Ids (Curr) and then Prev_Ids (Curr);
3731 Next (Curr);
3732 end loop;
3733 end Analyze_Package_Name_List;
3735 -- Local variables
3737 Ghost_Id : Entity_Id := Empty;
3738 Living_Id : Entity_Id := Empty;
3739 Pack : Entity_Id;
3741 -- Start of processing for Analyze_Use_Package
3743 begin
3744 Check_SPARK_05_Restriction ("use clause is not allowed", N);
3746 Set_Hidden_By_Use_Clause (N, No_Elist);
3748 -- Use clause not allowed in a spec of a predefined package declaration
3749 -- except that packages whose file name starts a-n are OK (these are
3750 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3752 if Is_Predefined_Unit (Current_Sem_Unit)
3753 and then Get_Name_String
3754 (Unit_File_Name (Current_Sem_Unit)) (1 .. 3) /= "a-n"
3755 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
3756 N_Package_Declaration
3757 then
3758 Error_Msg_N ("use clause not allowed in predefined spec", N);
3759 end if;
3761 -- Loop through all package names from the original use clause in
3762 -- order to analyze referenced packages. A use_package_clause with only
3763 -- one name does not have More_Ids or Prev_Ids set, while a clause with
3764 -- More_Ids only starts the chain produced by the parser.
3766 if not More_Ids (N) and then not Prev_Ids (N) then
3767 Analyze_Package_Name (N);
3769 elsif More_Ids (N) and then not Prev_Ids (N) then
3770 Analyze_Package_Name_List (N);
3771 end if;
3773 if not Is_Entity_Name (Name (N)) then
3774 Error_Msg_N ("& is not a package", Name (N));
3776 return;
3777 end if;
3779 if Chain then
3780 Chain_Use_Clause (N);
3781 end if;
3783 Pack := Entity (Name (N));
3785 -- There are many cases where scopes are manipulated during analysis, so
3786 -- check that Pack's current use clause has not already been chained
3787 -- before setting its previous use clause.
3789 if Ekind (Pack) = E_Package
3790 and then Present (Current_Use_Clause (Pack))
3791 and then Current_Use_Clause (Pack) /= N
3792 and then No (Prev_Use_Clause (N))
3793 and then Prev_Use_Clause (Current_Use_Clause (Pack)) /= N
3794 then
3795 Set_Prev_Use_Clause (N, Current_Use_Clause (Pack));
3796 end if;
3798 -- Mark all entities as potentially use visible.
3800 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3801 if Ekind (Pack) = E_Generic_Package then
3802 Error_Msg_N -- CODEFIX
3803 ("a generic package is not allowed in a use clause", Name (N));
3805 elsif Ekind_In (Pack, E_Generic_Function, E_Generic_Package)
3806 then
3807 Error_Msg_N -- CODEFIX
3808 ("a generic subprogram is not allowed in a use clause",
3809 Name (N));
3811 elsif Ekind_In (Pack, E_Function, E_Procedure, E_Operator) then
3812 Error_Msg_N -- CODEFIX
3813 ("a subprogram is not allowed in a use clause", Name (N));
3815 else
3816 Error_Msg_N ("& is not allowed in a use clause", Name (N));
3817 end if;
3819 else
3820 if Nkind (Parent (N)) = N_Compilation_Unit then
3821 Check_In_Previous_With_Clause (N, Name (N));
3822 end if;
3824 Use_One_Package (N, Name (N));
3826 -- Capture the first Ghost package and the first living package
3828 if Is_Entity_Name (Name (N)) then
3829 Pack := Entity (Name (N));
3831 if Is_Ghost_Entity (Pack) then
3832 if No (Ghost_Id) then
3833 Ghost_Id := Pack;
3834 end if;
3836 elsif No (Living_Id) then
3837 Living_Id := Pack;
3838 end if;
3839 end if;
3840 end if;
3841 end Analyze_Use_Package;
3843 ----------------------
3844 -- Analyze_Use_Type --
3845 ----------------------
3847 procedure Analyze_Use_Type (N : Node_Id; Chain : Boolean := True) is
3848 E : Entity_Id;
3849 Id : Node_Id;
3851 begin
3852 Set_Hidden_By_Use_Clause (N, No_Elist);
3854 -- Chain clause to list of use clauses in current scope when flagged
3856 if Chain then
3857 Chain_Use_Clause (N);
3858 end if;
3860 -- Obtain the base type of the type denoted within the use_type_clause's
3861 -- subtype mark.
3863 Id := Subtype_Mark (N);
3864 Find_Type (Id);
3865 E := Base_Type (Entity (Id));
3867 -- There are many cases where a use_type_clause may be reanalyzed due to
3868 -- manipulation of the scope stack so we much guard against those cases
3869 -- here, otherwise, we must add the new use_type_clause to the previous
3870 -- use_type_clause chain in order to mark redundant use_type_clauses as
3871 -- used.
3873 if Present (Current_Use_Clause (E))
3874 and then Current_Use_Clause (E) /= N
3875 and then No (Prev_Use_Clause (N))
3876 then
3877 Set_Prev_Use_Clause (N, Current_Use_Clause (E));
3878 end if;
3880 -- If the Used_Operations list is already initialized, the clause has
3881 -- been analyzed previously, and it is being reinstalled, for example
3882 -- when the clause appears in a package spec and we are compiling the
3883 -- corresponding package body. In that case, make the entities on the
3884 -- existing list use_visible, and mark the corresponding types In_Use.
3886 if Present (Used_Operations (N)) then
3887 declare
3888 Elmt : Elmt_Id;
3890 begin
3891 Use_One_Type (Subtype_Mark (N), Installed => True);
3893 Elmt := First_Elmt (Used_Operations (N));
3894 while Present (Elmt) loop
3895 Set_Is_Potentially_Use_Visible (Node (Elmt));
3896 Next_Elmt (Elmt);
3897 end loop;
3898 end;
3900 return;
3901 end if;
3903 -- Otherwise, create new list and attach to it the operations that are
3904 -- made use-visible by the clause.
3906 Set_Used_Operations (N, New_Elmt_List);
3907 E := Entity (Id);
3909 if E /= Any_Type then
3910 Use_One_Type (Id);
3912 if Nkind (Parent (N)) = N_Compilation_Unit then
3913 if Nkind (Id) = N_Identifier then
3914 Error_Msg_N ("type is not directly visible", Id);
3916 elsif Is_Child_Unit (Scope (E))
3917 and then Scope (E) /= System_Aux_Id
3918 then
3919 Check_In_Previous_With_Clause (N, Prefix (Id));
3920 end if;
3921 end if;
3923 else
3924 -- If the use_type_clause appears in a compilation unit context,
3925 -- check whether it comes from a unit that may appear in a
3926 -- limited_with_clause, for a better error message.
3928 if Nkind (Parent (N)) = N_Compilation_Unit
3929 and then Nkind (Id) /= N_Identifier
3930 then
3931 declare
3932 Item : Node_Id;
3933 Pref : Node_Id;
3935 function Mentioned (Nam : Node_Id) return Boolean;
3936 -- Check whether the prefix of expanded name for the type
3937 -- appears in the prefix of some limited_with_clause.
3939 ---------------
3940 -- Mentioned --
3941 ---------------
3943 function Mentioned (Nam : Node_Id) return Boolean is
3944 begin
3945 return Nkind (Name (Item)) = N_Selected_Component
3946 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3947 end Mentioned;
3949 begin
3950 Pref := Prefix (Id);
3951 Item := First (Context_Items (Parent (N)));
3952 while Present (Item) and then Item /= N loop
3953 if Nkind (Item) = N_With_Clause
3954 and then Limited_Present (Item)
3955 and then Mentioned (Pref)
3956 then
3957 Change_Error_Text
3958 (Get_Msg_Id, "premature usage of incomplete type");
3959 end if;
3961 Next (Item);
3962 end loop;
3963 end;
3964 end if;
3965 end if;
3967 Mark_Ghost_Clause (N);
3968 end Analyze_Use_Type;
3970 ------------------------
3971 -- Attribute_Renaming --
3972 ------------------------
3974 procedure Attribute_Renaming (N : Node_Id) is
3975 Loc : constant Source_Ptr := Sloc (N);
3976 Nam : constant Node_Id := Name (N);
3977 Spec : constant Node_Id := Specification (N);
3978 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
3979 Aname : constant Name_Id := Attribute_Name (Nam);
3981 Form_Num : Nat := 0;
3982 Expr_List : List_Id := No_List;
3984 Attr_Node : Node_Id;
3985 Body_Node : Node_Id;
3986 Param_Spec : Node_Id;
3988 begin
3989 Generate_Definition (New_S);
3991 -- This procedure is called in the context of subprogram renaming, and
3992 -- thus the attribute must be one that is a subprogram. All of those
3993 -- have at least one formal parameter, with the exceptions of the GNAT
3994 -- attribute 'Img, which GNAT treats as renameable.
3996 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
3997 if Aname /= Name_Img then
3998 Error_Msg_N
3999 ("subprogram renaming an attribute must have formals", N);
4000 return;
4001 end if;
4003 else
4004 Param_Spec := First (Parameter_Specifications (Spec));
4005 while Present (Param_Spec) loop
4006 Form_Num := Form_Num + 1;
4008 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
4009 Find_Type (Parameter_Type (Param_Spec));
4011 -- The profile of the new entity denotes the base type (s) of
4012 -- the types given in the specification. For access parameters
4013 -- there are no subtypes involved.
4015 Rewrite (Parameter_Type (Param_Spec),
4016 New_Occurrence_Of
4017 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
4018 end if;
4020 if No (Expr_List) then
4021 Expr_List := New_List;
4022 end if;
4024 Append_To (Expr_List,
4025 Make_Identifier (Loc,
4026 Chars => Chars (Defining_Identifier (Param_Spec))));
4028 -- The expressions in the attribute reference are not freeze
4029 -- points. Neither is the attribute as a whole, see below.
4031 Set_Must_Not_Freeze (Last (Expr_List));
4032 Next (Param_Spec);
4033 end loop;
4034 end if;
4036 -- Immediate error if too many formals. Other mismatches in number or
4037 -- types of parameters are detected when we analyze the body of the
4038 -- subprogram that we construct.
4040 if Form_Num > 2 then
4041 Error_Msg_N ("too many formals for attribute", N);
4043 -- Error if the attribute reference has expressions that look like
4044 -- formal parameters.
4046 elsif Present (Expressions (Nam)) then
4047 Error_Msg_N ("illegal expressions in attribute reference", Nam);
4049 elsif
4050 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
4051 Name_Pos, Name_Round, Name_Scaling,
4052 Name_Val)
4053 then
4054 if Nkind (N) = N_Subprogram_Renaming_Declaration
4055 and then Present (Corresponding_Formal_Spec (N))
4056 then
4057 Error_Msg_N
4058 ("generic actual cannot be attribute involving universal type",
4059 Nam);
4060 else
4061 Error_Msg_N
4062 ("attribute involving a universal type cannot be renamed",
4063 Nam);
4064 end if;
4065 end if;
4067 -- Rewrite attribute node to have a list of expressions corresponding to
4068 -- the subprogram formals. A renaming declaration is not a freeze point,
4069 -- and the analysis of the attribute reference should not freeze the
4070 -- type of the prefix. We use the original node in the renaming so that
4071 -- its source location is preserved, and checks on stream attributes are
4072 -- properly applied.
4074 Attr_Node := Relocate_Node (Nam);
4075 Set_Expressions (Attr_Node, Expr_List);
4077 Set_Must_Not_Freeze (Attr_Node);
4078 Set_Must_Not_Freeze (Prefix (Nam));
4080 -- Case of renaming a function
4082 if Nkind (Spec) = N_Function_Specification then
4083 if Is_Procedure_Attribute_Name (Aname) then
4084 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
4085 return;
4086 end if;
4088 Find_Type (Result_Definition (Spec));
4089 Rewrite (Result_Definition (Spec),
4090 New_Occurrence_Of
4091 (Base_Type (Entity (Result_Definition (Spec))), Loc));
4093 Body_Node :=
4094 Make_Subprogram_Body (Loc,
4095 Specification => Spec,
4096 Declarations => New_List,
4097 Handled_Statement_Sequence =>
4098 Make_Handled_Sequence_Of_Statements (Loc,
4099 Statements => New_List (
4100 Make_Simple_Return_Statement (Loc,
4101 Expression => Attr_Node))));
4103 -- Case of renaming a procedure
4105 else
4106 if not Is_Procedure_Attribute_Name (Aname) then
4107 Error_Msg_N ("attribute can only be renamed as function", Nam);
4108 return;
4109 end if;
4111 Body_Node :=
4112 Make_Subprogram_Body (Loc,
4113 Specification => Spec,
4114 Declarations => New_List,
4115 Handled_Statement_Sequence =>
4116 Make_Handled_Sequence_Of_Statements (Loc,
4117 Statements => New_List (Attr_Node)));
4118 end if;
4120 -- Signal the ABE mechanism that the generated subprogram body has not
4121 -- ABE ramifications.
4123 Set_Was_Attribute_Reference (Body_Node);
4125 -- In case of tagged types we add the body of the generated function to
4126 -- the freezing actions of the type (because in the general case such
4127 -- type is still not frozen). We exclude from this processing generic
4128 -- formal subprograms found in instantiations.
4130 -- We must exclude restricted run-time libraries because
4131 -- entity AST_Handler is defined in package System.Aux_Dec which is not
4132 -- available in those platforms. Note that we cannot use the function
4133 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
4134 -- the ZFP run-time library is not defined as a profile, and we do not
4135 -- want to deal with AST_Handler in ZFP mode.
4137 if not Configurable_Run_Time_Mode
4138 and then not Present (Corresponding_Formal_Spec (N))
4139 and then Etype (Nam) /= RTE (RE_AST_Handler)
4140 then
4141 declare
4142 P : constant Node_Id := Prefix (Nam);
4144 begin
4145 -- The prefix of 'Img is an object that is evaluated for each call
4146 -- of the function that renames it.
4148 if Aname = Name_Img then
4149 Preanalyze_And_Resolve (P);
4151 -- For all other attribute renamings, the prefix is a subtype
4153 else
4154 Find_Type (P);
4155 end if;
4157 -- If the target type is not yet frozen, add the body to the
4158 -- actions to be elaborated at freeze time.
4160 if Is_Tagged_Type (Etype (P))
4161 and then In_Open_Scopes (Scope (Etype (P)))
4162 then
4163 Ensure_Freeze_Node (Etype (P));
4164 Append_Freeze_Action (Etype (P), Body_Node);
4165 else
4166 Rewrite (N, Body_Node);
4167 Analyze (N);
4168 Set_Etype (New_S, Base_Type (Etype (New_S)));
4169 end if;
4170 end;
4172 -- Generic formal subprograms or AST_Handler renaming
4174 else
4175 Rewrite (N, Body_Node);
4176 Analyze (N);
4177 Set_Etype (New_S, Base_Type (Etype (New_S)));
4178 end if;
4180 if Is_Compilation_Unit (New_S) then
4181 Error_Msg_N
4182 ("a library unit can only rename another library unit", N);
4183 end if;
4184 end Attribute_Renaming;
4186 ----------------------
4187 -- Chain_Use_Clause --
4188 ----------------------
4190 procedure Chain_Use_Clause (N : Node_Id) is
4191 Level : Int := Scope_Stack.Last;
4192 Pack : Entity_Id;
4194 begin
4195 -- Common case
4197 if not Is_Compilation_Unit (Current_Scope)
4198 or else not Is_Child_Unit (Current_Scope)
4199 then
4200 null;
4202 -- Common case for compilation unit
4204 elsif Defining_Entity (N => Parent (N),
4205 Empty_On_Errors => True) = Current_Scope
4206 then
4207 null;
4209 else
4210 -- If declaration appears in some other scope, it must be in some
4211 -- parent unit when compiling a child.
4213 Pack := Defining_Entity (Parent (N), Empty_On_Errors => True);
4215 if not In_Open_Scopes (Pack) then
4216 null;
4218 -- If the use clause appears in an ancestor and we are in the
4219 -- private part of the immediate parent, the use clauses are
4220 -- already installed.
4222 elsif Pack /= Scope (Current_Scope)
4223 and then In_Private_Part (Scope (Current_Scope))
4224 then
4225 null;
4227 else
4228 -- Find entry for parent unit in scope stack
4230 while Scope_Stack.Table (Level).Entity /= Pack loop
4231 Level := Level - 1;
4232 end loop;
4233 end if;
4234 end if;
4236 Set_Next_Use_Clause (N,
4237 Scope_Stack.Table (Level).First_Use_Clause);
4238 Scope_Stack.Table (Level).First_Use_Clause := N;
4239 end Chain_Use_Clause;
4241 ---------------------------
4242 -- Check_Frozen_Renaming --
4243 ---------------------------
4245 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4246 B_Node : Node_Id;
4247 Old_S : Entity_Id;
4249 begin
4250 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4251 B_Node :=
4252 Build_Renamed_Body
4253 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4255 if Is_Entity_Name (Name (N)) then
4256 Old_S := Entity (Name (N));
4258 if not Is_Frozen (Old_S)
4259 and then Operating_Mode /= Check_Semantics
4260 then
4261 Append_Freeze_Action (Old_S, B_Node);
4262 else
4263 Insert_After (N, B_Node);
4264 Analyze (B_Node);
4265 end if;
4267 if Is_Intrinsic_Subprogram (Old_S) and then not In_Instance then
4268 Error_Msg_N
4269 ("subprogram used in renaming_as_body cannot be intrinsic",
4270 Name (N));
4271 end if;
4273 else
4274 Insert_After (N, B_Node);
4275 Analyze (B_Node);
4276 end if;
4277 end if;
4278 end Check_Frozen_Renaming;
4280 -------------------------------
4281 -- Set_Entity_Or_Discriminal --
4282 -------------------------------
4284 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4285 P : Node_Id;
4287 begin
4288 -- If the entity is not a discriminant, or else expansion is disabled,
4289 -- simply set the entity.
4291 if not In_Spec_Expression
4292 or else Ekind (E) /= E_Discriminant
4293 or else Inside_A_Generic
4294 then
4295 Set_Entity_With_Checks (N, E);
4297 -- The replacement of a discriminant by the corresponding discriminal
4298 -- is not done for a task discriminant that appears in a default
4299 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4300 -- for details on their handling.
4302 elsif Is_Concurrent_Type (Scope (E)) then
4303 P := Parent (N);
4304 while Present (P)
4305 and then not Nkind_In (P, N_Parameter_Specification,
4306 N_Component_Declaration)
4307 loop
4308 P := Parent (P);
4309 end loop;
4311 if Present (P)
4312 and then Nkind (P) = N_Parameter_Specification
4313 then
4314 null;
4316 else
4317 Set_Entity (N, Discriminal (E));
4318 end if;
4320 -- Otherwise, this is a discriminant in a context in which
4321 -- it is a reference to the corresponding parameter of the
4322 -- init proc for the enclosing type.
4324 else
4325 Set_Entity (N, Discriminal (E));
4326 end if;
4327 end Set_Entity_Or_Discriminal;
4329 -----------------------------------
4330 -- Check_In_Previous_With_Clause --
4331 -----------------------------------
4333 procedure Check_In_Previous_With_Clause
4334 (N : Node_Id;
4335 Nam : Entity_Id)
4337 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4338 Item : Node_Id;
4339 Par : Node_Id;
4341 begin
4342 Item := First (Context_Items (Parent (N)));
4343 while Present (Item) and then Item /= N loop
4344 if Nkind (Item) = N_With_Clause
4346 -- Protect the frontend against previous critical errors
4348 and then Nkind (Name (Item)) /= N_Selected_Component
4349 and then Entity (Name (Item)) = Pack
4350 then
4351 Par := Nam;
4353 -- Find root library unit in with_clause
4355 while Nkind (Par) = N_Expanded_Name loop
4356 Par := Prefix (Par);
4357 end loop;
4359 if Is_Child_Unit (Entity (Original_Node (Par))) then
4360 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4361 else
4362 return;
4363 end if;
4364 end if;
4366 Next (Item);
4367 end loop;
4369 -- On exit, package is not mentioned in a previous with_clause.
4370 -- Check if its prefix is.
4372 if Nkind (Nam) = N_Expanded_Name then
4373 Check_In_Previous_With_Clause (N, Prefix (Nam));
4375 elsif Pack /= Any_Id then
4376 Error_Msg_NE ("& is not visible", Nam, Pack);
4377 end if;
4378 end Check_In_Previous_With_Clause;
4380 ---------------------------------
4381 -- Check_Library_Unit_Renaming --
4382 ---------------------------------
4384 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4385 New_E : Entity_Id;
4387 begin
4388 if Nkind (Parent (N)) /= N_Compilation_Unit then
4389 return;
4391 -- Check for library unit. Note that we used to check for the scope
4392 -- being Standard here, but that was wrong for Standard itself.
4394 elsif not Is_Compilation_Unit (Old_E)
4395 and then not Is_Child_Unit (Old_E)
4396 then
4397 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4399 -- Entities defined in Standard (operators and boolean literals) cannot
4400 -- be renamed as library units.
4402 elsif Scope (Old_E) = Standard_Standard
4403 and then Sloc (Old_E) = Standard_Location
4404 then
4405 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4407 elsif Present (Parent_Spec (N))
4408 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4409 and then not Is_Child_Unit (Old_E)
4410 then
4411 Error_Msg_N
4412 ("renamed unit must be a child unit of generic parent", Name (N));
4414 elsif Nkind (N) in N_Generic_Renaming_Declaration
4415 and then Nkind (Name (N)) = N_Expanded_Name
4416 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4417 and then Is_Generic_Unit (Old_E)
4418 then
4419 Error_Msg_N
4420 ("renamed generic unit must be a library unit", Name (N));
4422 elsif Is_Package_Or_Generic_Package (Old_E) then
4424 -- Inherit categorization flags
4426 New_E := Defining_Entity (N);
4427 Set_Is_Pure (New_E, Is_Pure (Old_E));
4428 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4429 Set_Is_Remote_Call_Interface (New_E,
4430 Is_Remote_Call_Interface (Old_E));
4431 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4432 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4433 end if;
4434 end Check_Library_Unit_Renaming;
4436 ------------------------
4437 -- Enclosing_Instance --
4438 ------------------------
4440 function Enclosing_Instance return Entity_Id is
4441 S : Entity_Id;
4443 begin
4444 if not Is_Generic_Instance (Current_Scope) then
4445 return Empty;
4446 end if;
4448 S := Scope (Current_Scope);
4449 while S /= Standard_Standard loop
4450 if Is_Generic_Instance (S) then
4451 return S;
4452 end if;
4454 S := Scope (S);
4455 end loop;
4457 return Empty;
4458 end Enclosing_Instance;
4460 ---------------
4461 -- End_Scope --
4462 ---------------
4464 procedure End_Scope is
4465 Id : Entity_Id;
4466 Prev : Entity_Id;
4467 Outer : Entity_Id;
4469 begin
4470 Id := First_Entity (Current_Scope);
4471 while Present (Id) loop
4472 -- An entity in the current scope is not necessarily the first one
4473 -- on its homonym chain. Find its predecessor if any,
4474 -- If it is an internal entity, it will not be in the visibility
4475 -- chain altogether, and there is nothing to unchain.
4477 if Id /= Current_Entity (Id) then
4478 Prev := Current_Entity (Id);
4479 while Present (Prev)
4480 and then Present (Homonym (Prev))
4481 and then Homonym (Prev) /= Id
4482 loop
4483 Prev := Homonym (Prev);
4484 end loop;
4486 -- Skip to end of loop if Id is not in the visibility chain
4488 if No (Prev) or else Homonym (Prev) /= Id then
4489 goto Next_Ent;
4490 end if;
4492 else
4493 Prev := Empty;
4494 end if;
4496 Set_Is_Immediately_Visible (Id, False);
4498 Outer := Homonym (Id);
4499 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4500 Outer := Homonym (Outer);
4501 end loop;
4503 -- Reset homonym link of other entities, but do not modify link
4504 -- between entities in current scope, so that the back-end can have
4505 -- a proper count of local overloadings.
4507 if No (Prev) then
4508 Set_Name_Entity_Id (Chars (Id), Outer);
4510 elsif Scope (Prev) /= Scope (Id) then
4511 Set_Homonym (Prev, Outer);
4512 end if;
4514 <<Next_Ent>>
4515 Next_Entity (Id);
4516 end loop;
4518 -- If the scope generated freeze actions, place them before the
4519 -- current declaration and analyze them. Type declarations and
4520 -- the bodies of initialization procedures can generate such nodes.
