xcoffout.h (xcoff_private_rodata_section_name): Declare.
[official-gcc.git] / gcc / doc / extend.texi
blob8e0deac26c33b080d9872727fa0a8a34d60051ae
1 c Copyright (C) 1988-2019 Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
6 @node C Extensions
7 @chapter Extensions to the C Language Family
8 @cindex extensions, C language
9 @cindex C language extensions
11 @opindex pedantic
12 GNU C provides several language features not found in ISO standard C@.
13 (The @option{-pedantic} option directs GCC to print a warning message if
14 any of these features is used.)  To test for the availability of these
15 features in conditional compilation, check for a predefined macro
16 @code{__GNUC__}, which is always defined under GCC@.
18 These extensions are available in C and Objective-C@.  Most of them are
19 also available in C++.  @xref{C++ Extensions,,Extensions to the
20 C++ Language}, for extensions that apply @emph{only} to C++.
22 Some features that are in ISO C99 but not C90 or C++ are also, as
23 extensions, accepted by GCC in C90 mode and in C++.
25 @menu
26 * Statement Exprs::     Putting statements and declarations inside expressions.
27 * Local Labels::        Labels local to a block.
28 * Labels as Values::    Getting pointers to labels, and computed gotos.
29 * Nested Functions::    Nested function in GNU C.
30 * Nonlocal Gotos::      Nonlocal gotos.
31 * Constructing Calls::  Dispatching a call to another function.
32 * Typeof::              @code{typeof}: referring to the type of an expression.
33 * Conditionals::        Omitting the middle operand of a @samp{?:} expression.
34 * __int128::            128-bit integers---@code{__int128}.
35 * Long Long::           Double-word integers---@code{long long int}.
36 * Complex::             Data types for complex numbers.
37 * Floating Types::      Additional Floating Types.
38 * Half-Precision::      Half-Precision Floating Point.
39 * Decimal Float::       Decimal Floating Types.
40 * Hex Floats::          Hexadecimal floating-point constants.
41 * Fixed-Point::         Fixed-Point Types.
42 * Named Address Spaces::Named address spaces.
43 * Zero Length::         Zero-length arrays.
44 * Empty Structures::    Structures with no members.
45 * Variable Length::     Arrays whose length is computed at run time.
46 * Variadic Macros::     Macros with a variable number of arguments.
47 * Escaped Newlines::    Slightly looser rules for escaped newlines.
48 * Subscripting::        Any array can be subscripted, even if not an lvalue.
49 * Pointer Arith::       Arithmetic on @code{void}-pointers and function pointers.
50 * Variadic Pointer Args::  Pointer arguments to variadic functions.
51 * Pointers to Arrays::  Pointers to arrays with qualifiers work as expected.
52 * Initializers::        Non-constant initializers.
53 * Compound Literals::   Compound literals give structures, unions
54                         or arrays as values.
55 * Designated Inits::    Labeling elements of initializers.
56 * Case Ranges::         `case 1 ... 9' and such.
57 * Cast to Union::       Casting to union type from any member of the union.
58 * Mixed Declarations::  Mixing declarations and code.
59 * Function Attributes:: Declaring that functions have no side effects,
60                         or that they can never return.
61 * Variable Attributes:: Specifying attributes of variables.
62 * Type Attributes::     Specifying attributes of types.
63 * Label Attributes::    Specifying attributes on labels.
64 * Enumerator Attributes:: Specifying attributes on enumerators.
65 * Statement Attributes:: Specifying attributes on statements.
66 * Attribute Syntax::    Formal syntax for attributes.
67 * Function Prototypes:: Prototype declarations and old-style definitions.
68 * C++ Comments::        C++ comments are recognized.
69 * Dollar Signs::        Dollar sign is allowed in identifiers.
70 * Character Escapes::   @samp{\e} stands for the character @key{ESC}.
71 * Alignment::           Determining the alignment of a function, type or variable.
72 * Inline::              Defining inline functions (as fast as macros).
73 * Volatiles::           What constitutes an access to a volatile object.
74 * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
75 * Alternate Keywords::  @code{__const__}, @code{__asm__}, etc., for header files.
76 * Incomplete Enums::    @code{enum foo;}, with details to follow.
77 * Function Names::      Printable strings which are the name of the current
78                         function.
79 * Return Address::      Getting the return or frame address of a function.
80 * Vector Extensions::   Using vector instructions through built-in functions.
81 * Offsetof::            Special syntax for implementing @code{offsetof}.
82 * __sync Builtins::     Legacy built-in functions for atomic memory access.
83 * __atomic Builtins::   Atomic built-in functions with memory model.
84 * Integer Overflow Builtins:: Built-in functions to perform arithmetics and
85                         arithmetic overflow checking.
86 * x86 specific memory model extensions for transactional memory:: x86 memory models.
87 * Object Size Checking:: Built-in functions for limited buffer overflow
88                         checking.
89 * Other Builtins::      Other built-in functions.
90 * Target Builtins::     Built-in functions specific to particular targets.
91 * Target Format Checks:: Format checks specific to particular targets.
92 * Pragmas::             Pragmas accepted by GCC.
93 * Unnamed Fields::      Unnamed struct/union fields within structs/unions.
94 * Thread-Local::        Per-thread variables.
95 * Binary constants::    Binary constants using the @samp{0b} prefix.
96 @end menu
98 @node Statement Exprs
99 @section Statements and Declarations in Expressions
100 @cindex statements inside expressions
101 @cindex declarations inside expressions
102 @cindex expressions containing statements
103 @cindex macros, statements in expressions
105 @c the above section title wrapped and causes an underfull hbox.. i
106 @c changed it from "within" to "in". --mew 4feb93
107 A compound statement enclosed in parentheses may appear as an expression
108 in GNU C@.  This allows you to use loops, switches, and local variables
109 within an expression.
111 Recall that a compound statement is a sequence of statements surrounded
112 by braces; in this construct, parentheses go around the braces.  For
113 example:
115 @smallexample
116 (@{ int y = foo (); int z;
117    if (y > 0) z = y;
118    else z = - y;
119    z; @})
120 @end smallexample
122 @noindent
123 is a valid (though slightly more complex than necessary) expression
124 for the absolute value of @code{foo ()}.
126 The last thing in the compound statement should be an expression
127 followed by a semicolon; the value of this subexpression serves as the
128 value of the entire construct.  (If you use some other kind of statement
129 last within the braces, the construct has type @code{void}, and thus
130 effectively no value.)
132 This feature is especially useful in making macro definitions ``safe'' (so
133 that they evaluate each operand exactly once).  For example, the
134 ``maximum'' function is commonly defined as a macro in standard C as
135 follows:
137 @smallexample
138 #define max(a,b) ((a) > (b) ? (a) : (b))
139 @end smallexample
141 @noindent
142 @cindex side effects, macro argument
143 But this definition computes either @var{a} or @var{b} twice, with bad
144 results if the operand has side effects.  In GNU C, if you know the
145 type of the operands (here taken as @code{int}), you can define
146 the macro safely as follows:
148 @smallexample
149 #define maxint(a,b) \
150   (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
151 @end smallexample
153 Embedded statements are not allowed in constant expressions, such as
154 the value of an enumeration constant, the width of a bit-field, or
155 the initial value of a static variable.
157 If you don't know the type of the operand, you can still do this, but you
158 must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
160 In G++, the result value of a statement expression undergoes array and
161 function pointer decay, and is returned by value to the enclosing
162 expression.  For instance, if @code{A} is a class, then
164 @smallexample
165         A a;
167         (@{a;@}).Foo ()
168 @end smallexample
170 @noindent
171 constructs a temporary @code{A} object to hold the result of the
172 statement expression, and that is used to invoke @code{Foo}.
173 Therefore the @code{this} pointer observed by @code{Foo} is not the
174 address of @code{a}.
176 In a statement expression, any temporaries created within a statement
177 are destroyed at that statement's end.  This makes statement
178 expressions inside macros slightly different from function calls.  In
179 the latter case temporaries introduced during argument evaluation are
180 destroyed at the end of the statement that includes the function
181 call.  In the statement expression case they are destroyed during
182 the statement expression.  For instance,
184 @smallexample
185 #define macro(a)  (@{__typeof__(a) b = (a); b + 3; @})
186 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
188 void foo ()
190   macro (X ());
191   function (X ());
193 @end smallexample
195 @noindent
196 has different places where temporaries are destroyed.  For the
197 @code{macro} case, the temporary @code{X} is destroyed just after
198 the initialization of @code{b}.  In the @code{function} case that
199 temporary is destroyed when the function returns.
201 These considerations mean that it is probably a bad idea to use
202 statement expressions of this form in header files that are designed to
203 work with C++.  (Note that some versions of the GNU C Library contained
204 header files using statement expressions that lead to precisely this
205 bug.)
207 Jumping into a statement expression with @code{goto} or using a
208 @code{switch} statement outside the statement expression with a
209 @code{case} or @code{default} label inside the statement expression is
210 not permitted.  Jumping into a statement expression with a computed
211 @code{goto} (@pxref{Labels as Values}) has undefined behavior.
212 Jumping out of a statement expression is permitted, but if the
213 statement expression is part of a larger expression then it is
214 unspecified which other subexpressions of that expression have been
215 evaluated except where the language definition requires certain
216 subexpressions to be evaluated before or after the statement
217 expression.  A @code{break} or @code{continue} statement inside of
218 a statement expression used in @code{while}, @code{do} or @code{for}
219 loop or @code{switch} statement condition
220 or @code{for} statement init or increment expressions jumps to an
221 outer loop or @code{switch} statement if any (otherwise it is an error),
222 rather than to the loop or @code{switch} statement in whose condition
223 or init or increment expression it appears.
224 In any case, as with a function call, the evaluation of a
225 statement expression is not interleaved with the evaluation of other
226 parts of the containing expression.  For example,
228 @smallexample
229   foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
230 @end smallexample
232 @noindent
233 calls @code{foo} and @code{bar1} and does not call @code{baz} but
234 may or may not call @code{bar2}.  If @code{bar2} is called, it is
235 called after @code{foo} and before @code{bar1}.
237 @node Local Labels
238 @section Locally Declared Labels
239 @cindex local labels
240 @cindex macros, local labels
242 GCC allows you to declare @dfn{local labels} in any nested block
243 scope.  A local label is just like an ordinary label, but you can
244 only reference it (with a @code{goto} statement, or by taking its
245 address) within the block in which it is declared.
247 A local label declaration looks like this:
249 @smallexample
250 __label__ @var{label};
251 @end smallexample
253 @noindent
256 @smallexample
257 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
258 @end smallexample
260 Local label declarations must come at the beginning of the block,
261 before any ordinary declarations or statements.
263 The label declaration defines the label @emph{name}, but does not define
264 the label itself.  You must do this in the usual way, with
265 @code{@var{label}:}, within the statements of the statement expression.
267 The local label feature is useful for complex macros.  If a macro
268 contains nested loops, a @code{goto} can be useful for breaking out of
269 them.  However, an ordinary label whose scope is the whole function
270 cannot be used: if the macro can be expanded several times in one
271 function, the label is multiply defined in that function.  A
272 local label avoids this problem.  For example:
274 @smallexample
275 #define SEARCH(value, array, target)              \
276 do @{                                              \
277   __label__ found;                                \
278   typeof (target) _SEARCH_target = (target);      \
279   typeof (*(array)) *_SEARCH_array = (array);     \
280   int i, j;                                       \
281   int value;                                      \
282   for (i = 0; i < max; i++)                       \
283     for (j = 0; j < max; j++)                     \
284       if (_SEARCH_array[i][j] == _SEARCH_target)  \
285         @{ (value) = i; goto found; @}              \
286   (value) = -1;                                   \
287  found:;                                          \
288 @} while (0)
289 @end smallexample
291 This could also be written using a statement expression:
293 @smallexample
294 #define SEARCH(array, target)                     \
295 (@{                                                \
296   __label__ found;                                \
297   typeof (target) _SEARCH_target = (target);      \
298   typeof (*(array)) *_SEARCH_array = (array);     \
299   int i, j;                                       \
300   int value;                                      \
301   for (i = 0; i < max; i++)                       \
302     for (j = 0; j < max; j++)                     \
303       if (_SEARCH_array[i][j] == _SEARCH_target)  \
304         @{ value = i; goto found; @}                \
305   value = -1;                                     \
306  found:                                           \
307   value;                                          \
309 @end smallexample
311 Local label declarations also make the labels they declare visible to
312 nested functions, if there are any.  @xref{Nested Functions}, for details.
314 @node Labels as Values
315 @section Labels as Values
316 @cindex labels as values
317 @cindex computed gotos
318 @cindex goto with computed label
319 @cindex address of a label
321 You can get the address of a label defined in the current function
322 (or a containing function) with the unary operator @samp{&&}.  The
323 value has type @code{void *}.  This value is a constant and can be used
324 wherever a constant of that type is valid.  For example:
326 @smallexample
327 void *ptr;
328 /* @r{@dots{}} */
329 ptr = &&foo;
330 @end smallexample
332 To use these values, you need to be able to jump to one.  This is done
333 with the computed goto statement@footnote{The analogous feature in
334 Fortran is called an assigned goto, but that name seems inappropriate in
335 C, where one can do more than simply store label addresses in label
336 variables.}, @code{goto *@var{exp};}.  For example,
338 @smallexample
339 goto *ptr;
340 @end smallexample
342 @noindent
343 Any expression of type @code{void *} is allowed.
345 One way of using these constants is in initializing a static array that
346 serves as a jump table:
348 @smallexample
349 static void *array[] = @{ &&foo, &&bar, &&hack @};
350 @end smallexample
352 @noindent
353 Then you can select a label with indexing, like this:
355 @smallexample
356 goto *array[i];
357 @end smallexample
359 @noindent
360 Note that this does not check whether the subscript is in bounds---array
361 indexing in C never does that.
363 Such an array of label values serves a purpose much like that of the
364 @code{switch} statement.  The @code{switch} statement is cleaner, so
365 use that rather than an array unless the problem does not fit a
366 @code{switch} statement very well.
368 Another use of label values is in an interpreter for threaded code.
369 The labels within the interpreter function can be stored in the
370 threaded code for super-fast dispatching.
372 You may not use this mechanism to jump to code in a different function.
373 If you do that, totally unpredictable things happen.  The best way to
374 avoid this is to store the label address only in automatic variables and
375 never pass it as an argument.
377 An alternate way to write the above example is
379 @smallexample
380 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
381                              &&hack - &&foo @};
382 goto *(&&foo + array[i]);
383 @end smallexample
385 @noindent
386 This is more friendly to code living in shared libraries, as it reduces
387 the number of dynamic relocations that are needed, and by consequence,
388 allows the data to be read-only.
389 This alternative with label differences is not supported for the AVR target,
390 please use the first approach for AVR programs.
392 The @code{&&foo} expressions for the same label might have different
393 values if the containing function is inlined or cloned.  If a program
394 relies on them being always the same,
395 @code{__attribute__((__noinline__,__noclone__))} should be used to
396 prevent inlining and cloning.  If @code{&&foo} is used in a static
397 variable initializer, inlining and cloning is forbidden.
399 @node Nested Functions
400 @section Nested Functions
401 @cindex nested functions
402 @cindex downward funargs
403 @cindex thunks
405 A @dfn{nested function} is a function defined inside another function.
406 Nested functions are supported as an extension in GNU C, but are not
407 supported by GNU C++.
409 The nested function's name is local to the block where it is defined.
410 For example, here we define a nested function named @code{square}, and
411 call it twice:
413 @smallexample
414 @group
415 foo (double a, double b)
417   double square (double z) @{ return z * z; @}
419   return square (a) + square (b);
421 @end group
422 @end smallexample
424 The nested function can access all the variables of the containing
425 function that are visible at the point of its definition.  This is
426 called @dfn{lexical scoping}.  For example, here we show a nested
427 function which uses an inherited variable named @code{offset}:
429 @smallexample
430 @group
431 bar (int *array, int offset, int size)
433   int access (int *array, int index)
434     @{ return array[index + offset]; @}
435   int i;
436   /* @r{@dots{}} */
437   for (i = 0; i < size; i++)
438     /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
440 @end group
441 @end smallexample
443 Nested function definitions are permitted within functions in the places
444 where variable definitions are allowed; that is, in any block, mixed
445 with the other declarations and statements in the block.
447 It is possible to call the nested function from outside the scope of its
448 name by storing its address or passing the address to another function:
450 @smallexample
451 hack (int *array, int size)
453   void store (int index, int value)
454     @{ array[index] = value; @}
456   intermediate (store, size);
458 @end smallexample
460 Here, the function @code{intermediate} receives the address of
461 @code{store} as an argument.  If @code{intermediate} calls @code{store},
462 the arguments given to @code{store} are used to store into @code{array}.
463 But this technique works only so long as the containing function
464 (@code{hack}, in this example) does not exit.
466 If you try to call the nested function through its address after the
467 containing function exits, all hell breaks loose.  If you try
468 to call it after a containing scope level exits, and if it refers
469 to some of the variables that are no longer in scope, you may be lucky,
470 but it's not wise to take the risk.  If, however, the nested function
471 does not refer to anything that has gone out of scope, you should be
472 safe.
474 GCC implements taking the address of a nested function using a technique
475 called @dfn{trampolines}.  This technique was described in
476 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
477 C++ Conference Proceedings, October 17-21, 1988).
479 A nested function can jump to a label inherited from a containing
480 function, provided the label is explicitly declared in the containing
481 function (@pxref{Local Labels}).  Such a jump returns instantly to the
482 containing function, exiting the nested function that did the
483 @code{goto} and any intermediate functions as well.  Here is an example:
485 @smallexample
486 @group
487 bar (int *array, int offset, int size)
489   __label__ failure;
490   int access (int *array, int index)
491     @{
492       if (index > size)
493         goto failure;
494       return array[index + offset];
495     @}
496   int i;
497   /* @r{@dots{}} */
498   for (i = 0; i < size; i++)
499     /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
500   /* @r{@dots{}} */
501   return 0;
503  /* @r{Control comes here from @code{access}
504     if it detects an error.}  */
505  failure:
506   return -1;
508 @end group
509 @end smallexample
511 A nested function always has no linkage.  Declaring one with
512 @code{extern} or @code{static} is erroneous.  If you need to declare the nested function
513 before its definition, use @code{auto} (which is otherwise meaningless
514 for function declarations).
516 @smallexample
517 bar (int *array, int offset, int size)
519   __label__ failure;
520   auto int access (int *, int);
521   /* @r{@dots{}} */
522   int access (int *array, int index)
523     @{
524       if (index > size)
525         goto failure;
526       return array[index + offset];
527     @}
528   /* @r{@dots{}} */
530 @end smallexample
532 @node Nonlocal Gotos
533 @section Nonlocal Gotos
534 @cindex nonlocal gotos
536 GCC provides the built-in functions @code{__builtin_setjmp} and
537 @code{__builtin_longjmp} which are similar to, but not interchangeable
538 with, the C library functions @code{setjmp} and @code{longjmp}.  
539 The built-in versions are used internally by GCC's libraries
540 to implement exception handling on some targets.  You should use the 
541 standard C library functions declared in @code{<setjmp.h>} in user code
542 instead of the builtins.
544 The built-in versions of these functions use GCC's normal
545 mechanisms to save and restore registers using the stack on function
546 entry and exit.  The jump buffer argument @var{buf} holds only the
547 information needed to restore the stack frame, rather than the entire 
548 set of saved register values.  
550 An important caveat is that GCC arranges to save and restore only
551 those registers known to the specific architecture variant being
552 compiled for.  This can make @code{__builtin_setjmp} and
553 @code{__builtin_longjmp} more efficient than their library
554 counterparts in some cases, but it can also cause incorrect and
555 mysterious behavior when mixing with code that uses the full register
556 set.
558 You should declare the jump buffer argument @var{buf} to the
559 built-in functions as:
561 @smallexample
562 #include <stdint.h>
563 intptr_t @var{buf}[5];
564 @end smallexample
566 @deftypefn {Built-in Function} {int} __builtin_setjmp (intptr_t *@var{buf})
567 This function saves the current stack context in @var{buf}.  
568 @code{__builtin_setjmp} returns 0 when returning directly,
569 and 1 when returning from @code{__builtin_longjmp} using the same
570 @var{buf}.
571 @end deftypefn
573 @deftypefn {Built-in Function} {void} __builtin_longjmp (intptr_t *@var{buf}, int @var{val})
574 This function restores the stack context in @var{buf}, 
575 saved by a previous call to @code{__builtin_setjmp}.  After
576 @code{__builtin_longjmp} is finished, the program resumes execution as
577 if the matching @code{__builtin_setjmp} returns the value @var{val},
578 which must be 1.
580 Because @code{__builtin_longjmp} depends on the function return
581 mechanism to restore the stack context, it cannot be called
582 from the same function calling @code{__builtin_setjmp} to
583 initialize @var{buf}.  It can only be called from a function called
584 (directly or indirectly) from the function calling @code{__builtin_setjmp}.
585 @end deftypefn
587 @node Constructing Calls
588 @section Constructing Function Calls
589 @cindex constructing calls
590 @cindex forwarding calls
592 Using the built-in functions described below, you can record
593 the arguments a function received, and call another function
594 with the same arguments, without knowing the number or types
595 of the arguments.
597 You can also record the return value of that function call,
598 and later return that value, without knowing what data type
599 the function tried to return (as long as your caller expects
600 that data type).
602 However, these built-in functions may interact badly with some
603 sophisticated features or other extensions of the language.  It
604 is, therefore, not recommended to use them outside very simple
605 functions acting as mere forwarders for their arguments.
607 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
608 This built-in function returns a pointer to data
609 describing how to perform a call with the same arguments as are passed
610 to the current function.
612 The function saves the arg pointer register, structure value address,
613 and all registers that might be used to pass arguments to a function
614 into a block of memory allocated on the stack.  Then it returns the
615 address of that block.
616 @end deftypefn
618 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
619 This built-in function invokes @var{function}
620 with a copy of the parameters described by @var{arguments}
621 and @var{size}.
623 The value of @var{arguments} should be the value returned by
624 @code{__builtin_apply_args}.  The argument @var{size} specifies the size
625 of the stack argument data, in bytes.
627 This function returns a pointer to data describing
628 how to return whatever value is returned by @var{function}.  The data
629 is saved in a block of memory allocated on the stack.
631 It is not always simple to compute the proper value for @var{size}.  The
632 value is used by @code{__builtin_apply} to compute the amount of data
633 that should be pushed on the stack and copied from the incoming argument
634 area.
635 @end deftypefn
637 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
638 This built-in function returns the value described by @var{result} from
639 the containing function.  You should specify, for @var{result}, a value
640 returned by @code{__builtin_apply}.
641 @end deftypefn
643 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
644 This built-in function represents all anonymous arguments of an inline
645 function.  It can be used only in inline functions that are always
646 inlined, never compiled as a separate function, such as those using
647 @code{__attribute__ ((__always_inline__))} or
648 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
649 It must be only passed as last argument to some other function
650 with variable arguments.  This is useful for writing small wrapper
651 inlines for variable argument functions, when using preprocessor
652 macros is undesirable.  For example:
653 @smallexample
654 extern int myprintf (FILE *f, const char *format, ...);
655 extern inline __attribute__ ((__gnu_inline__)) int
656 myprintf (FILE *f, const char *format, ...)
658   int r = fprintf (f, "myprintf: ");
659   if (r < 0)
660     return r;
661   int s = fprintf (f, format, __builtin_va_arg_pack ());
662   if (s < 0)
663     return s;
664   return r + s;
666 @end smallexample
667 @end deftypefn
669 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
670 This built-in function returns the number of anonymous arguments of
671 an inline function.  It can be used only in inline functions that
672 are always inlined, never compiled as a separate function, such
673 as those using @code{__attribute__ ((__always_inline__))} or
674 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
675 For example following does link- or run-time checking of open
676 arguments for optimized code:
677 @smallexample
678 #ifdef __OPTIMIZE__
679 extern inline __attribute__((__gnu_inline__)) int
680 myopen (const char *path, int oflag, ...)
682   if (__builtin_va_arg_pack_len () > 1)
683     warn_open_too_many_arguments ();
685   if (__builtin_constant_p (oflag))
686     @{
687       if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
688         @{
689           warn_open_missing_mode ();
690           return __open_2 (path, oflag);
691         @}
692       return open (path, oflag, __builtin_va_arg_pack ());
693     @}
695   if (__builtin_va_arg_pack_len () < 1)
696     return __open_2 (path, oflag);
698   return open (path, oflag, __builtin_va_arg_pack ());
700 #endif
701 @end smallexample
702 @end deftypefn
704 @node Typeof
705 @section Referring to a Type with @code{typeof}
706 @findex typeof
707 @findex sizeof
708 @cindex macros, types of arguments
710 Another way to refer to the type of an expression is with @code{typeof}.
711 The syntax of using of this keyword looks like @code{sizeof}, but the
712 construct acts semantically like a type name defined with @code{typedef}.
714 There are two ways of writing the argument to @code{typeof}: with an
715 expression or with a type.  Here is an example with an expression:
717 @smallexample
718 typeof (x[0](1))
719 @end smallexample
721 @noindent
722 This assumes that @code{x} is an array of pointers to functions;
723 the type described is that of the values of the functions.
725 Here is an example with a typename as the argument:
727 @smallexample
728 typeof (int *)
729 @end smallexample
731 @noindent
732 Here the type described is that of pointers to @code{int}.
734 If you are writing a header file that must work when included in ISO C
735 programs, write @code{__typeof__} instead of @code{typeof}.
736 @xref{Alternate Keywords}.
738 A @code{typeof} construct can be used anywhere a typedef name can be
739 used.  For example, you can use it in a declaration, in a cast, or inside
740 of @code{sizeof} or @code{typeof}.
742 The operand of @code{typeof} is evaluated for its side effects if and
743 only if it is an expression of variably modified type or the name of
744 such a type.
746 @code{typeof} is often useful in conjunction with
747 statement expressions (@pxref{Statement Exprs}).
748 Here is how the two together can
749 be used to define a safe ``maximum'' macro which operates on any
750 arithmetic type and evaluates each of its arguments exactly once:
752 @smallexample
753 #define max(a,b) \
754   (@{ typeof (a) _a = (a); \
755       typeof (b) _b = (b); \
756     _a > _b ? _a : _b; @})
757 @end smallexample
759 @cindex underscores in variables in macros
760 @cindex @samp{_} in variables in macros
761 @cindex local variables in macros
762 @cindex variables, local, in macros
763 @cindex macros, local variables in
765 The reason for using names that start with underscores for the local
766 variables is to avoid conflicts with variable names that occur within the
767 expressions that are substituted for @code{a} and @code{b}.  Eventually we
768 hope to design a new form of declaration syntax that allows you to declare
769 variables whose scopes start only after their initializers; this will be a
770 more reliable way to prevent such conflicts.
772 @noindent
773 Some more examples of the use of @code{typeof}:
775 @itemize @bullet
776 @item
777 This declares @code{y} with the type of what @code{x} points to.
779 @smallexample
780 typeof (*x) y;
781 @end smallexample
783 @item
784 This declares @code{y} as an array of such values.
786 @smallexample
787 typeof (*x) y[4];
788 @end smallexample
790 @item
791 This declares @code{y} as an array of pointers to characters:
793 @smallexample
794 typeof (typeof (char *)[4]) y;
795 @end smallexample
797 @noindent
798 It is equivalent to the following traditional C declaration:
800 @smallexample
801 char *y[4];
802 @end smallexample
804 To see the meaning of the declaration using @code{typeof}, and why it
805 might be a useful way to write, rewrite it with these macros:
807 @smallexample
808 #define pointer(T)  typeof(T *)
809 #define array(T, N) typeof(T [N])
810 @end smallexample
812 @noindent
813 Now the declaration can be rewritten this way:
815 @smallexample
816 array (pointer (char), 4) y;
817 @end smallexample
819 @noindent
820 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
821 pointers to @code{char}.
822 @end itemize
824 In GNU C, but not GNU C++, you may also declare the type of a variable
825 as @code{__auto_type}.  In that case, the declaration must declare
826 only one variable, whose declarator must just be an identifier, the
827 declaration must be initialized, and the type of the variable is
828 determined by the initializer; the name of the variable is not in
829 scope until after the initializer.  (In C++, you should use C++11
830 @code{auto} for this purpose.)  Using @code{__auto_type}, the
831 ``maximum'' macro above could be written as:
833 @smallexample
834 #define max(a,b) \
835   (@{ __auto_type _a = (a); \
836       __auto_type _b = (b); \
837     _a > _b ? _a : _b; @})
838 @end smallexample
840 Using @code{__auto_type} instead of @code{typeof} has two advantages:
842 @itemize @bullet
843 @item Each argument to the macro appears only once in the expansion of
844 the macro.  This prevents the size of the macro expansion growing
845 exponentially when calls to such macros are nested inside arguments of
846 such macros.
848 @item If the argument to the macro has variably modified type, it is
849 evaluated only once when using @code{__auto_type}, but twice if
850 @code{typeof} is used.
851 @end itemize
853 @node Conditionals
854 @section Conditionals with Omitted Operands
855 @cindex conditional expressions, extensions
856 @cindex omitted middle-operands
857 @cindex middle-operands, omitted
858 @cindex extensions, @code{?:}
859 @cindex @code{?:} extensions
861 The middle operand in a conditional expression may be omitted.  Then
862 if the first operand is nonzero, its value is the value of the conditional
863 expression.
865 Therefore, the expression
867 @smallexample
868 x ? : y
869 @end smallexample
871 @noindent
872 has the value of @code{x} if that is nonzero; otherwise, the value of
873 @code{y}.
875 This example is perfectly equivalent to
877 @smallexample
878 x ? x : y
879 @end smallexample
881 @cindex side effect in @code{?:}
882 @cindex @code{?:} side effect
883 @noindent
884 In this simple case, the ability to omit the middle operand is not
885 especially useful.  When it becomes useful is when the first operand does,
886 or may (if it is a macro argument), contain a side effect.  Then repeating
887 the operand in the middle would perform the side effect twice.  Omitting
888 the middle operand uses the value already computed without the undesirable
889 effects of recomputing it.
891 @node __int128
892 @section 128-bit Integers
893 @cindex @code{__int128} data types
895 As an extension the integer scalar type @code{__int128} is supported for
896 targets which have an integer mode wide enough to hold 128 bits.
897 Simply write @code{__int128} for a signed 128-bit integer, or
898 @code{unsigned __int128} for an unsigned 128-bit integer.  There is no
899 support in GCC for expressing an integer constant of type @code{__int128}
900 for targets with @code{long long} integer less than 128 bits wide.
902 @node Long Long
903 @section Double-Word Integers
904 @cindex @code{long long} data types
905 @cindex double-word arithmetic
906 @cindex multiprecision arithmetic
907 @cindex @code{LL} integer suffix
908 @cindex @code{ULL} integer suffix
910 ISO C99 and ISO C++11 support data types for integers that are at least
911 64 bits wide, and as an extension GCC supports them in C90 and C++98 modes.
912 Simply write @code{long long int} for a signed integer, or
913 @code{unsigned long long int} for an unsigned integer.  To make an
914 integer constant of type @code{long long int}, add the suffix @samp{LL}
915 to the integer.  To make an integer constant of type @code{unsigned long
916 long int}, add the suffix @samp{ULL} to the integer.
918 You can use these types in arithmetic like any other integer types.
919 Addition, subtraction, and bitwise boolean operations on these types
920 are open-coded on all types of machines.  Multiplication is open-coded
921 if the machine supports a fullword-to-doubleword widening multiply
922 instruction.  Division and shifts are open-coded only on machines that
923 provide special support.  The operations that are not open-coded use
924 special library routines that come with GCC@.
926 There may be pitfalls when you use @code{long long} types for function
927 arguments without function prototypes.  If a function
928 expects type @code{int} for its argument, and you pass a value of type
929 @code{long long int}, confusion results because the caller and the
930 subroutine disagree about the number of bytes for the argument.
931 Likewise, if the function expects @code{long long int} and you pass
932 @code{int}.  The best way to avoid such problems is to use prototypes.
934 @node Complex
935 @section Complex Numbers
936 @cindex complex numbers
937 @cindex @code{_Complex} keyword
938 @cindex @code{__complex__} keyword
940 ISO C99 supports complex floating data types, and as an extension GCC
941 supports them in C90 mode and in C++.  GCC also supports complex integer data
942 types which are not part of ISO C99.  You can declare complex types
943 using the keyword @code{_Complex}.  As an extension, the older GNU
944 keyword @code{__complex__} is also supported.
946 For example, @samp{_Complex double x;} declares @code{x} as a
947 variable whose real part and imaginary part are both of type
948 @code{double}.  @samp{_Complex short int y;} declares @code{y} to
949 have real and imaginary parts of type @code{short int}; this is not
950 likely to be useful, but it shows that the set of complex types is
951 complete.
953 To write a constant with a complex data type, use the suffix @samp{i} or
954 @samp{j} (either one; they are equivalent).  For example, @code{2.5fi}
955 has type @code{_Complex float} and @code{3i} has type
956 @code{_Complex int}.  Such a constant always has a pure imaginary
957 value, but you can form any complex value you like by adding one to a
958 real constant.  This is a GNU extension; if you have an ISO C99
959 conforming C library (such as the GNU C Library), and want to construct complex
960 constants of floating type, you should include @code{<complex.h>} and
961 use the macros @code{I} or @code{_Complex_I} instead.
963 The ISO C++14 library also defines the @samp{i} suffix, so C++14 code
964 that includes the @samp{<complex>} header cannot use @samp{i} for the
965 GNU extension.  The @samp{j} suffix still has the GNU meaning.
967 @cindex @code{__real__} keyword
968 @cindex @code{__imag__} keyword
969 To extract the real part of a complex-valued expression @var{exp}, write
970 @code{__real__ @var{exp}}.  Likewise, use @code{__imag__} to
971 extract the imaginary part.  This is a GNU extension; for values of
972 floating type, you should use the ISO C99 functions @code{crealf},
973 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
974 @code{cimagl}, declared in @code{<complex.h>} and also provided as
975 built-in functions by GCC@.
977 @cindex complex conjugation
978 The operator @samp{~} performs complex conjugation when used on a value
979 with a complex type.  This is a GNU extension; for values of
980 floating type, you should use the ISO C99 functions @code{conjf},
981 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
982 provided as built-in functions by GCC@.
