* emit-rtl.c (renumber_insns): Remove.
[official-gcc.git] / gcc / emit-rtl.c
blob94381a9e16c1b5dc02584f9112ba25fa4f6c3432
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "toplev.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "real.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
61 /* Commonly used modes. */
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
72 static GTY(()) int label_num = 1;
74 /* Nonzero means do not generate NOTEs for source line numbers. */
76 static int no_line_numbers;
78 /* Commonly used rtx's, so that we only need space for one copy.
79 These are initialized once for the entire compilation.
80 All of these are unique; no other rtx-object will be equal to any
81 of these. */
83 rtx global_rtl[GR_MAX];
85 /* Commonly used RTL for hard registers. These objects are not necessarily
86 unique, so we allocate them separately from global_rtl. They are
87 initialized once per compilation unit, then copied into regno_reg_rtx
88 at the beginning of each function. */
89 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
91 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
92 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
93 record a copy of const[012]_rtx. */
95 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
97 rtx const_true_rtx;
99 REAL_VALUE_TYPE dconst0;
100 REAL_VALUE_TYPE dconst1;
101 REAL_VALUE_TYPE dconst2;
102 REAL_VALUE_TYPE dconst3;
103 REAL_VALUE_TYPE dconst10;
104 REAL_VALUE_TYPE dconstm1;
105 REAL_VALUE_TYPE dconstm2;
106 REAL_VALUE_TYPE dconsthalf;
107 REAL_VALUE_TYPE dconstthird;
108 REAL_VALUE_TYPE dconstpi;
109 REAL_VALUE_TYPE dconste;
111 /* All references to the following fixed hard registers go through
112 these unique rtl objects. On machines where the frame-pointer and
113 arg-pointer are the same register, they use the same unique object.
115 After register allocation, other rtl objects which used to be pseudo-regs
116 may be clobbered to refer to the frame-pointer register.
117 But references that were originally to the frame-pointer can be
118 distinguished from the others because they contain frame_pointer_rtx.
120 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
121 tricky: until register elimination has taken place hard_frame_pointer_rtx
122 should be used if it is being set, and frame_pointer_rtx otherwise. After
123 register elimination hard_frame_pointer_rtx should always be used.
124 On machines where the two registers are same (most) then these are the
125 same.
127 In an inline procedure, the stack and frame pointer rtxs may not be
128 used for anything else. */
129 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
130 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
131 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
133 /* This is used to implement __builtin_return_address for some machines.
134 See for instance the MIPS port. */
135 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
137 /* We make one copy of (const_int C) where C is in
138 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
139 to save space during the compilation and simplify comparisons of
140 integers. */
142 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
144 /* A hash table storing CONST_INTs whose absolute value is greater
145 than MAX_SAVED_CONST_INT. */
147 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
148 htab_t const_int_htab;
150 /* A hash table storing memory attribute structures. */
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
152 htab_t mem_attrs_htab;
154 /* A hash table storing register attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
156 htab_t reg_attrs_htab;
158 /* A hash table storing all CONST_DOUBLEs. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
160 htab_t const_double_htab;
162 #define first_insn (cfun->emit->x_first_insn)
163 #define last_insn (cfun->emit->x_last_insn)
164 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
165 #define last_location (cfun->emit->x_last_location)
166 #define first_label_num (cfun->emit->x_first_label_num)
168 static rtx make_call_insn_raw (rtx);
169 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
170 static void unshare_all_decls (tree);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static void copy_rtx_if_shared_1 (rtx *orig);
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability = -1;
193 /* Returns a hash code for X (which is a really a CONST_INT). */
195 static hashval_t
196 const_int_htab_hash (const void *x)
198 return (hashval_t) INTVAL ((rtx) x);
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
203 HOST_WIDE_INT *). */
205 static int
206 const_int_htab_eq (const void *x, const void *y)
208 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
212 static hashval_t
213 const_double_htab_hash (const void *x)
215 rtx value = (rtx) x;
216 hashval_t h;
218 if (GET_MODE (value) == VOIDmode)
219 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
220 else
222 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h ^= GET_MODE (value);
226 return h;
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
231 static int
232 const_double_htab_eq (const void *x, const void *y)
234 rtx a = (rtx)x, b = (rtx)y;
236 if (GET_MODE (a) != GET_MODE (b))
237 return 0;
238 if (GET_MODE (a) == VOIDmode)
239 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
240 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
241 else
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
243 CONST_DOUBLE_REAL_VALUE (b));
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
248 static hashval_t
249 mem_attrs_htab_hash (const void *x)
251 mem_attrs *p = (mem_attrs *) x;
253 return (p->alias ^ (p->align * 1000)
254 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
255 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
256 ^ (size_t) iterative_hash_expr (p->expr, 0));
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
261 mem_attrs *). */
263 static int
264 mem_attrs_htab_eq (const void *x, const void *y)
266 mem_attrs *p = (mem_attrs *) x;
267 mem_attrs *q = (mem_attrs *) y;
269 return (p->alias == q->alias && p->offset == q->offset
270 && p->size == q->size && p->align == q->align
271 && (p->expr == q->expr
272 || (p->expr != NULL_TREE && q->expr != NULL_TREE
273 && operand_equal_p (p->expr, q->expr, 0))));
276 /* Allocate a new mem_attrs structure and insert it into the hash table if
277 one identical to it is not already in the table. We are doing this for
278 MEM of mode MODE. */
280 static mem_attrs *
281 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
282 unsigned int align, enum machine_mode mode)
284 mem_attrs attrs;
285 void **slot;
287 /* If everything is the default, we can just return zero.
288 This must match what the corresponding MEM_* macros return when the
289 field is not present. */
290 if (alias == 0 && expr == 0 && offset == 0
291 && (size == 0
292 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
293 && (STRICT_ALIGNMENT && mode != BLKmode
294 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
295 return 0;
297 attrs.alias = alias;
298 attrs.expr = expr;
299 attrs.offset = offset;
300 attrs.size = size;
301 attrs.align = align;
303 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
304 if (*slot == 0)
306 *slot = ggc_alloc (sizeof (mem_attrs));
307 memcpy (*slot, &attrs, sizeof (mem_attrs));
310 return *slot;
313 /* Returns a hash code for X (which is a really a reg_attrs *). */
315 static hashval_t
316 reg_attrs_htab_hash (const void *x)
318 reg_attrs *p = (reg_attrs *) x;
320 return ((p->offset * 1000) ^ (long) p->decl);
323 /* Returns nonzero if the value represented by X (which is really a
324 reg_attrs *) is the same as that given by Y (which is also really a
325 reg_attrs *). */
327 static int
328 reg_attrs_htab_eq (const void *x, const void *y)
330 reg_attrs *p = (reg_attrs *) x;
331 reg_attrs *q = (reg_attrs *) y;
333 return (p->decl == q->decl && p->offset == q->offset);
335 /* Allocate a new reg_attrs structure and insert it into the hash table if
336 one identical to it is not already in the table. We are doing this for
337 MEM of mode MODE. */
339 static reg_attrs *
340 get_reg_attrs (tree decl, int offset)
342 reg_attrs attrs;
343 void **slot;
345 /* If everything is the default, we can just return zero. */
346 if (decl == 0 && offset == 0)
347 return 0;
349 attrs.decl = decl;
350 attrs.offset = offset;
352 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
353 if (*slot == 0)
355 *slot = ggc_alloc (sizeof (reg_attrs));
356 memcpy (*slot, &attrs, sizeof (reg_attrs));
359 return *slot;
362 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
363 don't attempt to share with the various global pieces of rtl (such as
364 frame_pointer_rtx). */
367 gen_raw_REG (enum machine_mode mode, int regno)
369 rtx x = gen_rtx_raw_REG (mode, regno);
370 ORIGINAL_REGNO (x) = regno;
371 return x;
374 /* There are some RTL codes that require special attention; the generation
375 functions do the raw handling. If you add to this list, modify
376 special_rtx in gengenrtl.c as well. */
379 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
381 void **slot;
383 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
384 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
386 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
387 if (const_true_rtx && arg == STORE_FLAG_VALUE)
388 return const_true_rtx;
389 #endif
391 /* Look up the CONST_INT in the hash table. */
392 slot = htab_find_slot_with_hash (const_int_htab, &arg,
393 (hashval_t) arg, INSERT);
394 if (*slot == 0)
395 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
397 return (rtx) *slot;
401 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
403 return GEN_INT (trunc_int_for_mode (c, mode));
406 /* CONST_DOUBLEs might be created from pairs of integers, or from
407 REAL_VALUE_TYPEs. Also, their length is known only at run time,
408 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
410 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
411 hash table. If so, return its counterpart; otherwise add it
412 to the hash table and return it. */
413 static rtx
414 lookup_const_double (rtx real)
416 void **slot = htab_find_slot (const_double_htab, real, INSERT);
417 if (*slot == 0)
418 *slot = real;
420 return (rtx) *slot;
423 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
424 VALUE in mode MODE. */
426 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
428 rtx real = rtx_alloc (CONST_DOUBLE);
429 PUT_MODE (real, mode);
431 real->u.rv = value;
433 return lookup_const_double (real);
436 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
437 of ints: I0 is the low-order word and I1 is the high-order word.
438 Do not use this routine for non-integer modes; convert to
439 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
442 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
444 rtx value;
445 unsigned int i;
447 /* There are the following cases (note that there are no modes with
448 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
450 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
451 gen_int_mode.
452 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
453 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
454 from copies of the sign bit, and sign of i0 and i1 are the same), then
455 we return a CONST_INT for i0.
456 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
457 if (mode != VOIDmode)
459 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
460 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
463 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
465 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
466 return gen_int_mode (i0, mode);
468 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
471 /* If this integer fits in one word, return a CONST_INT. */
472 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
473 return GEN_INT (i0);
475 /* We use VOIDmode for integers. */
476 value = rtx_alloc (CONST_DOUBLE);
477 PUT_MODE (value, VOIDmode);
479 CONST_DOUBLE_LOW (value) = i0;
480 CONST_DOUBLE_HIGH (value) = i1;
482 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
483 XWINT (value, i) = 0;
485 return lookup_const_double (value);
489 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
491 /* In case the MD file explicitly references the frame pointer, have
492 all such references point to the same frame pointer. This is
493 used during frame pointer elimination to distinguish the explicit
494 references to these registers from pseudos that happened to be
495 assigned to them.
497 If we have eliminated the frame pointer or arg pointer, we will
498 be using it as a normal register, for example as a spill
499 register. In such cases, we might be accessing it in a mode that
500 is not Pmode and therefore cannot use the pre-allocated rtx.
502 Also don't do this when we are making new REGs in reload, since
503 we don't want to get confused with the real pointers. */
505 if (mode == Pmode && !reload_in_progress)
507 if (regno == FRAME_POINTER_REGNUM
508 && (!reload_completed || frame_pointer_needed))
509 return frame_pointer_rtx;
510 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
511 if (regno == HARD_FRAME_POINTER_REGNUM
512 && (!reload_completed || frame_pointer_needed))
513 return hard_frame_pointer_rtx;
514 #endif
515 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
516 if (regno == ARG_POINTER_REGNUM)
517 return arg_pointer_rtx;
518 #endif
519 #ifdef RETURN_ADDRESS_POINTER_REGNUM
520 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
521 return return_address_pointer_rtx;
522 #endif
523 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
524 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
525 return pic_offset_table_rtx;
526 if (regno == STACK_POINTER_REGNUM)
527 return stack_pointer_rtx;
530 #if 0
531 /* If the per-function register table has been set up, try to re-use
532 an existing entry in that table to avoid useless generation of RTL.
534 This code is disabled for now until we can fix the various backends
535 which depend on having non-shared hard registers in some cases. Long
536 term we want to re-enable this code as it can significantly cut down
537 on the amount of useless RTL that gets generated.
539 We'll also need to fix some code that runs after reload that wants to
540 set ORIGINAL_REGNO. */
542 if (cfun
543 && cfun->emit
544 && regno_reg_rtx
545 && regno < FIRST_PSEUDO_REGISTER
546 && reg_raw_mode[regno] == mode)
547 return regno_reg_rtx[regno];
548 #endif
550 return gen_raw_REG (mode, regno);
554 gen_rtx_MEM (enum machine_mode mode, rtx addr)
556 rtx rt = gen_rtx_raw_MEM (mode, addr);
558 /* This field is not cleared by the mere allocation of the rtx, so
559 we clear it here. */
560 MEM_ATTRS (rt) = 0;
562 return rt;
565 /* Generate a memory referring to non-trapping constant memory. */
568 gen_const_mem (enum machine_mode mode, rtx addr)
570 rtx mem = gen_rtx_MEM (mode, addr);
571 MEM_READONLY_P (mem) = 1;
572 MEM_NOTRAP_P (mem) = 1;
573 return mem;
576 /* Generate a MEM referring to fixed portions of the frame, e.g., register
577 save areas. */
580 gen_frame_mem (enum machine_mode mode, rtx addr)
582 rtx mem = gen_rtx_MEM (mode, addr);
583 MEM_NOTRAP_P (mem) = 1;
584 set_mem_alias_set (mem, get_frame_alias_set ());
585 return mem;
588 /* Generate a MEM referring to a temporary use of the stack, not part
589 of the fixed stack frame. For example, something which is pushed
590 by a target splitter. */
592 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
594 rtx mem = gen_rtx_MEM (mode, addr);
595 MEM_NOTRAP_P (mem) = 1;
596 if (!current_function_calls_alloca)
597 set_mem_alias_set (mem, get_frame_alias_set ());
598 return mem;
601 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
602 this construct would be valid, and false otherwise. */
604 bool
605 validate_subreg (enum machine_mode omode, enum machine_mode imode,
606 rtx reg, unsigned int offset)
608 unsigned int isize = GET_MODE_SIZE (imode);
609 unsigned int osize = GET_MODE_SIZE (omode);
611 /* All subregs must be aligned. */
612 if (offset % osize != 0)
613 return false;
615 /* The subreg offset cannot be outside the inner object. */
616 if (offset >= isize)
617 return false;
619 /* ??? This should not be here. Temporarily continue to allow word_mode
620 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
621 Generally, backends are doing something sketchy but it'll take time to
622 fix them all. */
623 if (omode == word_mode)
625 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
626 is the culprit here, and not the backends. */
627 else if (osize >= UNITS_PER_WORD && isize >= osize)
629 /* Allow component subregs of complex and vector. Though given the below
630 extraction rules, it's not always clear what that means. */
631 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
632 && GET_MODE_INNER (imode) == omode)
634 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
635 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
636 represent this. It's questionable if this ought to be represented at
637 all -- why can't this all be hidden in post-reload splitters that make
638 arbitrarily mode changes to the registers themselves. */
639 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
641 /* Subregs involving floating point modes are not allowed to
642 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
643 (subreg:SI (reg:DF) 0) isn't. */
644 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
646 if (isize != osize)
647 return false;
650 /* Paradoxical subregs must have offset zero. */
651 if (osize > isize)
652 return offset == 0;
654 /* This is a normal subreg. Verify that the offset is representable. */
656 /* For hard registers, we already have most of these rules collected in
657 subreg_offset_representable_p. */
658 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
660 unsigned int regno = REGNO (reg);
662 #ifdef CANNOT_CHANGE_MODE_CLASS
663 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
664 && GET_MODE_INNER (imode) == omode)
666 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
667 return false;
668 #endif
670 return subreg_offset_representable_p (regno, imode, offset, omode);
673 /* For pseudo registers, we want most of the same checks. Namely:
674 If the register no larger than a word, the subreg must be lowpart.
675 If the register is larger than a word, the subreg must be the lowpart
676 of a subword. A subreg does *not* perform arbitrary bit extraction.