4521 -- We follow the parent chain until we reach a list node, which is
4522 -- the enclosing list of declarations. If the list appears within
4523 -- a protected definition, move freeze nodes outside the protected
4524 -- type altogether.
4526 if Present
4527 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4528 then
4529 declare
4530 Decl : Node_Id;
4531 L : constant List_Id := Scope_Stack.Table
4532 (Scope_Stack.Last).Pending_Freeze_Actions;
4534 begin
4535 if Is_Itype (Current_Scope) then
4536 Decl := Associated_Node_For_Itype (Current_Scope);
4537 else
4538 Decl := Parent (Current_Scope);
4539 end if;
4541 Pop_Scope;
4543 while not (Is_List_Member (Decl))
4544 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4545 N_Task_Definition)
4546 loop
4547 Decl := Parent (Decl);
4548 end loop;
4550 Insert_List_Before_And_Analyze (Decl, L);
4551 end;
4553 else
4554 Pop_Scope;
4555 end if;
4556 end End_Scope;
4558 ---------------------
4559 -- End_Use_Clauses --
4560 ---------------------
4562 procedure End_Use_Clauses (Clause : Node_Id) is
4563 U : Node_Id;
4565 begin
4566 -- Remove use_type_clauses first, because they affect the visibility of
4567 -- operators in subsequent used packages.
4569 U := Clause;
4570 while Present (U) loop
4571 if Nkind (U) = N_Use_Type_Clause then
4572 End_Use_Type (U);
4573 end if;
4575 Next_Use_Clause (U);
4576 end loop;
4578 U := Clause;
4579 while Present (U) loop
4580 if Nkind (U) = N_Use_Package_Clause then
4581 End_Use_Package (U);
4582 end if;
4584 Next_Use_Clause (U);
4585 end loop;
4586 end End_Use_Clauses;
4588 ---------------------
4589 -- End_Use_Package --
4590 ---------------------
4592 procedure End_Use_Package (N : Node_Id) is
4593 Pack : Entity_Id;
4594 Pack_Name : Node_Id;
4595 Id : Entity_Id;
4596 Elmt : Elmt_Id;
4598 function Is_Primitive_Operator_In_Use
4599 (Op : Entity_Id;
4600 F : Entity_Id) return Boolean;
4601 -- Check whether Op is a primitive operator of a use-visible type
4603 ----------------------------------
4604 -- Is_Primitive_Operator_In_Use --
4605 ----------------------------------
4607 function Is_Primitive_Operator_In_Use
4608 (Op : Entity_Id;
4609 F : Entity_Id) return Boolean
4611 T : constant Entity_Id := Base_Type (Etype (F));
4612 begin
4613 return In_Use (T) and then Scope (T) = Scope (Op);
4614 end Is_Primitive_Operator_In_Use;
4616 -- Start of processing for End_Use_Package
4618 begin
4619 Pack_Name := Name (N);
4621 -- Test that Pack_Name actually denotes a package before processing
4623 if Is_Entity_Name (Pack_Name)
4624 and then Ekind (Entity (Pack_Name)) = E_Package
4625 then
4626 Pack := Entity (Pack_Name);
4628 if In_Open_Scopes (Pack) then
4629 null;
4631 elsif not Redundant_Use (Pack_Name) then
4632 Set_In_Use (Pack, False);
4633 Set_Current_Use_Clause (Pack, Empty);
4635 Id := First_Entity (Pack);
4636 while Present (Id) loop
4638 -- Preserve use-visibility of operators that are primitive
4639 -- operators of a type that is use-visible through an active
4640 -- use_type_clause.
4642 if Nkind (Id) = N_Defining_Operator_Symbol
4643 and then
4644 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4645 or else
4646 (Present (Next_Formal (First_Formal (Id)))
4647 and then
4648 Is_Primitive_Operator_In_Use
4649 (Id, Next_Formal (First_Formal (Id)))))
4650 then
4651 null;
4652 else
4653 Set_Is_Potentially_Use_Visible (Id, False);
4654 end if;
4656 if Is_Private_Type (Id)
4657 and then Present (Full_View (Id))
4658 then
4659 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4660 end if;
4662 Next_Entity (Id);
4663 end loop;
4665 if Present (Renamed_Object (Pack)) then
4666 Set_In_Use (Renamed_Object (Pack), False);
4667 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4668 end if;
4670 if Chars (Pack) = Name_System
4671 and then Scope (Pack) = Standard_Standard
4672 and then Present_System_Aux
4673 then
4674 Id := First_Entity (System_Aux_Id);
4675 while Present (Id) loop
4676 Set_Is_Potentially_Use_Visible (Id, False);
4678 if Is_Private_Type (Id)
4679 and then Present (Full_View (Id))
4680 then
4681 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4682 end if;
4684 Next_Entity (Id);
4685 end loop;
4687 Set_In_Use (System_Aux_Id, False);
4688 end if;
4689 else
4690 Set_Redundant_Use (Pack_Name, False);
4691 end if;
4692 end if;
4694 if Present (Hidden_By_Use_Clause (N)) then
4695 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4696 while Present (Elmt) loop
4697 declare
4698 E : constant Entity_Id := Node (Elmt);
4700 begin
4701 -- Reset either Use_Visibility or Direct_Visibility, depending
4702 -- on how the entity was hidden by the use clause.
4704 if In_Use (Scope (E))
4705 and then Used_As_Generic_Actual (Scope (E))
4706 then
4707 Set_Is_Potentially_Use_Visible (Node (Elmt));
4708 else
4709 Set_Is_Immediately_Visible (Node (Elmt));
4710 end if;
4712 Next_Elmt (Elmt);
4713 end;
4714 end loop;
4716 Set_Hidden_By_Use_Clause (N, No_Elist);
4717 end if;
4718 end End_Use_Package;
4720 ------------------
4721 -- End_Use_Type --
4722 ------------------
4724 procedure End_Use_Type (N : Node_Id) is
4725 Elmt : Elmt_Id;
4726 Id : Entity_Id;
4727 T : Entity_Id;
4729 -- Start of processing for End_Use_Type
4731 begin
4732 Id := Subtype_Mark (N);
4734 -- A call to Rtsfind may occur while analyzing a use_type_clause, in
4735 -- which case the type marks are not resolved yet, so guard against that
4736 -- here.
4738 if Is_Entity_Name (Id) and then Present (Entity (Id)) then
4739 T := Entity (Id);
4741 if T = Any_Type or else From_Limited_With (T) then
4742 null;
4744 -- Note that the use_type_clause may mention a subtype of the type
4745 -- whose primitive operations have been made visible. Here as
4746 -- elsewhere, it is the base type that matters for visibility.
4748 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4749 null;
4751 elsif not Redundant_Use (Id) then
4752 Set_In_Use (T, False);
4753 Set_In_Use (Base_Type (T), False);
4754 Set_Current_Use_Clause (T, Empty);
4755 Set_Current_Use_Clause (Base_Type (T), Empty);
4756 end if;
4757 end if;
4759 if Is_Empty_Elmt_List (Used_Operations (N)) then
4760 return;
4762 else
4763 Elmt := First_Elmt (Used_Operations (N));
4764 while Present (Elmt) loop
4765 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4766 Next_Elmt (Elmt);
4767 end loop;
4768 end if;
4769 end End_Use_Type;
4771 --------------------
4772 -- Entity_Of_Unit --
4773 --------------------
4775 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
4776 begin
4777 if Nkind (U) = N_Package_Instantiation and then Analyzed (U) then
4778 return Defining_Entity (Instance_Spec (U));
4779 else
4780 return Defining_Entity (U);
4781 end if;
4782 end Entity_Of_Unit;
4784 ----------------------
4785 -- Find_Direct_Name --
4786 ----------------------
4788 procedure Find_Direct_Name (N : Node_Id) is
4789 E : Entity_Id;
4790 E2 : Entity_Id;
4791 Msg : Boolean;
4793 Homonyms : Entity_Id;
4794 -- Saves start of homonym chain
4796 Inst : Entity_Id := Empty;
4797 -- Enclosing instance, if any
4799 Nvis_Entity : Boolean;
4800 -- Set True to indicate that there is at least one entity on the homonym
4801 -- chain which, while not visible, is visible enough from the user point
4802 -- of view to warrant an error message of "not visible" rather than
4803 -- undefined.
4805 Nvis_Is_Private_Subprg : Boolean := False;
4806 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4807 -- effect concerning library subprograms has been detected. Used to
4808 -- generate the precise error message.
4810 function From_Actual_Package (E : Entity_Id) return Boolean;
4811 -- Returns true if the entity is an actual for a package that is itself
4812 -- an actual for a formal package of the current instance. Such an
4813 -- entity requires special handling because it may be use-visible but
4814 -- hides directly visible entities defined outside the instance, because
4815 -- the corresponding formal did so in the generic.
4817 function Is_Actual_Parameter return Boolean;
4818 -- This function checks if the node N is an identifier that is an actual
4819 -- parameter of a procedure call. If so it returns True, otherwise it
4820 -- return False. The reason for this check is that at this stage we do
4821 -- not know what procedure is being called if the procedure might be
4822 -- overloaded, so it is premature to go setting referenced flags or
4823 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4824 -- for that processing
4826 function Known_But_Invisible (E : Entity_Id) return Boolean;
4827 -- This function determines whether a reference to the entity E, which
4828 -- is not visible, can reasonably be considered to be known to the
4829 -- writer of the reference. This is a heuristic test, used only for
4830 -- the purposes of figuring out whether we prefer to complain that an
4831 -- entity is undefined or invisible (and identify the declaration of
4832 -- the invisible entity in the latter case). The point here is that we
4833 -- don't want to complain that something is invisible and then point to
4834 -- something entirely mysterious to the writer.
4836 procedure Nvis_Messages;
4837 -- Called if there are no visible entries for N, but there is at least
4838 -- one non-directly visible, or hidden declaration. This procedure
4839 -- outputs an appropriate set of error messages.
4841 procedure Undefined (Nvis : Boolean);
4842 -- This function is called if the current node has no corresponding
4843 -- visible entity or entities. The value set in Msg indicates whether
4844 -- an error message was generated (multiple error messages for the
4845 -- same variable are generally suppressed, see body for details).
4846 -- Msg is True if an error message was generated, False if not. This
4847 -- value is used by the caller to determine whether or not to output
4848 -- additional messages where appropriate. The parameter is set False
4849 -- to get the message "X is undefined", and True to get the message
4850 -- "X is not visible".
4852 -------------------------
4853 -- From_Actual_Package --
4854 -------------------------
4856 function From_Actual_Package (E : Entity_Id) return Boolean is
4857 Scop : constant Entity_Id := Scope (E);
4858 -- Declared scope of candidate entity
4860 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4861 -- Recursive function that does the work and examines actuals of
4862 -- actual packages of current instance.
4864 ------------------------
4865 -- Declared_In_Actual --
4866 ------------------------
4868 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4869 Act : Entity_Id;
4871 begin
4872 if No (Associated_Formal_Package (Pack)) then
4873 return False;
4875 else
4876 Act := First_Entity (Pack);
4877 while Present (Act) loop
4878 if Renamed_Object (Pack) = Scop then
4879 return True;
4881 -- Check for end of list of actuals
4883 elsif Ekind (Act) = E_Package
4884 and then Renamed_Object (Act) = Pack
4885 then
4886 return False;
4888 elsif Ekind (Act) = E_Package
4889 and then Declared_In_Actual (Act)
4890 then
4891 return True;
4892 end if;
4894 Next_Entity (Act);
4895 end loop;
4897 return False;
4898 end if;
4899 end Declared_In_Actual;
4901 -- Local variables
4903 Act : Entity_Id;
4905 -- Start of processing for From_Actual_Package
4907 begin
4908 if not In_Instance then
4909 return False;
4911 else
4912 Inst := Current_Scope;
4913 while Present (Inst)
4914 and then Ekind (Inst) /= E_Package
4915 and then not Is_Generic_Instance (Inst)
4916 loop
4917 Inst := Scope (Inst);
4918 end loop;
4920 if No (Inst) then
4921 return False;
4922 end if;
4924 Act := First_Entity (Inst);
4925 while Present (Act) loop
4926 if Ekind (Act) = E_Package
4927 and then Declared_In_Actual (Act)
4928 then
4929 return True;
4930 end if;
4932 Next_Entity (Act);
4933 end loop;
4935 return False;
4936 end if;
4937 end From_Actual_Package;
4939 -------------------------
4940 -- Is_Actual_Parameter --
4941 -------------------------
4943 function Is_Actual_Parameter return Boolean is
4944 begin
4945 return
4946 Nkind (N) = N_Identifier
4947 and then
4948 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4949 or else
4950 (Nkind (Parent (N)) = N_Parameter_Association
4951 and then N = Explicit_Actual_Parameter (Parent (N))
4952 and then Nkind (Parent (Parent (N))) =
4953 N_Procedure_Call_Statement));
4954 end Is_Actual_Parameter;
4956 -------------------------
4957 -- Known_But_Invisible --
4958 -------------------------
4960 function Known_But_Invisible (E : Entity_Id) return Boolean is
4961 Fname : File_Name_Type;
4963 begin
4964 -- Entities in Standard are always considered to be known
4966 if Sloc (E) <= Standard_Location then
4967 return True;
4969 -- An entity that does not come from source is always considered
4970 -- to be unknown, since it is an artifact of code expansion.
4972 elsif not Comes_From_Source (E) then
4973 return False;
4975 -- In gnat internal mode, we consider all entities known. The
4976 -- historical reason behind this discrepancy is not known??? But the
4977 -- only effect is to modify the error message given, so it is not
4978 -- critical. Since it only affects the exact wording of error
4979 -- messages in illegal programs, we do not mention this as an
4980 -- effect of -gnatg, since it is not a language modification.
4982 elsif GNAT_Mode then
4983 return True;
4984 end if;
4986 -- Here we have an entity that is not from package Standard, and
4987 -- which comes from Source. See if it comes from an internal file.
4989 Fname := Unit_File_Name (Get_Source_Unit (E));
4991 -- Case of from internal file
4993 if In_Internal_Unit (E) then
4995 -- Private part entities in internal files are never considered
4996 -- to be known to the writer of normal application code.
4998 if Is_Hidden (E) then
4999 return False;
5000 end if;
5002 -- Entities from System packages other than System and
5003 -- System.Storage_Elements are not considered to be known.
5004 -- System.Auxxxx files are also considered known to the user.
5006 -- Should refine this at some point to generally distinguish
5007 -- between known and unknown internal files ???
5009 Get_Name_String (Fname);
5011 return
5012 Name_Len < 2
5013 or else
5014 Name_Buffer (1 .. 2) /= "s-"
5015 or else
5016 Name_Buffer (3 .. 8) = "stoele"
5017 or else
5018 Name_Buffer (3 .. 5) = "aux";
5020 -- If not an internal file, then entity is definitely known, even if
5021 -- it is in a private part (the message generated will note that it
5022 -- is in a private part).
5024 else
5025 return True;
5026 end if;
5027 end Known_But_Invisible;
5029 -------------------
5030 -- Nvis_Messages --
5031 -------------------
5033 procedure Nvis_Messages is
5034 Comp_Unit : Node_Id;
5035 Ent : Entity_Id;
5036 Found : Boolean := False;
5037 Hidden : Boolean := False;
5038 Item : Node_Id;
5040 begin
5041 -- Ada 2005 (AI-262): Generate a precise error concerning the
5042 -- Beaujolais effect that was previously detected
5044 if Nvis_Is_Private_Subprg then
5046 pragma Assert (Nkind (E2) = N_Defining_Identifier
5047 and then Ekind (E2) = E_Function
5048 and then Scope (E2) = Standard_Standard
5049 and then Has_Private_With (E2));
5051 -- Find the sloc corresponding to the private with'ed unit
5053 Comp_Unit := Cunit (Current_Sem_Unit);
5054 Error_Msg_Sloc := No_Location;
5056 Item := First (Context_Items (Comp_Unit));
5057 while Present (Item) loop
5058 if Nkind (Item) = N_With_Clause
5059 and then Private_Present (Item)
5060 and then Entity (Name (Item)) = E2
5061 then
5062 Error_Msg_Sloc := Sloc (Item);
5063 exit;
5064 end if;
5066 Next (Item);
5067 end loop;
5069 pragma Assert (Error_Msg_Sloc /= No_Location);
5071 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
5072 return;
5073 end if;
5075 Undefined (Nvis => True);
5077 if Msg then
5079 -- First loop does hidden declarations
5081 Ent := Homonyms;
5082 while Present (Ent) loop
5083 if Is_Potentially_Use_Visible (Ent) then
5084 if not Hidden then
5085 Error_Msg_N -- CODEFIX
5086 ("multiple use clauses cause hiding!", N);
5087 Hidden := True;
5088 end if;
5090 Error_Msg_Sloc := Sloc (Ent);
5091 Error_Msg_N -- CODEFIX
5092 ("hidden declaration#!", N);
5093 end if;
5095 Ent := Homonym (Ent);
5096 end loop;
5098 -- If we found hidden declarations, then that's enough, don't
5099 -- bother looking for non-visible declarations as well.
5101 if Hidden then
5102 return;
5103 end if;
5105 -- Second loop does non-directly visible declarations
5107 Ent := Homonyms;
5108 while Present (Ent) loop
5109 if not Is_Potentially_Use_Visible (Ent) then
5111 -- Do not bother the user with unknown entities
5113 if not Known_But_Invisible (Ent) then
5114 goto Continue;
5115 end if;
5117 Error_Msg_Sloc := Sloc (Ent);
5119 -- Output message noting that there is a non-visible
5120 -- declaration, distinguishing the private part case.
5122 if Is_Hidden (Ent) then
5123 Error_Msg_N ("non-visible (private) declaration#!", N);
5125 -- If the entity is declared in a generic package, it
5126 -- cannot be visible, so there is no point in adding it
5127 -- to the list of candidates if another homograph from a
5128 -- non-generic package has been seen.
5130 elsif Ekind (Scope (Ent)) = E_Generic_Package
5131 and then Found
5132 then
5133 null;
5135 else
5136 Error_Msg_N -- CODEFIX
5137 ("non-visible declaration#!", N);
5139 if Ekind (Scope (Ent)) /= E_Generic_Package then
5140 Found := True;
5141 end if;
5143 if Is_Compilation_Unit (Ent)
5144 and then
5145 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
5146 then
5147 Error_Msg_Qual_Level := 99;
5148 Error_Msg_NE -- CODEFIX
5149 ("\\missing `WITH &;`", N, Ent);
5150 Error_Msg_Qual_Level := 0;
5151 end if;
5153 if Ekind (Ent) = E_Discriminant
5154 and then Present (Corresponding_Discriminant (Ent))
5155 and then Scope (Corresponding_Discriminant (Ent)) =
5156 Etype (Scope (Ent))
5157 then
5158 Error_Msg_N
5159 ("inherited discriminant not allowed here" &
5160 " (RM 3.8 (12), 3.8.1 (6))!", N);
5161 end if;
5162 end if;
5164 -- Set entity and its containing package as referenced. We
5165 -- can't be sure of this, but this seems a better choice
5166 -- to avoid unused entity messages.
5168 if Comes_From_Source (Ent) then
5169 Set_Referenced (Ent);
5170 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
5171 end if;
5172 end if;
5174 <<Continue>>
5175 Ent := Homonym (Ent);
5176 end loop;
5177 end if;
5178 end Nvis_Messages;
5180 ---------------
5181 -- Undefined --
5182 ---------------
5184 procedure Undefined (Nvis : Boolean) is
5185 Emsg : Error_Msg_Id;
5187 begin
5188 -- We should never find an undefined internal name. If we do, then
5189 -- see if we have previous errors. If so, ignore on the grounds that
5190 -- it is probably a cascaded message (e.g. a block label from a badly
5191 -- formed block). If no previous errors, then we have a real internal
5192 -- error of some kind so raise an exception.
5194 if Is_Internal_Name (Chars (N)) then
5195 if Total_Errors_Detected /= 0 then
5196 return;
5197 else
5198 raise Program_Error;
5199 end if;
5200 end if;
5202 -- A very specialized error check, if the undefined variable is
5203 -- a case tag, and the case type is an enumeration type, check
5204 -- for a possible misspelling, and if so, modify the identifier
5206 -- Named aggregate should also be handled similarly ???
5208 if Nkind (N) = N_Identifier
5209 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5210 then
5211 declare
5212 Case_Stm : constant Node_Id := Parent (Parent (N));
5213 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5215 Lit : Node_Id;
5217 begin
5218 if Is_Enumeration_Type (Case_Typ)
5219 and then not Is_Standard_Character_Type (Case_Typ)
5220 then
5221 Lit := First_Literal (Case_Typ);
5222 Get_Name_String (Chars (Lit));
5224 if Chars (Lit) /= Chars (N)
5225 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5226 then
5227 Error_Msg_Node_2 := Lit;
5228 Error_Msg_N -- CODEFIX
5229 ("& is undefined, assume misspelling of &", N);
5230 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5231 return;
5232 end if;
5234 Lit := Next_Literal (Lit);
5235 end if;
5236 end;
5237 end if;
5239 -- Normal processing
5241 Set_Entity (N, Any_Id);
5242 Set_Etype (N, Any_Type);
5244 -- We use the table Urefs to keep track of entities for which we
5245 -- have issued errors for undefined references. Multiple errors
5246 -- for a single name are normally suppressed, however we modify
5247 -- the error message to alert the programmer to this effect.
5249 for J in Urefs.First .. Urefs.Last loop
5250 if Chars (N) = Chars (Urefs.Table (J).Node) then
5251 if Urefs.Table (J).Err /= No_Error_Msg
5252 and then Sloc (N) /= Urefs.Table (J).Loc
5253 then
5254 Error_Msg_Node_1 := Urefs.Table (J).Node;
5256 if Urefs.Table (J).Nvis then
5257 Change_Error_Text (Urefs.Table (J).Err,
5258 "& is not visible (more references follow)");
5259 else
5260 Change_Error_Text (Urefs.Table (J).Err,
5261 "& is undefined (more references follow)");
5262 end if;
5264 Urefs.Table (J).Err := No_Error_Msg;
5265 end if;
5267 -- Although we will set Msg False, and thus suppress the
5268 -- message, we also set Error_Posted True, to avoid any
5269 -- cascaded messages resulting from the undefined reference.
5271 Msg := False;
5272 Set_Error_Posted (N, True);
5273 return;
5274 end if;
5275 end loop;
5277 -- If entry not found, this is first undefined occurrence
5279 if Nvis then
5280 Error_Msg_N ("& is not visible!", N);
5281 Emsg := Get_Msg_Id;
5283 else
5284 Error_Msg_N ("& is undefined!", N);
5285 Emsg := Get_Msg_Id;
5287 -- A very bizarre special check, if the undefined identifier
5288 -- is put or put_line, then add a special error message (since
5289 -- this is a very common error for beginners to make).
5291 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5292 Error_Msg_N -- CODEFIX
5293 ("\\possible missing `WITH Ada.Text_'I'O; " &
5294 "USE Ada.Text_'I'O`!", N);
5296 -- Another special check if N is the prefix of a selected
5297 -- component which is a known unit, add message complaining
5298 -- about missing with for this unit.
5300 elsif Nkind (Parent (N)) = N_Selected_Component
5301 and then N = Prefix (Parent (N))
5302 and then Is_Known_Unit (Parent (N))
5303 then
5304 Error_Msg_Node_2 := Selector_Name (Parent (N));
5305 Error_Msg_N -- CODEFIX
5306 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5307 end if;
5309 -- Now check for possible misspellings
5311 declare
5312 E : Entity_Id;
5313 Ematch : Entity_Id := Empty;
5315 Last_Name_Id : constant Name_Id :=
5316 Name_Id (Nat (First_Name_Id) +
5317 Name_Entries_Count - 1);
5319 begin
5320 for Nam in First_Name_Id .. Last_Name_Id loop
5321 E := Get_Name_Entity_Id (Nam);
5323 if Present (E)
5324 and then (Is_Immediately_Visible (E)
5325 or else
5326 Is_Potentially_Use_Visible (E))
5327 then
5328 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5329 Ematch := E;
5330 exit;
5331 end if;
5332 end if;
5333 end loop;
5335 if Present (Ematch) then
5336 Error_Msg_NE -- CODEFIX
5337 ("\possible misspelling of&", N, Ematch);
5338 end if;
5339 end;
5340 end if;
5342 -- Make entry in undefined references table unless the full errors
5343 -- switch is set, in which case by refraining from generating the
5344 -- table entry, we guarantee that we get an error message for every
5345 -- undefined reference. The entry is not added if we are ignoring
5346 -- errors.