984 GCC can allocate complex automatic variables in a noncontiguous
985 fashion; it's even possible for the real part to be in a register while
986 the imaginary part is on the stack (or vice versa).  Only the DWARF
987 debug info format can represent this, so use of DWARF is recommended.
988 If you are using the stabs debug info format, GCC describes a noncontiguous
989 complex variable as if it were two separate variables of noncomplex type.
990 If the variable's actual name is @code{foo}, the two fictitious
991 variables are named @code{foo$real} and @code{foo$imag}.  You can
992 examine and set these two fictitious variables with your debugger.
994 @node Floating Types
995 @section Additional Floating Types
996 @cindex additional floating types
997 @cindex @code{_Float@var{n}} data types
998 @cindex @code{_Float@var{n}x} data types
999 @cindex @code{__float80} data type
1000 @cindex @code{__float128} data type
1001 @cindex @code{__ibm128} data type
1002 @cindex @code{w} floating point suffix
1003 @cindex @code{q} floating point suffix
1004 @cindex @code{W} floating point suffix
1005 @cindex @code{Q} floating point suffix
1007 ISO/IEC TS 18661-3:2015 defines C support for additional floating
1008 types @code{_Float@var{n}} and @code{_Float@var{n}x}, and GCC supports
1009 these type names; the set of types supported depends on the target
1010 architecture.  These types are not supported when compiling C++.
1011 Constants with these types use suffixes @code{f@var{n}} or
1012 @code{F@var{n}} and @code{f@var{n}x} or @code{F@var{n}x}.  These type
1013 names can be used together with @code{_Complex} to declare complex
1014 types.
1016 As an extension, GNU C and GNU C++ support additional floating
1017 types, which are not supported by all targets.
1018 @itemize @bullet
1019 @item @code{__float128} is available on i386, x86_64, IA-64, and
1020 hppa HP-UX, as well as on PowerPC GNU/Linux targets that enable
1021 the vector scalar (VSX) instruction set.  @code{__float128} supports
1022 the 128-bit floating type.  On i386, x86_64, PowerPC, and IA-64
1023 other than HP-UX, @code{__float128} is an alias for @code{_Float128}.
1024 On hppa and IA-64 HP-UX, @code{__float128} is an alias for @code{long
1025 double}.
1027 @item @code{__float80} is available on the i386, x86_64, and IA-64
1028 targets, and supports the 80-bit (@code{XFmode}) floating type.  It is
1029 an alias for the type name @code{_Float64x} on these targets.
1031 @item @code{__ibm128} is available on PowerPC targets, and provides
1032 access to the IBM extended double format which is the current format
1033 used for @code{long double}.  When @code{long double} transitions to
1034 @code{__float128} on PowerPC in the future, @code{__ibm128} will remain
1035 for use in conversions between the two types.
1036 @end itemize
1038 Support for these additional types includes the arithmetic operators:
1039 add, subtract, multiply, divide; unary arithmetic operators;
1040 relational operators; equality operators; and conversions to and from
1041 integer and other floating types.  Use a suffix @samp{w} or @samp{W}
1042 in a literal constant of type @code{__float80} or type
1043 @code{__ibm128}.  Use a suffix @samp{q} or @samp{Q} for @code{_float128}.
1045 In order to use @code{_Float128}, @code{__float128}, and @code{__ibm128}
1046 on PowerPC Linux systems, you must use the @option{-mfloat128} option. It is
1047 expected in future versions of GCC that @code{_Float128} and @code{__float128}
1048 will be enabled automatically.
1050 The @code{_Float128} type is supported on all systems where
1051 @code{__float128} is supported or where @code{long double} has the
1052 IEEE binary128 format.  The @code{_Float64x} type is supported on all
1053 systems where @code{__float128} is supported.  The @code{_Float32}
1054 type is supported on all systems supporting IEEE binary32; the
1055 @code{_Float64} and @code{_Float32x} types are supported on all systems
1056 supporting IEEE binary64.  The @code{_Float16} type is supported on AArch64
1057 systems by default, and on ARM systems when the IEEE format for 16-bit
1058 floating-point types is selected with @option{-mfp16-format=ieee}.
1059 GCC does not currently support @code{_Float128x} on any systems.
1061 On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
1062 types using the corresponding internal complex type, @code{XCmode} for
1063 @code{__float80} type and @code{TCmode} for @code{__float128} type:
1065 @smallexample
1066 typedef _Complex float __attribute__((mode(TC))) _Complex128;
1067 typedef _Complex float __attribute__((mode(XC))) _Complex80;
1068 @end smallexample
1070 On the PowerPC Linux VSX targets, you can declare complex types using
1071 the corresponding internal complex type, @code{KCmode} for
1072 @code{__float128} type and @code{ICmode} for @code{__ibm128} type:
1074 @smallexample
1075 typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
1076 typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
1077 @end smallexample
1079 @node Half-Precision
1080 @section Half-Precision Floating Point
1081 @cindex half-precision floating point
1082 @cindex @code{__fp16} data type
1084 On ARM and AArch64 targets, GCC supports half-precision (16-bit) floating
1085 point via the @code{__fp16} type defined in the ARM C Language Extensions.
1086 On ARM systems, you must enable this type explicitly with the
1087 @option{-mfp16-format} command-line option in order to use it.
1089 ARM targets support two incompatible representations for half-precision
1090 floating-point values.  You must choose one of the representations and
1091 use it consistently in your program.
1093 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
1094 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
1095 There are 11 bits of significand precision, approximately 3
1096 decimal digits.
1098 Specifying @option{-mfp16-format=alternative} selects the ARM
1099 alternative format.  This representation is similar to the IEEE
1100 format, but does not support infinities or NaNs.  Instead, the range
1101 of exponents is extended, so that this format can represent normalized
1102 values in the range of @math{2^{-14}} to 131008.
1104 The GCC port for AArch64 only supports the IEEE 754-2008 format, and does
1105 not require use of the @option{-mfp16-format} command-line option.
1107 The @code{__fp16} type may only be used as an argument to intrinsics defined
1108 in @code{<arm_fp16.h>}, or as a storage format.  For purposes of
1109 arithmetic and other operations, @code{__fp16} values in C or C++
1110 expressions are automatically promoted to @code{float}.
1112 The ARM target provides hardware support for conversions between
1113 @code{__fp16} and @code{float} values
1114 as an extension to VFP and NEON (Advanced SIMD), and from ARMv8-A provides
1115 hardware support for conversions between @code{__fp16} and @code{double}
1116 values.  GCC generates code using these hardware instructions if you
1117 compile with options to select an FPU that provides them;
1118 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
1119 in addition to the @option{-mfp16-format} option to select
1120 a half-precision format.
1122 Language-level support for the @code{__fp16} data type is
1123 independent of whether GCC generates code using hardware floating-point
1124 instructions.  In cases where hardware support is not specified, GCC
1125 implements conversions between @code{__fp16} and other types as library
1126 calls.
1128 It is recommended that portable code use the @code{_Float16} type defined
1129 by ISO/IEC TS 18661-3:2015.  @xref{Floating Types}.
1131 @node Decimal Float
1132 @section Decimal Floating Types
1133 @cindex decimal floating types
1134 @cindex @code{_Decimal32} data type
1135 @cindex @code{_Decimal64} data type
1136 @cindex @code{_Decimal128} data type
1137 @cindex @code{df} integer suffix
1138 @cindex @code{dd} integer suffix
1139 @cindex @code{dl} integer suffix
1140 @cindex @code{DF} integer suffix
1141 @cindex @code{DD} integer suffix
1142 @cindex @code{DL} integer suffix
1144 As an extension, GNU C supports decimal floating types as
1145 defined in the N1312 draft of ISO/IEC WDTR24732.  Support for decimal
1146 floating types in GCC will evolve as the draft technical report changes.
1147 Calling conventions for any target might also change.  Not all targets
1148 support decimal floating types.
1150 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1151 @code{_Decimal128}.  They use a radix of ten, unlike the floating types
1152 @code{float}, @code{double}, and @code{long double} whose radix is not
1153 specified by the C standard but is usually two.
1155 Support for decimal floating types includes the arithmetic operators
1156 add, subtract, multiply, divide; unary arithmetic operators;
1157 relational operators; equality operators; and conversions to and from
1158 integer and other floating types.  Use a suffix @samp{df} or
1159 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1160 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1161 @code{_Decimal128}.
1163 GCC support of decimal float as specified by the draft technical report
1164 is incomplete:
1166 @itemize @bullet
1167 @item
1168 When the value of a decimal floating type cannot be represented in the
1169 integer type to which it is being converted, the result is undefined
1170 rather than the result value specified by the draft technical report.
1172 @item
1173 GCC does not provide the C library functionality associated with
1174 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1175 @file{wchar.h}, which must come from a separate C library implementation.
1176 Because of this the GNU C compiler does not define macro
1177 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1178 the technical report.
1179 @end itemize
1181 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1182 are supported by the DWARF debug information format.
1184 @node Hex Floats
1185 @section Hex Floats
1186 @cindex hex floats
1188 ISO C99 and ISO C++17 support floating-point numbers written not only in
1189 the usual decimal notation, such as @code{1.55e1}, but also numbers such as
1190 @code{0x1.fp3} written in hexadecimal format.  As a GNU extension, GCC
1191 supports this in C90 mode (except in some cases when strictly
1192 conforming) and in C++98, C++11 and C++14 modes.  In that format the
1193 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1194 mandatory.  The exponent is a decimal number that indicates the power of
1195 2 by which the significant part is multiplied.  Thus @samp{0x1.f} is
1196 @tex
1197 $1 {15\over16}$,
1198 @end tex
1199 @ifnottex
1200 1 15/16,
1201 @end ifnottex
1202 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1203 is the same as @code{1.55e1}.
1205 Unlike for floating-point numbers in the decimal notation the exponent
1206 is always required in the hexadecimal notation.  Otherwise the compiler
1207 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}.  This
1208 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1209 extension for floating-point constants of type @code{float}.
1211 @node Fixed-Point
1212 @section Fixed-Point Types
1213 @cindex fixed-point types
1214 @cindex @code{_Fract} data type
1215 @cindex @code{_Accum} data type
1216 @cindex @code{_Sat} data type
1217 @cindex @code{hr} fixed-suffix
1218 @cindex @code{r} fixed-suffix
1219 @cindex @code{lr} fixed-suffix
1220 @cindex @code{llr} fixed-suffix
1221 @cindex @code{uhr} fixed-suffix
1222 @cindex @code{ur} fixed-suffix
1223 @cindex @code{ulr} fixed-suffix
1224 @cindex @code{ullr} fixed-suffix
1225 @cindex @code{hk} fixed-suffix
1226 @cindex @code{k} fixed-suffix
1227 @cindex @code{lk} fixed-suffix
1228 @cindex @code{llk} fixed-suffix
1229 @cindex @code{uhk} fixed-suffix
1230 @cindex @code{uk} fixed-suffix
1231 @cindex @code{ulk} fixed-suffix
1232 @cindex @code{ullk} fixed-suffix
1233 @cindex @code{HR} fixed-suffix
1234 @cindex @code{R} fixed-suffix
1235 @cindex @code{LR} fixed-suffix
1236 @cindex @code{LLR} fixed-suffix
1237 @cindex @code{UHR} fixed-suffix
1238 @cindex @code{UR} fixed-suffix
1239 @cindex @code{ULR} fixed-suffix
1240 @cindex @code{ULLR} fixed-suffix
1241 @cindex @code{HK} fixed-suffix
1242 @cindex @code{K} fixed-suffix
1243 @cindex @code{LK} fixed-suffix
1244 @cindex @code{LLK} fixed-suffix
1245 @cindex @code{UHK} fixed-suffix
1246 @cindex @code{UK} fixed-suffix
1247 @cindex @code{ULK} fixed-suffix
1248 @cindex @code{ULLK} fixed-suffix
1250 As an extension, GNU C supports fixed-point types as
1251 defined in the N1169 draft of ISO/IEC DTR 18037.  Support for fixed-point
1252 types in GCC will evolve as the draft technical report changes.
1253 Calling conventions for any target might also change.  Not all targets
1254 support fixed-point types.
1256 The fixed-point types are
1257 @code{short _Fract},
1258 @code{_Fract},
1259 @code{long _Fract},
1260 @code{long long _Fract},
1261 @code{unsigned short _Fract},
1262 @code{unsigned _Fract},
1263 @code{unsigned long _Fract},
1264 @code{unsigned long long _Fract},
1265 @code{_Sat short _Fract},
1266 @code{_Sat _Fract},
1267 @code{_Sat long _Fract},
1268 @code{_Sat long long _Fract},
1269 @code{_Sat unsigned short _Fract},
1270 @code{_Sat unsigned _Fract},
1271 @code{_Sat unsigned long _Fract},
1272 @code{_Sat unsigned long long _Fract},
1273 @code{short _Accum},
1274 @code{_Accum},
1275 @code{long _Accum},
1276 @code{long long _Accum},
1277 @code{unsigned short _Accum},
1278 @code{unsigned _Accum},
1279 @code{unsigned long _Accum},
1280 @code{unsigned long long _Accum},
1281 @code{_Sat short _Accum},
1282 @code{_Sat _Accum},
1283 @code{_Sat long _Accum},
1284 @code{_Sat long long _Accum},
1285 @code{_Sat unsigned short _Accum},
1286 @code{_Sat unsigned _Accum},
1287 @code{_Sat unsigned long _Accum},
1288 @code{_Sat unsigned long long _Accum}.
1290 Fixed-point data values contain fractional and optional integral parts.
1291 The format of fixed-point data varies and depends on the target machine.
1293 Support for fixed-point types includes:
1294 @itemize @bullet
1295 @item
1296 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1297 @item
1298 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1299 @item
1300 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1301 @item
1302 binary shift operators (@code{<<}, @code{>>})
1303 @item
1304 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1305 @item
1306 equality operators (@code{==}, @code{!=})
1307 @item
1308 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1309 @code{<<=}, @code{>>=})
1310 @item
1311 conversions to and from integer, floating-point, or fixed-point types
1312 @end itemize
1314 Use a suffix in a fixed-point literal constant:
1315 @itemize
1316 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1317 @code{_Sat short _Fract}
1318 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1319 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1320 @code{_Sat long _Fract}
1321 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1322 @code{_Sat long long _Fract}
1323 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1324 @code{_Sat unsigned short _Fract}
1325 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1326 @code{_Sat unsigned _Fract}
1327 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1328 @code{_Sat unsigned long _Fract}
1329 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1330 and @code{_Sat unsigned long long _Fract}
1331 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1332 @code{_Sat short _Accum}
1333 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1334 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1335 @code{_Sat long _Accum}
1336 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1337 @code{_Sat long long _Accum}
1338 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1339 @code{_Sat unsigned short _Accum}
1340 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1341 @code{_Sat unsigned _Accum}
1342 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1343 @code{_Sat unsigned long _Accum}
1344 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1345 and @code{_Sat unsigned long long _Accum}
1346 @end itemize
1348 GCC support of fixed-point types as specified by the draft technical report
1349 is incomplete:
1351 @itemize @bullet
1352 @item
1353 Pragmas to control overflow and rounding behaviors are not implemented.
1354 @end itemize
1356 Fixed-point types are supported by the DWARF debug information format.
1358 @node Named Address Spaces
1359 @section Named Address Spaces
1360 @cindex Named Address Spaces
1362 As an extension, GNU C supports named address spaces as
1363 defined in the N1275 draft of ISO/IEC DTR 18037.  Support for named
1364 address spaces in GCC will evolve as the draft technical report
1365 changes.  Calling conventions for any target might also change.  At
1366 present, only the AVR, SPU, M32C, RL78, and x86 targets support
1367 address spaces other than the generic address space.
1369 Address space identifiers may be used exactly like any other C type
1370 qualifier (e.g., @code{const} or @code{volatile}).  See the N1275
1371 document for more details.
1373 @anchor{AVR Named Address Spaces}
1374 @subsection AVR Named Address Spaces
1376 On the AVR target, there are several address spaces that can be used
1377 in order to put read-only data into the flash memory and access that
1378 data by means of the special instructions @code{LPM} or @code{ELPM}
1379 needed to read from flash.
1381 Devices belonging to @code{avrtiny} and @code{avrxmega3} can access
1382 flash memory by means of @code{LD*} instructions because the flash
1383 memory is mapped into the RAM address space.  There is @emph{no need}
1384 for language extensions like @code{__flash} or attribute
1385 @ref{AVR Variable Attributes,,@code{progmem}}.
1386 The default linker description files for these devices cater for that
1387 feature and @code{.rodata} stays in flash: The compiler just generates
1388 @code{LD*} instructions, and the linker script adds core specific
1389 offsets to all @code{.rodata} symbols: @code{0x4000} in the case of
1390 @code{avrtiny} and @code{0x8000} in the case of @code{avrxmega3}.
1391 See @ref{AVR Options} for a list of respective devices.
1393 For devices not in @code{avrtiny} or @code{avrxmega3},
1394 any data including read-only data is located in RAM (the generic
1395 address space) because flash memory is not visible in the RAM address
1396 space.  In order to locate read-only data in flash memory @emph{and}
1397 to generate the right instructions to access this data without
1398 using (inline) assembler code, special address spaces are needed.
1400 @table @code
1401 @item __flash
1402 @cindex @code{__flash} AVR Named Address Spaces
1403 The @code{__flash} qualifier locates data in the
1404 @code{.progmem.data} section. Data is read using the @code{LPM}
1405 instruction. Pointers to this address space are 16 bits wide.
1407 @item __flash1
1408 @itemx __flash2
1409 @itemx __flash3
1410 @itemx __flash4
1411 @itemx __flash5
1412 @cindex @code{__flash1} AVR Named Address Spaces
1413 @cindex @code{__flash2} AVR Named Address Spaces
1414 @cindex @code{__flash3} AVR Named Address Spaces
1415 @cindex @code{__flash4} AVR Named Address Spaces
1416 @cindex @code{__flash5} AVR Named Address Spaces
1417 These are 16-bit address spaces locating data in section
1418 @code{.progmem@var{N}.data} where @var{N} refers to
1419 address space @code{__flash@var{N}}.
1420 The compiler sets the @code{RAMPZ} segment register appropriately 
1421 before reading data by means of the @code{ELPM} instruction.
1423 @item __memx
1424 @cindex @code{__memx} AVR Named Address Spaces
1425 This is a 24-bit address space that linearizes flash and RAM:
1426 If the high bit of the address is set, data is read from
1427 RAM using the lower two bytes as RAM address.
1428 If the high bit of the address is clear, data is read from flash
1429 with @code{RAMPZ} set according to the high byte of the address.
1430 @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
1432 Objects in this address space are located in @code{.progmemx.data}.
1433 @end table
1435 @b{Example}
1437 @smallexample
1438 char my_read (const __flash char ** p)
1440     /* p is a pointer to RAM that points to a pointer to flash.
1441        The first indirection of p reads that flash pointer
1442        from RAM and the second indirection reads a char from this
1443        flash address.  */
1445     return **p;
1448 /* Locate array[] in flash memory */
1449 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1451 int i = 1;
1453 int main (void)
1455    /* Return 17 by reading from flash memory */
1456    return array[array[i]];
1458 @end smallexample
1460 @noindent
1461 For each named address space supported by avr-gcc there is an equally
1462 named but uppercase built-in macro defined. 
1463 The purpose is to facilitate testing if respective address space
1464 support is available or not:
1466 @smallexample
1467 #ifdef __FLASH
1468 const __flash int var = 1;
1470 int read_var (void)
1472     return var;
1474 #else
1475 #include <avr/pgmspace.h> /* From AVR-LibC */
1477 const int var PROGMEM = 1;
1479 int read_var (void)
1481     return (int) pgm_read_word (&var);
1483 #endif /* __FLASH */
1484 @end smallexample
1486 @noindent
1487 Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
1488 locates data in flash but
1489 accesses to these data read from generic address space, i.e.@:
1490 from RAM,
1491 so that you need special accessors like @code{pgm_read_byte}
1492 from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
1493 together with attribute @code{progmem}.
1495 @noindent
1496 @b{Limitations and caveats}
1498 @itemize
1499 @item
1500 Reading across the 64@tie{}KiB section boundary of
1501 the @code{__flash} or @code{__flash@var{N}} address spaces
1502 shows undefined behavior. The only address space that
1503 supports reading across the 64@tie{}KiB flash segment boundaries is
1504 @code{__memx}.
1506 @item
1507 If you use one of the @code{__flash@var{N}} address spaces
1508 you must arrange your linker script to locate the
1509 @code{.progmem@var{N}.data} sections according to your needs.
1511 @item
1512 Any data or pointers to the non-generic address spaces must
1513 be qualified as @code{const}, i.e.@: as read-only data.
1514 This still applies if the data in one of these address
1515 spaces like software version number or calibration lookup table are intended to
1516 be changed after load time by, say, a boot loader. In this case
1517 the right qualification is @code{const} @code{volatile} so that the compiler
1518 must not optimize away known values or insert them
1519 as immediates into operands of instructions.
1521 @item
1522 The following code initializes a variable @code{pfoo}
1523 located in static storage with a 24-bit address:
1524 @smallexample
1525 extern const __memx char foo;
1526 const __memx void *pfoo = &foo;
1527 @end smallexample
1529 @item
1530 On the reduced Tiny devices like ATtiny40, no address spaces are supported.
1531 Just use vanilla C / C++ code without overhead as outlined above.
1532 Attribute @code{progmem} is supported but works differently,
1533 see @ref{AVR Variable Attributes}.
1535 @end itemize
1537 @subsection M32C Named Address Spaces
1538 @cindex @code{__far} M32C Named Address Spaces
1540 On the M32C target, with the R8C and M16C CPU variants, variables
1541 qualified with @code{__far} are accessed using 32-bit addresses in
1542 order to access memory beyond the first 64@tie{}Ki bytes.  If
1543 @code{__far} is used with the M32CM or M32C CPU variants, it has no
1544 effect.
1546 @subsection RL78 Named Address Spaces
1547 @cindex @code{__far} RL78 Named Address Spaces
1549 On the RL78 target, variables qualified with @code{__far} are accessed
1550 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1551 addresses.  Non-far variables are assumed to appear in the topmost
1552 64@tie{}KiB of the address space.
1554 @subsection SPU Named Address Spaces
1555 @cindex @code{__ea} SPU Named Address Spaces
1557 On the SPU target variables may be declared as
1558 belonging to another address space by qualifying the type with the
1559 @code{__ea} address space identifier:
1561 @smallexample
1562 extern int __ea i;
1563 @end smallexample
1565 @noindent 
1566 The compiler generates special code to access the variable @code{i}.
1567 It may use runtime library
1568 support, or generate special machine instructions to access that address
1569 space.
1571 @subsection x86 Named Address Spaces
1572 @cindex x86 named address spaces
1574 On the x86 target, variables may be declared as being relative
1575 to the @code{%fs} or @code{%gs} segments.
1577 @table @code
1578 @item __seg_fs
1579 @itemx __seg_gs
1580 @cindex @code{__seg_fs} x86 named address space
1581 @cindex @code{__seg_gs} x86 named address space
1582 The object is accessed with the respective segment override prefix.
1584 The respective segment base must be set via some method specific to
1585 the operating system.  Rather than require an expensive system call
1586 to retrieve the segment base, these address spaces are not considered
1587 to be subspaces of the generic (flat) address space.  This means that
1588 explicit casts are required to convert pointers between these address
1589 spaces and the generic address space.  In practice the application
1590 should cast to @code{uintptr_t} and apply the segment base offset
1591 that it installed previously.
1593 The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are
1594 defined when these address spaces are supported.
1595 @end table
1597 @node Zero Length
1598 @section Arrays of Length Zero
1599 @cindex arrays of length zero
1600 @cindex zero-length arrays
1601 @cindex length-zero arrays
1602 @cindex flexible array members
1604 Declaring zero-length arrays is allowed in GNU C as an extension.
1605 A zero-length array can be useful as the last element of a structure
1606 that is really a header for a variable-length object:
1608 @smallexample
1609 struct line @{
1610   int length;
1611   char contents[0];
1614 struct line *thisline = (struct line *)
1615   malloc (sizeof (struct line) + this_length);
1616 thisline->length = this_length;
1617 @end smallexample
1619 Although the size of a zero-length array is zero, an array member of
1620 this kind may increase the size of the enclosing type as a result of tail
1621 padding.  The offset of a zero-length array member from the beginning
1622 of the enclosing structure is the same as the offset of an array with
1623 one or more elements of the same type.  The alignment of a zero-length
1624 array is the same as the alignment of its elements.
1626 Declaring zero-length arrays in other contexts, including as interior
1627 members of structure objects or as non-member objects, is discouraged.
1628 Accessing elements of zero-length arrays declared in such contexts is
1629 undefined and may be diagnosed.
1631 In the absence of the zero-length array extension, in ISO C90
1632 the @code{contents} array in the example above would typically be declared
1633 to have a single element.  Unlike a zero-length array which only contributes
1634 to the size of the enclosing structure for the purposes of alignment,
1635 a one-element array always occupies at least as much space as a single
1636 object of the type.  Although using one-element arrays this way is
1637 discouraged, GCC handles accesses to trailing one-element array members
1638 analogously to zero-length arrays.
1640 The preferred mechanism to declare variable-length types like
1641 @code{struct line} above is the ISO C99 @dfn{flexible array member},
1642 with slightly different syntax and semantics:
1644 @itemize @bullet
1645 @item
1646 Flexible array members are written as @code{contents[]} without
1647 the @code{0}.
1649 @item
1650 Flexible array members have incomplete type, and so the @code{sizeof}
1651 operator may not be applied.  As a quirk of the original implementation
1652 of zero-length arrays, @code{sizeof} evaluates to zero.
1654 @item
1655 Flexible array members may only appear as the last member of a
1656 @code{struct} that is otherwise non-empty.
1658 @item
1659 A structure containing a flexible array member, or a union containing
1660 such a structure (possibly recursively), may not be a member of a
1661 structure or an element of an array.  (However, these uses are
1662 permitted by GCC as extensions.)
1663 @end itemize
1665 Non-empty initialization of zero-length
1666 arrays is treated like any case where there are more initializer
1667 elements than the array holds, in that a suitable warning about ``excess
1668 elements in array'' is given, and the excess elements (all of them, in
1669 this case) are ignored.
1671 GCC allows static initialization of flexible array members.
1672 This is equivalent to defining a new structure containing the original
1673 structure followed by an array of sufficient size to contain the data.
1674 E.g.@: in the following, @code{f1} is constructed as if it were declared
1675 like @code{f2}.
1677 @smallexample
1678 struct f1 @{
1679   int x; int y[];
1680 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1682 struct f2 @{
1683   struct f1 f1; int data[3];
1684 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1685 @end smallexample
1687 @noindent
1688 The convenience of this extension is that @code{f1} has the desired
1689 type, eliminating the need to consistently refer to @code{f2.f1}.
1691 This has symmetry with normal static arrays, in that an array of
1692 unknown size is also written with @code{[]}.
1694 Of course, this extension only makes sense if the extra data comes at
1695 the end of a top-level object, as otherwise we would be overwriting
1696 data at subsequent offsets.  To avoid undue complication and confusion
1697 with initialization of deeply nested arrays, we simply disallow any
1698 non-empty initialization except when the structure is the top-level
1699 object.  For example:
1701 @smallexample
1702 struct foo @{ int x; int y[]; @};
1703 struct bar @{ struct foo z; @};
1705 struct foo a = @{ 1, @{ 2, 3, 4 @} @};        // @r{Valid.}
1706 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @};    // @r{Invalid.}
1707 struct bar c = @{ @{ 1, @{ @} @} @};            // @r{Valid.}
1708 struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @};  // @r{Invalid.}
1709 @end smallexample
1711 @node Empty Structures
1712 @section Structures with No Members
1713 @cindex empty structures
1714 @cindex zero-size structures
1716 GCC permits a C structure to have no members:
1718 @smallexample
1719 struct empty @{
1721 @end smallexample
1723 The structure has size zero.  In C++, empty structures are part
1724 of the language.  G++ treats empty structures as if they had a single
1725 member of type @code{char}.
1727 @node Variable Length
1728 @section Arrays of Variable Length
1729 @cindex variable-length arrays
1730 @cindex arrays of variable length
1731 @cindex VLAs
1733 Variable-length automatic arrays are allowed in ISO C99, and as an
1734 extension GCC accepts them in C90 mode and in C++.  These arrays are
1735 declared like any other automatic arrays, but with a length that is not
1736 a constant expression.  The storage is allocated at the point of
1737 declaration and deallocated when the block scope containing the declaration
1738 exits.  For
1739 example:
1741 @smallexample
1742 FILE *
1743 concat_fopen (char *s1, char *s2, char *mode)
1745   char str[strlen (s1) + strlen (s2) + 1];
1746   strcpy (str, s1);
1747   strcat (str, s2);
1748   return fopen (str, mode);
1750 @end smallexample
1752 @cindex scope of a variable length array
1753 @cindex variable-length array scope
1754 @cindex deallocating variable length arrays
1755 Jumping or breaking out of the scope of the array name deallocates the
1756 storage.  Jumping into the scope is not allowed; you get an error
1757 message for it.
1759 @cindex variable-length array in a structure
1760 As an extension, GCC accepts variable-length arrays as a member of
1761 a structure or a union.  For example:
1763 @smallexample
1764 void
1765 foo (int n)
1767   struct S @{ int x[n]; @};
1769 @end smallexample
1771 @cindex @code{alloca} vs variable-length arrays
1772 You can use the function @code{alloca} to get an effect much like
1773 variable-length arrays.  The function @code{alloca} is available in
1774 many other C implementations (but not in all).  On the other hand,
1775 variable-length arrays are more elegant.
1777 There are other differences between these two methods.  Space allocated
1778 with @code{alloca} exists until the containing @emph{function} returns.
1779 The space for a variable-length array is deallocated as soon as the array
1780 name's scope ends, unless you also use @code{alloca} in this scope.
1782 You can also use variable-length arrays as arguments to functions:
1784 @smallexample
1785 struct entry
1786 tester (int len, char data[len][len])
1788   /* @r{@dots{}} */
1790 @end smallexample
1792 The length of an array is computed once when the storage is allocated
1793 and is remembered for the scope of the array in case you access it with
1794 @code{sizeof}.
1796 If you want to pass the array first and the length afterward, you can
1797 use a forward declaration in the parameter list---another GNU extension.
1799 @smallexample
1800 struct entry
1801 tester (int len; char data[len][len], int len)
1803   /* @r{@dots{}} */
1805 @end smallexample
1807 @cindex parameter forward declaration
1808 The @samp{int len} before the semicolon is a @dfn{parameter forward
1809 declaration}, and it serves the purpose of making the name @code{len}
1810 known when the declaration of @code{data} is parsed.
1812 You can write any number of such parameter forward declarations in the
1813 parameter list.  They can be separated by commas or semicolons, but the
1814 last one must end with a semicolon, which is followed by the ``real''
1815 parameter declarations.  Each forward declaration must match a ``real''
1816 declaration in parameter name and data type.  ISO C99 does not support
1817 parameter forward declarations.
1819 @node Variadic Macros
1820 @section Macros with a Variable Number of Arguments.
1821 @cindex variable number of arguments
1822 @cindex macro with variable arguments
1823 @cindex rest argument (in macro)
1824 @cindex variadic macros
1826 In the ISO C standard of 1999, a macro can be declared to accept a
1827 variable number of arguments much as a function can.  The syntax for
1828 defining the macro is similar to that of a function.  Here is an
1829 example:
1831 @smallexample
1832 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1833 @end smallexample
1835 @noindent
1836 Here @samp{@dots{}} is a @dfn{variable argument}.  In the invocation of
1837 such a macro, it represents the zero or more tokens until the closing
1838 parenthesis that ends the invocation, including any commas.  This set of
1839 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1840 wherever it appears.  See the CPP manual for more information.
1842 GCC has long supported variadic macros, and used a different syntax that
1843 allowed you to give a name to the variable arguments just like any other
1844 argument.  Here is an example:
1846 @smallexample
1847 #define debug(format, args...) fprintf (stderr, format, args)
1848 @end smallexample
1850 @noindent
1851 This is in all ways equivalent to the ISO C example above, but arguably
1852 more readable and descriptive.
1854 GNU CPP has two further variadic macro extensions, and permits them to
1855 be used with either of the above forms of macro definition.
1857 In standard C, you are not allowed to leave the variable argument out
1858 entirely; but you are allowed to pass an empty argument.  For example,
1859 this invocation is invalid in ISO C, because there is no comma after
1860 the string:
1862 @smallexample
1863 debug ("A message")
1864 @end smallexample
1866 GNU CPP permits you to completely omit the variable arguments in this
1867 way.  In the above examples, the compiler would complain, though since
1868 the expansion of the macro still has the extra comma after the format
1869 string.
1871 To help solve this problem, CPP behaves specially for variable arguments
1872 used with the token paste operator, @samp{##}.  If instead you write
1874 @smallexample
1875 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1876 @end smallexample
1878 @noindent
1879 and if the variable arguments are omitted or empty, the @samp{##}
1880 operator causes the preprocessor to remove the comma before it.  If you
1881 do provide some variable arguments in your macro invocation, GNU CPP
1882 does not complain about the paste operation and instead places the
1883 variable arguments after the comma.  Just like any other pasted macro
1884 argument, these arguments are not macro expanded.
1886 @node Escaped Newlines
1887 @section Slightly Looser Rules for Escaped Newlines
1888 @cindex escaped newlines
1889 @cindex newlines (escaped)
1891 The preprocessor treatment of escaped newlines is more relaxed 
1892 than that specified by the C90 standard, which requires the newline
1893 to immediately follow a backslash.  
1894 GCC's implementation allows whitespace in the form
1895 of spaces, horizontal and vertical tabs, and form feeds between the
1896 backslash and the subsequent newline.  The preprocessor issues a
1897 warning, but treats it as a valid escaped newline and combines the two
1898 lines to form a single logical line.  This works within comments and
1899 tokens, as well as between tokens.  Comments are @emph{not} treated as
1900 whitespace for the purposes of this relaxation, since they have not
1901 yet been replaced with spaces.