677 Given that we've already checked mode/offset alignment, we only have
678 to check subword subregs here. */
679 if (osize < UNITS_PER_WORD)
681 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
682 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
683 if (offset % UNITS_PER_WORD != low_off)
684 return false;
686 return true;
690 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
692 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
693 return gen_rtx_raw_SUBREG (mode, reg, offset);
696 /* Generate a SUBREG representing the least-significant part of REG if MODE
697 is smaller than mode of REG, otherwise paradoxical SUBREG. */
700 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
702 enum machine_mode inmode;
704 inmode = GET_MODE (reg);
705 if (inmode == VOIDmode)
706 inmode = mode;
707 return gen_rtx_SUBREG (mode, reg,
708 subreg_lowpart_offset (mode, inmode));
711 /* gen_rtvec (n, [rt1, ..., rtn])
713 ** This routine creates an rtvec and stores within it the
714 ** pointers to rtx's which are its arguments.
717 /*VARARGS1*/
718 rtvec
719 gen_rtvec (int n, ...)
721 int i, save_n;
722 rtx *vector;
723 va_list p;
725 va_start (p, n);
727 if (n == 0)
728 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
730 vector = alloca (n * sizeof (rtx));
732 for (i = 0; i < n; i++)
733 vector[i] = va_arg (p, rtx);
735 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
736 save_n = n;
737 va_end (p);
739 return gen_rtvec_v (save_n, vector);
742 rtvec
743 gen_rtvec_v (int n, rtx *argp)
745 int i;
746 rtvec rt_val;
748 if (n == 0)
749 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
751 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
753 for (i = 0; i < n; i++)
754 rt_val->elem[i] = *argp++;
756 return rt_val;
759 /* Generate a REG rtx for a new pseudo register of mode MODE.
760 This pseudo is assigned the next sequential register number. */
763 gen_reg_rtx (enum machine_mode mode)
765 struct function *f = cfun;
766 rtx val;
768 /* Don't let anything called after initial flow analysis create new
769 registers. */
770 gcc_assert (!no_new_pseudos);
772 if (generating_concat_p
773 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
774 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
776 /* For complex modes, don't make a single pseudo.
777 Instead, make a CONCAT of two pseudos.
778 This allows noncontiguous allocation of the real and imaginary parts,
779 which makes much better code. Besides, allocating DCmode
780 pseudos overstrains reload on some machines like the 386. */
781 rtx realpart, imagpart;
782 enum machine_mode partmode = GET_MODE_INNER (mode);
784 realpart = gen_reg_rtx (partmode);
785 imagpart = gen_reg_rtx (partmode);
786 return gen_rtx_CONCAT (mode, realpart, imagpart);
789 /* Make sure regno_pointer_align, and regno_reg_rtx are large
790 enough to have an element for this pseudo reg number. */
792 if (reg_rtx_no == f->emit->regno_pointer_align_length)
794 int old_size = f->emit->regno_pointer_align_length;
795 char *new;
796 rtx *new1;
798 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
799 memset (new + old_size, 0, old_size);
800 f->emit->regno_pointer_align = (unsigned char *) new;
802 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
803 old_size * 2 * sizeof (rtx));
804 memset (new1 + old_size, 0, old_size * sizeof (rtx));
805 regno_reg_rtx = new1;
807 f->emit->regno_pointer_align_length = old_size * 2;
810 val = gen_raw_REG (mode, reg_rtx_no);
811 regno_reg_rtx[reg_rtx_no++] = val;
812 return val;
815 /* Update NEW with the same attributes as REG, but offsetted by OFFSET.
816 Do the big endian correction if needed. */
818 static void
819 update_reg_offset (rtx new, rtx reg, int offset)
821 tree decl;
822 HOST_WIDE_INT var_size;
824 /* PR middle-end/14084
825 The problem appears when a variable is stored in a larger register
826 and later it is used in the original mode or some mode in between
827 or some part of variable is accessed.
829 On little endian machines there is no problem because
830 the REG_OFFSET of the start of the variable is the same when
831 accessed in any mode (it is 0).
833 However, this is not true on big endian machines.
834 The offset of the start of the variable is different when accessed
835 in different modes.
836 When we are taking a part of the REG we have to change the OFFSET
837 from offset WRT size of mode of REG to offset WRT size of variable.
839 If we would not do the big endian correction the resulting REG_OFFSET
840 would be larger than the size of the DECL.
842 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
844 REG.mode MODE DECL size old offset new offset description
845 DI SI 4 4 0 int32 in SImode
846 DI SI 1 4 0 char in SImode
847 DI QI 1 7 0 char in QImode
848 DI QI 4 5 1 1st element in QImode
849 of char[4]
850 DI HI 4 6 2 1st element in HImode
851 of int16[2]
853 If the size of DECL is equal or greater than the size of REG
854 we can't do this correction because the register holds the
855 whole variable or a part of the variable and thus the REG_OFFSET
856 is already correct. */
858 decl = REG_EXPR (reg);
859 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
860 && decl != NULL
861 && offset > 0
862 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (GET_MODE (new))
863 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
864 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
866 int offset_le;
868 /* Convert machine endian to little endian WRT size of mode of REG. */
869 if (WORDS_BIG_ENDIAN)
870 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
871 / UNITS_PER_WORD) * UNITS_PER_WORD;
872 else
873 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
875 if (BYTES_BIG_ENDIAN)
876 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
877 % UNITS_PER_WORD);
878 else
879 offset_le += offset % UNITS_PER_WORD;
881 if (offset_le >= var_size)
883 /* MODE is wider than the variable so the new reg will cover
884 the whole variable so the resulting OFFSET should be 0. */
885 offset = 0;
887 else
889 /* Convert little endian to machine endian WRT size of variable. */
890 if (WORDS_BIG_ENDIAN)
891 offset = ((var_size - 1 - offset_le)
892 / UNITS_PER_WORD) * UNITS_PER_WORD;
893 else
894 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
896 if (BYTES_BIG_ENDIAN)
897 offset += ((var_size - 1 - offset_le)
898 % UNITS_PER_WORD);
899 else
900 offset += offset_le % UNITS_PER_WORD;
904 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
905 REG_OFFSET (reg) + offset);
908 /* Generate a register with same attributes as REG, but offsetted by
909 OFFSET. */
912 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
913 int offset)
915 rtx new = gen_rtx_REG (mode, regno);
917 update_reg_offset (new, reg, offset);
918 return new;
921 /* Generate a new pseudo-register with the same attributes as REG, but
922 offsetted by OFFSET. */
925 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
927 rtx new = gen_reg_rtx (mode);
929 update_reg_offset (new, reg, offset);
930 return new;
933 /* Set the decl for MEM to DECL. */
935 void
936 set_reg_attrs_from_mem (rtx reg, rtx mem)
938 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
939 REG_ATTRS (reg)
940 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
943 /* Set the register attributes for registers contained in PARM_RTX.
944 Use needed values from memory attributes of MEM. */
946 void
947 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
949 if (REG_P (parm_rtx))
950 set_reg_attrs_from_mem (parm_rtx, mem);
951 else if (GET_CODE (parm_rtx) == PARALLEL)
953 /* Check for a NULL entry in the first slot, used to indicate that the
954 parameter goes both on the stack and in registers. */
955 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
956 for (; i < XVECLEN (parm_rtx, 0); i++)
958 rtx x = XVECEXP (parm_rtx, 0, i);
959 if (REG_P (XEXP (x, 0)))
960 REG_ATTRS (XEXP (x, 0))
961 = get_reg_attrs (MEM_EXPR (mem),
962 INTVAL (XEXP (x, 1)));
967 /* Assign the RTX X to declaration T. */
968 void
969 set_decl_rtl (tree t, rtx x)
971 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
973 if (!x)
974 return;
975 /* For register, we maintain the reverse information too. */
976 if (REG_P (x))
977 REG_ATTRS (x) = get_reg_attrs (t, 0);
978 else if (GET_CODE (x) == SUBREG)
979 REG_ATTRS (SUBREG_REG (x))
980 = get_reg_attrs (t, -SUBREG_BYTE (x));
981 if (GET_CODE (x) == CONCAT)
983 if (REG_P (XEXP (x, 0)))
984 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
985 if (REG_P (XEXP (x, 1)))
986 REG_ATTRS (XEXP (x, 1))
987 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
989 if (GET_CODE (x) == PARALLEL)
991 int i;
992 for (i = 0; i < XVECLEN (x, 0); i++)
994 rtx y = XVECEXP (x, 0, i);
995 if (REG_P (XEXP (y, 0)))
996 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1001 /* Assign the RTX X to parameter declaration T. */
1002 void
1003 set_decl_incoming_rtl (tree t, rtx x)
1005 DECL_INCOMING_RTL (t) = x;
1007 if (!x)
1008 return;
1009 /* For register, we maintain the reverse information too. */
1010 if (REG_P (x))
1011 REG_ATTRS (x) = get_reg_attrs (t, 0);
1012 else if (GET_CODE (x) == SUBREG)
1013 REG_ATTRS (SUBREG_REG (x))
1014 = get_reg_attrs (t, -SUBREG_BYTE (x));
1015 if (GET_CODE (x) == CONCAT)
1017 if (REG_P (XEXP (x, 0)))
1018 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1019 if (REG_P (XEXP (x, 1)))
1020 REG_ATTRS (XEXP (x, 1))
1021 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1023 if (GET_CODE (x) == PARALLEL)
1025 int i, start;
1027 /* Check for a NULL entry, used to indicate that the parameter goes
1028 both on the stack and in registers. */
1029 if (XEXP (XVECEXP (x, 0, 0), 0))
1030 start = 0;
1031 else
1032 start = 1;
1034 for (i = start; i < XVECLEN (x, 0); i++)
1036 rtx y = XVECEXP (x, 0, i);
1037 if (REG_P (XEXP (y, 0)))
1038 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1043 /* Identify REG (which may be a CONCAT) as a user register. */
1045 void
1046 mark_user_reg (rtx reg)
1048 if (GET_CODE (reg) == CONCAT)
1050 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1051 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1053 else
1055 gcc_assert (REG_P (reg));
1056 REG_USERVAR_P (reg) = 1;
1060 /* Identify REG as a probable pointer register and show its alignment
1061 as ALIGN, if nonzero. */
1063 void
1064 mark_reg_pointer (rtx reg, int align)
1066 if (! REG_POINTER (reg))
1068 REG_POINTER (reg) = 1;
1070 if (align)
1071 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1073 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1074 /* We can no-longer be sure just how aligned this pointer is. */
1075 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1078 /* Return 1 plus largest pseudo reg number used in the current function. */
1081 max_reg_num (void)
1083 return reg_rtx_no;
1086 /* Return 1 + the largest label number used so far in the current function. */
1089 max_label_num (void)
1091 return label_num;
1094 /* Return first label number used in this function (if any were used). */
1097 get_first_label_num (void)
1099 return first_label_num;
1102 /* If the rtx for label was created during the expansion of a nested
1103 function, then first_label_num won't include this label number.
1104 Fix this now so that array indicies work later. */
1106 void
1107 maybe_set_first_label_num (rtx x)
1109 if (CODE_LABEL_NUMBER (x) < first_label_num)
1110 first_label_num = CODE_LABEL_NUMBER (x);
1113 /* Return a value representing some low-order bits of X, where the number
1114 of low-order bits is given by MODE. Note that no conversion is done
1115 between floating-point and fixed-point values, rather, the bit
1116 representation is returned.
1118 This function handles the cases in common between gen_lowpart, below,
1119 and two variants in cse.c and combine.c. These are the cases that can
1120 be safely handled at all points in the compilation.
1122 If this is not a case we can handle, return 0. */
1125 gen_lowpart_common (enum machine_mode mode, rtx x)
1127 int msize = GET_MODE_SIZE (mode);
1128 int xsize;
1129 int offset = 0;
1130 enum machine_mode innermode;
1132 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1133 so we have to make one up. Yuk. */
1134 innermode = GET_MODE (x);
1135 if (GET_CODE (x) == CONST_INT
1136 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1137 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1138 else if (innermode == VOIDmode)
1139 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1141 xsize = GET_MODE_SIZE (innermode);
1143 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1145 if (innermode == mode)
1146 return x;
1148 /* MODE must occupy no more words than the mode of X. */
1149 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1150 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1151 return 0;
1153 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1154 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1155 return 0;
1157 offset = subreg_lowpart_offset (mode, innermode);
1159 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1160 && (GET_MODE_CLASS (mode) == MODE_INT
1161 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1163 /* If we are getting the low-order part of something that has been
1164 sign- or zero-extended, we can either just use the object being
1165 extended or make a narrower extension. If we want an even smaller
1166 piece than the size of the object being extended, call ourselves
1167 recursively.
1169 This case is used mostly by combine and cse. */
1171 if (GET_MODE (XEXP (x, 0)) == mode)
1172 return XEXP (x, 0);
1173 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1174 return gen_lowpart_common (mode, XEXP (x, 0));
1175 else if (msize < xsize)
1176 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1178 else if (GET_CODE (x) == SUBREG || REG_P (x)
1179 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1180 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1181 return simplify_gen_subreg (mode, x, innermode, offset);
1183 /* Otherwise, we can't do this. */
1184 return 0;
1188 gen_highpart (enum machine_mode mode, rtx x)
1190 unsigned int msize = GET_MODE_SIZE (mode);
1191 rtx result;
1193 /* This case loses if X is a subreg. To catch bugs early,
1194 complain if an invalid MODE is used even in other cases. */
1195 gcc_assert (msize <= UNITS_PER_WORD
1196 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1198 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1199 subreg_highpart_offset (mode, GET_MODE (x)));
1200 gcc_assert (result);
1202 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1203 the target if we have a MEM. gen_highpart must return a valid operand,
1204 emitting code if necessary to do so. */
1205 if (MEM_P (result))
1207 result = validize_mem (result);
1208 gcc_assert (result);
1211 return result;
1214 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1215 be VOIDmode constant. */
1217 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1219 if (GET_MODE (exp) != VOIDmode)
1221 gcc_assert (GET_MODE (exp) == innermode);
1222 return gen_highpart (outermode, exp);
1224 return simplify_gen_subreg (outermode, exp, innermode,
1225 subreg_highpart_offset (outermode, innermode));
1228 /* Return offset in bytes to get OUTERMODE low part
1229 of the value in mode INNERMODE stored in memory in target format. */
1231 unsigned int
1232 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1234 unsigned int offset = 0;
1235 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1237 if (difference > 0)
1239 if (WORDS_BIG_ENDIAN)
1240 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1241 if (BYTES_BIG_ENDIAN)
1242 offset += difference % UNITS_PER_WORD;
1245 return offset;
1248 /* Return offset in bytes to get OUTERMODE high part
1249 of the value in mode INNERMODE stored in memory in target format. */
1250 unsigned int
1251 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1253 unsigned int offset = 0;
1254 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1256 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1258 if (difference > 0)
1260 if (! WORDS_BIG_ENDIAN)
1261 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1262 if (! BYTES_BIG_ENDIAN)
1263 offset += difference % UNITS_PER_WORD;
1266 return offset;
1269 /* Return 1 iff X, assumed to be a SUBREG,
1270 refers to the least significant part of its containing reg.
1271 If X is not a SUBREG, always return 1 (it is its own low part!). */
1274 subreg_lowpart_p (rtx x)
1276 if (GET_CODE (x) != SUBREG)
1277 return 1;
1278 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1279 return 0;
1281 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1282 == SUBREG_BYTE (x));
1285 /* Return subword OFFSET of operand OP.
1286 The word number, OFFSET, is interpreted as the word number starting
1287 at the low-order address. OFFSET 0 is the low-order word if not
1288 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1290 If we cannot extract the required word, we return zero. Otherwise,
1291 an rtx corresponding to the requested word will be returned.
1293 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1294 reload has completed, a valid address will always be returned. After
1295 reload, if a valid address cannot be returned, we return zero.
1297 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1298 it is the responsibility of the caller.
1300 MODE is the mode of OP in case it is a CONST_INT.
1302 ??? This is still rather broken for some cases. The problem for the
1303 moment is that all callers of this thing provide no 'goal mode' to
1304 tell us to work with. This exists because all callers were written
1305 in a word based SUBREG world.
1306 Now use of this function can be deprecated by simplify_subreg in most
1307 cases.
