xcoffout.h (xcoff_private_rodata_section_name): Declare.
[official-gcc.git] / gcc / ipa-inline.c
blobf37cd9da26d85d610584a97632e9d0460652c08b
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Inlining decision heuristics
23 The implementation of inliner is organized as follows:
25 inlining heuristics limits
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
29 on).
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
34 inlining.
36 inlining heuristics
38 The inliner itself is split into two passes:
40 pass_early_inlining
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
55 flattening.
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
60 optimizers.
62 Because of lack of whole unit knowledge, the pass cannot really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
68 pass_ipa_inline
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "target.h"
97 #include "rtl.h"
98 #include "tree.h"
99 #include "gimple.h"
100 #include "alloc-pool.h"
101 #include "tree-pass.h"
102 #include "gimple-ssa.h"
103 #include "cgraph.h"
104 #include "lto-streamer.h"
105 #include "trans-mem.h"
106 #include "calls.h"
107 #include "tree-inline.h"
108 #include "params.h"
109 #include "profile.h"
110 #include "symbol-summary.h"
111 #include "tree-vrp.h"
112 #include "ipa-prop.h"
113 #include "ipa-fnsummary.h"
114 #include "ipa-inline.h"
115 #include "ipa-utils.h"
116 #include "sreal.h"
117 #include "auto-profile.h"
118 #include "builtins.h"
119 #include "fibonacci_heap.h"
120 #include "stringpool.h"
121 #include "attribs.h"
122 #include "asan.h"
124 typedef fibonacci_heap <sreal, cgraph_edge> edge_heap_t;
125 typedef fibonacci_node <sreal, cgraph_edge> edge_heap_node_t;
127 /* Statistics we collect about inlining algorithm. */
128 static int overall_size;
129 static profile_count max_count;
130 static profile_count spec_rem;
132 /* Return false when inlining edge E would lead to violating
133 limits on function unit growth or stack usage growth.
135 The relative function body growth limit is present generally
136 to avoid problems with non-linear behavior of the compiler.
137 To allow inlining huge functions into tiny wrapper, the limit
138 is always based on the bigger of the two functions considered.
140 For stack growth limits we always base the growth in stack usage
141 of the callers. We want to prevent applications from segfaulting
142 on stack overflow when functions with huge stack frames gets
143 inlined. */
145 static bool
146 caller_growth_limits (struct cgraph_edge *e)
148 struct cgraph_node *to = e->caller;
149 struct cgraph_node *what = e->callee->ultimate_alias_target ();
150 int newsize;
151 int limit = 0;
152 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
153 ipa_fn_summary *info, *what_info;
154 ipa_fn_summary *outer_info = ipa_fn_summaries->get (to);
156 /* Look for function e->caller is inlined to. While doing
157 so work out the largest function body on the way. As
158 described above, we want to base our function growth
159 limits based on that. Not on the self size of the
160 outer function, not on the self size of inline code
161 we immediately inline to. This is the most relaxed
162 interpretation of the rule "do not grow large functions
163 too much in order to prevent compiler from exploding". */
164 while (true)
166 info = ipa_fn_summaries->get (to);
167 if (limit < info->self_size)
168 limit = info->self_size;
169 if (stack_size_limit < info->estimated_self_stack_size)
170 stack_size_limit = info->estimated_self_stack_size;
171 if (to->global.inlined_to)
172 to = to->callers->caller;
173 else
174 break;
177 what_info = ipa_fn_summaries->get (what);
179 if (limit < what_info->self_size)
180 limit = what_info->self_size;
182 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
184 /* Check the size after inlining against the function limits. But allow
185 the function to shrink if it went over the limits by forced inlining. */
186 newsize = estimate_size_after_inlining (to, e);
187 if (newsize >= info->size
188 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
189 && newsize > limit)
191 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
192 return false;
195 if (!what_info->estimated_stack_size)
196 return true;
198 /* FIXME: Stack size limit often prevents inlining in Fortran programs
199 due to large i/o datastructures used by the Fortran front-end.
200 We ought to ignore this limit when we know that the edge is executed
201 on every invocation of the caller (i.e. its call statement dominates
202 exit block). We do not track this information, yet. */
203 stack_size_limit += ((gcov_type)stack_size_limit
204 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
206 inlined_stack = (outer_info->stack_frame_offset
207 + outer_info->estimated_self_stack_size
208 + what_info->estimated_stack_size);
209 /* Check new stack consumption with stack consumption at the place
210 stack is used. */
211 if (inlined_stack > stack_size_limit
212 /* If function already has large stack usage from sibling
213 inline call, we can inline, too.
214 This bit overoptimistically assume that we are good at stack
215 packing. */
216 && inlined_stack > info->estimated_stack_size
217 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
219 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
220 return false;
222 return true;
225 /* Dump info about why inlining has failed. */
227 static void
228 report_inline_failed_reason (struct cgraph_edge *e)
230 if (dump_enabled_p ())
232 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
233 " not inlinable: %C -> %C, %s\n",
234 e->caller, e->callee,
235 cgraph_inline_failed_string (e->inline_failed));
236 if ((e->inline_failed == CIF_TARGET_OPTION_MISMATCH
237 || e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
238 && e->caller->lto_file_data
239 && e->callee->ultimate_alias_target ()->lto_file_data)
241 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
242 " LTO objects: %s, %s\n",
243 e->caller->lto_file_data->file_name,
244 e->callee->ultimate_alias_target ()->lto_file_data->file_name);
246 if (e->inline_failed == CIF_TARGET_OPTION_MISMATCH)
247 if (dump_file)
248 cl_target_option_print_diff
249 (dump_file, 2, target_opts_for_fn (e->caller->decl),
250 target_opts_for_fn (e->callee->ultimate_alias_target ()->decl));
251 if (e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
252 if (dump_file)
253 cl_optimization_print_diff
254 (dump_file, 2, opts_for_fn (e->caller->decl),
255 opts_for_fn (e->callee->ultimate_alias_target ()->decl));
259 /* Decide whether sanitizer-related attributes allow inlining. */
261 static bool
262 sanitize_attrs_match_for_inline_p (const_tree caller, const_tree callee)
264 if (!caller || !callee)
265 return true;
267 /* Allow inlining always_inline functions into no_sanitize_address
268 functions. */
269 if (!sanitize_flags_p (SANITIZE_ADDRESS, caller)
270 && lookup_attribute ("always_inline", DECL_ATTRIBUTES (callee)))
271 return true;
273 return ((sanitize_flags_p (SANITIZE_ADDRESS, caller)
274 == sanitize_flags_p (SANITIZE_ADDRESS, callee))
275 && (sanitize_flags_p (SANITIZE_POINTER_COMPARE, caller)
276 == sanitize_flags_p (SANITIZE_POINTER_COMPARE, callee))
277 && (sanitize_flags_p (SANITIZE_POINTER_SUBTRACT, caller)
278 == sanitize_flags_p (SANITIZE_POINTER_SUBTRACT, callee)));
281 /* Used for flags where it is safe to inline when caller's value is
282 grater than callee's. */
283 #define check_maybe_up(flag) \
284 (opts_for_fn (caller->decl)->x_##flag \
285 != opts_for_fn (callee->decl)->x_##flag \
286 && (!always_inline \
287 || opts_for_fn (caller->decl)->x_##flag \
288 < opts_for_fn (callee->decl)->x_##flag))
289 /* Used for flags where it is safe to inline when caller's value is
290 smaller than callee's. */
291 #define check_maybe_down(flag) \
292 (opts_for_fn (caller->decl)->x_##flag \
293 != opts_for_fn (callee->decl)->x_##flag \
294 && (!always_inline \
295 || opts_for_fn (caller->decl)->x_##flag \
296 > opts_for_fn (callee->decl)->x_##flag))
297 /* Used for flags where exact match is needed for correctness. */
298 #define check_match(flag) \
299 (opts_for_fn (caller->decl)->x_##flag \
300 != opts_for_fn (callee->decl)->x_##flag)
302 /* Decide if we can inline the edge and possibly update
303 inline_failed reason.
304 We check whether inlining is possible at all and whether
305 caller growth limits allow doing so.
307 if REPORT is true, output reason to the dump file. */
309 static bool
310 can_inline_edge_p (struct cgraph_edge *e, bool report,
311 bool early = false)
313 gcc_checking_assert (e->inline_failed);
315 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
317 if (report)
318 report_inline_failed_reason (e);
319 return false;
322 bool inlinable = true;
323 enum availability avail;
324 cgraph_node *caller = e->caller->global.inlined_to
325 ? e->caller->global.inlined_to : e->caller;
326 cgraph_node *callee = e->callee->ultimate_alias_target (&avail, caller);
328 if (!callee->definition)
330 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
331 inlinable = false;
333 if (!early && (!opt_for_fn (callee->decl, optimize)
334 || !opt_for_fn (caller->decl, optimize)))
336 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
337 inlinable = false;
339 else if (callee->calls_comdat_local)
341 e->inline_failed = CIF_USES_COMDAT_LOCAL;
342 inlinable = false;
344 else if (avail <= AVAIL_INTERPOSABLE)
346 e->inline_failed = CIF_OVERWRITABLE;
347 inlinable = false;
349 /* All edges with call_stmt_cannot_inline_p should have inline_failed
350 initialized to one of FINAL_ERROR reasons. */
351 else if (e->call_stmt_cannot_inline_p)
352 gcc_unreachable ();
353 /* Don't inline if the functions have different EH personalities. */
354 else if (DECL_FUNCTION_PERSONALITY (caller->decl)
355 && DECL_FUNCTION_PERSONALITY (callee->decl)
356 && (DECL_FUNCTION_PERSONALITY (caller->decl)
357 != DECL_FUNCTION_PERSONALITY (callee->decl)))
359 e->inline_failed = CIF_EH_PERSONALITY;
360 inlinable = false;
362 /* TM pure functions should not be inlined into non-TM_pure
363 functions. */
364 else if (is_tm_pure (callee->decl) && !is_tm_pure (caller->decl))
366 e->inline_failed = CIF_UNSPECIFIED;
367 inlinable = false;
369 /* Check compatibility of target optimization options. */
370 else if (!targetm.target_option.can_inline_p (caller->decl,
371 callee->decl))
373 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
374 inlinable = false;
376 else if (ipa_fn_summaries->get (callee) == NULL
377 || !ipa_fn_summaries->get (callee)->inlinable)
379 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
380 inlinable = false;
382 /* Don't inline a function with mismatched sanitization attributes. */
383 else if (!sanitize_attrs_match_for_inline_p (caller->decl, callee->decl))
385 e->inline_failed = CIF_ATTRIBUTE_MISMATCH;
386 inlinable = false;
388 if (!inlinable && report)
389 report_inline_failed_reason (e);
390 return inlinable;
393 /* Decide if we can inline the edge and possibly update
394 inline_failed reason.
395 We check whether inlining is possible at all and whether
396 caller growth limits allow doing so.
398 if REPORT is true, output reason to the dump file.
400 if DISREGARD_LIMITS is true, ignore size limits. */
402 static bool
403 can_inline_edge_by_limits_p (struct cgraph_edge *e, bool report,
404 bool disregard_limits = false, bool early = false)
406 gcc_checking_assert (e->inline_failed);
408 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
410 if (report)
411 report_inline_failed_reason (e);
412 return false;
415 bool inlinable = true;
416 enum availability avail;
417 cgraph_node *caller = e->caller->global.inlined_to
418 ? e->caller->global.inlined_to : e->caller;
419 cgraph_node *callee = e->callee->ultimate_alias_target (&avail, caller);
420 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (caller->decl);
421 tree callee_tree
422 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
423 /* Check if caller growth allows the inlining. */
424 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
425 && !disregard_limits
426 && !lookup_attribute ("flatten",
427 DECL_ATTRIBUTES (caller->decl))
428 && !caller_growth_limits (e))
429 inlinable = false;
430 else if (callee->externally_visible
431 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl)
432 && flag_live_patching == LIVE_PATCHING_INLINE_ONLY_STATIC)
434 e->inline_failed = CIF_EXTERN_LIVE_ONLY_STATIC;
435 inlinable = false;
437 /* Don't inline a function with a higher optimization level than the
438 caller. FIXME: this is really just tip of iceberg of handling
439 optimization attribute. */
440 else if (caller_tree != callee_tree)
442 bool always_inline =
443 (DECL_DISREGARD_INLINE_LIMITS (callee->decl)
444 && lookup_attribute ("always_inline",
445 DECL_ATTRIBUTES (callee->decl)));
446 ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
447 ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
449 /* Until GCC 4.9 we did not check the semantics-altering flags
450 below and inlined across optimization boundaries.