1903 @node Subscripting
1904 @section Non-Lvalue Arrays May Have Subscripts
1905 @cindex subscripting
1906 @cindex arrays, non-lvalue
1908 @cindex subscripting and function values
1909 In ISO C99, arrays that are not lvalues still decay to pointers, and
1910 may be subscripted, although they may not be modified or used after
1911 the next sequence point and the unary @samp{&} operator may not be
1912 applied to them.  As an extension, GNU C allows such arrays to be
1913 subscripted in C90 mode, though otherwise they do not decay to
1914 pointers outside C99 mode.  For example,
1915 this is valid in GNU C though not valid in C90:
1917 @smallexample
1918 @group
1919 struct foo @{int a[4];@};
1921 struct foo f();
1923 bar (int index)
1925   return f().a[index];
1927 @end group
1928 @end smallexample
1930 @node Pointer Arith
1931 @section Arithmetic on @code{void}- and Function-Pointers
1932 @cindex void pointers, arithmetic
1933 @cindex void, size of pointer to
1934 @cindex function pointers, arithmetic
1935 @cindex function, size of pointer to
1937 In GNU C, addition and subtraction operations are supported on pointers to
1938 @code{void} and on pointers to functions.  This is done by treating the
1939 size of a @code{void} or of a function as 1.
1941 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1942 and on function types, and returns 1.
1944 @opindex Wpointer-arith
1945 The option @option{-Wpointer-arith} requests a warning if these extensions
1946 are used.
1948 @node Variadic Pointer Args
1949 @section Pointer Arguments in Variadic Functions
1950 @cindex pointer arguments in variadic functions
1951 @cindex variadic functions, pointer arguments
1953 Standard C requires that pointer types used with @code{va_arg} in
1954 functions with variable argument lists either must be compatible with
1955 that of the actual argument, or that one type must be a pointer to
1956 @code{void} and the other a pointer to a character type.  GNU C
1957 implements the POSIX XSI extension that additionally permits the use
1958 of @code{va_arg} with a pointer type to receive arguments of any other
1959 pointer type.
1961 In particular, in GNU C @samp{va_arg (ap, void *)} can safely be used
1962 to consume an argument of any pointer type.
1964 @node Pointers to Arrays
1965 @section Pointers to Arrays with Qualifiers Work as Expected
1966 @cindex pointers to arrays
1967 @cindex const qualifier
1969 In GNU C, pointers to arrays with qualifiers work similar to pointers
1970 to other qualified types. For example, a value of type @code{int (*)[5]}
1971 can be used to initialize a variable of type @code{const int (*)[5]}.
1972 These types are incompatible in ISO C because the @code{const} qualifier
1973 is formally attached to the element type of the array and not the
1974 array itself.
1976 @smallexample
1977 extern void
1978 transpose (int N, int M, double out[M][N], const double in[N][M]);
1979 double x[3][2];
1980 double y[2][3];
1981 @r{@dots{}}
1982 transpose(3, 2, y, x);
1983 @end smallexample
1985 @node Initializers
1986 @section Non-Constant Initializers
1987 @cindex initializers, non-constant
1988 @cindex non-constant initializers
1990 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1991 automatic variable are not required to be constant expressions in GNU C@.
1992 Here is an example of an initializer with run-time varying elements:
1994 @smallexample
1995 foo (float f, float g)
1997   float beat_freqs[2] = @{ f-g, f+g @};
1998   /* @r{@dots{}} */
2000 @end smallexample
2002 @node Compound Literals
2003 @section Compound Literals
2004 @cindex constructor expressions
2005 @cindex initializations in expressions
2006 @cindex structures, constructor expression
2007 @cindex expressions, constructor
2008 @cindex compound literals
2009 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
2011 A compound literal looks like a cast of a brace-enclosed aggregate
2012 initializer list.  Its value is an object of the type specified in
2013 the cast, containing the elements specified in the initializer.
2014 Unlike the result of a cast, a compound literal is an lvalue.  ISO
2015 C99 and later support compound literals.  As an extension, GCC
2016 supports compound literals also in C90 mode and in C++, although
2017 as explained below, the C++ semantics are somewhat different.
2019 Usually, the specified type of a compound literal is a structure.  Assume
2020 that @code{struct foo} and @code{structure} are declared as shown:
2022 @smallexample
2023 struct foo @{int a; char b[2];@} structure;
2024 @end smallexample
2026 @noindent
2027 Here is an example of constructing a @code{struct foo} with a compound literal:
2029 @smallexample
2030 structure = ((struct foo) @{x + y, 'a', 0@});
2031 @end smallexample
2033 @noindent
2034 This is equivalent to writing the following:
2036 @smallexample
2038   struct foo temp = @{x + y, 'a', 0@};
2039   structure = temp;
2041 @end smallexample
2043 You can also construct an array, though this is dangerous in C++, as
2044 explained below.  If all the elements of the compound literal are
2045 (made up of) simple constant expressions suitable for use in
2046 initializers of objects of static storage duration, then the compound
2047 literal can be coerced to a pointer to its first element and used in
2048 such an initializer, as shown here:
2050 @smallexample
2051 char **foo = (char *[]) @{ "x", "y", "z" @};
2052 @end smallexample
2054 Compound literals for scalar types and union types are also allowed.  In
2055 the following example the variable @code{i} is initialized to the value
2056 @code{2}, the result of incrementing the unnamed object created by
2057 the compound literal.
2059 @smallexample
2060 int i = ++(int) @{ 1 @};
2061 @end smallexample
2063 As a GNU extension, GCC allows initialization of objects with static storage
2064 duration by compound literals (which is not possible in ISO C99 because
2065 the initializer is not a constant).
2066 It is handled as if the object were initialized only with the brace-enclosed
2067 list if the types of the compound literal and the object match.
2068 The elements of the compound literal must be constant.
2069 If the object being initialized has array type of unknown size, the size is
2070 determined by the size of the compound literal.
2072 @smallexample
2073 static struct foo x = (struct foo) @{1, 'a', 'b'@};
2074 static int y[] = (int []) @{1, 2, 3@};
2075 static int z[] = (int [3]) @{1@};
2076 @end smallexample
2078 @noindent
2079 The above lines are equivalent to the following:
2080 @smallexample
2081 static struct foo x = @{1, 'a', 'b'@};
2082 static int y[] = @{1, 2, 3@};
2083 static int z[] = @{1, 0, 0@};
2084 @end smallexample
2086 In C, a compound literal designates an unnamed object with static or
2087 automatic storage duration.  In C++, a compound literal designates a
2088 temporary object that only lives until the end of its full-expression.
2089 As a result, well-defined C code that takes the address of a subobject
2090 of a compound literal can be undefined in C++, so G++ rejects
2091 the conversion of a temporary array to a pointer.  For instance, if
2092 the array compound literal example above appeared inside a function,
2093 any subsequent use of @code{foo} in C++ would have undefined behavior
2094 because the lifetime of the array ends after the declaration of @code{foo}.
2096 As an optimization, G++ sometimes gives array compound literals longer
2097 lifetimes: when the array either appears outside a function or has
2098 a @code{const}-qualified type.  If @code{foo} and its initializer had
2099 elements of type @code{char *const} rather than @code{char *}, or if
2100 @code{foo} were a global variable, the array would have static storage
2101 duration.  But it is probably safest just to avoid the use of array
2102 compound literals in C++ code.
2104 @node Designated Inits
2105 @section Designated Initializers
2106 @cindex initializers with labeled elements
2107 @cindex labeled elements in initializers
2108 @cindex case labels in initializers
2109 @cindex designated initializers
2111 Standard C90 requires the elements of an initializer to appear in a fixed
2112 order, the same as the order of the elements in the array or structure
2113 being initialized.
2115 In ISO C99 you can give the elements in any order, specifying the array
2116 indices or structure field names they apply to, and GNU C allows this as
2117 an extension in C90 mode as well.  This extension is not
2118 implemented in GNU C++.
2120 To specify an array index, write
2121 @samp{[@var{index}] =} before the element value.  For example,
2123 @smallexample
2124 int a[6] = @{ [4] = 29, [2] = 15 @};
2125 @end smallexample
2127 @noindent
2128 is equivalent to
2130 @smallexample
2131 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
2132 @end smallexample
2134 @noindent
2135 The index values must be constant expressions, even if the array being
2136 initialized is automatic.
2138 An alternative syntax for this that has been obsolete since GCC 2.5 but
2139 GCC still accepts is to write @samp{[@var{index}]} before the element
2140 value, with no @samp{=}.
2142 To initialize a range of elements to the same value, write
2143 @samp{[@var{first} ... @var{last}] = @var{value}}.  This is a GNU
2144 extension.  For example,
2146 @smallexample
2147 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
2148 @end smallexample
2150 @noindent
2151 If the value in it has side effects, the side effects happen only once,
2152 not for each initialized field by the range initializer.
2154 @noindent
2155 Note that the length of the array is the highest value specified
2156 plus one.
2158 In a structure initializer, specify the name of a field to initialize
2159 with @samp{.@var{fieldname} =} before the element value.  For example,
2160 given the following structure,
2162 @smallexample
2163 struct point @{ int x, y; @};
2164 @end smallexample
2166 @noindent
2167 the following initialization
2169 @smallexample
2170 struct point p = @{ .y = yvalue, .x = xvalue @};
2171 @end smallexample
2173 @noindent
2174 is equivalent to
2176 @smallexample
2177 struct point p = @{ xvalue, yvalue @};
2178 @end smallexample
2180 Another syntax that has the same meaning, obsolete since GCC 2.5, is
2181 @samp{@var{fieldname}:}, as shown here:
2183 @smallexample
2184 struct point p = @{ y: yvalue, x: xvalue @};
2185 @end smallexample
2187 Omitted fields are implicitly initialized the same as for objects
2188 that have static storage duration.
2190 @cindex designators
2191 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
2192 @dfn{designator}.  You can also use a designator (or the obsolete colon
2193 syntax) when initializing a union, to specify which element of the union
2194 should be used.  For example,
2196 @smallexample
2197 union foo @{ int i; double d; @};
2199 union foo f = @{ .d = 4 @};
2200 @end smallexample
2202 @noindent
2203 converts 4 to a @code{double} to store it in the union using
2204 the second element.  By contrast, casting 4 to type @code{union foo}
2205 stores it into the union as the integer @code{i}, since it is
2206 an integer.  @xref{Cast to Union}.
2208 You can combine this technique of naming elements with ordinary C
2209 initialization of successive elements.  Each initializer element that
2210 does not have a designator applies to the next consecutive element of the
2211 array or structure.  For example,
2213 @smallexample
2214 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
2215 @end smallexample
2217 @noindent
2218 is equivalent to
2220 @smallexample
2221 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
2222 @end smallexample
2224 Labeling the elements of an array initializer is especially useful
2225 when the indices are characters or belong to an @code{enum} type.
2226 For example:
2228 @smallexample
2229 int whitespace[256]
2230   = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
2231       ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
2232 @end smallexample
2234 @cindex designator lists
2235 You can also write a series of @samp{.@var{fieldname}} and
2236 @samp{[@var{index}]} designators before an @samp{=} to specify a
2237 nested subobject to initialize; the list is taken relative to the
2238 subobject corresponding to the closest surrounding brace pair.  For
2239 example, with the @samp{struct point} declaration above:
2241 @smallexample
2242 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
2243 @end smallexample
2245 If the same field is initialized multiple times, or overlapping
2246 fields of a union are initialized, the value from the last
2247 initialization is used.  When a field of a union is itself a structure, 
2248 the entire structure from the last field initialized is used.  If any previous
2249 initializer has side effect, it is unspecified whether the side effect
2250 happens or not.  Currently, GCC discards the side-effecting
2251 initializer expressions and issues a warning.
2253 @node Case Ranges
2254 @section Case Ranges
2255 @cindex case ranges
2256 @cindex ranges in case statements
2258 You can specify a range of consecutive values in a single @code{case} label,
2259 like this:
2261 @smallexample
2262 case @var{low} ... @var{high}:
2263 @end smallexample
2265 @noindent
2266 This has the same effect as the proper number of individual @code{case}
2267 labels, one for each integer value from @var{low} to @var{high}, inclusive.
2269 This feature is especially useful for ranges of ASCII character codes:
2271 @smallexample
2272 case 'A' ... 'Z':
2273 @end smallexample
2275 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
2276 it may be parsed wrong when you use it with integer values.  For example,
2277 write this:
2279 @smallexample
2280 case 1 ... 5:
2281 @end smallexample
2283 @noindent
2284 rather than this:
2286 @smallexample
2287 case 1...5:
2288 @end smallexample
2290 @node Cast to Union
2291 @section Cast to a Union Type
2292 @cindex cast to a union
2293 @cindex union, casting to a
2295 A cast to a union type is a C extension not available in C++.  It looks
2296 just like ordinary casts with the constraint that the type specified is
2297 a union type.  You can specify the type either with the @code{union}
2298 keyword or with a @code{typedef} name that refers to a union.  The result
2299 of a cast to a union is a temporary rvalue of the union type with a member
2300 whose type matches that of the operand initialized to the value of
2301 the operand.  The effect of a cast to a union is similar to a compound
2302 literal except that it yields an rvalue like standard casts do.
2303 @xref{Compound Literals}.
2305 Expressions that may be cast to the union type are those whose type matches
2306 at least one of the members of the union.  Thus, given the following union
2307 and variables:
2309 @smallexample
2310 union foo @{ int i; double d; @};
2311 int x;
2312 double y;
2313 union foo z;
2314 @end smallexample
2316 @noindent
2317 both @code{x} and @code{y} can be cast to type @code{union foo} and
2318 the following assignments
2319 @smallexample
2320   z = (union foo) x;
2321   z = (union foo) y;
2322 @end smallexample
2323 are shorthand equivalents of these
2324 @smallexample
2325   z = (union foo) @{ .i = x @};
2326   z = (union foo) @{ .d = y @};
2327 @end smallexample
2329 However, @code{(union foo) FLT_MAX;} is not a valid cast because the union
2330 has no member of type @code{float}.
2332 Using the cast as the right-hand side of an assignment to a variable of
2333 union type is equivalent to storing in a member of the union with
2334 the same type
2336 @smallexample
2337 union foo u;
2338 /* @r{@dots{}} */
2339 u = (union foo) x  @equiv{}  u.i = x
2340 u = (union foo) y  @equiv{}  u.d = y
2341 @end smallexample
2343 You can also use the union cast as a function argument:
2345 @smallexample
2346 void hack (union foo);
2347 /* @r{@dots{}} */
2348 hack ((union foo) x);
2349 @end smallexample
2351 @node Mixed Declarations
2352 @section Mixed Declarations and Code
2353 @cindex mixed declarations and code
2354 @cindex declarations, mixed with code
2355 @cindex code, mixed with declarations
2357 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2358 within compound statements.  As an extension, GNU C also allows this in
2359 C90 mode.  For example, you could do:
2361 @smallexample
2362 int i;
2363 /* @r{@dots{}} */
2364 i++;
2365 int j = i + 2;
2366 @end smallexample
2368 Each identifier is visible from where it is declared until the end of
2369 the enclosing block.
2371 @node Function Attributes
2372 @section Declaring Attributes of Functions
2373 @cindex function attributes
2374 @cindex declaring attributes of functions
2375 @cindex @code{volatile} applied to function
2376 @cindex @code{const} applied to function
2378 In GNU C and C++, you can use function attributes to specify certain
2379 function properties that may help the compiler optimize calls or
2380 check code more carefully for correctness.  For example, you
2381 can use attributes to specify that a function never returns
2382 (@code{noreturn}), returns a value depending only on the values of
2383 its arguments (@code{const}), or has @code{printf}-style arguments
2384 (@code{format}).
2386 You can also use attributes to control memory placement, code
2387 generation options or call/return conventions within the function
2388 being annotated.  Many of these attributes are target-specific.  For
2389 example, many targets support attributes for defining interrupt
2390 handler functions, which typically must follow special register usage
2391 and return conventions.  Such attributes are described in the subsection
2392 for each target.  However, a considerable number of attributes are
2393 supported by most, if not all targets.  Those are described in
2394 the @ref{Common Function Attributes} section.
2396 Function attributes are introduced by the @code{__attribute__} keyword
2397 in the declaration of a function, followed by an attribute specification
2398 enclosed in double parentheses.  You can specify multiple attributes in
2399 a declaration by separating them by commas within the double parentheses
2400 or by immediately following one attribute specification with another.
2401 @xref{Attribute Syntax}, for the exact rules on attribute syntax and
2402 placement.  Compatible attribute specifications on distinct declarations
2403 of the same function are merged.  An attribute specification that is not
2404 compatible with attributes already applied to a declaration of the same
2405 function is ignored with a warning.
2407 Some function attributes take one or more arguments that refer to
2408 the function's parameters by their positions within the function parameter
2409 list.  Such attribute arguments are referred to as @dfn{positional arguments}.
2410 Unless specified otherwise, positional arguments that specify properties
2411 of parameters with pointer types can also specify the same properties of
2412 the implicit C++ @code{this} argument in non-static member functions, and
2413 of parameters of reference to a pointer type.  For ordinary functions,
2414 position one refers to the first parameter on the list.  In C++ non-static
2415 member functions, position one refers to the implicit @code{this} pointer.
2416 The same restrictions and effects apply to function attributes used with
2417 ordinary functions or C++ member functions.
2419 GCC also supports attributes on
2420 variable declarations (@pxref{Variable Attributes}),
2421 labels (@pxref{Label Attributes}),
2422 enumerators (@pxref{Enumerator Attributes}),
2423 statements (@pxref{Statement Attributes}),
2424 and types (@pxref{Type Attributes}).
2426 There is some overlap between the purposes of attributes and pragmas
2427 (@pxref{Pragmas,,Pragmas Accepted by GCC}).  It has been
2428 found convenient to use @code{__attribute__} to achieve a natural
2429 attachment of attributes to their corresponding declarations, whereas
2430 @code{#pragma} is of use for compatibility with other compilers
2431 or constructs that do not naturally form part of the grammar.
2433 In addition to the attributes documented here,
2434 GCC plugins may provide their own attributes.
2436 @menu
2437 * Common Function Attributes::
2438 * AArch64 Function Attributes::
2439 * AMD GCN Function Attributes::
2440 * ARC Function Attributes::
2441 * ARM Function Attributes::
2442 * AVR Function Attributes::
2443 * Blackfin Function Attributes::
2444 * CR16 Function Attributes::
2445 * C-SKY Function Attributes::
2446 * Epiphany Function Attributes::
2447 * H8/300 Function Attributes::
2448 * IA-64 Function Attributes::
2449 * M32C Function Attributes::
2450 * M32R/D Function Attributes::
2451 * m68k Function Attributes::
2452 * MCORE Function Attributes::
2453 * MeP Function Attributes::
2454 * MicroBlaze Function Attributes::
2455 * Microsoft Windows Function Attributes::
2456 * MIPS Function Attributes::
2457 * MSP430 Function Attributes::
2458 * NDS32 Function Attributes::
2459 * Nios II Function Attributes::
2460 * Nvidia PTX Function Attributes::
2461 * PowerPC Function Attributes::
2462 * RISC-V Function Attributes::
2463 * RL78 Function Attributes::
2464 * RX Function Attributes::
2465 * S/390 Function Attributes::
2466 * SH Function Attributes::
2467 * SPU Function Attributes::
2468 * Symbian OS Function Attributes::
2469 * V850 Function Attributes::
2470 * Visium Function Attributes::
2471 * x86 Function Attributes::
2472 * Xstormy16 Function Attributes::
2473 @end menu
2475 @node Common Function Attributes
2476 @subsection Common Function Attributes
2478 The following attributes are supported on most targets.
2480 @table @code
2481 @c Keep this table alphabetized by attribute name.  Treat _ as space.
2483 @item alias ("@var{target}")
2484 @cindex @code{alias} function attribute
2485 The @code{alias} attribute causes the declaration to be emitted as an
2486 alias for another symbol, which must be specified.  For instance,
2488 @smallexample
2489 void __f () @{ /* @r{Do something.} */; @}
2490 void f () __attribute__ ((weak, alias ("__f")));
2491 @end smallexample
2493 @noindent
2494 defines @samp{f} to be a weak alias for @samp{__f}.  In C++, the
2495 mangled name for the target must be used.  It is an error if @samp{__f}
2496 is not defined in the same translation unit.
2498 This attribute requires assembler and object file support,
2499 and may not be available on all targets.
2501 @item aligned
2502 @itemx aligned (@var{alignment})
2503 @cindex @code{aligned} function attribute
2504 The @code{aligned} attribute specifies a minimum alignment for
2505 the first instruction of the function, measured in bytes.  When specified,
2506 @var{alignment} must be an integer constant power of 2.  Specifying no
2507 @var{alignment} argument implies the ideal alignment for the target.
2508 The @code{__alignof__} operator can be used to determine what that is
2509 (@pxref{Alignment}).  The attribute has no effect when a definition for
2510 the function is not provided in the same translation unit.
2512 The attribute cannot be used to decrease the alignment of a function
2513 previously declared with a more restrictive alignment; only to increase
2514 it.  Attempts to do otherwise are diagnosed.  Some targets specify
2515 a minimum default alignment for functions that is greater than 1.  On
2516 such targets, specifying a less restrictive alignment is silently ignored.
2517 Using the attribute overrides the effect of the @option{-falign-functions}
2518 (@pxref{Optimize Options}) option for this function.
2520 Note that the effectiveness of @code{aligned} attributes may be
2521 limited by inherent limitations in the system linker 
2522 and/or object file format.  On some systems, the
2523 linker is only able to arrange for functions to be aligned up to a
2524 certain maximum alignment.  (For some linkers, the maximum supported
2525 alignment may be very very small.)  See your linker documentation for
2526 further information.
2528 The @code{aligned} attribute can also be used for variables and fields
2529 (@pxref{Variable Attributes}.)
2531 @item alloc_align (@var{position})
2532 @cindex @code{alloc_align} function attribute
2533 The @code{alloc_align} attribute may be applied to a function that
2534 returns a pointer and takes at least one argument of an integer or
2535 enumerated type.
2536 It indicates that the returned pointer is aligned on a boundary given
2537 by the function argument at @var{position}.  Meaningful alignments are
2538 powers of 2 greater than one.  GCC uses this information to improve
2539 pointer alignment analysis.
2541 The function parameter denoting the allocated alignment is specified by
2542 one constant integer argument whose number is the argument of the attribute.
2543 Argument numbering starts at one.
2545 For instance,
2547 @smallexample
2548 void* my_memalign (size_t, size_t) __attribute__ ((alloc_align (1)));
2549 @end smallexample
2551 @noindent
2552 declares that @code{my_memalign} returns memory with minimum alignment
2553 given by parameter 1.
2555 @item alloc_size (@var{position})
2556 @itemx alloc_size (@var{position-1}, @var{position-2})
2557 @cindex @code{alloc_size} function attribute
2558 The @code{alloc_size} attribute may be applied to a function that
2559 returns a pointer and takes at least one argument of an integer or
2560 enumerated type.
2561 It indicates that the returned pointer points to memory whose size is
2562 given by the function argument at @var{position-1}, or by the product
2563 of the arguments at @var{position-1} and @var{position-2}.  Meaningful
2564 sizes are positive values less than @code{PTRDIFF_MAX}.  GCC uses this
2565 information to improve the results of @code{__builtin_object_size}.
2567 The function parameter(s) denoting the allocated size are specified by
2568 one or two integer arguments supplied to the attribute.  The allocated size
2569 is either the value of the single function argument specified or the product
2570 of the two function arguments specified.  Argument numbering starts at
2571 one for ordinary functions, and at two for C++ non-static member functions.
2573 For instance,
2575 @smallexample
2576 void* my_calloc (size_t, size_t) __attribute__ ((alloc_size (1, 2)));
2577 void* my_realloc (void*, size_t) __attribute__ ((alloc_size (2)));
2578 @end smallexample
2580 @noindent
2581 declares that @code{my_calloc} returns memory of the size given by
2582 the product of parameter 1 and 2 and that @code{my_realloc} returns memory
2583 of the size given by parameter 2.
2585 @item always_inline
2586 @cindex @code{always_inline} function attribute
2587 Generally, functions are not inlined unless optimization is specified.
2588 For functions declared inline, this attribute inlines the function
2589 independent of any restrictions that otherwise apply to inlining.
2590 Failure to inline such a function is diagnosed as an error.
2591 Note that if such a function is called indirectly the compiler may
2592 or may not inline it depending on optimization level and a failure
2593 to inline an indirect call may or may not be diagnosed.
2595 @item artificial
2596 @cindex @code{artificial} function attribute
2597 This attribute is useful for small inline wrappers that if possible
2598 should appear during debugging as a unit.  Depending on the debug
2599 info format it either means marking the function as artificial
2600 or using the caller location for all instructions within the inlined
2601 body.
2603 @item assume_aligned (@var{alignment})
2604 @itemx assume_aligned (@var{alignment}, @var{offset})
2605 @cindex @code{assume_aligned} function attribute
2606 The @code{assume_aligned} attribute may be applied to a function that
2607 returns a pointer.  It indicates that the returned pointer is aligned
2608 on a boundary given by @var{alignment}.  If the attribute has two
2609 arguments, the second argument is misalignment @var{offset}.  Meaningful
2610 values of @var{alignment} are powers of 2 greater than one.  Meaningful
2611 values of @var{offset} are greater than zero and less than @var{alignment}.
2613 For instance
2615 @smallexample
2616 void* my_alloc1 (size_t) __attribute__((assume_aligned (16)));
2617 void* my_alloc2 (size_t) __attribute__((assume_aligned (32, 8)));
2618 @end smallexample
2620 @noindent
2621 declares that @code{my_alloc1} returns 16-byte aligned pointers and
2622 that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
2623 to 8.
2625 @item cold
2626 @cindex @code{cold} function attribute
2627 The @code{cold} attribute on functions is used to inform the compiler that
2628 the function is unlikely to be executed.  The function is optimized for
2629 size rather than speed and on many targets it is placed into a special
2630 subsection of the text section so all cold functions appear close together,
2631 improving code locality of non-cold parts of program.  The paths leading
2632 to calls of cold functions within code are marked as unlikely by the branch
2633 prediction mechanism.  It is thus useful to mark functions used to handle
2634 unlikely conditions, such as @code{perror}, as cold to improve optimization
2635 of hot functions that do call marked functions in rare occasions.
2637 When profile feedback is available, via @option{-fprofile-use}, cold functions
2638 are automatically detected and this attribute is ignored.
2640 @item const
2641 @cindex @code{const} function attribute
2642 @cindex functions that have no side effects
2643 Calls to functions whose return value is not affected by changes to
2644 the observable state of the program and that have no observable effects
2645 on such state other than to return a value may lend themselves to
2646 optimizations such as common subexpression elimination.  Declaring such
2647 functions with the @code{const} attribute allows GCC to avoid emitting
2648 some calls in repeated invocations of the function with the same argument
2649 values.
2651 For example,
2653 @smallexample
2654 int square (int) __attribute__ ((const));
2655 @end smallexample
2657 @noindent
2658 tells GCC that subsequent calls to function @code{square} with the same
2659 argument value can be replaced by the result of the first call regardless
2660 of the statements in between.
2662 The @code{const} attribute prohibits a function from reading objects
2663 that affect its return value between successive invocations.  However,
2664 functions declared with the attribute can safely read objects that do
2665 not change their return value, such as non-volatile constants.
2667 The @code{const} attribute imposes greater restrictions on a function's
2668 definition than the similar @code{pure} attribute.  Declaring the same
2669 function with both the @code{const} and the @code{pure} attribute is
2670 diagnosed.  Because a const function cannot have any observable side
2671 effects it does not make sense for it to return @code{void}.  Declaring
2672 such a function is diagnosed.
2674 @cindex pointer arguments
2675 Note that a function that has pointer arguments and examines the data
2676 pointed to must @emph{not} be declared @code{const} if the pointed-to
2677 data might change between successive invocations of the function.  In
2678 general, since a function cannot distinguish data that might change
2679 from data that cannot, const functions should never take pointer or,
2680 in C++, reference arguments. Likewise, a function that calls a non-const
2681 function usually must not be const itself.
2683 @item constructor
2684 @itemx destructor
2685 @itemx constructor (@var{priority})
2686 @itemx destructor (@var{priority})
2687 @cindex @code{constructor} function attribute
2688 @cindex @code{destructor} function attribute
2689 The @code{constructor} attribute causes the function to be called
2690 automatically before execution enters @code{main ()}.  Similarly, the
2691 @code{destructor} attribute causes the function to be called
2692 automatically after @code{main ()} completes or @code{exit ()} is
2693 called.  Functions with these attributes are useful for
2694 initializing data that is used implicitly during the execution of
2695 the program.
2697 On some targets the attributes also accept an integer argument to
2698 specify a priority to control the order in which constructor and
2699 destructor functions are run.  A constructor
2700 with a smaller priority number runs before a constructor with a larger
2701 priority number; the opposite relationship holds for destructors.  So,
2702 if you have a constructor that allocates a resource and a destructor
2703 that deallocates the same resource, both functions typically have the
2704 same priority.  The priorities for constructor and destructor
2705 functions are the same as those specified for namespace-scope C++
2706 objects (@pxref{C++ Attributes}).  However, at present, the order in which
2707 constructors for C++ objects with static storage duration and functions
2708 decorated with attribute @code{constructor} are invoked is unspecified.
2709 In mixed declarations, attribute @code{init_priority} can be used to
2710 impose a specific ordering.
2712 Using the argument forms of the @code{constructor} and @code{destructor}
2713 attributes on targets where the feature is not supported is rejected with
2714 an error.
2716 @item copy
2717 @itemx copy (@var{function})
2718 @cindex @code{copy} function attribute
2719 The @code{copy} attribute applies the set of attributes with which
2720 @var{function} has been declared to the declaration of the function
2721 to which the attribute is applied.  The attribute is designed for
2722 libraries that define aliases or function resolvers that are expected
2723 to specify the same set of attributes as their targets.  The @code{copy}
2724 attribute can be used with functions, variables, or types.  However,
2725 the kind of symbol to which the attribute is applied (either function
2726 or variable) must match the kind of symbol to which the argument refers.
2727 The @code{copy} attribute copies only syntactic and semantic attributes
2728 but not attributes that affect a symbol's linkage or visibility such as
2729 @code{alias}, @code{visibility}, or @code{weak}.  The @code{deprecated}
2730 attribute is also not copied.  @xref{Common Type Attributes}.
2731 @xref{Common Variable Attributes}.
2733 For example, the @var{StrongAlias} macro below makes use of the @code{alias}
2734 and @code{copy} attributes to define an alias named @var{alloc} for function
2735 @var{allocate} declared with attributes @var{alloc_size}, @var{malloc}, and
2736 @var{nothrow}.  Thanks to the @code{__typeof__} operator the alias has
2737 the same type as the target function.  As a result of the @code{copy}
2738 attribute the alias also shares the same attributes as the target.
2740 @smallexample
2741 #define StrongAlias(TagetFunc, AliasDecl)   \
2742   extern __typeof__ (TargetFunc) AliasDecl  \
2743     __attribute__ ((alias (#TargetFunc), copy (TargetFunc)));
2745 extern __attribute__ ((alloc_size (1), malloc, nothrow))
2746   void* allocate (size_t);
2747 StrongAlias (allocate, alloc);
2748 @end smallexample
2750 @item deprecated
2751 @itemx deprecated (@var{msg})
2752 @cindex @code{deprecated} function attribute
2753 The @code{deprecated} attribute results in a warning if the function
2754 is used anywhere in the source file.  This is useful when identifying
2755 functions that are expected to be removed in a future version of a
2756 program.  The warning also includes the location of the declaration
2757 of the deprecated function, to enable users to easily find further
2758 information about why the function is deprecated, or what they should
2759 do instead.  Note that the warnings only occurs for uses:
2761 @smallexample
2762 int old_fn () __attribute__ ((deprecated));
2763 int old_fn ();
2764 int (*fn_ptr)() = old_fn;
2765 @end smallexample
2767 @noindent
2768 results in a warning on line 3 but not line 2.  The optional @var{msg}
2769 argument, which must be a string, is printed in the warning if
2770 present.
2772 The @code{deprecated} attribute can also be used for variables and
2773 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2775 The message attached to the attribute is affected by the setting of
2776 the @option{-fmessage-length} option.
2778 @item error ("@var{message}")
2779 @itemx warning ("@var{message}")
2780 @cindex @code{error} function attribute
2781 @cindex @code{warning} function attribute
2782 If the @code{error} or @code{warning} attribute 
2783 is used on a function declaration and a call to such a function
2784 is not eliminated through dead code elimination or other optimizations, 
2785 an error or warning (respectively) that includes @var{message} is diagnosed.  
2786 This is useful
2787 for compile-time checking, especially together with @code{__builtin_constant_p}
2788 and inline functions where checking the inline function arguments is not
2789 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2791 While it is possible to leave the function undefined and thus invoke
2792 a link failure (to define the function with
2793 a message in @code{.gnu.warning*} section),
2794 when using these attributes the problem is diagnosed
2795 earlier and with exact location of the call even in presence of inline
2796 functions or when not emitting debugging information.
2798 @item externally_visible
2799 @cindex @code{externally_visible} function attribute
2800 This attribute, attached to a global variable or function, nullifies
2801 the effect of the @option{-fwhole-program} command-line option, so the
2802 object remains visible outside the current compilation unit.
2804 If @option{-fwhole-program} is used together with @option{-flto} and 
2805 @command{gold} is used as the linker plugin, 
2806 @code{externally_visible} attributes are automatically added to functions 
2807 (not variable yet due to a current @command{gold} issue) 
2808 that are accessed outside of LTO objects according to resolution file
2809 produced by @command{gold}.
2810 For other linkers that cannot generate resolution file,
2811 explicit @code{externally_visible} attributes are still necessary.
2813 @item flatten
2814 @cindex @code{flatten} function attribute
2815 Generally, inlining into a function is limited.  For a function marked with
2816 this attribute, every call inside this function is inlined, if possible.
2817 Functions declared with attribute @code{noinline} and similar are not
2818 inlined.  Whether the function itself is considered for inlining depends
2819 on its size and the current inlining parameters.
2821 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2822 @cindex @code{format} function attribute
2823 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2824 @opindex Wformat
2825 The @code{format} attribute specifies that a function takes @code{printf},
2826 @code{scanf}, @code{strftime} or @code{strfmon} style arguments that
2827 should be type-checked against a format string.  For example, the
2828 declaration:
2830 @smallexample
2831 extern int
2832 my_printf (void *my_object, const char *my_format, ...)
2833       __attribute__ ((format (printf, 2, 3)));
2834 @end smallexample
2836 @noindent
2837 causes the compiler to check the arguments in calls to @code{my_printf}
2838 for consistency with the @code{printf} style format string argument
2839 @code{my_format}.