5348 if not All_Errors_Mode and then Ignore_Errors_Enable = 0 then
5349 Urefs.Append (
5350 (Node => N,
5351 Err => Emsg,
5352 Nvis => Nvis,
5353 Loc => Sloc (N)));
5354 end if;
5356 Msg := True;
5357 end Undefined;
5359 -- Local variables
5361 Nested_Inst : Entity_Id := Empty;
5362 -- The entity of a nested instance which appears within Inst (if any)
5364 -- Start of processing for Find_Direct_Name
5366 begin
5367 -- If the entity pointer is already set, this is an internal node, or
5368 -- a node that is analyzed more than once, after a tree modification.
5369 -- In such a case there is no resolution to perform, just set the type.
5371 if Present (Entity (N)) then
5372 if Is_Type (Entity (N)) then
5373 Set_Etype (N, Entity (N));
5375 else
5376 declare
5377 Entyp : constant Entity_Id := Etype (Entity (N));
5379 begin
5380 -- One special case here. If the Etype field is already set,
5381 -- and references the packed array type corresponding to the
5382 -- etype of the referenced entity, then leave it alone. This
5383 -- happens for trees generated from Exp_Pakd, where expressions
5384 -- can be deliberately "mis-typed" to the packed array type.
5386 if Is_Array_Type (Entyp)
5387 and then Is_Packed (Entyp)
5388 and then Present (Etype (N))
5389 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5390 then
5391 null;
5393 -- If not that special case, then just reset the Etype
5395 else
5396 Set_Etype (N, Etype (Entity (N)));
5397 end if;
5398 end;
5399 end if;
5401 -- Although the marking of use clauses happens at the end of
5402 -- Find_Direct_Name, a certain case where a generic actual satisfies
5403 -- a use clause must be checked here due to how the generic machinery
5404 -- handles the analysis of said actuals.
5406 if In_Instance
5407 and then Nkind (Parent (N)) = N_Generic_Association
5408 then
5409 Mark_Use_Clauses (Entity (N));
5410 end if;
5412 return;
5413 end if;
5415 -- Preserve relevant elaboration-related attributes of the context which
5416 -- are no longer available or very expensive to recompute once analysis,
5417 -- resolution, and expansion are over.
5419 if Nkind (N) = N_Identifier then
5420 Mark_Elaboration_Attributes
5421 (N_Id => N,
5422 Modes => True);
5423 end if;
5425 -- Here if Entity pointer was not set, we need full visibility analysis
5426 -- First we generate debugging output if the debug E flag is set.
5428 if Debug_Flag_E then
5429 Write_Str ("Looking for ");
5430 Write_Name (Chars (N));
5431 Write_Eol;
5432 end if;
5434 Homonyms := Current_Entity (N);
5435 Nvis_Entity := False;
5437 E := Homonyms;
5438 while Present (E) loop
5440 -- If entity is immediately visible or potentially use visible, then
5441 -- process the entity and we are done.
5443 if Is_Immediately_Visible (E) then
5444 goto Immediately_Visible_Entity;
5446 elsif Is_Potentially_Use_Visible (E) then
5447 goto Potentially_Use_Visible_Entity;
5449 -- Note if a known but invisible entity encountered
5451 elsif Known_But_Invisible (E) then
5452 Nvis_Entity := True;
5453 end if;
5455 -- Move to next entity in chain and continue search
5457 E := Homonym (E);
5458 end loop;
5460 -- If no entries on homonym chain that were potentially visible,
5461 -- and no entities reasonably considered as non-visible, then
5462 -- we have a plain undefined reference, with no additional
5463 -- explanation required.
5465 if not Nvis_Entity then
5466 Undefined (Nvis => False);
5468 -- Otherwise there is at least one entry on the homonym chain that
5469 -- is reasonably considered as being known and non-visible.
5471 else
5472 Nvis_Messages;
5473 end if;
5475 goto Done;
5477 -- Processing for a potentially use visible entry found. We must search
5478 -- the rest of the homonym chain for two reasons. First, if there is a
5479 -- directly visible entry, then none of the potentially use-visible
5480 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5481 -- for the case of multiple potentially use-visible entries hiding one
5482 -- another and as a result being non-directly visible (RM 8.4(11)).
5484 <<Potentially_Use_Visible_Entity>> declare
5485 Only_One_Visible : Boolean := True;
5486 All_Overloadable : Boolean := Is_Overloadable (E);
5488 begin
5489 E2 := Homonym (E);
5490 while Present (E2) loop
5491 if Is_Immediately_Visible (E2) then
5493 -- If the use-visible entity comes from the actual for a
5494 -- formal package, it hides a directly visible entity from
5495 -- outside the instance.
5497 if From_Actual_Package (E)
5498 and then Scope_Depth (E2) < Scope_Depth (Inst)
5499 then
5500 goto Found;
5501 else
5502 E := E2;
5503 goto Immediately_Visible_Entity;
5504 end if;
5506 elsif Is_Potentially_Use_Visible (E2) then
5507 Only_One_Visible := False;
5508 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5510 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5511 -- that can occur in private_with clauses. Example:
5513 -- with A;
5514 -- private with B; package A is
5515 -- package C is function B return Integer;
5516 -- use A; end A;
5517 -- V1 : Integer := B;
5518 -- private function B return Integer;
5519 -- V2 : Integer := B;
5520 -- end C;
5522 -- V1 resolves to A.B, but V2 resolves to library unit B
5524 elsif Ekind (E2) = E_Function
5525 and then Scope (E2) = Standard_Standard
5526 and then Has_Private_With (E2)
5527 then
5528 Only_One_Visible := False;
5529 All_Overloadable := False;
5530 Nvis_Is_Private_Subprg := True;
5531 exit;
5532 end if;
5534 E2 := Homonym (E2);
5535 end loop;
5537 -- On falling through this loop, we have checked that there are no
5538 -- immediately visible entities. Only_One_Visible is set if exactly
5539 -- one potentially use visible entity exists. All_Overloadable is
5540 -- set if all the potentially use visible entities are overloadable.
5541 -- The condition for legality is that either there is one potentially
5542 -- use visible entity, or if there is more than one, then all of them
5543 -- are overloadable.
5545 if Only_One_Visible or All_Overloadable then
5546 goto Found;
5548 -- If there is more than one potentially use-visible entity and at
5549 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5550 -- Note that E points to the first such entity on the homonym list.
5552 else
5553 -- If one of the entities is declared in an actual package, it
5554 -- was visible in the generic, and takes precedence over other
5555 -- entities that are potentially use-visible. The same applies
5556 -- if the entity is declared in a local instantiation of the
5557 -- current instance.
5559 if In_Instance then
5561 -- Find the current instance
5563 Inst := Current_Scope;
5564 while Present (Inst) and then Inst /= Standard_Standard loop
5565 if Is_Generic_Instance (Inst) then
5566 exit;
5567 end if;
5569 Inst := Scope (Inst);
5570 end loop;
5572 -- Reexamine the candidate entities, giving priority to those
5573 -- that were visible within the generic.
5575 E2 := E;
5576 while Present (E2) loop
5577 Nested_Inst := Nearest_Enclosing_Instance (E2);
5579 -- The entity is declared within an actual package, or in a
5580 -- nested instance. The ">=" accounts for the case where the
5581 -- current instance and the nested instance are the same.
5583 if From_Actual_Package (E2)
5584 or else (Present (Nested_Inst)
5585 and then Scope_Depth (Nested_Inst) >=
5586 Scope_Depth (Inst))
5587 then
5588 E := E2;
5589 goto Found;
5590 end if;
5592 E2 := Homonym (E2);
5593 end loop;
5595 Nvis_Messages;
5596 goto Done;
5598 elsif Is_Predefined_Unit (Current_Sem_Unit) then
5599 -- A use clause in the body of a system file creates conflict
5600 -- with some entity in a user scope, while rtsfind is active.
5601 -- Keep only the entity coming from another predefined unit.
5603 E2 := E;
5604 while Present (E2) loop
5605 if In_Predefined_Unit (E2) then
5606 E := E2;
5607 goto Found;
5608 end if;
5610 E2 := Homonym (E2);
5611 end loop;
5613 -- Entity must exist because predefined unit is correct
5615 raise Program_Error;
5617 else
5618 Nvis_Messages;
5619 goto Done;
5620 end if;
5621 end if;
5622 end;
5624 -- Come here with E set to the first immediately visible entity on
5625 -- the homonym chain. This is the one we want unless there is another
5626 -- immediately visible entity further on in the chain for an inner
5627 -- scope (RM 8.3(8)).
5629 <<Immediately_Visible_Entity>> declare
5630 Level : Int;
5631 Scop : Entity_Id;
5633 begin
5634 -- Find scope level of initial entity. When compiling through
5635 -- Rtsfind, the previous context is not completely invisible, and
5636 -- an outer entity may appear on the chain, whose scope is below
5637 -- the entry for Standard that delimits the current scope stack.
5638 -- Indicate that the level for this spurious entry is outside of
5639 -- the current scope stack.
5641 Level := Scope_Stack.Last;
5642 loop
5643 Scop := Scope_Stack.Table (Level).Entity;
5644 exit when Scop = Scope (E);
5645 Level := Level - 1;
5646 exit when Scop = Standard_Standard;
5647 end loop;
5649 -- Now search remainder of homonym chain for more inner entry
5650 -- If the entity is Standard itself, it has no scope, and we
5651 -- compare it with the stack entry directly.
5653 E2 := Homonym (E);
5654 while Present (E2) loop
5655 if Is_Immediately_Visible (E2) then
5657 -- If a generic package contains a local declaration that
5658 -- has the same name as the generic, there may be a visibility
5659 -- conflict in an instance, where the local declaration must
5660 -- also hide the name of the corresponding package renaming.
5661 -- We check explicitly for a package declared by a renaming,
5662 -- whose renamed entity is an instance that is on the scope
5663 -- stack, and that contains a homonym in the same scope. Once
5664 -- we have found it, we know that the package renaming is not
5665 -- immediately visible, and that the identifier denotes the
5666 -- other entity (and its homonyms if overloaded).
5668 if Scope (E) = Scope (E2)
5669 and then Ekind (E) = E_Package
5670 and then Present (Renamed_Object (E))
5671 and then Is_Generic_Instance (Renamed_Object (E))
5672 and then In_Open_Scopes (Renamed_Object (E))
5673 and then Comes_From_Source (N)
5674 then
5675 Set_Is_Immediately_Visible (E, False);
5676 E := E2;
5678 else
5679 for J in Level + 1 .. Scope_Stack.Last loop
5680 if Scope_Stack.Table (J).Entity = Scope (E2)
5681 or else Scope_Stack.Table (J).Entity = E2
5682 then
5683 Level := J;
5684 E := E2;
5685 exit;
5686 end if;
5687 end loop;
5688 end if;
5689 end if;
5691 E2 := Homonym (E2);
5692 end loop;
5694 -- At the end of that loop, E is the innermost immediately
5695 -- visible entity, so we are all set.
5696 end;
5698 -- Come here with entity found, and stored in E
5700 <<Found>> begin
5702 -- Check violation of No_Wide_Characters restriction
5704 Check_Wide_Character_Restriction (E, N);
5706 -- When distribution features are available (Get_PCS_Name /=
5707 -- Name_No_DSA), a remote access-to-subprogram type is converted
5708 -- into a record type holding whatever information is needed to
5709 -- perform a remote call on an RCI subprogram. In that case we
5710 -- rewrite any occurrence of the RAS type into the equivalent record
5711 -- type here. 'Access attribute references and RAS dereferences are
5712 -- then implemented using specific TSSs. However when distribution is
5713 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5714 -- generation of these TSSs, and we must keep the RAS type in its
5715 -- original access-to-subprogram form (since all calls through a
5716 -- value of such type will be local anyway in the absence of a PCS).
5718 if Comes_From_Source (N)
5719 and then Is_Remote_Access_To_Subprogram_Type (E)
5720 and then Ekind (E) = E_Access_Subprogram_Type
5721 and then Expander_Active
5722 and then Get_PCS_Name /= Name_No_DSA
5723 then
5724 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5725 goto Done;
5726 end if;
5728 -- Set the entity. Note that the reason we call Set_Entity for the
5729 -- overloadable case, as opposed to Set_Entity_With_Checks is
5730 -- that in the overloaded case, the initial call can set the wrong
5731 -- homonym. The call that sets the right homonym is in Sem_Res and
5732 -- that call does use Set_Entity_With_Checks, so we don't miss
5733 -- a style check.
5735 if Is_Overloadable (E) then
5736 Set_Entity (N, E);
5737 else
5738 Set_Entity_With_Checks (N, E);
5739 end if;
5741 if Is_Type (E) then
5742 Set_Etype (N, E);
5743 else
5744 Set_Etype (N, Get_Full_View (Etype (E)));
5745 end if;
5747 if Debug_Flag_E then
5748 Write_Str (" found ");
5749 Write_Entity_Info (E, " ");
5750 end if;
5752 -- If the Ekind of the entity is Void, it means that all homonyms
5753 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5754 -- test is skipped if the current scope is a record and the name is
5755 -- a pragma argument expression (case of Atomic and Volatile pragmas
5756 -- and possibly other similar pragmas added later, which are allowed
5757 -- to reference components in the current record).
5759 if Ekind (E) = E_Void
5760 and then
5761 (not Is_Record_Type (Current_Scope)
5762 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5763 then
5764 Premature_Usage (N);
5766 -- If the entity is overloadable, collect all interpretations of the
5767 -- name for subsequent overload resolution. We optimize a bit here to
5768 -- do this only if we have an overloadable entity that is not on its
5769 -- own on the homonym chain.
5771 elsif Is_Overloadable (E)
5772 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5773 then
5774 Collect_Interps (N);
5776 -- If no homonyms were visible, the entity is unambiguous
5778 if not Is_Overloaded (N) then
5779 if not Is_Actual_Parameter then
5780 Generate_Reference (E, N);
5781 end if;
5782 end if;
5784 -- Case of non-overloadable entity, set the entity providing that
5785 -- we do not have the case of a discriminant reference within a
5786 -- default expression. Such references are replaced with the
5787 -- corresponding discriminal, which is the formal corresponding to
5788 -- to the discriminant in the initialization procedure.
5790 else
5791 -- Entity is unambiguous, indicate that it is referenced here
5793 -- For a renaming of an object, always generate simple reference,
5794 -- we don't try to keep track of assignments in this case, except
5795 -- in SPARK mode where renamings are traversed for generating
5796 -- local effects of subprograms.
5798 if Is_Object (E)
5799 and then Present (Renamed_Object (E))
5800 and then not GNATprove_Mode
5801 then
5802 Generate_Reference (E, N);
5804 -- If the renamed entity is a private protected component,
5805 -- reference the original component as well. This needs to be
5806 -- done because the private renamings are installed before any
5807 -- analysis has occurred. Reference to a private component will
5808 -- resolve to the renaming and the original component will be
5809 -- left unreferenced, hence the following.
5811 if Is_Prival (E) then
5812 Generate_Reference (Prival_Link (E), N);
5813 end if;
5815 -- One odd case is that we do not want to set the Referenced flag
5816 -- if the entity is a label, and the identifier is the label in
5817 -- the source, since this is not a reference from the point of
5818 -- view of the user.
5820 elsif Nkind (Parent (N)) = N_Label then
5821 declare
5822 R : constant Boolean := Referenced (E);
5824 begin
5825 -- Generate reference unless this is an actual parameter
5826 -- (see comment below)
5828 if Is_Actual_Parameter then
5829 Generate_Reference (E, N);
5830 Set_Referenced (E, R);
5831 end if;
5832 end;
5834 -- Normal case, not a label: generate reference
5836 else
5837 if not Is_Actual_Parameter then
5839 -- Package or generic package is always a simple reference
5841 if Ekind_In (E, E_Package, E_Generic_Package) then
5842 Generate_Reference (E, N, 'r');
5844 -- Else see if we have a left hand side
5846 else
5847 case Is_LHS (N) is
5848 when Yes =>
5849 Generate_Reference (E, N, 'm');
5851 when No =>
5852 Generate_Reference (E, N, 'r');
5854 -- If we don't know now, generate reference later
5856 when Unknown =>
5857 Deferred_References.Append ((E, N));
5858 end case;
5859 end if;
5860 end if;
5861 end if;
5863 Set_Entity_Or_Discriminal (N, E);
5865 -- The name may designate a generalized reference, in which case
5866 -- the dereference interpretation will be included. Context is
5867 -- one in which a name is legal.
5869 if Ada_Version >= Ada_2012
5870 and then
5871 (Nkind (Parent (N)) in N_Subexpr
5872 or else Nkind_In (Parent (N), N_Assignment_Statement,
5873 N_Object_Declaration,
5874 N_Parameter_Association))
5875 then
5876 Check_Implicit_Dereference (N, Etype (E));
5877 end if;
5878 end if;
5879 end;
5881 -- Mark relevant use-type and use-package clauses as effective if the
5882 -- node in question is not overloaded and therefore does not require
5883 -- resolution.
5885 -- Note: Generic actual subprograms do not follow the normal resolution
5886 -- path, so ignore the fact that they are overloaded and mark them
5887 -- anyway.
5889 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
5890 Mark_Use_Clauses (N);
5891 end if;
5893 -- Come here with entity set
5895 <<Done>>
5896 Check_Restriction_No_Use_Of_Entity (N);
5898 -- Save the scenario for later examination by the ABE Processing phase
5900 Record_Elaboration_Scenario (N);
5901 end Find_Direct_Name;
5903 ------------------------
5904 -- Find_Expanded_Name --
5905 ------------------------
5907 -- This routine searches the homonym chain of the entity until it finds
5908 -- an entity declared in the scope denoted by the prefix. If the entity
5909 -- is private, it may nevertheless be immediately visible, if we are in
5910 -- the scope of its declaration.
5912 procedure Find_Expanded_Name (N : Node_Id) is
5913 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean;
5914 -- Determine whether expanded name Nod appears within a pragma which is
5915 -- a suitable context for an abstract view of a state or variable. The
5916 -- following pragmas fall in this category:
5917 -- Depends
5918 -- Global
5919 -- Initializes
5920 -- Refined_Depends
5921 -- Refined_Global
5923 -- In addition, pragma Abstract_State is also considered suitable even
5924 -- though it is an illegal context for an abstract view as this allows
5925 -- for proper resolution of abstract views of variables. This illegal
5926 -- context is later flagged in the analysis of indicator Part_Of.
5928 -----------------------------
5929 -- In_Abstract_View_Pragma --
5930 -----------------------------
5932 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean is
5933 Par : Node_Id;
5935 begin
5936 -- Climb the parent chain looking for a pragma
5938 Par := Nod;
5939 while Present (Par) loop
5940 if Nkind (Par) = N_Pragma then
5941 if Nam_In (Pragma_Name_Unmapped (Par),
5942 Name_Abstract_State,
5943 Name_Depends,
5944 Name_Global,
5945 Name_Initializes,
5946 Name_Refined_Depends,
5947 Name_Refined_Global)
5948 then
5949 return True;
5951 -- Otherwise the pragma is not a legal context for an abstract
5952 -- view.
5954 else
5955 exit;
5956 end if;
5958 -- Prevent the search from going too far
5960 elsif Is_Body_Or_Package_Declaration (Par) then
5961 exit;
5962 end if;
5964 Par := Parent (Par);
5965 end loop;
5967 return False;
5968 end In_Abstract_View_Pragma;
5970 -- Local variables
5972 Selector : constant Node_Id := Selector_Name (N);
5973 Candidate : Entity_Id := Empty;
5974 P_Name : Entity_Id;
5975 Id : Entity_Id;
5977 -- Start of processing for Find_Expanded_Name
5979 begin
5980 P_Name := Entity (Prefix (N));
5982 -- If the prefix is a renamed package, look for the entity in the
5983 -- original package.
5985 if Ekind (P_Name) = E_Package
5986 and then Present (Renamed_Object (P_Name))
5987 then
5988 P_Name := Renamed_Object (P_Name);
5990 -- Rewrite node with entity field pointing to renamed object
5992 Rewrite (Prefix (N), New_Copy (Prefix (N)));
5993 Set_Entity (Prefix (N), P_Name);
5995 -- If the prefix is an object of a concurrent type, look for
5996 -- the entity in the associated task or protected type.
5998 elsif Is_Concurrent_Type (Etype (P_Name)) then
5999 P_Name := Etype (P_Name);
6000 end if;
6002 Id := Current_Entity (Selector);
6004 declare
6005 Is_New_Candidate : Boolean;
6007 begin
6008 while Present (Id) loop
6009 if Scope (Id) = P_Name then
6010 Candidate := Id;
6011 Is_New_Candidate := True;
6013 -- Handle abstract views of states and variables. These are
6014 -- acceptable candidates only when the reference to the view
6015 -- appears in certain pragmas.
6017 if Ekind (Id) = E_Abstract_State
6018 and then From_Limited_With (Id)
6019 and then Present (Non_Limited_View (Id))
6020 then
6021 if In_Abstract_View_Pragma (N) then
6022 Candidate := Non_Limited_View (Id);
6023 Is_New_Candidate := True;
6025 -- Hide the candidate because it is not used in a proper
6026 -- context.
6028 else
6029 Candidate := Empty;
6030 Is_New_Candidate := False;
6031 end if;
6032 end if;
6034 -- Ada 2005 (AI-217): Handle shadow entities associated with
6035 -- types declared in limited-withed nested packages. We don't need
6036 -- to handle E_Incomplete_Subtype entities because the entities
6037 -- in the limited view are always E_Incomplete_Type and
6038 -- E_Class_Wide_Type entities (see Build_Limited_Views).
6040 -- Regarding the expression used to evaluate the scope, it
6041 -- is important to note that the limited view also has shadow
6042 -- entities associated nested packages. For this reason the
6043 -- correct scope of the entity is the scope of the real entity.
6044 -- The non-limited view may itself be incomplete, in which case
6045 -- get the full view if available.
6047 elsif Ekind_In (Id, E_Incomplete_Type, E_Class_Wide_Type)
6048 and then From_Limited_With (Id)
6049 and then Present (Non_Limited_View (Id))
6050 and then Scope (Non_Limited_View (Id)) = P_Name
6051 then
6052 Candidate := Get_Full_View (Non_Limited_View (Id));
6053 Is_New_Candidate := True;
6055 -- An unusual case arises with a fully qualified name for an
6056 -- entity local to a generic child unit package, within an
6057 -- instantiation of that package. The name of the unit now
6058 -- denotes the renaming created within the instance. This is
6059 -- only relevant in an instance body, see below.
6061 elsif Is_Generic_Instance (Scope (Id))
6062 and then In_Open_Scopes (Scope (Id))
6063 and then In_Instance_Body
6064 and then Ekind (Scope (Id)) = E_Package
6065 and then Ekind (Id) = E_Package
6066 and then Renamed_Entity (Id) = Scope (Id)
6067 and then Is_Immediately_Visible (P_Name)
6068 then
6069 Is_New_Candidate := True;
6071 else
6072 Is_New_Candidate := False;
6073 end if;
6075 if Is_New_Candidate then
6077 -- If entity is a child unit, either it is a visible child of
6078 -- the prefix, or we are in the body of a generic prefix, as
6079 -- will happen when a child unit is instantiated in the body
6080 -- of a generic parent. This is because the instance body does
6081 -- not restore the full compilation context, given that all
6082 -- non-local references have been captured.
6084 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
6085 exit when Is_Visible_Lib_Unit (Id)
6086 or else (Is_Child_Unit (Id)
6087 and then In_Open_Scopes (Scope (Id))
6088 and then In_Instance_Body);
6089 else
6090 exit when not Is_Hidden (Id);
6091 end if;
6093 exit when Is_Immediately_Visible (Id);
6094 end if;
6096 Id := Homonym (Id);
6097 end loop;
6098 end;
6100 if No (Id)
6101 and then Ekind_In (P_Name, E_Procedure, E_Function)
6102 and then Is_Generic_Instance (P_Name)
6103 then
6104 -- Expanded name denotes entity in (instance of) generic subprogram.
6105 -- The entity may be in the subprogram instance, or may denote one of
6106 -- the formals, which is declared in the enclosing wrapper package.
6108 P_Name := Scope (P_Name);
6110 Id := Current_Entity (Selector);
6111 while Present (Id) loop
6112 exit when Scope (Id) = P_Name;
6113 Id := Homonym (Id);
6114 end loop;
6115 end if;
6117 if No (Id) or else Chars (Id) /= Chars (Selector) then
6118 Set_Etype (N, Any_Type);
6120 -- If we are looking for an entity defined in System, try to find it
6121 -- in the child package that may have been provided as an extension
6122 -- to System. The Extend_System pragma will have supplied the name of
6123 -- the extension, which may have to be loaded.