451 Enabling checks below breaks several packages by refusing
452 to inline library always_inline functions. See PR65873.
453 Disable the check for early inlining for now until better solution
454 is found. */
455 if (always_inline && early)
457 /* There are some options that change IL semantics which means
458 we cannot inline in these cases for correctness reason.
459 Not even for always_inline declared functions. */
460 else if (check_match (flag_wrapv)
461 || check_match (flag_trapv)
462 || check_match (flag_pcc_struct_return)
463 /* When caller or callee does FP math, be sure FP codegen flags
464 compatible. */
465 || ((caller_info->fp_expressions && callee_info->fp_expressions)
466 && (check_maybe_up (flag_rounding_math)
467 || check_maybe_up (flag_trapping_math)
468 || check_maybe_down (flag_unsafe_math_optimizations)
469 || check_maybe_down (flag_finite_math_only)
470 || check_maybe_up (flag_signaling_nans)
471 || check_maybe_down (flag_cx_limited_range)
472 || check_maybe_up (flag_signed_zeros)
473 || check_maybe_down (flag_associative_math)
474 || check_maybe_down (flag_reciprocal_math)
475 || check_maybe_down (flag_fp_int_builtin_inexact)
476 /* Strictly speaking only when the callee contains function
477 calls that may end up setting errno. */
478 || check_maybe_up (flag_errno_math)))
479 /* We do not want to make code compiled with exceptions to be
480 brought into a non-EH function unless we know that the callee
481 does not throw.
482 This is tracked by DECL_FUNCTION_PERSONALITY. */
483 || (check_maybe_up (flag_non_call_exceptions)
484 && DECL_FUNCTION_PERSONALITY (callee->decl))
485 || (check_maybe_up (flag_exceptions)
486 && DECL_FUNCTION_PERSONALITY (callee->decl))
487 /* When devirtualization is diabled for callee, it is not safe
488 to inline it as we possibly mangled the type info.
489 Allow early inlining of always inlines. */
490 || (!early && check_maybe_down (flag_devirtualize)))
492 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
493 inlinable = false;
495 /* gcc.dg/pr43564.c. Apply user-forced inline even at -O0. */
496 else if (always_inline)
498 /* When user added an attribute to the callee honor it. */
499 else if (lookup_attribute ("optimize", DECL_ATTRIBUTES (callee->decl))
500 && opts_for_fn (caller->decl) != opts_for_fn (callee->decl))
502 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
503 inlinable = false;
505 /* If explicit optimize attribute are not used, the mismatch is caused
506 by different command line options used to build different units.
507 Do not care about COMDAT functions - those are intended to be
508 optimized with the optimization flags of module they are used in.
509 Also do not care about mixing up size/speed optimization when
510 DECL_DISREGARD_INLINE_LIMITS is set. */
511 else if ((callee->merged_comdat
512 && !lookup_attribute ("optimize",
513 DECL_ATTRIBUTES (caller->decl)))
514 || DECL_DISREGARD_INLINE_LIMITS (callee->decl))
516 /* If mismatch is caused by merging two LTO units with different
517 optimizationflags we want to be bit nicer. However never inline
518 if one of functions is not optimized at all. */
519 else if (!opt_for_fn (callee->decl, optimize)
520 || !opt_for_fn (caller->decl, optimize))
522 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
523 inlinable = false;
525 /* If callee is optimized for size and caller is not, allow inlining if
526 code shrinks or we are in MAX_INLINE_INSNS_SINGLE limit and callee
527 is inline (and thus likely an unified comdat). This will allow caller
528 to run faster. */
529 else if (opt_for_fn (callee->decl, optimize_size)
530 > opt_for_fn (caller->decl, optimize_size))
532 int growth = estimate_edge_growth (e);
533 if (growth > PARAM_VALUE (PARAM_MAX_INLINE_INSNS_SIZE)
534 && (!DECL_DECLARED_INLINE_P (callee->decl)
535 && growth >= MAX (MAX_INLINE_INSNS_SINGLE,
536 MAX_INLINE_INSNS_AUTO)))
538 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
539 inlinable = false;
542 /* If callee is more aggressively optimized for performance than caller,
543 we generally want to inline only cheap (runtime wise) functions. */
544 else if (opt_for_fn (callee->decl, optimize_size)
545 < opt_for_fn (caller->decl, optimize_size)
546 || (opt_for_fn (callee->decl, optimize)
547 > opt_for_fn (caller->decl, optimize)))
549 if (estimate_edge_time (e)
550 >= 20 + ipa_call_summaries->get (e)->call_stmt_time)
552 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
553 inlinable = false;
559 if (!inlinable && report)
560 report_inline_failed_reason (e);
561 return inlinable;
565 /* Return true if the edge E is inlinable during early inlining. */
567 static bool
568 can_early_inline_edge_p (struct cgraph_edge *e)
570 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
571 /* Early inliner might get called at WPA stage when IPA pass adds new
572 function. In this case we cannot really do any of early inlining
573 because function bodies are missing. */
574 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
575 return false;
576 if (!gimple_has_body_p (callee->decl))
578 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
579 return false;
581 /* In early inliner some of callees may not be in SSA form yet
582 (i.e. the callgraph is cyclic and we did not process
583 the callee by early inliner, yet). We don't have CIF code for this
584 case; later we will re-do the decision in the real inliner. */
585 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
586 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
588 if (dump_enabled_p ())
589 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
590 " edge not inlinable: not in SSA form\n");
591 return false;
593 if (!can_inline_edge_p (e, true, true)
594 || !can_inline_edge_by_limits_p (e, true, false, true))
595 return false;
596 return true;
600 /* Return number of calls in N. Ignore cheap builtins. */
602 static int
603 num_calls (struct cgraph_node *n)
605 struct cgraph_edge *e;
606 int num = 0;
608 for (e = n->callees; e; e = e->next_callee)
609 if (!is_inexpensive_builtin (e->callee->decl))
610 num++;
611 return num;
615 /* Return true if we are interested in inlining small function. */
617 static bool
618 want_early_inline_function_p (struct cgraph_edge *e)
620 bool want_inline = true;
621 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
623 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
625 /* For AutoFDO, we need to make sure that before profile summary, all
626 hot paths' IR look exactly the same as profiled binary. As a result,
627 in einliner, we will disregard size limit and inline those callsites
628 that are:
629 * inlined in the profiled binary, and
630 * the cloned callee has enough samples to be considered "hot". */
631 else if (flag_auto_profile && afdo_callsite_hot_enough_for_early_inline (e))
633 else if (!DECL_DECLARED_INLINE_P (callee->decl)
634 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
636 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
637 report_inline_failed_reason (e);
638 want_inline = false;
640 else
642 int growth = estimate_edge_growth (e);
643 int n;
645 if (growth <= PARAM_VALUE (PARAM_MAX_INLINE_INSNS_SIZE))
647 else if (!e->maybe_hot_p ())
649 if (dump_enabled_p ())
650 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
651 " will not early inline: %C->%C, "
652 "call is cold and code would grow by %i\n",
653 e->caller, callee,
654 growth);
655 want_inline = false;
657 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
659 if (dump_enabled_p ())
660 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
661 " will not early inline: %C->%C, "
662 "growth %i exceeds --param early-inlining-insns\n",
663 e->caller, callee,
664 growth);
665 want_inline = false;
667 else if ((n = num_calls (callee)) != 0
668 && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
670 if (dump_enabled_p ())
671 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
672 " will not early inline: %C->%C, "
673 "growth %i exceeds --param early-inlining-insns "
674 "divided by number of calls\n",
675 e->caller, callee,
676 growth);
677 want_inline = false;
680 return want_inline;
683 /* Compute time of the edge->caller + edge->callee execution when inlining
684 does not happen. */
686 inline sreal
687 compute_uninlined_call_time (struct cgraph_edge *edge,
688 sreal uninlined_call_time)
690 cgraph_node *caller = (edge->caller->global.inlined_to
691 ? edge->caller->global.inlined_to
692 : edge->caller);
694 sreal freq = edge->sreal_frequency ();
695 if (freq > 0)
696 uninlined_call_time *= freq;
697 else
698 uninlined_call_time = uninlined_call_time >> 11;
700 sreal caller_time = ipa_fn_summaries->get (caller)->time;
701 return uninlined_call_time + caller_time;
704 /* Same as compute_uinlined_call_time but compute time when inlining
705 does happen. */
707 inline sreal
708 compute_inlined_call_time (struct cgraph_edge *edge,
709 sreal time)
711 cgraph_node *caller = (edge->caller->global.inlined_to
712 ? edge->caller->global.inlined_to
713 : edge->caller);
714 sreal caller_time = ipa_fn_summaries->get (caller)->time;
716 sreal freq = edge->sreal_frequency ();
717 if (freq > 0)
718 time *= freq;
719 else
720 time = time >> 11;
722 /* This calculation should match one in ipa-inline-analysis.c
723 (estimate_edge_size_and_time). */
724 time -= (sreal)ipa_call_summaries->get (edge)->call_stmt_time * freq;
725 time += caller_time;
726 if (time <= 0)
727 time = ((sreal) 1) >> 8;
728 gcc_checking_assert (time >= 0);
729 return time;
732 /* Return true if the speedup for inlining E is bigger than
733 PARAM_MAX_INLINE_MIN_SPEEDUP. */
735 static bool
736 big_speedup_p (struct cgraph_edge *e)
738 sreal unspec_time;
739 sreal spec_time = estimate_edge_time (e, &unspec_time);
740 sreal time = compute_uninlined_call_time (e, unspec_time);
741 sreal inlined_time = compute_inlined_call_time (e, spec_time);
743 if ((time - inlined_time) * 100
744 > (sreal) (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP)))
745 return true;
746 return false;
749 /* Return true if we are interested in inlining small function.