1311 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1313 if (mode == VOIDmode)
1314 mode = GET_MODE (op);
1316 gcc_assert (mode != VOIDmode);
1318 /* If OP is narrower than a word, fail. */
1319 if (mode != BLKmode
1320 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1321 return 0;
1323 /* If we want a word outside OP, return zero. */
1324 if (mode != BLKmode
1325 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1326 return const0_rtx;
1328 /* Form a new MEM at the requested address. */
1329 if (MEM_P (op))
1331 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1333 if (! validate_address)
1334 return new;
1336 else if (reload_completed)
1338 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1339 return 0;
1341 else
1342 return replace_equiv_address (new, XEXP (new, 0));
1345 /* Rest can be handled by simplify_subreg. */
1346 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1349 /* Similar to `operand_subword', but never return 0. If we can't
1350 extract the required subword, put OP into a register and try again.
1351 The second attempt must succeed. We always validate the address in
1352 this case.
1354 MODE is the mode of OP, in case it is CONST_INT. */
1357 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1359 rtx result = operand_subword (op, offset, 1, mode);
1361 if (result)
1362 return result;
1364 if (mode != BLKmode && mode != VOIDmode)
1366 /* If this is a register which can not be accessed by words, copy it
1367 to a pseudo register. */
1368 if (REG_P (op))
1369 op = copy_to_reg (op);
1370 else
1371 op = force_reg (mode, op);
1374 result = operand_subword (op, offset, 1, mode);
1375 gcc_assert (result);
1377 return result;
1380 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1381 or (2) a component ref of something variable. Represent the later with
1382 a NULL expression. */
1384 static tree
1385 component_ref_for_mem_expr (tree ref)
1387 tree inner = TREE_OPERAND (ref, 0);
1389 if (TREE_CODE (inner) == COMPONENT_REF)
1390 inner = component_ref_for_mem_expr (inner);
1391 else
1393 /* Now remove any conversions: they don't change what the underlying
1394 object is. Likewise for SAVE_EXPR. */
1395 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1396 || TREE_CODE (inner) == NON_LVALUE_EXPR
1397 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1398 || TREE_CODE (inner) == SAVE_EXPR)
1399 inner = TREE_OPERAND (inner, 0);
1401 if (! DECL_P (inner))
1402 inner = NULL_TREE;
1405 if (inner == TREE_OPERAND (ref, 0))
1406 return ref;
1407 else
1408 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1409 TREE_OPERAND (ref, 1), NULL_TREE);
1412 /* Returns 1 if both MEM_EXPR can be considered equal
1413 and 0 otherwise. */
1416 mem_expr_equal_p (tree expr1, tree expr2)
1418 if (expr1 == expr2)
1419 return 1;
1421 if (! expr1 || ! expr2)
1422 return 0;
1424 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1425 return 0;
1427 if (TREE_CODE (expr1) == COMPONENT_REF)
1428 return
1429 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1430 TREE_OPERAND (expr2, 0))
1431 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1432 TREE_OPERAND (expr2, 1));
1434 if (INDIRECT_REF_P (expr1))
1435 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1436 TREE_OPERAND (expr2, 0));
1438 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1439 have been resolved here. */
1440 gcc_assert (DECL_P (expr1));
1442 /* Decls with different pointers can't be equal. */
1443 return 0;
1446 /* Given REF, a MEM, and T, either the type of X or the expression
1447 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1448 if we are making a new object of this type. BITPOS is nonzero if
1449 there is an offset outstanding on T that will be applied later. */
1451 void
1452 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1453 HOST_WIDE_INT bitpos)
1455 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1456 tree expr = MEM_EXPR (ref);
1457 rtx offset = MEM_OFFSET (ref);
1458 rtx size = MEM_SIZE (ref);
1459 unsigned int align = MEM_ALIGN (ref);
1460 HOST_WIDE_INT apply_bitpos = 0;
1461 tree type;
1463 /* It can happen that type_for_mode was given a mode for which there
1464 is no language-level type. In which case it returns NULL, which
1465 we can see here. */
1466 if (t == NULL_TREE)
1467 return;
1469 type = TYPE_P (t) ? t : TREE_TYPE (t);
1470 if (type == error_mark_node)
1471 return;
1473 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1474 wrong answer, as it assumes that DECL_RTL already has the right alias
1475 info. Callers should not set DECL_RTL until after the call to
1476 set_mem_attributes. */
1477 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1479 /* Get the alias set from the expression or type (perhaps using a
1480 front-end routine) and use it. */
1481 alias = get_alias_set (t);
1483 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1484 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1485 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1487 /* If we are making an object of this type, or if this is a DECL, we know
1488 that it is a scalar if the type is not an aggregate. */
1489 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1490 MEM_SCALAR_P (ref) = 1;
1492 /* We can set the alignment from the type if we are making an object,
1493 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1494 if (objectp || TREE_CODE (t) == INDIRECT_REF
1495 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1496 || TYPE_ALIGN_OK (type))
1497 align = MAX (align, TYPE_ALIGN (type));
1498 else
1499 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1501 if (integer_zerop (TREE_OPERAND (t, 1)))
1502 /* We don't know anything about the alignment. */
1503 align = BITS_PER_UNIT;
1504 else
1505 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1508 /* If the size is known, we can set that. */
1509 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1510 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1512 /* If T is not a type, we may be able to deduce some more information about
1513 the expression. */
1514 if (! TYPE_P (t))
1516 tree base;
1518 if (TREE_THIS_VOLATILE (t))
1519 MEM_VOLATILE_P (ref) = 1;
1521 /* Now remove any conversions: they don't change what the underlying
1522 object is. Likewise for SAVE_EXPR. */
1523 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1524 || TREE_CODE (t) == NON_LVALUE_EXPR
1525 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1526 || TREE_CODE (t) == SAVE_EXPR)
1527 t = TREE_OPERAND (t, 0);
1529 /* We may look through structure-like accesses for the purposes of
1530 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1531 base = t;
1532 while (TREE_CODE (base) == COMPONENT_REF
1533 || TREE_CODE (base) == REALPART_EXPR
1534 || TREE_CODE (base) == IMAGPART_EXPR
1535 || TREE_CODE (base) == BIT_FIELD_REF)
1536 base = TREE_OPERAND (base, 0);
1538 if (DECL_P (base))
1540 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1541 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1542 else
1543 MEM_NOTRAP_P (ref) = 1;
1545 else
1546 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1548 base = get_base_address (base);
1549 if (base && DECL_P (base)
1550 && TREE_READONLY (base)
1551 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1553 tree base_type = TREE_TYPE (base);
1554 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1555 || DECL_ARTIFICIAL (base));
1556 MEM_READONLY_P (ref) = 1;
1559 /* If this expression uses it's parent's alias set, mark it such
1560 that we won't change it. */
1561 if (component_uses_parent_alias_set (t))
1562 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1564 /* If this is a decl, set the attributes of the MEM from it. */
1565 if (DECL_P (t))
1567 expr = t;
1568 offset = const0_rtx;
1569 apply_bitpos = bitpos;
1570 size = (DECL_SIZE_UNIT (t)
1571 && host_integerp (DECL_SIZE_UNIT (t), 1)
1572 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1573 align = DECL_ALIGN (t);
1576 /* If this is a constant, we know the alignment. */
1577 else if (CONSTANT_CLASS_P (t))
1579 align = TYPE_ALIGN (type);
1580 #ifdef CONSTANT_ALIGNMENT
1581 align = CONSTANT_ALIGNMENT (t, align);
1582 #endif
1585 /* If this is a field reference and not a bit-field, record it. */
1586 /* ??? There is some information that can be gleened from bit-fields,
1587 such as the word offset in the structure that might be modified.
1588 But skip it for now. */
1589 else if (TREE_CODE (t) == COMPONENT_REF
1590 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1592 expr = component_ref_for_mem_expr (t);
1593 offset = const0_rtx;
1594 apply_bitpos = bitpos;
1595 /* ??? Any reason the field size would be different than
1596 the size we got from the type? */
1599 /* If this is an array reference, look for an outer field reference. */
1600 else if (TREE_CODE (t) == ARRAY_REF)
1602 tree off_tree = size_zero_node;
1603 /* We can't modify t, because we use it at the end of the
1604 function. */
1605 tree t2 = t;
1609 tree index = TREE_OPERAND (t2, 1);
1610 tree low_bound = array_ref_low_bound (t2);
1611 tree unit_size = array_ref_element_size (t2);
1613 /* We assume all arrays have sizes that are a multiple of a byte.
1614 First subtract the lower bound, if any, in the type of the
1615 index, then convert to sizetype and multiply by the size of
1616 the array element. */
1617 if (! integer_zerop (low_bound))
1618 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1619 index, low_bound);
1621 off_tree = size_binop (PLUS_EXPR,
1622 size_binop (MULT_EXPR,
1623 fold_convert (sizetype,
1624 index),
1625 unit_size),
1626 off_tree);
1627 t2 = TREE_OPERAND (t2, 0);
1629 while (TREE_CODE (t2) == ARRAY_REF);
1631 if (DECL_P (t2))
1633 expr = t2;
1634 offset = NULL;
1635 if (host_integerp (off_tree, 1))
1637 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1638 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1639 align = DECL_ALIGN (t2);
1640 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1641 align = aoff;
1642 offset = GEN_INT (ioff);
1643 apply_bitpos = bitpos;
1646 else if (TREE_CODE (t2) == COMPONENT_REF)
1648 expr = component_ref_for_mem_expr (t2);
1649 if (host_integerp (off_tree, 1))
1651 offset = GEN_INT (tree_low_cst (off_tree, 1));
1652 apply_bitpos = bitpos;
1654 /* ??? Any reason the field size would be different than
1655 the size we got from the type? */
1657 else if (flag_argument_noalias > 1
1658 && (INDIRECT_REF_P (t2))
1659 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1661 expr = t2;
1662 offset = NULL;
1666 /* If this is a Fortran indirect argument reference, record the
1667 parameter decl. */
1668 else if (flag_argument_noalias > 1
1669 && (INDIRECT_REF_P (t))
1670 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1672 expr = t;
1673 offset = NULL;
1677 /* If we modified OFFSET based on T, then subtract the outstanding
1678 bit position offset. Similarly, increase the size of the accessed
1679 object to contain the negative offset. */
1680 if (apply_bitpos)
1682 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1683 if (size)
1684 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1687 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1689 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1690 we're overlapping. */
1691 offset = NULL;
1692 expr = NULL;
1695 /* Now set the attributes we computed above. */
1696 MEM_ATTRS (ref)
1697 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1699 /* If this is already known to be a scalar or aggregate, we are done. */
1700 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1701 return;
1703 /* If it is a reference into an aggregate, this is part of an aggregate.
1704 Otherwise we don't know. */
1705 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1706 || TREE_CODE (t) == ARRAY_RANGE_REF
1707 || TREE_CODE (t) == BIT_FIELD_REF)
1708 MEM_IN_STRUCT_P (ref) = 1;
1711 void
1712 set_mem_attributes (rtx ref, tree t, int objectp)
1714 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1717 /* Set the decl for MEM to DECL. */
1719 void
1720 set_mem_attrs_from_reg (rtx mem, rtx reg)
1722 MEM_ATTRS (mem)
1723 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1724 GEN_INT (REG_OFFSET (reg)),
1725 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1728 /* Set the alias set of MEM to SET. */
1730 void
1731 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1733 #ifdef ENABLE_CHECKING
1734 /* If the new and old alias sets don't conflict, something is wrong. */
1735 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1736 #endif
1738 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1739 MEM_SIZE (mem), MEM_ALIGN (mem),
1740 GET_MODE (mem));
1743 /* Set the alignment of MEM to ALIGN bits. */
1745 void
1746 set_mem_align (rtx mem, unsigned int align)
1748 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1749 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1750 GET_MODE (mem));
1753 /* Set the expr for MEM to EXPR. */
1755 void
1756 set_mem_expr (rtx mem, tree expr)
1758 MEM_ATTRS (mem)
1759 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1760 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1763 /* Set the offset of MEM to OFFSET. */
1765 void
1766 set_mem_offset (rtx mem, rtx offset)
1768 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1769 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1770 GET_MODE (mem));
1773 /* Set the size of MEM to SIZE. */
1775 void
1776 set_mem_size (rtx mem, rtx size)
1778 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1779 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1780 GET_MODE (mem));
1783 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1784 and its address changed to ADDR. (VOIDmode means don't change the mode.
1785 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1786 returned memory location is required to be valid. The memory
1787 attributes are not changed. */
1789 static rtx
1790 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1792 rtx new;
1794 gcc_assert (MEM_P (memref));
1795 if (mode == VOIDmode)
1796 mode = GET_MODE (memref);
1797 if (addr == 0)
1798 addr = XEXP (memref, 0);
1799 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1800 && (!validate || memory_address_p (mode, addr)))
1801 return memref;
1803 if (validate)
1805 if (reload_in_progress || reload_completed)
1806 gcc_assert (memory_address_p (mode, addr));
1807 else
1808 addr = memory_address (mode, addr);
1811 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1812 return memref;
1814 new = gen_rtx_MEM (mode, addr);
1815 MEM_COPY_ATTRIBUTES (new, memref);
1816 return new;
1819 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1820 way we are changing MEMREF, so we only preserve the alias set. */
1823 change_address (rtx memref, enum machine_mode mode, rtx addr)
1825 rtx new = change_address_1 (memref, mode, addr, 1), size;
1826 enum machine_mode mmode = GET_MODE (new);
1827 unsigned int align;
1829 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1830 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1832 /* If there are no changes, just return the original memory reference. */
1833 if (new == memref)
1835 if (MEM_ATTRS (memref) == 0
1836 || (MEM_EXPR (memref) == NULL
1837 && MEM_OFFSET (memref) == NULL
1838 && MEM_SIZE (memref) == size
1839 && MEM_ALIGN (memref) == align))
1840 return new;
1842 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1843 MEM_COPY_ATTRIBUTES (new, memref);
1846 MEM_ATTRS (new)
1847 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1849 return new;
1852 /* Return a memory reference like MEMREF, but with its mode changed
1853 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1854 nonzero, the memory address is forced to be valid.
1855 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1856 and caller is responsible for adjusting MEMREF base register. */
1859 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1860 int validate, int adjust)
1862 rtx addr = XEXP (memref, 0);
1863 rtx new;
1864 rtx memoffset = MEM_OFFSET (memref);
1865 rtx size = 0;
1866 unsigned int memalign = MEM_ALIGN (memref);
1868 /* If there are no changes, just return the original memory reference. */
1869 if (mode == GET_MODE (memref) && !offset
1870 && (!validate || memory_address_p (mode, addr)))
1871 return memref;
1873 /* ??? Prefer to create garbage instead of creating shared rtl.
1874 This may happen even if offset is nonzero -- consider
1875 (plus (plus reg reg) const_int) -- so do this always. */
1876 addr = copy_rtx (addr);
1878 if (adjust)
1880 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1881 object, we can merge it into the LO_SUM. */
1882 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1883 && offset >= 0
1884 && (unsigned HOST_WIDE_INT) offset
1885 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1886 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1887 plus_constant (XEXP (addr, 1), offset));
1888 else
1889 addr = plus_constant (addr, offset);
1892 new = change_address_1 (memref, mode, addr, validate);
1894 /* Compute the new values of the memory attributes due to this adjustment.
1895 We add the offsets and update the alignment. */
1896 if (memoffset)
1897 memoffset = GEN_INT (offset + INTVAL (memoffset));
1899 /* Compute the new alignment by taking the MIN of the alignment and the
1900 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1901 if zero. */
1902 if (offset != 0)
1903 memalign
1904 = MIN (memalign,
1905 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1907 /* We can compute the size in a number of ways. */
1908 if (GET_MODE (new) != BLKmode)
1909 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1910 else if (MEM_SIZE (memref))
1911 size = plus_constant (MEM_SIZE (memref), -offset);
1913 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1914 memoffset, size, memalign, GET_MODE (new));
1916 /* At some point, we should validate that this offset is within the object,
1917 if all the appropriate values are known. */
1918 return new;
1921 /* Return a memory reference like MEMREF, but with its mode changed
1922 to MODE and its address changed to ADDR, which is assumed to be
1923 MEMREF offseted by OFFSET bytes. If VALIDATE is
1924 nonzero, the memory address is forced to be valid. */
1927 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1928 HOST_WIDE_INT offset, int validate)
1930 memref = change_address_1 (memref, VOIDmode, addr, validate);
1931 return adjust_address_1 (memref, mode, offset, validate, 0);
1934 /* Return a memory reference like MEMREF, but whose address is changed by
1935 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1936 known to be in OFFSET (possibly 1). */
1939 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1941 rtx new, addr = XEXP (memref, 0);
1943 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1945 /* At this point we don't know _why_ the address is invalid. It
1946 could have secondary memory references, multiplies or anything.