6125 if Chars (P_Name) = Name_System
6126 and then Scope (P_Name) = Standard_Standard
6127 and then Present (System_Extend_Unit)
6128 and then Present_System_Aux (N)
6129 then
6130 Set_Entity (Prefix (N), System_Aux_Id);
6131 Find_Expanded_Name (N);
6132 return;
6134 -- There is an implicit instance of the predefined operator in
6135 -- the given scope. The operator entity is defined in Standard.
6136 -- Has_Implicit_Operator makes the node into an Expanded_Name.
6138 elsif Nkind (Selector) = N_Operator_Symbol
6139 and then Has_Implicit_Operator (N)
6140 then
6141 return;
6143 -- If there is no literal defined in the scope denoted by the
6144 -- prefix, the literal may belong to (a type derived from)
6145 -- Standard_Character, for which we have no explicit literals.
6147 elsif Nkind (Selector) = N_Character_Literal
6148 and then Has_Implicit_Character_Literal (N)
6149 then
6150 return;
6152 else
6153 -- If the prefix is a single concurrent object, use its name in
6154 -- the error message, rather than that of the anonymous type.
6156 if Is_Concurrent_Type (P_Name)
6157 and then Is_Internal_Name (Chars (P_Name))
6158 then
6159 Error_Msg_Node_2 := Entity (Prefix (N));
6160 else
6161 Error_Msg_Node_2 := P_Name;
6162 end if;
6164 if P_Name = System_Aux_Id then
6165 P_Name := Scope (P_Name);
6166 Set_Entity (Prefix (N), P_Name);
6167 end if;
6169 if Present (Candidate) then
6171 -- If we know that the unit is a child unit we can give a more
6172 -- accurate error message.
6174 if Is_Child_Unit (Candidate) then
6176 -- If the candidate is a private child unit and we are in
6177 -- the visible part of a public unit, specialize the error
6178 -- message. There might be a private with_clause for it,
6179 -- but it is not currently active.
6181 if Is_Private_Descendant (Candidate)
6182 and then Ekind (Current_Scope) = E_Package
6183 and then not In_Private_Part (Current_Scope)
6184 and then not Is_Private_Descendant (Current_Scope)
6185 then
6186 Error_Msg_N
6187 ("private child unit& is not visible here", Selector);
6189 -- Normal case where we have a missing with for a child unit
6191 else
6192 Error_Msg_Qual_Level := 99;
6193 Error_Msg_NE -- CODEFIX
6194 ("missing `WITH &;`", Selector, Candidate);
6195 Error_Msg_Qual_Level := 0;
6196 end if;
6198 -- Here we don't know that this is a child unit
6200 else
6201 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
6202 end if;
6204 else
6205 -- Within the instantiation of a child unit, the prefix may
6206 -- denote the parent instance, but the selector has the name
6207 -- of the original child. That is to say, when A.B appears
6208 -- within an instantiation of generic child unit B, the scope
6209 -- stack includes an instance of A (P_Name) and an instance
6210 -- of B under some other name. We scan the scope to find this
6211 -- child instance, which is the desired entity.
6212 -- Note that the parent may itself be a child instance, if
6213 -- the reference is of the form A.B.C, in which case A.B has
6214 -- already been rewritten with the proper entity.
6216 if In_Open_Scopes (P_Name)
6217 and then Is_Generic_Instance (P_Name)
6218 then
6219 declare
6220 Gen_Par : constant Entity_Id :=
6221 Generic_Parent (Specification
6222 (Unit_Declaration_Node (P_Name)));
6223 S : Entity_Id := Current_Scope;
6224 P : Entity_Id;
6226 begin
6227 for J in reverse 0 .. Scope_Stack.Last loop
6228 S := Scope_Stack.Table (J).Entity;
6230 exit when S = Standard_Standard;
6232 if Ekind_In (S, E_Function,
6233 E_Package,
6234 E_Procedure)
6235 then
6236 P :=
6237 Generic_Parent (Specification
6238 (Unit_Declaration_Node (S)));
6240 -- Check that P is a generic child of the generic
6241 -- parent of the prefix.
6243 if Present (P)
6244 and then Chars (P) = Chars (Selector)
6245 and then Scope (P) = Gen_Par
6246 then
6247 Id := S;
6248 goto Found;
6249 end if;
6250 end if;
6252 end loop;
6253 end;
6254 end if;
6256 -- If this is a selection from Ada, System or Interfaces, then
6257 -- we assume a missing with for the corresponding package.
6259 if Is_Known_Unit (N) then
6260 if not Error_Posted (N) then
6261 Error_Msg_Node_2 := Selector;
6262 Error_Msg_N -- CODEFIX
6263 ("missing `WITH &.&;`", Prefix (N));
6264 end if;
6266 -- If this is a selection from a dummy package, then suppress
6267 -- the error message, of course the entity is missing if the
6268 -- package is missing.
6270 elsif Sloc (Error_Msg_Node_2) = No_Location then
6271 null;
6273 -- Here we have the case of an undefined component
6275 else
6276 -- The prefix may hide a homonym in the context that
6277 -- declares the desired entity. This error can use a
6278 -- specialized message.
6280 if In_Open_Scopes (P_Name) then
6281 declare
6282 H : constant Entity_Id := Homonym (P_Name);
6284 begin
6285 if Present (H)
6286 and then Is_Compilation_Unit (H)
6287 and then
6288 (Is_Immediately_Visible (H)
6289 or else Is_Visible_Lib_Unit (H))
6290 then
6291 Id := First_Entity (H);
6292 while Present (Id) loop
6293 if Chars (Id) = Chars (Selector) then
6294 Error_Msg_Qual_Level := 99;
6295 Error_Msg_Name_1 := Chars (Selector);
6296 Error_Msg_NE
6297 ("% not declared in&", N, P_Name);
6298 Error_Msg_NE
6299 ("\use fully qualified name starting with "
6300 & "Standard to make& visible", N, H);
6301 Error_Msg_Qual_Level := 0;
6302 goto Done;
6303 end if;
6305 Next_Entity (Id);
6306 end loop;
6307 end if;
6309 -- If not found, standard error message
6311 Error_Msg_NE ("& not declared in&", N, Selector);
6313 <<Done>> null;
6314 end;
6316 else
6317 -- Might be worth specializing the case when the prefix
6318 -- is a limited view.
6319 -- ... not declared in limited view of...
6321 Error_Msg_NE ("& not declared in&", N, Selector);
6322 end if;
6324 -- Check for misspelling of some entity in prefix
6326 Id := First_Entity (P_Name);
6327 while Present (Id) loop
6328 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
6329 and then not Is_Internal_Name (Chars (Id))
6330 then
6331 Error_Msg_NE -- CODEFIX
6332 ("possible misspelling of&", Selector, Id);
6333 exit;
6334 end if;
6336 Next_Entity (Id);
6337 end loop;
6339 -- Specialize the message if this may be an instantiation
6340 -- of a child unit that was not mentioned in the context.
6342 if Nkind (Parent (N)) = N_Package_Instantiation
6343 and then Is_Generic_Instance (Entity (Prefix (N)))
6344 and then Is_Compilation_Unit
6345 (Generic_Parent (Parent (Entity (Prefix (N)))))
6346 then
6347 Error_Msg_Node_2 := Selector;
6348 Error_Msg_N -- CODEFIX
6349 ("\missing `WITH &.&;`", Prefix (N));
6350 end if;
6351 end if;
6352 end if;
6354 Id := Any_Id;
6355 end if;
6356 end if;
6358 <<Found>>
6359 if Comes_From_Source (N)
6360 and then Is_Remote_Access_To_Subprogram_Type (Id)
6361 and then Ekind (Id) = E_Access_Subprogram_Type
6362 and then Present (Equivalent_Type (Id))
6363 then
6364 -- If we are not actually generating distribution code (i.e. the
6365 -- current PCS is the dummy non-distributed version), then the
6366 -- Equivalent_Type will be missing, and Id should be treated as
6367 -- a regular access-to-subprogram type.
6369 Id := Equivalent_Type (Id);
6370 Set_Chars (Selector, Chars (Id));
6371 end if;
6373 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6375 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
6376 if From_Limited_With (Id)
6377 or else Is_Type (Id)
6378 or else Ekind (Id) = E_Package
6379 then
6380 null;
6381 else
6382 Error_Msg_N
6383 ("limited withed package can only be used to access incomplete "
6384 & "types", N);
6385 end if;
6386 end if;
6388 if Is_Task_Type (P_Name)
6389 and then ((Ekind (Id) = E_Entry
6390 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6391 or else
6392 (Ekind (Id) = E_Entry_Family
6393 and then
6394 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6395 then
6396 -- If both the task type and the entry are in scope, this may still
6397 -- be the expanded name of an entry formal.
6399 if In_Open_Scopes (Id)
6400 and then Nkind (Parent (N)) = N_Selected_Component
6401 then
6402 null;
6404 else
6405 -- It is an entry call after all, either to the current task
6406 -- (which will deadlock) or to an enclosing task.
6408 Analyze_Selected_Component (N);
6409 return;
6410 end if;
6411 end if;
6413 Change_Selected_Component_To_Expanded_Name (N);
6415 -- Preserve relevant elaboration-related attributes of the context which
6416 -- are no longer available or very expensive to recompute once analysis,
6417 -- resolution, and expansion are over.
6419 Mark_Elaboration_Attributes
6420 (N_Id => N,
6421 Modes => True);
6423 -- Set appropriate type
6425 if Is_Type (Id) then
6426 Set_Etype (N, Id);
6427 else
6428 Set_Etype (N, Get_Full_View (Etype (Id)));
6429 end if;
6431 -- Do style check and generate reference, but skip both steps if this
6432 -- entity has homonyms, since we may not have the right homonym set yet.
6433 -- The proper homonym will be set during the resolve phase.
6435 if Has_Homonym (Id) then
6436 Set_Entity (N, Id);
6438 else
6439 Set_Entity_Or_Discriminal (N, Id);
6441 case Is_LHS (N) is
6442 when Yes =>
6443 Generate_Reference (Id, N, 'm');
6445 when No =>
6446 Generate_Reference (Id, N, 'r');
6448 when Unknown =>
6449 Deferred_References.Append ((Id, N));
6450 end case;
6451 end if;
6453 -- Check for violation of No_Wide_Characters
6455 Check_Wide_Character_Restriction (Id, N);
6457 -- If the Ekind of the entity is Void, it means that all homonyms are
6458 -- hidden from all visibility (RM 8.3(5,14-20)).
6460 if Ekind (Id) = E_Void then
6461 Premature_Usage (N);
6463 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6464 declare
6465 H : Entity_Id := Homonym (Id);
6467 begin
6468 while Present (H) loop
6469 if Scope (H) = Scope (Id)
6470 and then (not Is_Hidden (H)
6471 or else Is_Immediately_Visible (H))
6472 then
6473 Collect_Interps (N);
6474 exit;
6475 end if;
6477 H := Homonym (H);
6478 end loop;
6480 -- If an extension of System is present, collect possible explicit
6481 -- overloadings declared in the extension.
6483 if Chars (P_Name) = Name_System
6484 and then Scope (P_Name) = Standard_Standard
6485 and then Present (System_Extend_Unit)
6486 and then Present_System_Aux (N)
6487 then
6488 H := Current_Entity (Id);
6490 while Present (H) loop
6491 if Scope (H) = System_Aux_Id then
6492 Add_One_Interp (N, H, Etype (H));
6493 end if;
6495 H := Homonym (H);
6496 end loop;
6497 end if;
6498 end;
6499 end if;
6501 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6502 and then Scope (Id) /= Standard_Standard
6503 then
6504 -- In addition to user-defined operators in the given scope, there
6505 -- may be an implicit instance of the predefined operator. The
6506 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6507 -- and added to the interpretations. Procedure Add_One_Interp will
6508 -- determine which hides which.
6510 if Has_Implicit_Operator (N) then
6511 null;
6512 end if;
6513 end if;
6515 -- If there is a single interpretation for N we can generate a
6516 -- reference to the unique entity found.
6518 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6519 Generate_Reference (Id, N);
6520 end if;
6522 -- Mark relevant use-type and use-package clauses as effective if the
6523 -- node in question is not overloaded and therefore does not require
6524 -- resolution.
6526 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
6527 Mark_Use_Clauses (N);
6528 end if;
6530 Check_Restriction_No_Use_Of_Entity (N);
6532 -- Save the scenario for later examination by the ABE Processing phase
6534 Record_Elaboration_Scenario (N);
6535 end Find_Expanded_Name;
6537 --------------------
6538 -- Find_Most_Prev --
6539 --------------------
6541 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id is
6542 Curr : Node_Id;
6544 begin
6545 -- Loop through the Prev_Use_Clause chain
6547 Curr := Use_Clause;
6548 while Present (Prev_Use_Clause (Curr)) loop
6549 Curr := Prev_Use_Clause (Curr);
6550 end loop;
6552 return Curr;
6553 end Find_Most_Prev;
6555 -------------------------
6556 -- Find_Renamed_Entity --
6557 -------------------------
6559 function Find_Renamed_Entity
6560 (N : Node_Id;
6561 Nam : Node_Id;
6562 New_S : Entity_Id;
6563 Is_Actual : Boolean := False) return Entity_Id
6565 Ind : Interp_Index;
6566 I1 : Interp_Index := 0; -- Suppress junk warnings
6567 It : Interp;
6568 It1 : Interp;
6569 Old_S : Entity_Id;
6570 Inst : Entity_Id;
6572 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6573 -- If the renamed entity is an implicit operator, check whether it is
6574 -- visible because its operand type is properly visible. This check
6575 -- applies to explicit renamed entities that appear in the source in a
6576 -- renaming declaration or a formal subprogram instance, but not to
6577 -- default generic actuals with a name.
6579 function Report_Overload return Entity_Id;
6580 -- List possible interpretations, and specialize message in the
6581 -- case of a generic actual.
6583 function Within (Inner, Outer : Entity_Id) return Boolean;
6584 -- Determine whether a candidate subprogram is defined within the
6585 -- enclosing instance. If yes, it has precedence over outer candidates.
6587 --------------------------
6588 -- Is_Visible_Operation --
6589 --------------------------
6591 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6592 Scop : Entity_Id;
6593 Typ : Entity_Id;
6594 Btyp : Entity_Id;
6596 begin
6597 if Ekind (Op) /= E_Operator
6598 or else Scope (Op) /= Standard_Standard
6599 or else (In_Instance
6600 and then (not Is_Actual
6601 or else Present (Enclosing_Instance)))
6602 then
6603 return True;
6605 else
6606 -- For a fixed point type operator, check the resulting type,
6607 -- because it may be a mixed mode integer * fixed operation.
6609 if Present (Next_Formal (First_Formal (New_S)))
6610 and then Is_Fixed_Point_Type (Etype (New_S))
6611 then
6612 Typ := Etype (New_S);
6613 else
6614 Typ := Etype (First_Formal (New_S));
6615 end if;
6617 Btyp := Base_Type (Typ);
6619 if Nkind (Nam) /= N_Expanded_Name then
6620 return (In_Open_Scopes (Scope (Btyp))
6621 or else Is_Potentially_Use_Visible (Btyp)
6622 or else In_Use (Btyp)
6623 or else In_Use (Scope (Btyp)));
6625 else
6626 Scop := Entity (Prefix (Nam));
6628 if Ekind (Scop) = E_Package
6629 and then Present (Renamed_Object (Scop))
6630 then
6631 Scop := Renamed_Object (Scop);
6632 end if;
6634 -- Operator is visible if prefix of expanded name denotes
6635 -- scope of type, or else type is defined in System_Aux
6636 -- and the prefix denotes System.
6638 return Scope (Btyp) = Scop
6639 or else (Scope (Btyp) = System_Aux_Id
6640 and then Scope (Scope (Btyp)) = Scop);
6641 end if;
6642 end if;
6643 end Is_Visible_Operation;
6645 ------------
6646 -- Within --
6647 ------------
6649 function Within (Inner, Outer : Entity_Id) return Boolean is
6650 Sc : Entity_Id;
6652 begin
6653 Sc := Scope (Inner);
6654 while Sc /= Standard_Standard loop
6655 if Sc = Outer then
6656 return True;
6657 else
6658 Sc := Scope (Sc);
6659 end if;
6660 end loop;
6662 return False;
6663 end Within;
6665 ---------------------
6666 -- Report_Overload --
6667 ---------------------
6669 function Report_Overload return Entity_Id is
6670 begin
6671 if Is_Actual then
6672 Error_Msg_NE -- CODEFIX
6673 ("ambiguous actual subprogram&, " &
6674 "possible interpretations:", N, Nam);
6675 else
6676 Error_Msg_N -- CODEFIX
6677 ("ambiguous subprogram, " &
6678 "possible interpretations:", N);
6679 end if;
6681 List_Interps (Nam, N);
6682 return Old_S;
6683 end Report_Overload;
6685 -- Start of processing for Find_Renamed_Entity
6687 begin
6688 Old_S := Any_Id;
6689 Candidate_Renaming := Empty;
6691 if Is_Overloaded (Nam) then
6692 Get_First_Interp (Nam, Ind, It);
6693 while Present (It.Nam) loop
6694 if Entity_Matches_Spec (It.Nam, New_S)
6695 and then Is_Visible_Operation (It.Nam)
6696 then
6697 if Old_S /= Any_Id then
6699 -- Note: The call to Disambiguate only happens if a
6700 -- previous interpretation was found, in which case I1
6701 -- has received a value.
6703 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6705 if It1 = No_Interp then
6706 Inst := Enclosing_Instance;
6708 if Present (Inst) then
6709 if Within (It.Nam, Inst) then
6710 if Within (Old_S, Inst) then
6712 -- Choose the innermost subprogram, which would
6713 -- have hidden the outer one in the generic.
6715 if Scope_Depth (It.Nam) <
6716 Scope_Depth (Old_S)
6717 then
6718 return Old_S;
6719 else
6720 return It.Nam;
6721 end if;
6722 end if;
6724 elsif Within (Old_S, Inst) then
6725 return (Old_S);
6727 else
6728 return Report_Overload;
6729 end if;
6731 -- If not within an instance, ambiguity is real
6733 else
6734 return Report_Overload;
6735 end if;
6737 else
6738 Old_S := It1.Nam;
6739 exit;
6740 end if;
6742 else
6743 I1 := Ind;
6744 Old_S := It.Nam;
6745 end if;
6747 elsif
6748 Present (First_Formal (It.Nam))
6749 and then Present (First_Formal (New_S))
6750 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6751 Base_Type (Etype (First_Formal (New_S))))
6752 then
6753 Candidate_Renaming := It.Nam;
6754 end if;
6756 Get_Next_Interp (Ind, It);
6757 end loop;
6759 Set_Entity (Nam, Old_S);
6761 if Old_S /= Any_Id then
6762 Set_Is_Overloaded (Nam, False);
6763 end if;
6765 -- Non-overloaded case
6767 else
6768 if Is_Actual
6769 and then Present (Enclosing_Instance)
6770 and then Entity_Matches_Spec (Entity (Nam), New_S)
6771 then
6772 Old_S := Entity (Nam);
6774 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6775 Candidate_Renaming := New_S;
6777 if Is_Visible_Operation (Entity (Nam)) then
6778 Old_S := Entity (Nam);
6779 end if;
6781 elsif Present (First_Formal (Entity (Nam)))
6782 and then Present (First_Formal (New_S))
6783 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6784 Base_Type (Etype (First_Formal (New_S))))
6785 then
6786 Candidate_Renaming := Entity (Nam);
6787 end if;
6788 end if;
6790 return Old_S;
6791 end Find_Renamed_Entity;
6793 -----------------------------
6794 -- Find_Selected_Component --
6795 -----------------------------
6797 procedure Find_Selected_Component (N : Node_Id) is
6798 P : constant Node_Id := Prefix (N);
6800 P_Name : Entity_Id;
6801 -- Entity denoted by prefix
6803 P_Type : Entity_Id;
6804 -- and its type
6806 Nam : Node_Id;
6808 function Available_Subtype return Boolean;
6809 -- A small optimization: if the prefix is constrained and the component
6810 -- is an array type we may already have a usable subtype for it, so we
6811 -- can use it rather than generating a new one, because the bounds
6812 -- will be the values of the discriminants and not discriminant refs.
6813 -- This simplifies value tracing in GNATProve. For consistency, both
6814 -- the entity name and the subtype come from the constrained component.
6816 -- This is only used in GNATProve mode: when generating code it may be
6817 -- necessary to create an itype in the scope of use of the selected
6818 -- component, e.g. in the context of a expanded record equality.
6820 function Is_Reference_In_Subunit return Boolean;
6821 -- In a subunit, the scope depth is not a proper measure of hiding,
6822 -- because the context of the proper body may itself hide entities in
6823 -- parent units. This rare case requires inspecting the tree directly
6824 -- because the proper body is inserted in the main unit and its context
6825 -- is simply added to that of the parent.
6827 -----------------------
6828 -- Available_Subtype --
6829 -----------------------
6831 function Available_Subtype return Boolean is
6832 Comp : Entity_Id;
6834 begin
6835 if GNATprove_Mode then
6836 Comp := First_Entity (Etype (P));
6837 while Present (Comp) loop
6838 if Chars (Comp) = Chars (Selector_Name (N)) then
6839 Set_Etype (N, Etype (Comp));
6840 Set_Entity (Selector_Name (N), Comp);
6841 Set_Etype (Selector_Name (N), Etype (Comp));
6842 return True;
6843 end if;
6845 Next_Component (Comp);
6846 end loop;
6847 end if;
6849 return False;
6850 end Available_Subtype;
6852 -----------------------------
6853 -- Is_Reference_In_Subunit --
6854 -----------------------------
6856 function Is_Reference_In_Subunit return Boolean is
6857 Clause : Node_Id;
6858 Comp_Unit : Node_Id;
6860 begin
6861 Comp_Unit := N;
6862 while Present (Comp_Unit)
6863 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6864 loop
6865 Comp_Unit := Parent (Comp_Unit);
6866 end loop;
6868 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6869 return False;
6870 end if;
6872 -- Now check whether the package is in the context of the subunit
6874 Clause := First (Context_Items (Comp_Unit));
6875 while Present (Clause) loop
6876 if Nkind (Clause) = N_With_Clause
6877 and then Entity (Name (Clause)) = P_Name
6878 then
6879 return True;
6880 end if;
6882 Clause := Next (Clause);
6883 end loop;
6885 return False;
6886 end Is_Reference_In_Subunit;
6888 -- Start of processing for Find_Selected_Component
6890 begin
6891 Analyze (P);
6893 if Nkind (P) = N_Error then
6894 return;
6895 end if;
6897 -- Selector name cannot be a character literal or an operator symbol in
6898 -- SPARK, except for the operator symbol in a renaming.
6900 if Restriction_Check_Required (SPARK_05) then
6901 if Nkind (Selector_Name (N)) = N_Character_Literal then
6902 Check_SPARK_05_Restriction
6903 ("character literal cannot be prefixed", N);
6904 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
6905 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
6906 then
6907 Check_SPARK_05_Restriction
6908 ("operator symbol cannot be prefixed", N);
6909 end if;
6910 end if;
6912 -- If the selector already has an entity, the node has been constructed
6913 -- in the course of expansion, and is known to be valid. Do not verify
6914 -- that it is defined for the type (it may be a private component used
6915 -- in the expansion of record equality).
6917 if Present (Entity (Selector_Name (N))) then
6918 if No (Etype (N)) or else Etype (N) = Any_Type then
6919 declare
6920 Sel_Name : constant Node_Id := Selector_Name (N);
6921 Selector : constant Entity_Id := Entity (Sel_Name);
6922 C_Etype : Node_Id;
6924 begin
6925 Set_Etype (Sel_Name, Etype (Selector));
6927 if not Is_Entity_Name (P) then
6928 Resolve (P);
6929 end if;
6931 -- Build an actual subtype except for the first parameter
6932 -- of an init proc, where this actual subtype is by
6933 -- definition incorrect, since the object is uninitialized
6934 -- (and does not even have defined discriminants etc.)