750 When REPORT is true, report reason to dump file. */
752 static bool
753 want_inline_small_function_p (struct cgraph_edge *e, bool report)
755 bool want_inline = true;
756 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
758 /* Allow this function to be called before can_inline_edge_p,
759 since it's usually cheaper. */
760 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
761 want_inline = false;
762 else if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
764 else if (!DECL_DECLARED_INLINE_P (callee->decl)
765 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
767 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
768 want_inline = false;
770 /* Do fast and conservative check if the function can be good
771 inline candidate. At the moment we allow inline hints to
772 promote non-inline functions to inline and we increase
773 MAX_INLINE_INSNS_SINGLE 16-fold for inline functions. */
774 else if ((!DECL_DECLARED_INLINE_P (callee->decl)
775 && (!e->count.ipa ().initialized_p () || !e->maybe_hot_p ()))
776 && ipa_fn_summaries->get (callee)->min_size
777 - ipa_call_summaries->get (e)->call_stmt_size
778 > MAX (MAX_INLINE_INSNS_SINGLE, MAX_INLINE_INSNS_AUTO))
780 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
781 want_inline = false;
783 else if ((DECL_DECLARED_INLINE_P (callee->decl)
784 || e->count.ipa ().nonzero_p ())
785 && ipa_fn_summaries->get (callee)->min_size
786 - ipa_call_summaries->get (e)->call_stmt_size
787 > 16 * MAX_INLINE_INSNS_SINGLE)
789 e->inline_failed = (DECL_DECLARED_INLINE_P (callee->decl)
790 ? CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
791 : CIF_MAX_INLINE_INSNS_AUTO_LIMIT);
792 want_inline = false;
794 else
796 int growth = estimate_edge_growth (e);
797 ipa_hints hints = estimate_edge_hints (e);
798 int big_speedup = -1; /* compute this lazily */
800 if (growth <= PARAM_VALUE (PARAM_MAX_INLINE_INSNS_SIZE))
802 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
803 hints suggests that inlining given function is very profitable. */
804 else if (DECL_DECLARED_INLINE_P (callee->decl)
805 && growth >= MAX_INLINE_INSNS_SINGLE
806 && (growth >= MAX_INLINE_INSNS_SINGLE * 16
807 || (!(hints & (INLINE_HINT_indirect_call
808 | INLINE_HINT_known_hot
809 | INLINE_HINT_loop_iterations
810 | INLINE_HINT_array_index
811 | INLINE_HINT_loop_stride))
812 && !(big_speedup = big_speedup_p (e)))))
814 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
815 want_inline = false;
817 else if (!DECL_DECLARED_INLINE_P (callee->decl)
818 && !opt_for_fn (e->caller->decl, flag_inline_functions)
819 && growth >= PARAM_VALUE (PARAM_MAX_INLINE_INSNS_SMALL))
821 /* growth_likely_positive is expensive, always test it last. */
822 if (growth >= MAX_INLINE_INSNS_SINGLE
823 || growth_likely_positive (callee, growth))
825 e->inline_failed = CIF_NOT_DECLARED_INLINED;
826 want_inline = false;
829 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
830 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
831 inlining given function is very profitable. */
832 else if (!DECL_DECLARED_INLINE_P (callee->decl)
833 && !(hints & INLINE_HINT_known_hot)
834 && growth >= ((hints & (INLINE_HINT_indirect_call
835 | INLINE_HINT_loop_iterations
836 | INLINE_HINT_array_index
837 | INLINE_HINT_loop_stride))
838 ? MAX (MAX_INLINE_INSNS_AUTO,
839 MAX_INLINE_INSNS_SINGLE)
840 : MAX_INLINE_INSNS_AUTO)
841 && !(big_speedup == -1 ? big_speedup_p (e) : big_speedup))
843 /* growth_likely_positive is expensive, always test it last. */
844 if (growth >= MAX_INLINE_INSNS_SINGLE
845 || growth_likely_positive (callee, growth))
847 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
848 want_inline = false;
851 /* If call is cold, do not inline when function body would grow. */
852 else if (!e->maybe_hot_p ()
853 && (growth >= MAX_INLINE_INSNS_SINGLE
854 || growth_likely_positive (callee, growth)))
856 e->inline_failed = CIF_UNLIKELY_CALL;
857 want_inline = false;
860 if (!want_inline && report)
861 report_inline_failed_reason (e);
862 return want_inline;
865 /* EDGE is self recursive edge.
866 We hand two cases - when function A is inlining into itself
867 or when function A is being inlined into another inliner copy of function
868 A within function B.
870 In first case OUTER_NODE points to the toplevel copy of A, while
871 in the second case OUTER_NODE points to the outermost copy of A in B.
873 In both cases we want to be extra selective since
874 inlining the call will just introduce new recursive calls to appear. */
876 static bool
877 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
878 struct cgraph_node *outer_node,
879 bool peeling,
880 int depth)
882 char const *reason = NULL;
883 bool want_inline = true;
884 sreal caller_freq = 1;
885 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
887 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
888 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
890 if (!edge->maybe_hot_p ())
892 reason = "recursive call is cold";
893 want_inline = false;
895 else if (depth > max_depth)
897 reason = "--param max-inline-recursive-depth exceeded.";
898 want_inline = false;
900 else if (outer_node->global.inlined_to
901 && (caller_freq = outer_node->callers->sreal_frequency ()) == 0)
903 reason = "caller frequency is 0";
904 want_inline = false;
907 if (!want_inline)
909 /* Inlining of self recursive function into copy of itself within other
910 function is transformation similar to loop peeling.
912 Peeling is profitable if we can inline enough copies to make probability
913 of actual call to the self recursive function very small. Be sure that
914 the probability of recursion is small.
916 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
917 This way the expected number of recursion is at most max_depth. */
918 else if (peeling)
920 sreal max_prob = (sreal)1 - ((sreal)1 / (sreal)max_depth);
921 int i;
922 for (i = 1; i < depth; i++)
923 max_prob = max_prob * max_prob;
924 if (edge->sreal_frequency () >= max_prob * caller_freq)
926 reason = "frequency of recursive call is too large";
927 want_inline = false;
930 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if
931 recursion depth is large. We reduce function call overhead and increase
932 chances that things fit in hardware return predictor.
934 Recursive inlining might however increase cost of stack frame setup
935 actually slowing down functions whose recursion tree is wide rather than
936 deep.
938 Deciding reliably on when to do recursive inlining without profile feedback
939 is tricky. For now we disable recursive inlining when probability of self
940 recursion is low.
942 Recursive inlining of self recursive call within loop also results in
943 large loop depths that generally optimize badly. We may want to throttle
944 down inlining in those cases. In particular this seems to happen in one
945 of libstdc++ rb tree methods. */
946 else
948 if (edge->sreal_frequency () * 100
949 <= caller_freq
950 * PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY))
952 reason = "frequency of recursive call is too small";
953 want_inline = false;
956 if (!want_inline && dump_enabled_p ())
957 dump_printf_loc (MSG_MISSED_OPTIMIZATION, edge->call_stmt,
958 " not inlining recursively: %s\n", reason);
959 return want_inline;
962 /* Return true when NODE has uninlinable caller;
963 set HAS_HOT_CALL if it has hot call.
964 Worker for cgraph_for_node_and_aliases. */
966 static bool
967 check_callers (struct cgraph_node *node, void *has_hot_call)
969 struct cgraph_edge *e;
970 for (e = node->callers; e; e = e->next_caller)
972 if (!opt_for_fn (e->caller->decl, flag_inline_functions_called_once)
973 || !opt_for_fn (e->caller->decl, optimize))
974 return true;
975 if (!can_inline_edge_p (e, true))
976 return true;
977 if (e->recursive_p ())
978 return true;
979 if (!can_inline_edge_by_limits_p (e, true))
980 return true;
981 if (!(*(bool *)has_hot_call) && e->maybe_hot_p ())
982 *(bool *)has_hot_call = true;
984 return false;
987 /* If NODE has a caller, return true. */
989 static bool
990 has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
992 if (node->callers)
993 return true;
994 return false;
997 /* Decide if inlining NODE would reduce unit size by eliminating
998 the offline copy of function.
999 When COLD is true the cold calls are considered, too. */
1001 static bool
1002 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
1004 bool has_hot_call = false;
1006 /* Aliases gets inlined along with the function they alias. */
1007 if (node->alias)
1008 return false;
1009 /* Already inlined? */
1010 if (node->global.inlined_to)
1011 return false;
1012 /* Does it have callers? */
1013 if (!node->call_for_symbol_and_aliases (has_caller_p, NULL, true))
1014 return false;
1015 /* Inlining into all callers would increase size? */
1016 if (estimate_growth (node) > 0)
1017 return false;
1018 /* All inlines must be possible. */
1019 if (node->call_for_symbol_and_aliases (check_callers, &has_hot_call,
1020 true))
1021 return false;
1022 if (!cold && !has_hot_call)
1023 return false;
1024 return true;
1027 /* A cost model driving the inlining heuristics in a way so the edges with
1028 smallest badness are inlined first. After each inlining is performed
1029 the costs of all caller edges of nodes affected are recomputed so the
1030 metrics may accurately depend on values such as number of inlinable callers
1031 of the function or function body size. */
1033 static sreal
1034 edge_badness (struct cgraph_edge *edge, bool dump)
1036 sreal badness;
1037 int growth;
1038 sreal edge_time, unspec_edge_time;
1039 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
1040 struct ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
1041 ipa_hints hints;
1042 cgraph_node *caller = (edge->caller->global.inlined_to
1043 ? edge->caller->global.inlined_to
1044 : edge->caller);
1046 growth = estimate_edge_growth (edge);
1047 edge_time = estimate_edge_time (edge, &unspec_edge_time);
1048 hints = estimate_edge_hints (edge);
1049 gcc_checking_assert (edge_time >= 0);
1050 /* Check that inlined time is better, but tolerate some roundoff issues.
1051 FIXME: When callee profile drops to 0 we account calls more. This
1052 should be fixed by never doing that. */
1053 gcc_checking_assert ((edge_time * 100
1054 - callee_info->time * 101).to_int () <= 0
1055 || callee->count.ipa ().initialized_p ());
1056 gcc_checking_assert (growth <= callee_info->size);
1058 if (dump)
1060 fprintf (dump_file, " Badness calculation for %s -> %s\n",
1061 edge->caller->dump_name (),
1062 edge->callee->dump_name ());
1063 fprintf (dump_file, " size growth %i, time %f unspec %f ",
1064 growth,
1065 edge_time.to_double (),
1066 unspec_edge_time.to_double ());
1067 ipa_dump_hints (dump_file, hints);
1068 if (big_speedup_p (edge))
1069 fprintf (dump_file, " big_speedup");
1070 fprintf (dump_file, "\n");
1073 /* Always prefer inlining saving code size. */
1074 if (growth <= 0)
1076 badness = (sreal) (-SREAL_MIN_SIG + growth) << (SREAL_MAX_EXP / 256);
1077 if (dump)
1078 fprintf (dump_file, " %f: Growth %d <= 0\n", badness.to_double (),
1079 growth);
1081 /* Inlining into EXTERNAL functions is not going to change anything unless
1082 they are themselves inlined. */
1083 else if (DECL_EXTERNAL (caller->decl))
1085 if (dump)
1086 fprintf (dump_file, " max: function is external\n");
1087 return sreal::max ();
1089 /* When profile is available. Compute badness as:
1091 time_saved * caller_count
1092 goodness = -------------------------------------------------
1093 growth_of_caller * overall_growth * combined_size
1095 badness = - goodness
1097 Again use negative value to make calls with profile appear hotter
1098 then calls without.
1100 else if (opt_for_fn (caller->decl, flag_guess_branch_prob)
1101 || caller->count.ipa ().nonzero_p ())
1103 sreal numerator, denominator;
1104 int overall_growth;
1105 sreal inlined_time = compute_inlined_call_time (edge, edge_time);
1107 numerator = (compute_uninlined_call_time (edge, unspec_edge_time)
1108 - inlined_time);
1109 if (numerator <= 0)
1110 numerator = ((sreal) 1 >> 8);
1111 if (caller->count.ipa ().nonzero_p ())
1112 numerator *= caller->count.ipa ().to_gcov_type ();
1113 else if (caller->count.ipa ().initialized_p ())
1114 numerator = numerator >> 11;
1115 denominator = growth;
1117 overall_growth = callee_info->growth;
1119 /* Look for inliner wrappers of the form:
1121 inline_caller ()
1123 do_fast_job...
1124 if (need_more_work)
1125 noninline_callee ();
1127 Withhout panilizing this case, we usually inline noninline_callee
1128 into the inline_caller because overall_growth is small preventing
1129 further inlining of inline_caller.
1131 Penalize only callgraph edges to functions with small overall
1132 growth ...