1948 However, if we did go and rearrange things, we can wind up not
1949 being able to recognize the magic around pic_offset_table_rtx.
1950 This stuff is fragile, and is yet another example of why it is
1951 bad to expose PIC machinery too early. */
1952 if (! memory_address_p (GET_MODE (memref), new)
1953 && GET_CODE (addr) == PLUS
1954 && XEXP (addr, 0) == pic_offset_table_rtx)
1956 addr = force_reg (GET_MODE (addr), addr);
1957 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1960 update_temp_slot_address (XEXP (memref, 0), new);
1961 new = change_address_1 (memref, VOIDmode, new, 1);
1963 /* If there are no changes, just return the original memory reference. */
1964 if (new == memref)
1965 return new;
1967 /* Update the alignment to reflect the offset. Reset the offset, which
1968 we don't know. */
1969 MEM_ATTRS (new)
1970 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1971 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1972 GET_MODE (new));
1973 return new;
1976 /* Return a memory reference like MEMREF, but with its address changed to
1977 ADDR. The caller is asserting that the actual piece of memory pointed
1978 to is the same, just the form of the address is being changed, such as
1979 by putting something into a register. */
1982 replace_equiv_address (rtx memref, rtx addr)
1984 /* change_address_1 copies the memory attribute structure without change
1985 and that's exactly what we want here. */
1986 update_temp_slot_address (XEXP (memref, 0), addr);
1987 return change_address_1 (memref, VOIDmode, addr, 1);
1990 /* Likewise, but the reference is not required to be valid. */
1993 replace_equiv_address_nv (rtx memref, rtx addr)
1995 return change_address_1 (memref, VOIDmode, addr, 0);
1998 /* Return a memory reference like MEMREF, but with its mode widened to
1999 MODE and offset by OFFSET. This would be used by targets that e.g.
2000 cannot issue QImode memory operations and have to use SImode memory
2001 operations plus masking logic. */
2004 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2006 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2007 tree expr = MEM_EXPR (new);
2008 rtx memoffset = MEM_OFFSET (new);
2009 unsigned int size = GET_MODE_SIZE (mode);
2011 /* If there are no changes, just return the original memory reference. */
2012 if (new == memref)
2013 return new;
2015 /* If we don't know what offset we were at within the expression, then
2016 we can't know if we've overstepped the bounds. */
2017 if (! memoffset)
2018 expr = NULL_TREE;
2020 while (expr)
2022 if (TREE_CODE (expr) == COMPONENT_REF)
2024 tree field = TREE_OPERAND (expr, 1);
2025 tree offset = component_ref_field_offset (expr);
2027 if (! DECL_SIZE_UNIT (field))
2029 expr = NULL_TREE;
2030 break;
2033 /* Is the field at least as large as the access? If so, ok,
2034 otherwise strip back to the containing structure. */
2035 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2036 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2037 && INTVAL (memoffset) >= 0)
2038 break;
2040 if (! host_integerp (offset, 1))
2042 expr = NULL_TREE;
2043 break;
2046 expr = TREE_OPERAND (expr, 0);
2047 memoffset
2048 = (GEN_INT (INTVAL (memoffset)
2049 + tree_low_cst (offset, 1)
2050 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2051 / BITS_PER_UNIT)));
2053 /* Similarly for the decl. */
2054 else if (DECL_P (expr)
2055 && DECL_SIZE_UNIT (expr)
2056 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2057 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2058 && (! memoffset || INTVAL (memoffset) >= 0))
2059 break;
2060 else
2062 /* The widened memory access overflows the expression, which means
2063 that it could alias another expression. Zap it. */
2064 expr = NULL_TREE;
2065 break;
2069 if (! expr)
2070 memoffset = NULL_RTX;
2072 /* The widened memory may alias other stuff, so zap the alias set. */
2073 /* ??? Maybe use get_alias_set on any remaining expression. */
2075 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2076 MEM_ALIGN (new), mode);
2078 return new;
2081 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2084 gen_label_rtx (void)
2086 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2087 NULL, label_num++, NULL);
2090 /* For procedure integration. */
2092 /* Install new pointers to the first and last insns in the chain.
2093 Also, set cur_insn_uid to one higher than the last in use.
2094 Used for an inline-procedure after copying the insn chain. */
2096 void
2097 set_new_first_and_last_insn (rtx first, rtx last)
2099 rtx insn;
2101 first_insn = first;
2102 last_insn = last;
2103 cur_insn_uid = 0;
2105 for (insn = first; insn; insn = NEXT_INSN (insn))
2106 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2108 cur_insn_uid++;
2111 /* Go through all the RTL insn bodies and copy any invalid shared
2112 structure. This routine should only be called once. */
2114 static void
2115 unshare_all_rtl_1 (tree fndecl, rtx insn)
2117 tree decl;
2119 /* Make sure that virtual parameters are not shared. */
2120 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2121 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2123 /* Make sure that virtual stack slots are not shared. */
2124 unshare_all_decls (DECL_INITIAL (fndecl));
2126 /* Unshare just about everything else. */
2127 unshare_all_rtl_in_chain (insn);
2129 /* Make sure the addresses of stack slots found outside the insn chain
2130 (such as, in DECL_RTL of a variable) are not shared
2131 with the insn chain.
2133 This special care is necessary when the stack slot MEM does not
2134 actually appear in the insn chain. If it does appear, its address
2135 is unshared from all else at that point. */
2136 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2139 /* Go through all the RTL insn bodies and copy any invalid shared
2140 structure, again. This is a fairly expensive thing to do so it
2141 should be done sparingly. */
2143 void
2144 unshare_all_rtl_again (rtx insn)
2146 rtx p;
2147 tree decl;
2149 for (p = insn; p; p = NEXT_INSN (p))
2150 if (INSN_P (p))
2152 reset_used_flags (PATTERN (p));
2153 reset_used_flags (REG_NOTES (p));
2154 reset_used_flags (LOG_LINKS (p));
2157 /* Make sure that virtual stack slots are not shared. */
2158 reset_used_decls (DECL_INITIAL (cfun->decl));
2160 /* Make sure that virtual parameters are not shared. */
2161 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2162 reset_used_flags (DECL_RTL (decl));
2164 reset_used_flags (stack_slot_list);
2166 unshare_all_rtl_1 (cfun->decl, insn);
2169 unsigned int
2170 unshare_all_rtl (void)
2172 unshare_all_rtl_1 (current_function_decl, get_insns ());
2173 return 0;
2176 struct tree_opt_pass pass_unshare_all_rtl =
2178 "unshare", /* name */
2179 NULL, /* gate */
2180 unshare_all_rtl, /* execute */
2181 NULL, /* sub */
2182 NULL, /* next */
2183 0, /* static_pass_number */
2184 0, /* tv_id */
2185 0, /* properties_required */
2186 0, /* properties_provided */
2187 0, /* properties_destroyed */
2188 0, /* todo_flags_start */
2189 TODO_dump_func, /* todo_flags_finish */
2190 0 /* letter */
2194 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2195 Recursively does the same for subexpressions. */
2197 static void
2198 verify_rtx_sharing (rtx orig, rtx insn)
2200 rtx x = orig;
2201 int i;
2202 enum rtx_code code;
2203 const char *format_ptr;
2205 if (x == 0)
2206 return;
2208 code = GET_CODE (x);
2210 /* These types may be freely shared. */
2212 switch (code)
2214 case REG:
2215 case CONST_INT:
2216 case CONST_DOUBLE:
2217 case CONST_VECTOR:
2218 case SYMBOL_REF:
2219 case LABEL_REF:
2220 case CODE_LABEL:
2221 case PC:
2222 case CC0:
2223 case SCRATCH:
2224 return;
2225 /* SCRATCH must be shared because they represent distinct values. */
2226 case CLOBBER:
2227 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2228 return;
2229 break;
2231 case CONST:
2232 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2233 a LABEL_REF, it isn't sharable. */
2234 if (GET_CODE (XEXP (x, 0)) == PLUS
2235 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2236 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2237 return;
2238 break;
2240 case MEM:
2241 /* A MEM is allowed to be shared if its address is constant. */
2242 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2243 || reload_completed || reload_in_progress)
2244 return;
2246 break;
2248 default:
2249 break;
2252 /* This rtx may not be shared. If it has already been seen,
2253 replace it with a copy of itself. */
2254 #ifdef ENABLE_CHECKING
2255 if (RTX_FLAG (x, used))
2257 error ("invalid rtl sharing found in the insn");
2258 debug_rtx (insn);
2259 error ("shared rtx");
2260 debug_rtx (x);
2261 internal_error ("internal consistency failure");
2263 #endif
2264 gcc_assert (!RTX_FLAG (x, used));
2266 RTX_FLAG (x, used) = 1;
2268 /* Now scan the subexpressions recursively. */
2270 format_ptr = GET_RTX_FORMAT (code);
2272 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2274 switch (*format_ptr++)
2276 case 'e':
2277 verify_rtx_sharing (XEXP (x, i), insn);
2278 break;
2280 case 'E':
2281 if (XVEC (x, i) != NULL)
2283 int j;
2284 int len = XVECLEN (x, i);
2286 for (j = 0; j < len; j++)
2288 /* We allow sharing of ASM_OPERANDS inside single
2289 instruction. */
2290 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2291 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2292 == ASM_OPERANDS))
2293 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2294 else
2295 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2298 break;
2301 return;
2304 /* Go through all the RTL insn bodies and check that there is no unexpected
2305 sharing in between the subexpressions. */
2307 void
2308 verify_rtl_sharing (void)
2310 rtx p;
2312 for (p = get_insns (); p; p = NEXT_INSN (p))
2313 if (INSN_P (p))
2315 reset_used_flags (PATTERN (p));
2316 reset_used_flags (REG_NOTES (p));
2317 reset_used_flags (LOG_LINKS (p));
2318 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2320 int i;
2321 rtx q, sequence = PATTERN (p);
2323 for (i = 0; i < XVECLEN (sequence, 0); i++)
2325 q = XVECEXP (sequence, 0, i);
2326 gcc_assert (INSN_P (q));
2327 reset_used_flags (PATTERN (q));
2328 reset_used_flags (REG_NOTES (q));
2329 reset_used_flags (LOG_LINKS (q));
2334 for (p = get_insns (); p; p = NEXT_INSN (p))
2335 if (INSN_P (p))
2337 verify_rtx_sharing (PATTERN (p), p);
2338 verify_rtx_sharing (REG_NOTES (p), p);
2339 verify_rtx_sharing (LOG_LINKS (p), p);
2343 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2344 Assumes the mark bits are cleared at entry. */
2346 void
2347 unshare_all_rtl_in_chain (rtx insn)
2349 for (; insn; insn = NEXT_INSN (insn))
2350 if (INSN_P (insn))
2352 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2353 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2354 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2358 /* Go through all virtual stack slots of a function and copy any
2359 shared structure. */
2360 static void
2361 unshare_all_decls (tree blk)
2363 tree t;
2365 /* Copy shared decls. */
2366 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2367 if (DECL_RTL_SET_P (t))
2368 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2370 /* Now process sub-blocks. */
2371 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2372 unshare_all_decls (t);
2375 /* Go through all virtual stack slots of a function and mark them as
2376 not shared. */
2377 static void
2378 reset_used_decls (tree blk)
2380 tree t;
2382 /* Mark decls. */
2383 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2384 if (DECL_RTL_SET_P (t))
2385 reset_used_flags (DECL_RTL (t));
2387 /* Now process sub-blocks. */
2388 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2389 reset_used_decls (t);
2392 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2393 Recursively does the same for subexpressions. Uses
2394 copy_rtx_if_shared_1 to reduce stack space. */
2397 copy_rtx_if_shared (rtx orig)
2399 copy_rtx_if_shared_1 (&orig);
2400 return orig;
2403 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2404 use. Recursively does the same for subexpressions. */
2406 static void
2407 copy_rtx_if_shared_1 (rtx *orig1)
2409 rtx x;
2410 int i;
2411 enum rtx_code code;
2412 rtx *last_ptr;
2413 const char *format_ptr;
2414 int copied = 0;
2415 int length;
2417 /* Repeat is used to turn tail-recursion into iteration. */
2418 repeat:
2419 x = *orig1;
2421 if (x == 0)
2422 return;
2424 code = GET_CODE (x);
2426 /* These types may be freely shared. */
2428 switch (code)
2430 case REG:
2431 case CONST_INT:
2432 case CONST_DOUBLE:
2433 case CONST_VECTOR:
2434 case SYMBOL_REF:
2435 case LABEL_REF:
2436 case CODE_LABEL:
2437 case PC:
2438 case CC0:
2439 case SCRATCH:
2440 /* SCRATCH must be shared because they represent distinct values. */
2441 return;
2442 case CLOBBER:
2443 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2444 return;
2445 break;
2447 case CONST:
2448 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2449 a LABEL_REF, it isn't sharable. */
2450 if (GET_CODE (XEXP (x, 0)) == PLUS
2451 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2452 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2453 return;
2454 break;
2456 case INSN:
2457 case JUMP_INSN:
2458 case CALL_INSN:
2459 case NOTE:
2460 case BARRIER:
2461 /* The chain of insns is not being copied. */
2462 return;
2464 default:
2465 break;
2468 /* This rtx may not be shared. If it has already been seen,
2469 replace it with a copy of itself. */
2471 if (RTX_FLAG (x, used))
2473 x = shallow_copy_rtx (x);
2474 copied = 1;
2476 RTX_FLAG (x, used) = 1;
2478 /* Now scan the subexpressions recursively.
2479 We can store any replaced subexpressions directly into X
2480 since we know X is not shared! Any vectors in X
2481 must be copied if X was copied. */
2483 format_ptr = GET_RTX_FORMAT (code);
2484 length = GET_RTX_LENGTH (code);
2485 last_ptr = NULL;
2487 for (i = 0; i < length; i++)
2489 switch (*format_ptr++)
2491 case 'e':
2492 if (last_ptr)
2493 copy_rtx_if_shared_1 (last_ptr);
2494 last_ptr = &XEXP (x, i);
2495 break;
2497 case 'E':
2498 if (XVEC (x, i) != NULL)
2500 int j;
2501 int len = XVECLEN (x, i);
2503 /* Copy the vector iff I copied the rtx and the length
2504 is nonzero. */
2505 if (copied && len > 0)
2506 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2508 /* Call recursively on all inside the vector. */
2509 for (j = 0; j < len; j++)
2511 if (last_ptr)
2512 copy_rtx_if_shared_1 (last_ptr);
2513 last_ptr = &XVECEXP (x, i, j);
2516 break;
2519 *orig1 = x;
2520 if (last_ptr)
2522 orig1 = last_ptr;
2523 goto repeat;
2525 return;
2528 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2529 to look for shared sub-parts. */
2531 void
2532 reset_used_flags (rtx x)
2534 int i, j;
2535 enum rtx_code code;
2536 const char *format_ptr;
2537 int length;
2539 /* Repeat is used to turn tail-recursion into iteration. */
2540 repeat:
2541 if (x == 0)
2542 return;
2544 code = GET_CODE (x);
2546 /* These types may be freely shared so we needn't do any resetting
2547 for them. */
2549 switch (code)
2551 case REG:
2552 case CONST_INT:
2553 case CONST_DOUBLE:
2554 case CONST_VECTOR:
2555 case SYMBOL_REF:
2556 case CODE_LABEL:
2557 case PC:
2558 case CC0:
2559 return;
2561 case INSN:
2562 case JUMP_INSN:
2563 case CALL_INSN:
2564 case NOTE:
2565 case LABEL_REF:
2566 case BARRIER:
2567 /* The chain of insns is not being copied. */
2568 return;
2570 default:
2571 break;
2574 RTX_FLAG (x, used) = 0;
2576 format_ptr = GET_RTX_FORMAT (code);
2577 length = GET_RTX_LENGTH (code);
2579 for (i = 0; i < length; i++)
2581 switch (*format_ptr++)
2583 case 'e':
2584 if (i == length-1)
2586 x = XEXP (x, i);
2587 goto repeat;
2589 reset_used_flags (XEXP (x, i));
2590 break;
2592 case 'E':
2593 for (j = 0; j < XVECLEN (x, i); j++)
2594 reset_used_flags (XVECEXP (x, i, j));
2595 break;
2600 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2601 to look for shared sub-parts. */
2603 void
2604 set_used_flags (rtx x)
2606 int i, j;
2607 enum rtx_code code;
2608 const char *format_ptr;
2610 if (x == 0)
2611 return;
2613 code = GET_CODE (x);
2615 /* These types may be freely shared so we needn't do any resetting
2616 for them. */
2618 switch (code)
2620 case REG:
2621 case CONST_INT:
2622 case CONST_DOUBLE:
2623 case CONST_VECTOR:
2624 case SYMBOL_REF:
2625 case CODE_LABEL:
2626 case PC:
2627 case CC0:
2628 return;
2630 case INSN:
2631 case JUMP_INSN:
2632 case CALL_INSN:
2633 case NOTE:
2634 case LABEL_REF:
2635 case BARRIER:
2636 /* The chain of insns is not being copied. */
2637 return;
2639 default:
2640 break;
2643 RTX_FLAG (x, used) = 1;
2645 format_ptr = GET_RTX_FORMAT (code);
2646 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2648 switch (*format_ptr++)
2650 case 'e':
2651 set_used_flags (XEXP (x, i));
2652 break;
2654 case 'E':
2655 for (j = 0; j < XVECLEN (x, i); j++)
2656 set_used_flags (XVECEXP (x, i, j));
2657 break;
2662 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2663 Return X or the rtx for the pseudo reg the value of X was copied into.