6936 if Is_Entity_Name (P)
6937 and then Ekind (Entity (P)) = E_Function
6938 then
6939 Nam := New_Copy (P);
6941 if Is_Overloaded (P) then
6942 Save_Interps (P, Nam);
6943 end if;
6945 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
6946 Analyze_Call (P);
6947 Analyze_Selected_Component (N);
6948 return;
6950 elsif Ekind (Selector) = E_Component
6951 and then (not Is_Entity_Name (P)
6952 or else Chars (Entity (P)) /= Name_uInit)
6953 then
6954 -- Check if we already have an available subtype we can use
6956 if Ekind (Etype (P)) = E_Record_Subtype
6957 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
6958 and then Is_Array_Type (Etype (Selector))
6959 and then not Is_Packed (Etype (Selector))
6960 and then Available_Subtype
6961 then
6962 return;
6964 -- Do not build the subtype when referencing components of
6965 -- dispatch table wrappers. Required to avoid generating
6966 -- elaboration code with HI runtimes.
6968 elsif RTU_Loaded (Ada_Tags)
6969 and then
6970 ((RTE_Available (RE_Dispatch_Table_Wrapper)
6971 and then Scope (Selector) =
6972 RTE (RE_Dispatch_Table_Wrapper))
6973 or else
6974 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
6975 and then Scope (Selector) =
6976 RTE (RE_No_Dispatch_Table_Wrapper)))
6977 then
6978 C_Etype := Empty;
6979 else
6980 C_Etype :=
6981 Build_Actual_Subtype_Of_Component
6982 (Etype (Selector), N);
6983 end if;
6985 else
6986 C_Etype := Empty;
6987 end if;
6989 if No (C_Etype) then
6990 C_Etype := Etype (Selector);
6991 else
6992 Insert_Action (N, C_Etype);
6993 C_Etype := Defining_Identifier (C_Etype);
6994 end if;
6996 Set_Etype (N, C_Etype);
6997 end;
6999 -- If this is the name of an entry or protected operation, and
7000 -- the prefix is an access type, insert an explicit dereference,
7001 -- so that entry calls are treated uniformly.
7003 if Is_Access_Type (Etype (P))
7004 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
7005 then
7006 declare
7007 New_P : constant Node_Id :=
7008 Make_Explicit_Dereference (Sloc (P),
7009 Prefix => Relocate_Node (P));
7010 begin
7011 Rewrite (P, New_P);
7012 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
7013 end;
7014 end if;
7016 -- If the selected component appears within a default expression
7017 -- and it has an actual subtype, the pre-analysis has not yet
7018 -- completed its analysis, because Insert_Actions is disabled in
7019 -- that context. Within the init proc of the enclosing type we
7020 -- must complete this analysis, if an actual subtype was created.
7022 elsif Inside_Init_Proc then
7023 declare
7024 Typ : constant Entity_Id := Etype (N);
7025 Decl : constant Node_Id := Declaration_Node (Typ);
7026 begin
7027 if Nkind (Decl) = N_Subtype_Declaration
7028 and then not Analyzed (Decl)
7029 and then Is_List_Member (Decl)
7030 and then No (Parent (Decl))
7031 then
7032 Remove (Decl);
7033 Insert_Action (N, Decl);
7034 end if;
7035 end;
7036 end if;
7038 return;
7040 elsif Is_Entity_Name (P) then
7041 P_Name := Entity (P);
7043 -- The prefix may denote an enclosing type which is the completion
7044 -- of an incomplete type declaration.
7046 if Is_Type (P_Name) then
7047 Set_Entity (P, Get_Full_View (P_Name));
7048 Set_Etype (P, Entity (P));
7049 P_Name := Entity (P);
7050 end if;
7052 P_Type := Base_Type (Etype (P));
7054 if Debug_Flag_E then
7055 Write_Str ("Found prefix type to be ");
7056 Write_Entity_Info (P_Type, " "); Write_Eol;
7057 end if;
7059 -- The designated type may be a limited view with no components.
7060 -- Check whether the non-limited view is available, because in some
7061 -- cases this will not be set when installing the context. Rewrite
7062 -- the node by introducing an explicit dereference at once, and
7063 -- setting the type of the rewritten prefix to the non-limited view
7064 -- of the original designated type.
7066 if Is_Access_Type (P_Type) then
7067 declare
7068 Desig_Typ : constant Entity_Id :=
7069 Directly_Designated_Type (P_Type);
7071 begin
7072 if Is_Incomplete_Type (Desig_Typ)
7073 and then From_Limited_With (Desig_Typ)
7074 and then Present (Non_Limited_View (Desig_Typ))
7075 then
7076 Rewrite (P,
7077 Make_Explicit_Dereference (Sloc (P),
7078 Prefix => Relocate_Node (P)));
7080 Set_Etype (P, Get_Full_View (Non_Limited_View (Desig_Typ)));
7081 P_Type := Etype (P);
7082 end if;
7083 end;
7084 end if;
7086 -- First check for components of a record object (not the
7087 -- result of a call, which is handled below).
7089 if Is_Appropriate_For_Record (P_Type)
7090 and then not Is_Overloadable (P_Name)
7091 and then not Is_Type (P_Name)
7092 then
7093 -- Selected component of record. Type checking will validate
7094 -- name of selector.
7096 -- ??? Could we rewrite an implicit dereference into an explicit
7097 -- one here?
7099 Analyze_Selected_Component (N);
7101 -- Reference to type name in predicate/invariant expression
7103 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
7104 and then not In_Open_Scopes (P_Name)
7105 and then (not Is_Concurrent_Type (Etype (P_Name))
7106 or else not In_Open_Scopes (Etype (P_Name)))
7107 then
7108 -- Call to protected operation or entry. Type checking is
7109 -- needed on the prefix.
7111 Analyze_Selected_Component (N);
7113 elsif (In_Open_Scopes (P_Name)
7114 and then Ekind (P_Name) /= E_Void
7115 and then not Is_Overloadable (P_Name))
7116 or else (Is_Concurrent_Type (Etype (P_Name))
7117 and then In_Open_Scopes (Etype (P_Name)))
7118 then
7119 -- Prefix denotes an enclosing loop, block, or task, i.e. an
7120 -- enclosing construct that is not a subprogram or accept.
7122 -- A special case: a protected body may call an operation
7123 -- on an external object of the same type, in which case it
7124 -- is not an expanded name. If the prefix is the type itself,
7125 -- or the context is a single synchronized object it can only
7126 -- be interpreted as an expanded name.
7128 if Is_Concurrent_Type (Etype (P_Name)) then
7129 if Is_Type (P_Name)
7130 or else Present (Anonymous_Object (Etype (P_Name)))
7131 then
7132 Find_Expanded_Name (N);
7134 else
7135 Analyze_Selected_Component (N);
7136 return;
7137 end if;
7139 else
7140 Find_Expanded_Name (N);
7141 end if;
7143 elsif Ekind (P_Name) = E_Package then
7144 Find_Expanded_Name (N);
7146 elsif Is_Overloadable (P_Name) then
7148 -- The subprogram may be a renaming (of an enclosing scope) as
7149 -- in the case of the name of the generic within an instantiation.
7151 if Ekind_In (P_Name, E_Procedure, E_Function)
7152 and then Present (Alias (P_Name))
7153 and then Is_Generic_Instance (Alias (P_Name))
7154 then
7155 P_Name := Alias (P_Name);
7156 end if;
7158 if Is_Overloaded (P) then
7160 -- The prefix must resolve to a unique enclosing construct
7162 declare
7163 Found : Boolean := False;
7164 Ind : Interp_Index;
7165 It : Interp;
7167 begin
7168 Get_First_Interp (P, Ind, It);
7169 while Present (It.Nam) loop
7170 if In_Open_Scopes (It.Nam) then
7171 if Found then
7172 Error_Msg_N (
7173 "prefix must be unique enclosing scope", N);
7174 Set_Entity (N, Any_Id);
7175 Set_Etype (N, Any_Type);
7176 return;
7178 else
7179 Found := True;
7180 P_Name := It.Nam;
7181 end if;
7182 end if;
7184 Get_Next_Interp (Ind, It);
7185 end loop;
7186 end;
7187 end if;
7189 if In_Open_Scopes (P_Name) then
7190 Set_Entity (P, P_Name);
7191 Set_Is_Overloaded (P, False);
7192 Find_Expanded_Name (N);
7194 else
7195 -- If no interpretation as an expanded name is possible, it
7196 -- must be a selected component of a record returned by a
7197 -- function call. Reformat prefix as a function call, the rest
7198 -- is done by type resolution.
7200 -- Error if the prefix is procedure or entry, as is P.X
7202 if Ekind (P_Name) /= E_Function
7203 and then
7204 (not Is_Overloaded (P)
7205 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
7206 then
7207 -- Prefix may mention a package that is hidden by a local
7208 -- declaration: let the user know. Scan the full homonym
7209 -- chain, the candidate package may be anywhere on it.
7211 if Present (Homonym (Current_Entity (P_Name))) then
7212 P_Name := Current_Entity (P_Name);
7214 while Present (P_Name) loop
7215 exit when Ekind (P_Name) = E_Package;
7216 P_Name := Homonym (P_Name);
7217 end loop;
7219 if Present (P_Name) then
7220 if not Is_Reference_In_Subunit then
7221 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
7222 Error_Msg_NE
7223 ("package& is hidden by declaration#", N, P_Name);
7224 end if;
7226 Set_Entity (Prefix (N), P_Name);
7227 Find_Expanded_Name (N);
7228 return;
7230 else
7231 P_Name := Entity (Prefix (N));
7232 end if;
7233 end if;
7235 Error_Msg_NE
7236 ("invalid prefix in selected component&", N, P_Name);
7237 Change_Selected_Component_To_Expanded_Name (N);
7238 Set_Entity (N, Any_Id);
7239 Set_Etype (N, Any_Type);
7241 -- Here we have a function call, so do the reformatting
7243 else
7244 Nam := New_Copy (P);
7245 Save_Interps (P, Nam);
7247 -- We use Replace here because this is one of those cases
7248 -- where the parser has missclassified the node, and we fix
7249 -- things up and then do the semantic analysis on the fixed
7250 -- up node. Normally we do this using one of the Sinfo.CN
7251 -- routines, but this is too tricky for that.
7253 -- Note that using Rewrite would be wrong, because we would
7254 -- have a tree where the original node is unanalyzed, and
7255 -- this violates the required interface for ASIS.
7257 Replace (P,
7258 Make_Function_Call (Sloc (P), Name => Nam));
7260 -- Now analyze the reformatted node
7262 Analyze_Call (P);
7264 -- If the prefix is illegal after this transformation, there
7265 -- may be visibility errors on the prefix. The safest is to
7266 -- treat the selected component as an error.
7268 if Error_Posted (P) then
7269 Set_Etype (N, Any_Type);
7270 return;
7272 else
7273 Analyze_Selected_Component (N);
7274 end if;
7275 end if;
7276 end if;
7278 -- Remaining cases generate various error messages
7280 else
7281 -- Format node as expanded name, to avoid cascaded errors
7283 -- If the limited_with transformation was applied earlier, restore
7284 -- source for proper error reporting.
7286 if not Comes_From_Source (P)
7287 and then Nkind (P) = N_Explicit_Dereference
7288 then
7289 Rewrite (P, Prefix (P));
7290 P_Type := Etype (P);
7291 end if;
7293 Change_Selected_Component_To_Expanded_Name (N);
7294 Set_Entity (N, Any_Id);
7295 Set_Etype (N, Any_Type);
7297 -- Issue error message, but avoid this if error issued already.
7298 -- Use identifier of prefix if one is available.
7300 if P_Name = Any_Id then
7301 null;
7303 -- It is not an error if the prefix is the current instance of
7304 -- type name, e.g. the expression of a type aspect, when it is
7305 -- analyzed for ASIS use.
7307 elsif Is_Entity_Name (P) and then Is_Current_Instance (P) then
7308 null;
7310 elsif Ekind (P_Name) = E_Void then
7311 Premature_Usage (P);
7313 elsif Nkind (P) /= N_Attribute_Reference then
7315 -- This may have been meant as a prefixed call to a primitive
7316 -- of an untagged type. If it is a function call check type of
7317 -- its first formal and add explanation.
7319 declare
7320 F : constant Entity_Id :=
7321 Current_Entity (Selector_Name (N));
7322 begin
7323 if Present (F)
7324 and then Is_Overloadable (F)
7325 and then Present (First_Entity (F))
7326 and then not Is_Tagged_Type (Etype (First_Entity (F)))
7327 then
7328 Error_Msg_N
7329 ("prefixed call is only allowed for objects of a "
7330 & "tagged type", N);
7331 end if;
7332 end;
7334 Error_Msg_N ("invalid prefix in selected component&", P);
7336 if Is_Access_Type (P_Type)
7337 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
7338 then
7339 Error_Msg_N
7340 ("\dereference must not be of an incomplete type "
7341 & "(RM 3.10.1)", P);
7342 end if;
7344 else
7345 Error_Msg_N ("invalid prefix in selected component", P);
7346 end if;
7347 end if;
7349 -- Selector name is restricted in SPARK
7351 if Nkind (N) = N_Expanded_Name
7352 and then Restriction_Check_Required (SPARK_05)
7353 then
7354 if Is_Subprogram (P_Name) then
7355 Check_SPARK_05_Restriction
7356 ("prefix of expanded name cannot be a subprogram", P);
7357 elsif Ekind (P_Name) = E_Loop then
7358 Check_SPARK_05_Restriction
7359 ("prefix of expanded name cannot be a loop statement", P);
7360 end if;
7361 end if;
7363 else
7364 -- If prefix is not the name of an entity, it must be an expression,
7365 -- whose type is appropriate for a record. This is determined by
7366 -- type resolution.
7368 Analyze_Selected_Component (N);
7369 end if;
7371 Analyze_Dimension (N);
7372 end Find_Selected_Component;
7374 ---------------
7375 -- Find_Type --
7376 ---------------
7378 procedure Find_Type (N : Node_Id) is
7379 C : Entity_Id;
7380 Typ : Entity_Id;
7381 T : Entity_Id;
7382 T_Name : Entity_Id;
7384 begin
7385 if N = Error then
7386 return;
7388 elsif Nkind (N) = N_Attribute_Reference then
7390 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7391 -- need to enforce that at this point, since the declaration of the
7392 -- tagged type in the prefix would have been flagged already.
7394 if Attribute_Name (N) = Name_Class then
7395 Check_Restriction (No_Dispatch, N);
7396 Find_Type (Prefix (N));
7398 -- Propagate error from bad prefix
7400 if Etype (Prefix (N)) = Any_Type then
7401 Set_Entity (N, Any_Type);
7402 Set_Etype (N, Any_Type);
7403 return;
7404 end if;
7406 T := Base_Type (Entity (Prefix (N)));
7408 -- Case where type is not known to be tagged. Its appearance in
7409 -- the prefix of the 'Class attribute indicates that the full view
7410 -- will be tagged.
7412 if not Is_Tagged_Type (T) then
7413 if Ekind (T) = E_Incomplete_Type then
7415 -- It is legal to denote the class type of an incomplete
7416 -- type. The full type will have to be tagged, of course.
7417 -- In Ada 2005 this usage is declared obsolescent, so we
7418 -- warn accordingly. This usage is only legal if the type
7419 -- is completed in the current scope, and not for a limited
7420 -- view of a type.
7422 if Ada_Version >= Ada_2005 then
7424 -- Test whether the Available_View of a limited type view
7425 -- is tagged, since the limited view may not be marked as
7426 -- tagged if the type itself has an untagged incomplete
7427 -- type view in its package.
7429 if From_Limited_With (T)
7430 and then not Is_Tagged_Type (Available_View (T))
7431 then
7432 Error_Msg_N
7433 ("prefix of Class attribute must be tagged", N);
7434 Set_Etype (N, Any_Type);
7435 Set_Entity (N, Any_Type);
7436 return;
7438 -- ??? This test is temporarily disabled (always
7439 -- False) because it causes an unwanted warning on
7440 -- GNAT sources (built with -gnatg, which includes
7441 -- Warn_On_Obsolescent_ Feature). Once this issue
7442 -- is cleared in the sources, it can be enabled.
7444 elsif Warn_On_Obsolescent_Feature and then False then
7445 Error_Msg_N
7446 ("applying 'Class to an untagged incomplete type"
7447 & " is an obsolescent feature (RM J.11)?r?", N);
7448 end if;
7449 end if;
7451 Set_Is_Tagged_Type (T);
7452 Set_Direct_Primitive_Operations (T, New_Elmt_List);
7453 Make_Class_Wide_Type (T);
7454 Set_Entity (N, Class_Wide_Type (T));
7455 Set_Etype (N, Class_Wide_Type (T));
7457 elsif Ekind (T) = E_Private_Type
7458 and then not Is_Generic_Type (T)
7459 and then In_Private_Part (Scope (T))
7460 then
7461 -- The Class attribute can be applied to an untagged private
7462 -- type fulfilled by a tagged type prior to the full type
7463 -- declaration (but only within the parent package's private
7464 -- part). Create the class-wide type now and check that the
7465 -- full type is tagged later during its analysis. Note that
7466 -- we do not mark the private type as tagged, unlike the
7467 -- case of incomplete types, because the type must still
7468 -- appear untagged to outside units.
7470 if No (Class_Wide_Type (T)) then
7471 Make_Class_Wide_Type (T);
7472 end if;
7474 Set_Entity (N, Class_Wide_Type (T));
7475 Set_Etype (N, Class_Wide_Type (T));
7477 else
7478 -- Should we introduce a type Any_Tagged and use Wrong_Type
7479 -- here, it would be a bit more consistent???
7481 Error_Msg_NE
7482 ("tagged type required, found}",
7483 Prefix (N), First_Subtype (T));
7484 Set_Entity (N, Any_Type);
7485 return;
7486 end if;
7488 -- Case of tagged type
7490 else
7491 if Is_Concurrent_Type (T) then
7492 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
7494 -- Previous error. Create a class-wide type for the
7495 -- synchronized type itself, with minimal semantic
7496 -- attributes, to catch other errors in some ACATS tests.
7498 pragma Assert (Serious_Errors_Detected /= 0);
7499 Make_Class_Wide_Type (T);
7500 C := Class_Wide_Type (T);
7501 Set_First_Entity (C, First_Entity (T));
7503 else
7504 C := Class_Wide_Type
7505 (Corresponding_Record_Type (Entity (Prefix (N))));
7506 end if;
7508 else
7509 C := Class_Wide_Type (Entity (Prefix (N)));
7510 end if;
7512 Set_Entity_With_Checks (N, C);
7513 Generate_Reference (C, N);
7514 Set_Etype (N, C);
7515 end if;
7517 -- Base attribute, not allowed in Ada 83
7519 elsif Attribute_Name (N) = Name_Base then
7520 Error_Msg_Name_1 := Name_Base;
7521 Check_SPARK_05_Restriction
7522 ("attribute% is only allowed as prefix of another attribute", N);
7524 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
7525 Error_Msg_N
7526 ("(Ada 83) Base attribute not allowed in subtype mark", N);
7528 else
7529 Find_Type (Prefix (N));
7530 Typ := Entity (Prefix (N));
7532 if Ada_Version >= Ada_95
7533 and then not Is_Scalar_Type (Typ)
7534 and then not Is_Generic_Type (Typ)
7535 then
7536 Error_Msg_N
7537 ("prefix of Base attribute must be scalar type",
7538 Prefix (N));
7540 elsif Warn_On_Redundant_Constructs
7541 and then Base_Type (Typ) = Typ
7542 then
7543 Error_Msg_NE -- CODEFIX
7544 ("redundant attribute, & is its own base type?r?", N, Typ);
7545 end if;
7547 T := Base_Type (Typ);
7549 -- Rewrite attribute reference with type itself (see similar
7550 -- processing in Analyze_Attribute, case Base). Preserve prefix
7551 -- if present, for other legality checks.
7553 if Nkind (Prefix (N)) = N_Expanded_Name then
7554 Rewrite (N,
7555 Make_Expanded_Name (Sloc (N),
7556 Chars => Chars (T),
7557 Prefix => New_Copy (Prefix (Prefix (N))),
7558 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7560 else
7561 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7562 end if;
7564 Set_Entity (N, T);
7565 Set_Etype (N, T);
7566 end if;
7568 elsif Attribute_Name (N) = Name_Stub_Type then
7570 -- This is handled in Analyze_Attribute
7572 Analyze (N);
7574 -- All other attributes are invalid in a subtype mark
7576 else
7577 Error_Msg_N ("invalid attribute in subtype mark", N);
7578 end if;
7580 else
7581 Analyze (N);
7583 if Is_Entity_Name (N) then
7584 T_Name := Entity (N);
7585 else
7586 Error_Msg_N ("subtype mark required in this context", N);
7587 Set_Etype (N, Any_Type);
7588 return;
7589 end if;
7591 if T_Name = Any_Id or else Etype (N) = Any_Type then
7593 -- Undefined id. Make it into a valid type
7595 Set_Entity (N, Any_Type);
7597 elsif not Is_Type (T_Name)
7598 and then T_Name /= Standard_Void_Type
7599 then
7600 Error_Msg_Sloc := Sloc (T_Name);
7601 Error_Msg_N ("subtype mark required in this context", N);
7602 Error_Msg_NE ("\\found & declared#", N, T_Name);
7603 Set_Entity (N, Any_Type);
7605 else
7606 -- If the type is an incomplete type created to handle
7607 -- anonymous access components of a record type, then the
7608 -- incomplete type is the visible entity and subsequent
7609 -- references will point to it. Mark the original full
7610 -- type as referenced, to prevent spurious warnings.
7612 if Is_Incomplete_Type (T_Name)
7613 and then Present (Full_View (T_Name))
7614 and then not Comes_From_Source (T_Name)
7615 then
7616 Set_Referenced (Full_View (T_Name));
7617 end if;
7619 T_Name := Get_Full_View (T_Name);
7621 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7622 -- limited-with clauses
7624 if From_Limited_With (T_Name)
7625 and then Ekind (T_Name) in Incomplete_Kind
7626 and then Present (Non_Limited_View (T_Name))
7627 and then Is_Interface (Non_Limited_View (T_Name))
7628 then
7629 T_Name := Non_Limited_View (T_Name);
7630 end if;
7632 if In_Open_Scopes (T_Name) then
7633 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7635 -- In Ada 2005, a task name can be used in an access
7636 -- definition within its own body. It cannot be used
7637 -- in the discriminant part of the task declaration,
7638 -- nor anywhere else in the declaration because entries
7639 -- cannot have access parameters.
7641 if Ada_Version >= Ada_2005
7642 and then Nkind (Parent (N)) = N_Access_Definition
7643 then
7644 Set_Entity (N, T_Name);
7645 Set_Etype (N, T_Name);
7647 if Has_Completion (T_Name) then
7648 return;
7650 else
7651 Error_Msg_N
7652 ("task type cannot be used as type mark " &
7653 "within its own declaration", N);
7654 end if;
7656 else
7657 Error_Msg_N
7658 ("task type cannot be used as type mark " &
7659 "within its own spec or body", N);
7660 end if;
7662 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7664 -- In Ada 2005, a protected name can be used in an access
7665 -- definition within its own body.
7667 if Ada_Version >= Ada_2005
7668 and then Nkind (Parent (N)) = N_Access_Definition
7669 then
7670 Set_Entity (N, T_Name);
7671 Set_Etype (N, T_Name);
7672 return;
7674 else
7675 Error_Msg_N
7676 ("protected type cannot be used as type mark " &
7677 "within its own spec or body", N);
7678 end if;
7680 else
7681 Error_Msg_N ("type declaration cannot refer to itself", N);
7682 end if;
7684 Set_Etype (N, Any_Type);
7685 Set_Entity (N, Any_Type);
7686 Set_Error_Posted (T_Name);
7687 return;
7688 end if;
7690 Set_Entity (N, T_Name);
7691 Set_Etype (N, T_Name);
7692 end if;
7693 end if;
7695 if Present (Etype (N)) and then Comes_From_Source (N) then
7696 if Is_Fixed_Point_Type (Etype (N)) then
7697 Check_Restriction (No_Fixed_Point, N);
7698 elsif Is_Floating_Point_Type (Etype (N)) then
7699 Check_Restriction (No_Floating_Point, N);
7700 end if;
7702 -- A Ghost type must appear in a specific context
7704 if Is_Ghost_Entity (Etype (N)) then
7705 Check_Ghost_Context (Etype (N), N);
7706 end if;
7707 end if;
7708 end Find_Type;
7710 ------------------------------------
7711 -- Has_Implicit_Character_Literal --
7712 ------------------------------------
7714 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7715 Id : Entity_Id;
7716 Found : Boolean := False;
7717 P : constant Entity_Id := Entity (Prefix (N));
7718 Priv_Id : Entity_Id := Empty;
7720 begin
7721 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7722 Priv_Id := First_Private_Entity (P);
7723 end if;
7725 if P = Standard_Standard then
7726 Change_Selected_Component_To_Expanded_Name (N);
7727 Rewrite (N, Selector_Name (N));
7728 Analyze (N);
7729 Set_Etype (Original_Node (N), Standard_Character);
7730 return True;
7731 end if;
7733 Id := First_Entity (P);
7734 while Present (Id) and then Id /= Priv_Id loop
7735 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7737 -- We replace the node with the literal itself, resolve as a
7738 -- character, and set the type correctly.