2841 The parameter @var{archetype} determines how the format string is
2842 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2843 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2844 @code{strfmon}.  (You can also use @code{__printf__},
2845 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.)  On
2846 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2847 @code{ms_strftime} are also present.
2848 @var{archetype} values such as @code{printf} refer to the formats accepted
2849 by the system's C runtime library,
2850 while values prefixed with @samp{gnu_} always refer
2851 to the formats accepted by the GNU C Library.  On Microsoft Windows
2852 targets, values prefixed with @samp{ms_} refer to the formats accepted by the
2853 @file{msvcrt.dll} library.
2854 The parameter @var{string-index}
2855 specifies which argument is the format string argument (starting
2856 from 1), while @var{first-to-check} is the number of the first
2857 argument to check against the format string.  For functions
2858 where the arguments are not available to be checked (such as
2859 @code{vprintf}), specify the third parameter as zero.  In this case the
2860 compiler only checks the format string for consistency.  For
2861 @code{strftime} formats, the third parameter is required to be zero.
2862 Since non-static C++ methods have an implicit @code{this} argument, the
2863 arguments of such methods should be counted from two, not one, when
2864 giving values for @var{string-index} and @var{first-to-check}.
2866 In the example above, the format string (@code{my_format}) is the second
2867 argument of the function @code{my_print}, and the arguments to check
2868 start with the third argument, so the correct parameters for the format
2869 attribute are 2 and 3.
2871 @opindex ffreestanding
2872 @opindex fno-builtin
2873 The @code{format} attribute allows you to identify your own functions
2874 that take format strings as arguments, so that GCC can check the
2875 calls to these functions for errors.  The compiler always (unless
2876 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2877 for the standard library functions @code{printf}, @code{fprintf},
2878 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2879 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2880 warnings are requested (using @option{-Wformat}), so there is no need to
2881 modify the header file @file{stdio.h}.  In C99 mode, the functions
2882 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2883 @code{vsscanf} are also checked.  Except in strictly conforming C
2884 standard modes, the X/Open function @code{strfmon} is also checked as
2885 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2886 @xref{C Dialect Options,,Options Controlling C Dialect}.
2888 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2889 recognized in the same context.  Declarations including these format attributes
2890 are parsed for correct syntax, however the result of checking of such format
2891 strings is not yet defined, and is not carried out by this version of the
2892 compiler.
2894 The target may also provide additional types of format checks.
2895 @xref{Target Format Checks,,Format Checks Specific to Particular
2896 Target Machines}.
2898 @item format_arg (@var{string-index})
2899 @cindex @code{format_arg} function attribute
2900 @opindex Wformat-nonliteral
2901 The @code{format_arg} attribute specifies that a function takes one or
2902 more format strings for a @code{printf}, @code{scanf}, @code{strftime} or
2903 @code{strfmon} style function and modifies it (for example, to translate
2904 it into another language), so the result can be passed to a
2905 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2906 function (with the remaining arguments to the format function the same
2907 as they would have been for the unmodified string).  Multiple
2908 @code{format_arg} attributes may be applied to the same function, each
2909 designating a distinct parameter as a format string.  For example, the
2910 declaration:
2912 @smallexample
2913 extern char *
2914 my_dgettext (char *my_domain, const char *my_format)
2915       __attribute__ ((format_arg (2)));
2916 @end smallexample
2918 @noindent
2919 causes the compiler to check the arguments in calls to a @code{printf},
2920 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2921 format string argument is a call to the @code{my_dgettext} function, for
2922 consistency with the format string argument @code{my_format}.  If the
2923 @code{format_arg} attribute had not been specified, all the compiler
2924 could tell in such calls to format functions would be that the format
2925 string argument is not constant; this would generate a warning when
2926 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2927 without the attribute.
2929 In calls to a function declared with more than one @code{format_arg}
2930 attribute, each with a distinct argument value, the corresponding
2931 actual function arguments are checked against all format strings
2932 designated by the attributes.  This capability is designed to support
2933 the GNU @code{ngettext} family of functions.
2935 The parameter @var{string-index} specifies which argument is the format
2936 string argument (starting from one).  Since non-static C++ methods have
2937 an implicit @code{this} argument, the arguments of such methods should
2938 be counted from two.
2940 The @code{format_arg} attribute allows you to identify your own
2941 functions that modify format strings, so that GCC can check the
2942 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2943 type function whose operands are a call to one of your own function.
2944 The compiler always treats @code{gettext}, @code{dgettext}, and
2945 @code{dcgettext} in this manner except when strict ISO C support is
2946 requested by @option{-ansi} or an appropriate @option{-std} option, or
2947 @option{-ffreestanding} or @option{-fno-builtin}
2948 is used.  @xref{C Dialect Options,,Options
2949 Controlling C Dialect}.
2951 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2952 @code{NSString} reference for compatibility with the @code{format} attribute
2953 above.
2955 The target may also allow additional types in @code{format-arg} attributes.
2956 @xref{Target Format Checks,,Format Checks Specific to Particular
2957 Target Machines}.
2959 @item gnu_inline
2960 @cindex @code{gnu_inline} function attribute
2961 This attribute should be used with a function that is also declared
2962 with the @code{inline} keyword.  It directs GCC to treat the function
2963 as if it were defined in gnu90 mode even when compiling in C99 or
2964 gnu99 mode.
2966 If the function is declared @code{extern}, then this definition of the
2967 function is used only for inlining.  In no case is the function
2968 compiled as a standalone function, not even if you take its address
2969 explicitly.  Such an address becomes an external reference, as if you
2970 had only declared the function, and had not defined it.  This has
2971 almost the effect of a macro.  The way to use this is to put a
2972 function definition in a header file with this attribute, and put
2973 another copy of the function, without @code{extern}, in a library
2974 file.  The definition in the header file causes most calls to the
2975 function to be inlined.  If any uses of the function remain, they
2976 refer to the single copy in the library.  Note that the two
2977 definitions of the functions need not be precisely the same, although
2978 if they do not have the same effect your program may behave oddly.
2980 In C, if the function is neither @code{extern} nor @code{static}, then
2981 the function is compiled as a standalone function, as well as being
2982 inlined where possible.
2984 This is how GCC traditionally handled functions declared
2985 @code{inline}.  Since ISO C99 specifies a different semantics for
2986 @code{inline}, this function attribute is provided as a transition
2987 measure and as a useful feature in its own right.  This attribute is
2988 available in GCC 4.1.3 and later.  It is available if either of the
2989 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2990 @code{__GNUC_STDC_INLINE__} are defined.  @xref{Inline,,An Inline
2991 Function is As Fast As a Macro}.
2993 In C++, this attribute does not depend on @code{extern} in any way,
2994 but it still requires the @code{inline} keyword to enable its special
2995 behavior.
2997 @item hot
2998 @cindex @code{hot} function attribute
2999 The @code{hot} attribute on a function is used to inform the compiler that
3000 the function is a hot spot of the compiled program.  The function is
3001 optimized more aggressively and on many targets it is placed into a special
3002 subsection of the text section so all hot functions appear close together,
3003 improving locality.
3005 When profile feedback is available, via @option{-fprofile-use}, hot functions
3006 are automatically detected and this attribute is ignored.
3008 @item ifunc ("@var{resolver}")
3009 @cindex @code{ifunc} function attribute
3010 @cindex indirect functions
3011 @cindex functions that are dynamically resolved
3012 The @code{ifunc} attribute is used to mark a function as an indirect
3013 function using the STT_GNU_IFUNC symbol type extension to the ELF
3014 standard.  This allows the resolution of the symbol value to be
3015 determined dynamically at load time, and an optimized version of the
3016 routine to be selected for the particular processor or other system
3017 characteristics determined then.  To use this attribute, first define
3018 the implementation functions available, and a resolver function that
3019 returns a pointer to the selected implementation function.  The
3020 implementation functions' declarations must match the API of the
3021 function being implemented.  The resolver should be declared to
3022 be a function taking no arguments and returning a pointer to
3023 a function of the same type as the implementation.  For example:
3025 @smallexample
3026 void *my_memcpy (void *dst, const void *src, size_t len)
3028   @dots{}
3029   return dst;
3032 static void * (*resolve_memcpy (void))(void *, const void *, size_t)
3034   return my_memcpy; // we will just always select this routine
3036 @end smallexample
3038 @noindent
3039 The exported header file declaring the function the user calls would
3040 contain:
3042 @smallexample
3043 extern void *memcpy (void *, const void *, size_t);
3044 @end smallexample
3046 @noindent
3047 allowing the user to call @code{memcpy} as a regular function, unaware of
3048 the actual implementation.  Finally, the indirect function needs to be
3049 defined in the same translation unit as the resolver function:
3051 @smallexample
3052 void *memcpy (void *, const void *, size_t)
3053      __attribute__ ((ifunc ("resolve_memcpy")));
3054 @end smallexample
3056 In C++, the @code{ifunc} attribute takes a string that is the mangled name
3057 of the resolver function.  A C++ resolver for a non-static member function
3058 of class @code{C} should be declared to return a pointer to a non-member
3059 function taking pointer to @code{C} as the first argument, followed by
3060 the same arguments as of the implementation function.  G++ checks
3061 the signatures of the two functions and issues
3062 a @option{-Wattribute-alias} warning for mismatches.  To suppress a warning
3063 for the necessary cast from a pointer to the implementation member function
3064 to the type of the corresponding non-member function use
3065 the @option{-Wno-pmf-conversions} option.  For example:
3067 @smallexample
3068 class S
3070 private:
3071   int debug_impl (int);
3072   int optimized_impl (int);
3074   typedef int Func (S*, int);
3076   static Func* resolver ();
3077 public:
3079   int interface (int);
3082 int S::debug_impl (int) @{ /* @r{@dots{}} */ @}
3083 int S::optimized_impl (int) @{ /* @r{@dots{}} */ @}
3085 S::Func* S::resolver ()
3087   int (S::*pimpl) (int)
3088     = getenv ("DEBUG") ? &S::debug_impl : &S::optimized_impl;
3090   // Cast triggers -Wno-pmf-conversions.
3091   return reinterpret_cast<Func*>(pimpl);
3094 int S::interface (int) __attribute__ ((ifunc ("_ZN1S8resolverEv")));
3095 @end smallexample
3097 Indirect functions cannot be weak.  Binutils version 2.20.1 or higher
3098 and GNU C Library version 2.11.1 are required to use this feature.
3100 @item interrupt
3101 @itemx interrupt_handler
3102 Many GCC back ends support attributes to indicate that a function is
3103 an interrupt handler, which tells the compiler to generate function
3104 entry and exit sequences that differ from those from regular
3105 functions.  The exact syntax and behavior are target-specific;
3106 refer to the following subsections for details.
3108 @item leaf
3109 @cindex @code{leaf} function attribute
3110 Calls to external functions with this attribute must return to the
3111 current compilation unit only by return or by exception handling.  In
3112 particular, a leaf function is not allowed to invoke callback functions
3113 passed to it from the current compilation unit, directly call functions
3114 exported by the unit, or @code{longjmp} into the unit.  Leaf functions
3115 might still call functions from other compilation units and thus they
3116 are not necessarily leaf in the sense that they contain no function
3117 calls at all.
3119 The attribute is intended for library functions to improve dataflow
3120 analysis.  The compiler takes the hint that any data not escaping the
3121 current compilation unit cannot be used or modified by the leaf
3122 function.  For example, the @code{sin} function is a leaf function, but
3123 @code{qsort} is not.
3125 Note that leaf functions might indirectly run a signal handler defined
3126 in the current compilation unit that uses static variables.  Similarly,
3127 when lazy symbol resolution is in effect, leaf functions might invoke
3128 indirect functions whose resolver function or implementation function is
3129 defined in the current compilation unit and uses static variables.  There
3130 is no standard-compliant way to write such a signal handler, resolver
3131 function, or implementation function, and the best that you can do is to
3132 remove the @code{leaf} attribute or mark all such static variables
3133 @code{volatile}.  Lastly, for ELF-based systems that support symbol
3134 interposition, care should be taken that functions defined in the
3135 current compilation unit do not unexpectedly interpose other symbols
3136 based on the defined standards mode and defined feature test macros;
3137 otherwise an inadvertent callback would be added.
3139 The attribute has no effect on functions defined within the current
3140 compilation unit.  This is to allow easy merging of multiple compilation
3141 units into one, for example, by using the link-time optimization.  For
3142 this reason the attribute is not allowed on types to annotate indirect
3143 calls.
3145 @item malloc
3146 @cindex @code{malloc} function attribute
3147 @cindex functions that behave like malloc
3148 This tells the compiler that a function is @code{malloc}-like, i.e.,
3149 that the pointer @var{P} returned by the function cannot alias any
3150 other pointer valid when the function returns, and moreover no
3151 pointers to valid objects occur in any storage addressed by @var{P}.
3153 Using this attribute can improve optimization.  Compiler predicts
3154 that a function with the attribute returns non-null in most cases.
3155 Functions like
3156 @code{malloc} and @code{calloc} have this property because they return
3157 a pointer to uninitialized or zeroed-out storage.  However, functions
3158 like @code{realloc} do not have this property, as they can return a
3159 pointer to storage containing pointers.
3161 @item no_icf
3162 @cindex @code{no_icf} function attribute
3163 This function attribute prevents a functions from being merged with another
3164 semantically equivalent function.
3166 @item no_instrument_function
3167 @cindex @code{no_instrument_function} function attribute
3168 @opindex finstrument-functions
3169 @opindex p
3170 @opindex pg
3171 If any of @option{-finstrument-functions}, @option{-p}, or @option{-pg} are 
3172 given, profiling function calls are
3173 generated at entry and exit of most user-compiled functions.
3174 Functions with this attribute are not so instrumented.
3176 @item no_profile_instrument_function
3177 @cindex @code{no_profile_instrument_function} function attribute
3178 The @code{no_profile_instrument_function} attribute on functions is used
3179 to inform the compiler that it should not process any profile feedback based
3180 optimization code instrumentation.
3182 @item no_reorder
3183 @cindex @code{no_reorder} function attribute
3184 Do not reorder functions or variables marked @code{no_reorder}
3185 against each other or top level assembler statements the executable.
3186 The actual order in the program will depend on the linker command
3187 line. Static variables marked like this are also not removed.
3188 This has a similar effect
3189 as the @option{-fno-toplevel-reorder} option, but only applies to the
3190 marked symbols.
3192 @item no_sanitize ("@var{sanitize_option}")
3193 @cindex @code{no_sanitize} function attribute
3194 The @code{no_sanitize} attribute on functions is used
3195 to inform the compiler that it should not do sanitization of all options
3196 mentioned in @var{sanitize_option}.  A list of values acceptable by
3197 @option{-fsanitize} option can be provided.
3199 @smallexample
3200 void __attribute__ ((no_sanitize ("alignment", "object-size")))
3201 f () @{ /* @r{Do something.} */; @}
3202 void __attribute__ ((no_sanitize ("alignment,object-size")))
3203 g () @{ /* @r{Do something.} */; @}
3204 @end smallexample
3206 @item no_sanitize_address
3207 @itemx no_address_safety_analysis
3208 @cindex @code{no_sanitize_address} function attribute
3209 The @code{no_sanitize_address} attribute on functions is used
3210 to inform the compiler that it should not instrument memory accesses
3211 in the function when compiling with the @option{-fsanitize=address} option.
3212 The @code{no_address_safety_analysis} is a deprecated alias of the
3213 @code{no_sanitize_address} attribute, new code should use
3214 @code{no_sanitize_address}.
3216 @item no_sanitize_thread
3217 @cindex @code{no_sanitize_thread} function attribute
3218 The @code{no_sanitize_thread} attribute on functions is used
3219 to inform the compiler that it should not instrument memory accesses
3220 in the function when compiling with the @option{-fsanitize=thread} option.
3222 @item no_sanitize_undefined
3223 @cindex @code{no_sanitize_undefined} function attribute
3224 The @code{no_sanitize_undefined} attribute on functions is used
3225 to inform the compiler that it should not check for undefined behavior
3226 in the function when compiling with the @option{-fsanitize=undefined} option.
3228 @item no_split_stack
3229 @cindex @code{no_split_stack} function attribute
3230 @opindex fsplit-stack
3231 If @option{-fsplit-stack} is given, functions have a small
3232 prologue which decides whether to split the stack.  Functions with the
3233 @code{no_split_stack} attribute do not have that prologue, and thus
3234 may run with only a small amount of stack space available.
3236 @item no_stack_limit
3237 @cindex @code{no_stack_limit} function attribute
3238 This attribute locally overrides the @option{-fstack-limit-register}
3239 and @option{-fstack-limit-symbol} command-line options; it has the effect
3240 of disabling stack limit checking in the function it applies to.
3242 @item noclone
3243 @cindex @code{noclone} function attribute
3244 This function attribute prevents a function from being considered for
3245 cloning---a mechanism that produces specialized copies of functions
3246 and which is (currently) performed by interprocedural constant
3247 propagation.
3249 @item noinline
3250 @cindex @code{noinline} function attribute
3251 This function attribute prevents a function from being considered for
3252 inlining.
3253 @c Don't enumerate the optimizations by name here; we try to be
3254 @c future-compatible with this mechanism.
3255 If the function does not have side effects, there are optimizations
3256 other than inlining that cause function calls to be optimized away,
3257 although the function call is live.  To keep such calls from being
3258 optimized away, put
3259 @smallexample
3260 asm ("");
3261 @end smallexample
3263 @noindent
3264 (@pxref{Extended Asm}) in the called function, to serve as a special
3265 side effect.
3267 @item noipa
3268 @cindex @code{noipa} function attribute
3269 Disable interprocedural optimizations between the function with this
3270 attribute and its callers, as if the body of the function is not available
3271 when optimizing callers and the callers are unavailable when optimizing
3272 the body.  This attribute implies @code{noinline}, @code{noclone} and
3273 @code{no_icf} attributes.    However, this attribute is not equivalent
3274 to a combination of other attributes, because its purpose is to suppress
3275 existing and future optimizations employing interprocedural analysis,
3276 including those that do not have an attribute suitable for disabling
3277 them individually.  This attribute is supported mainly for the purpose
3278 of testing the compiler.
3280 @item nonnull
3281 @itemx nonnull (@var{arg-index}, @dots{})
3282 @cindex @code{nonnull} function attribute
3283 @cindex functions with non-null pointer arguments
3284 The @code{nonnull} attribute may be applied to a function that takes at
3285 least one argument of a pointer type.  It indicates that the referenced
3286 arguments must be non-null pointers.  For instance, the declaration:
3288 @smallexample
3289 extern void *
3290 my_memcpy (void *dest, const void *src, size_t len)
3291         __attribute__((nonnull (1, 2)));
3292 @end smallexample
3294 @noindent
3295 causes the compiler to check that, in calls to @code{my_memcpy},
3296 arguments @var{dest} and @var{src} are non-null.  If the compiler
3297 determines that a null pointer is passed in an argument slot marked
3298 as non-null, and the @option{-Wnonnull} option is enabled, a warning
3299 is issued.  @xref{Warning Options}.  Unless disabled by
3300 the @option{-fno-delete-null-pointer-checks} option the compiler may
3301 also perform optimizations based on the knowledge that certain function
3302 arguments cannot be null. In addition,
3303 the @option{-fisolate-erroneous-paths-attribute} option can be specified
3304 to have GCC transform calls with null arguments to non-null functions
3305 into traps. @xref{Optimize Options}.
3307 If no @var{arg-index} is given to the @code{nonnull} attribute,
3308 all pointer arguments are marked as non-null.  To illustrate, the
3309 following declaration is equivalent to the previous example:
3311 @smallexample
3312 extern void *
3313 my_memcpy (void *dest, const void *src, size_t len)
3314         __attribute__((nonnull));
3315 @end smallexample
3317 @item noplt
3318 @cindex @code{noplt} function attribute
3319 The @code{noplt} attribute is the counterpart to option @option{-fno-plt}.
3320 Calls to functions marked with this attribute in position-independent code
3321 do not use the PLT.
3323 @smallexample
3324 @group
3325 /* Externally defined function foo.  */
3326 int foo () __attribute__ ((noplt));
3329 main (/* @r{@dots{}} */)
3331   /* @r{@dots{}} */
3332   foo ();
3333   /* @r{@dots{}} */
3335 @end group
3336 @end smallexample
3338 The @code{noplt} attribute on function @code{foo}
3339 tells the compiler to assume that
3340 the function @code{foo} is externally defined and that the call to
3341 @code{foo} must avoid the PLT
3342 in position-independent code.
3344 In position-dependent code, a few targets also convert calls to
3345 functions that are marked to not use the PLT to use the GOT instead.
3347 @item noreturn
3348 @cindex @code{noreturn} function attribute
3349 @cindex functions that never return
3350 A few standard library functions, such as @code{abort} and @code{exit},
3351 cannot return.  GCC knows this automatically.  Some programs define
3352 their own functions that never return.  You can declare them
3353 @code{noreturn} to tell the compiler this fact.  For example,
3355 @smallexample
3356 @group
3357 void fatal () __attribute__ ((noreturn));
3359 void
3360 fatal (/* @r{@dots{}} */)
3362   /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3363   exit (1);
3365 @end group
3366 @end smallexample
3368 The @code{noreturn} keyword tells the compiler to assume that
3369 @code{fatal} cannot return.  It can then optimize without regard to what
3370 would happen if @code{fatal} ever did return.  This makes slightly
3371 better code.  More importantly, it helps avoid spurious warnings of
3372 uninitialized variables.
3374 The @code{noreturn} keyword does not affect the exceptional path when that
3375 applies: a @code{noreturn}-marked function may still return to the caller
3376 by throwing an exception or calling @code{longjmp}.
3378 In order to preserve backtraces, GCC will never turn calls to
3379 @code{noreturn} functions into tail calls.
3381 Do not assume that registers saved by the calling function are
3382 restored before calling the @code{noreturn} function.
3384 It does not make sense for a @code{noreturn} function to have a return
3385 type other than @code{void}.
3387 @item nothrow
3388 @cindex @code{nothrow} function attribute
3389 The @code{nothrow} attribute is used to inform the compiler that a
3390 function cannot throw an exception.  For example, most functions in
3391 the standard C library can be guaranteed not to throw an exception
3392 with the notable exceptions of @code{qsort} and @code{bsearch} that
3393 take function pointer arguments.
3395 @item optimize (@var{level}, @dots{})
3396 @item optimize (@var{string}, @dots{})
3397 @cindex @code{optimize} function attribute
3398 The @code{optimize} attribute is used to specify that a function is to
3399 be compiled with different optimization options than specified on the
3400 command line.  Valid arguments are constant non-negative integers and
3401 strings.  Each numeric argument specifies an optimization @var{level}.
3402 Each @var{string} argument consists of one or more comma-separated
3403 substrings.  Each substring that begins with the letter @code{O} refers
3404 to an optimization option such as @option{-O0} or @option{-Os}.  Other
3405 substrings are taken as suffixes to the @code{-f} prefix jointly
3406 forming the name of an optimization option.  @xref{Optimize Options}.
3408 @samp{#pragma GCC optimize} can be used to set optimization options
3409 for more than one function.  @xref{Function Specific Option Pragmas},
3410 for details about the pragma.
3412 Providing multiple strings as arguments separated by commas to specify
3413 multiple options is equivalent to separating the option suffixes with
3414 a comma (@samp{,}) within a single string.  Spaces are not permitted
3415 within the strings.
3417 Not every optimization option that starts with the @var{-f} prefix
3418 specified by the attribute necessarily has an effect on the function.
3419 The @code{optimize} attribute should be used for debugging purposes only.
3420 It is not suitable in production code.
3422 @item patchable_function_entry
3423 @cindex @code{patchable_function_entry} function attribute
3424 @cindex extra NOP instructions at the function entry point
3425 In case the target's text segment can be made writable at run time by
3426 any means, padding the function entry with a number of NOPs can be
3427 used to provide a universal tool for instrumentation.
3429 The @code{patchable_function_entry} function attribute can be used to
3430 change the number of NOPs to any desired value.  The two-value syntax
3431 is the same as for the command-line switch
3432 @option{-fpatchable-function-entry=N,M}, generating @var{N} NOPs, with
3433 the function entry point before the @var{M}th NOP instruction.
3434 @var{M} defaults to 0 if omitted e.g.@: function entry point is before
3435 the first NOP.
3437 If patchable function entries are enabled globally using the command-line
3438 option @option{-fpatchable-function-entry=N,M}, then you must disable
3439 instrumentation on all functions that are part of the instrumentation
3440 framework with the attribute @code{patchable_function_entry (0)}
3441 to prevent recursion.
3443 @item pure
3444 @cindex @code{pure} function attribute
3445 @cindex functions that have no side effects
3447 Calls to functions that have no observable effects on the state of
3448 the program other than to return a value may lend themselves to optimizations
3449 such as common subexpression elimination.  Declaring such functions with
3450 the @code{pure} attribute allows GCC to avoid emitting some calls in repeated
3451 invocations of the function with the same argument values.
3453 The @code{pure} attribute prohibits a function from modifying the state
3454 of the program that is observable by means other than inspecting
3455 the function's return value.  However, functions declared with the @code{pure}
3456 attribute can safely read any non-volatile objects, and modify the value of
3457 objects in a way that does not affect their return value or the observable
3458 state of the program.
3460 For example,
3462 @smallexample
3463 int hash (char *) __attribute__ ((pure));
3464 @end smallexample
3466 @noindent
3467 tells GCC that subsequent calls to the function @code{hash} with the same
3468 string can be replaced by the result of the first call provided the state
3469 of the program observable by @code{hash}, including the contents of the array
3470 itself, does not change in between.  Even though @code{hash} takes a non-const
3471 pointer argument it must not modify the array it points to, or any other object
3472 whose value the rest of the program may depend on.  However, the caller may
3473 safely change the contents of the array between successive calls to
3474 the function (doing so disables the optimization).  The restriction also
3475 applies to member objects referenced by the @code{this} pointer in C++
3476 non-static member functions.
3478 Some common examples of pure functions are @code{strlen} or @code{memcmp}.
3479 Interesting non-pure functions are functions with infinite loops or those
3480 depending on volatile memory or other system resource, that may change between
3481 consecutive calls (such as the standard C @code{feof} function in
3482 a multithreading environment).
3484 The @code{pure} attribute imposes similar but looser restrictions on
3485 a function's definition than the @code{const} attribute: @code{pure}
3486 allows the function to read any non-volatile memory, even if it changes
3487 in between successive invocations of the function.  Declaring the same
3488 function with both the @code{pure} and the @code{const} attribute is
3489 diagnosed.  Because a pure function cannot have any observable side
3490 effects it does not make sense for such a function to return @code{void}.
3491 Declaring such a function is diagnosed.
3493 @item returns_nonnull
3494 @cindex @code{returns_nonnull} function attribute
3495 The @code{returns_nonnull} attribute specifies that the function
3496 return value should be a non-null pointer.  For instance, the declaration:
3498 @smallexample
3499 extern void *
3500 mymalloc (size_t len) __attribute__((returns_nonnull));
3501 @end smallexample
3503 @noindent
3504 lets the compiler optimize callers based on the knowledge
3505 that the return value will never be null.
3507 @item returns_twice
3508 @cindex @code{returns_twice} function attribute
3509 @cindex functions that return more than once
3510 The @code{returns_twice} attribute tells the compiler that a function may
3511 return more than one time.  The compiler ensures that all registers
3512 are dead before calling such a function and emits a warning about
3513 the variables that may be clobbered after the second return from the
3514 function.  Examples of such functions are @code{setjmp} and @code{vfork}.
3515 The @code{longjmp}-like counterpart of such function, if any, might need
3516 to be marked with the @code{noreturn} attribute.
3518 @item section ("@var{section-name}")
3519 @cindex @code{section} function attribute
3520 @cindex functions in arbitrary sections
3521 Normally, the compiler places the code it generates in the @code{text} section.
3522 Sometimes, however, you need additional sections, or you need certain
3523 particular functions to appear in special sections.  The @code{section}
3524 attribute specifies that a function lives in a particular section.
3525 For example, the declaration:
3527 @smallexample
3528 extern void foobar (void) __attribute__ ((section ("bar")));
3529 @end smallexample
3531 @noindent
3532 puts the function @code{foobar} in the @code{bar} section.
3534 Some file formats do not support arbitrary sections so the @code{section}
3535 attribute is not available on all platforms.
3536 If you need to map the entire contents of a module to a particular
3537 section, consider using the facilities of the linker instead.
3539 @item sentinel
3540 @itemx sentinel (@var{position})
3541 @cindex @code{sentinel} function attribute
3542 This function attribute indicates that an argument in a call to the function
3543 is expected to be an explicit @code{NULL}.  The attribute is only valid on
3544 variadic functions.  By default, the sentinel is expected to be the last
3545 argument of the function call.  If the optional @var{position} argument
3546 is specified to the attribute, the sentinel must be located at
3547 @var{position} counting backwards from the end of the argument list.
3549 @smallexample
3550 __attribute__ ((sentinel))
3551 is equivalent to
3552 __attribute__ ((sentinel(0)))
3553 @end smallexample
3555 The attribute is automatically set with a position of 0 for the built-in
3556 functions @code{execl} and @code{execlp}.  The built-in function
3557 @code{execle} has the attribute set with a position of 1.
3559 A valid @code{NULL} in this context is defined as zero with any object
3560 pointer type.  If your system defines the @code{NULL} macro with
3561 an integer type then you need to add an explicit cast.  During
3562 installation GCC replaces the system @code{<stddef.h>} header with
3563 a copy that redefines NULL appropriately.
3565 The warnings for missing or incorrect sentinels are enabled with
3566 @option{-Wformat}.
3568 @item simd
3569 @itemx simd("@var{mask}")
3570 @cindex @code{simd} function attribute
3571 This attribute enables creation of one or more function versions that
3572 can process multiple arguments using SIMD instructions from a
3573 single invocation.  Specifying this attribute allows compiler to
3574 assume that such versions are available at link time (provided
3575 in the same or another translation unit).  Generated versions are
3576 target-dependent and described in the corresponding Vector ABI document.  For
3577 x86_64 target this document can be found
3578 @w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}.
3580 The optional argument @var{mask} may have the value
3581 @code{notinbranch} or @code{inbranch},
3582 and instructs the compiler to generate non-masked or masked
3583 clones correspondingly. By default, all clones are generated.
3585 If the attribute is specified and @code{#pragma omp declare simd} is
3586 present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd}
3587 switch is specified, then the attribute is ignored.
3589 @item stack_protect
3590 @cindex @code{stack_protect} function attribute
3591 This attribute adds stack protection code to the function if 
3592 flags @option{-fstack-protector}, @option{-fstack-protector-strong}
3593 or @option{-fstack-protector-explicit} are set.
3595 @item target (@var{string}, @dots{})
3596 @cindex @code{target} function attribute
3597 Multiple target back ends implement the @code{target} attribute
3598 to specify that a function is to
3599 be compiled with different target options than specified on the
3600 command line.  One or more strings can be provided as arguments.
3601 Each string consists of one or more comma-separated suffixes to
3602 the @code{-m} prefix jointly forming the name of a machine-dependent
3603 option.  @xref{Submodel Options,,Machine-Dependent Options}.
3605 The @code{target} attribute can be used for instance to have a function
3606 compiled with a different ISA (instruction set architecture) than the
3607 default.  @samp{#pragma GCC target} can be used to specify target-specific
3608 options for more than one function.  @xref{Function Specific Option Pragmas},
3609 for details about the pragma.
3611 For instance, on an x86, you could declare one function with the
3612 @code{target("sse4.1,arch=core2")} attribute and another with
3613 @code{target("sse4a,arch=amdfam10")}.  This is equivalent to
3614 compiling the first function with @option{-msse4.1} and
3615 @option{-march=core2} options, and the second function with
3616 @option{-msse4a} and @option{-march=amdfam10} options.  It is up to you
3617 to make sure that a function is only invoked on a machine that
3618 supports the particular ISA it is compiled for (for example by using
3619 @code{cpuid} on x86 to determine what feature bits and architecture
3620 family are used).
3622 @smallexample
3623 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3624 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3625 @end smallexample
3627 Providing multiple strings as arguments separated by commas to specify
3628 multiple options is equivalent to separating the option suffixes with
3629 a comma (@samp{,}) within a single string.  Spaces are not permitted
3630 within the strings.
3632 The options supported are specific to each target; refer to @ref{x86
3633 Function Attributes}, @ref{PowerPC Function Attributes},
3634 @ref{ARM Function Attributes}, @ref{AArch64 Function Attributes},
3635 @ref{Nios II Function Attributes}, and @ref{S/390 Function Attributes}
3636 for details.
3638 @item target_clones (@var{options})
3639 @cindex @code{target_clones} function attribute
3640 The @code{target_clones} attribute is used to specify that a function
3641 be cloned into multiple versions compiled with different target options
3642 than specified on the command line.  The supported options and restrictions
3643 are the same as for @code{target} attribute.
3645 For instance, on an x86, you could compile a function with
3646 @code{target_clones("sse4.1,avx")}.  GCC creates two function clones,
3647 one compiled with @option{-msse4.1} and another with @option{-mavx}.
3649 On a PowerPC, you can compile a function with
3650 @code{target_clones("cpu=power9,default")}.  GCC will create two
3651 function clones, one compiled with @option{-mcpu=power9} and another
3652 with the default options.  GCC must be configured to use GLIBC 2.23 or
3653 newer in order to use the @code{target_clones} attribute.
3655 It also creates a resolver function (see
3656 the @code{ifunc} attribute above) that dynamically selects a clone
3657 suitable for current architecture.  The resolver is created only if there
3658 is a usage of a function with @code{target_clones} attribute.
3660 @item unused
3661 @cindex @code{unused} function attribute
3662 This attribute, attached to a function, means that the function is meant
3663 to be possibly unused.  GCC does not produce a warning for this
3664 function.
3666 @item used
3667 @cindex @code{used} function attribute
3668 This attribute, attached to a function, means that code must be emitted
3669 for the function even if it appears that the function is not referenced.
3670 This is useful, for example, when the function is referenced only in
3671 inline assembly.
3673 When applied to a member function of a C++ class template, the
3674 attribute also means that the function is instantiated if the
3675 class itself is instantiated.
3677 @item visibility ("@var{visibility_type}")
3678 @cindex @code{visibility} function attribute
3679 This attribute affects the linkage of the declaration to which it is attached.
3680 It can be applied to variables (@pxref{Common Variable Attributes}) and types
3681 (@pxref{Common Type Attributes}) as well as functions.