2664 OTHER must be valid as a SET_DEST. */
2667 make_safe_from (rtx x, rtx other)
2669 while (1)
2670 switch (GET_CODE (other))
2672 case SUBREG:
2673 other = SUBREG_REG (other);
2674 break;
2675 case STRICT_LOW_PART:
2676 case SIGN_EXTEND:
2677 case ZERO_EXTEND:
2678 other = XEXP (other, 0);
2679 break;
2680 default:
2681 goto done;
2683 done:
2684 if ((MEM_P (other)
2685 && ! CONSTANT_P (x)
2686 && !REG_P (x)
2687 && GET_CODE (x) != SUBREG)
2688 || (REG_P (other)
2689 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2690 || reg_mentioned_p (other, x))))
2692 rtx temp = gen_reg_rtx (GET_MODE (x));
2693 emit_move_insn (temp, x);
2694 return temp;
2696 return x;
2699 /* Emission of insns (adding them to the doubly-linked list). */
2701 /* Return the first insn of the current sequence or current function. */
2704 get_insns (void)
2706 return first_insn;
2709 /* Specify a new insn as the first in the chain. */
2711 void
2712 set_first_insn (rtx insn)
2714 gcc_assert (!PREV_INSN (insn));
2715 first_insn = insn;
2718 /* Return the last insn emitted in current sequence or current function. */
2721 get_last_insn (void)
2723 return last_insn;
2726 /* Specify a new insn as the last in the chain. */
2728 void
2729 set_last_insn (rtx insn)
2731 gcc_assert (!NEXT_INSN (insn));
2732 last_insn = insn;
2735 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2738 get_last_insn_anywhere (void)
2740 struct sequence_stack *stack;
2741 if (last_insn)
2742 return last_insn;
2743 for (stack = seq_stack; stack; stack = stack->next)
2744 if (stack->last != 0)
2745 return stack->last;
2746 return 0;
2749 /* Return the first nonnote insn emitted in current sequence or current
2750 function. This routine looks inside SEQUENCEs. */
2753 get_first_nonnote_insn (void)
2755 rtx insn = first_insn;
2757 if (insn)
2759 if (NOTE_P (insn))
2760 for (insn = next_insn (insn);
2761 insn && NOTE_P (insn);
2762 insn = next_insn (insn))
2763 continue;
2764 else
2766 if (NONJUMP_INSN_P (insn)
2767 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2768 insn = XVECEXP (PATTERN (insn), 0, 0);
2772 return insn;
2775 /* Return the last nonnote insn emitted in current sequence or current
2776 function. This routine looks inside SEQUENCEs. */
2779 get_last_nonnote_insn (void)
2781 rtx insn = last_insn;
2783 if (insn)
2785 if (NOTE_P (insn))
2786 for (insn = previous_insn (insn);
2787 insn && NOTE_P (insn);
2788 insn = previous_insn (insn))
2789 continue;
2790 else
2792 if (NONJUMP_INSN_P (insn)
2793 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2794 insn = XVECEXP (PATTERN (insn), 0,
2795 XVECLEN (PATTERN (insn), 0) - 1);
2799 return insn;
2802 /* Return a number larger than any instruction's uid in this function. */
2805 get_max_uid (void)
2807 return cur_insn_uid;
2810 /* Return the next insn. If it is a SEQUENCE, return the first insn
2811 of the sequence. */
2814 next_insn (rtx insn)
2816 if (insn)
2818 insn = NEXT_INSN (insn);
2819 if (insn && NONJUMP_INSN_P (insn)
2820 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2821 insn = XVECEXP (PATTERN (insn), 0, 0);
2824 return insn;
2827 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2828 of the sequence. */
2831 previous_insn (rtx insn)
2833 if (insn)
2835 insn = PREV_INSN (insn);
2836 if (insn && NONJUMP_INSN_P (insn)
2837 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2838 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2841 return insn;
2844 /* Return the next insn after INSN that is not a NOTE. This routine does not
2845 look inside SEQUENCEs. */
2848 next_nonnote_insn (rtx insn)
2850 while (insn)
2852 insn = NEXT_INSN (insn);
2853 if (insn == 0 || !NOTE_P (insn))
2854 break;
2857 return insn;
2860 /* Return the previous insn before INSN that is not a NOTE. This routine does
2861 not look inside SEQUENCEs. */
2864 prev_nonnote_insn (rtx insn)
2866 while (insn)
2868 insn = PREV_INSN (insn);
2869 if (insn == 0 || !NOTE_P (insn))
2870 break;
2873 return insn;
2876 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2877 or 0, if there is none. This routine does not look inside
2878 SEQUENCEs. */
2881 next_real_insn (rtx insn)
2883 while (insn)
2885 insn = NEXT_INSN (insn);
2886 if (insn == 0 || INSN_P (insn))
2887 break;
2890 return insn;
2893 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2894 or 0, if there is none. This routine does not look inside
2895 SEQUENCEs. */
2898 prev_real_insn (rtx insn)
2900 while (insn)
2902 insn = PREV_INSN (insn);
2903 if (insn == 0 || INSN_P (insn))
2904 break;
2907 return insn;
2910 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2911 This routine does not look inside SEQUENCEs. */
2914 last_call_insn (void)
2916 rtx insn;
2918 for (insn = get_last_insn ();
2919 insn && !CALL_P (insn);
2920 insn = PREV_INSN (insn))
2923 return insn;
2926 /* Find the next insn after INSN that really does something. This routine
2927 does not look inside SEQUENCEs. Until reload has completed, this is the
2928 same as next_real_insn. */
2931 active_insn_p (rtx insn)
2933 return (CALL_P (insn) || JUMP_P (insn)
2934 || (NONJUMP_INSN_P (insn)
2935 && (! reload_completed
2936 || (GET_CODE (PATTERN (insn)) != USE
2937 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2941 next_active_insn (rtx insn)
2943 while (insn)
2945 insn = NEXT_INSN (insn);
2946 if (insn == 0 || active_insn_p (insn))
2947 break;
2950 return insn;
2953 /* Find the last insn before INSN that really does something. This routine
2954 does not look inside SEQUENCEs. Until reload has completed, this is the
2955 same as prev_real_insn. */
2958 prev_active_insn (rtx insn)
2960 while (insn)
2962 insn = PREV_INSN (insn);
2963 if (insn == 0 || active_insn_p (insn))
2964 break;
2967 return insn;
2970 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2973 next_label (rtx insn)
2975 while (insn)
2977 insn = NEXT_INSN (insn);
2978 if (insn == 0 || LABEL_P (insn))
2979 break;
2982 return insn;
2985 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2988 prev_label (rtx insn)
2990 while (insn)
2992 insn = PREV_INSN (insn);
2993 if (insn == 0 || LABEL_P (insn))
2994 break;
2997 return insn;
3000 /* Return the last label to mark the same position as LABEL. Return null
3001 if LABEL itself is null. */
3004 skip_consecutive_labels (rtx label)
3006 rtx insn;
3008 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3009 if (LABEL_P (insn))
3010 label = insn;
3012 return label;
3015 #ifdef HAVE_cc0
3016 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3017 and REG_CC_USER notes so we can find it. */
3019 void
3020 link_cc0_insns (rtx insn)
3022 rtx user = next_nonnote_insn (insn);
3024 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3025 user = XVECEXP (PATTERN (user), 0, 0);
3027 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3028 REG_NOTES (user));
3029 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3032 /* Return the next insn that uses CC0 after INSN, which is assumed to
3033 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3034 applied to the result of this function should yield INSN).
3036 Normally, this is simply the next insn. However, if a REG_CC_USER note
3037 is present, it contains the insn that uses CC0.
3039 Return 0 if we can't find the insn. */
3042 next_cc0_user (rtx insn)
3044 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3046 if (note)
3047 return XEXP (note, 0);
3049 insn = next_nonnote_insn (insn);
3050 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3051 insn = XVECEXP (PATTERN (insn), 0, 0);
3053 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3054 return insn;
3056 return 0;
3059 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3060 note, it is the previous insn. */
3063 prev_cc0_setter (rtx insn)
3065 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3067 if (note)
3068 return XEXP (note, 0);
3070 insn = prev_nonnote_insn (insn);
3071 gcc_assert (sets_cc0_p (PATTERN (insn)));
3073 return insn;
3075 #endif
3077 /* Increment the label uses for all labels present in rtx. */
3079 static void
3080 mark_label_nuses (rtx x)
3082 enum rtx_code code;
3083 int i, j;
3084 const char *fmt;
3086 code = GET_CODE (x);
3087 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3088 LABEL_NUSES (XEXP (x, 0))++;
3090 fmt = GET_RTX_FORMAT (code);
3091 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3093 if (fmt[i] == 'e')
3094 mark_label_nuses (XEXP (x, i));
3095 else if (fmt[i] == 'E')
3096 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3097 mark_label_nuses (XVECEXP (x, i, j));
3102 /* Try splitting insns that can be split for better scheduling.
3103 PAT is the pattern which might split.
3104 TRIAL is the insn providing PAT.
3105 LAST is nonzero if we should return the last insn of the sequence produced.
3107 If this routine succeeds in splitting, it returns the first or last
3108 replacement insn depending on the value of LAST. Otherwise, it
3109 returns TRIAL. If the insn to be returned can be split, it will be. */
3112 try_split (rtx pat, rtx trial, int last)
3114 rtx before = PREV_INSN (trial);
3115 rtx after = NEXT_INSN (trial);
3116 int has_barrier = 0;
3117 rtx tem;
3118 rtx note, seq;
3119 int probability;
3120 rtx insn_last, insn;
3121 int njumps = 0;
3123 if (any_condjump_p (trial)
3124 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3125 split_branch_probability = INTVAL (XEXP (note, 0));
3126 probability = split_branch_probability;
3128 seq = split_insns (pat, trial);
3130 split_branch_probability = -1;
3132 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3133 We may need to handle this specially. */
3134 if (after && BARRIER_P (after))
3136 has_barrier = 1;
3137 after = NEXT_INSN (after);
3140 if (!seq)
3141 return trial;
3143 /* Avoid infinite loop if any insn of the result matches
3144 the original pattern. */
3145 insn_last = seq;
3146 while (1)
3148 if (INSN_P (insn_last)
3149 && rtx_equal_p (PATTERN (insn_last), pat))
3150 return trial;
3151 if (!NEXT_INSN (insn_last))
3152 break;
3153 insn_last = NEXT_INSN (insn_last);
3156 /* Mark labels. */
3157 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3159 if (JUMP_P (insn))
3161 mark_jump_label (PATTERN (insn), insn, 0);
3162 njumps++;
3163 if (probability != -1
3164 && any_condjump_p (insn)
3165 && !find_reg_note (insn, REG_BR_PROB, 0))
3167 /* We can preserve the REG_BR_PROB notes only if exactly
3168 one jump is created, otherwise the machine description
3169 is responsible for this step using
3170 split_branch_probability variable. */
3171 gcc_assert (njumps == 1);
3172 REG_NOTES (insn)
3173 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3174 GEN_INT (probability),
3175 REG_NOTES (insn));
3180 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3181 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3182 if (CALL_P (trial))
3184 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3185 if (CALL_P (insn))
3187 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3188 while (*p)
3189 p = &XEXP (*p, 1);
3190 *p = CALL_INSN_FUNCTION_USAGE (trial);
3191 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3195 /* Copy notes, particularly those related to the CFG. */
3196 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3198 switch (REG_NOTE_KIND (note))
3200 case REG_EH_REGION:
3201 insn = insn_last;
3202 while (insn != NULL_RTX)
3204 if (CALL_P (insn)
3205 || (flag_non_call_exceptions && INSN_P (insn)
3206 && may_trap_p (PATTERN (insn))))
3207 REG_NOTES (insn)
3208 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3209 XEXP (note, 0),
3210 REG_NOTES (insn));
3211 insn = PREV_INSN (insn);
3213 break;
3215 case REG_NORETURN:
3216 case REG_SETJMP:
3217 insn = insn_last;
3218 while (insn != NULL_RTX)
3220 if (CALL_P (insn))
3221 REG_NOTES (insn)
3222 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3223 XEXP (note, 0),
3224 REG_NOTES (insn));
3225 insn = PREV_INSN (insn);
3227 break;
3229 case REG_NON_LOCAL_GOTO:
3230 insn = insn_last;
3231 while (insn != NULL_RTX)
3233 if (JUMP_P (insn))
3234 REG_NOTES (insn)
3235 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3236 XEXP (note, 0),
3237 REG_NOTES (insn));
3238 insn = PREV_INSN (insn);
3240 break;
3242 default:
3243 break;
3247 /* If there are LABELS inside the split insns increment the
3248 usage count so we don't delete the label. */
3249 if (NONJUMP_INSN_P (trial))
3251 insn = insn_last;
3252 while (insn != NULL_RTX)
3254 if (NONJUMP_INSN_P (insn))
3255 mark_label_nuses (PATTERN (insn));
3257 insn = PREV_INSN (insn);
3261 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3263 delete_insn (trial);
3264 if (has_barrier)
3265 emit_barrier_after (tem);
3267 /* Recursively call try_split for each new insn created; by the
3268 time control returns here that insn will be fully split, so
3269 set LAST and continue from the insn after the one returned.
3270 We can't use next_active_insn here since AFTER may be a note.
3271 Ignore deleted insns, which can be occur if not optimizing. */
3272 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3273 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3274 tem = try_split (PATTERN (tem), tem, 1);
3276 /* Return either the first or the last insn, depending on which was
3277 requested. */
3278 return last
3279 ? (after ? PREV_INSN (after) : last_insn)
3280 : NEXT_INSN (before);
3283 /* Make and return an INSN rtx, initializing all its slots.