7740 if not Found then
7741 Change_Selected_Component_To_Expanded_Name (N);
7742 Rewrite (N, Selector_Name (N));
7743 Analyze (N);
7744 Set_Etype (N, Id);
7745 Set_Etype (Original_Node (N), Id);
7746 Found := True;
7748 else
7749 -- More than one type derived from Character in given scope.
7750 -- Collect all possible interpretations.
7752 Add_One_Interp (N, Id, Id);
7753 end if;
7754 end if;
7756 Next_Entity (Id);
7757 end loop;
7759 return Found;
7760 end Has_Implicit_Character_Literal;
7762 ----------------------
7763 -- Has_Private_With --
7764 ----------------------
7766 function Has_Private_With (E : Entity_Id) return Boolean is
7767 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7768 Item : Node_Id;
7770 begin
7771 Item := First (Context_Items (Comp_Unit));
7772 while Present (Item) loop
7773 if Nkind (Item) = N_With_Clause
7774 and then Private_Present (Item)
7775 and then Entity (Name (Item)) = E
7776 then
7777 return True;
7778 end if;
7780 Next (Item);
7781 end loop;
7783 return False;
7784 end Has_Private_With;
7786 ---------------------------
7787 -- Has_Implicit_Operator --
7788 ---------------------------
7790 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7791 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7792 P : constant Entity_Id := Entity (Prefix (N));
7793 Id : Entity_Id;
7794 Priv_Id : Entity_Id := Empty;
7796 procedure Add_Implicit_Operator
7797 (T : Entity_Id;
7798 Op_Type : Entity_Id := Empty);
7799 -- Add implicit interpretation to node N, using the type for which a
7800 -- predefined operator exists. If the operator yields a boolean type,
7801 -- the Operand_Type is implicitly referenced by the operator, and a
7802 -- reference to it must be generated.
7804 ---------------------------
7805 -- Add_Implicit_Operator --
7806 ---------------------------
7808 procedure Add_Implicit_Operator
7809 (T : Entity_Id;
7810 Op_Type : Entity_Id := Empty)
7812 Predef_Op : Entity_Id;
7814 begin
7815 Predef_Op := Current_Entity (Selector_Name (N));
7816 while Present (Predef_Op)
7817 and then Scope (Predef_Op) /= Standard_Standard
7818 loop
7819 Predef_Op := Homonym (Predef_Op);
7820 end loop;
7822 if Nkind (N) = N_Selected_Component then
7823 Change_Selected_Component_To_Expanded_Name (N);
7824 end if;
7826 -- If the context is an unanalyzed function call, determine whether
7827 -- a binary or unary interpretation is required.
7829 if Nkind (Parent (N)) = N_Indexed_Component then
7830 declare
7831 Is_Binary_Call : constant Boolean :=
7832 Present
7833 (Next (First (Expressions (Parent (N)))));
7834 Is_Binary_Op : constant Boolean :=
7835 First_Entity
7836 (Predef_Op) /= Last_Entity (Predef_Op);
7837 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7839 begin
7840 if Is_Binary_Call then
7841 if Is_Binary_Op then
7842 Add_One_Interp (N, Predef_Op, T);
7843 else
7844 Add_One_Interp (N, Predef_Op2, T);
7845 end if;
7847 else
7848 if not Is_Binary_Op then
7849 Add_One_Interp (N, Predef_Op, T);
7850 else
7851 Add_One_Interp (N, Predef_Op2, T);
7852 end if;
7853 end if;
7854 end;
7856 else
7857 Add_One_Interp (N, Predef_Op, T);
7859 -- For operators with unary and binary interpretations, if
7860 -- context is not a call, add both
7862 if Present (Homonym (Predef_Op)) then
7863 Add_One_Interp (N, Homonym (Predef_Op), T);
7864 end if;
7865 end if;
7867 -- The node is a reference to a predefined operator, and
7868 -- an implicit reference to the type of its operands.
7870 if Present (Op_Type) then
7871 Generate_Operator_Reference (N, Op_Type);
7872 else
7873 Generate_Operator_Reference (N, T);
7874 end if;
7875 end Add_Implicit_Operator;
7877 -- Start of processing for Has_Implicit_Operator
7879 begin
7880 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7881 Priv_Id := First_Private_Entity (P);
7882 end if;
7884 Id := First_Entity (P);
7886 case Op_Id is
7888 -- Boolean operators: an implicit declaration exists if the scope
7889 -- contains a declaration for a derived Boolean type, or for an
7890 -- array of Boolean type.
7892 when Name_Op_And
7893 | Name_Op_Not
7894 | Name_Op_Or
7895 | Name_Op_Xor
7897 while Id /= Priv_Id loop
7898 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
7899 Add_Implicit_Operator (Id);
7900 return True;
7901 end if;
7903 Next_Entity (Id);
7904 end loop;
7906 -- Equality: look for any non-limited type (result is Boolean)
7908 when Name_Op_Eq
7909 | Name_Op_Ne
7911 while Id /= Priv_Id loop
7912 if Is_Type (Id)
7913 and then not Is_Limited_Type (Id)
7914 and then Is_Base_Type (Id)
7915 then
7916 Add_Implicit_Operator (Standard_Boolean, Id);
7917 return True;
7918 end if;
7920 Next_Entity (Id);
7921 end loop;
7923 -- Comparison operators: scalar type, or array of scalar
7925 when Name_Op_Ge
7926 | Name_Op_Gt
7927 | Name_Op_Le
7928 | Name_Op_Lt
7930 while Id /= Priv_Id loop
7931 if (Is_Scalar_Type (Id)
7932 or else (Is_Array_Type (Id)
7933 and then Is_Scalar_Type (Component_Type (Id))))
7934 and then Is_Base_Type (Id)
7935 then
7936 Add_Implicit_Operator (Standard_Boolean, Id);
7937 return True;
7938 end if;
7940 Next_Entity (Id);
7941 end loop;
7943 -- Arithmetic operators: any numeric type
7945 when Name_Op_Abs
7946 | Name_Op_Add
7947 | Name_Op_Divide
7948 | Name_Op_Expon
7949 | Name_Op_Mod
7950 | Name_Op_Multiply
7951 | Name_Op_Rem
7952 | Name_Op_Subtract
7954 while Id /= Priv_Id loop
7955 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
7956 Add_Implicit_Operator (Id);
7957 return True;
7958 end if;
7960 Next_Entity (Id);
7961 end loop;
7963 -- Concatenation: any one-dimensional array type
7965 when Name_Op_Concat =>
7966 while Id /= Priv_Id loop
7967 if Is_Array_Type (Id)
7968 and then Number_Dimensions (Id) = 1
7969 and then Is_Base_Type (Id)
7970 then
7971 Add_Implicit_Operator (Id);
7972 return True;
7973 end if;
7975 Next_Entity (Id);
7976 end loop;
7978 -- What is the others condition here? Should we be using a
7979 -- subtype of Name_Id that would restrict to operators ???
7981 when others =>
7982 null;
7983 end case;
7985 -- If we fall through, then we do not have an implicit operator
7987 return False;
7988 end Has_Implicit_Operator;
7990 -----------------------------------
7991 -- Has_Loop_In_Inner_Open_Scopes --
7992 -----------------------------------
7994 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
7995 begin
7996 -- Several scope stacks are maintained by Scope_Stack. The base of the
7997 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7998 -- flag in the scope stack entry. Note that the scope stacks used to
7999 -- simply be delimited implicitly by the presence of Standard_Standard
8000 -- at their base, but there now are cases where this is not sufficient
8001 -- because Standard_Standard actually may appear in the middle of the
8002 -- active set of scopes.
8004 for J in reverse 0 .. Scope_Stack.Last loop
8006 -- S was reached without seing a loop scope first
8008 if Scope_Stack.Table (J).Entity = S then
8009 return False;
8011 -- S was not yet reached, so it contains at least one inner loop
8013 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
8014 return True;
8015 end if;
8017 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8018 -- cases where Standard_Standard appears in the middle of the active
8019 -- set of scopes. This affects the declaration and overriding of
8020 -- private inherited operations in instantiations of generic child
8021 -- units.
8023 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
8024 end loop;
8026 raise Program_Error; -- unreachable
8027 end Has_Loop_In_Inner_Open_Scopes;
8029 --------------------
8030 -- In_Open_Scopes --
8031 --------------------
8033 function In_Open_Scopes (S : Entity_Id) return Boolean is
8034 begin
8035 -- Several scope stacks are maintained by Scope_Stack. The base of the
8036 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8037 -- flag in the scope stack entry. Note that the scope stacks used to
8038 -- simply be delimited implicitly by the presence of Standard_Standard
8039 -- at their base, but there now are cases where this is not sufficient
8040 -- because Standard_Standard actually may appear in the middle of the
8041 -- active set of scopes.
8043 for J in reverse 0 .. Scope_Stack.Last loop
8044 if Scope_Stack.Table (J).Entity = S then
8045 return True;
8046 end if;
8048 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8049 -- cases where Standard_Standard appears in the middle of the active
8050 -- set of scopes. This affects the declaration and overriding of
8051 -- private inherited operations in instantiations of generic child
8052 -- units.
8054 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
8055 end loop;
8057 return False;
8058 end In_Open_Scopes;
8060 -----------------------------
8061 -- Inherit_Renamed_Profile --
8062 -----------------------------
8064 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
8065 New_F : Entity_Id;
8066 Old_F : Entity_Id;
8067 Old_T : Entity_Id;
8068 New_T : Entity_Id;
8070 begin
8071 if Ekind (Old_S) = E_Operator then
8072 New_F := First_Formal (New_S);
8074 while Present (New_F) loop
8075 Set_Etype (New_F, Base_Type (Etype (New_F)));
8076 Next_Formal (New_F);
8077 end loop;
8079 Set_Etype (New_S, Base_Type (Etype (New_S)));
8081 else
8082 New_F := First_Formal (New_S);
8083 Old_F := First_Formal (Old_S);
8085 while Present (New_F) loop
8086 New_T := Etype (New_F);
8087 Old_T := Etype (Old_F);
8089 -- If the new type is a renaming of the old one, as is the case
8090 -- for actuals in instances, retain its name, to simplify later
8091 -- disambiguation.
8093 if Nkind (Parent (New_T)) = N_Subtype_Declaration
8094 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
8095 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
8096 then
8097 null;
8098 else
8099 Set_Etype (New_F, Old_T);
8100 end if;
8102 Next_Formal (New_F);
8103 Next_Formal (Old_F);
8104 end loop;
8106 pragma Assert (No (Old_F));
8108 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
8109 Set_Etype (New_S, Etype (Old_S));
8110 end if;
8111 end if;
8112 end Inherit_Renamed_Profile;
8114 ----------------
8115 -- Initialize --
8116 ----------------
8118 procedure Initialize is
8119 begin
8120 Urefs.Init;
8121 end Initialize;
8123 -------------------------
8124 -- Install_Use_Clauses --
8125 -------------------------
8127 procedure Install_Use_Clauses
8128 (Clause : Node_Id;
8129 Force_Installation : Boolean := False)
8131 U : Node_Id;
8133 begin
8134 U := Clause;
8135 while Present (U) loop
8137 -- Case of USE package
8139 if Nkind (U) = N_Use_Package_Clause then
8140 Use_One_Package (U, Name (U), True);
8142 -- Case of USE TYPE
8144 else
8145 Use_One_Type (Subtype_Mark (U), Force => Force_Installation);
8147 end if;
8149 Next_Use_Clause (U);
8150 end loop;
8151 end Install_Use_Clauses;
8153 -------------------------------------
8154 -- Is_Appropriate_For_Entry_Prefix --
8155 -------------------------------------
8157 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
8158 P_Type : Entity_Id := T;
8160 begin
8161 if Is_Access_Type (P_Type) then
8162 P_Type := Designated_Type (P_Type);
8163 end if;
8165 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
8166 end Is_Appropriate_For_Entry_Prefix;
8168 -------------------------------
8169 -- Is_Appropriate_For_Record --
8170 -------------------------------
8172 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
8174 function Has_Components (T1 : Entity_Id) return Boolean;
8175 -- Determine if given type has components (i.e. is either a record
8176 -- type or a type that has discriminants).
8178 --------------------
8179 -- Has_Components --
8180 --------------------
8182 function Has_Components (T1 : Entity_Id) return Boolean is
8183 begin
8184 return Is_Record_Type (T1)
8185 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
8186 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
8187 or else (Is_Incomplete_Type (T1)
8188 and then From_Limited_With (T1)
8189 and then Present (Non_Limited_View (T1))
8190 and then Is_Record_Type
8191 (Get_Full_View (Non_Limited_View (T1))));
8192 end Has_Components;
8194 -- Start of processing for Is_Appropriate_For_Record
8196 begin
8197 return
8198 Present (T)
8199 and then (Has_Components (T)
8200 or else (Is_Access_Type (T)
8201 and then Has_Components (Designated_Type (T))));
8202 end Is_Appropriate_For_Record;
8204 ----------------------
8205 -- Mark_Use_Clauses --
8206 ----------------------
8208 procedure Mark_Use_Clauses (Id : Node_Or_Entity_Id) is
8209 procedure Mark_Parameters (Call : Entity_Id);
8210 -- Perform use_type_clause marking for all parameters in a subprogram
8211 -- or operator call.
8213 procedure Mark_Use_Package (Pak : Entity_Id);
8214 -- Move up the Prev_Use_Clause chain for packages denoted by Pak -
8215 -- marking each clause in the chain as effective in the process.
8217 procedure Mark_Use_Type (E : Entity_Id);
8218 -- Similar to Do_Use_Package_Marking except we move up the
8219 -- Prev_Use_Clause chain for the type denoted by E.
8221 ---------------------
8222 -- Mark_Parameters --
8223 ---------------------
8225 procedure Mark_Parameters (Call : Entity_Id) is
8226 Curr : Node_Id;
8228 begin
8229 -- Move through all of the formals
8231 Curr := First_Formal (Call);
8232 while Present (Curr) loop
8233 Mark_Use_Type (Curr);
8235 Curr := Next_Formal (Curr);
8236 end loop;
8238 -- Handle the return type
8240 Mark_Use_Type (Call);
8241 end Mark_Parameters;
8243 ----------------------
8244 -- Mark_Use_Package --
8245 ----------------------
8247 procedure Mark_Use_Package (Pak : Entity_Id) is
8248 Curr : Node_Id;
8250 begin
8251 -- Ignore cases where the scope of the type is not a package (e.g.
8252 -- Standard_Standard).
8254 if Ekind (Pak) /= E_Package then
8255 return;
8256 end if;
8258 Curr := Current_Use_Clause (Pak);
8259 while Present (Curr)
8260 and then not Is_Effective_Use_Clause (Curr)
8261 loop
8262 -- We need to mark the previous use clauses as effective, but
8263 -- each use clause may in turn render other use_package_clauses
8264 -- effective. Additionally, it is possible to have a parent
8265 -- package renamed as a child of itself so we must check the
8266 -- prefix entity is not the same as the package we are marking.
8268 if Nkind (Name (Curr)) /= N_Identifier
8269 and then Present (Prefix (Name (Curr)))
8270 and then Entity (Prefix (Name (Curr))) /= Pak
8271 then
8272 Mark_Use_Package (Entity (Prefix (Name (Curr))));
8274 -- It is also possible to have a child package without a prefix
8275 -- that relies on a previous use_package_clause.
8277 elsif Nkind (Name (Curr)) = N_Identifier
8278 and then Is_Child_Unit (Entity (Name (Curr)))
8279 then
8280 Mark_Use_Package (Scope (Entity (Name (Curr))));
8281 end if;
8283 -- Mark the use_package_clause as effective and move up the chain
8285 Set_Is_Effective_Use_Clause (Curr);
8287 Curr := Prev_Use_Clause (Curr);
8288 end loop;
8289 end Mark_Use_Package;
8291 -------------------
8292 -- Mark_Use_Type --
8293 -------------------
8295 procedure Mark_Use_Type (E : Entity_Id) is
8296 Curr : Node_Id;
8298 begin
8299 -- Ignore void types and unresolved string literals and primitives
8301 if Nkind (E) = N_String_Literal
8302 or else Nkind (Etype (E)) not in N_Entity
8303 or else not Is_Type (Etype (E))
8304 then
8305 return;
8306 end if;
8308 -- The package containing the type or operator function being used
8309 -- may be in use as well, so mark any use_package_clauses for it as
8310 -- effective. There are also additional sanity checks performed here
8311 -- for ignoring previous errors.
8313 Mark_Use_Package (Scope (Base_Type (Etype (E))));
8315 if Nkind (E) in N_Op
8316 and then Present (Entity (E))
8317 and then Present (Scope (Entity (E)))
8318 then
8319 Mark_Use_Package (Scope (Entity (E)));
8320 end if;
8322 Curr := Current_Use_Clause (Base_Type (Etype (E)));
8323 while Present (Curr)
8324 and then not Is_Effective_Use_Clause (Curr)
8325 loop
8326 -- Current use_type_clause may render other use_package_clauses
8327 -- effective.
8329 if Nkind (Subtype_Mark (Curr)) /= N_Identifier
8330 and then Present (Prefix (Subtype_Mark (Curr)))
8331 then
8332 Mark_Use_Package (Entity (Prefix (Subtype_Mark (Curr))));
8333 end if;
8335 -- Mark the use_type_clause as effective and move up the chain
8337 Set_Is_Effective_Use_Clause (Curr);
8339 Curr := Prev_Use_Clause (Curr);
8340 end loop;
8341 end Mark_Use_Type;
8343 -- Start of processing for Mark_Use_Clauses
8345 begin
8346 -- Use clauses in and of themselves do not count as a "use" of a
8347 -- package.
8349 if Nkind_In (Parent (Id), N_Use_Package_Clause, N_Use_Type_Clause) then
8350 return;
8351 end if;
8353 -- Handle entities
8355 if Nkind (Id) in N_Entity then
8357 -- Mark the entity's package
8359 if Is_Potentially_Use_Visible (Id) then
8360 Mark_Use_Package (Scope (Id));
8361 end if;
8363 -- Mark enumeration literals
8365 if Ekind (Id) = E_Enumeration_Literal then
8366 Mark_Use_Type (Id);
8368 -- Mark primitives
8370 elsif (Ekind (Id) in Overloadable_Kind
8371 or else Ekind_In (Id, E_Generic_Function,
8372 E_Generic_Procedure))
8373 and then (Is_Potentially_Use_Visible (Id)
8374 or else Is_Intrinsic_Subprogram (Id))
8375 then
8376 Mark_Parameters (Id);
8377 end if;
8379 -- Handle nodes
8381 else
8382 -- Mark operators
8384 if Nkind (Id) in N_Op then
8386 -- At this point the left operand may not be resolved if we are
8387 -- encountering multiple operators next to eachother in an
8388 -- expression.
8390 if Nkind (Id) in N_Binary_Op
8391 and then not (Nkind (Left_Opnd (Id)) in N_Op)
8392 then
8393 Mark_Use_Type (Left_Opnd (Id));
8394 end if;
8396 Mark_Use_Type (Right_Opnd (Id));
8397 Mark_Use_Type (Id);
8399 -- Mark entity identifiers
8401 elsif Nkind (Id) in N_Has_Entity
8402 and then (Is_Potentially_Use_Visible (Entity (Id))
8403 or else (Is_Generic_Instance (Entity (Id))
8404 and then Is_Immediately_Visible (Entity (Id))))
8405 then
8406 -- Ignore fully qualified names as they do not count as a "use" of
8407 -- a package.
8409 if Nkind_In (Id, N_Identifier, N_Operator_Symbol)
8410 or else (Present (Prefix (Id))
8411 and then Scope (Entity (Id)) /= Entity (Prefix (Id)))
8412 then
8413 Mark_Use_Clauses (Entity (Id));
8414 end if;
8415 end if;
8416 end if;
8417 end Mark_Use_Clauses;
8419 --------------------------------
8420 -- Most_Descendant_Use_Clause --
8421 --------------------------------
8423 function Most_Descendant_Use_Clause
8424 (Clause1 : Entity_Id;
8425 Clause2 : Entity_Id) return Entity_Id
8427 Scope1, Scope2 : Entity_Id;
8429 begin
8430 if Clause1 = Clause2 then
8431 return Clause1;
8432 end if;
8434 -- We determine which one is the most descendant by the scope distance
8435 -- to the ultimate parent unit.
8437 Scope1 := Entity_Of_Unit (Unit (Parent (Clause1)));
8438 Scope2 := Entity_Of_Unit (Unit (Parent (Clause2)));
8439 while Scope1 /= Standard_Standard
8440 and then Scope2 /= Standard_Standard
8441 loop
8442 Scope1 := Scope (Scope1);
8443 Scope2 := Scope (Scope2);
8445 if not Present (Scope1) then
8446 return Clause1;
8447 elsif not Present (Scope2) then
8448 return Clause2;
8449 end if;
8450 end loop;
8452 if Scope1 = Standard_Standard then
8453 return Clause1;
8454 end if;
8456 return Clause2;
8457 end Most_Descendant_Use_Clause;
8459 ---------------
8460 -- Pop_Scope --
8461 ---------------
8463 procedure Pop_Scope is
8464 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8465 S : constant Entity_Id := SST.Entity;
8467 begin
8468 if Debug_Flag_E then
8469 Write_Info;
8470 end if;
8472 -- Set Default_Storage_Pool field of the library unit if necessary
8474 if Ekind_In (S, E_Package, E_Generic_Package)
8475 and then
8476 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
8477 then
8478 declare
8479 Aux : constant Node_Id :=
8480 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
8481 begin
8482 if No (Default_Storage_Pool (Aux)) then
8483 Set_Default_Storage_Pool (Aux, Default_Pool);
8484 end if;
8485 end;
8486 end if;
8488 Scope_Suppress := SST.Save_Scope_Suppress;
8489 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
8490 Check_Policy_List := SST.Save_Check_Policy_List;
8491 Default_Pool := SST.Save_Default_Storage_Pool;
8492 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
8493 SPARK_Mode := SST.Save_SPARK_Mode;
8494 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
8495 Default_SSO := SST.Save_Default_SSO;
8496 Uneval_Old := SST.Save_Uneval_Old;
8498 if Debug_Flag_W then
8499 Write_Str ("<-- exiting scope: ");
8500 Write_Name (Chars (Current_Scope));
8501 Write_Str (", Depth=");
8502 Write_Int (Int (Scope_Stack.Last));
8503 Write_Eol;
8504 end if;
8506 End_Use_Clauses (SST.First_Use_Clause);
8508 -- If the actions to be wrapped are still there they will get lost
8509 -- causing incomplete code to be generated. It is better to abort in
8510 -- this case (and we do the abort even with assertions off since the
8511 -- penalty is incorrect code generation).
8513 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
8514 raise Program_Error;
8515 end if;
8517 -- Free last subprogram name if allocated, and pop scope
8519 Free (SST.Last_Subprogram_Name);
8520 Scope_Stack.Decrement_Last;
8521 end Pop_Scope;
8523 ----------------
8524 -- Push_Scope --
8525 ----------------
8527 procedure Push_Scope (S : Entity_Id) is
8528 E : constant Entity_Id := Scope (S);
8530 begin
8531 if Ekind (S) = E_Void then
8532 null;
8534 -- Set scope depth if not a non-concurrent type, and we have not yet set
8535 -- the scope depth. This means that we have the first occurrence of the
8536 -- scope, and this is where the depth is set.
8538 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8539 and then not Scope_Depth_Set (S)
8540 then
8541 if S = Standard_Standard then
8542 Set_Scope_Depth_Value (S, Uint_0);
8544 elsif Is_Child_Unit (S) then
8545 Set_Scope_Depth_Value (S, Uint_1);
8547 elsif not Is_Record_Type (Current_Scope) then
8548 if Ekind (S) = E_Loop then
8549 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8550 else
8551 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8552 end if;
8553 end if;
8554 end if;
8556 Scope_Stack.Increment_Last;
8558 declare
8559 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8561 begin
8562 SST.Entity := S;
8563 SST.Save_Scope_Suppress := Scope_Suppress;
8564 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8565 SST.Save_Check_Policy_List := Check_Policy_List;
8566 SST.Save_Default_Storage_Pool := Default_Pool;
8567 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8568 SST.Save_SPARK_Mode := SPARK_Mode;
8569 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8570 SST.Save_Default_SSO := Default_SSO;
8571 SST.Save_Uneval_Old := Uneval_Old;
8573 -- Each new scope pushed onto the scope stack inherits the component
8574 -- alignment of the previous scope. This emulates the "visibility"
8575 -- semantics of pragma Component_Alignment.