3683 There are four supported @var{visibility_type} values: default,
3684 hidden, protected or internal visibility.
3686 @smallexample
3687 void __attribute__ ((visibility ("protected")))
3688 f () @{ /* @r{Do something.} */; @}
3689 int i __attribute__ ((visibility ("hidden")));
3690 @end smallexample
3692 The possible values of @var{visibility_type} correspond to the
3693 visibility settings in the ELF gABI.
3695 @table @code
3696 @c keep this list of visibilities in alphabetical order.
3698 @item default
3699 Default visibility is the normal case for the object file format.
3700 This value is available for the visibility attribute to override other
3701 options that may change the assumed visibility of entities.
3703 On ELF, default visibility means that the declaration is visible to other
3704 modules and, in shared libraries, means that the declared entity may be
3705 overridden.
3707 On Darwin, default visibility means that the declaration is visible to
3708 other modules.
3710 Default visibility corresponds to ``external linkage'' in the language.
3712 @item hidden
3713 Hidden visibility indicates that the entity declared has a new
3714 form of linkage, which we call ``hidden linkage''.  Two
3715 declarations of an object with hidden linkage refer to the same object
3716 if they are in the same shared object.
3718 @item internal
3719 Internal visibility is like hidden visibility, but with additional
3720 processor specific semantics.  Unless otherwise specified by the
3721 psABI, GCC defines internal visibility to mean that a function is
3722 @emph{never} called from another module.  Compare this with hidden
3723 functions which, while they cannot be referenced directly by other
3724 modules, can be referenced indirectly via function pointers.  By
3725 indicating that a function cannot be called from outside the module,
3726 GCC may for instance omit the load of a PIC register since it is known
3727 that the calling function loaded the correct value.
3729 @item protected
3730 Protected visibility is like default visibility except that it
3731 indicates that references within the defining module bind to the
3732 definition in that module.  That is, the declared entity cannot be
3733 overridden by another module.
3735 @end table
3737 All visibilities are supported on many, but not all, ELF targets
3738 (supported when the assembler supports the @samp{.visibility}
3739 pseudo-op).  Default visibility is supported everywhere.  Hidden
3740 visibility is supported on Darwin targets.
3742 The visibility attribute should be applied only to declarations that
3743 would otherwise have external linkage.  The attribute should be applied
3744 consistently, so that the same entity should not be declared with
3745 different settings of the attribute.
3747 In C++, the visibility attribute applies to types as well as functions
3748 and objects, because in C++ types have linkage.  A class must not have
3749 greater visibility than its non-static data member types and bases,
3750 and class members default to the visibility of their class.  Also, a
3751 declaration without explicit visibility is limited to the visibility
3752 of its type.
3754 In C++, you can mark member functions and static member variables of a
3755 class with the visibility attribute.  This is useful if you know a
3756 particular method or static member variable should only be used from
3757 one shared object; then you can mark it hidden while the rest of the
3758 class has default visibility.  Care must be taken to avoid breaking
3759 the One Definition Rule; for example, it is usually not useful to mark
3760 an inline method as hidden without marking the whole class as hidden.
3762 A C++ namespace declaration can also have the visibility attribute.
3764 @smallexample
3765 namespace nspace1 __attribute__ ((visibility ("protected")))
3766 @{ /* @r{Do something.} */; @}
3767 @end smallexample
3769 This attribute applies only to the particular namespace body, not to
3770 other definitions of the same namespace; it is equivalent to using
3771 @samp{#pragma GCC visibility} before and after the namespace
3772 definition (@pxref{Visibility Pragmas}).
3774 In C++, if a template argument has limited visibility, this
3775 restriction is implicitly propagated to the template instantiation.
3776 Otherwise, template instantiations and specializations default to the
3777 visibility of their template.
3779 If both the template and enclosing class have explicit visibility, the
3780 visibility from the template is used.
3782 @item warn_unused_result
3783 @cindex @code{warn_unused_result} function attribute
3784 The @code{warn_unused_result} attribute causes a warning to be emitted
3785 if a caller of the function with this attribute does not use its
3786 return value.  This is useful for functions where not checking
3787 the result is either a security problem or always a bug, such as
3788 @code{realloc}.
3790 @smallexample
3791 int fn () __attribute__ ((warn_unused_result));
3792 int foo ()
3794   if (fn () < 0) return -1;
3795   fn ();
3796   return 0;
3798 @end smallexample
3800 @noindent
3801 results in warning on line 5.
3803 @item weak
3804 @cindex @code{weak} function attribute
3805 The @code{weak} attribute causes the declaration to be emitted as a weak
3806 symbol rather than a global.  This is primarily useful in defining
3807 library functions that can be overridden in user code, though it can
3808 also be used with non-function declarations.  Weak symbols are supported
3809 for ELF targets, and also for a.out targets when using the GNU assembler
3810 and linker.
3812 @item weakref
3813 @itemx weakref ("@var{target}")
3814 @cindex @code{weakref} function attribute
3815 The @code{weakref} attribute marks a declaration as a weak reference.
3816 Without arguments, it should be accompanied by an @code{alias} attribute
3817 naming the target symbol.  Optionally, the @var{target} may be given as
3818 an argument to @code{weakref} itself.  In either case, @code{weakref}
3819 implicitly marks the declaration as @code{weak}.  Without a
3820 @var{target}, given as an argument to @code{weakref} or to @code{alias},
3821 @code{weakref} is equivalent to @code{weak}.
3823 @smallexample
3824 static int x() __attribute__ ((weakref ("y")));
3825 /* is equivalent to... */
3826 static int x() __attribute__ ((weak, weakref, alias ("y")));
3827 /* and to... */
3828 static int x() __attribute__ ((weakref));
3829 static int x() __attribute__ ((alias ("y")));
3830 @end smallexample
3832 A weak reference is an alias that does not by itself require a
3833 definition to be given for the target symbol.  If the target symbol is
3834 only referenced through weak references, then it becomes a @code{weak}
3835 undefined symbol.  If it is directly referenced, however, then such
3836 strong references prevail, and a definition is required for the
3837 symbol, not necessarily in the same translation unit.
3839 The effect is equivalent to moving all references to the alias to a
3840 separate translation unit, renaming the alias to the aliased symbol,
3841 declaring it as weak, compiling the two separate translation units and
3842 performing a link with relocatable output (ie: @code{ld -r}) on them.
3844 At present, a declaration to which @code{weakref} is attached can
3845 only be @code{static}.
3848 @end table
3850 @c This is the end of the target-independent attribute table
3852 @node AArch64 Function Attributes
3853 @subsection AArch64 Function Attributes
3855 The following target-specific function attributes are available for the
3856 AArch64 target.  For the most part, these options mirror the behavior of
3857 similar command-line options (@pxref{AArch64 Options}), but on a
3858 per-function basis.
3860 @table @code
3861 @item general-regs-only
3862 @cindex @code{general-regs-only} function attribute, AArch64
3863 Indicates that no floating-point or Advanced SIMD registers should be
3864 used when generating code for this function.  If the function explicitly
3865 uses floating-point code, then the compiler gives an error.  This is
3866 the same behavior as that of the command-line option
3867 @option{-mgeneral-regs-only}.
3869 @item fix-cortex-a53-835769
3870 @cindex @code{fix-cortex-a53-835769} function attribute, AArch64
3871 Indicates that the workaround for the Cortex-A53 erratum 835769 should be
3872 applied to this function.  To explicitly disable the workaround for this
3873 function specify the negated form: @code{no-fix-cortex-a53-835769}.
3874 This corresponds to the behavior of the command line options
3875 @option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}.
3877 @item cmodel=
3878 @cindex @code{cmodel=} function attribute, AArch64
3879 Indicates that code should be generated for a particular code model for
3880 this function.  The behavior and permissible arguments are the same as
3881 for the command line option @option{-mcmodel=}.
3883 @item strict-align
3884 @itemx no-strict-align
3885 @cindex @code{strict-align} function attribute, AArch64
3886 @code{strict-align} indicates that the compiler should not assume that unaligned
3887 memory references are handled by the system.  To allow the compiler to assume
3888 that aligned memory references are handled by the system, the inverse attribute
3889 @code{no-strict-align} can be specified.  The behavior is same as for the
3890 command-line option @option{-mstrict-align} and @option{-mno-strict-align}.
3892 @item omit-leaf-frame-pointer
3893 @cindex @code{omit-leaf-frame-pointer} function attribute, AArch64
3894 Indicates that the frame pointer should be omitted for a leaf function call.
3895 To keep the frame pointer, the inverse attribute
3896 @code{no-omit-leaf-frame-pointer} can be specified.  These attributes have
3897 the same behavior as the command-line options @option{-momit-leaf-frame-pointer}
3898 and @option{-mno-omit-leaf-frame-pointer}.
3900 @item tls-dialect=
3901 @cindex @code{tls-dialect=} function attribute, AArch64
3902 Specifies the TLS dialect to use for this function.  The behavior and
3903 permissible arguments are the same as for the command-line option
3904 @option{-mtls-dialect=}.
3906 @item arch=
3907 @cindex @code{arch=} function attribute, AArch64
3908 Specifies the architecture version and architectural extensions to use
3909 for this function.  The behavior and permissible arguments are the same as
3910 for the @option{-march=} command-line option.
3912 @item tune=
3913 @cindex @code{tune=} function attribute, AArch64
3914 Specifies the core for which to tune the performance of this function.
3915 The behavior and permissible arguments are the same as for the @option{-mtune=}
3916 command-line option.
3918 @item cpu=
3919 @cindex @code{cpu=} function attribute, AArch64
3920 Specifies the core for which to tune the performance of this function and also
3921 whose architectural features to use.  The behavior and valid arguments are the
3922 same as for the @option{-mcpu=} command-line option.
3924 @item sign-return-address
3925 @cindex @code{sign-return-address} function attribute, AArch64
3926 Select the function scope on which return address signing will be applied.  The
3927 behavior and permissible arguments are the same as for the command-line option
3928 @option{-msign-return-address=}.  The default value is @code{none}.  This
3929 attribute is deprecated.  The @code{branch-protection} attribute should
3930 be used instead.
3932 @item branch-protection
3933 @cindex @code{branch-protection} function attribute, AArch64
3934 Select the function scope on which branch protection will be applied.  The
3935 behavior and permissible arguments are the same as for the command-line option
3936 @option{-mbranch-protection=}.  The default value is @code{none}.
3938 @end table
3940 The above target attributes can be specified as follows:
3942 @smallexample
3943 __attribute__((target("@var{attr-string}")))
3945 f (int a)
3947   return a + 5;
3949 @end smallexample
3951 where @code{@var{attr-string}} is one of the attribute strings specified above.
3953 Additionally, the architectural extension string may be specified on its
3954 own.  This can be used to turn on and off particular architectural extensions
3955 without having to specify a particular architecture version or core.  Example:
3957 @smallexample
3958 __attribute__((target("+crc+nocrypto")))
3960 foo (int a)
3962   return a + 5;
3964 @end smallexample
3966 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
3967 extension and disables the @code{crypto} extension for the function @code{foo}
3968 without modifying an existing @option{-march=} or @option{-mcpu} option.
3970 Multiple target function attributes can be specified by separating them with
3971 a comma.  For example:
3972 @smallexample
3973 __attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
3975 foo (int a)
3977   return a + 5;
3979 @end smallexample
3981 is valid and compiles function @code{foo} for ARMv8-A with @code{crc}
3982 and @code{crypto} extensions and tunes it for @code{cortex-a53}.
3984 @subsubsection Inlining rules
3985 Specifying target attributes on individual functions or performing link-time
3986 optimization across translation units compiled with different target options
3987 can affect function inlining rules:
3989 In particular, a caller function can inline a callee function only if the
3990 architectural features available to the callee are a subset of the features
3991 available to the caller.
3992 For example: A function @code{foo} compiled with @option{-march=armv8-a+crc},
3993 or tagged with the equivalent @code{arch=armv8-a+crc} attribute,
3994 can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc}
3995 because the all the architectural features that function @code{bar} requires
3996 are available to function @code{foo}.  Conversely, function @code{bar} cannot
3997 inline function @code{foo}.
3999 Additionally inlining a function compiled with @option{-mstrict-align} into a
4000 function compiled without @code{-mstrict-align} is not allowed.
4001 However, inlining a function compiled without @option{-mstrict-align} into a
4002 function compiled with @option{-mstrict-align} is allowed.
4004 Note that CPU tuning options and attributes such as the @option{-mcpu=},
4005 @option{-mtune=} do not inhibit inlining unless the CPU specified by the
4006 @option{-mcpu=} option or the @code{cpu=} attribute conflicts with the
4007 architectural feature rules specified above.
4009 @node AMD GCN Function Attributes
4010 @subsection AMD GCN Function Attributes
4012 These function attributes are supported by the AMD GCN back end:
4014 @table @code
4015 @item amdgpu_hsa_kernel
4016 @cindex @code{amdgpu_hsa_kernel} function attribute, AMD GCN
4017 This attribute indicates that the corresponding function should be compiled as
4018 a kernel function, that is an entry point that can be invoked from the host
4019 via the HSA runtime library.  By default functions are only callable only from
4020 other GCN functions.
4022 This attribute is implicitly applied to any function named @code{main}, using
4023 default parameters.
4025 Kernel functions may return an integer value, which will be written to a
4026 conventional place within the HSA "kernargs" region.
4028 The attribute parameters configure what values are passed into the kernel
4029 function by the GPU drivers, via the initial register state.  Some values are
4030 used by the compiler, and therefore forced on.  Enabling other options may
4031 break assumptions in the compiler and/or run-time libraries.
4033 @table @code
4034 @item private_segment_buffer
4035 Set @code{enable_sgpr_private_segment_buffer} flag.  Always on (required to
4036 locate the stack).
4038 @item dispatch_ptr
4039 Set @code{enable_sgpr_dispatch_ptr} flag.  Always on (required to locate the
4040 launch dimensions).
4042 @item queue_ptr
4043 Set @code{enable_sgpr_queue_ptr} flag.  Always on (required to convert address
4044 spaces).
4046 @item kernarg_segment_ptr
4047 Set @code{enable_sgpr_kernarg_segment_ptr} flag.  Always on (required to
4048 locate the kernel arguments, "kernargs").
4050 @item dispatch_id
4051 Set @code{enable_sgpr_dispatch_id} flag.
4053 @item flat_scratch_init
4054 Set @code{enable_sgpr_flat_scratch_init} flag.
4056 @item private_segment_size
4057 Set @code{enable_sgpr_private_segment_size} flag.
4059 @item grid_workgroup_count_X
4060 Set @code{enable_sgpr_grid_workgroup_count_x} flag.  Always on (required to
4061 use OpenACC/OpenMP).
4063 @item grid_workgroup_count_Y
4064 Set @code{enable_sgpr_grid_workgroup_count_y} flag.
4066 @item grid_workgroup_count_Z
4067 Set @code{enable_sgpr_grid_workgroup_count_z} flag.
4069 @item workgroup_id_X
4070 Set @code{enable_sgpr_workgroup_id_x} flag.
4072 @item workgroup_id_Y
4073 Set @code{enable_sgpr_workgroup_id_y} flag.
4075 @item workgroup_id_Z
4076 Set @code{enable_sgpr_workgroup_id_z} flag.
4078 @item workgroup_info
4079 Set @code{enable_sgpr_workgroup_info} flag.
4081 @item private_segment_wave_offset
4082 Set @code{enable_sgpr_private_segment_wave_byte_offset} flag.  Always on
4083 (required to locate the stack).
4085 @item work_item_id_X
4086 Set @code{enable_vgpr_workitem_id} parameter.  Always on (can't be disabled).
4088 @item work_item_id_Y
4089 Set @code{enable_vgpr_workitem_id} parameter.  Always on (required to enable
4090 vectorization.)
4092 @item work_item_id_Z
4093 Set @code{enable_vgpr_workitem_id} parameter.  Always on (required to use
4094 OpenACC/OpenMP).
4096 @end table
4097 @end table
4099 @node ARC Function Attributes
4100 @subsection ARC Function Attributes
4102 These function attributes are supported by the ARC back end:
4104 @table @code
4105 @item interrupt
4106 @cindex @code{interrupt} function attribute, ARC
4107 Use this attribute to indicate
4108 that the specified function is an interrupt handler.  The compiler generates
4109 function entry and exit sequences suitable for use in an interrupt handler
4110 when this attribute is present.
4112 On the ARC, you must specify the kind of interrupt to be handled
4113 in a parameter to the interrupt attribute like this:
4115 @smallexample
4116 void f () __attribute__ ((interrupt ("ilink1")));
4117 @end smallexample
4119 Permissible values for this parameter are: @w{@code{ilink1}} and
4120 @w{@code{ilink2}}.
4122 @item long_call
4123 @itemx medium_call
4124 @itemx short_call
4125 @cindex @code{long_call} function attribute, ARC
4126 @cindex @code{medium_call} function attribute, ARC
4127 @cindex @code{short_call} function attribute, ARC
4128 @cindex indirect calls, ARC
4129 These attributes specify how a particular function is called.
4130 These attributes override the
4131 @option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options})
4132 command-line switches and @code{#pragma long_calls} settings.
4134 For ARC, a function marked with the @code{long_call} attribute is
4135 always called using register-indirect jump-and-link instructions,
4136 thereby enabling the called function to be placed anywhere within the
4137 32-bit address space.  A function marked with the @code{medium_call}
4138 attribute will always be close enough to be called with an unconditional
4139 branch-and-link instruction, which has a 25-bit offset from
4140 the call site.  A function marked with the @code{short_call}
4141 attribute will always be close enough to be called with a conditional
4142 branch-and-link instruction, which has a 21-bit offset from
4143 the call site.
4145 @item jli_always
4146 @cindex @code{jli_always} function attribute, ARC
4147 Forces a particular function to be called using @code{jli}
4148 instruction.  The @code{jli} instruction makes use of a table stored
4149 into @code{.jlitab} section, which holds the location of the functions
4150 which are addressed using this instruction.
4152 @item jli_fixed
4153 @cindex @code{jli_fixed} function attribute, ARC
4154 Identical like the above one, but the location of the function in the
4155 @code{jli} table is known and given as an attribute parameter.
4157 @item secure_call
4158 @cindex @code{secure_call} function attribute, ARC
4159 This attribute allows one to mark secure-code functions that are
4160 callable from normal mode.  The location of the secure call function
4161 into the @code{sjli} table needs to be passed as argument.
4163 @end table
4165 @node ARM Function Attributes
4166 @subsection ARM Function Attributes
4168 These function attributes are supported for ARM targets:
4170 @table @code
4171 @item interrupt
4172 @cindex @code{interrupt} function attribute, ARM
4173 Use this attribute to indicate
4174 that the specified function is an interrupt handler.  The compiler generates
4175 function entry and exit sequences suitable for use in an interrupt handler
4176 when this attribute is present.
4178 You can specify the kind of interrupt to be handled by
4179 adding an optional parameter to the interrupt attribute like this:
4181 @smallexample
4182 void f () __attribute__ ((interrupt ("IRQ")));
4183 @end smallexample
4185 @noindent
4186 Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
4187 @code{SWI}, @code{ABORT} and @code{UNDEF}.
4189 On ARMv7-M the interrupt type is ignored, and the attribute means the function
4190 may be called with a word-aligned stack pointer.
4192 @item isr
4193 @cindex @code{isr} function attribute, ARM
4194 Use this attribute on ARM to write Interrupt Service Routines. This is an
4195 alias to the @code{interrupt} attribute above.
4197 @item long_call
4198 @itemx short_call
4199 @cindex @code{long_call} function attribute, ARM
4200 @cindex @code{short_call} function attribute, ARM
4201 @cindex indirect calls, ARM
4202 These attributes specify how a particular function is called.
4203 These attributes override the
4204 @option{-mlong-calls} (@pxref{ARM Options})
4205 command-line switch and @code{#pragma long_calls} settings.  For ARM, the
4206 @code{long_call} attribute indicates that the function might be far
4207 away from the call site and require a different (more expensive)
4208 calling sequence.   The @code{short_call} attribute always places
4209 the offset to the function from the call site into the @samp{BL}
4210 instruction directly.
4212 @item naked
4213 @cindex @code{naked} function attribute, ARM
4214 This attribute allows the compiler to construct the
4215 requisite function declaration, while allowing the body of the
4216 function to be assembly code. The specified function will not have
4217 prologue/epilogue sequences generated by the compiler. Only basic
4218 @code{asm} statements can safely be included in naked functions
4219 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4220 basic @code{asm} and C code may appear to work, they cannot be
4221 depended upon to work reliably and are not supported.
4223 @item pcs
4224 @cindex @code{pcs} function attribute, ARM
4226 The @code{pcs} attribute can be used to control the calling convention
4227 used for a function on ARM.  The attribute takes an argument that specifies
4228 the calling convention to use.
4230 When compiling using the AAPCS ABI (or a variant of it) then valid
4231 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}.  In
4232 order to use a variant other than @code{"aapcs"} then the compiler must
4233 be permitted to use the appropriate co-processor registers (i.e., the
4234 VFP registers must be available in order to use @code{"aapcs-vfp"}).
4235 For example,
4237 @smallexample
4238 /* Argument passed in r0, and result returned in r0+r1.  */
4239 double f2d (float) __attribute__((pcs("aapcs")));
4240 @end smallexample
4242 Variadic functions always use the @code{"aapcs"} calling convention and
4243 the compiler rejects attempts to specify an alternative.
4245 @item target (@var{options})
4246 @cindex @code{target} function attribute
4247 As discussed in @ref{Common Function Attributes}, this attribute 
4248 allows specification of target-specific compilation options.
4250 On ARM, the following options are allowed:
4252 @table @samp
4253 @item thumb
4254 @cindex @code{target("thumb")} function attribute, ARM
4255 Force code generation in the Thumb (T16/T32) ISA, depending on the
4256 architecture level.
4258 @item arm
4259 @cindex @code{target("arm")} function attribute, ARM
4260 Force code generation in the ARM (A32) ISA.
4262 Functions from different modes can be inlined in the caller's mode.
4264 @item fpu=
4265 @cindex @code{target("fpu=")} function attribute, ARM
4266 Specifies the fpu for which to tune the performance of this function.
4267 The behavior and permissible arguments are the same as for the @option{-mfpu=}
4268 command-line option.
4270 @item arch=
4271 @cindex @code{arch=} function attribute, ARM
4272 Specifies the architecture version and architectural extensions to use
4273 for this function.  The behavior and permissible arguments are the same as
4274 for the @option{-march=} command-line option.
4276 The above target attributes can be specified as follows:
4278 @smallexample
4279 __attribute__((target("arch=armv8-a+crc")))
4281 f (int a)
4283   return a + 5;
4285 @end smallexample
4287 Additionally, the architectural extension string may be specified on its
4288 own.  This can be used to turn on and off particular architectural extensions
4289 without having to specify a particular architecture version or core.  Example:
4291 @smallexample
4292 __attribute__((target("+crc+nocrypto")))
4294 foo (int a)
4296   return a + 5;
4298 @end smallexample
4300 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
4301 extension and disables the @code{crypto} extension for the function @code{foo}
4302 without modifying an existing @option{-march=} or @option{-mcpu} option.
4304 @end table
4306 @end table
4308 @node AVR Function Attributes
4309 @subsection AVR Function Attributes
4311 These function attributes are supported by the AVR back end:
4313 @table @code
4314 @item interrupt
4315 @cindex @code{interrupt} function attribute, AVR
4316 Use this attribute to indicate
4317 that the specified function is an interrupt handler.  The compiler generates
4318 function entry and exit sequences suitable for use in an interrupt handler
4319 when this attribute is present.
4321 On the AVR, the hardware globally disables interrupts when an
4322 interrupt is executed.  The first instruction of an interrupt handler
4323 declared with this attribute is a @code{SEI} instruction to
4324 re-enable interrupts.  See also the @code{signal} function attribute
4325 that does not insert a @code{SEI} instruction.  If both @code{signal} and
4326 @code{interrupt} are specified for the same function, @code{signal}
4327 is silently ignored.
4329 @item naked
4330 @cindex @code{naked} function attribute, AVR
4331 This attribute allows the compiler to construct the
4332 requisite function declaration, while allowing the body of the
4333 function to be assembly code. The specified function will not have
4334 prologue/epilogue sequences generated by the compiler. Only basic
4335 @code{asm} statements can safely be included in naked functions
4336 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4337 basic @code{asm} and C code may appear to work, they cannot be
4338 depended upon to work reliably and are not supported.
4340 @item no_gccisr
4341 @cindex @code{no_gccisr} function attribute, AVR
4342 Do not use @code{__gcc_isr} pseudo instructions in a function with
4343 the @code{interrupt} or @code{signal} attribute aka. interrupt
4344 service routine (ISR).
4345 Use this attribute if the preamble of the ISR prologue should always read
4346 @example
4347 push  __zero_reg__
4348 push  __tmp_reg__
4349 in    __tmp_reg__, __SREG__
4350 push  __tmp_reg__
4351 clr   __zero_reg__
4352 @end example
4353 and accordingly for the postamble of the epilogue --- no matter whether
4354 the mentioned registers are actually used in the ISR or not.
4355 Situations where you might want to use this attribute include:
4356 @itemize @bullet
4357 @item
4358 Code that (effectively) clobbers bits of @code{SREG} other than the
4359 @code{I}-flag by writing to the memory location of @code{SREG}.
4360 @item
4361 Code that uses inline assembler to jump to a different function which
4362 expects (parts of) the prologue code as outlined above to be present.
4363 @end itemize
4364 To disable @code{__gcc_isr} generation for the whole compilation unit,
4365 there is option @option{-mno-gas-isr-prologues}, @pxref{AVR Options}.
4367 @item OS_main
4368 @itemx OS_task
4369 @cindex @code{OS_main} function attribute, AVR
4370 @cindex @code{OS_task} function attribute, AVR
4371 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
4372 do not save/restore any call-saved register in their prologue/epilogue.
4374 The @code{OS_main} attribute can be used when there @emph{is
4375 guarantee} that interrupts are disabled at the time when the function
4376 is entered.  This saves resources when the stack pointer has to be
4377 changed to set up a frame for local variables.
4379 The @code{OS_task} attribute can be used when there is @emph{no
4380 guarantee} that interrupts are disabled at that time when the function
4381 is entered like for, e@.g@. task functions in a multi-threading operating
4382 system. In that case, changing the stack pointer register is
4383 guarded by save/clear/restore of the global interrupt enable flag.
4385 The differences to the @code{naked} function attribute are:
4386 @itemize @bullet
4387 @item @code{naked} functions do not have a return instruction whereas 
4388 @code{OS_main} and @code{OS_task} functions have a @code{RET} or
4389 @code{RETI} return instruction.
4390 @item @code{naked} functions do not set up a frame for local variables
4391 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
4392 as needed.
4393 @end itemize
4395 @item signal
4396 @cindex @code{signal} function attribute, AVR
4397 Use this attribute on the AVR to indicate that the specified
4398 function is an interrupt handler.  The compiler generates function
4399 entry and exit sequences suitable for use in an interrupt handler when this
4400 attribute is present.
4402 See also the @code{interrupt} function attribute. 
4404 The AVR hardware globally disables interrupts when an interrupt is executed.
4405 Interrupt handler functions defined with the @code{signal} attribute
4406 do not re-enable interrupts.  It is save to enable interrupts in a
4407 @code{signal} handler.  This ``save'' only applies to the code
4408 generated by the compiler and not to the IRQ layout of the
4409 application which is responsibility of the application.
4411 If both @code{signal} and @code{interrupt} are specified for the same
4412 function, @code{signal} is silently ignored.
4413 @end table
4415 @node Blackfin Function Attributes
4416 @subsection Blackfin Function Attributes
4418 These function attributes are supported by the Blackfin back end:
4420 @table @code
4422 @item exception_handler
4423 @cindex @code{exception_handler} function attribute
4424 @cindex exception handler functions, Blackfin
4425 Use this attribute on the Blackfin to indicate that the specified function
4426 is an exception handler.  The compiler generates function entry and
4427 exit sequences suitable for use in an exception handler when this
4428 attribute is present.
4430 @item interrupt_handler
4431 @cindex @code{interrupt_handler} function attribute, Blackfin
4432 Use this attribute to
4433 indicate that the specified function is an interrupt handler.  The compiler
4434 generates function entry and exit sequences suitable for use in an
4435 interrupt handler when this attribute is present.
4437 @item kspisusp
4438 @cindex @code{kspisusp} function attribute, Blackfin
4439 @cindex User stack pointer in interrupts on the Blackfin
4440 When used together with @code{interrupt_handler}, @code{exception_handler}
4441 or @code{nmi_handler}, code is generated to load the stack pointer
4442 from the USP register in the function prologue.
4444 @item l1_text
4445 @cindex @code{l1_text} function attribute, Blackfin
4446 This attribute specifies a function to be placed into L1 Instruction
4447 SRAM@. The function is put into a specific section named @code{.l1.text}.
4448 With @option{-mfdpic}, function calls with a such function as the callee
4449 or caller uses inlined PLT.
4451 @item l2
4452 @cindex @code{l2} function attribute, Blackfin
4453 This attribute specifies a function to be placed into L2
4454 SRAM. The function is put into a specific section named
4455 @code{.l2.text}. With @option{-mfdpic}, callers of such functions use
4456 an inlined PLT.
4458 @item longcall
4459 @itemx shortcall
4460 @cindex indirect calls, Blackfin
4461 @cindex @code{longcall} function attribute, Blackfin
4462 @cindex @code{shortcall} function attribute, Blackfin
4463 The @code{longcall} attribute
4464 indicates that the function might be far away from the call site and
4465 require a different (more expensive) calling sequence.  The
4466 @code{shortcall} attribute indicates that the function is always close
4467 enough for the shorter calling sequence to be used.  These attributes
4468 override the @option{-mlongcall} switch.
4470 @item nesting
4471 @cindex @code{nesting} function attribute, Blackfin
4472 @cindex Allow nesting in an interrupt handler on the Blackfin processor
4473 Use this attribute together with @code{interrupt_handler},
4474 @code{exception_handler} or @code{nmi_handler} to indicate that the function
4475 entry code should enable nested interrupts or exceptions.
4477 @item nmi_handler
4478 @cindex @code{nmi_handler} function attribute, Blackfin
4479 @cindex NMI handler functions on the Blackfin processor
4480 Use this attribute on the Blackfin to indicate that the specified function
4481 is an NMI handler.  The compiler generates function entry and
4482 exit sequences suitable for use in an NMI handler when this
4483 attribute is present.
4485 @item saveall
4486 @cindex @code{saveall} function attribute, Blackfin
4487 @cindex save all registers on the Blackfin
4488 Use this attribute to indicate that
4489 all registers except the stack pointer should be saved in the prologue
4490 regardless of whether they are used or not.
4491 @end table
4493 @node CR16 Function Attributes
4494 @subsection CR16 Function Attributes
4496 These function attributes are supported by the CR16 back end:
4498 @table @code
4499 @item interrupt
4500 @cindex @code{interrupt} function attribute, CR16
4501 Use this attribute to indicate
4502 that the specified function is an interrupt handler.  The compiler generates
4503 function entry and exit sequences suitable for use in an interrupt handler
4504 when this attribute is present.
4505 @end table
4507 @node C-SKY Function Attributes
4508 @subsection C-SKY Function Attributes
4510 These function attributes are supported by the C-SKY back end:
4512 @table @code
4513 @item interrupt
4514 @itemx isr
4515 @cindex @code{interrupt} function attribute, C-SKY
4516 @cindex @code{isr} function attribute, C-SKY
4517 Use these attributes to indicate that the specified function
4518 is an interrupt handler.
4519 The compiler generates function entry and exit sequences suitable for
4520 use in an interrupt handler when either of these attributes are present.
4522 Use of these options requires the @option{-mistack} command-line option
4523 to enable support for the necessary interrupt stack instructions.  They
4524 are ignored with a warning otherwise.  @xref{C-SKY Options}.
4526 @item naked
4527 @cindex @code{naked} function attribute, C-SKY
4528 This attribute allows the compiler to construct the
4529 requisite function declaration, while allowing the body of the
4530 function to be assembly code. The specified function will not have
4531 prologue/epilogue sequences generated by the compiler. Only basic
4532 @code{asm} statements can safely be included in naked functions
4533 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4534 basic @code{asm} and C code may appear to work, they cannot be
4535 depended upon to work reliably and are not supported.
4536 @end table
4539 @node Epiphany Function Attributes
4540 @subsection Epiphany Function Attributes
4542 These function attributes are supported by the Epiphany back end:
4544 @table @code
4545 @item disinterrupt
4546 @cindex @code{disinterrupt} function attribute, Epiphany
4547 This attribute causes the compiler to emit
4548 instructions to disable interrupts for the duration of the given
4549 function.
4551 @item forwarder_section
4552 @cindex @code{forwarder_section} function attribute, Epiphany
4553 This attribute modifies the behavior of an interrupt handler.
4554 The interrupt handler may be in external memory which cannot be
4555 reached by a branch instruction, so generate a local memory trampoline
4556 to transfer control.  The single parameter identifies the section where
4557 the trampoline is placed.
4559 @item interrupt
4560 @cindex @code{interrupt} function attribute, Epiphany
4561 Use this attribute to indicate
4562 that the specified function is an interrupt handler.  The compiler generates
4563 function entry and exit sequences suitable for use in an interrupt handler
4564 when this attribute is present.  It may also generate
4565 a special section with code to initialize the interrupt vector table.
4567 On Epiphany targets one or more optional parameters can be added like this:
4569 @smallexample
4570 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
4571 @end smallexample
4573 Permissible values for these parameters are: @w{@code{reset}},
4574 @w{@code{software_exception}}, @w{@code{page_miss}},
4575 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
4576 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
4577 Multiple parameters indicate that multiple entries in the interrupt
4578 vector table should be initialized for this function, i.e.@: for each
4579 parameter @w{@var{name}}, a jump to the function is emitted in
4580 the section @w{ivt_entry_@var{name}}.  The parameter(s) may be omitted
4581 entirely, in which case no interrupt vector table entry is provided.
4583 Note that interrupts are enabled inside the function
4584 unless the @code{disinterrupt} attribute is also specified.