1134 if (growth > overall_growth
1135 /* ... and having only one caller which is not inlined ... */
1136 && callee_info->single_caller
1137 && !edge->caller->global.inlined_to
1138 /* ... and edges executed only conditionally ... */
1139 && edge->sreal_frequency () < 1
1140 /* ... consider case where callee is not inline but caller is ... */
1141 && ((!DECL_DECLARED_INLINE_P (edge->callee->decl)
1142 && DECL_DECLARED_INLINE_P (caller->decl))
1143 /* ... or when early optimizers decided to split and edge
1144 frequency still indicates splitting is a win ... */
1145 || (callee->split_part && !caller->split_part
1146 && edge->sreal_frequency () * 100
1147 < PARAM_VALUE
1148 (PARAM_PARTIAL_INLINING_ENTRY_PROBABILITY)
1149 /* ... and do not overwrite user specified hints. */
1150 && (!DECL_DECLARED_INLINE_P (edge->callee->decl)
1151 || DECL_DECLARED_INLINE_P (caller->decl)))))
1153 ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
1154 int caller_growth = caller_info->growth;
1156 /* Only apply the penalty when caller looks like inline candidate,
1157 and it is not called once and. */
1158 if (!caller_info->single_caller && overall_growth < caller_growth
1159 && caller_info->inlinable
1160 && caller_info->size
1161 < (DECL_DECLARED_INLINE_P (caller->decl)
1162 ? MAX_INLINE_INSNS_SINGLE : MAX_INLINE_INSNS_AUTO))
1164 if (dump)
1165 fprintf (dump_file,
1166 " Wrapper penalty. Increasing growth %i to %i\n",
1167 overall_growth, caller_growth);
1168 overall_growth = caller_growth;
1171 if (overall_growth > 0)
1173 /* Strongly preffer functions with few callers that can be inlined
1174 fully. The square root here leads to smaller binaries at average.
1175 Watch however for extreme cases and return to linear function
1176 when growth is large. */
1177 if (overall_growth < 256)
1178 overall_growth *= overall_growth;
1179 else
1180 overall_growth += 256 * 256 - 256;
1181 denominator *= overall_growth;
1183 denominator *= ipa_fn_summaries->get (caller)->self_size + growth;
1185 badness = - numerator / denominator;
1187 if (dump)
1189 fprintf (dump_file,
1190 " %f: guessed profile. frequency %f, count %" PRId64
1191 " caller count %" PRId64
1192 " time w/o inlining %f, time with inlining %f"
1193 " overall growth %i (current) %i (original)"
1194 " %i (compensated)\n",
1195 badness.to_double (),
1196 edge->sreal_frequency ().to_double (),
1197 edge->count.ipa ().initialized_p () ? edge->count.ipa ().to_gcov_type () : -1,
1198 caller->count.ipa ().initialized_p () ? caller->count.ipa ().to_gcov_type () : -1,
1199 compute_uninlined_call_time (edge,
1200 unspec_edge_time).to_double (),
1201 inlined_time.to_double (),
1202 estimate_growth (callee),
1203 callee_info->growth, overall_growth);
1206 /* When function local profile is not available or it does not give
1207 useful information (ie frequency is zero), base the cost on
1208 loop nest and overall size growth, so we optimize for overall number
1209 of functions fully inlined in program. */
1210 else
1212 int nest = MIN (ipa_call_summaries->get (edge)->loop_depth, 8);
1213 badness = growth;
1215 /* Decrease badness if call is nested. */
1216 if (badness > 0)
1217 badness = badness >> nest;
1218 else
1219 badness = badness << nest;
1220 if (dump)
1221 fprintf (dump_file, " %f: no profile. nest %i\n",
1222 badness.to_double (), nest);
1224 gcc_checking_assert (badness != 0);
1226 if (edge->recursive_p ())
1227 badness = badness.shift (badness > 0 ? 4 : -4);
1228 if ((hints & (INLINE_HINT_indirect_call
1229 | INLINE_HINT_loop_iterations
1230 | INLINE_HINT_array_index
1231 | INLINE_HINT_loop_stride))
1232 || callee_info->growth <= 0)
1233 badness = badness.shift (badness > 0 ? -2 : 2);
1234 if (hints & (INLINE_HINT_same_scc))
1235 badness = badness.shift (badness > 0 ? 3 : -3);
1236 else if (hints & (INLINE_HINT_in_scc))
1237 badness = badness.shift (badness > 0 ? 2 : -2);
1238 else if (hints & (INLINE_HINT_cross_module))
1239 badness = badness.shift (badness > 0 ? 1 : -1);
1240 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1241 badness = badness.shift (badness > 0 ? -4 : 4);
1242 else if ((hints & INLINE_HINT_declared_inline))
1243 badness = badness.shift (badness > 0 ? -3 : 3);
1244 if (dump)
1245 fprintf (dump_file, " Adjusted by hints %f\n", badness.to_double ());
1246 return badness;
1249 /* Recompute badness of EDGE and update its key in HEAP if needed. */
1250 static inline void
1251 update_edge_key (edge_heap_t *heap, struct cgraph_edge *edge)
1253 sreal badness = edge_badness (edge, false);
1254 if (edge->aux)
1256 edge_heap_node_t *n = (edge_heap_node_t *) edge->aux;
1257 gcc_checking_assert (n->get_data () == edge);
1259 /* fibonacci_heap::replace_key does busy updating of the
1260 heap that is unnecesarily expensive.
1261 We do lazy increases: after extracting minimum if the key
1262 turns out to be out of date, it is re-inserted into heap
1263 with correct value. */
1264 if (badness < n->get_key ())
1266 if (dump_file && (dump_flags & TDF_DETAILS))
1268 fprintf (dump_file,
1269 " decreasing badness %s -> %s, %f to %f\n",
1270 edge->caller->dump_name (),
1271 edge->callee->dump_name (),
1272 n->get_key ().to_double (),
1273 badness.to_double ());
1275 heap->decrease_key (n, badness);
1278 else
1280 if (dump_file && (dump_flags & TDF_DETAILS))
1282 fprintf (dump_file,
1283 " enqueuing call %s -> %s, badness %f\n",
1284 edge->caller->dump_name (),
1285 edge->callee->dump_name (),
1286 badness.to_double ());
1288 edge->aux = heap->insert (badness, edge);
1293 /* NODE was inlined.
1294 All caller edges needs to be resetted because
1295 size estimates change. Similarly callees needs reset
1296 because better context may be known. */
1298 static void
1299 reset_edge_caches (struct cgraph_node *node)
1301 struct cgraph_edge *edge;
1302 struct cgraph_edge *e = node->callees;
1303 struct cgraph_node *where = node;
1304 struct ipa_ref *ref;
1306 if (where->global.inlined_to)
1307 where = where->global.inlined_to;
1309 if (edge_growth_cache != NULL)
1310 for (edge = where->callers; edge; edge = edge->next_caller)
1311 if (edge->inline_failed)
1312 edge_growth_cache->remove (edge);
1314 FOR_EACH_ALIAS (where, ref)
1315 reset_edge_caches (dyn_cast <cgraph_node *> (ref->referring));
1317 if (!e)
1318 return;
1320 while (true)
1321 if (!e->inline_failed && e->callee->callees)
1322 e = e->callee->callees;
1323 else
1325 if (edge_growth_cache != NULL && e->inline_failed)
1326 edge_growth_cache->remove (e);
1327 if (e->next_callee)
1328 e = e->next_callee;
1329 else
1333 if (e->caller == node)
1334 return;
1335 e = e->caller->callers;
1337 while (!e->next_callee);
1338 e = e->next_callee;
1343 /* Recompute HEAP nodes for each of caller of NODE.
1344 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1345 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1346 it is inlinable. Otherwise check all edges. */
1348 static void
1349 update_caller_keys (edge_heap_t *heap, struct cgraph_node *node,
1350 bitmap updated_nodes,
1351 struct cgraph_edge *check_inlinablity_for)
1353 struct cgraph_edge *edge;
1354 struct ipa_ref *ref;
1356 if ((!node->alias && !ipa_fn_summaries->get (node)->inlinable)
1357 || node->global.inlined_to)
1358 return;
1359 if (!bitmap_set_bit (updated_nodes, node->get_uid ()))
1360 return;
1362 FOR_EACH_ALIAS (node, ref)
1364 struct cgraph_node *alias = dyn_cast <cgraph_node *> (ref->referring);
1365 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1368 for (edge = node->callers; edge; edge = edge->next_caller)
1369 if (edge->inline_failed)
1371 if (!check_inlinablity_for
1372 || check_inlinablity_for == edge)
1374 if (can_inline_edge_p (edge, false)
1375 && want_inline_small_function_p (edge, false)
1376 && can_inline_edge_by_limits_p (edge, false))
1377 update_edge_key (heap, edge);
1378 else if (edge->aux)
1380 report_inline_failed_reason (edge);
1381 heap->delete_node ((edge_heap_node_t *) edge->aux);
1382 edge->aux = NULL;
1385 else if (edge->aux)
1386 update_edge_key (heap, edge);
1390 /* Recompute HEAP nodes for each uninlined call in NODE.