8577 if Scope_Stack.Last > Scope_Stack.First then
8578 SST.Component_Alignment_Default :=
8579 Scope_Stack.Table
8580 (Scope_Stack.Last - 1). Component_Alignment_Default;
8582 -- Otherwise, this is the first scope being pushed on the scope
8583 -- stack. Inherit the component alignment from the configuration
8584 -- form of pragma Component_Alignment (if any).
8586 else
8587 SST.Component_Alignment_Default :=
8588 Configuration_Component_Alignment;
8589 end if;
8591 SST.Last_Subprogram_Name := null;
8592 SST.Is_Transient := False;
8593 SST.Node_To_Be_Wrapped := Empty;
8594 SST.Pending_Freeze_Actions := No_List;
8595 SST.Actions_To_Be_Wrapped := (others => No_List);
8596 SST.First_Use_Clause := Empty;
8597 SST.Is_Active_Stack_Base := False;
8598 SST.Previous_Visibility := False;
8599 SST.Locked_Shared_Objects := No_Elist;
8600 end;
8602 if Debug_Flag_W then
8603 Write_Str ("--> new scope: ");
8604 Write_Name (Chars (Current_Scope));
8605 Write_Str (", Id=");
8606 Write_Int (Int (Current_Scope));
8607 Write_Str (", Depth=");
8608 Write_Int (Int (Scope_Stack.Last));
8609 Write_Eol;
8610 end if;
8612 -- Deal with copying flags from the previous scope to this one. This is
8613 -- not necessary if either scope is standard, or if the new scope is a
8614 -- child unit.
8616 if S /= Standard_Standard
8617 and then Scope (S) /= Standard_Standard
8618 and then not Is_Child_Unit (S)
8619 then
8620 if Nkind (E) not in N_Entity then
8621 return;
8622 end if;
8624 -- Copy categorization flags from Scope (S) to S, this is not done
8625 -- when Scope (S) is Standard_Standard since propagation is from
8626 -- library unit entity inwards. Copy other relevant attributes as
8627 -- well (Discard_Names in particular).
8629 -- We only propagate inwards for library level entities,
8630 -- inner level subprograms do not inherit the categorization.
8632 if Is_Library_Level_Entity (S) then
8633 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8634 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8635 Set_Discard_Names (S, Discard_Names (E));
8636 Set_Suppress_Value_Tracking_On_Call
8637 (S, Suppress_Value_Tracking_On_Call (E));
8638 Set_Categorization_From_Scope (E => S, Scop => E);
8639 end if;
8640 end if;
8642 if Is_Child_Unit (S)
8643 and then Present (E)
8644 and then Ekind_In (E, E_Package, E_Generic_Package)
8645 and then
8646 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8647 then
8648 declare
8649 Aux : constant Node_Id :=
8650 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8651 begin
8652 if Present (Default_Storage_Pool (Aux)) then
8653 Default_Pool := Default_Storage_Pool (Aux);
8654 end if;
8655 end;
8656 end if;
8657 end Push_Scope;
8659 ---------------------
8660 -- Premature_Usage --
8661 ---------------------
8663 procedure Premature_Usage (N : Node_Id) is
8664 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8665 E : Entity_Id := Entity (N);
8667 begin
8668 -- Within an instance, the analysis of the actual for a formal object
8669 -- does not see the name of the object itself. This is significant only
8670 -- if the object is an aggregate, where its analysis does not do any
8671 -- name resolution on component associations. (see 4717-008). In such a
8672 -- case, look for the visible homonym on the chain.
8674 if In_Instance and then Present (Homonym (E)) then
8675 E := Homonym (E);
8676 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8677 E := Homonym (E);
8678 end loop;
8680 if Present (E) then
8681 Set_Entity (N, E);
8682 Set_Etype (N, Etype (E));
8683 return;
8684 end if;
8685 end if;
8687 if Kind = N_Component_Declaration then
8688 Error_Msg_N
8689 ("component&! cannot be used before end of record declaration", N);
8691 elsif Kind = N_Parameter_Specification then
8692 Error_Msg_N
8693 ("formal parameter&! cannot be used before end of specification",
8696 elsif Kind = N_Discriminant_Specification then
8697 Error_Msg_N
8698 ("discriminant&! cannot be used before end of discriminant part",
8701 elsif Kind = N_Procedure_Specification
8702 or else Kind = N_Function_Specification
8703 then
8704 Error_Msg_N
8705 ("subprogram&! cannot be used before end of its declaration",
8708 elsif Kind = N_Full_Type_Declaration then
8709 Error_Msg_N
8710 ("type& cannot be used before end of its declaration!", N);
8712 else
8713 Error_Msg_N
8714 ("object& cannot be used before end of its declaration!", N);
8716 -- If the premature reference appears as the expression in its own
8717 -- declaration, rewrite it to prevent compiler loops in subsequent
8718 -- uses of this mangled declaration in address clauses.
8720 if Nkind (Parent (N)) = N_Object_Declaration then
8721 Set_Entity (N, Any_Id);
8722 end if;
8723 end if;
8724 end Premature_Usage;
8726 ------------------------
8727 -- Present_System_Aux --
8728 ------------------------
8730 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8731 Loc : Source_Ptr;
8732 Aux_Name : Unit_Name_Type;
8733 Unum : Unit_Number_Type;
8734 Withn : Node_Id;
8735 With_Sys : Node_Id;
8736 The_Unit : Node_Id;
8738 function Find_System (C_Unit : Node_Id) return Entity_Id;
8739 -- Scan context clause of compilation unit to find with_clause
8740 -- for System.
8742 -----------------
8743 -- Find_System --
8744 -----------------
8746 function Find_System (C_Unit : Node_Id) return Entity_Id is
8747 With_Clause : Node_Id;
8749 begin
8750 With_Clause := First (Context_Items (C_Unit));
8751 while Present (With_Clause) loop
8752 if (Nkind (With_Clause) = N_With_Clause
8753 and then Chars (Name (With_Clause)) = Name_System)
8754 and then Comes_From_Source (With_Clause)
8755 then
8756 return With_Clause;
8757 end if;
8759 Next (With_Clause);
8760 end loop;
8762 return Empty;
8763 end Find_System;
8765 -- Start of processing for Present_System_Aux
8767 begin
8768 -- The child unit may have been loaded and analyzed already
8770 if Present (System_Aux_Id) then
8771 return True;
8773 -- If no previous pragma for System.Aux, nothing to load
8775 elsif No (System_Extend_Unit) then
8776 return False;
8778 -- Use the unit name given in the pragma to retrieve the unit.
8779 -- Verify that System itself appears in the context clause of the
8780 -- current compilation. If System is not present, an error will
8781 -- have been reported already.
8783 else
8784 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8786 The_Unit := Unit (Cunit (Current_Sem_Unit));
8788 if No (With_Sys)
8789 and then
8790 (Nkind (The_Unit) = N_Package_Body
8791 or else (Nkind (The_Unit) = N_Subprogram_Body
8792 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8793 then
8794 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8795 end if;
8797 if No (With_Sys) and then Present (N) then
8799 -- If we are compiling a subunit, we need to examine its
8800 -- context as well (Current_Sem_Unit is the parent unit);
8802 The_Unit := Parent (N);
8803 while Nkind (The_Unit) /= N_Compilation_Unit loop
8804 The_Unit := Parent (The_Unit);
8805 end loop;
8807 if Nkind (Unit (The_Unit)) = N_Subunit then
8808 With_Sys := Find_System (The_Unit);
8809 end if;
8810 end if;
8812 if No (With_Sys) then
8813 return False;
8814 end if;
8816 Loc := Sloc (With_Sys);
8817 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8818 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8819 Name_Buffer (1 .. 7) := "system.";
8820 Name_Buffer (Name_Len + 8) := '%';
8821 Name_Buffer (Name_Len + 9) := 's';
8822 Name_Len := Name_Len + 9;
8823 Aux_Name := Name_Find;
8825 Unum :=
8826 Load_Unit
8827 (Load_Name => Aux_Name,
8828 Required => False,
8829 Subunit => False,
8830 Error_Node => With_Sys);
8832 if Unum /= No_Unit then
8833 Semantics (Cunit (Unum));
8834 System_Aux_Id :=
8835 Defining_Entity (Specification (Unit (Cunit (Unum))));
8837 Withn :=
8838 Make_With_Clause (Loc,
8839 Name =>
8840 Make_Expanded_Name (Loc,
8841 Chars => Chars (System_Aux_Id),
8842 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8843 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8845 Set_Entity (Name (Withn), System_Aux_Id);
8847 Set_Library_Unit (Withn, Cunit (Unum));
8848 Set_Corresponding_Spec (Withn, System_Aux_Id);
8849 Set_First_Name (Withn, True);
8850 Set_Implicit_With (Withn, True);
8852 Insert_After (With_Sys, Withn);
8853 Mark_Rewrite_Insertion (Withn);
8854 Set_Context_Installed (Withn);
8856 return True;
8858 -- Here if unit load failed
8860 else
8861 Error_Msg_Name_1 := Name_System;
8862 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8863 Error_Msg_N
8864 ("extension package `%.%` does not exist",
8865 Opt.System_Extend_Unit);
8866 return False;
8867 end if;
8868 end if;
8869 end Present_System_Aux;
8871 -------------------------
8872 -- Restore_Scope_Stack --
8873 -------------------------
8875 procedure Restore_Scope_Stack
8876 (List : Elist_Id;
8877 Handle_Use : Boolean := True)
8879 SS_Last : constant Int := Scope_Stack.Last;
8880 Elmt : Elmt_Id;
8882 begin
8883 -- Restore visibility of previous scope stack, if any, using the list
8884 -- we saved (we use Remove, since this list will not be used again).
8886 loop
8887 Elmt := Last_Elmt (List);
8888 exit when Elmt = No_Elmt;
8889 Set_Is_Immediately_Visible (Node (Elmt));
8890 Remove_Last_Elmt (List);
8891 end loop;
8893 -- Restore use clauses
8895 if SS_Last >= Scope_Stack.First
8896 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8897 and then Handle_Use
8898 then
8899 Install_Use_Clauses
8900 (Scope_Stack.Table (SS_Last).First_Use_Clause,
8901 Force_Installation => True);
8902 end if;
8903 end Restore_Scope_Stack;
8905 ----------------------
8906 -- Save_Scope_Stack --
8907 ----------------------
8909 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8910 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8911 -- from immediate visibility entities and Restore_Scope_Stack took care
8912 -- of restoring their visibility analyzing the context of each entity. The
8913 -- problem of such approach is that it was fragile and caused unexpected
8914 -- visibility problems, and indeed one test was found where there was a
8915 -- real problem.
8917 -- Furthermore, the following experiment was carried out:
8919 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8920 -- entities whose attribute Is_Immediately_Visible is modified
8921 -- from True to False.
8923 -- - Restore_Scope_Stack was modified to store in another Elist2
8924 -- all the entities whose attribute Is_Immediately_Visible is
8925 -- modified from False to True.
8927 -- - Extra code was added to verify that all the elements of Elist1
8928 -- are found in Elist2
8930 -- This test shows that there may be more occurrences of this problem which
8931 -- have not yet been detected. As a result, we replaced that approach by
8932 -- the current one in which Save_Scope_Stack returns the list of entities
8933 -- whose visibility is changed, and that list is passed to Restore_Scope_
8934 -- Stack to undo that change. This approach is simpler and safer, although
8935 -- it consumes more memory.
8937 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8938 Result : constant Elist_Id := New_Elmt_List;
8939 E : Entity_Id;
8940 S : Entity_Id;
8941 SS_Last : constant Int := Scope_Stack.Last;
8943 procedure Remove_From_Visibility (E : Entity_Id);
8944 -- If E is immediately visible then append it to the result and remove
8945 -- it temporarily from visibility.
8947 ----------------------------
8948 -- Remove_From_Visibility --
8949 ----------------------------
8951 procedure Remove_From_Visibility (E : Entity_Id) is
8952 begin
8953 if Is_Immediately_Visible (E) then
8954 Append_Elmt (E, Result);
8955 Set_Is_Immediately_Visible (E, False);
8956 end if;
8957 end Remove_From_Visibility;
8959 -- Start of processing for Save_Scope_Stack
8961 begin
8962 if SS_Last >= Scope_Stack.First
8963 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8964 then
8965 if Handle_Use then
8966 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8967 end if;
8969 -- If the call is from within a compilation unit, as when called from
8970 -- Rtsfind, make current entries in scope stack invisible while we
8971 -- analyze the new unit.
8973 for J in reverse 0 .. SS_Last loop
8974 exit when Scope_Stack.Table (J).Entity = Standard_Standard
8975 or else No (Scope_Stack.Table (J).Entity);
8977 S := Scope_Stack.Table (J).Entity;
8979 Remove_From_Visibility (S);
8981 E := First_Entity (S);
8982 while Present (E) loop
8983 Remove_From_Visibility (E);
8984 Next_Entity (E);
8985 end loop;
8986 end loop;
8988 end if;
8990 return Result;
8991 end Save_Scope_Stack;
8993 -------------
8994 -- Set_Use --
8995 -------------
8997 procedure Set_Use (L : List_Id) is
8998 Decl : Node_Id;
9000 begin
9001 if Present (L) then
9002 Decl := First (L);
9003 while Present (Decl) loop
9004 if Nkind (Decl) = N_Use_Package_Clause then
9005 Chain_Use_Clause (Decl);
9006 Use_One_Package (Decl, Name (Decl));
9008 elsif Nkind (Decl) = N_Use_Type_Clause then
9009 Chain_Use_Clause (Decl);
9010 Use_One_Type (Subtype_Mark (Decl));
9012 end if;
9014 Next (Decl);
9015 end loop;
9016 end if;
9017 end Set_Use;
9019 -----------------------------
9020 -- Update_Use_Clause_Chain --
9021 -----------------------------
9023 procedure Update_Use_Clause_Chain is
9024 procedure Update_Chain_In_Scope (Level : Int);
9025 -- Iterate through one level in the scope stack verifying each use-type
9026 -- clause within said level is used then reset the Current_Use_Clause
9027 -- to a redundant use clause outside of the current ending scope if such
9028 -- a clause exists.
9030 ---------------------------
9031 -- Update_Chain_In_Scope --
9032 ---------------------------
9034 procedure Update_Chain_In_Scope (Level : Int) is
9035 Curr : Node_Id;
9036 N : Node_Id;
9038 begin
9039 -- Loop through all use clauses within the scope dictated by Level
9041 Curr := Scope_Stack.Table (Level).First_Use_Clause;
9042 while Present (Curr) loop
9044 -- Retrieve the subtype mark or name within the current current
9045 -- use clause.
9047 if Nkind (Curr) = N_Use_Type_Clause then
9048 N := Subtype_Mark (Curr);
9049 else
9050 N := Name (Curr);
9051 end if;
9053 -- If warnings for unreferenced entities are enabled and the
9054 -- current use clause has not been marked effective.
9056 if Check_Unreferenced
9057 and then Comes_From_Source (Curr)
9058 and then not Is_Effective_Use_Clause (Curr)
9059 and then not In_Instance
9060 then
9061 -- We are dealing with a potentially unused use_package_clause
9063 if Nkind (Curr) = N_Use_Package_Clause then
9065 -- Renamings and formal subprograms may cause the associated
9066 -- to be marked as effective instead of the original.
9068 if not (Present (Associated_Node (N))
9069 and then Present
9070 (Current_Use_Clause
9071 (Associated_Node (N)))
9072 and then Is_Effective_Use_Clause
9073 (Current_Use_Clause
9074 (Associated_Node (N))))
9075 then
9076 Error_Msg_Node_1 := Entity (N);
9077 Error_Msg_NE
9078 ("use clause for package & has no effect?u?",
9079 Curr, Entity (N));
9080 end if;
9082 -- We are dealing with an unused use_type_clause
9084 else
9085 Error_Msg_Node_1 := Etype (N);
9086 Error_Msg_NE
9087 ("use clause for } has no effect?u?", Curr, Etype (N));
9088 end if;
9089 end if;
9091 -- Verify that we haven't already processed a redundant
9092 -- use_type_clause within the same scope before we move the
9093 -- current use clause up to a previous one for type T.
9095 if Present (Prev_Use_Clause (Curr)) then
9096 Set_Current_Use_Clause (Entity (N), Prev_Use_Clause (Curr));
9097 end if;
9099 Curr := Next_Use_Clause (Curr);
9100 end loop;
9101 end Update_Chain_In_Scope;
9103 -- Start of processing for Update_Use_Clause_Chain
9105 begin
9106 Update_Chain_In_Scope (Scope_Stack.Last);
9108 -- Deal with use clauses within the context area if the current
9109 -- scope is a compilation unit.
9111 if Is_Compilation_Unit (Current_Scope) then
9113 pragma Assert (Scope_Stack.Last /= Scope_Stack.First);
9115 Update_Chain_In_Scope (Scope_Stack.Last - 1);
9116 end if;
9117 end Update_Use_Clause_Chain;
9119 ---------------------
9120 -- Use_One_Package --
9121 ---------------------
9123 procedure Use_One_Package
9124 (N : Node_Id;
9125 Pack_Name : Entity_Id := Empty;
9126 Force : Boolean := False)
9128 procedure Note_Redundant_Use (Clause : Node_Id);
9129 -- Mark the name in a use clause as redundant if the corresponding
9130 -- entity is already use-visible. Emit a warning if the use clause comes
9131 -- from source and the proper warnings are enabled.
9133 ------------------------
9134 -- Note_Redundant_Use --
9135 ------------------------
9137 procedure Note_Redundant_Use (Clause : Node_Id) is
9138 Decl : constant Node_Id := Parent (Clause);
9139 Pack_Name : constant Entity_Id := Entity (Clause);
9141 Cur_Use : Node_Id := Current_Use_Clause (Pack_Name);
9142 Prev_Use : Node_Id := Empty;
9143 Redundant : Node_Id := Empty;
9144 -- The Use_Clause which is actually redundant. In the simplest case
9145 -- it is Pack itself, but when we compile a body we install its
9146 -- context before that of its spec, in which case it is the
9147 -- use_clause in the spec that will appear to be redundant, and we
9148 -- want the warning to be placed on the body. Similar complications
9149 -- appear when the redundancy is between a child unit and one of its
9150 -- ancestors.
9152 begin
9153 -- Could be renamed...
9155 if No (Cur_Use) then
9156 Cur_Use := Current_Use_Clause (Renamed_Entity (Pack_Name));
9157 end if;
9159 Set_Redundant_Use (Clause, True);
9161 if not Comes_From_Source (Clause)
9162 or else In_Instance
9163 or else not Warn_On_Redundant_Constructs
9164 then
9165 return;
9166 end if;
9168 if not Is_Compilation_Unit (Current_Scope) then
9170 -- If the use_clause is in an inner scope, it is made redundant by
9171 -- some clause in the current context, with one exception: If we
9172 -- are compiling a nested package body, and the use_clause comes
9173 -- from then corresponding spec, the clause is not necessarily
9174 -- fully redundant, so we should not warn. If a warning was
9175 -- warranted, it would have been given when the spec was
9176 -- processed.
9178 if Nkind (Parent (Decl)) = N_Package_Specification then
9179 declare
9180 Package_Spec_Entity : constant Entity_Id :=
9181 Defining_Unit_Name (Parent (Decl));
9182 begin
9183 if In_Package_Body (Package_Spec_Entity) then
9184 return;
9185 end if;
9186 end;
9187 end if;
9189 Redundant := Clause;
9190 Prev_Use := Cur_Use;
9192 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9193 declare
9194 Cur_Unit : constant Unit_Number_Type :=
9195 Get_Source_Unit (Cur_Use);
9196 New_Unit : constant Unit_Number_Type :=
9197 Get_Source_Unit (Clause);
9199 Scop : Entity_Id;
9201 begin
9202 if Cur_Unit = New_Unit then
9204 -- Redundant clause in same body
9206 Redundant := Clause;
9207 Prev_Use := Cur_Use;
9209 elsif Cur_Unit = Current_Sem_Unit then
9211 -- If the new clause is not in the current unit it has been
9212 -- analyzed first, and it makes the other one redundant.
9213 -- However, if the new clause appears in a subunit, Cur_Unit
9214 -- is still the parent, and in that case the redundant one
9215 -- is the one appearing in the subunit.
9217 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
9218 Redundant := Clause;
9219 Prev_Use := Cur_Use;
9221 -- Most common case: redundant clause in body, original
9222 -- clause in spec. Current scope is spec entity.
9224 elsif Current_Scope = Cunit_Entity (Current_Sem_Unit) then
9225 Redundant := Cur_Use;
9226 Prev_Use := Clause;
9228 else
9229 -- The new clause may appear in an unrelated unit, when
9230 -- the parents of a generic are being installed prior to
9231 -- instantiation. In this case there must be no warning.
9232 -- We detect this case by checking whether the current
9233 -- top of the stack is related to the current
9234 -- compilation.
9236 Scop := Current_Scope;
9237 while Present (Scop)
9238 and then Scop /= Standard_Standard
9239 loop
9240 if Is_Compilation_Unit (Scop)
9241 and then not Is_Child_Unit (Scop)
9242 then
9243 return;
9245 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
9246 exit;
9247 end if;
9249 Scop := Scope (Scop);
9250 end loop;
9252 Redundant := Cur_Use;
9253 Prev_Use := Clause;
9254 end if;
9256 elsif New_Unit = Current_Sem_Unit then
9257 Redundant := Clause;
9258 Prev_Use := Cur_Use;
9260 else
9261 -- Neither is the current unit, so they appear in parent or
9262 -- sibling units. Warning will be emitted elsewhere.
9264 return;
9265 end if;
9266 end;
9268 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
9269 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
9270 then
9271 -- Use_clause is in child unit of current unit, and the child unit
9272 -- appears in the context of the body of the parent, so it has
9273 -- been installed first, even though it is the redundant one.
9274 -- Depending on their placement in the context, the visible or the
9275 -- private parts of the two units, either might appear as
9276 -- redundant, but the message has to be on the current unit.
9278 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
9279 Redundant := Cur_Use;
9280 Prev_Use := Clause;
9281 else
9282 Redundant := Clause;
9283 Prev_Use := Cur_Use;
9284 end if;
9286 -- If the new use clause appears in the private part of a parent
9287 -- unit it may appear to be redundant w.r.t. a use clause in a
9288 -- child unit, but the previous use clause was needed in the
9289 -- visible part of the child, and no warning should be emitted.
9291 if Nkind (Parent (Decl)) = N_Package_Specification
9292 and then List_Containing (Decl) =
9293 Private_Declarations (Parent (Decl))
9294 then
9295 declare
9296 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
9297 Spec : constant Node_Id :=
9298 Specification (Unit (Cunit (Current_Sem_Unit)));
9300 begin
9301 if Is_Compilation_Unit (Par)
9302 and then Par /= Cunit_Entity (Current_Sem_Unit)
9303 and then Parent (Cur_Use) = Spec
9304 and then List_Containing (Cur_Use) =
9305 Visible_Declarations (Spec)
9306 then
9307 return;
9308 end if;
9309 end;
9310 end if;
9312 -- Finally, if the current use clause is in the context then the
9313 -- clause is redundant when it is nested within the unit.
9315 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
9316 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
9317 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
9318 then
9319 Redundant := Clause;
9320 Prev_Use := Cur_Use;
9322 end if;
9324 if Present (Redundant) and then Parent (Redundant) /= Prev_Use then
9326 -- Make sure we are looking at most-descendant use_package_clause
9327 -- by traversing the chain with Find_Most_Prev and then verifying
9328 -- there is no scope manipulation via Most_Descendant_Use_Clause.
9330 if Nkind (Prev_Use) = N_Use_Package_Clause
9331 and then
9332 (Nkind (Parent (Prev_Use)) /= N_Compilation_Unit
9333 or else Most_Descendant_Use_Clause
9334 (Prev_Use, Find_Most_Prev (Prev_Use)) /= Prev_Use)
9335 then
9336 Prev_Use := Find_Most_Prev (Prev_Use);
9337 end if;
9339 Error_Msg_Sloc := Sloc (Prev_Use);
9340 Error_Msg_NE -- CODEFIX
9341 ("& is already use-visible through previous use_clause #??",
9342 Redundant, Pack_Name);
9343 end if;
9344 end Note_Redundant_Use;
9346 -- Local variables
9348 Current_Instance : Entity_Id := Empty;
9349 Id : Entity_Id;
9350 P : Entity_Id;
9351 Prev : Entity_Id;
9352 Private_With_OK : Boolean := False;
9353 Real_P : Entity_Id;
9355 -- Start of processing for Use_One_Package
9357 begin
9358 -- Use_One_Package may have been called recursively to handle an
9359 -- implicit use for a auxiliary system package, so set P accordingly
9360 -- and skip redundancy checks.