4586 The following examples are all valid uses of these attributes on
4587 Epiphany targets:
4588 @smallexample
4589 void __attribute__ ((interrupt)) universal_handler ();
4590 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
4591 void __attribute__ ((interrupt ("dma0, dma1"))) 
4592   universal_dma_handler ();
4593 void __attribute__ ((interrupt ("timer0"), disinterrupt))
4594   fast_timer_handler ();
4595 void __attribute__ ((interrupt ("dma0, dma1"), 
4596                      forwarder_section ("tramp")))
4597   external_dma_handler ();
4598 @end smallexample
4600 @item long_call
4601 @itemx short_call
4602 @cindex @code{long_call} function attribute, Epiphany
4603 @cindex @code{short_call} function attribute, Epiphany
4604 @cindex indirect calls, Epiphany
4605 These attributes specify how a particular function is called.
4606 These attributes override the
4607 @option{-mlong-calls} (@pxref{Adapteva Epiphany Options})
4608 command-line switch and @code{#pragma long_calls} settings.
4609 @end table
4612 @node H8/300 Function Attributes
4613 @subsection H8/300 Function Attributes
4615 These function attributes are available for H8/300 targets:
4617 @table @code
4618 @item function_vector
4619 @cindex @code{function_vector} function attribute, H8/300
4620 Use this attribute on the H8/300, H8/300H, and H8S to indicate 
4621 that the specified function should be called through the function vector.
4622 Calling a function through the function vector reduces code size; however,
4623 the function vector has a limited size (maximum 128 entries on the H8/300
4624 and 64 entries on the H8/300H and H8S)
4625 and shares space with the interrupt vector.
4627 @item interrupt_handler
4628 @cindex @code{interrupt_handler} function attribute, H8/300
4629 Use this attribute on the H8/300, H8/300H, and H8S to
4630 indicate that the specified function is an interrupt handler.  The compiler
4631 generates function entry and exit sequences suitable for use in an
4632 interrupt handler when this attribute is present.
4634 @item saveall
4635 @cindex @code{saveall} function attribute, H8/300
4636 @cindex save all registers on the H8/300, H8/300H, and H8S
4637 Use this attribute on the H8/300, H8/300H, and H8S to indicate that
4638 all registers except the stack pointer should be saved in the prologue
4639 regardless of whether they are used or not.
4640 @end table
4642 @node IA-64 Function Attributes
4643 @subsection IA-64 Function Attributes
4645 These function attributes are supported on IA-64 targets:
4647 @table @code
4648 @item syscall_linkage
4649 @cindex @code{syscall_linkage} function attribute, IA-64
4650 This attribute is used to modify the IA-64 calling convention by marking
4651 all input registers as live at all function exits.  This makes it possible
4652 to restart a system call after an interrupt without having to save/restore
4653 the input registers.  This also prevents kernel data from leaking into
4654 application code.
4656 @item version_id
4657 @cindex @code{version_id} function attribute, IA-64
4658 This IA-64 HP-UX attribute, attached to a global variable or function, renames a
4659 symbol to contain a version string, thus allowing for function level
4660 versioning.  HP-UX system header files may use function level versioning
4661 for some system calls.
4663 @smallexample
4664 extern int foo () __attribute__((version_id ("20040821")));
4665 @end smallexample
4667 @noindent
4668 Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}.
4669 @end table
4671 @node M32C Function Attributes
4672 @subsection M32C Function Attributes
4674 These function attributes are supported by the M32C back end:
4676 @table @code
4677 @item bank_switch
4678 @cindex @code{bank_switch} function attribute, M32C
4679 When added to an interrupt handler with the M32C port, causes the
4680 prologue and epilogue to use bank switching to preserve the registers
4681 rather than saving them on the stack.
4683 @item fast_interrupt
4684 @cindex @code{fast_interrupt} function attribute, M32C
4685 Use this attribute on the M32C port to indicate that the specified
4686 function is a fast interrupt handler.  This is just like the
4687 @code{interrupt} attribute, except that @code{freit} is used to return
4688 instead of @code{reit}.
4690 @item function_vector
4691 @cindex @code{function_vector} function attribute, M16C/M32C
4692 On M16C/M32C targets, the @code{function_vector} attribute declares a
4693 special page subroutine call function. Use of this attribute reduces
4694 the code size by 2 bytes for each call generated to the
4695 subroutine. The argument to the attribute is the vector number entry
4696 from the special page vector table which contains the 16 low-order
4697 bits of the subroutine's entry address. Each vector table has special
4698 page number (18 to 255) that is used in @code{jsrs} instructions.
4699 Jump addresses of the routines are generated by adding 0x0F0000 (in
4700 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
4701 2-byte addresses set in the vector table. Therefore you need to ensure
4702 that all the special page vector routines should get mapped within the
4703 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
4704 (for M32C).
4706 In the following example 2 bytes are saved for each call to
4707 function @code{foo}.
4709 @smallexample
4710 void foo (void) __attribute__((function_vector(0x18)));
4711 void foo (void)
4715 void bar (void)
4717     foo();
4719 @end smallexample
4721 If functions are defined in one file and are called in another file,
4722 then be sure to write this declaration in both files.
4724 This attribute is ignored for R8C target.
4726 @item interrupt
4727 @cindex @code{interrupt} function attribute, M32C
4728 Use this attribute to indicate
4729 that the specified function is an interrupt handler.  The compiler generates
4730 function entry and exit sequences suitable for use in an interrupt handler
4731 when this attribute is present.
4732 @end table
4734 @node M32R/D Function Attributes
4735 @subsection M32R/D Function Attributes
4737 These function attributes are supported by the M32R/D back end:
4739 @table @code
4740 @item interrupt
4741 @cindex @code{interrupt} function attribute, M32R/D
4742 Use this attribute to indicate
4743 that the specified function is an interrupt handler.  The compiler generates
4744 function entry and exit sequences suitable for use in an interrupt handler
4745 when this attribute is present.
4747 @item model (@var{model-name})
4748 @cindex @code{model} function attribute, M32R/D
4749 @cindex function addressability on the M32R/D
4751 On the M32R/D, use this attribute to set the addressability of an
4752 object, and of the code generated for a function.  The identifier
4753 @var{model-name} is one of @code{small}, @code{medium}, or
4754 @code{large}, representing each of the code models.
4756 Small model objects live in the lower 16MB of memory (so that their
4757 addresses can be loaded with the @code{ld24} instruction), and are
4758 callable with the @code{bl} instruction.
4760 Medium model objects may live anywhere in the 32-bit address space (the
4761 compiler generates @code{seth/add3} instructions to load their addresses),
4762 and are callable with the @code{bl} instruction.
4764 Large model objects may live anywhere in the 32-bit address space (the
4765 compiler generates @code{seth/add3} instructions to load their addresses),
4766 and may not be reachable with the @code{bl} instruction (the compiler
4767 generates the much slower @code{seth/add3/jl} instruction sequence).
4768 @end table
4770 @node m68k Function Attributes
4771 @subsection m68k Function Attributes
4773 These function attributes are supported by the m68k back end:
4775 @table @code
4776 @item interrupt
4777 @itemx interrupt_handler
4778 @cindex @code{interrupt} function attribute, m68k
4779 @cindex @code{interrupt_handler} function attribute, m68k
4780 Use this attribute to
4781 indicate that the specified function is an interrupt handler.  The compiler
4782 generates function entry and exit sequences suitable for use in an
4783 interrupt handler when this attribute is present.  Either name may be used.
4785 @item interrupt_thread
4786 @cindex @code{interrupt_thread} function attribute, fido
4787 Use this attribute on fido, a subarchitecture of the m68k, to indicate
4788 that the specified function is an interrupt handler that is designed
4789 to run as a thread.  The compiler omits generate prologue/epilogue
4790 sequences and replaces the return instruction with a @code{sleep}
4791 instruction.  This attribute is available only on fido.
4792 @end table
4794 @node MCORE Function Attributes
4795 @subsection MCORE Function Attributes
4797 These function attributes are supported by the MCORE back end:
4799 @table @code
4800 @item naked
4801 @cindex @code{naked} function attribute, MCORE
4802 This attribute allows the compiler to construct the
4803 requisite function declaration, while allowing the body of the
4804 function to be assembly code. The specified function will not have
4805 prologue/epilogue sequences generated by the compiler. Only basic
4806 @code{asm} statements can safely be included in naked functions
4807 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4808 basic @code{asm} and C code may appear to work, they cannot be
4809 depended upon to work reliably and are not supported.
4810 @end table
4812 @node MeP Function Attributes
4813 @subsection MeP Function Attributes
4815 These function attributes are supported by the MeP back end:
4817 @table @code
4818 @item disinterrupt
4819 @cindex @code{disinterrupt} function attribute, MeP
4820 On MeP targets, this attribute causes the compiler to emit
4821 instructions to disable interrupts for the duration of the given
4822 function.
4824 @item interrupt
4825 @cindex @code{interrupt} function attribute, MeP
4826 Use this attribute to indicate
4827 that the specified function is an interrupt handler.  The compiler generates
4828 function entry and exit sequences suitable for use in an interrupt handler
4829 when this attribute is present.
4831 @item near
4832 @cindex @code{near} function attribute, MeP
4833 This attribute causes the compiler to assume the called
4834 function is close enough to use the normal calling convention,
4835 overriding the @option{-mtf} command-line option.
4837 @item far
4838 @cindex @code{far} function attribute, MeP
4839 On MeP targets this causes the compiler to use a calling convention
4840 that assumes the called function is too far away for the built-in
4841 addressing modes.
4843 @item vliw
4844 @cindex @code{vliw} function attribute, MeP
4845 The @code{vliw} attribute tells the compiler to emit
4846 instructions in VLIW mode instead of core mode.  Note that this
4847 attribute is not allowed unless a VLIW coprocessor has been configured
4848 and enabled through command-line options.
4849 @end table
4851 @node MicroBlaze Function Attributes
4852 @subsection MicroBlaze Function Attributes
4854 These function attributes are supported on MicroBlaze targets:
4856 @table @code
4857 @item save_volatiles
4858 @cindex @code{save_volatiles} function attribute, MicroBlaze
4859 Use this attribute to indicate that the function is
4860 an interrupt handler.  All volatile registers (in addition to non-volatile
4861 registers) are saved in the function prologue.  If the function is a leaf
4862 function, only volatiles used by the function are saved.  A normal function
4863 return is generated instead of a return from interrupt.
4865 @item break_handler
4866 @cindex @code{break_handler} function attribute, MicroBlaze
4867 @cindex break handler functions
4868 Use this attribute to indicate that
4869 the specified function is a break handler.  The compiler generates function
4870 entry and exit sequences suitable for use in an break handler when this
4871 attribute is present. The return from @code{break_handler} is done through
4872 the @code{rtbd} instead of @code{rtsd}.
4874 @smallexample
4875 void f () __attribute__ ((break_handler));
4876 @end smallexample
4878 @item interrupt_handler
4879 @itemx fast_interrupt 
4880 @cindex @code{interrupt_handler} function attribute, MicroBlaze
4881 @cindex @code{fast_interrupt} function attribute, MicroBlaze
4882 These attributes indicate that the specified function is an interrupt
4883 handler.  Use the @code{fast_interrupt} attribute to indicate handlers
4884 used in low-latency interrupt mode, and @code{interrupt_handler} for
4885 interrupts that do not use low-latency handlers.  In both cases, GCC
4886 emits appropriate prologue code and generates a return from the handler
4887 using @code{rtid} instead of @code{rtsd}.
4888 @end table
4890 @node Microsoft Windows Function Attributes
4891 @subsection Microsoft Windows Function Attributes
4893 The following attributes are available on Microsoft Windows and Symbian OS
4894 targets.
4896 @table @code
4897 @item dllexport
4898 @cindex @code{dllexport} function attribute
4899 @cindex @code{__declspec(dllexport)}
4900 On Microsoft Windows targets and Symbian OS targets the
4901 @code{dllexport} attribute causes the compiler to provide a global
4902 pointer to a pointer in a DLL, so that it can be referenced with the
4903 @code{dllimport} attribute.  On Microsoft Windows targets, the pointer
4904 name is formed by combining @code{_imp__} and the function or variable
4905 name.
4907 You can use @code{__declspec(dllexport)} as a synonym for
4908 @code{__attribute__ ((dllexport))} for compatibility with other
4909 compilers.
4911 On systems that support the @code{visibility} attribute, this
4912 attribute also implies ``default'' visibility.  It is an error to
4913 explicitly specify any other visibility.
4915 GCC's default behavior is to emit all inline functions with the
4916 @code{dllexport} attribute.  Since this can cause object file-size bloat,
4917 you can use @option{-fno-keep-inline-dllexport}, which tells GCC to
4918 ignore the attribute for inlined functions unless the 
4919 @option{-fkeep-inline-functions} flag is used instead.
4921 The attribute is ignored for undefined symbols.
4923 When applied to C++ classes, the attribute marks defined non-inlined
4924 member functions and static data members as exports.  Static consts
4925 initialized in-class are not marked unless they are also defined
4926 out-of-class.
4928 For Microsoft Windows targets there are alternative methods for
4929 including the symbol in the DLL's export table such as using a
4930 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
4931 the @option{--export-all} linker flag.
4933 @item dllimport
4934 @cindex @code{dllimport} function attribute
4935 @cindex @code{__declspec(dllimport)}
4936 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
4937 attribute causes the compiler to reference a function or variable via
4938 a global pointer to a pointer that is set up by the DLL exporting the
4939 symbol.  The attribute implies @code{extern}.  On Microsoft Windows
4940 targets, the pointer name is formed by combining @code{_imp__} and the
4941 function or variable name.
4943 You can use @code{__declspec(dllimport)} as a synonym for
4944 @code{__attribute__ ((dllimport))} for compatibility with other
4945 compilers.
4947 On systems that support the @code{visibility} attribute, this
4948 attribute also implies ``default'' visibility.  It is an error to
4949 explicitly specify any other visibility.
4951 Currently, the attribute is ignored for inlined functions.  If the
4952 attribute is applied to a symbol @emph{definition}, an error is reported.
4953 If a symbol previously declared @code{dllimport} is later defined, the
4954 attribute is ignored in subsequent references, and a warning is emitted.
4955 The attribute is also overridden by a subsequent declaration as
4956 @code{dllexport}.
4958 When applied to C++ classes, the attribute marks non-inlined
4959 member functions and static data members as imports.  However, the
4960 attribute is ignored for virtual methods to allow creation of vtables
4961 using thunks.
4963 On the SH Symbian OS target the @code{dllimport} attribute also has
4964 another affect---it can cause the vtable and run-time type information
4965 for a class to be exported.  This happens when the class has a
4966 dllimported constructor or a non-inline, non-pure virtual function
4967 and, for either of those two conditions, the class also has an inline
4968 constructor or destructor and has a key function that is defined in
4969 the current translation unit.
4971 For Microsoft Windows targets the use of the @code{dllimport}
4972 attribute on functions is not necessary, but provides a small
4973 performance benefit by eliminating a thunk in the DLL@.  The use of the
4974 @code{dllimport} attribute on imported variables can be avoided by passing the
4975 @option{--enable-auto-import} switch to the GNU linker.  As with
4976 functions, using the attribute for a variable eliminates a thunk in
4977 the DLL@.
4979 One drawback to using this attribute is that a pointer to a
4980 @emph{variable} marked as @code{dllimport} cannot be used as a constant
4981 address. However, a pointer to a @emph{function} with the
4982 @code{dllimport} attribute can be used as a constant initializer; in
4983 this case, the address of a stub function in the import lib is
4984 referenced.  On Microsoft Windows targets, the attribute can be disabled
4985 for functions by setting the @option{-mnop-fun-dllimport} flag.
4986 @end table
4988 @node MIPS Function Attributes
4989 @subsection MIPS Function Attributes
4991 These function attributes are supported by the MIPS back end:
4993 @table @code
4994 @item interrupt
4995 @cindex @code{interrupt} function attribute, MIPS
4996 Use this attribute to indicate that the specified function is an interrupt
4997 handler.  The compiler generates function entry and exit sequences suitable
4998 for use in an interrupt handler when this attribute is present.
4999 An optional argument is supported for the interrupt attribute which allows
5000 the interrupt mode to be described.  By default GCC assumes the external
5001 interrupt controller (EIC) mode is in use, this can be explicitly set using
5002 @code{eic}.  When interrupts are non-masked then the requested Interrupt
5003 Priority Level (IPL) is copied to the current IPL which has the effect of only
5004 enabling higher priority interrupts.  To use vectored interrupt mode use
5005 the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change
5006 the behavior of the non-masked interrupt support and GCC will arrange to mask
5007 all interrupts from sw0 up to and including the specified interrupt vector.
5009 You can use the following attributes to modify the behavior
5010 of an interrupt handler:
5011 @table @code
5012 @item use_shadow_register_set
5013 @cindex @code{use_shadow_register_set} function attribute, MIPS
5014 Assume that the handler uses a shadow register set, instead of
5015 the main general-purpose registers.  An optional argument @code{intstack} is
5016 supported to indicate that the shadow register set contains a valid stack
5017 pointer.
5019 @item keep_interrupts_masked
5020 @cindex @code{keep_interrupts_masked} function attribute, MIPS
5021 Keep interrupts masked for the whole function.  Without this attribute,
5022 GCC tries to reenable interrupts for as much of the function as it can.
5024 @item use_debug_exception_return
5025 @cindex @code{use_debug_exception_return} function attribute, MIPS
5026 Return using the @code{deret} instruction.  Interrupt handlers that don't
5027 have this attribute return using @code{eret} instead.
5028 @end table
5030 You can use any combination of these attributes, as shown below:
5031 @smallexample
5032 void __attribute__ ((interrupt)) v0 ();
5033 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
5034 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
5035 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
5036 void __attribute__ ((interrupt, use_shadow_register_set,
5037                      keep_interrupts_masked)) v4 ();
5038 void __attribute__ ((interrupt, use_shadow_register_set,
5039                      use_debug_exception_return)) v5 ();
5040 void __attribute__ ((interrupt, keep_interrupts_masked,
5041                      use_debug_exception_return)) v6 ();
5042 void __attribute__ ((interrupt, use_shadow_register_set,
5043                      keep_interrupts_masked,
5044                      use_debug_exception_return)) v7 ();
5045 void __attribute__ ((interrupt("eic"))) v8 ();
5046 void __attribute__ ((interrupt("vector=hw3"))) v9 ();
5047 @end smallexample
5049 @item long_call
5050 @itemx short_call
5051 @itemx near
5052 @itemx far
5053 @cindex indirect calls, MIPS
5054 @cindex @code{long_call} function attribute, MIPS
5055 @cindex @code{short_call} function attribute, MIPS
5056 @cindex @code{near} function attribute, MIPS
5057 @cindex @code{far} function attribute, MIPS
5058 These attributes specify how a particular function is called on MIPS@.
5059 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
5060 command-line switch.  The @code{long_call} and @code{far} attributes are
5061 synonyms, and cause the compiler to always call
5062 the function by first loading its address into a register, and then using
5063 the contents of that register.  The @code{short_call} and @code{near}
5064 attributes are synonyms, and have the opposite
5065 effect; they specify that non-PIC calls should be made using the more
5066 efficient @code{jal} instruction.
5068 @item mips16
5069 @itemx nomips16
5070 @cindex @code{mips16} function attribute, MIPS
5071 @cindex @code{nomips16} function attribute, MIPS
5073 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
5074 function attributes to locally select or turn off MIPS16 code generation.
5075 A function with the @code{mips16} attribute is emitted as MIPS16 code,
5076 while MIPS16 code generation is disabled for functions with the
5077 @code{nomips16} attribute.  These attributes override the
5078 @option{-mips16} and @option{-mno-mips16} options on the command line
5079 (@pxref{MIPS Options}).
5081 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
5082 preprocessor symbol @code{__mips16} reflects the setting on the command line,
5083 not that within individual functions.  Mixed MIPS16 and non-MIPS16 code
5084 may interact badly with some GCC extensions such as @code{__builtin_apply}
5085 (@pxref{Constructing Calls}).
5087 @item micromips, MIPS
5088 @itemx nomicromips, MIPS
5089 @cindex @code{micromips} function attribute
5090 @cindex @code{nomicromips} function attribute
5092 On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
5093 function attributes to locally select or turn off microMIPS code generation.
5094 A function with the @code{micromips} attribute is emitted as microMIPS code,
5095 while microMIPS code generation is disabled for functions with the
5096 @code{nomicromips} attribute.  These attributes override the
5097 @option{-mmicromips} and @option{-mno-micromips} options on the command line
5098 (@pxref{MIPS Options}).
5100 When compiling files containing mixed microMIPS and non-microMIPS code, the
5101 preprocessor symbol @code{__mips_micromips} reflects the setting on the
5102 command line,
5103 not that within individual functions.  Mixed microMIPS and non-microMIPS code
5104 may interact badly with some GCC extensions such as @code{__builtin_apply}
5105 (@pxref{Constructing Calls}).
5107 @item nocompression
5108 @cindex @code{nocompression} function attribute, MIPS
5109 On MIPS targets, you can use the @code{nocompression} function attribute
5110 to locally turn off MIPS16 and microMIPS code generation.  This attribute
5111 overrides the @option{-mips16} and @option{-mmicromips} options on the
5112 command line (@pxref{MIPS Options}).
5113 @end table
5115 @node MSP430 Function Attributes
5116 @subsection MSP430 Function Attributes
5118 These function attributes are supported by the MSP430 back end:
5120 @table @code
5121 @item critical
5122 @cindex @code{critical} function attribute, MSP430
5123 Critical functions disable interrupts upon entry and restore the
5124 previous interrupt state upon exit.  Critical functions cannot also
5125 have the @code{naked}, @code{reentrant} or @code{interrupt} attributes.
5127 The MSP430 hardware ensures that interrupts are disabled on entry to
5128 @code{interrupt} functions, and restores the previous interrupt state
5129 on exit. The @code{critical} attribute is therefore redundant on
5130 @code{interrupt} functions.
5132 @item interrupt
5133 @cindex @code{interrupt} function attribute, MSP430
5134 Use this attribute to indicate
5135 that the specified function is an interrupt handler.  The compiler generates
5136 function entry and exit sequences suitable for use in an interrupt handler
5137 when this attribute is present.
5139 You can provide an argument to the interrupt
5140 attribute which specifies a name or number.  If the argument is a
5141 number it indicates the slot in the interrupt vector table (0 - 31) to
5142 which this handler should be assigned.  If the argument is a name it
5143 is treated as a symbolic name for the vector slot.  These names should
5144 match up with appropriate entries in the linker script.  By default
5145 the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
5146 @code{reset} for vector 31 are recognized.
5148 @item naked
5149 @cindex @code{naked} function attribute, MSP430
5150 This attribute allows the compiler to construct the
5151 requisite function declaration, while allowing the body of the
5152 function to be assembly code. The specified function will not have
5153 prologue/epilogue sequences generated by the compiler. Only basic
5154 @code{asm} statements can safely be included in naked functions
5155 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5156 basic @code{asm} and C code may appear to work, they cannot be
5157 depended upon to work reliably and are not supported.
5159 @item reentrant
5160 @cindex @code{reentrant} function attribute, MSP430
5161 Reentrant functions disable interrupts upon entry and enable them
5162 upon exit.  Reentrant functions cannot also have the @code{naked}
5163 or @code{critical} attributes.  They can have the @code{interrupt}
5164 attribute.
5166 @item wakeup
5167 @cindex @code{wakeup} function attribute, MSP430
5168 This attribute only applies to interrupt functions.  It is silently
5169 ignored if applied to a non-interrupt function.  A wakeup interrupt
5170 function will rouse the processor from any low-power state that it
5171 might be in when the function exits.
5173 @item lower
5174 @itemx upper
5175 @itemx either
5176 @cindex @code{lower} function attribute, MSP430
5177 @cindex @code{upper} function attribute, MSP430
5178 @cindex @code{either} function attribute, MSP430
5179 On the MSP430 target these attributes can be used to specify whether
5180 the function or variable should be placed into low memory, high
5181 memory, or the placement should be left to the linker to decide.  The
5182 attributes are only significant if compiling for the MSP430X
5183 architecture.
5185 The attributes work in conjunction with a linker script that has been
5186 augmented to specify where to place sections with a @code{.lower} and
5187 a @code{.upper} prefix.  So, for example, as well as placing the
5188 @code{.data} section, the script also specifies the placement of a
5189 @code{.lower.data} and a @code{.upper.data} section.  The intention
5190 is that @code{lower} sections are placed into a small but easier to
5191 access memory region and the upper sections are placed into a larger, but
5192 slower to access, region.
5194 The @code{either} attribute is special.  It tells the linker to place
5195 the object into the corresponding @code{lower} section if there is
5196 room for it.  If there is insufficient room then the object is placed
5197 into the corresponding @code{upper} section instead.  Note that the
5198 placement algorithm is not very sophisticated.  It does not attempt to
5199 find an optimal packing of the @code{lower} sections.  It just makes
5200 one pass over the objects and does the best that it can.  Using the
5201 @option{-ffunction-sections} and @option{-fdata-sections} command-line
5202 options can help the packing, however, since they produce smaller,
5203 easier to pack regions.
5204 @end table
5206 @node NDS32 Function Attributes
5207 @subsection NDS32 Function Attributes
5209 These function attributes are supported by the NDS32 back end:
5211 @table @code
5212 @item exception
5213 @cindex @code{exception} function attribute
5214 @cindex exception handler functions, NDS32
5215 Use this attribute on the NDS32 target to indicate that the specified function
5216 is an exception handler.  The compiler will generate corresponding sections
5217 for use in an exception handler.
5219 @item interrupt
5220 @cindex @code{interrupt} function attribute, NDS32
5221 On NDS32 target, this attribute indicates that the specified function
5222 is an interrupt handler.  The compiler generates corresponding sections
5223 for use in an interrupt handler.  You can use the following attributes
5224 to modify the behavior:
5225 @table @code
5226 @item nested
5227 @cindex @code{nested} function attribute, NDS32
5228 This interrupt service routine is interruptible.
5229 @item not_nested
5230 @cindex @code{not_nested} function attribute, NDS32
5231 This interrupt service routine is not interruptible.
5232 @item nested_ready
5233 @cindex @code{nested_ready} function attribute, NDS32
5234 This interrupt service routine is interruptible after @code{PSW.GIE}
5235 (global interrupt enable) is set.  This allows interrupt service routine to
5236 finish some short critical code before enabling interrupts.
5237 @item save_all
5238 @cindex @code{save_all} function attribute, NDS32
5239 The system will help save all registers into stack before entering
5240 interrupt handler.
5241 @item partial_save
5242 @cindex @code{partial_save} function attribute, NDS32
5243 The system will help save caller registers into stack before entering
5244 interrupt handler.
5245 @end table
5247 @item naked
5248 @cindex @code{naked} function attribute, NDS32
5249 This attribute allows the compiler to construct the
5250 requisite function declaration, while allowing the body of the
5251 function to be assembly code. The specified function will not have
5252 prologue/epilogue sequences generated by the compiler. Only basic
5253 @code{asm} statements can safely be included in naked functions
5254 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5255 basic @code{asm} and C code may appear to work, they cannot be
5256 depended upon to work reliably and are not supported.
5258 @item reset
5259 @cindex @code{reset} function attribute, NDS32
5260 @cindex reset handler functions
5261 Use this attribute on the NDS32 target to indicate that the specified function
5262 is a reset handler.  The compiler will generate corresponding sections
5263 for use in a reset handler.  You can use the following attributes
5264 to provide extra exception handling:
5265 @table @code
5266 @item nmi
5267 @cindex @code{nmi} function attribute, NDS32
5268 Provide a user-defined function to handle NMI exception.
5269 @item warm
5270 @cindex @code{warm} function attribute, NDS32
5271 Provide a user-defined function to handle warm reset exception.
5272 @end table
5273 @end table
5275 @node Nios II Function Attributes
5276 @subsection Nios II Function Attributes
5278 These function attributes are supported by the Nios II back end:
5280 @table @code
5281 @item target (@var{options})
5282 @cindex @code{target} function attribute
5283 As discussed in @ref{Common Function Attributes}, this attribute 
5284 allows specification of target-specific compilation options.
5286 When compiling for Nios II, the following options are allowed:
5288 @table @samp
5289 @item custom-@var{insn}=@var{N}
5290 @itemx no-custom-@var{insn}
5291 @cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II
5292 @cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II
5293 Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
5294 custom instruction with encoding @var{N} when generating code that uses 
5295 @var{insn}.  Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
5296 the custom instruction @var{insn}.
5297 These target attributes correspond to the
5298 @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
5299 command-line options, and support the same set of @var{insn} keywords.
5300 @xref{Nios II Options}, for more information.
5302 @item custom-fpu-cfg=@var{name}
5303 @cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II
5304 This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
5305 command-line option, to select a predefined set of custom instructions
5306 named @var{name}.
5307 @xref{Nios II Options}, for more information.
5308 @end table
5309 @end table
5311 @node Nvidia PTX Function Attributes
5312 @subsection Nvidia PTX Function Attributes
5314 These function attributes are supported by the Nvidia PTX back end:
5316 @table @code
5317 @item kernel
5318 @cindex @code{kernel} attribute, Nvidia PTX
5319 This attribute indicates that the corresponding function should be compiled
5320 as a kernel function, which can be invoked from the host via the CUDA RT 
5321 library.
5322 By default functions are only callable only from other PTX functions.
5324 Kernel functions must have @code{void} return type.
5325 @end table
5327 @node PowerPC Function Attributes
5328 @subsection PowerPC Function Attributes
5330 These function attributes are supported by the PowerPC back end:
5332 @table @code
5333 @item longcall
5334 @itemx shortcall
5335 @cindex indirect calls, PowerPC
5336 @cindex @code{longcall} function attribute, PowerPC
5337 @cindex @code{shortcall} function attribute, PowerPC
5338 The @code{longcall} attribute
5339 indicates that the function might be far away from the call site and
5340 require a different (more expensive) calling sequence.  The
5341 @code{shortcall} attribute indicates that the function is always close
5342 enough for the shorter calling sequence to be used.  These attributes
5343 override both the @option{-mlongcall} switch and
5344 the @code{#pragma longcall} setting.
5346 @xref{RS/6000 and PowerPC Options}, for more information on whether long
5347 calls are necessary.
5349 @item target (@var{options})
5350 @cindex @code{target} function attribute
5351 As discussed in @ref{Common Function Attributes}, this attribute 
5352 allows specification of target-specific compilation options.
5354 On the PowerPC, the following options are allowed:
5356 @table @samp
5357 @item altivec
5358 @itemx no-altivec
5359 @cindex @code{target("altivec")} function attribute, PowerPC
5360 Generate code that uses (does not use) AltiVec instructions.  In
5361 32-bit code, you cannot enable AltiVec instructions unless
5362 @option{-mabi=altivec} is used on the command line.
5364 @item cmpb
5365 @itemx no-cmpb
5366 @cindex @code{target("cmpb")} function attribute, PowerPC
5367 Generate code that uses (does not use) the compare bytes instruction
5368 implemented on the POWER6 processor and other processors that support
5369 the PowerPC V2.05 architecture.
5371 @item dlmzb
5372 @itemx no-dlmzb
5373 @cindex @code{target("dlmzb")} function attribute, PowerPC
5374 Generate code that uses (does not use) the string-search @samp{dlmzb}
5375 instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
5376 generated by default when targeting those processors.
5378 @item fprnd
5379 @itemx no-fprnd
5380 @cindex @code{target("fprnd")} function attribute, PowerPC
5381 Generate code that uses (does not use) the FP round to integer
5382 instructions implemented on the POWER5+ processor and other processors
5383 that support the PowerPC V2.03 architecture.
5385 @item hard-dfp
5386 @itemx no-hard-dfp
5387 @cindex @code{target("hard-dfp")} function attribute, PowerPC
5388 Generate code that uses (does not use) the decimal floating-point
5389 instructions implemented on some POWER processors.
5391 @item isel
5392 @itemx no-isel
5393 @cindex @code{target("isel")} function attribute, PowerPC
5394 Generate code that uses (does not use) ISEL instruction.
5396 @item mfcrf
5397 @itemx no-mfcrf
5398 @cindex @code{target("mfcrf")} function attribute, PowerPC
5399 Generate code that uses (does not use) the move from condition
5400 register field instruction implemented on the POWER4 processor and
5401 other processors that support the PowerPC V2.01 architecture.
5403 @item mfpgpr
5404 @itemx no-mfpgpr
5405 @cindex @code{target("mfpgpr")} function attribute, PowerPC
5406 Generate code that uses (does not use) the FP move to/from general
5407 purpose register instructions implemented on the POWER6X processor and
5408 other processors that support the extended PowerPC V2.05 architecture.
5410 @item mulhw
5411 @itemx no-mulhw
5412 @cindex @code{target("mulhw")} function attribute, PowerPC
5413 Generate code that uses (does not use) the half-word multiply and
5414 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
5415 These instructions are generated by default when targeting those
5416 processors.
5418 @item multiple
5419 @itemx no-multiple
5420 @cindex @code{target("multiple")} function attribute, PowerPC
5421 Generate code that uses (does not use) the load multiple word
5422 instructions and the store multiple word instructions.
5424 @item update
5425 @itemx no-update
5426 @cindex @code{target("update")} function attribute, PowerPC
5427 Generate code that uses (does not use) the load or store instructions
5428 that update the base register to the address of the calculated memory
5429 location.
5431 @item popcntb
5432 @itemx no-popcntb
5433 @cindex @code{target("popcntb")} function attribute, PowerPC
5434 Generate code that uses (does not use) the popcount and double-precision
5435 FP reciprocal estimate instruction implemented on the POWER5
5436 processor and other processors that support the PowerPC V2.02
5437 architecture.
5439 @item popcntd
5440 @itemx no-popcntd
5441 @cindex @code{target("popcntd")} function attribute, PowerPC
5442 Generate code that uses (does not use) the popcount instruction
5443 implemented on the POWER7 processor and other processors that support
5444 the PowerPC V2.06 architecture.
5446 @item powerpc-gfxopt
5447 @itemx no-powerpc-gfxopt
5448 @cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC
5449 Generate code that uses (does not use) the optional PowerPC
5450 architecture instructions in the Graphics group, including
5451 floating-point select.
5453 @item powerpc-gpopt
5454 @itemx no-powerpc-gpopt
5455 @cindex @code{target("powerpc-gpopt")} function attribute, PowerPC
5456 Generate code that uses (does not use) the optional PowerPC
5457 architecture instructions in the General Purpose group, including
5458 floating-point square root.