1391 This is used when we know that edge badnesses are going only to increase
1392 (we introduced new call site) and thus all we need is to insert newly
1393 created edges into heap. */
1395 static void
1396 update_callee_keys (edge_heap_t *heap, struct cgraph_node *node,
1397 bitmap updated_nodes)
1399 struct cgraph_edge *e = node->callees;
1401 if (!e)
1402 return;
1403 while (true)
1404 if (!e->inline_failed && e->callee->callees)
1405 e = e->callee->callees;
1406 else
1408 enum availability avail;
1409 struct cgraph_node *callee;
1410 /* We do not reset callee growth cache here. Since we added a new call,
1411 growth chould have just increased and consequentely badness metric
1412 don't need updating. */
1413 if (e->inline_failed
1414 && (callee = e->callee->ultimate_alias_target (&avail, e->caller))
1415 && ipa_fn_summaries->get (callee) != NULL
1416 && ipa_fn_summaries->get (callee)->inlinable
1417 && avail >= AVAIL_AVAILABLE
1418 && !bitmap_bit_p (updated_nodes, callee->get_uid ()))
1420 if (can_inline_edge_p (e, false)
1421 && want_inline_small_function_p (e, false)
1422 && can_inline_edge_by_limits_p (e, false))
1423 update_edge_key (heap, e);
1424 else if (e->aux)
1426 report_inline_failed_reason (e);
1427 heap->delete_node ((edge_heap_node_t *) e->aux);
1428 e->aux = NULL;
1431 if (e->next_callee)
1432 e = e->next_callee;
1433 else
1437 if (e->caller == node)
1438 return;
1439 e = e->caller->callers;
1441 while (!e->next_callee);
1442 e = e->next_callee;
1447 /* Enqueue all recursive calls from NODE into priority queue depending on
1448 how likely we want to recursively inline the call. */
1450 static void
1451 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1452 edge_heap_t *heap)
1454 struct cgraph_edge *e;
1455 enum availability avail;
1457 for (e = where->callees; e; e = e->next_callee)
1458 if (e->callee == node
1459 || (e->callee->ultimate_alias_target (&avail, e->caller) == node
1460 && avail > AVAIL_INTERPOSABLE))
1461 heap->insert (-e->sreal_frequency (), e);
1462 for (e = where->callees; e; e = e->next_callee)
1463 if (!e->inline_failed)
1464 lookup_recursive_calls (node, e->callee, heap);
1467 /* Decide on recursive inlining: in the case function has recursive calls,
1468 inline until body size reaches given argument. If any new indirect edges
1469 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1470 is NULL. */
1472 static bool
1473 recursive_inlining (struct cgraph_edge *edge,
1474 vec<cgraph_edge *> *new_edges)
1476 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1477 edge_heap_t heap (sreal::min ());
1478 struct cgraph_node *node;
1479 struct cgraph_edge *e;
1480 struct cgraph_node *master_clone = NULL, *next;
1481 int depth = 0;
1482 int n = 0;
1484 node = edge->caller;
1485 if (node->global.inlined_to)
1486 node = node->global.inlined_to;
1488 if (DECL_DECLARED_INLINE_P (node->decl))
1489 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1491 /* Make sure that function is small enough to be considered for inlining. */
1492 if (estimate_size_after_inlining (node, edge) >= limit)
1493 return false;
1494 lookup_recursive_calls (node, node, &heap);
1495 if (heap.empty ())
1496 return false;
1498 if (dump_file)
1499 fprintf (dump_file,
1500 " Performing recursive inlining on %s\n",
1501 node->name ());
1503 /* Do the inlining and update list of recursive call during process. */
1504 while (!heap.empty ())
1506 struct cgraph_edge *curr = heap.extract_min ();
1507 struct cgraph_node *cnode, *dest = curr->callee;
1509 if (!can_inline_edge_p (curr, true)
1510 || can_inline_edge_by_limits_p (curr, true))
1511 continue;
1513 /* MASTER_CLONE is produced in the case we already started modified
1514 the function. Be sure to redirect edge to the original body before
1515 estimating growths otherwise we will be seeing growths after inlining
1516 the already modified body. */
1517 if (master_clone)
1519 curr->redirect_callee (master_clone);
1520 if (edge_growth_cache != NULL)
1521 edge_growth_cache->remove (curr);
1524 if (estimate_size_after_inlining (node, curr) > limit)
1526 curr->redirect_callee (dest);
1527 if (edge_growth_cache != NULL)
1528 edge_growth_cache->remove (curr);
1529 break;
1532 depth = 1;
1533 for (cnode = curr->caller;
1534 cnode->global.inlined_to; cnode = cnode->callers->caller)
1535 if (node->decl
1536 == curr->callee->ultimate_alias_target ()->decl)
1537 depth++;
1539 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1541 curr->redirect_callee (dest);
1542 if (edge_growth_cache != NULL)
1543 edge_growth_cache->remove (curr);
1544 continue;
1547 if (dump_file)
1549 fprintf (dump_file,
1550 " Inlining call of depth %i", depth);
1551 if (node->count.nonzero_p ())
1553 fprintf (dump_file, " called approx. %.2f times per call",
1554 (double)curr->count.to_gcov_type ()
1555 / node->count.to_gcov_type ());
1557 fprintf (dump_file, "\n");
1559 if (!master_clone)
1561 /* We need original clone to copy around. */
1562 master_clone = node->create_clone (node->decl, node->count,
1563 false, vNULL, true, NULL, NULL);
1564 for (e = master_clone->callees; e; e = e->next_callee)
1565 if (!e->inline_failed)
1566 clone_inlined_nodes (e, true, false, NULL);
1567 curr->redirect_callee (master_clone);
1568 if (edge_growth_cache != NULL)
1569 edge_growth_cache->remove (curr);
1572 inline_call (curr, false, new_edges, &overall_size, true);
1573 lookup_recursive_calls (node, curr->callee, &heap);
1574 n++;
1577 if (!heap.empty () && dump_file)
1578 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1580 if (!master_clone)
1581 return false;
1583 if (dump_enabled_p ())
1584 dump_printf_loc (MSG_NOTE, edge->call_stmt,
1585 "\n Inlined %i times, "
1586 "body grown from size %i to %i, time %f to %f\n", n,
1587 ipa_fn_summaries->get (master_clone)->size,
1588 ipa_fn_summaries->get (node)->size,
1589 ipa_fn_summaries->get (master_clone)->time.to_double (),
1590 ipa_fn_summaries->get (node)->time.to_double ());
1592 /* Remove master clone we used for inlining. We rely that clones inlined
1593 into master clone gets queued just before master clone so we don't
1594 need recursion. */
1595 for (node = symtab->first_function (); node != master_clone;
1596 node = next)
1598 next = symtab->next_function (node);
1599 if (node->global.inlined_to == master_clone)
1600 node->remove ();
1602 master_clone->remove ();
1603 return true;
1607 /* Given whole compilation unit estimate of INSNS, compute how large we can
1608 allow the unit to grow. */
1610 static int
1611 compute_max_insns (int insns)
1613 int max_insns = insns;
1614 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1615 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1617 return ((int64_t) max_insns
1618 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1622 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1624 static void
1625 add_new_edges_to_heap (edge_heap_t *heap, vec<cgraph_edge *> new_edges)
1627 while (new_edges.length () > 0)
1629 struct cgraph_edge *edge = new_edges.pop ();
1631 gcc_assert (!edge->aux);
1632 if (edge->inline_failed
1633 && can_inline_edge_p (edge, true)
1634 && want_inline_small_function_p (edge, true)
1635 && can_inline_edge_by_limits_p (edge, true))
1636 edge->aux = heap->insert (edge_badness (edge, false), edge);
1640 /* Remove EDGE from the fibheap. */
1642 static void
1643 heap_edge_removal_hook (struct cgraph_edge *e, void *data)
1645 if (e->aux)
1647 ((edge_heap_t *)data)->delete_node ((edge_heap_node_t *)e->aux);
1648 e->aux = NULL;
1652 /* Return true if speculation of edge E seems useful.
1653 If ANTICIPATE_INLINING is true, be conservative and hope that E
1654 may get inlined. */
1656 bool
1657 speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
1659 enum availability avail;
1660 struct cgraph_node *target = e->callee->ultimate_alias_target (&avail,
1661 e->caller);
1662 struct cgraph_edge *direct, *indirect;
1663 struct ipa_ref *ref;
1665 gcc_assert (e->speculative && !e->indirect_unknown_callee);
1667 if (!e->maybe_hot_p ())
1668 return false;
1670 /* See if IP optimizations found something potentially useful about the
1671 function. For now we look only for CONST/PURE flags. Almost everything
1672 else we propagate is useless. */
1673 if (avail >= AVAIL_AVAILABLE)
1675 int ecf_flags = flags_from_decl_or_type (target->decl);
1676 if (ecf_flags & ECF_CONST)
1678 e->speculative_call_info (direct, indirect, ref);
1679 if (!(indirect->indirect_info->ecf_flags & ECF_CONST))
1680 return true;
1682 else if (ecf_flags & ECF_PURE)
1684 e->speculative_call_info (direct, indirect, ref);
1685 if (!(indirect->indirect_info->ecf_flags & ECF_PURE))
1686 return true;
1689 /* If we did not managed to inline the function nor redirect
1690 to an ipa-cp clone (that are seen by having local flag set),
1691 it is probably pointless to inline it unless hardware is missing
1692 indirect call predictor. */
1693 if (!anticipate_inlining && e->inline_failed && !target->local.local)
1694 return false;
1695 /* For overwritable targets there is not much to do. */
1696 if (e->inline_failed
1697 && (!can_inline_edge_p (e, false)
1698 || !can_inline_edge_by_limits_p (e, false, true)))
1699 return false;
1700 /* OK, speculation seems interesting. */
1701 return true;
1704 /* We know that EDGE is not going to be inlined.
1705 See if we can remove speculation. */
1707 static void
1708 resolve_noninline_speculation (edge_heap_t *edge_heap, struct cgraph_edge *edge)
1710 if (edge->speculative && !speculation_useful_p (edge, false))
1712 struct cgraph_node *node = edge->caller;
1713 struct cgraph_node *where = node->global.inlined_to
1714 ? node->global.inlined_to : node;
1715 auto_bitmap updated_nodes;
1717 if (edge->count.ipa ().initialized_p ())
1718 spec_rem += edge->count.ipa ();
1719 edge->resolve_speculation ();
1720 reset_edge_caches (where);
1721 ipa_update_overall_fn_summary (where);
1722 update_caller_keys (edge_heap, where,
1723 updated_nodes, NULL);
1724 update_callee_keys (edge_heap, where,
1725 updated_nodes);
1729 /* Return true if NODE should be accounted for overall size estimate.
1730 Skip all nodes optimized for size so we can measure the growth of hot
1731 part of program no matter of the padding. */
1733 bool
1734 inline_account_function_p (struct cgraph_node *node)
1736 return (!DECL_EXTERNAL (node->decl)
1737 && !opt_for_fn (node->decl, optimize_size)
1738 && node->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED);
1741 /* Count number of callers of NODE and store it into DATA (that
1742 points to int. Worker for cgraph_for_node_and_aliases. */
1744 static bool
1745 sum_callers (struct cgraph_node *node, void *data)
1747 struct cgraph_edge *e;
1748 int *num_calls = (int *)data;
1750 for (e = node->callers; e; e = e->next_caller)
1751 (*num_calls)++;
1752 return false;
1755 /* We use greedy algorithm for inlining of small functions:
1756 All inline candidates are put into prioritized heap ordered in
1757 increasing badness.
1759 The inlining of small functions is bounded by unit growth parameters. */
1761 static void
1762 inline_small_functions (void)
1764 struct cgraph_node *node;
1765 struct cgraph_edge *edge;
1766 edge_heap_t edge_heap (sreal::min ());
1767 auto_bitmap updated_nodes;
1768 int min_size, max_size;
1769 auto_vec<cgraph_edge *> new_indirect_edges;
1770 int initial_size = 0;
1771 struct cgraph_node **order = XCNEWVEC (cgraph_node *, symtab->cgraph_count);
1772 struct cgraph_edge_hook_list *edge_removal_hook_holder;
1773 new_indirect_edges.create (8);
1775 edge_removal_hook_holder
1776 = symtab->add_edge_removal_hook (&heap_edge_removal_hook, &edge_heap);
1778 /* Compute overall unit size and other global parameters used by badness
1779 metrics. */
1781 max_count = profile_count::uninitialized ();
1782 ipa_reduced_postorder (order, true, NULL);
1783 free (order);
1785 FOR_EACH_DEFINED_FUNCTION (node)
1786 if (!node->global.inlined_to)
1788 if (!node->alias && node->analyzed
1789 && (node->has_gimple_body_p () || node->thunk.thunk_p)
1790 && opt_for_fn (node->decl, optimize))
1792 struct ipa_fn_summary *info = ipa_fn_summaries->get (node);
1793 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->aux;
1795 /* Do not account external functions, they will be optimized out
1796 if not inlined. Also only count the non-cold portion of program. */
1797 if (inline_account_function_p (node))
1798 initial_size += info->size;
1799 info->growth = estimate_growth (node);
1801 int num_calls = 0;
1802 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
1803 true);
1804 if (num_calls == 1)
1805 info->single_caller = true;
1806 if (dfs && dfs->next_cycle)
1808 struct cgraph_node *n2;
1809 int id = dfs->scc_no + 1;
1810 for (n2 = node; n2;
1811 n2 = ((struct ipa_dfs_info *) n2->aux)->next_cycle)
1812 if (opt_for_fn (n2->decl, optimize))
1814 ipa_fn_summary *info2 = ipa_fn_summaries->get (n2);
1815 if (info2->scc_no)
1816 break;
1817 info2->scc_no = id;
1822 for (edge = node->callers; edge; edge = edge->next_caller)
1823 max_count = max_count.max (edge->count.ipa ());
1825 ipa_free_postorder_info ();
1826 edge_growth_cache
1827 = new call_summary<edge_growth_cache_entry *> (symtab, false);
1829 if (dump_file)
1830 fprintf (dump_file,
1831 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1832 initial_size);
1834 overall_size = initial_size;
1835 max_size = compute_max_insns (overall_size);
1836 min_size = overall_size;
1838 /* Populate the heap with all edges we might inline. */
1840 FOR_EACH_DEFINED_FUNCTION (node)
1842 bool update = false;
1843 struct cgraph_edge *next = NULL;
1844 bool has_speculative = false;
1846 if (!opt_for_fn (node->decl, optimize))
1847 continue;
1849 if (dump_file)
1850 fprintf (dump_file, "Enqueueing calls in %s.\n", node->dump_name ());
1852 for (edge = node->callees; edge; edge = next)
1854 next = edge->next_callee;
1855 if (edge->inline_failed
1856 && !edge->aux
1857 && can_inline_edge_p (edge, true)
1858 && want_inline_small_function_p (edge, true)
1859 && can_inline_edge_by_limits_p (edge, true)
1860 && edge->inline_failed)
1862 gcc_assert (!edge->aux);
1863 update_edge_key (&edge_heap, edge);
1865 if (edge->speculative)
1866 has_speculative = true;
1868 if (has_speculative)
1869 for (edge = node->callees; edge; edge = next)
1870 if (edge->speculative && !speculation_useful_p (edge,
1871 edge->aux != NULL))
1873 edge->resolve_speculation ();
1874 update = true;
1876 if (update)
1878 struct cgraph_node *where = node->global.inlined_to
1879 ? node->global.inlined_to : node;
1880 ipa_update_overall_fn_summary (where);
1881 reset_edge_caches (where);
1882 update_caller_keys (&edge_heap, where,
1883 updated_nodes, NULL);
1884 update_callee_keys (&edge_heap, where,
1885 updated_nodes);
1886 bitmap_clear (updated_nodes);
1890 gcc_assert (in_lto_p
1891 || !(max_count > 0)
1892 || (profile_info && flag_branch_probabilities));
1894 while (!edge_heap.empty ())
1896 int old_size = overall_size;
1897 struct cgraph_node *where, *callee;
1898 sreal badness = edge_heap.min_key ();
1899 sreal current_badness;
1900 int growth;
1902 edge = edge_heap.extract_min ();
1903 gcc_assert (edge->aux);
1904 edge->aux = NULL;
1905 if (!edge->inline_failed || !edge->callee->analyzed)
1906 continue;
1908 #if CHECKING_P
1909 /* Be sure that caches are maintained consistent.