9362 if No (Pack_Name) and then Present_System_Aux (N) then
9363 P := System_Aux_Id;
9365 -- Check for redundant use_package_clauses
9367 else
9368 -- Ignore cases where we are dealing with a non user defined package
9369 -- like Standard_Standard or something other than a valid package.
9371 if not Is_Entity_Name (Pack_Name)
9372 or else No (Entity (Pack_Name))
9373 or else Ekind (Entity (Pack_Name)) /= E_Package
9374 then
9375 return;
9376 end if;
9378 -- When a renaming exists we must check it for redundancy. The
9379 -- original package would have already been seen at this point.
9381 if Present (Renamed_Object (Entity (Pack_Name))) then
9382 P := Renamed_Object (Entity (Pack_Name));
9383 else
9384 P := Entity (Pack_Name);
9385 end if;
9387 -- Check for redundant clauses then set the current use clause for
9388 -- P if were are not "forcing" an installation from a scope
9389 -- reinstallation that is done throughout analysis for various
9390 -- reasons.
9392 if In_Use (P) then
9393 Note_Redundant_Use (Pack_Name);
9395 if not Force then
9396 Set_Current_Use_Clause (P, N);
9397 end if;
9399 return;
9401 -- Warn about detected redundant clauses
9403 elsif In_Open_Scopes (P) and not Force then
9404 if Warn_On_Redundant_Constructs and then P = Current_Scope then
9405 Error_Msg_NE -- CODEFIX
9406 ("& is already use-visible within itself?r?",
9407 Pack_Name, P);
9408 end if;
9410 return;
9411 end if;
9413 -- Set P back to the non-renamed package so that visiblilty of the
9414 -- entities within the package can be properly set below.
9416 P := Entity (Pack_Name);
9417 end if;
9419 Set_In_Use (P);
9420 Set_Current_Use_Clause (P, N);
9422 -- Ada 2005 (AI-50217): Check restriction
9424 if From_Limited_With (P) then
9425 Error_Msg_N ("limited withed package cannot appear in use clause", N);
9426 end if;
9428 -- Find enclosing instance, if any
9430 if In_Instance then
9431 Current_Instance := Current_Scope;
9432 while not Is_Generic_Instance (Current_Instance) loop
9433 Current_Instance := Scope (Current_Instance);
9434 end loop;
9436 if No (Hidden_By_Use_Clause (N)) then
9437 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
9438 end if;
9439 end if;
9441 -- If unit is a package renaming, indicate that the renamed package is
9442 -- also in use (the flags on both entities must remain consistent, and a
9443 -- subsequent use of either of them should be recognized as redundant).
9445 if Present (Renamed_Object (P)) then
9446 Set_In_Use (Renamed_Object (P));
9447 Set_Current_Use_Clause (Renamed_Object (P), N);
9448 Real_P := Renamed_Object (P);
9449 else
9450 Real_P := P;
9451 end if;
9453 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
9454 -- found in the private part of a package specification
9456 if In_Private_Part (Current_Scope)
9457 and then Has_Private_With (P)
9458 and then Is_Child_Unit (Current_Scope)
9459 and then Is_Child_Unit (P)
9460 and then Is_Ancestor_Package (Scope (Current_Scope), P)
9461 then
9462 Private_With_OK := True;
9463 end if;
9465 -- Loop through entities in one package making them potentially
9466 -- use-visible.
9468 Id := First_Entity (P);
9469 while Present (Id)
9470 and then (Id /= First_Private_Entity (P)
9471 or else Private_With_OK) -- Ada 2005 (AI-262)
9472 loop
9473 Prev := Current_Entity (Id);
9474 while Present (Prev) loop
9475 if Is_Immediately_Visible (Prev)
9476 and then (not Is_Overloadable (Prev)
9477 or else not Is_Overloadable (Id)
9478 or else (Type_Conformant (Id, Prev)))
9479 then
9480 if No (Current_Instance) then
9482 -- Potentially use-visible entity remains hidden
9484 goto Next_Usable_Entity;
9486 -- A use clause within an instance hides outer global entities,
9487 -- which are not used to resolve local entities in the
9488 -- instance. Note that the predefined entities in Standard
9489 -- could not have been hidden in the generic by a use clause,
9490 -- and therefore remain visible. Other compilation units whose
9491 -- entities appear in Standard must be hidden in an instance.
9493 -- To determine whether an entity is external to the instance
9494 -- we compare the scope depth of its scope with that of the
9495 -- current instance. However, a generic actual of a subprogram
9496 -- instance is declared in the wrapper package but will not be
9497 -- hidden by a use-visible entity. similarly, an entity that is
9498 -- declared in an enclosing instance will not be hidden by an
9499 -- an entity declared in a generic actual, which can only have
9500 -- been use-visible in the generic and will not have hidden the
9501 -- entity in the generic parent.
9503 -- If Id is called Standard, the predefined package with the
9504 -- same name is in the homonym chain. It has to be ignored
9505 -- because it has no defined scope (being the only entity in
9506 -- the system with this mandated behavior).
9508 elsif not Is_Hidden (Id)
9509 and then Present (Scope (Prev))
9510 and then not Is_Wrapper_Package (Scope (Prev))
9511 and then Scope_Depth (Scope (Prev)) <
9512 Scope_Depth (Current_Instance)
9513 and then (Scope (Prev) /= Standard_Standard
9514 or else Sloc (Prev) > Standard_Location)
9515 then
9516 if In_Open_Scopes (Scope (Prev))
9517 and then Is_Generic_Instance (Scope (Prev))
9518 and then Present (Associated_Formal_Package (P))
9519 then
9520 null;
9522 else
9523 Set_Is_Potentially_Use_Visible (Id);
9524 Set_Is_Immediately_Visible (Prev, False);
9525 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9526 end if;
9527 end if;
9529 -- A user-defined operator is not use-visible if the predefined
9530 -- operator for the type is immediately visible, which is the case
9531 -- if the type of the operand is in an open scope. This does not
9532 -- apply to user-defined operators that have operands of different
9533 -- types, because the predefined mixed mode operations (multiply
9534 -- and divide) apply to universal types and do not hide anything.
9536 elsif Ekind (Prev) = E_Operator
9537 and then Operator_Matches_Spec (Prev, Id)
9538 and then In_Open_Scopes
9539 (Scope (Base_Type (Etype (First_Formal (Id)))))
9540 and then (No (Next_Formal (First_Formal (Id)))
9541 or else Etype (First_Formal (Id)) =
9542 Etype (Next_Formal (First_Formal (Id)))
9543 or else Chars (Prev) = Name_Op_Expon)
9544 then
9545 goto Next_Usable_Entity;
9547 -- In an instance, two homonyms may become use_visible through the
9548 -- actuals of distinct formal packages. In the generic, only the
9549 -- current one would have been visible, so make the other one
9550 -- not use_visible.
9552 elsif Present (Current_Instance)
9553 and then Is_Potentially_Use_Visible (Prev)
9554 and then not Is_Overloadable (Prev)
9555 and then Scope (Id) /= Scope (Prev)
9556 and then Used_As_Generic_Actual (Scope (Prev))
9557 and then Used_As_Generic_Actual (Scope (Id))
9558 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
9559 Current_Use_Clause (Scope (Id)))
9560 then
9561 Set_Is_Potentially_Use_Visible (Prev, False);
9562 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9563 end if;
9565 Prev := Homonym (Prev);
9566 end loop;
9568 -- On exit, we know entity is not hidden, unless it is private
9570 if not Is_Hidden (Id)
9571 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
9572 then
9573 Set_Is_Potentially_Use_Visible (Id);
9575 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
9576 Set_Is_Potentially_Use_Visible (Full_View (Id));
9577 end if;
9578 end if;
9580 <<Next_Usable_Entity>>
9581 Next_Entity (Id);
9582 end loop;
9584 -- Child units are also made use-visible by a use clause, but they may
9585 -- appear after all visible declarations in the parent entity list.
9587 while Present (Id) loop
9588 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
9589 Set_Is_Potentially_Use_Visible (Id);
9590 end if;
9592 Next_Entity (Id);
9593 end loop;
9595 if Chars (Real_P) = Name_System
9596 and then Scope (Real_P) = Standard_Standard
9597 and then Present_System_Aux (N)
9598 then
9599 Use_One_Package (N);
9600 end if;
9601 end Use_One_Package;
9603 ------------------
9604 -- Use_One_Type --
9605 ------------------
9607 procedure Use_One_Type
9608 (Id : Node_Id;
9609 Installed : Boolean := False;
9610 Force : Boolean := False)
9612 function Spec_Reloaded_For_Body return Boolean;
9613 -- Determine whether the compilation unit is a package body and the use
9614 -- type clause is in the spec of the same package. Even though the spec
9615 -- was analyzed first, its context is reloaded when analysing the body.
9617 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
9618 -- AI05-150: if the use_type_clause carries the "all" qualifier,
9619 -- class-wide operations of ancestor types are use-visible if the
9620 -- ancestor type is visible.
9622 ----------------------------
9623 -- Spec_Reloaded_For_Body --
9624 ----------------------------
9626 function Spec_Reloaded_For_Body return Boolean is
9627 begin
9628 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9629 declare
9630 Spec : constant Node_Id :=
9631 Parent (List_Containing (Parent (Id)));
9633 begin
9634 -- Check whether type is declared in a package specification,
9635 -- and current unit is the corresponding package body. The
9636 -- use clauses themselves may be within a nested package.
9638 return
9639 Nkind (Spec) = N_Package_Specification
9640 and then In_Same_Source_Unit
9641 (Corresponding_Body (Parent (Spec)),
9642 Cunit_Entity (Current_Sem_Unit));
9643 end;
9644 end if;
9646 return False;
9647 end Spec_Reloaded_For_Body;
9649 -------------------------------
9650 -- Use_Class_Wide_Operations --
9651 -------------------------------
9653 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
9654 function Is_Class_Wide_Operation_Of
9655 (Op : Entity_Id;
9656 T : Entity_Id) return Boolean;
9657 -- Determine whether a subprogram has a class-wide parameter or
9658 -- result that is T'Class.
9660 ---------------------------------
9661 -- Is_Class_Wide_Operation_Of --
9662 ---------------------------------
9664 function Is_Class_Wide_Operation_Of
9665 (Op : Entity_Id;
9666 T : Entity_Id) return Boolean
9668 Formal : Entity_Id;
9670 begin
9671 Formal := First_Formal (Op);
9672 while Present (Formal) loop
9673 if Etype (Formal) = Class_Wide_Type (T) then
9674 return True;
9675 end if;
9677 Next_Formal (Formal);
9678 end loop;
9680 if Etype (Op) = Class_Wide_Type (T) then
9681 return True;
9682 end if;
9684 return False;
9685 end Is_Class_Wide_Operation_Of;
9687 -- Local variables
9689 Ent : Entity_Id;
9690 Scop : Entity_Id;
9692 -- Start of processing for Use_Class_Wide_Operations
9694 begin
9695 Scop := Scope (Typ);
9696 if not Is_Hidden (Scop) then
9697 Ent := First_Entity (Scop);
9698 while Present (Ent) loop
9699 if Is_Overloadable (Ent)
9700 and then Is_Class_Wide_Operation_Of (Ent, Typ)
9701 and then not Is_Potentially_Use_Visible (Ent)
9702 then
9703 Set_Is_Potentially_Use_Visible (Ent);
9704 Append_Elmt (Ent, Used_Operations (Parent (Id)));
9705 end if;
9707 Next_Entity (Ent);
9708 end loop;
9709 end if;
9711 if Is_Derived_Type (Typ) then
9712 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
9713 end if;
9714 end Use_Class_Wide_Operations;
9716 -- Local variables
9718 Elmt : Elmt_Id;
9719 Is_Known_Used : Boolean;
9720 Op_List : Elist_Id;
9721 T : Entity_Id;
9723 -- Start of processing for Use_One_Type
9725 begin
9726 if Entity (Id) = Any_Type then
9727 return;
9728 end if;
9730 -- It is the type determined by the subtype mark (8.4(8)) whose
9731 -- operations become potentially use-visible.
9733 T := Base_Type (Entity (Id));
9735 -- Either the type itself is used, the package where it is declared is
9736 -- in use or the entity is declared in the current package, thus
9737 -- use-visible.
9739 Is_Known_Used :=
9740 (In_Use (T)
9741 and then ((Present (Current_Use_Clause (T))
9742 and then All_Present (Current_Use_Clause (T)))
9743 or else not All_Present (Parent (Id))))
9744 or else In_Use (Scope (T))
9745 or else Scope (T) = Current_Scope;
9747 Set_Redundant_Use (Id,
9748 Is_Known_Used or else Is_Potentially_Use_Visible (T));
9750 if Ekind (T) = E_Incomplete_Type then
9751 Error_Msg_N ("premature usage of incomplete type", Id);
9753 elsif In_Open_Scopes (Scope (T)) then
9754 null;
9756 -- A limited view cannot appear in a use_type_clause. However, an access
9757 -- type whose designated type is limited has the flag but is not itself
9758 -- a limited view unless we only have a limited view of its enclosing
9759 -- package.
9761 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
9762 Error_Msg_N
9763 ("incomplete type from limited view cannot appear in use clause",
9764 Id);
9766 -- If the use clause is redundant, Used_Operations will usually be
9767 -- empty, but we need to set it to empty here in one case: If we are
9768 -- instantiating a generic library unit, then we install the ancestors
9769 -- of that unit in the scope stack, which involves reprocessing use
9770 -- clauses in those ancestors. Such a use clause will typically have a
9771 -- nonempty Used_Operations unless it was redundant in the generic unit,
9772 -- even if it is redundant at the place of the instantiation.
9774 elsif Redundant_Use (Id) then
9776 -- We must avoid incorrectly setting the Current_Use_Clause when we
9777 -- are working with a redundant clause that has already been linked
9778 -- in the Prev_Use_Clause chain, otherwise the chain will break.
9780 if Present (Current_Use_Clause (T))
9781 and then Present (Prev_Use_Clause (Current_Use_Clause (T)))
9782 and then Parent (Id) = Prev_Use_Clause (Current_Use_Clause (T))
9783 then
9784 null;
9785 else
9786 Set_Current_Use_Clause (T, Parent (Id));
9787 end if;
9789 Set_Used_Operations (Parent (Id), New_Elmt_List);
9791 -- If the subtype mark designates a subtype in a different package,
9792 -- we have to check that the parent type is visible, otherwise the
9793 -- use_type_clause is a no-op. Not clear how to do that???
9795 else
9796 Set_Current_Use_Clause (T, Parent (Id));
9797 Set_In_Use (T);
9799 -- If T is tagged, primitive operators on class-wide operands are
9800 -- also available.
9802 if Is_Tagged_Type (T) then
9803 Set_In_Use (Class_Wide_Type (T));
9804 end if;
9806 -- Iterate over primitive operations of the type. If an operation is
9807 -- already use_visible, it is the result of a previous use_clause,
9808 -- and already appears on the corresponding entity chain. If the
9809 -- clause is being reinstalled, operations are already use-visible.
9811 if Installed then
9812 null;
9814 else
9815 Op_List := Collect_Primitive_Operations (T);
9816 Elmt := First_Elmt (Op_List);
9817 while Present (Elmt) loop
9818 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
9819 or else Chars (Node (Elmt)) in Any_Operator_Name)
9820 and then not Is_Hidden (Node (Elmt))
9821 and then not Is_Potentially_Use_Visible (Node (Elmt))
9822 then
9823 Set_Is_Potentially_Use_Visible (Node (Elmt));
9824 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9826 elsif Ada_Version >= Ada_2012
9827 and then All_Present (Parent (Id))
9828 and then not Is_Hidden (Node (Elmt))
9829 and then not Is_Potentially_Use_Visible (Node (Elmt))
9830 then
9831 Set_Is_Potentially_Use_Visible (Node (Elmt));
9832 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9833 end if;
9835 Next_Elmt (Elmt);
9836 end loop;
9837 end if;
9839 if Ada_Version >= Ada_2012
9840 and then All_Present (Parent (Id))
9841 and then Is_Tagged_Type (T)
9842 then
9843 Use_Class_Wide_Operations (T);
9844 end if;
9845 end if;
9847 -- If warning on redundant constructs, check for unnecessary WITH
9849 if not Force
9850 and then Warn_On_Redundant_Constructs
9851 and then Is_Known_Used
9853 -- with P; with P; use P;
9854 -- package P is package X is package body X is
9855 -- type T ... use P.T;
9857 -- The compilation unit is the body of X. GNAT first compiles the
9858 -- spec of X, then proceeds to the body. At that point P is marked
9859 -- as use visible. The analysis then reinstalls the spec along with
9860 -- its context. The use clause P.T is now recognized as redundant,
9861 -- but in the wrong context. Do not emit a warning in such cases.
9862 -- Do not emit a warning either if we are in an instance, there is
9863 -- no redundancy between an outer use_clause and one that appears
9864 -- within the generic.
9866 and then not Spec_Reloaded_For_Body
9867 and then not In_Instance
9868 then
9869 -- The type already has a use clause
9871 if In_Use (T) then
9873 -- Case where we know the current use clause for the type
9875 if Present (Current_Use_Clause (T)) then
9876 Use_Clause_Known : declare
9877 Clause1 : constant Node_Id :=
9878 Find_Most_Prev (Current_Use_Clause (T));
9879 Clause2 : constant Node_Id := Parent (Id);
9880 Ent1 : Entity_Id;
9881 Ent2 : Entity_Id;
9882 Err_No : Node_Id;
9883 Unit1 : Node_Id;
9884 Unit2 : Node_Id;
9886 -- Start of processing for Use_Clause_Known
9888 begin
9889 -- If both current use_type_clause and the use_type_clause
9890 -- for the type are at the compilation unit level, one of
9891 -- the units must be an ancestor of the other, and the
9892 -- warning belongs on the descendant.
9894 if Nkind (Parent (Clause1)) = N_Compilation_Unit
9895 and then
9896 Nkind (Parent (Clause2)) = N_Compilation_Unit
9897 then
9898 -- If the unit is a subprogram body that acts as spec,
9899 -- the context clause is shared with the constructed
9900 -- subprogram spec. Clearly there is no redundancy.
9902 if Clause1 = Clause2 then
9903 return;
9904 end if;
9906 Unit1 := Unit (Parent (Clause1));
9907 Unit2 := Unit (Parent (Clause2));
9909 -- If both clauses are on same unit, or one is the body
9910 -- of the other, or one of them is in a subunit, report
9911 -- redundancy on the later one.
9913 if Unit1 = Unit2 or else Nkind (Unit1) = N_Subunit then
9914 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9915 Error_Msg_NE -- CODEFIX
9916 ("& is already use-visible through previous "
9917 & "use_type_clause #??", Clause1, T);
9918 return;
9920 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
9921 and then Nkind (Unit1) /= Nkind (Unit2)
9922 and then Nkind (Unit1) /= N_Subunit
9923 then
9924 Error_Msg_Sloc := Sloc (Clause1);
9925 Error_Msg_NE -- CODEFIX
9926 ("& is already use-visible through previous "
9927 & "use_type_clause #??", Current_Use_Clause (T), T);
9928 return;
9929 end if;
9931 -- There is a redundant use_type_clause in a child unit.
9932 -- Determine which of the units is more deeply nested.
9933 -- If a unit is a package instance, retrieve the entity
9934 -- and its scope from the instance spec.
9936 Ent1 := Entity_Of_Unit (Unit1);
9937 Ent2 := Entity_Of_Unit (Unit2);
9939 if Scope (Ent2) = Standard_Standard then
9940 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9941 Err_No := Clause1;
9943 elsif Scope (Ent1) = Standard_Standard then
9944 Error_Msg_Sloc := Sloc (Id);
9945 Err_No := Clause2;
9947 -- If both units are child units, we determine which one
9948 -- is the descendant by the scope distance to the
9949 -- ultimate parent unit.
9951 else
9952 declare
9953 S1 : Entity_Id;
9954 S2 : Entity_Id;
9956 begin
9957 S1 := Scope (Ent1);
9958 S2 := Scope (Ent2);
9959 while Present (S1)
9960 and then Present (S2)
9961 and then S1 /= Standard_Standard
9962 and then S2 /= Standard_Standard
9963 loop
9964 S1 := Scope (S1);
9965 S2 := Scope (S2);
9966 end loop;
9968 if S1 = Standard_Standard then
9969 Error_Msg_Sloc := Sloc (Id);
9970 Err_No := Clause2;
9971 else
9972 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9973 Err_No := Clause1;
9974 end if;
9975 end;
9976 end if;
9978 if Parent (Id) /= Err_No then
9979 if Most_Descendant_Use_Clause
9980 (Err_No, Parent (Id)) = Parent (Id)
9981 then
9982 Error_Msg_Sloc := Sloc (Err_No);
9983 Err_No := Parent (Id);
9984 end if;
9986 Error_Msg_NE -- CODEFIX
9987 ("& is already use-visible through previous "
9988 & "use_type_clause #??", Err_No, Id);
9989 end if;
9991 -- Case where current use_type_clause and use_type_clause
9992 -- for the type are not both at the compilation unit level.
9993 -- In this case we don't have location information.
9995 else
9996 Error_Msg_NE -- CODEFIX
9997 ("& is already use-visible through previous "
9998 & "use_type_clause??", Id, T);
9999 end if;
10000 end Use_Clause_Known;
10002 -- Here if Current_Use_Clause is not set for T, another case where
10003 -- we do not have the location information available.
10005 else
10006 Error_Msg_NE -- CODEFIX
10007 ("& is already use-visible through previous "
10008 & "use_type_clause??", Id, T);
10009 end if;
10011 -- The package where T is declared is already used
10013 elsif In_Use (Scope (T)) then
10014 Error_Msg_Sloc :=
10015 Sloc (Find_Most_Prev (Current_Use_Clause (Scope (T))));
10016 Error_Msg_NE -- CODEFIX
10017 ("& is already use-visible through package use clause #??",
10018 Id, T);
10020 -- The current scope is the package where T is declared
10022 else
10023 Error_Msg_Node_2 := Scope (T);
10024 Error_Msg_NE -- CODEFIX
10025 ("& is already use-visible inside package &??", Id, T);
10026 end if;
10027 end if;
10028 end Use_One_Type;
10030 ----------------
10031 -- Write_Info --
10032 ----------------
10034 procedure Write_Info is
10035 Id : Entity_Id := First_Entity (Current_Scope);
10037 begin
10038 -- No point in dumping standard entities
10040 if Current_Scope = Standard_Standard then
10041 return;
10042 end if;
10044 Write_Str ("========================================================");
10045 Write_Eol;
10046 Write_Str (" Defined Entities in ");
10047 Write_Name (Chars (Current_Scope));
10048 Write_Eol;
10049 Write_Str ("========================================================");
10050 Write_Eol;
10052 if No (Id) then
10053 Write_Str ("-- none --");
10054 Write_Eol;
10056 else
10057 while Present (Id) loop
10058 Write_Entity_Info (Id, " ");
10059 Next_Entity (Id);
10060 end loop;
10061 end if;
10063 if Scope (Current_Scope) = Standard_Standard then
10065 -- Print information on the current unit itself
10067 Write_Entity_Info (Current_Scope, " ");
10068 end if;
10070 Write_Eol;
10071 end Write_Info;
10073 --------
10074 -- ws --
10075 --------
10077 procedure ws is
10078 S : Entity_Id;
10079 begin
10080 for J in reverse 1 .. Scope_Stack.Last loop
10081 S := Scope_Stack.Table (J).Entity;
10082 Write_Int (Int (S));
10083 Write_Str (" === ");
10084 Write_Name (Chars (S));
10085 Write_Eol;
10086 end loop;
10087 end ws;
10089 --------
10090 -- we --
10091 --------
10093 procedure we (S : Entity_Id) is
10094 E : Entity_Id;
10095 begin
10096 E := First_Entity (S);
10097 while Present (E) loop
10098 Write_Int (Int (E));
10099 Write_Str (" === ");
10100 Write_Name (Chars (E));
10101 Write_Eol;
10102 Next_Entity (E);
10103 end loop;
10104 end we;
10105 end Sem_Ch8;