3284 Store PATTERN in the pattern slots. */
3287 make_insn_raw (rtx pattern)
3289 rtx insn;
3291 insn = rtx_alloc (INSN);
3293 INSN_UID (insn) = cur_insn_uid++;
3294 PATTERN (insn) = pattern;
3295 INSN_CODE (insn) = -1;
3296 LOG_LINKS (insn) = NULL;
3297 REG_NOTES (insn) = NULL;
3298 INSN_LOCATOR (insn) = 0;
3299 BLOCK_FOR_INSN (insn) = NULL;
3301 #ifdef ENABLE_RTL_CHECKING
3302 if (insn
3303 && INSN_P (insn)
3304 && (returnjump_p (insn)
3305 || (GET_CODE (insn) == SET
3306 && SET_DEST (insn) == pc_rtx)))
3308 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3309 debug_rtx (insn);
3311 #endif
3313 return insn;
3316 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3319 make_jump_insn_raw (rtx pattern)
3321 rtx insn;
3323 insn = rtx_alloc (JUMP_INSN);
3324 INSN_UID (insn) = cur_insn_uid++;
3326 PATTERN (insn) = pattern;
3327 INSN_CODE (insn) = -1;
3328 LOG_LINKS (insn) = NULL;
3329 REG_NOTES (insn) = NULL;
3330 JUMP_LABEL (insn) = NULL;
3331 INSN_LOCATOR (insn) = 0;
3332 BLOCK_FOR_INSN (insn) = NULL;
3334 return insn;
3337 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3339 static rtx
3340 make_call_insn_raw (rtx pattern)
3342 rtx insn;
3344 insn = rtx_alloc (CALL_INSN);
3345 INSN_UID (insn) = cur_insn_uid++;
3347 PATTERN (insn) = pattern;
3348 INSN_CODE (insn) = -1;
3349 LOG_LINKS (insn) = NULL;
3350 REG_NOTES (insn) = NULL;
3351 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3352 INSN_LOCATOR (insn) = 0;
3353 BLOCK_FOR_INSN (insn) = NULL;
3355 return insn;
3358 /* Add INSN to the end of the doubly-linked list.
3359 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3361 void
3362 add_insn (rtx insn)
3364 PREV_INSN (insn) = last_insn;
3365 NEXT_INSN (insn) = 0;
3367 if (NULL != last_insn)
3368 NEXT_INSN (last_insn) = insn;
3370 if (NULL == first_insn)
3371 first_insn = insn;
3373 last_insn = insn;
3376 /* Add INSN into the doubly-linked list after insn AFTER. This and
3377 the next should be the only functions called to insert an insn once
3378 delay slots have been filled since only they know how to update a
3379 SEQUENCE. */
3381 void
3382 add_insn_after (rtx insn, rtx after)
3384 rtx next = NEXT_INSN (after);
3385 basic_block bb;
3387 gcc_assert (!optimize || !INSN_DELETED_P (after));
3389 NEXT_INSN (insn) = next;
3390 PREV_INSN (insn) = after;
3392 if (next)
3394 PREV_INSN (next) = insn;
3395 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3396 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3398 else if (last_insn == after)
3399 last_insn = insn;
3400 else
3402 struct sequence_stack *stack = seq_stack;
3403 /* Scan all pending sequences too. */
3404 for (; stack; stack = stack->next)
3405 if (after == stack->last)
3407 stack->last = insn;
3408 break;
3411 gcc_assert (stack);
3414 if (!BARRIER_P (after)
3415 && !BARRIER_P (insn)
3416 && (bb = BLOCK_FOR_INSN (after)))
3418 set_block_for_insn (insn, bb);
3419 if (INSN_P (insn))
3420 bb->flags |= BB_DIRTY;
3421 /* Should not happen as first in the BB is always
3422 either NOTE or LABEL. */
3423 if (BB_END (bb) == after
3424 /* Avoid clobbering of structure when creating new BB. */
3425 && !BARRIER_P (insn)
3426 && (!NOTE_P (insn)
3427 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3428 BB_END (bb) = insn;
3431 NEXT_INSN (after) = insn;
3432 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3434 rtx sequence = PATTERN (after);
3435 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3439 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3440 the previous should be the only functions called to insert an insn once
3441 delay slots have been filled since only they know how to update a
3442 SEQUENCE. */
3444 void
3445 add_insn_before (rtx insn, rtx before)
3447 rtx prev = PREV_INSN (before);
3448 basic_block bb;
3450 gcc_assert (!optimize || !INSN_DELETED_P (before));
3452 PREV_INSN (insn) = prev;
3453 NEXT_INSN (insn) = before;
3455 if (prev)
3457 NEXT_INSN (prev) = insn;
3458 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3460 rtx sequence = PATTERN (prev);
3461 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3464 else if (first_insn == before)
3465 first_insn = insn;
3466 else
3468 struct sequence_stack *stack = seq_stack;
3469 /* Scan all pending sequences too. */
3470 for (; stack; stack = stack->next)
3471 if (before == stack->first)
3473 stack->first = insn;
3474 break;
3477 gcc_assert (stack);
3480 if (!BARRIER_P (before)
3481 && !BARRIER_P (insn)
3482 && (bb = BLOCK_FOR_INSN (before)))
3484 set_block_for_insn (insn, bb);
3485 if (INSN_P (insn))
3486 bb->flags |= BB_DIRTY;
3487 /* Should not happen as first in the BB is always either NOTE or
3488 LABEL. */
3489 gcc_assert (BB_HEAD (bb) != insn
3490 /* Avoid clobbering of structure when creating new BB. */
3491 || BARRIER_P (insn)
3492 || (NOTE_P (insn)
3493 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3496 PREV_INSN (before) = insn;
3497 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3498 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3501 /* Remove an insn from its doubly-linked list. This function knows how
3502 to handle sequences. */
3503 void
3504 remove_insn (rtx insn)
3506 rtx next = NEXT_INSN (insn);
3507 rtx prev = PREV_INSN (insn);
3508 basic_block bb;
3510 if (prev)
3512 NEXT_INSN (prev) = next;
3513 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3515 rtx sequence = PATTERN (prev);
3516 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3519 else if (first_insn == insn)
3520 first_insn = next;
3521 else
3523 struct sequence_stack *stack = seq_stack;
3524 /* Scan all pending sequences too. */
3525 for (; stack; stack = stack->next)
3526 if (insn == stack->first)
3528 stack->first = next;
3529 break;
3532 gcc_assert (stack);
3535 if (next)
3537 PREV_INSN (next) = prev;
3538 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3539 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3541 else if (last_insn == insn)
3542 last_insn = prev;
3543 else
3545 struct sequence_stack *stack = seq_stack;
3546 /* Scan all pending sequences too. */
3547 for (; stack; stack = stack->next)
3548 if (insn == stack->last)
3550 stack->last = prev;
3551 break;
3554 gcc_assert (stack);
3556 if (!BARRIER_P (insn)
3557 && (bb = BLOCK_FOR_INSN (insn)))
3559 if (INSN_P (insn))
3560 bb->flags |= BB_DIRTY;
3561 if (BB_HEAD (bb) == insn)
3563 /* Never ever delete the basic block note without deleting whole
3564 basic block. */
3565 gcc_assert (!NOTE_P (insn));
3566 BB_HEAD (bb) = next;
3568 if (BB_END (bb) == insn)
3569 BB_END (bb) = prev;
3573 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3575 void
3576 add_function_usage_to (rtx call_insn, rtx call_fusage)
3578 gcc_assert (call_insn && CALL_P (call_insn));
3580 /* Put the register usage information on the CALL. If there is already
3581 some usage information, put ours at the end. */
3582 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3584 rtx link;
3586 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3587 link = XEXP (link, 1))
3590 XEXP (link, 1) = call_fusage;
3592 else
3593 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3596 /* Delete all insns made since FROM.
3597 FROM becomes the new last instruction. */
3599 void
3600 delete_insns_since (rtx from)
3602 if (from == 0)
3603 first_insn = 0;
3604 else
3605 NEXT_INSN (from) = 0;
3606 last_insn = from;
3609 /* This function is deprecated, please use sequences instead.
3611 Move a consecutive bunch of insns to a different place in the chain.
3612 The insns to be moved are those between FROM and TO.
3613 They are moved to a new position after the insn AFTER.
3614 AFTER must not be FROM or TO or any insn in between.
3616 This function does not know about SEQUENCEs and hence should not be
3617 called after delay-slot filling has been done. */
3619 void
3620 reorder_insns_nobb (rtx from, rtx to, rtx after)
3622 /* Splice this bunch out of where it is now. */
3623 if (PREV_INSN (from))
3624 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3625 if (NEXT_INSN (to))
3626 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3627 if (last_insn == to)
3628 last_insn = PREV_INSN (from);
3629 if (first_insn == from)
3630 first_insn = NEXT_INSN (to);
3632 /* Make the new neighbors point to it and it to them. */
3633 if (NEXT_INSN (after))
3634 PREV_INSN (NEXT_INSN (after)) = to;
3636 NEXT_INSN (to) = NEXT_INSN (after);
3637 PREV_INSN (from) = after;
3638 NEXT_INSN (after) = from;
3639 if (after == last_insn)
3640 last_insn = to;
3643 /* Same as function above, but take care to update BB boundaries. */
3644 void
3645 reorder_insns (rtx from, rtx to, rtx after)
3647 rtx prev = PREV_INSN (from);
3648 basic_block bb, bb2;
3650 reorder_insns_nobb (from, to, after);
3652 if (!BARRIER_P (after)
3653 && (bb = BLOCK_FOR_INSN (after)))
3655 rtx x;
3656 bb->flags |= BB_DIRTY;
3658 if (!BARRIER_P (from)
3659 && (bb2 = BLOCK_FOR_INSN (from)))
3661 if (BB_END (bb2) == to)
3662 BB_END (bb2) = prev;
3663 bb2->flags |= BB_DIRTY;
3666 if (BB_END (bb) == after)
3667 BB_END (bb) = to;
3669 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3670 if (!BARRIER_P (x))
3671 set_block_for_insn (x, bb);
3676 /* Emit insn(s) of given code and pattern
3677 at a specified place within the doubly-linked list.
3679 All of the emit_foo global entry points accept an object
3680 X which is either an insn list or a PATTERN of a single
3681 instruction.
3683 There are thus a few canonical ways to generate code and
3684 emit it at a specific place in the instruction stream. For
3685 example, consider the instruction named SPOT and the fact that
3686 we would like to emit some instructions before SPOT. We might
3687 do it like this:
3689 start_sequence ();
3690 ... emit the new instructions ...
3691 insns_head = get_insns ();
3692 end_sequence ();
3694 emit_insn_before (insns_head, SPOT);
3696 It used to be common to generate SEQUENCE rtl instead, but that
3697 is a relic of the past which no longer occurs. The reason is that
3698 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3699 generated would almost certainly die right after it was created. */
3701 /* Make X be output before the instruction BEFORE. */
3704 emit_insn_before_noloc (rtx x, rtx before)
3706 rtx last = before;
3707 rtx insn;
3709 gcc_assert (before);
3711 if (x == NULL_RTX)
3712 return last;
3714 switch (GET_CODE (x))
3716 case INSN:
3717 case JUMP_INSN:
3718 case CALL_INSN:
3719 case CODE_LABEL:
3720 case BARRIER:
3721 case NOTE:
3722 insn = x;
3723 while (insn)
3725 rtx next = NEXT_INSN (insn);
3726 add_insn_before (insn, before);
3727 last = insn;
3728 insn = next;
3730 break;
3732 #ifdef ENABLE_RTL_CHECKING
3733 case SEQUENCE:
3734 gcc_unreachable ();
3735 break;
3736 #endif
3738 default:
3739 last = make_insn_raw (x);
3740 add_insn_before (last, before);
3741 break;
3744 return last;
3747 /* Make an instruction with body X and code JUMP_INSN
3748 and output it before the instruction BEFORE. */
3751 emit_jump_insn_before_noloc (rtx x, rtx before)
3753 rtx insn, last = NULL_RTX;
3755 gcc_assert (before);
3757 switch (GET_CODE (x))
3759 case INSN:
3760 case JUMP_INSN:
3761 case CALL_INSN:
3762 case CODE_LABEL:
3763 case BARRIER:
3764 case NOTE:
3765 insn = x;
3766 while (insn)
3768 rtx next = NEXT_INSN (insn);
3769 add_insn_before (insn, before);
3770 last = insn;
3771 insn = next;
3773 break;
3775 #ifdef ENABLE_RTL_CHECKING
3776 case SEQUENCE:
3777 gcc_unreachable ();
3778 break;
3779 #endif
3781 default:
3782 last = make_jump_insn_raw (x);
3783 add_insn_before (last, before);
3784 break;
3787 return last;
3790 /* Make an instruction with body X and code CALL_INSN
3791 and output it before the instruction BEFORE. */
3794 emit_call_insn_before_noloc (rtx x, rtx before)
3796 rtx last = NULL_RTX, insn;
3798 gcc_assert (before);
3800 switch (GET_CODE (x))
3802 case INSN:
3803 case JUMP_INSN:
3804 case CALL_INSN:
3805 case CODE_LABEL:
3806 case BARRIER:
3807 case NOTE:
3808 insn = x;
3809 while (insn)
3811 rtx next = NEXT_INSN (insn);
3812 add_insn_before (insn, before);
3813 last = insn;
3814 insn = next;
3816 break;
3818 #ifdef ENABLE_RTL_CHECKING
3819 case SEQUENCE:
3820 gcc_unreachable ();
3821 break;
3822 #endif
3824 default:
3825 last = make_call_insn_raw (x);
3826 add_insn_before (last, before);
3827 break;
3830 return last;
3833 /* Make an insn of code BARRIER
3834 and output it before the insn BEFORE. */
3837 emit_barrier_before (rtx before)
3839 rtx insn = rtx_alloc (BARRIER);
3841 INSN_UID (insn) = cur_insn_uid++;
3843 add_insn_before (insn, before);
3844 return insn;
3847 /* Emit the label LABEL before the insn BEFORE. */
3850 emit_label_before (rtx label, rtx before)
3852 /* This can be called twice for the same label as a result of the
3853 confusion that follows a syntax error! So make it harmless. */
3854 if (INSN_UID (label) == 0)
3856 INSN_UID (label) = cur_insn_uid++;
3857 add_insn_before (label, before);
3860 return label;
3863 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3866 emit_note_before (int subtype, rtx before)
3868 rtx note = rtx_alloc (NOTE);
3869 INSN_UID (note) = cur_insn_uid++;
3870 #ifndef USE_MAPPED_LOCATION
3871 NOTE_SOURCE_FILE (note) = 0;
3872 #endif
3873 NOTE_LINE_NUMBER (note) = subtype;
3874 BLOCK_FOR_INSN (note) = NULL;
3876 add_insn_before (note, before);
3877 return note;
3880 /* Helper for emit_insn_after, handles lists of instructions
3881 efficiently. */
3883 static rtx emit_insn_after_1 (rtx, rtx);
3885 static rtx
3886 emit_insn_after_1 (rtx first, rtx after)
3888 rtx last;
3889 rtx after_after;
3890 basic_block bb;
3892 if (!BARRIER_P (after)
3893 && (bb = BLOCK_FOR_INSN (after)))
3895 bb->flags |= BB_DIRTY;
3896 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3897 if (!BARRIER_P (last))
3898 set_block_for_insn (last, bb);
3899 if (!BARRIER_P (last))
3900 set_block_for_insn (last, bb);
3901 if (BB_END (bb) == after)
3902 BB_END (bb) = last;
3904 else
3905 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3906 continue;
3908 after_after = NEXT_INSN (after);
3910 NEXT_INSN (after) = first;
3911 PREV_INSN (first) = after;
3912 NEXT_INSN (last) = after_after;
3913 if (after_after)
3914 PREV_INSN (after_after) = last;
3916 if (after == last_insn)
3917 last_insn = last;
3918 return last;
3921 /* Make X be output after the insn AFTER. */
3924 emit_insn_after_noloc (rtx x, rtx after)
3926 rtx last = after;
3928 gcc_assert (after);
3930 if (x == NULL_RTX)
3931 return last;
3933 switch (GET_CODE (x))
3935 case INSN:
3936 case JUMP_INSN:
3937 case CALL_INSN:
3938 case CODE_LABEL:
3939 case BARRIER:
3940 case NOTE:
3941 last = emit_insn_after_1 (x, after);
3942 break;
3944 #ifdef ENABLE_RTL_CHECKING
3945 case SEQUENCE:
3946 gcc_unreachable ();
3947 break;
3948 #endif
3950 default:
3951 last = make_insn_raw (x);
3952 add_insn_after (last, after);
3953 break;
3956 return last;
3960 /* Make an insn of code JUMP_INSN with body X
3961 and output it after the insn AFTER. */
3964 emit_jump_insn_after_noloc (rtx x, rtx after)
3966 rtx last;
3968 gcc_assert (after);
3970 switch (GET_CODE (x))
3972 case INSN:
3973 case JUMP_INSN:
3974 case CALL_INSN:
3975 case CODE_LABEL:
3976 case BARRIER:
3977 case NOTE:
3978 last = emit_insn_after_1 (x, after);
3979 break;
3981 #ifdef ENABLE_RTL_CHECKING
3982 case SEQUENCE:
3983 gcc_unreachable ();
3984 break;
3985 #endif
3987 default:
3988 last = make_jump_insn_raw (x);
3989 add_insn_after (last, after);
3990 break;
3993 return last;
3996 /* Make an instruction with body X and code CALL_INSN
3997 and output it after the instruction AFTER. */
4000 emit_call_insn_after_noloc (rtx x, rtx after)
4002 rtx last;
4004 gcc_assert (after);
4006 switch (GET_CODE (x))
4008 case INSN:
4009 case JUMP_INSN:
4010 case CALL_INSN:
4011 case CODE_LABEL:
4012 case BARRIER:
4013 case NOTE:
4014 last = emit_insn_after_1 (x, after);
4015 break;
4017 #ifdef ENABLE_RTL_CHECKING
4018 case SEQUENCE:
4019 gcc_unreachable ();
4020 break;
4021 #endif
4023 default:
4024 last = make_call_insn_raw (x);
4025 add_insn_after (last, after);
4026 break;
4029 return last;
4032 /* Make an insn of code BARRIER
4033 and output it after the insn AFTER. */
4036 emit_barrier_after (rtx after)
4038 rtx insn = rtx_alloc (BARRIER);
4040 INSN_UID (insn) = cur_insn_uid++;
4042 add_insn_after (insn, after);
4043 return insn;
4046 /* Emit the label LABEL after the insn AFTER. */
4049 emit_label_after (rtx label, rtx after)
4051 /* This can be called twice for the same label
4052 as a result of the confusion that follows a syntax error!