5460 @item recip-precision
5461 @itemx no-recip-precision
5462 @cindex @code{target("recip-precision")} function attribute, PowerPC
5463 Assume (do not assume) that the reciprocal estimate instructions
5464 provide higher-precision estimates than is mandated by the PowerPC
5465 ABI.
5467 @item string
5468 @itemx no-string
5469 @cindex @code{target("string")} function attribute, PowerPC
5470 Generate code that uses (does not use) the load string instructions
5471 and the store string word instructions to save multiple registers and
5472 do small block moves.
5474 @item vsx
5475 @itemx no-vsx
5476 @cindex @code{target("vsx")} function attribute, PowerPC
5477 Generate code that uses (does not use) vector/scalar (VSX)
5478 instructions, and also enable the use of built-in functions that allow
5479 more direct access to the VSX instruction set.  In 32-bit code, you
5480 cannot enable VSX or AltiVec instructions unless
5481 @option{-mabi=altivec} is used on the command line.
5483 @item friz
5484 @itemx no-friz
5485 @cindex @code{target("friz")} function attribute, PowerPC
5486 Generate (do not generate) the @code{friz} instruction when the
5487 @option{-funsafe-math-optimizations} option is used to optimize
5488 rounding a floating-point value to 64-bit integer and back to floating
5489 point.  The @code{friz} instruction does not return the same value if
5490 the floating-point number is too large to fit in an integer.
5492 @item avoid-indexed-addresses
5493 @itemx no-avoid-indexed-addresses
5494 @cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC
5495 Generate code that tries to avoid (not avoid) the use of indexed load
5496 or store instructions.
5498 @item paired
5499 @itemx no-paired
5500 @cindex @code{target("paired")} function attribute, PowerPC
5501 Generate code that uses (does not use) the generation of PAIRED simd
5502 instructions.
5504 @item longcall
5505 @itemx no-longcall
5506 @cindex @code{target("longcall")} function attribute, PowerPC
5507 Generate code that assumes (does not assume) that all calls are far
5508 away so that a longer more expensive calling sequence is required.
5510 @item cpu=@var{CPU}
5511 @cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC
5512 Specify the architecture to generate code for when compiling the
5513 function.  If you select the @code{target("cpu=power7")} attribute when
5514 generating 32-bit code, VSX and AltiVec instructions are not generated
5515 unless you use the @option{-mabi=altivec} option on the command line.
5517 @item tune=@var{TUNE}
5518 @cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC
5519 Specify the architecture to tune for when compiling the function.  If
5520 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
5521 you do specify the @code{target("cpu=@var{CPU}")} attribute,
5522 compilation tunes for the @var{CPU} architecture, and not the
5523 default tuning specified on the command line.
5524 @end table
5526 On the PowerPC, the inliner does not inline a
5527 function that has different target options than the caller, unless the
5528 callee has a subset of the target options of the caller.
5529 @end table
5531 @node RISC-V Function Attributes
5532 @subsection RISC-V Function Attributes
5534 These function attributes are supported by the RISC-V back end:
5536 @table @code
5537 @item naked
5538 @cindex @code{naked} function attribute, RISC-V
5539 This attribute allows the compiler to construct the
5540 requisite function declaration, while allowing the body of the
5541 function to be assembly code. The specified function will not have
5542 prologue/epilogue sequences generated by the compiler. Only basic
5543 @code{asm} statements can safely be included in naked functions
5544 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5545 basic @code{asm} and C code may appear to work, they cannot be
5546 depended upon to work reliably and are not supported.
5548 @item interrupt
5549 @cindex @code{interrupt} function attribute, RISC-V
5550 Use this attribute to indicate that the specified function is an interrupt
5551 handler.  The compiler generates function entry and exit sequences suitable
5552 for use in an interrupt handler when this attribute is present.
5554 You can specify the kind of interrupt to be handled by adding an optional
5555 parameter to the interrupt attribute like this:
5557 @smallexample
5558 void f (void) __attribute__ ((interrupt ("user")));
5559 @end smallexample
5561 Permissible values for this parameter are @code{user}, @code{supervisor},
5562 and @code{machine}.  If there is no parameter, then it defaults to
5563 @code{machine}.
5564 @end table
5566 @node RL78 Function Attributes
5567 @subsection RL78 Function Attributes
5569 These function attributes are supported by the RL78 back end:
5571 @table @code
5572 @item interrupt
5573 @itemx brk_interrupt
5574 @cindex @code{interrupt} function attribute, RL78
5575 @cindex @code{brk_interrupt} function attribute, RL78
5576 These attributes indicate
5577 that the specified function is an interrupt handler.  The compiler generates
5578 function entry and exit sequences suitable for use in an interrupt handler
5579 when this attribute is present.
5581 Use @code{brk_interrupt} instead of @code{interrupt} for
5582 handlers intended to be used with the @code{BRK} opcode (i.e.@: those
5583 that must end with @code{RETB} instead of @code{RETI}).
5585 @item naked
5586 @cindex @code{naked} function attribute, RL78
5587 This attribute allows the compiler to construct the
5588 requisite function declaration, while allowing the body of the
5589 function to be assembly code. The specified function will not have
5590 prologue/epilogue sequences generated by the compiler. Only basic
5591 @code{asm} statements can safely be included in naked functions
5592 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5593 basic @code{asm} and C code may appear to work, they cannot be
5594 depended upon to work reliably and are not supported.
5595 @end table
5597 @node RX Function Attributes
5598 @subsection RX Function Attributes
5600 These function attributes are supported by the RX back end:
5602 @table @code
5603 @item fast_interrupt
5604 @cindex @code{fast_interrupt} function attribute, RX
5605 Use this attribute on the RX port to indicate that the specified
5606 function is a fast interrupt handler.  This is just like the
5607 @code{interrupt} attribute, except that @code{freit} is used to return
5608 instead of @code{reit}.
5610 @item interrupt
5611 @cindex @code{interrupt} function attribute, RX
5612 Use this attribute to indicate
5613 that the specified function is an interrupt handler.  The compiler generates
5614 function entry and exit sequences suitable for use in an interrupt handler
5615 when this attribute is present.
5617 On RX and RL78 targets, you may specify one or more vector numbers as arguments
5618 to the attribute, as well as naming an alternate table name.
5619 Parameters are handled sequentially, so one handler can be assigned to
5620 multiple entries in multiple tables.  One may also pass the magic
5621 string @code{"$default"} which causes the function to be used for any
5622 unfilled slots in the current table.
5624 This example shows a simple assignment of a function to one vector in
5625 the default table (note that preprocessor macros may be used for
5626 chip-specific symbolic vector names):
5627 @smallexample
5628 void __attribute__ ((interrupt (5))) txd1_handler ();
5629 @end smallexample
5631 This example assigns a function to two slots in the default table
5632 (using preprocessor macros defined elsewhere) and makes it the default
5633 for the @code{dct} table:
5634 @smallexample
5635 void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
5636         txd1_handler ();
5637 @end smallexample
5639 @item naked
5640 @cindex @code{naked} function attribute, RX
5641 This attribute allows the compiler to construct the
5642 requisite function declaration, while allowing the body of the
5643 function to be assembly code. The specified function will not have
5644 prologue/epilogue sequences generated by the compiler. Only basic
5645 @code{asm} statements can safely be included in naked functions
5646 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5647 basic @code{asm} and C code may appear to work, they cannot be
5648 depended upon to work reliably and are not supported.
5650 @item vector
5651 @cindex @code{vector} function attribute, RX
5652 This RX attribute is similar to the @code{interrupt} attribute, including its
5653 parameters, but does not make the function an interrupt-handler type
5654 function (i.e.@: it retains the normal C function calling ABI).  See the
5655 @code{interrupt} attribute for a description of its arguments.
5656 @end table
5658 @node S/390 Function Attributes
5659 @subsection S/390 Function Attributes
5661 These function attributes are supported on the S/390:
5663 @table @code
5664 @item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label})
5665 @cindex @code{hotpatch} function attribute, S/390
5667 On S/390 System z targets, you can use this function attribute to
5668 make GCC generate a ``hot-patching'' function prologue.  If the
5669 @option{-mhotpatch=} command-line option is used at the same time,
5670 the @code{hotpatch} attribute takes precedence.  The first of the
5671 two arguments specifies the number of halfwords to be added before
5672 the function label.  A second argument can be used to specify the
5673 number of halfwords to be added after the function label.  For
5674 both arguments the maximum allowed value is 1000000.
5676 If both arguments are zero, hotpatching is disabled.
5678 @item target (@var{options})
5679 @cindex @code{target} function attribute
5680 As discussed in @ref{Common Function Attributes}, this attribute
5681 allows specification of target-specific compilation options.
5683 On S/390, the following options are supported:
5685 @table @samp
5686 @item arch=
5687 @item tune=
5688 @item stack-guard=
5689 @item stack-size=
5690 @item branch-cost=
5691 @item warn-framesize=
5692 @item backchain
5693 @itemx no-backchain
5694 @item hard-dfp
5695 @itemx no-hard-dfp
5696 @item hard-float
5697 @itemx soft-float
5698 @item htm
5699 @itemx no-htm
5700 @item vx
5701 @itemx no-vx
5702 @item packed-stack
5703 @itemx no-packed-stack
5704 @item small-exec
5705 @itemx no-small-exec
5706 @item mvcle
5707 @itemx no-mvcle
5708 @item warn-dynamicstack
5709 @itemx no-warn-dynamicstack
5710 @end table
5712 The options work exactly like the S/390 specific command line
5713 options (without the prefix @option{-m}) except that they do not
5714 change any feature macros.  For example,
5716 @smallexample
5717 @code{target("no-vx")}
5718 @end smallexample
5720 does not undefine the @code{__VEC__} macro.
5721 @end table
5723 @node SH Function Attributes
5724 @subsection SH Function Attributes
5726 These function attributes are supported on the SH family of processors:
5728 @table @code
5729 @item function_vector
5730 @cindex @code{function_vector} function attribute, SH
5731 @cindex calling functions through the function vector on SH2A
5732 On SH2A targets, this attribute declares a function to be called using the
5733 TBR relative addressing mode.  The argument to this attribute is the entry
5734 number of the same function in a vector table containing all the TBR
5735 relative addressable functions.  For correct operation the TBR must be setup
5736 accordingly to point to the start of the vector table before any functions with
5737 this attribute are invoked.  Usually a good place to do the initialization is
5738 the startup routine.  The TBR relative vector table can have at max 256 function
5739 entries.  The jumps to these functions are generated using a SH2A specific,
5740 non delayed branch instruction JSR/N @@(disp8,TBR).  You must use GAS and GLD
5741 from GNU binutils version 2.7 or later for this attribute to work correctly.
5743 In an application, for a function being called once, this attribute
5744 saves at least 8 bytes of code; and if other successive calls are being
5745 made to the same function, it saves 2 bytes of code per each of these
5746 calls.
5748 @item interrupt_handler
5749 @cindex @code{interrupt_handler} function attribute, SH
5750 Use this attribute to
5751 indicate that the specified function is an interrupt handler.  The compiler
5752 generates function entry and exit sequences suitable for use in an
5753 interrupt handler when this attribute is present.
5755 @item nosave_low_regs
5756 @cindex @code{nosave_low_regs} function attribute, SH
5757 Use this attribute on SH targets to indicate that an @code{interrupt_handler}
5758 function should not save and restore registers R0..R7.  This can be used on SH3*
5759 and SH4* targets that have a second R0..R7 register bank for non-reentrant
5760 interrupt handlers.
5762 @item renesas
5763 @cindex @code{renesas} function attribute, SH
5764 On SH targets this attribute specifies that the function or struct follows the
5765 Renesas ABI.
5767 @item resbank
5768 @cindex @code{resbank} function attribute, SH
5769 On the SH2A target, this attribute enables the high-speed register
5770 saving and restoration using a register bank for @code{interrupt_handler}
5771 routines.  Saving to the bank is performed automatically after the CPU
5772 accepts an interrupt that uses a register bank.
5774 The nineteen 32-bit registers comprising general register R0 to R14,
5775 control register GBR, and system registers MACH, MACL, and PR and the
5776 vector table address offset are saved into a register bank.  Register
5777 banks are stacked in first-in last-out (FILO) sequence.  Restoration
5778 from the bank is executed by issuing a RESBANK instruction.
5780 @item sp_switch
5781 @cindex @code{sp_switch} function attribute, SH
5782 Use this attribute on the SH to indicate an @code{interrupt_handler}
5783 function should switch to an alternate stack.  It expects a string
5784 argument that names a global variable holding the address of the
5785 alternate stack.
5787 @smallexample
5788 void *alt_stack;
5789 void f () __attribute__ ((interrupt_handler,
5790                           sp_switch ("alt_stack")));
5791 @end smallexample
5793 @item trap_exit
5794 @cindex @code{trap_exit} function attribute, SH
5795 Use this attribute on the SH for an @code{interrupt_handler} to return using
5796 @code{trapa} instead of @code{rte}.  This attribute expects an integer
5797 argument specifying the trap number to be used.
5799 @item trapa_handler
5800 @cindex @code{trapa_handler} function attribute, SH
5801 On SH targets this function attribute is similar to @code{interrupt_handler}
5802 but it does not save and restore all registers.
5803 @end table
5805 @node SPU Function Attributes
5806 @subsection SPU Function Attributes
5808 These function attributes are supported by the SPU back end:
5810 @table @code
5811 @item naked
5812 @cindex @code{naked} function attribute, SPU
5813 This attribute allows the compiler to construct the
5814 requisite function declaration, while allowing the body of the
5815 function to be assembly code. The specified function will not have
5816 prologue/epilogue sequences generated by the compiler. Only basic
5817 @code{asm} statements can safely be included in naked functions
5818 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5819 basic @code{asm} and C code may appear to work, they cannot be
5820 depended upon to work reliably and are not supported.
5821 @end table
5823 @node Symbian OS Function Attributes
5824 @subsection Symbian OS Function Attributes
5826 @xref{Microsoft Windows Function Attributes}, for discussion of the
5827 @code{dllexport} and @code{dllimport} attributes.
5829 @node V850 Function Attributes
5830 @subsection V850 Function Attributes
5832 The V850 back end supports these function attributes:
5834 @table @code
5835 @item interrupt
5836 @itemx interrupt_handler
5837 @cindex @code{interrupt} function attribute, V850
5838 @cindex @code{interrupt_handler} function attribute, V850
5839 Use these attributes to indicate
5840 that the specified function is an interrupt handler.  The compiler generates
5841 function entry and exit sequences suitable for use in an interrupt handler
5842 when either attribute is present.
5843 @end table
5845 @node Visium Function Attributes
5846 @subsection Visium Function Attributes
5848 These function attributes are supported by the Visium back end:
5850 @table @code
5851 @item interrupt
5852 @cindex @code{interrupt} function attribute, Visium
5853 Use this attribute to indicate
5854 that the specified function is an interrupt handler.  The compiler generates
5855 function entry and exit sequences suitable for use in an interrupt handler
5856 when this attribute is present.
5857 @end table
5859 @node x86 Function Attributes
5860 @subsection x86 Function Attributes
5862 These function attributes are supported by the x86 back end:
5864 @table @code
5865 @item cdecl
5866 @cindex @code{cdecl} function attribute, x86-32
5867 @cindex functions that pop the argument stack on x86-32
5868 @opindex mrtd
5869 On the x86-32 targets, the @code{cdecl} attribute causes the compiler to
5870 assume that the calling function pops off the stack space used to
5871 pass arguments.  This is
5872 useful to override the effects of the @option{-mrtd} switch.
5874 @item fastcall
5875 @cindex @code{fastcall} function attribute, x86-32
5876 @cindex functions that pop the argument stack on x86-32
5877 On x86-32 targets, the @code{fastcall} attribute causes the compiler to
5878 pass the first argument (if of integral type) in the register ECX and
5879 the second argument (if of integral type) in the register EDX@.  Subsequent
5880 and other typed arguments are passed on the stack.  The called function
5881 pops the arguments off the stack.  If the number of arguments is variable all
5882 arguments are pushed on the stack.
5884 @item thiscall
5885 @cindex @code{thiscall} function attribute, x86-32
5886 @cindex functions that pop the argument stack on x86-32
5887 On x86-32 targets, the @code{thiscall} attribute causes the compiler to
5888 pass the first argument (if of integral type) in the register ECX.
5889 Subsequent and other typed arguments are passed on the stack. The called
5890 function pops the arguments off the stack.
5891 If the number of arguments is variable all arguments are pushed on the
5892 stack.
5893 The @code{thiscall} attribute is intended for C++ non-static member functions.
5894 As a GCC extension, this calling convention can be used for C functions
5895 and for static member methods.
5897 @item ms_abi
5898 @itemx sysv_abi
5899 @cindex @code{ms_abi} function attribute, x86
5900 @cindex @code{sysv_abi} function attribute, x86
5902 On 32-bit and 64-bit x86 targets, you can use an ABI attribute
5903 to indicate which calling convention should be used for a function.  The
5904 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
5905 while the @code{sysv_abi} attribute tells the compiler to use the ABI
5906 used on GNU/Linux and other systems.  The default is to use the Microsoft ABI
5907 when targeting Windows.  On all other systems, the default is the x86/AMD ABI.
5909 Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
5910 requires the @option{-maccumulate-outgoing-args} option.
5912 @item callee_pop_aggregate_return (@var{number})
5913 @cindex @code{callee_pop_aggregate_return} function attribute, x86
5915 On x86-32 targets, you can use this attribute to control how
5916 aggregates are returned in memory.  If the caller is responsible for
5917 popping the hidden pointer together with the rest of the arguments, specify
5918 @var{number} equal to zero.  If callee is responsible for popping the
5919 hidden pointer, specify @var{number} equal to one.  
5921 The default x86-32 ABI assumes that the callee pops the
5922 stack for hidden pointer.  However, on x86-32 Microsoft Windows targets,
5923 the compiler assumes that the
5924 caller pops the stack for hidden pointer.
5926 @item ms_hook_prologue
5927 @cindex @code{ms_hook_prologue} function attribute, x86
5929 On 32-bit and 64-bit x86 targets, you can use
5930 this function attribute to make GCC generate the ``hot-patching'' function
5931 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
5932 and newer.
5934 @item naked
5935 @cindex @code{naked} function attribute, x86
5936 This attribute allows the compiler to construct the
5937 requisite function declaration, while allowing the body of the
5938 function to be assembly code. The specified function will not have
5939 prologue/epilogue sequences generated by the compiler. Only basic
5940 @code{asm} statements can safely be included in naked functions
5941 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5942 basic @code{asm} and C code may appear to work, they cannot be
5943 depended upon to work reliably and are not supported.
5945 @item regparm (@var{number})
5946 @cindex @code{regparm} function attribute, x86
5947 @cindex functions that are passed arguments in registers on x86-32
5948 On x86-32 targets, the @code{regparm} attribute causes the compiler to
5949 pass arguments number one to @var{number} if they are of integral type
5950 in registers EAX, EDX, and ECX instead of on the stack.  Functions that
5951 take a variable number of arguments continue to be passed all of their
5952 arguments on the stack.
5954 Beware that on some ELF systems this attribute is unsuitable for
5955 global functions in shared libraries with lazy binding (which is the
5956 default).  Lazy binding sends the first call via resolving code in
5957 the loader, which might assume EAX, EDX and ECX can be clobbered, as
5958 per the standard calling conventions.  Solaris 8 is affected by this.
5959 Systems with the GNU C Library version 2.1 or higher
5960 and FreeBSD are believed to be
5961 safe since the loaders there save EAX, EDX and ECX.  (Lazy binding can be
5962 disabled with the linker or the loader if desired, to avoid the
5963 problem.)
5965 @item sseregparm
5966 @cindex @code{sseregparm} function attribute, x86
5967 On x86-32 targets with SSE support, the @code{sseregparm} attribute
5968 causes the compiler to pass up to 3 floating-point arguments in
5969 SSE registers instead of on the stack.  Functions that take a
5970 variable number of arguments continue to pass all of their
5971 floating-point arguments on the stack.
5973 @item force_align_arg_pointer
5974 @cindex @code{force_align_arg_pointer} function attribute, x86
5975 On x86 targets, the @code{force_align_arg_pointer} attribute may be
5976 applied to individual function definitions, generating an alternate
5977 prologue and epilogue that realigns the run-time stack if necessary.
5978 This supports mixing legacy codes that run with a 4-byte aligned stack
5979 with modern codes that keep a 16-byte stack for SSE compatibility.
5981 @item stdcall
5982 @cindex @code{stdcall} function attribute, x86-32
5983 @cindex functions that pop the argument stack on x86-32
5984 On x86-32 targets, the @code{stdcall} attribute causes the compiler to
5985 assume that the called function pops off the stack space used to
5986 pass arguments, unless it takes a variable number of arguments.
5988 @item no_caller_saved_registers
5989 @cindex @code{no_caller_saved_registers} function attribute, x86
5990 Use this attribute to indicate that the specified function has no
5991 caller-saved registers. That is, all registers are callee-saved. For
5992 example, this attribute can be used for a function called from an
5993 interrupt handler. The compiler generates proper function entry and
5994 exit sequences to save and restore any modified registers, except for
5995 the EFLAGS register.  Since GCC doesn't preserve SSE, MMX nor x87
5996 states, the GCC option @option{-mgeneral-regs-only} should be used to
5997 compile functions with @code{no_caller_saved_registers} attribute.
5999 @item interrupt
6000 @cindex @code{interrupt} function attribute, x86
6001 Use this attribute to indicate that the specified function is an
6002 interrupt handler or an exception handler (depending on parameters passed
6003 to the function, explained further).  The compiler generates function
6004 entry and exit sequences suitable for use in an interrupt handler when
6005 this attribute is present.  The @code{IRET} instruction, instead of the
6006 @code{RET} instruction, is used to return from interrupt handlers.  All
6007 registers, except for the EFLAGS register which is restored by the
6008 @code{IRET} instruction, are preserved by the compiler.  Since GCC
6009 doesn't preserve SSE, MMX nor x87 states, the GCC option
6010 @option{-mgeneral-regs-only} should be used to compile interrupt and
6011 exception handlers.
6013 Any interruptible-without-stack-switch code must be compiled with
6014 @option{-mno-red-zone} since interrupt handlers can and will, because
6015 of the hardware design, touch the red zone.
6017 An interrupt handler must be declared with a mandatory pointer
6018 argument:
6020 @smallexample
6021 struct interrupt_frame;
6023 __attribute__ ((interrupt))
6024 void
6025 f (struct interrupt_frame *frame)
6028 @end smallexample
6030 @noindent
6031 and you must define @code{struct interrupt_frame} as described in the
6032 processor's manual.
6034 Exception handlers differ from interrupt handlers because the system
6035 pushes an error code on the stack.  An exception handler declaration is
6036 similar to that for an interrupt handler, but with a different mandatory
6037 function signature.  The compiler arranges to pop the error code off the
6038 stack before the @code{IRET} instruction.
6040 @smallexample
6041 #ifdef __x86_64__
6042 typedef unsigned long long int uword_t;
6043 #else
6044 typedef unsigned int uword_t;
6045 #endif
6047 struct interrupt_frame;
6049 __attribute__ ((interrupt))
6050 void
6051 f (struct interrupt_frame *frame, uword_t error_code)
6053   ...
6055 @end smallexample
6057 Exception handlers should only be used for exceptions that push an error
6058 code; you should use an interrupt handler in other cases.  The system
6059 will crash if the wrong kind of handler is used.
6061 @item target (@var{options})
6062 @cindex @code{target} function attribute
6063 As discussed in @ref{Common Function Attributes}, this attribute 
6064 allows specification of target-specific compilation options.
6066 On the x86, the following options are allowed:
6067 @table @samp
6068 @item 3dnow
6069 @itemx no-3dnow
6070 @cindex @code{target("3dnow")} function attribute, x86
6071 Enable/disable the generation of the 3DNow!@: instructions.
6073 @item 3dnowa
6074 @itemx no-3dnowa
6075 @cindex @code{target("3dnowa")} function attribute, x86
6076 Enable/disable the generation of the enhanced 3DNow!@: instructions.
6078 @item abm
6079 @itemx no-abm
6080 @cindex @code{target("abm")} function attribute, x86
6081 Enable/disable the generation of the advanced bit instructions.
6083 @item adx
6084 @itemx no-adx
6085 @cindex @code{target("adx")} function attribute, x86
6086 Enable/disable the generation of the ADX instructions.
6088 @item aes
6089 @itemx no-aes
6090 @cindex @code{target("aes")} function attribute, x86
6091 Enable/disable the generation of the AES instructions.
6093 @item avx
6094 @itemx no-avx
6095 @cindex @code{target("avx")} function attribute, x86
6096 Enable/disable the generation of the AVX instructions.
6098 @item avx2
6099 @itemx no-avx2
6100 @cindex @code{target("avx2")} function attribute, x86
6101 Enable/disable the generation of the AVX2 instructions.
6103 @item avx5124fmaps
6104 @itemx no-avx5124fmaps
6105 @cindex @code{target("avx5124fmaps")} function attribute, x86
6106 Enable/disable the generation of the AVX5124FMAPS instructions.
6108 @item avx5124vnniw
6109 @itemx no-avx5124vnniw
6110 @cindex @code{target("avx5124vnniw")} function attribute, x86
6111 Enable/disable the generation of the AVX5124VNNIW instructions.
6113 @item avx512bitalg
6114 @itemx no-avx512bitalg
6115 @cindex @code{target("avx512bitalg")} function attribute, x86
6116 Enable/disable the generation of the AVX512BITALG instructions.
6118 @item avx512bw
6119 @itemx no-avx512bw
6120 @cindex @code{target("avx512bw")} function attribute, x86
6121 Enable/disable the generation of the AVX512BW instructions.
6123 @item avx512cd
6124 @itemx no-avx512cd
6125 @cindex @code{target("avx512cd")} function attribute, x86
6126 Enable/disable the generation of the AVX512CD instructions.
6128 @item avx512dq
6129 @itemx no-avx512dq
6130 @cindex @code{target("avx512dq")} function attribute, x86
6131 Enable/disable the generation of the AVX512DQ instructions.
6133 @item avx512er
6134 @itemx no-avx512er
6135 @cindex @code{target("avx512er")} function attribute, x86
6136 Enable/disable the generation of the AVX512ER instructions.
6138 @item avx512f
6139 @itemx no-avx512f
6140 @cindex @code{target("avx512f")} function attribute, x86
6141 Enable/disable the generation of the AVX512F instructions.
6143 @item avx512ifma
6144 @itemx no-avx512ifma
6145 @cindex @code{target("avx512ifma")} function attribute, x86
6146 Enable/disable the generation of the AVX512IFMA instructions.
6148 @item avx512pf
6149 @itemx no-avx512pf
6150 @cindex @code{target("avx512pf")} function attribute, x86
6151 Enable/disable the generation of the AVX512PF instructions.
6153 @item avx512vbmi
6154 @itemx no-avx512vbmi
6155 @cindex @code{target("avx512vbmi")} function attribute, x86
6156 Enable/disable the generation of the AVX512VBMI instructions.
6158 @item avx512vbmi2
6159 @itemx no-avx512vbmi2
6160 @cindex @code{target("avx512vbmi2")} function attribute, x86
6161 Enable/disable the generation of the AVX512VBMI2 instructions.
6163 @item avx512vl
6164 @itemx no-avx512vl
6165 @cindex @code{target("avx512vl")} function attribute, x86
6166 Enable/disable the generation of the AVX512VL instructions.
6168 @item avx512vnni
6169 @itemx no-avx512vnni
6170 @cindex @code{target("avx512vnni")} function attribute, x86
6171 Enable/disable the generation of the AVX512VNNI instructions.
6173 @item avx512vpopcntdq
6174 @itemx no-avx512vpopcntdq
6175 @cindex @code{target("avx512vpopcntdq")} function attribute, x86
6176 Enable/disable the generation of the AVX512VPOPCNTDQ instructions.
6178 @item bmi
6179 @itemx no-bmi
6180 @cindex @code{target("bmi")} function attribute, x86
6181 Enable/disable the generation of the BMI instructions.
6183 @item bmi2
6184 @itemx no-bmi2
6185 @cindex @code{target("bmi2")} function attribute, x86
6186 Enable/disable the generation of the BMI2 instructions.
6188 @item cldemote
6189 @itemx no-cldemote
6190 @cindex @code{target("cldemote")} function attribute, x86
6191 Enable/disable the generation of the CLDEMOTE instructions.
6193 @item clflushopt
6194 @itemx no-clflushopt
6195 @cindex @code{target("clflushopt")} function attribute, x86
6196 Enable/disable the generation of the CLFLUSHOPT instructions.
6198 @item clwb
6199 @itemx no-clwb
6200 @cindex @code{target("clwb")} function attribute, x86
6201 Enable/disable the generation of the CLWB instructions.
6203 @item clzero
6204 @itemx no-clzero
6205 @cindex @code{target("clzero")} function attribute, x86
6206 Enable/disable the generation of the CLZERO instructions.
6208 @item crc32
6209 @itemx no-crc32
6210 @cindex @code{target("crc32")} function attribute, x86
6211 Enable/disable the generation of the CRC32 instructions.
6213 @item cx16
6214 @itemx no-cx16
6215 @cindex @code{target("cx16")} function attribute, x86
6216 Enable/disable the generation of the CMPXCHG16B instructions.
6218 @item default
6219 @cindex @code{target("default")} function attribute, x86
6220 @xref{Function Multiversioning}, where it is used to specify the
6221 default function version.
6223 @item f16c
6224 @itemx no-f16c
6225 @cindex @code{target("f16c")} function attribute, x86
6226 Enable/disable the generation of the F16C instructions.
6228 @item fma
6229 @itemx no-fma
6230 @cindex @code{target("fma")} function attribute, x86
6231 Enable/disable the generation of the FMA instructions.
6233 @item fma4
6234 @itemx no-fma4
6235 @cindex @code{target("fma4")} function attribute, x86
6236 Enable/disable the generation of the FMA4 instructions.
6238 @item fsgsbase
6239 @itemx no-fsgsbase
6240 @cindex @code{target("fsgsbase")} function attribute, x86
6241 Enable/disable the generation of the FSGSBASE instructions.
6243 @item fxsr
6244 @itemx no-fxsr
6245 @cindex @code{target("fxsr")} function attribute, x86
6246 Enable/disable the generation of the FXSR instructions.
6248 @item gfni
6249 @itemx no-gfni
6250 @cindex @code{target("gfni")} function attribute, x86
6251 Enable/disable the generation of the GFNI instructions.
6253 @item hle
6254 @itemx no-hle
6255 @cindex @code{target("hle")} function attribute, x86
6256 Enable/disable the generation of the HLE instruction prefixes.
6258 @item lwp
6259 @itemx no-lwp
6260 @cindex @code{target("lwp")} function attribute, x86
6261 Enable/disable the generation of the LWP instructions.
6263 @item lzcnt
6264 @itemx no-lzcnt
6265 @cindex @code{target("lzcnt")} function attribute, x86
6266 Enable/disable the generation of the LZCNT instructions.
6268 @item mmx
6269 @itemx no-mmx
6270 @cindex @code{target("mmx")} function attribute, x86
6271 Enable/disable the generation of the MMX instructions.
6273 @item movbe
6274 @itemx no-movbe
6275 @cindex @code{target("movbe")} function attribute, x86
6276 Enable/disable the generation of the MOVBE instructions.
6278 @item movdir64b
6279 @itemx no-movdir64b
6280 @cindex @code{target("movdir64b")} function attribute, x86
6281 Enable/disable the generation of the MOVDIR64B instructions.
6283 @item movdiri
6284 @itemx no-movdiri
6285 @cindex @code{target("movdiri")} function attribute, x86
6286 Enable/disable the generation of the MOVDIRI instructions.
6288 @item mwaitx
6289 @itemx no-mwaitx
6290 @cindex @code{target("mwaitx")} function attribute, x86
6291 Enable/disable the generation of the MWAITX instructions.
6293 @item pclmul
6294 @itemx no-pclmul
6295 @cindex @code{target("pclmul")} function attribute, x86
6296 Enable/disable the generation of the PCLMUL instructions.
6298 @item pconfig
6299 @itemx no-pconfig
6300 @cindex @code{target("pconfig")} function attribute, x86
6301 Enable/disable the generation of the PCONFIG instructions.
6303 @item pku
6304 @itemx no-pku
6305 @cindex @code{target("pku")} function attribute, x86
6306 Enable/disable the generation of the PKU instructions.
6308 @item popcnt
6309 @itemx no-popcnt
6310 @cindex @code{target("popcnt")} function attribute, x86
6311 Enable/disable the generation of the POPCNT instruction.
6313 @item prefetchwt1
6314 @itemx no-prefetchwt1
6315 @cindex @code{target("prefetchwt1")} function attribute, x86
6316 Enable/disable the generation of the PREFETCHWT1 instructions.
6318 @item prfchw
6319 @itemx no-prfchw
6320 @cindex @code{target("prfchw")} function attribute, x86
6321 Enable/disable the generation of the PREFETCHW instruction.
6323 @item ptwrite
6324 @itemx no-ptwrite
6325 @cindex @code{target("ptwrite")} function attribute, x86
6326 Enable/disable the generation of the PTWRITE instructions.
6328 @item rdpid
6329 @itemx no-rdpid
6330 @cindex @code{target("rdpid")} function attribute, x86
6331 Enable/disable the generation of the RDPID instructions.
6333 @item rdrnd
6334 @itemx no-rdrnd
6335 @cindex @code{target("rdrnd")} function attribute, x86
6336 Enable/disable the generation of the RDRND instructions.
6338 @item rdseed
6339 @itemx no-rdseed
6340 @cindex @code{target("rdseed")} function attribute, x86
6341 Enable/disable the generation of the RDSEED instructions.
6343 @item rtm
6344 @itemx no-rtm
6345 @cindex @code{target("rtm")} function attribute, x86
6346 Enable/disable the generation of the RTM instructions.
6348 @item sahf
6349 @itemx no-sahf
6350 @cindex @code{target("sahf")} function attribute, x86
6351 Enable/disable the generation of the SAHF instructions.
6353 @item sgx
6354 @itemx no-sgx
6355 @cindex @code{target("sgx")} function attribute, x86
6356 Enable/disable the generation of the SGX instructions.
6358 @item sha
6359 @itemx no-sha
6360 @cindex @code{target("sha")} function attribute, x86
6361 Enable/disable the generation of the SHA instructions.
6363 @item shstk
6364 @itemx no-shstk
6365 @cindex @code{target("shstk")} function attribute, x86
6366 Enable/disable the shadow stack built-in functions from CET.
6368 @item sse
6369 @itemx no-sse
6370 @cindex @code{target("sse")} function attribute, x86
6371 Enable/disable the generation of the SSE instructions.
6373 @item sse2
6374 @itemx no-sse2
6375 @cindex @code{target("sse2")} function attribute, x86
6376 Enable/disable the generation of the SSE2 instructions.
6378 @item sse3
6379 @itemx no-sse3
6380 @cindex @code{target("sse3")} function attribute, x86
6381 Enable/disable the generation of the SSE3 instructions.
6383 @item sse4
6384 @itemx no-sse4
6385 @cindex @code{target("sse4")} function attribute, x86
6386 Enable/disable the generation of the SSE4 instructions (both SSE4.1
6387 and SSE4.2).