1910 This check is affected by scaling roundoff errors when compiling for
1911 IPA this we skip it in that case. */
1912 if (!edge->callee->count.ipa_p ()
1913 && (!max_count.initialized_p () || !max_count.nonzero_p ()))
1915 sreal cached_badness = edge_badness (edge, false);
1917 int old_size_est = estimate_edge_size (edge);
1918 sreal old_time_est = estimate_edge_time (edge);
1919 int old_hints_est = estimate_edge_hints (edge);
1921 if (edge_growth_cache != NULL)
1922 edge_growth_cache->remove (edge);
1923 gcc_assert (old_size_est == estimate_edge_size (edge));
1924 gcc_assert (old_time_est == estimate_edge_time (edge));
1925 /* FIXME:
1927 gcc_assert (old_hints_est == estimate_edge_hints (edge));
1929 fails with profile feedback because some hints depends on
1930 maybe_hot_edge_p predicate and because callee gets inlined to other
1931 calls, the edge may become cold.
1932 This ought to be fixed by computing relative probabilities
1933 for given invocation but that will be better done once whole
1934 code is converted to sreals. Disable for now and revert to "wrong"
1935 value so enable/disable checking paths agree. */
1936 edge_growth_cache->get (edge)->hints = old_hints_est + 1;
1938 /* When updating the edge costs, we only decrease badness in the keys.
1939 Increases of badness are handled lazilly; when we see key with out
1940 of date value on it, we re-insert it now. */
1941 current_badness = edge_badness (edge, false);
1942 gcc_assert (cached_badness == current_badness);
1943 gcc_assert (current_badness >= badness);
1945 else
1946 current_badness = edge_badness (edge, false);
1947 #else
1948 current_badness = edge_badness (edge, false);
1949 #endif
1950 if (current_badness != badness)
1952 if (edge_heap.min () && current_badness > edge_heap.min_key ())
1954 edge->aux = edge_heap.insert (current_badness, edge);
1955 continue;
1957 else
1958 badness = current_badness;
1961 if (!can_inline_edge_p (edge, true)
1962 || !can_inline_edge_by_limits_p (edge, true))
1964 resolve_noninline_speculation (&edge_heap, edge);
1965 continue;
1968 callee = edge->callee->ultimate_alias_target ();
1969 growth = estimate_edge_growth (edge);
1970 if (dump_file)
1972 fprintf (dump_file,
1973 "\nConsidering %s with %i size\n",
1974 callee->dump_name (),
1975 ipa_fn_summaries->get (callee)->size);
1976 fprintf (dump_file,
1977 " to be inlined into %s in %s:%i\n"
1978 " Estimated badness is %f, frequency %.2f.\n",
1979 edge->caller->dump_name (),
1980 edge->call_stmt
1981 && (LOCATION_LOCUS (gimple_location ((const gimple *)
1982 edge->call_stmt))
1983 > BUILTINS_LOCATION)
1984 ? gimple_filename ((const gimple *) edge->call_stmt)
1985 : "unknown",
1986 edge->call_stmt
1987 ? gimple_lineno ((const gimple *) edge->call_stmt)
1988 : -1,
1989 badness.to_double (),
1990 edge->sreal_frequency ().to_double ());
1991 if (edge->count.ipa ().initialized_p ())
1993 fprintf (dump_file, " Called ");
1994 edge->count.ipa ().dump (dump_file);
1995 fprintf (dump_file, " times\n");
1997 if (dump_flags & TDF_DETAILS)
1998 edge_badness (edge, true);
2001 if (overall_size + growth > max_size
2002 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
2004 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
2005 report_inline_failed_reason (edge);
2006 resolve_noninline_speculation (&edge_heap, edge);
2007 continue;
2010 if (!want_inline_small_function_p (edge, true))
2012 resolve_noninline_speculation (&edge_heap, edge);
2013 continue;
2016 /* Heuristics for inlining small functions work poorly for
2017 recursive calls where we do effects similar to loop unrolling.
2018 When inlining such edge seems profitable, leave decision on
2019 specific inliner. */
2020 if (edge->recursive_p ())
2022 where = edge->caller;
2023 if (where->global.inlined_to)
2024 where = where->global.inlined_to;
2025 if (!recursive_inlining (edge,
2026 opt_for_fn (edge->caller->decl,
2027 flag_indirect_inlining)
2028 ? &new_indirect_edges : NULL))
2030 edge->inline_failed = CIF_RECURSIVE_INLINING;
2031 resolve_noninline_speculation (&edge_heap, edge);
2032 continue;
2034 reset_edge_caches (where);
2035 /* Recursive inliner inlines all recursive calls of the function
2036 at once. Consequently we need to update all callee keys. */
2037 if (opt_for_fn (edge->caller->decl, flag_indirect_inlining))
2038 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
2039 update_callee_keys (&edge_heap, where, updated_nodes);
2040 bitmap_clear (updated_nodes);
2042 else
2044 struct cgraph_node *outer_node = NULL;
2045 int depth = 0;
2047 /* Consider the case where self recursive function A is inlined
2048 into B. This is desired optimization in some cases, since it
2049 leads to effect similar of loop peeling and we might completely
2050 optimize out the recursive call. However we must be extra
2051 selective. */
2053 where = edge->caller;
2054 while (where->global.inlined_to)
2056 if (where->decl == callee->decl)
2057 outer_node = where, depth++;
2058 where = where->callers->caller;
2060 if (outer_node
2061 && !want_inline_self_recursive_call_p (edge, outer_node,
2062 true, depth))
2064 edge->inline_failed
2065 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
2066 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
2067 resolve_noninline_speculation (&edge_heap, edge);
2068 continue;
2070 else if (depth && dump_file)
2071 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
2073 gcc_checking_assert (!callee->global.inlined_to);
2074 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
2075 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
2077 reset_edge_caches (edge->callee);
2079 update_callee_keys (&edge_heap, where, updated_nodes);
2081 where = edge->caller;
2082 if (where->global.inlined_to)
2083 where = where->global.inlined_to;
2085 /* Our profitability metric can depend on local properties
2086 such as number of inlinable calls and size of the function body.
2087 After inlining these properties might change for the function we
2088 inlined into (since it's body size changed) and for the functions
2089 called by function we inlined (since number of it inlinable callers
2090 might change). */
2091 update_caller_keys (&edge_heap, where, updated_nodes, NULL);
2092 /* Offline copy count has possibly changed, recompute if profile is
2093 available. */
2094 struct cgraph_node *n = cgraph_node::get (edge->callee->decl);
2095 if (n != edge->callee && n->analyzed && n->count.ipa ().initialized_p ())
2096 update_callee_keys (&edge_heap, n, updated_nodes);
2097 bitmap_clear (updated_nodes);
2099 if (dump_enabled_p ())
2101 ipa_fn_summary *s = ipa_fn_summaries->get (edge->caller);
2103 /* dump_printf can't handle %+i. */
2104 char buf_net_change[100];
2105 snprintf (buf_net_change, sizeof buf_net_change, "%+i",
2106 overall_size - old_size);
2108 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, edge->call_stmt,
2109 " Inlined %C into %C which now has time %f and "
2110 "size %i, net change of %s.\n",
2111 edge->callee, edge->caller,
2112 s->time.to_double (), s->size, buf_net_change);
2114 if (min_size > overall_size)
2116 min_size = overall_size;
2117 max_size = compute_max_insns (min_size);
2119 if (dump_file)
2120 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
2124 free_growth_caches ();
2125 if (dump_enabled_p ())
2126 dump_printf (MSG_NOTE,
2127 "Unit growth for small function inlining: %i->%i (%i%%)\n",
2128 initial_size, overall_size,
2129 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
2130 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
2133 /* Flatten NODE. Performed both during early inlining and
2134 at IPA inlining time. */
2136 static void
2137 flatten_function (struct cgraph_node *node, bool early)
2139 struct cgraph_edge *e;
2141 /* We shouldn't be called recursively when we are being processed. */
2142 gcc_assert (node->aux == NULL);
2144 node->aux = (void *) node;
2146 for (e = node->callees; e; e = e->next_callee)
2148 struct cgraph_node *orig_callee;
2149 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2151 /* We've hit cycle? It is time to give up. */
2152 if (callee->aux)
2154 if (dump_enabled_p ())
2155 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2156 "Not inlining %C into %C to avoid cycle.\n",
2157 callee, e->caller);
2158 if (cgraph_inline_failed_type (e->inline_failed) != CIF_FINAL_ERROR)
2159 e->inline_failed = CIF_RECURSIVE_INLINING;
2160 continue;
2163 /* When the edge is already inlined, we just need to recurse into
2164 it in order to fully flatten the leaves. */
2165 if (!e->inline_failed)
2167 flatten_function (callee, early);
2168 continue;
2171 /* Flatten attribute needs to be processed during late inlining. For
2172 extra code quality we however do flattening during early optimization,
2173 too. */
2174 if (!early
2175 ? !can_inline_edge_p (e, true)
2176 && !can_inline_edge_by_limits_p (e, true)
2177 : !can_early_inline_edge_p (e))
2178 continue;
2180 if (e->recursive_p ())
2182 if (dump_enabled_p ())
2183 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2184 "Not inlining: recursive call.\n");
2185 continue;
2188 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
2189 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
2191 if (dump_enabled_p ())
2192 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2193 "Not inlining: SSA form does not match.\n");
2194 continue;
2197 /* Inline the edge and flatten the inline clone. Avoid
2198 recursing through the original node if the node was cloned. */
2199 if (dump_enabled_p ())
2200 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, e->call_stmt,
2201 " Inlining %C into %C.\n",
2202 callee, e->caller);
2203 orig_callee = callee;
2204 inline_call (e, true, NULL, NULL, false);
2205 if (e->callee != orig_callee)
2206 orig_callee->aux = (void *) node;
2207 flatten_function (e->callee, early);
2208 if (e->callee != orig_callee)
2209 orig_callee->aux = NULL;
2212 node->aux = NULL;
2213 if (!node->global.inlined_to)
2214 ipa_update_overall_fn_summary (node);
2217 /* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
2218 DATA points to number of calls originally found so we avoid infinite
2219 recursion. */
2221 static bool
2222 inline_to_all_callers_1 (struct cgraph_node *node, void *data,
2223 hash_set<cgraph_node *> *callers)
2225 int *num_calls = (int *)data;
2226 bool callee_removed = false;
2228 while (node->callers && !node->global.inlined_to)
2230 struct cgraph_node *caller = node->callers->caller;
2232 if (!can_inline_edge_p (node->callers, true)
2233 || !can_inline_edge_by_limits_p (node->callers, true)