4053 So make it harmless. */
4054 if (INSN_UID (label) == 0)
4056 INSN_UID (label) = cur_insn_uid++;
4057 add_insn_after (label, after);
4060 return label;
4063 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4066 emit_note_after (int subtype, rtx after)
4068 rtx note = rtx_alloc (NOTE);
4069 INSN_UID (note) = cur_insn_uid++;
4070 #ifndef USE_MAPPED_LOCATION
4071 NOTE_SOURCE_FILE (note) = 0;
4072 #endif
4073 NOTE_LINE_NUMBER (note) = subtype;
4074 BLOCK_FOR_INSN (note) = NULL;
4075 add_insn_after (note, after);
4076 return note;
4079 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4081 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4083 rtx last = emit_insn_after_noloc (pattern, after);
4085 if (pattern == NULL_RTX || !loc)
4086 return last;
4088 after = NEXT_INSN (after);
4089 while (1)
4091 if (active_insn_p (after) && !INSN_LOCATOR (after))
4092 INSN_LOCATOR (after) = loc;
4093 if (after == last)
4094 break;
4095 after = NEXT_INSN (after);
4097 return last;
4100 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4102 emit_insn_after (rtx pattern, rtx after)
4104 if (INSN_P (after))
4105 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4106 else
4107 return emit_insn_after_noloc (pattern, after);
4110 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4112 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4114 rtx last = emit_jump_insn_after_noloc (pattern, after);
4116 if (pattern == NULL_RTX || !loc)
4117 return last;
4119 after = NEXT_INSN (after);
4120 while (1)
4122 if (active_insn_p (after) && !INSN_LOCATOR (after))
4123 INSN_LOCATOR (after) = loc;
4124 if (after == last)
4125 break;
4126 after = NEXT_INSN (after);
4128 return last;
4131 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4133 emit_jump_insn_after (rtx pattern, rtx after)
4135 if (INSN_P (after))
4136 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4137 else
4138 return emit_jump_insn_after_noloc (pattern, after);
4141 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4143 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4145 rtx last = emit_call_insn_after_noloc (pattern, after);
4147 if (pattern == NULL_RTX || !loc)
4148 return last;
4150 after = NEXT_INSN (after);
4151 while (1)
4153 if (active_insn_p (after) && !INSN_LOCATOR (after))
4154 INSN_LOCATOR (after) = loc;
4155 if (after == last)
4156 break;
4157 after = NEXT_INSN (after);
4159 return last;
4162 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4164 emit_call_insn_after (rtx pattern, rtx after)
4166 if (INSN_P (after))
4167 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4168 else
4169 return emit_call_insn_after_noloc (pattern, after);
4172 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4174 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4176 rtx first = PREV_INSN (before);
4177 rtx last = emit_insn_before_noloc (pattern, before);
4179 if (pattern == NULL_RTX || !loc)
4180 return last;
4182 first = NEXT_INSN (first);
4183 while (1)
4185 if (active_insn_p (first) && !INSN_LOCATOR (first))
4186 INSN_LOCATOR (first) = loc;
4187 if (first == last)
4188 break;
4189 first = NEXT_INSN (first);
4191 return last;
4194 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4196 emit_insn_before (rtx pattern, rtx before)
4198 if (INSN_P (before))
4199 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4200 else
4201 return emit_insn_before_noloc (pattern, before);
4204 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4206 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4208 rtx first = PREV_INSN (before);
4209 rtx last = emit_jump_insn_before_noloc (pattern, before);
4211 if (pattern == NULL_RTX)
4212 return last;
4214 first = NEXT_INSN (first);
4215 while (1)
4217 if (active_insn_p (first) && !INSN_LOCATOR (first))
4218 INSN_LOCATOR (first) = loc;
4219 if (first == last)
4220 break;
4221 first = NEXT_INSN (first);
4223 return last;
4226 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4228 emit_jump_insn_before (rtx pattern, rtx before)
4230 if (INSN_P (before))
4231 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4232 else
4233 return emit_jump_insn_before_noloc (pattern, before);
4236 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4238 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4240 rtx first = PREV_INSN (before);
4241 rtx last = emit_call_insn_before_noloc (pattern, before);
4243 if (pattern == NULL_RTX)
4244 return last;
4246 first = NEXT_INSN (first);
4247 while (1)
4249 if (active_insn_p (first) && !INSN_LOCATOR (first))
4250 INSN_LOCATOR (first) = loc;
4251 if (first == last)
4252 break;
4253 first = NEXT_INSN (first);
4255 return last;
4258 /* like emit_call_insn_before_noloc,
4259 but set insn_locator according to before. */
4261 emit_call_insn_before (rtx pattern, rtx before)
4263 if (INSN_P (before))
4264 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4265 else
4266 return emit_call_insn_before_noloc (pattern, before);
4269 /* Take X and emit it at the end of the doubly-linked
4270 INSN list.
4272 Returns the last insn emitted. */
4275 emit_insn (rtx x)
4277 rtx last = last_insn;
4278 rtx insn;
4280 if (x == NULL_RTX)
4281 return last;
4283 switch (GET_CODE (x))
4285 case INSN:
4286 case JUMP_INSN:
4287 case CALL_INSN:
4288 case CODE_LABEL:
4289 case BARRIER:
4290 case NOTE:
4291 insn = x;
4292 while (insn)
4294 rtx next = NEXT_INSN (insn);
4295 add_insn (insn);
4296 last = insn;
4297 insn = next;
4299 break;
4301 #ifdef ENABLE_RTL_CHECKING
4302 case SEQUENCE:
4303 gcc_unreachable ();
4304 break;
4305 #endif
4307 default:
4308 last = make_insn_raw (x);
4309 add_insn (last);
4310 break;
4313 return last;
4316 /* Make an insn of code JUMP_INSN with pattern X
4317 and add it to the end of the doubly-linked list. */
4320 emit_jump_insn (rtx x)
4322 rtx last = NULL_RTX, insn;
4324 switch (GET_CODE (x))
4326 case INSN:
4327 case JUMP_INSN:
4328 case CALL_INSN:
4329 case CODE_LABEL:
4330 case BARRIER:
4331 case NOTE:
4332 insn = x;
4333 while (insn)
4335 rtx next = NEXT_INSN (insn);
4336 add_insn (insn);
4337 last = insn;
4338 insn = next;
4340 break;
4342 #ifdef ENABLE_RTL_CHECKING
4343 case SEQUENCE:
4344 gcc_unreachable ();
4345 break;
4346 #endif
4348 default:
4349 last = make_jump_insn_raw (x);
4350 add_insn (last);
4351 break;
4354 return last;
4357 /* Make an insn of code CALL_INSN with pattern X
4358 and add it to the end of the doubly-linked list. */
4361 emit_call_insn (rtx x)
4363 rtx insn;
4365 switch (GET_CODE (x))
4367 case INSN:
4368 case JUMP_INSN:
4369 case CALL_INSN:
4370 case CODE_LABEL:
4371 case BARRIER:
4372 case NOTE:
4373 insn = emit_insn (x);
4374 break;
4376 #ifdef ENABLE_RTL_CHECKING
4377 case SEQUENCE:
4378 gcc_unreachable ();
4379 break;
4380 #endif
4382 default:
4383 insn = make_call_insn_raw (x);
4384 add_insn (insn);
4385 break;
4388 return insn;
4391 /* Add the label LABEL to the end of the doubly-linked list. */
4394 emit_label (rtx label)
4396 /* This can be called twice for the same label
4397 as a result of the confusion that follows a syntax error!
4398 So make it harmless. */
4399 if (INSN_UID (label) == 0)
4401 INSN_UID (label) = cur_insn_uid++;
4402 add_insn (label);
4404 return label;
4407 /* Make an insn of code BARRIER
4408 and add it to the end of the doubly-linked list. */
4411 emit_barrier (void)
4413 rtx barrier = rtx_alloc (BARRIER);
4414 INSN_UID (barrier) = cur_insn_uid++;
4415 add_insn (barrier);
4416 return barrier;
4419 /* Make line numbering NOTE insn for LOCATION add it to the end
4420 of the doubly-linked list, but only if line-numbers are desired for
4421 debugging info and it doesn't match the previous one. */
4424 emit_line_note (location_t location)
4426 rtx note;
4428 #ifdef USE_MAPPED_LOCATION
4429 if (location == last_location)
4430 return NULL_RTX;
4431 #else
4432 if (location.file && last_location.file
4433 && !strcmp (location.file, last_location.file)
4434 && location.line == last_location.line)
4435 return NULL_RTX;
4436 #endif
4437 last_location = location;
4439 if (no_line_numbers)
4441 cur_insn_uid++;
4442 return NULL_RTX;
4445 #ifdef USE_MAPPED_LOCATION
4446 note = emit_note ((int) location);
4447 #else
4448 note = emit_note (location.line);
4449 NOTE_SOURCE_FILE (note) = location.file;
4450 #endif
4452 return note;
4455 /* Emit a copy of note ORIG. */
4458 emit_note_copy (rtx orig)
4460 rtx note;
4462 note = rtx_alloc (NOTE);
4464 INSN_UID (note) = cur_insn_uid++;
4465 NOTE_DATA (note) = NOTE_DATA (orig);
4466 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4467 BLOCK_FOR_INSN (note) = NULL;
4468 add_insn (note);
4470 return note;
4473 /* Make an insn of code NOTE or type NOTE_NO
4474 and add it to the end of the doubly-linked list. */
4477 emit_note (int note_no)
4479 rtx note;
4481 note = rtx_alloc (NOTE);
4482 INSN_UID (note) = cur_insn_uid++;
4483 NOTE_LINE_NUMBER (note) = note_no;
4484 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4485 BLOCK_FOR_INSN (note) = NULL;
4486 add_insn (note);
4487 return note;
4490 /* Cause next statement to emit a line note even if the line number
4491 has not changed. */
4493 void
4494 force_next_line_note (void)
4496 #ifdef USE_MAPPED_LOCATION
4497 last_location = -1;
4498 #else
4499 last_location.line = -1;
4500 #endif
4503 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4504 note of this type already exists, remove it first. */
4507 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4509 rtx note = find_reg_note (insn, kind, NULL_RTX);
4511 switch (kind)
4513 case REG_EQUAL:
4514 case REG_EQUIV:
4515 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4516 has multiple sets (some callers assume single_set
4517 means the insn only has one set, when in fact it
4518 means the insn only has one * useful * set). */
4519 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4521 gcc_assert (!note);
4522 return NULL_RTX;
4525 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4526 It serves no useful purpose and breaks eliminate_regs. */
4527 if (GET_CODE (datum) == ASM_OPERANDS)
4528 return NULL_RTX;
4529 break;
4531 default:
4532 break;
4535 if (note)
4537 XEXP (note, 0) = datum;
4538 return note;
4541 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4542 return REG_NOTES (insn);
4545 /* Return an indication of which type of insn should have X as a body.
4546 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4548 static enum rtx_code
4549 classify_insn (rtx x)
4551 if (LABEL_P (x))
4552 return CODE_LABEL;
4553 if (GET_CODE (x) == CALL)
4554 return CALL_INSN;
4555 if (GET_CODE (x) == RETURN)
4556 return JUMP_INSN;
4557 if (GET_CODE (x) == SET)
4559 if (SET_DEST (x) == pc_rtx)
4560 return JUMP_INSN;
4561 else if (GET_CODE (SET_SRC (x)) == CALL)
4562 return CALL_INSN;
4563 else
4564 return INSN;
4566 if (GET_CODE (x) == PARALLEL)
4568 int j;
4569 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4570 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4571 return CALL_INSN;
4572 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4573 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4574 return JUMP_INSN;
4575 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4576 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4577 return CALL_INSN;
4579 return INSN;
4582 /* Emit the rtl pattern X as an appropriate kind of insn.
4583 If X is a label, it is simply added into the insn chain. */
4586 emit (rtx x)
4588 enum rtx_code code = classify_insn (x);
4590 switch (code)
4592 case CODE_LABEL:
4593 return emit_label (x);
4594 case INSN:
4595 return emit_insn (x);
4596 case JUMP_INSN:
4598 rtx insn = emit_jump_insn (x);
4599 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4600 return emit_barrier ();
4601 return insn;
4603 case CALL_INSN:
4604 return emit_call_insn (x);
4605 default:
4606 gcc_unreachable ();
4610 /* Space for free sequence stack entries. */
4611 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4613 /* Begin emitting insns to a sequence. If this sequence will contain
4614 something that might cause the compiler to pop arguments to function
4615 calls (because those pops have previously been deferred; see
4616 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4617 before calling this function. That will ensure that the deferred
4618 pops are not accidentally emitted in the middle of this sequence. */
4620 void
4621 start_sequence (void)
4623 struct sequence_stack *tem;
4625 if (free_sequence_stack != NULL)
4627 tem = free_sequence_stack;
4628 free_sequence_stack = tem->next;
4630 else
4631 tem = ggc_alloc (sizeof (struct sequence_stack));
4633 tem->next = seq_stack;
4634 tem->first = first_insn;
4635 tem->last = last_insn;
4637 seq_stack = tem;
4639 first_insn = 0;
4640 last_insn = 0;
4643 /* Set up the insn chain starting with FIRST as the current sequence,
4644 saving the previously current one. See the documentation for
4645 start_sequence for more information about how to use this function. */
4647 void
4648 push_to_sequence (rtx first)
4650 rtx last;
4652 start_sequence ();
4654 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4656 first_insn = first;
4657 last_insn = last;
4660 /* Set up the outer-level insn chain
4661 as the current sequence, saving the previously current one. */
4663 void
4664 push_topmost_sequence (void)
4666 struct sequence_stack *stack, *top = NULL;
4668 start_sequence ();
4670 for (stack = seq_stack; stack; stack = stack->next)
4671 top = stack;
4673 first_insn = top->first;
4674 last_insn = top->last;
4677 /* After emitting to the outer-level insn chain, update the outer-level
4678 insn chain, and restore the previous saved state. */
4680 void
4681 pop_topmost_sequence (void)
4683 struct sequence_stack *stack, *top = NULL;
4685 for (stack = seq_stack; stack; stack = stack->next)
4686 top = stack;
4688 top->first = first_insn;
4689 top->last = last_insn;
4691 end_sequence ();
4694 /* After emitting to a sequence, restore previous saved state.
4696 To get the contents of the sequence just made, you must call
4697 `get_insns' *before* calling here.
4699 If the compiler might have deferred popping arguments while
4700 generating this sequence, and this sequence will not be immediately
4701 inserted into the instruction stream, use do_pending_stack_adjust
4702 before calling get_insns. That will ensure that the deferred
4703 pops are inserted into this sequence, and not into some random
4704 location in the instruction stream. See INHIBIT_DEFER_POP for more
4705 information about deferred popping of arguments. */
4707 void
4708 end_sequence (void)
4710 struct sequence_stack *tem = seq_stack;
4712 first_insn = tem->first;
4713 last_insn = tem->last;
4714 seq_stack = tem->next;
4716 memset (tem, 0, sizeof (*tem));
4717 tem->next = free_sequence_stack;
4718 free_sequence_stack = tem;
4721 /* Return 1 if currently emitting into a sequence. */
4724 in_sequence_p (void)
4726 return seq_stack != 0;
4729 /* Put the various virtual registers into REGNO_REG_RTX. */
4731 static void
4732 init_virtual_regs (struct emit_status *es)
4734 rtx *ptr = es->x_regno_reg_rtx;
4735 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4736 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4737 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4738 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4739 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4743 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4744 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4745 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4746 static int copy_insn_n_scratches;
4748 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4749 copied an ASM_OPERANDS.
4750 In that case, it is the original input-operand vector. */
4751 static rtvec orig_asm_operands_vector;
4753 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4754 copied an ASM_OPERANDS.
4755 In that case, it is the copied input-operand vector. */
4756 static rtvec copy_asm_operands_vector;
4758 /* Likewise for the constraints vector. */
4759 static rtvec orig_asm_constraints_vector;
4760 static rtvec copy_asm_constraints_vector;
4762 /* Recursively create a new copy of an rtx for copy_insn.
4763 This function differs from copy_rtx in that it handles SCRATCHes and
4764 ASM_OPERANDs properly.
4765 Normally, this function is not used directly; use copy_insn as front end.
4766 However, you could first copy an insn pattern with copy_insn and then use
4767 this function afterwards to properly copy any REG_NOTEs containing
4768 SCRATCHes. */
4771 copy_insn_1 (rtx orig)
4773 rtx copy;
4774 int i, j;
4775 RTX_CODE code;
4776 const char *format_ptr;
4778 code = GET_CODE (orig);
4780 switch (code)
4782 case REG:
4783 case CONST_INT:
4784 case CONST_DOUBLE:
4785 case CONST_VECTOR:
4786 case SYMBOL_REF:
4787 case CODE_LABEL:
4788 case PC:
4789 case CC0:
4790 return orig;
4791 case CLOBBER:
4792 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4793 return orig;
4794 break;
4796 case SCRATCH:
4797 for (i = 0; i < copy_insn_n_scratches; i++)
4798 if (copy_insn_scratch_in[i] == orig)
4799 return copy_insn_scratch_out[i];
4800 break;
4802 case CONST:
4803 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4804 a LABEL_REF, it isn't sharable. */
4805 if (GET_CODE (XEXP (orig, 0)) == PLUS
4806 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4807 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4808 return orig;
4809 break;
4811 /* A MEM with a constant address is not sharable. The problem is that
4812 the constant address may need to be reloaded. If the mem is shared,
4813 then reloading one copy of this mem will cause all copies to appear
4814 to have been reloaded. */
4816 default:
4817 break;
4820 /* Copy the various flags, fields, and other information. We assume
4821 that all fields need copying, and then clear the fields that should
4822 not be copied. That is the sensible default behavior, and forces
4823 us to explicitly document why we are *not* copying a flag. */
4824 copy = shallow_copy_rtx (orig);
4826 /* We do not copy the USED flag, which is used as a mark bit during
4827 walks over the RTL. */
4828 RTX_FLAG (copy, used) = 0;
4830 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4831 if (INSN_P (orig))
4833 RTX_FLAG (copy, jump) = 0;
4834 RTX_FLAG (copy, call) = 0;
4835 RTX_FLAG (copy, frame_related) = 0;
4838 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4840 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4841 switch (*format_ptr++)
4843 case 'e':
4844 if (XEXP (orig, i) != NULL)
4845 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4846 break;
4848 case 'E':
4849 case 'V':
4850 if (XVEC (orig, i) == orig_asm_constraints_vector)
4851 XVEC (copy, i) = copy_asm_constraints_vector;
4852 else if (XVEC (orig, i) == orig_asm_operands_vector)
4853 XVEC (copy, i) = copy_asm_operands_vector;
4854 else if (XVEC (orig, i) != NULL)
4856 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4857 for (j = 0; j < XVECLEN (copy, i); j++)
4858 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4860 break;
4862 case 't':
4863 case 'w':
4864 case 'i':
4865 case 's':
4866 case 'S':
4867 case 'u':
4868 case '0':
4869 /* These are left unchanged. */
4870 break;
4872 default:
4873 gcc_unreachable ();
4876 if (code == SCRATCH)
4878 i = copy_insn_n_scratches++;
4879 gcc_assert (i < MAX_RECOG_OPERANDS);
4880 copy_insn_scratch_in[i] = orig;
4881 copy_insn_scratch_out[i] = copy;
4883 else if (code == ASM_OPERANDS)
4885 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4886 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4887 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4888 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4891 return copy;
4894 /* Create a new copy of an rtx.
4895 This function differs from copy_rtx in that it handles SCRATCHes and
4896 ASM_OPERANDs properly.
4897 INSN doesn't really have to be a full INSN; it could be just the
4898 pattern. */
4900 copy_insn (rtx insn)
4902 copy_insn_n_scratches = 0;
4903 orig_asm_operands_vector = 0;
4904 orig_asm_constraints_vector = 0;
4905 copy_asm_operands_vector = 0;
4906 copy_asm_constraints_vector = 0;
4907 return copy_insn_1 (insn);
4910 /* Initialize data structures and variables in this file
4911 before generating rtl for each function. */
4913 void
4914 init_emit (void)
4916 struct function *f = cfun;
4918 f->emit = ggc_alloc (sizeof (struct emit_status));
4919 first_insn = NULL;
4920 last_insn = NULL;
4921 cur_insn_uid = 1;
4922 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4923 last_location = UNKNOWN_LOCATION;
4924 first_label_num = label_num;
4925 seq_stack = NULL;
4927 /* Init the tables that describe all the pseudo regs. */
4929 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4931 f->emit->regno_pointer_align
4932 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
4933 * sizeof (unsigned char));
4935 regno_reg_rtx
4936 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
4938 /* Put copies of all the hard registers into regno_reg_rtx. */
4939 memcpy (regno_reg_rtx,
4940 static_regno_reg_rtx,
4941 FIRST_PSEUDO_REGISTER * sizeof (rtx));
4943 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4944 init_virtual_regs (f->emit);
4946 /* Indicate that the virtual registers and stack locations are
4947 all pointers. */
4948 REG_POINTER (stack_pointer_rtx) = 1;
4949 REG_POINTER (frame_pointer_rtx) = 1;
4950 REG_POINTER (hard_frame_pointer_rtx) = 1;
4951 REG_POINTER (arg_pointer_rtx) = 1;
4953 REG_POINTER (virtual_incoming_args_rtx) = 1;
4954 REG_POINTER (virtual_stack_vars_rtx) = 1;
4955 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4956 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4957 REG_POINTER (virtual_cfa_rtx) = 1;
4959 #ifdef STACK_BOUNDARY
4960 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4961 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4962 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4963 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4965 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4966 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4967 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4968 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4969 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
4970 #endif
4972 #ifdef INIT_EXPANDERS
4973 INIT_EXPANDERS;
4974 #endif
4977 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
4979 static rtx
4980 gen_const_vector (enum machine_mode mode, int constant)
4982 rtx tem;
4983 rtvec v;
4984 int units, i;
4985 enum machine_mode inner;
4987 units = GET_MODE_NUNITS (mode);
4988 inner = GET_MODE_INNER (mode);
4990 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
4992 v = rtvec_alloc (units);
4994 /* We need to call this function after we set the scalar const_tiny_rtx
4995 entries. */
4996 gcc_assert (const_tiny_rtx[constant][(int) inner]);
4998 for (i = 0; i < units; ++i)
4999 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5001 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5002 return tem;
5005 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5006 all elements are zero, and the one vector when all elements are one. */
5008 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5010 enum machine_mode inner = GET_MODE_INNER (mode);
5011 int nunits = GET_MODE_NUNITS (mode);
5012 rtx x;
5013 int i;
5015 /* Check to see if all of the elements have the same value. */
5016 x = RTVEC_ELT (v, nunits - 1);
5017 for (i = nunits - 2; i >= 0; i--)
5018 if (RTVEC_ELT (v, i) != x)
5019 break;
5021 /* If the values are all the same, check to see if we can use one of the
5022 standard constant vectors. */
5023 if (i == -1)
5025 if (x == CONST0_RTX (inner))
5026 return CONST0_RTX (mode);
5027 else if (x == CONST1_RTX (inner))
5028 return CONST1_RTX (mode);
5031 return gen_rtx_raw_CONST_VECTOR (mode, v);
5034 /* Create some permanent unique rtl objects shared between all functions.
5035 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5037 void
5038 init_emit_once (int line_numbers)
5040 int i;
5041 enum machine_mode mode;
5042 enum machine_mode double_mode;
5044 /* We need reg_raw_mode, so initialize the modes now. */
5045 init_reg_modes_once ();
5047 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5048 tables. */
5049 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5050 const_int_htab_eq, NULL);
5052 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5053 const_double_htab_eq, NULL);
5055 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5056 mem_attrs_htab_eq, NULL);
5057 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5058 reg_attrs_htab_eq, NULL);
5060 no_line_numbers = ! line_numbers;
5062 /* Compute the word and byte modes. */
5064 byte_mode = VOIDmode;
5065 word_mode = VOIDmode;
5066 double_mode = VOIDmode;
5068 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5069 mode != VOIDmode;
5070 mode = GET_MODE_WIDER_MODE (mode))
5072 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5073 && byte_mode == VOIDmode)
5074 byte_mode = mode;
5076 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5077 && word_mode == VOIDmode)
5078 word_mode = mode;
5081 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5082 mode != VOIDmode;
5083 mode = GET_MODE_WIDER_MODE (mode))
5085 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5086 && double_mode == VOIDmode)
5087 double_mode = mode;
5090 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5092 /* Assign register numbers to the globally defined register rtx.
5093 This must be done at runtime because the register number field
5094 is in a union and some compilers can't initialize unions. */
5096 pc_rtx = gen_rtx_PC (VOIDmode);
5097 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5098 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5099 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5100 if (hard_frame_pointer_rtx == 0)
5101 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5102 HARD_FRAME_POINTER_REGNUM);
5103 if (arg_pointer_rtx == 0)
5104 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5105 virtual_incoming_args_rtx =
5106 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5107 virtual_stack_vars_rtx =
5108 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5109 virtual_stack_dynamic_rtx =
5110 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5111 virtual_outgoing_args_rtx =
5112 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5113 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5115 /* Initialize RTL for commonly used hard registers. These are
5116 copied into regno_reg_rtx as we begin to compile each function. */
5117 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5118 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5120 #ifdef INIT_EXPANDERS
5121 /* This is to initialize {init|mark|free}_machine_status before the first
5122 call to push_function_context_to. This is needed by the Chill front
5123 end which calls push_function_context_to before the first call to
5124 init_function_start. */
5125 INIT_EXPANDERS;
5126 #endif
5128 /* Create the unique rtx's for certain rtx codes and operand values. */
5130 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5131 tries to use these variables. */
5132 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5133 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5134 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5136 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5137 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5138 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5139 else
5140 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5142 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5143 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5144 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5145 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5146 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5147 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5148 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5150 dconsthalf = dconst1;
5151 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5153 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5155 /* Initialize mathematical constants for constant folding builtins.
5156 These constants need to be given to at least 160 bits precision. */
5157 real_from_string (&dconstpi,
5158 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5159 real_from_string (&dconste,
5160 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5162 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5164 REAL_VALUE_TYPE *r =
5165 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5167 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5168 mode != VOIDmode;
5169 mode = GET_MODE_WIDER_MODE (mode))
5170 const_tiny_rtx[i][(int) mode] =
5171 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5173 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5174 mode != VOIDmode;
5175 mode = GET_MODE_WIDER_MODE (mode))
5176 const_tiny_rtx[i][(int) mode] =
5177 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5179 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5181 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5182 mode != VOIDmode;
5183 mode = GET_MODE_WIDER_MODE (mode))
5184 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5186 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5187 mode != VOIDmode;
5188 mode = GET_MODE_WIDER_MODE (mode))
5189 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5192 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5193 mode != VOIDmode;
5194 mode = GET_MODE_WIDER_MODE (mode))
5196 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5197 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5200 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5201 mode != VOIDmode;
5202 mode = GET_MODE_WIDER_MODE (mode))
5204 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5205 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5208 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5209 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5210 const_tiny_rtx[0][i] = const0_rtx;
5212 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5213 if (STORE_FLAG_VALUE == 1)
5214 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5216 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5217 return_address_pointer_rtx
5218 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5219 #endif
5221 #ifdef STATIC_CHAIN_REGNUM
5222 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5224 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5225 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5226 static_chain_incoming_rtx
5227 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5228 else
5229 #endif
5230 static_chain_incoming_rtx = static_chain_rtx;
5231 #endif
5233 #ifdef STATIC_CHAIN
5234 static_chain_rtx = STATIC_CHAIN;
5236 #ifdef STATIC_CHAIN_INCOMING
5237 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5238 #else
5239 static_chain_incoming_rtx = static_chain_rtx;
5240 #endif
5241 #endif
5243 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5244 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5247 /* Produce exact duplicate of insn INSN after AFTER.
5248 Care updating of libcall regions if present. */
5251 emit_copy_of_insn_after (rtx insn, rtx after)
5253 rtx new;
5254 rtx note1, note2, link;
5256 switch (GET_CODE (insn))
5258 case INSN:
5259 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5260 break;
5262 case JUMP_INSN:
5263 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5264 break;
5266 case CALL_INSN:
5267 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5268 if (CALL_INSN_FUNCTION_USAGE (insn))
5269 CALL_INSN_FUNCTION_USAGE (new)
5270 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5271 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5272 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5273 break;
5275 default:
5276 gcc_unreachable ();
5279 /* Update LABEL_NUSES. */
5280 mark_jump_label (PATTERN (new), new, 0);
5282 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5284 /* If the old insn is frame related, then so is the new one. This is
5285 primarily needed for IA-64 unwind info which marks epilogue insns,
5286 which may be duplicated by the basic block reordering code. */
5287 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5289 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5290 make them. */
5291 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5292 if (REG_NOTE_KIND (link) != REG_LABEL)
5294 if (GET_CODE (link) == EXPR_LIST)
5295 REG_NOTES (new)
5296 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5297 copy_insn_1 (XEXP (link, 0)), REG_NOTES (new));
5298 else
5299 REG_NOTES (new)
5300 = gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5301 XEXP (link, 0), REG_NOTES (new));
5304 /* Fix the libcall sequences. */
5305 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5307 rtx p = new;
5308 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5309 p = PREV_INSN (p);
5310 XEXP (note1, 0) = p;
5311 XEXP (note2, 0) = new;
5313 INSN_CODE (new) = INSN_CODE (insn);
5314 return new;
5317 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5319 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5321 if (hard_reg_clobbers[mode][regno])
5322 return hard_reg_clobbers[mode][regno];
5323 else
5324 return (hard_reg_clobbers[mode][regno] =
5325 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5328 #include "gt-emit-rtl.h"