2234 || node->callers->recursive_p ())
2236 if (dump_file)
2237 fprintf (dump_file, "Uninlinable call found; giving up.\n");
2238 *num_calls = 0;
2239 return false;
2242 if (dump_file)
2244 cgraph_node *ultimate = node->ultimate_alias_target ();
2245 fprintf (dump_file,
2246 "\nInlining %s size %i.\n",
2247 ultimate->name (),
2248 ipa_fn_summaries->get (ultimate)->size);
2249 fprintf (dump_file,
2250 " Called once from %s %i insns.\n",
2251 node->callers->caller->name (),
2252 ipa_fn_summaries->get (node->callers->caller)->size);
2255 /* Remember which callers we inlined to, delaying updating the
2256 overall summary. */
2257 callers->add (node->callers->caller);
2258 inline_call (node->callers, true, NULL, NULL, false, &callee_removed);
2259 if (dump_file)
2260 fprintf (dump_file,
2261 " Inlined into %s which now has %i size\n",
2262 caller->name (),
2263 ipa_fn_summaries->get (caller)->size);
2264 if (!(*num_calls)--)
2266 if (dump_file)
2267 fprintf (dump_file, "New calls found; giving up.\n");
2268 return callee_removed;
2270 if (callee_removed)
2271 return true;
2273 return false;
2276 /* Wrapper around inline_to_all_callers_1 doing delayed overall summary
2277 update. */
2279 static bool
2280 inline_to_all_callers (struct cgraph_node *node, void *data)
2282 hash_set<cgraph_node *> callers;
2283 bool res = inline_to_all_callers_1 (node, data, &callers);
2284 /* Perform the delayed update of the overall summary of all callers
2285 processed. This avoids quadratic behavior in the cases where
2286 we have a lot of calls to the same function. */
2287 for (hash_set<cgraph_node *>::iterator i = callers.begin ();
2288 i != callers.end (); ++i)
2289 ipa_update_overall_fn_summary (*i);
2290 return res;
2293 /* Output overall time estimate. */
2294 static void
2295 dump_overall_stats (void)
2297 sreal sum_weighted = 0, sum = 0;
2298 struct cgraph_node *node;
2300 FOR_EACH_DEFINED_FUNCTION (node)
2301 if (!node->global.inlined_to
2302 && !node->alias)
2304 ipa_fn_summary *s = ipa_fn_summaries->get (node);
2305 if (s != NULL)
2307 sum += s->time;
2308 if (node->count.ipa ().initialized_p ())
2309 sum_weighted += s->time * node->count.ipa ().to_gcov_type ();
2312 fprintf (dump_file, "Overall time estimate: "
2313 "%f weighted by profile: "
2314 "%f\n", sum.to_double (), sum_weighted.to_double ());
2317 /* Output some useful stats about inlining. */
2319 static void
2320 dump_inline_stats (void)
2322 int64_t inlined_cnt = 0, inlined_indir_cnt = 0;
2323 int64_t inlined_virt_cnt = 0, inlined_virt_indir_cnt = 0;
2324 int64_t noninlined_cnt = 0, noninlined_indir_cnt = 0;
2325 int64_t noninlined_virt_cnt = 0, noninlined_virt_indir_cnt = 0;
2326 int64_t inlined_speculative = 0, inlined_speculative_ply = 0;
2327 int64_t indirect_poly_cnt = 0, indirect_cnt = 0;
2328 int64_t reason[CIF_N_REASONS][2];
2329 sreal reason_freq[CIF_N_REASONS];
2330 int i;
2331 struct cgraph_node *node;
2333 memset (reason, 0, sizeof (reason));
2334 for (i=0; i < CIF_N_REASONS; i++)
2335 reason_freq[i] = 0;
2336 FOR_EACH_DEFINED_FUNCTION (node)
2338 struct cgraph_edge *e;
2339 for (e = node->callees; e; e = e->next_callee)
2341 if (e->inline_failed)
2343 if (e->count.ipa ().initialized_p ())
2344 reason[(int) e->inline_failed][0] += e->count.ipa ().to_gcov_type ();
2345 reason_freq[(int) e->inline_failed] += e->sreal_frequency ();
2346 reason[(int) e->inline_failed][1] ++;
2347 if (DECL_VIRTUAL_P (e->callee->decl)
2348 && e->count.ipa ().initialized_p ())
2350 if (e->indirect_inlining_edge)
2351 noninlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
2352 else
2353 noninlined_virt_cnt += e->count.ipa ().to_gcov_type ();
2355 else if (e->count.ipa ().initialized_p ())
2357 if (e->indirect_inlining_edge)
2358 noninlined_indir_cnt += e->count.ipa ().to_gcov_type ();
2359 else
2360 noninlined_cnt += e->count.ipa ().to_gcov_type ();
2363 else if (e->count.ipa ().initialized_p ())
2365 if (e->speculative)
2367 if (DECL_VIRTUAL_P (e->callee->decl))
2368 inlined_speculative_ply += e->count.ipa ().to_gcov_type ();
2369 else
2370 inlined_speculative += e->count.ipa ().to_gcov_type ();
2372 else if (DECL_VIRTUAL_P (e->callee->decl))
2374 if (e->indirect_inlining_edge)
2375 inlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
2376 else
2377 inlined_virt_cnt += e->count.ipa ().to_gcov_type ();
2379 else
2381 if (e->indirect_inlining_edge)
2382 inlined_indir_cnt += e->count.ipa ().to_gcov_type ();
2383 else
2384 inlined_cnt += e->count.ipa ().to_gcov_type ();
2388 for (e = node->indirect_calls; e; e = e->next_callee)
2389 if (e->indirect_info->polymorphic
2390 & e->count.ipa ().initialized_p ())
2391 indirect_poly_cnt += e->count.ipa ().to_gcov_type ();
2392 else if (e->count.ipa ().initialized_p ())
2393 indirect_cnt += e->count.ipa ().to_gcov_type ();
2395 if (max_count.initialized_p ())
2397 fprintf (dump_file,
2398 "Inlined %" PRId64 " + speculative "
2399 "%" PRId64 " + speculative polymorphic "
2400 "%" PRId64 " + previously indirect "
2401 "%" PRId64 " + virtual "
2402 "%" PRId64 " + virtual and previously indirect "
2403 "%" PRId64 "\n" "Not inlined "
2404 "%" PRId64 " + previously indirect "
2405 "%" PRId64 " + virtual "
2406 "%" PRId64 " + virtual and previously indirect "
2407 "%" PRId64 " + stil indirect "
2408 "%" PRId64 " + still indirect polymorphic "
2409 "%" PRId64 "\n", inlined_cnt,
2410 inlined_speculative, inlined_speculative_ply,
2411 inlined_indir_cnt, inlined_virt_cnt, inlined_virt_indir_cnt,
2412 noninlined_cnt, noninlined_indir_cnt, noninlined_virt_cnt,
2413 noninlined_virt_indir_cnt, indirect_cnt, indirect_poly_cnt);
2414 fprintf (dump_file, "Removed speculations ");
2415 spec_rem.dump (dump_file);
2416 fprintf (dump_file, "\n");
2418 dump_overall_stats ();
2419 fprintf (dump_file, "\nWhy inlining failed?\n");
2420 for (i = 0; i < CIF_N_REASONS; i++)
2421 if (reason[i][1])
2422 fprintf (dump_file, "%-50s: %8i calls, %8f freq, %" PRId64" count\n",
2423 cgraph_inline_failed_string ((cgraph_inline_failed_t) i),
2424 (int) reason[i][1], reason_freq[i].to_double (), reason[i][0]);
2427 /* Called when node is removed. */
2429 static void
2430 flatten_remove_node_hook (struct cgraph_node *node, void *data)
2432 if (lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) == NULL)
2433 return;
2435 hash_set<struct cgraph_node *> *removed
2436 = (hash_set<struct cgraph_node *> *) data;
2437 removed->add (node);
2440 /* Decide on the inlining. We do so in the topological order to avoid
2441 expenses on updating data structures. */
2443 static unsigned int
2444 ipa_inline (void)
2446 struct cgraph_node *node;
2447 int nnodes;
2448 struct cgraph_node **order;
2449 int i, j;
2450 int cold;
2451 bool remove_functions = false;
2453 order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
2455 if (dump_file)
2456 ipa_dump_fn_summaries (dump_file);
2458 nnodes = ipa_reverse_postorder (order);
2459 spec_rem = profile_count::zero ();
2461 FOR_EACH_FUNCTION (node)
2463 node->aux = 0;
2465 /* Recompute the default reasons for inlining because they may have
2466 changed during merging. */
2467 if (in_lto_p)
2469 for (cgraph_edge *e = node->callees; e; e = e->next_callee)
2471 gcc_assert (e->inline_failed);
2472 initialize_inline_failed (e);
2474 for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
2475 initialize_inline_failed (e);
2479 if (dump_file)
2480 fprintf (dump_file, "\nFlattening functions:\n");
2482 /* First shrink order array, so that it only contains nodes with
2483 flatten attribute. */
2484 for (i = nnodes - 1, j = i; i >= 0; i--)
2486 node = order[i];
2487 if (lookup_attribute ("flatten",
2488 DECL_ATTRIBUTES (node->decl)) != NULL)
2489 order[j--] = order[i];
2492 /* After the above loop, order[j + 1] ... order[nnodes - 1] contain
2493 nodes with flatten attribute. If there is more than one such
2494 node, we need to register a node removal hook, as flatten_function
2495 could remove other nodes with flatten attribute. See PR82801. */
2496 struct cgraph_node_hook_list *node_removal_hook_holder = NULL;
2497 hash_set<struct cgraph_node *> *flatten_removed_nodes = NULL;
2498 if (j < nnodes - 2)
2500 flatten_removed_nodes = new hash_set<struct cgraph_node *>;
2501 node_removal_hook_holder
2502 = symtab->add_cgraph_removal_hook (&flatten_remove_node_hook,
2503 flatten_removed_nodes);
2506 /* In the first pass handle functions to be flattened. Do this with
2507 a priority so none of our later choices will make this impossible. */
2508 for (i = nnodes - 1; i > j; i--)
2510 node = order[i];
2511 if (flatten_removed_nodes
2512 && flatten_removed_nodes->contains (node))
2513 continue;
2515 /* Handle nodes to be flattened.
2516 Ideally when processing callees we stop inlining at the
2517 entry of cycles, possibly cloning that entry point and
2518 try to flatten itself turning it into a self-recursive
2519 function. */
2520 if (dump_file)
2521 fprintf (dump_file, "Flattening %s\n", node->name ());
2522 flatten_function (node, false);
2525 if (j < nnodes - 2)
2527 symtab->remove_cgraph_removal_hook (node_removal_hook_holder);
2528 delete flatten_removed_nodes;
2530 free (order);
2532 if (dump_file)
2533 dump_overall_stats ();
2535 inline_small_functions ();
2537 gcc_assert (symtab->state == IPA_SSA);
2538 symtab->state = IPA_SSA_AFTER_INLINING;
2539 /* Do first after-inlining removal. We want to remove all "stale" extern
2540 inline functions and virtual functions so we really know what is called
2541 once. */
2542 symtab->remove_unreachable_nodes (dump_file);
2544 /* Inline functions with a property that after inlining into all callers the
2545 code size will shrink because the out-of-line copy is eliminated.
2546 We do this regardless on the callee size as long as function growth limits
2547 are met. */
2548 if (dump_file)
2549 fprintf (dump_file,
2550 "\nDeciding on functions to be inlined into all callers and "
2551 "removing useless speculations:\n");
2553 /* Inlining one function called once has good chance of preventing
2554 inlining other function into the same callee. Ideally we should
2555 work in priority order, but probably inlining hot functions first
2556 is good cut without the extra pain of maintaining the queue.
2558 ??? this is not really fitting the bill perfectly: inlining function
2559 into callee often leads to better optimization of callee due to
2560 increased context for optimization.
2561 For example if main() function calls a function that outputs help
2562 and then function that does the main optmization, we should inline
2563 the second with priority even if both calls are cold by themselves.
2565 We probably want to implement new predicate replacing our use of
2566 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2567 to be hot. */
2568 for (cold = 0; cold <= 1; cold ++)
2570 FOR_EACH_DEFINED_FUNCTION (node)
2572 struct cgraph_edge *edge, *next;
2573 bool update=false;
2575 if (!opt_for_fn (node->decl, optimize)
2576 || !opt_for_fn (node->decl, flag_inline_functions_called_once))
2577 continue;
2579 for (edge = node->callees; edge; edge = next)
2581 next = edge->next_callee;
2582 if (edge->speculative && !speculation_useful_p (edge, false))
2584 if (edge->count.ipa ().initialized_p ())
2585 spec_rem += edge->count.ipa ();
2586 edge->resolve_speculation ();
2587 update = true;
2588 remove_functions = true;
2591 if (update)
2593 struct cgraph_node *where = node->global.inlined_to
2594 ? node->global.inlined_to : node;
2595 reset_edge_caches (where);
2596 ipa_update_overall_fn_summary (where);
2598 if (want_inline_function_to_all_callers_p (node, cold))
2600 int num_calls = 0;
2601 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
2602 true);
2603 while (node->call_for_symbol_and_aliases
2604 (inline_to_all_callers, &num_calls, true))
2606 remove_functions = true;
2611 /* Free ipa-prop structures if they are no longer needed. */
2612 ipa_free_all_structures_after_iinln ();
2614 if (dump_enabled_p ())
2615 dump_printf (MSG_NOTE,
2616 "\nInlined %i calls, eliminated %i functions\n\n",
2617 ncalls_inlined, nfunctions_inlined);
2618 if (dump_file)
2619 dump_inline_stats ();
2621 if (dump_file)
2622 ipa_dump_fn_summaries (dump_file);
2623 return remove_functions ? TODO_remove_functions : 0;
2626 /* Inline always-inline function calls in NODE. */
2628 static bool
2629 inline_always_inline_functions (struct cgraph_node *node)
2631 struct cgraph_edge *e;
2632 bool inlined = false;
2634 for (e = node->callees; e; e = e->next_callee)
2636 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2637 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
2638 continue;
2640 if (e->recursive_p ())
2642 if (dump_enabled_p ())
2643 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2644 " Not inlining recursive call to %C.\n",
2645 e->callee);
2646 e->inline_failed = CIF_RECURSIVE_INLINING;
2647 continue;
2650 if (!can_early_inline_edge_p (e))
2652 /* Set inlined to true if the callee is marked "always_inline" but
2653 is not inlinable. This will allow flagging an error later in
2654 expand_call_inline in tree-inline.c. */
2655 if (lookup_attribute ("always_inline",
2656 DECL_ATTRIBUTES (callee->decl)) != NULL)
2657 inlined = true;
2658 continue;
2661 if (dump_enabled_p ())
2662 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, e->call_stmt,
2663 " Inlining %C into %C (always_inline).\n",
2664 e->callee, e->caller);
2665 inline_call (e, true, NULL, NULL, false);
2666 inlined = true;
2668 if (inlined)
2669 ipa_update_overall_fn_summary (node);
2671 return inlined;
2674 /* Decide on the inlining. We do so in the topological order to avoid
2675 expenses on updating data structures. */
2677 static bool
2678 early_inline_small_functions (struct cgraph_node *node)
2680 struct cgraph_edge *e;
2681 bool inlined = false;
2683 for (e = node->callees; e; e = e->next_callee)
2685 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2687 /* We can enounter not-yet-analyzed function during
2688 early inlining on callgraphs with strongly
2689 connected components. */
2690 ipa_fn_summary *s = ipa_fn_summaries->get (callee);
2691 if (s == NULL || !s->inlinable || !e->inline_failed)
2692 continue;
2694 /* Do not consider functions not declared inline. */
2695 if (!DECL_DECLARED_INLINE_P (callee->decl)
2696 && !opt_for_fn (node->decl, flag_inline_small_functions)
2697 && !opt_for_fn (node->decl, flag_inline_functions))
2698 continue;
2700 if (dump_enabled_p ())
2701 dump_printf_loc (MSG_NOTE, e->call_stmt,
2702 "Considering inline candidate %C.\n",
2703 callee);
2705 if (!can_early_inline_edge_p (e))
2706 continue;
2708 if (e->recursive_p ())
2710 if (dump_enabled_p ())
2711 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2712 " Not inlining: recursive call.\n");
2713 continue;
2716 if (!want_early_inline_function_p (e))
2717 continue;
2719 if (dump_enabled_p ())
2720 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, e->call_stmt,
2721 " Inlining %C into %C.\n",
2722 callee, e->caller);
2723 inline_call (e, true, NULL, NULL, false);
2724 inlined = true;
2727 if (inlined)
2728 ipa_update_overall_fn_summary (node);
2730 return inlined;
2733 unsigned int
2734 early_inliner (function *fun)
2736 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2737 struct cgraph_edge *edge;
2738 unsigned int todo = 0;
2739 int iterations = 0;
2740 bool inlined = false;
2742 if (seen_error ())
2743 return 0;
2745 /* Do nothing if datastructures for ipa-inliner are already computed. This
2746 happens when some pass decides to construct new function and
2747 cgraph_add_new_function calls lowering passes and early optimization on
2748 it. This may confuse ourself when early inliner decide to inline call to
2749 function clone, because function clones don't have parameter list in
2750 ipa-prop matching their signature. */
2751 if (ipa_node_params_sum)
2752 return 0;
2754 if (flag_checking)
2755 node->verify ();
2756 node->remove_all_references ();
2758 /* Even when not optimizing or not inlining inline always-inline
2759 functions. */
2760 inlined = inline_always_inline_functions (node);
2762 if (!optimize
2763 || flag_no_inline
2764 || !flag_early_inlining
2765 /* Never inline regular functions into always-inline functions
2766 during incremental inlining. This sucks as functions calling
2767 always inline functions will get less optimized, but at the
2768 same time inlining of functions calling always inline
2769 function into an always inline function might introduce
2770 cycles of edges to be always inlined in the callgraph.
2772 We might want to be smarter and just avoid this type of inlining. */
2773 || (DECL_DISREGARD_INLINE_LIMITS (node->decl)
2774 && lookup_attribute ("always_inline",
2775 DECL_ATTRIBUTES (node->decl))))
2777 else if (lookup_attribute ("flatten",
2778 DECL_ATTRIBUTES (node->decl)) != NULL)
2780 /* When the function is marked to be flattened, recursively inline
2781 all calls in it. */
2782 if (dump_enabled_p ())
2783 dump_printf (MSG_OPTIMIZED_LOCATIONS,
2784 "Flattening %C\n", node);
2785 flatten_function (node, true);
2786 inlined = true;
2788 else
2790 /* If some always_inline functions was inlined, apply the changes.
2791 This way we will not account always inline into growth limits and
2792 moreover we will inline calls from always inlines that we skipped
2793 previously because of conditional above. */
2794 if (inlined)
2796 timevar_push (TV_INTEGRATION);
2797 todo |= optimize_inline_calls (current_function_decl);
2798 /* optimize_inline_calls call above might have introduced new
2799 statements that don't have inline parameters computed. */
2800 for (edge = node->callees; edge; edge = edge->next_callee)
2802 /* We can enounter not-yet-analyzed function during
2803 early inlining on callgraphs with strongly
2804 connected components. */
2805 ipa_call_summary *es = ipa_call_summaries->get_create (edge);
2806 es->call_stmt_size
2807 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2808 es->call_stmt_time
2809 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2811 ipa_update_overall_fn_summary (node);
2812 inlined = false;
2813 timevar_pop (TV_INTEGRATION);
2815 /* We iterate incremental inlining to get trivial cases of indirect
2816 inlining. */
2817 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
2818 && early_inline_small_functions (node))
2820 timevar_push (TV_INTEGRATION);
2821 todo |= optimize_inline_calls (current_function_decl);
2823 /* Technically we ought to recompute inline parameters so the new
2824 iteration of early inliner works as expected. We however have
2825 values approximately right and thus we only need to update edge
2826 info that might be cleared out for newly discovered edges. */
2827 for (edge = node->callees; edge; edge = edge->next_callee)
2829 /* We have no summary for new bound store calls yet. */
2830 ipa_call_summary *es = ipa_call_summaries->get_create (edge);
2831 es->call_stmt_size
2832 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2833 es->call_stmt_time
2834 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2836 if (edge->callee->decl
2837 && !gimple_check_call_matching_types (
2838 edge->call_stmt, edge->callee->decl, false))
2840 edge->inline_failed = CIF_MISMATCHED_ARGUMENTS;
2841 edge->call_stmt_cannot_inline_p = true;
2844 if (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS) - 1)
2845 ipa_update_overall_fn_summary (node);
2846 timevar_pop (TV_INTEGRATION);
2847 iterations++;
2848 inlined = false;
2850 if (dump_file)
2851 fprintf (dump_file, "Iterations: %i\n", iterations);
2854 if (inlined)
2856 timevar_push (TV_INTEGRATION);
2857 todo |= optimize_inline_calls (current_function_decl);
2858 timevar_pop (TV_INTEGRATION);
2861 fun->always_inline_functions_inlined = true;
2863 return todo;
2866 /* Do inlining of small functions. Doing so early helps profiling and other
2867 passes to be somewhat more effective and avoids some code duplication in
2868 later real inlining pass for testcases with very many function calls. */
2870 namespace {
2872 const pass_data pass_data_early_inline =
2874 GIMPLE_PASS, /* type */
2875 "einline", /* name */
2876 OPTGROUP_INLINE, /* optinfo_flags */
2877 TV_EARLY_INLINING, /* tv_id */
2878 PROP_ssa, /* properties_required */
2879 0, /* properties_provided */
2880 0, /* properties_destroyed */
2881 0, /* todo_flags_start */
2882 0, /* todo_flags_finish */
2885 class pass_early_inline : public gimple_opt_pass
2887 public:
2888 pass_early_inline (gcc::context *ctxt)
2889 : gimple_opt_pass (pass_data_early_inline, ctxt)
2892 /* opt_pass methods: */
2893 virtual unsigned int execute (function *);
2895 }; // class pass_early_inline
2897 unsigned int
2898 pass_early_inline::execute (function *fun)
2900 return early_inliner (fun);
2903 } // anon namespace
2905 gimple_opt_pass *
2906 make_pass_early_inline (gcc::context *ctxt)
2908 return new pass_early_inline (ctxt);
2911 namespace {
2913 const pass_data pass_data_ipa_inline =
2915 IPA_PASS, /* type */
2916 "inline", /* name */
2917 OPTGROUP_INLINE, /* optinfo_flags */
2918 TV_IPA_INLINING, /* tv_id */
2919 0, /* properties_required */
2920 0, /* properties_provided */
2921 0, /* properties_destroyed */
2922 0, /* todo_flags_start */
2923 ( TODO_dump_symtab ), /* todo_flags_finish */
2926 class pass_ipa_inline : public ipa_opt_pass_d
2928 public:
2929 pass_ipa_inline (gcc::context *ctxt)
2930 : ipa_opt_pass_d (pass_data_ipa_inline, ctxt,
2931 NULL, /* generate_summary */
2932 NULL, /* write_summary */
2933 NULL, /* read_summary */
2934 NULL, /* write_optimization_summary */
2935 NULL, /* read_optimization_summary */
2936 NULL, /* stmt_fixup */
2937 0, /* function_transform_todo_flags_start */
2938 inline_transform, /* function_transform */
2939 NULL) /* variable_transform */
2942 /* opt_pass methods: */
2943 virtual unsigned int execute (function *) { return ipa_inline (); }
2945 }; // class pass_ipa_inline
2947 } // anon namespace
2949 ipa_opt_pass_d *
2950 make_pass_ipa_inline (gcc::context *ctxt)
2952 return new pass_ipa_inline (ctxt);