6389 @item sse4.1
6390 @itemx no-sse4.1
6391 @cindex @code{target("sse4.1")} function attribute, x86
6392 Enable/disable the generation of the sse4.1 instructions.
6394 @item sse4.2
6395 @itemx no-sse4.2
6396 @cindex @code{target("sse4.2")} function attribute, x86
6397 Enable/disable the generation of the sse4.2 instructions.
6399 @item sse4a
6400 @itemx no-sse4a
6401 @cindex @code{target("sse4a")} function attribute, x86
6402 Enable/disable the generation of the SSE4A instructions.
6404 @item ssse3
6405 @itemx no-ssse3
6406 @cindex @code{target("ssse3")} function attribute, x86
6407 Enable/disable the generation of the SSSE3 instructions.
6409 @item tbm
6410 @itemx no-tbm
6411 @cindex @code{target("tbm")} function attribute, x86
6412 Enable/disable the generation of the TBM instructions.
6414 @item vaes
6415 @itemx no-vaes
6416 @cindex @code{target("vaes")} function attribute, x86
6417 Enable/disable the generation of the VAES instructions.
6419 @item vpclmulqdq
6420 @itemx no-vpclmulqdq
6421 @cindex @code{target("vpclmulqdq")} function attribute, x86
6422 Enable/disable the generation of the VPCLMULQDQ instructions.
6424 @item waitpkg
6425 @itemx no-waitpkg
6426 @cindex @code{target("waitpkg")} function attribute, x86
6427 Enable/disable the generation of the WAITPKG instructions.
6429 @item wbnoinvd
6430 @itemx no-wbnoinvd
6431 @cindex @code{target("wbnoinvd")} function attribute, x86
6432 Enable/disable the generation of the WBNOINVD instructions.
6434 @item xop
6435 @itemx no-xop
6436 @cindex @code{target("xop")} function attribute, x86
6437 Enable/disable the generation of the XOP instructions.
6439 @item xsave
6440 @itemx no-xsave
6441 @cindex @code{target("xsave")} function attribute, x86
6442 Enable/disable the generation of the XSAVE instructions.
6444 @item xsavec
6445 @itemx no-xsavec
6446 @cindex @code{target("xsavec")} function attribute, x86
6447 Enable/disable the generation of the XSAVEC instructions.
6449 @item xsaveopt
6450 @itemx no-xsaveopt
6451 @cindex @code{target("xsaveopt")} function attribute, x86
6452 Enable/disable the generation of the XSAVEOPT instructions.
6454 @item xsaves
6455 @itemx no-xsaves
6456 @cindex @code{target("xsaves")} function attribute, x86
6457 Enable/disable the generation of the XSAVES instructions.
6459 @item cld
6460 @itemx no-cld
6461 @cindex @code{target("cld")} function attribute, x86
6462 Enable/disable the generation of the CLD before string moves.
6464 @item fancy-math-387
6465 @itemx no-fancy-math-387
6466 @cindex @code{target("fancy-math-387")} function attribute, x86
6467 Enable/disable the generation of the @code{sin}, @code{cos}, and
6468 @code{sqrt} instructions on the 387 floating-point unit.
6470 @item ieee-fp
6471 @itemx no-ieee-fp
6472 @cindex @code{target("ieee-fp")} function attribute, x86
6473 Enable/disable the generation of floating point that depends on IEEE arithmetic.
6475 @item inline-all-stringops
6476 @itemx no-inline-all-stringops
6477 @cindex @code{target("inline-all-stringops")} function attribute, x86
6478 Enable/disable inlining of string operations.
6480 @item inline-stringops-dynamically
6481 @itemx no-inline-stringops-dynamically
6482 @cindex @code{target("inline-stringops-dynamically")} function attribute, x86
6483 Enable/disable the generation of the inline code to do small string
6484 operations and calling the library routines for large operations.
6486 @item align-stringops
6487 @itemx no-align-stringops
6488 @cindex @code{target("align-stringops")} function attribute, x86
6489 Do/do not align destination of inlined string operations.
6491 @item recip
6492 @itemx no-recip
6493 @cindex @code{target("recip")} function attribute, x86
6494 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
6495 instructions followed an additional Newton-Raphson step instead of
6496 doing a floating-point division.
6498 @item arch=@var{ARCH}
6499 @cindex @code{target("arch=@var{ARCH}")} function attribute, x86
6500 Specify the architecture to generate code for in compiling the function.
6502 @item tune=@var{TUNE}
6503 @cindex @code{target("tune=@var{TUNE}")} function attribute, x86
6504 Specify the architecture to tune for in compiling the function.
6506 @item fpmath=@var{FPMATH}
6507 @cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86
6508 Specify which floating-point unit to use.  You must specify the
6509 @code{target("fpmath=sse,387")} option as
6510 @code{target("fpmath=sse+387")} because the comma would separate
6511 different options.
6513 @item indirect_branch("@var{choice}")
6514 @cindex @code{indirect_branch} function attribute, x86
6515 On x86 targets, the @code{indirect_branch} attribute causes the compiler
6516 to convert indirect call and jump with @var{choice}.  @samp{keep}
6517 keeps indirect call and jump unmodified.  @samp{thunk} converts indirect
6518 call and jump to call and return thunk.  @samp{thunk-inline} converts
6519 indirect call and jump to inlined call and return thunk.
6520 @samp{thunk-extern} converts indirect call and jump to external call
6521 and return thunk provided in a separate object file.
6523 @item function_return("@var{choice}")
6524 @cindex @code{function_return} function attribute, x86
6525 On x86 targets, the @code{function_return} attribute causes the compiler
6526 to convert function return with @var{choice}.  @samp{keep} keeps function
6527 return unmodified.  @samp{thunk} converts function return to call and
6528 return thunk.  @samp{thunk-inline} converts function return to inlined
6529 call and return thunk.  @samp{thunk-extern} converts function return to
6530 external call and return thunk provided in a separate object file.
6532 @item nocf_check
6533 @cindex @code{nocf_check} function attribute
6534 The @code{nocf_check} attribute on a function is used to inform the
6535 compiler that the function's prologue should not be instrumented when
6536 compiled with the @option{-fcf-protection=branch} option.  The
6537 compiler assumes that the function's address is a valid target for a
6538 control-flow transfer.
6540 The @code{nocf_check} attribute on a type of pointer to function is
6541 used to inform the compiler that a call through the pointer should
6542 not be instrumented when compiled with the
6543 @option{-fcf-protection=branch} option.  The compiler assumes
6544 that the function's address from the pointer is a valid target for
6545 a control-flow transfer.  A direct function call through a function
6546 name is assumed to be a safe call thus direct calls are not
6547 instrumented by the compiler.
6549 The @code{nocf_check} attribute is applied to an object's type.
6550 In case of assignment of a function address or a function pointer to
6551 another pointer, the attribute is not carried over from the right-hand
6552 object's type; the type of left-hand object stays unchanged.  The
6553 compiler checks for @code{nocf_check} attribute mismatch and reports
6554 a warning in case of mismatch.
6556 @smallexample
6558 int foo (void) __attribute__(nocf_check);
6559 void (*foo1)(void) __attribute__(nocf_check);
6560 void (*foo2)(void);
6562 /* foo's address is assumed to be valid.  */
6564 foo (void) 
6566   /* This call site is not checked for control-flow 
6567      validity.  */
6568   (*foo1)();
6570   /* A warning is issued about attribute mismatch.  */
6571   foo1 = foo2; 
6573   /* This call site is still not checked.  */
6574   (*foo1)();
6576   /* This call site is checked.  */
6577   (*foo2)();
6579   /* A warning is issued about attribute mismatch.  */
6580   foo2 = foo1; 
6582   /* This call site is still checked.  */
6583   (*foo2)();
6585   return 0;
6587 @end smallexample
6589 @item cf_check
6590 @cindex @code{cf_check} function attribute, x86
6592 The @code{cf_check} attribute on a function is used to inform the
6593 compiler that ENDBR instruction should be placed at the function
6594 entry when @option{-fcf-protection=branch} is enabled.
6596 @item indirect_return
6597 @cindex @code{indirect_return} function attribute, x86
6599 The @code{indirect_return} attribute can be applied to a function,
6600 as well as variable or type of function pointer to inform the
6601 compiler that the function may return via indirect branch.
6603 @item fentry_name("@var{name}")
6604 @cindex @code{fentry_name} function attribute, x86
6605 On x86 targets, the @code{fentry_name} attribute sets the function to
6606 call on function entry when function instrumentation is enabled
6607 with @option{-pg -mfentry}. When @var{name} is nop then a 5 byte
6608 nop sequence is generated.
6610 @item fentry_section("@var{name}")
6611 @cindex @code{fentry_section} function attribute, x86
6612 On x86 targets, the @code{fentry_section} attribute sets the name
6613 of the section to record function entry instrumentation calls in when
6614 enabled with @option{-pg -mrecord-mcount}
6616 @end table
6618 On the x86, the inliner does not inline a
6619 function that has different target options than the caller, unless the
6620 callee has a subset of the target options of the caller.  For example
6621 a function declared with @code{target("sse3")} can inline a function
6622 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
6623 @end table
6625 @node Xstormy16 Function Attributes
6626 @subsection Xstormy16 Function Attributes
6628 These function attributes are supported by the Xstormy16 back end:
6630 @table @code
6631 @item interrupt
6632 @cindex @code{interrupt} function attribute, Xstormy16
6633 Use this attribute to indicate
6634 that the specified function is an interrupt handler.  The compiler generates
6635 function entry and exit sequences suitable for use in an interrupt handler
6636 when this attribute is present.
6637 @end table
6639 @node Variable Attributes
6640 @section Specifying Attributes of Variables
6641 @cindex attribute of variables
6642 @cindex variable attributes
6644 The keyword @code{__attribute__} allows you to specify special properties
6645 of variables, function parameters, or structure, union, and, in C++, class
6646 members.  This @code{__attribute__} keyword is followed by an attribute
6647 specification enclosed in double parentheses.  Some attributes are currently
6648 defined generically for variables.  Other attributes are defined for
6649 variables on particular target systems.  Other attributes are available
6650 for functions (@pxref{Function Attributes}), labels (@pxref{Label Attributes}),
6651 enumerators (@pxref{Enumerator Attributes}), statements
6652 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
6653 Other front ends might define more attributes
6654 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
6656 @xref{Attribute Syntax}, for details of the exact syntax for using
6657 attributes.
6659 @menu
6660 * Common Variable Attributes::
6661 * ARC Variable Attributes::
6662 * AVR Variable Attributes::
6663 * Blackfin Variable Attributes::
6664 * H8/300 Variable Attributes::
6665 * IA-64 Variable Attributes::
6666 * M32R/D Variable Attributes::
6667 * MeP Variable Attributes::
6668 * Microsoft Windows Variable Attributes::
6669 * MSP430 Variable Attributes::
6670 * Nvidia PTX Variable Attributes::
6671 * PowerPC Variable Attributes::
6672 * RL78 Variable Attributes::
6673 * SPU Variable Attributes::
6674 * V850 Variable Attributes::
6675 * x86 Variable Attributes::
6676 * Xstormy16 Variable Attributes::
6677 @end menu
6679 @node Common Variable Attributes
6680 @subsection Common Variable Attributes
6682 The following attributes are supported on most targets.
6684 @table @code
6685 @cindex @code{aligned} variable attribute
6686 @item aligned
6687 @itemx aligned (@var{alignment})
6688 The @code{aligned} attribute specifies a minimum alignment for the variable
6689 or structure field, measured in bytes.  When specified, @var{alignment} must
6690 be an integer constant power of 2.  Specifying no @var{alignment} argument
6691 implies the maximum alignment for the target, which is often, but by no
6692 means always, 8 or 16 bytes.
6694 For example, the declaration:
6696 @smallexample
6697 int x __attribute__ ((aligned (16))) = 0;
6698 @end smallexample
6700 @noindent
6701 causes the compiler to allocate the global variable @code{x} on a
6702 16-byte boundary.  On a 68040, this could be used in conjunction with
6703 an @code{asm} expression to access the @code{move16} instruction which
6704 requires 16-byte aligned operands.
6706 You can also specify the alignment of structure fields.  For example, to
6707 create a double-word aligned @code{int} pair, you could write:
6709 @smallexample
6710 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
6711 @end smallexample
6713 @noindent
6714 This is an alternative to creating a union with a @code{double} member,
6715 which forces the union to be double-word aligned.
6717 As in the preceding examples, you can explicitly specify the alignment
6718 (in bytes) that you wish the compiler to use for a given variable or
6719 structure field.  Alternatively, you can leave out the alignment factor
6720 and just ask the compiler to align a variable or field to the
6721 default alignment for the target architecture you are compiling for.
6722 The default alignment is sufficient for all scalar types, but may not be
6723 enough for all vector types on a target that supports vector operations.
6724 The default alignment is fixed for a particular target ABI.
6726 GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
6727 which is the largest alignment ever used for any data type on the
6728 target machine you are compiling for.  For example, you could write:
6730 @smallexample
6731 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
6732 @end smallexample
6734 The compiler automatically sets the alignment for the declared
6735 variable or field to @code{__BIGGEST_ALIGNMENT__}.  Doing this can
6736 often make copy operations more efficient, because the compiler can
6737 use whatever instructions copy the biggest chunks of memory when
6738 performing copies to or from the variables or fields that you have
6739 aligned this way.  Note that the value of @code{__BIGGEST_ALIGNMENT__}
6740 may change depending on command-line options.
6742 When used on a struct, or struct member, the @code{aligned} attribute can
6743 only increase the alignment; in order to decrease it, the @code{packed}
6744 attribute must be specified as well.  When used as part of a typedef, the
6745 @code{aligned} attribute can both increase and decrease alignment, and
6746 specifying the @code{packed} attribute generates a warning.
6748 Note that the effectiveness of @code{aligned} attributes for static
6749 variables may be limited by inherent limitations in the system linker
6750 and/or object file format.  On some systems, the linker is
6751 only able to arrange for variables to be aligned up to a certain maximum
6752 alignment.  (For some linkers, the maximum supported alignment may
6753 be very very small.)  If your linker is only able to align variables
6754 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
6755 in an @code{__attribute__} still only provides you with 8-byte
6756 alignment.  See your linker documentation for further information.
6758 Stack variables are not affected by linker restrictions; GCC can properly
6759 align them on any target.
6761 The @code{aligned} attribute can also be used for functions
6762 (@pxref{Common Function Attributes}.)
6764 @cindex @code{warn_if_not_aligned} variable attribute
6765 @item warn_if_not_aligned (@var{alignment})
6766 This attribute specifies a threshold for the structure field, measured
6767 in bytes.  If the structure field is aligned below the threshold, a
6768 warning will be issued.  For example, the declaration:
6770 @smallexample
6771 struct foo
6773   int i1;
6774   int i2;
6775   unsigned long long x __attribute__ ((warn_if_not_aligned (16)));
6777 @end smallexample
6779 @noindent
6780 causes the compiler to issue an warning on @code{struct foo}, like
6781 @samp{warning: alignment 8 of 'struct foo' is less than 16}.
6782 The compiler also issues a warning, like @samp{warning: 'x' offset
6783 8 in 'struct foo' isn't aligned to 16}, when the structure field has
6784 the misaligned offset:
6786 @smallexample
6787 struct __attribute__ ((aligned (16))) foo
6789   int i1;
6790   int i2;
6791   unsigned long long x __attribute__ ((warn_if_not_aligned (16)));
6793 @end smallexample
6795 This warning can be disabled by @option{-Wno-if-not-aligned}.
6796 The @code{warn_if_not_aligned} attribute can also be used for types
6797 (@pxref{Common Type Attributes}.)
6799 @item alloc_size (@var{position})
6800 @itemx alloc_size (@var{position-1}, @var{position-2})
6801 @cindex @code{alloc_size} variable attribute
6802 The @code{alloc_size} variable attribute may be applied to the declaration
6803 of a pointer to a function that returns a pointer and takes at least one
6804 argument of an integer type.  It indicates that the returned pointer points
6805 to an object whose size is given by the function argument at @var{position-1},
6806 or by the product of the arguments at @var{position-1} and @var{position-2}.
6807 Meaningful sizes are positive values less than @code{PTRDIFF_MAX}.  Other
6808 sizes are disagnosed when detected.  GCC uses this information to improve
6809 the results of @code{__builtin_object_size}.
6811 For instance, the following declarations
6813 @smallexample
6814 typedef __attribute__ ((alloc_size (1, 2))) void*
6815   (*calloc_ptr) (size_t, size_t);
6816 typedef __attribute__ ((alloc_size (1))) void*
6817   (*malloc_ptr) (size_t);
6818 @end smallexample
6820 @noindent
6821 specify that @code{calloc_ptr} is a pointer of a function that, like
6822 the standard C function @code{calloc}, returns an object whose size
6823 is given by the product of arguments 1 and 2, and similarly, that
6824 @code{malloc_ptr}, like the standard C function @code{malloc},
6825 returns an object whose size is given by argument 1 to the function.
6827 @item cleanup (@var{cleanup_function})
6828 @cindex @code{cleanup} variable attribute
6829 The @code{cleanup} attribute runs a function when the variable goes
6830 out of scope.  This attribute can only be applied to auto function
6831 scope variables; it may not be applied to parameters or variables
6832 with static storage duration.  The function must take one parameter,
6833 a pointer to a type compatible with the variable.  The return value
6834 of the function (if any) is ignored.
6836 If @option{-fexceptions} is enabled, then @var{cleanup_function}
6837 is run during the stack unwinding that happens during the
6838 processing of the exception.  Note that the @code{cleanup} attribute
6839 does not allow the exception to be caught, only to perform an action.
6840 It is undefined what happens if @var{cleanup_function} does not
6841 return normally.
6843 @item common
6844 @itemx nocommon
6845 @cindex @code{common} variable attribute
6846 @cindex @code{nocommon} variable attribute
6847 @opindex fcommon
6848 @opindex fno-common
6849 The @code{common} attribute requests GCC to place a variable in
6850 ``common'' storage.  The @code{nocommon} attribute requests the
6851 opposite---to allocate space for it directly.
6853 These attributes override the default chosen by the
6854 @option{-fno-common} and @option{-fcommon} flags respectively.
6856 @item copy
6857 @itemx copy (@var{variable})
6858 @cindex @code{copy} variable attribute
6859 The @code{copy} attribute applies the set of attributes with which
6860 @var{variable} has been declared to the declaration of the variable
6861 to which the attribute is applied.  The attribute is designed for
6862 libraries that define aliases that are expected to specify the same
6863 set of attributes as the aliased symbols.  The @code{copy} attribute
6864 can be used with variables, functions or types.  However, the kind
6865 of symbol to which the attribute is applied (either varible or
6866 function) must match the kind of symbol to which the argument refers.
6867 The @code{copy} attribute copies only syntactic and semantic attributes
6868 but not attributes that affect a symbol's linkage or visibility such as
6869 @code{alias}, @code{visibility}, or @code{weak}.  The @code{deprecated}
6870 attribute is also not copied.  @xref{Common Function Attributes}.
6871 @xref{Common Type Attributes}.
6873 @item deprecated
6874 @itemx deprecated (@var{msg})
6875 @cindex @code{deprecated} variable attribute
6876 The @code{deprecated} attribute results in a warning if the variable
6877 is used anywhere in the source file.  This is useful when identifying
6878 variables that are expected to be removed in a future version of a
6879 program.  The warning also includes the location of the declaration
6880 of the deprecated variable, to enable users to easily find further
6881 information about why the variable is deprecated, or what they should
6882 do instead.  Note that the warning only occurs for uses:
6884 @smallexample
6885 extern int old_var __attribute__ ((deprecated));
6886 extern int old_var;
6887 int new_fn () @{ return old_var; @}
6888 @end smallexample
6890 @noindent
6891 results in a warning on line 3 but not line 2.  The optional @var{msg}
6892 argument, which must be a string, is printed in the warning if
6893 present.
6895 The @code{deprecated} attribute can also be used for functions and
6896 types (@pxref{Common Function Attributes},
6897 @pxref{Common Type Attributes}).
6899 The message attached to the attribute is affected by the setting of
6900 the @option{-fmessage-length} option.
6902 @item mode (@var{mode})
6903 @cindex @code{mode} variable attribute
6904 This attribute specifies the data type for the declaration---whichever
6905 type corresponds to the mode @var{mode}.  This in effect lets you
6906 request an integer or floating-point type according to its width.
6908 @xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals},
6909 for a list of the possible keywords for @var{mode}.
6910 You may also specify a mode of @code{byte} or @code{__byte__} to
6911 indicate the mode corresponding to a one-byte integer, @code{word} or
6912 @code{__word__} for the mode of a one-word integer, and @code{pointer}
6913 or @code{__pointer__} for the mode used to represent pointers.
6915 @item nonstring
6916 @cindex @code{nonstring} variable attribute
6917 The @code{nonstring} variable attribute specifies that an object or member
6918 declaration with type array of @code{char}, @code{signed char}, or
6919 @code{unsigned char}, or pointer to such a type is intended to store
6920 character arrays that do not necessarily contain a terminating @code{NUL}.
6921 This is useful in detecting uses of such arrays or pointers with functions
6922 that expect @code{NUL}-terminated strings, and to avoid warnings when such
6923 an array or pointer is used as an argument to a bounded string manipulation
6924 function such as @code{strncpy}.  For example, without the attribute, GCC
6925 will issue a warning for the @code{strncpy} call below because it may
6926 truncate the copy without appending the terminating @code{NUL} character.
6927 Using the attribute makes it possible to suppress the warning.  However,
6928 when the array is declared with the attribute the call to @code{strlen} is
6929 diagnosed because when the array doesn't contain a @code{NUL}-terminated
6930 string the call is undefined.  To copy, compare, of search non-string
6931 character arrays use the @code{memcpy}, @code{memcmp}, @code{memchr},
6932 and other functions that operate on arrays of bytes.  In addition,
6933 calling @code{strnlen} and @code{strndup} with such arrays is safe
6934 provided a suitable bound is specified, and not diagnosed.
6936 @smallexample
6937 struct Data
6939   char name [32] __attribute__ ((nonstring));
6942 int f (struct Data *pd, const char *s)
6944   strncpy (pd->name, s, sizeof pd->name);
6945   @dots{}
6946   return strlen (pd->name);   // unsafe, gets a warning
6948 @end smallexample
6950 @item packed
6951 @cindex @code{packed} variable attribute
6952 The @code{packed} attribute specifies that a structure member should have
6953 the smallest possible alignment---one bit for a bit-field and one byte
6954 otherwise, unless a larger value is specified with the @code{aligned}
6955 attribute.  The attribute does not apply to non-member objects.
6957 For example in the structure below, the member array @code{x} is packed
6958 so that it immediately follows @code{a} with no intervening padding:
6960 @smallexample
6961 struct foo
6963   char a;
6964   int x[2] __attribute__ ((packed));
6966 @end smallexample
6968 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
6969 @code{packed} attribute on bit-fields of type @code{char}.  This has
6970 been fixed in GCC 4.4 but the change can lead to differences in the
6971 structure layout.  See the documentation of
6972 @option{-Wpacked-bitfield-compat} for more information.
6974 @item section ("@var{section-name}")
6975 @cindex @code{section} variable attribute
6976 Normally, the compiler places the objects it generates in sections like
6977 @code{data} and @code{bss}.  Sometimes, however, you need additional sections,
6978 or you need certain particular variables to appear in special sections,
6979 for example to map to special hardware.  The @code{section}
6980 attribute specifies that a variable (or function) lives in a particular
6981 section.  For example, this small program uses several specific section names:
6983 @smallexample
6984 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
6985 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
6986 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
6987 int init_data __attribute__ ((section ("INITDATA")));
6989 main()
6991   /* @r{Initialize stack pointer} */
6992   init_sp (stack + sizeof (stack));
6994   /* @r{Initialize initialized data} */
6995   memcpy (&init_data, &data, &edata - &data);
6997   /* @r{Turn on the serial ports} */
6998   init_duart (&a);
6999   init_duart (&b);
7001 @end smallexample
7003 @noindent
7004 Use the @code{section} attribute with
7005 @emph{global} variables and not @emph{local} variables,
7006 as shown in the example.
7008 You may use the @code{section} attribute with initialized or
7009 uninitialized global variables but the linker requires
7010 each object be defined once, with the exception that uninitialized
7011 variables tentatively go in the @code{common} (or @code{bss}) section
7012 and can be multiply ``defined''.  Using the @code{section} attribute
7013 changes what section the variable goes into and may cause the
7014 linker to issue an error if an uninitialized variable has multiple
7015 definitions.  You can force a variable to be initialized with the
7016 @option{-fno-common} flag or the @code{nocommon} attribute.
7018 Some file formats do not support arbitrary sections so the @code{section}
7019 attribute is not available on all platforms.
7020 If you need to map the entire contents of a module to a particular
7021 section, consider using the facilities of the linker instead.
7023 @item tls_model ("@var{tls_model}")
7024 @cindex @code{tls_model} variable attribute
7025 The @code{tls_model} attribute sets thread-local storage model
7026 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
7027 overriding @option{-ftls-model=} command-line switch on a per-variable
7028 basis.
7029 The @var{tls_model} argument should be one of @code{global-dynamic},
7030 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
7032 Not all targets support this attribute.
7034 @item unused
7035 @cindex @code{unused} variable attribute
7036 This attribute, attached to a variable, means that the variable is meant
7037 to be possibly unused.  GCC does not produce a warning for this
7038 variable.
7040 @item used
7041 @cindex @code{used} variable attribute
7042 This attribute, attached to a variable with static storage, means that
7043 the variable must be emitted even if it appears that the variable is not
7044 referenced.
7046 When applied to a static data member of a C++ class template, the
7047 attribute also means that the member is instantiated if the
7048 class itself is instantiated.
7050 @item vector_size (@var{bytes})
7051 @cindex @code{vector_size} variable attribute
7052 This attribute specifies the vector size for the type of the declared
7053 variable, measured in bytes.  The type to which it applies is known as
7054 the @dfn{base type}.  The @var{bytes} argument must be a positive
7055 power-of-two multiple of the base type size.  For example, the declaration:
7057 @smallexample
7058 int foo __attribute__ ((vector_size (16)));
7059 @end smallexample
7061 @noindent
7062 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
7063 divided into @code{int} sized units.  Assuming a 32-bit @code{int},
7064 @code{foo}'s type is a vector of four units of four bytes each, and
7065 the corresponding mode of @code{foo} is @code{V4SI}.
7066 @xref{Vector Extensions} for details of manipulating vector variables.
7068 This attribute is only applicable to integral and floating scalars,
7069 although arrays, pointers, and function return values are allowed in
7070 conjunction with this construct.
7072 Aggregates with this attribute are invalid, even if they are of the same
7073 size as a corresponding scalar.  For example, the declaration:
7075 @smallexample
7076 struct S @{ int a; @};
7077 struct S  __attribute__ ((vector_size (16))) foo;
7078 @end smallexample
7080 @noindent
7081 is invalid even if the size of the structure is the same as the size of
7082 the @code{int}.
7084 @item visibility ("@var{visibility_type}")
7085 @cindex @code{visibility} variable attribute
7086 This attribute affects the linkage of the declaration to which it is attached.
7087 The @code{visibility} attribute is described in
7088 @ref{Common Function Attributes}.
7090 @item weak
7091 @cindex @code{weak} variable attribute
7092 The @code{weak} attribute is described in
7093 @ref{Common Function Attributes}.
7095 @end table
7097 @node ARC Variable Attributes
7098 @subsection ARC Variable Attributes
7100 @table @code
7101 @item aux
7102 @cindex @code{aux} variable attribute, ARC
7103 The @code{aux} attribute is used to directly access the ARC's
7104 auxiliary register space from C.  The auxilirary register number is
7105 given via attribute argument.
7107 @end table
7109 @node AVR Variable Attributes
7110 @subsection AVR Variable Attributes
7112 @table @code
7113 @item progmem
7114 @cindex @code{progmem} variable attribute, AVR
7115 The @code{progmem} attribute is used on the AVR to place read-only
7116 data in the non-volatile program memory (flash). The @code{progmem}
7117 attribute accomplishes this by putting respective variables into a
7118 section whose name starts with @code{.progmem}.
7120 This attribute works similar to the @code{section} attribute
7121 but adds additional checking.
7123 @table @asis
7124 @item @bullet{}@tie{} Ordinary AVR cores with 32 general purpose registers:
7125 @code{progmem} affects the location
7126 of the data but not how this data is accessed.
7127 In order to read data located with the @code{progmem} attribute
7128 (inline) assembler must be used.
7129 @smallexample
7130 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
7131 #include <avr/pgmspace.h> 
7133 /* Locate var in flash memory */
7134 const int var[2] PROGMEM = @{ 1, 2 @};
7136 int read_var (int i)
7138     /* Access var[] by accessor macro from avr/pgmspace.h */
7139     return (int) pgm_read_word (& var[i]);
7141 @end smallexample
7143 AVR is a Harvard architecture processor and data and read-only data
7144 normally resides in the data memory (RAM).
7146 See also the @ref{AVR Named Address Spaces} section for
7147 an alternate way to locate and access data in flash memory.
7149 @item @bullet{}@tie{} AVR cores with flash memory visible in the RAM address range:
7150 On such devices, there is no need for attribute @code{progmem} or
7151 @ref{AVR Named Address Spaces,,@code{__flash}} qualifier at all.
7152 Just use standard C / C++.  The compiler will generate @code{LD*}
7153 instructions.  As flash memory is visible in the RAM address range,
7154 and the default linker script does @emph{not} locate @code{.rodata} in
7155 RAM, no special features are needed in order not to waste RAM for
7156 read-only data or to read from flash.  You might even get slightly better
7157 performance by
7158 avoiding @code{progmem} and @code{__flash}.  This applies to devices from
7159 families @code{avrtiny} and @code{avrxmega3}, see @ref{AVR Options} for
7160 an overview.
7162 @item @bullet{}@tie{}Reduced AVR Tiny cores like ATtiny40:
7163 The compiler adds @code{0x4000}
7164 to the addresses of objects and declarations in @code{progmem} and locates
7165 the objects in flash memory, namely in section @code{.progmem.data}.
7166 The offset is needed because the flash memory is visible in the RAM
7167 address space starting at address @code{0x4000}.
7169 Data in @code{progmem} can be accessed by means of ordinary C@tie{}code,
7170 no special functions or macros are needed.
7172 @smallexample
7173 /* var is located in flash memory */
7174 extern const int var[2] __attribute__((progmem));
7176 int read_var (int i)
7178     return var[i];
7180 @end smallexample
7182 Please notice that on these devices, there is no need for @code{progmem}
7183 at all.
7185 @end table
7187 @item io
7188 @itemx io (@var{addr})
7189 @cindex @code{io} variable attribute, AVR
7190 Variables with the @code{io} attribute are used to address
7191 memory-mapped peripherals in the io address range.
7192 If an address is specified, the variable
7193 is assigned that address, and the value is interpreted as an
7194 address in the data address space.
7195 Example:
7197 @smallexample
7198 volatile int porta __attribute__((io (0x22)));
7199 @end smallexample
7201 The address specified in the address in the data address range.
7203 Otherwise, the variable it is not assigned an address, but the
7204 compiler will still use in/out instructions where applicable,
7205 assuming some other module assigns an address in the io address range.
7206 Example:
7208 @smallexample
7209 extern volatile int porta __attribute__((io));
7210 @end smallexample
7212 @item io_low
7213 @itemx io_low (@var{addr})
7214 @cindex @code{io_low} variable attribute, AVR
7215 This is like the @code{io} attribute, but additionally it informs the
7216 compiler that the object lies in the lower half of the I/O area,
7217 allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis}
7218 instructions.
7220 @item address
7221 @itemx address (@var{addr})
7222 @cindex @code{address} variable attribute, AVR
7223 Variables with the @code{address} attribute are used to address
7224 memory-mapped peripherals that may lie outside the io address range.
7226 @smallexample
7227 volatile int porta __attribute__((address (0x600)));
7228 @end smallexample
7230 @item absdata
7231 @cindex @code{absdata} variable attribute, AVR
7232 Variables in static storage and with the @code{absdata} attribute can
7233 be accessed by the @code{LDS} and @code{STS} instructions which take
7234 absolute addresses.
7236 @itemize @bullet
7237 @item
7238 This attribute is only supported for the reduced AVR Tiny core
7239 like ATtiny40.
7241 @item
7242 You must make sure that respective data is located in the
7243 address range @code{0x40}@dots{}@code{0xbf} accessible by
7244 @code{LDS} and @code{STS}.  One way to achieve this as an
7245 appropriate linker description file.
7247 @item
7248 If the location does not fit the address range of @code{LDS}
7249 and @code{STS}, there is currently (Binutils 2.26) just an unspecific
7250 warning like
7251 @quotation
7252 @code{module.c:(.text+0x1c): warning: internal error: out of range error}
7253 @end quotation
7255 @end itemize
7257 See also the @option{-mabsdata} @ref{AVR Options,command-line option}.
7259 @end table
7261 @node Blackfin Variable Attributes
7262 @subsection Blackfin Variable Attributes
7264 Three attributes are currently defined for the Blackfin.
7266 @table @code
7267 @item l1_data
7268 @itemx l1_data_A
7269 @itemx l1_data_B
7270 @cindex @code{l1_data} variable attribute, Blackfin
7271 @cindex @code{l1_data_A} variable attribute, Blackfin
7272 @cindex @code{l1_data_B} variable attribute, Blackfin
7273 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
7274 Variables with @code{l1_data} attribute are put into the specific section
7275 named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
7276 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
7277 attribute are put into the specific section named @code{.l1.data.B}.
7279 @item l2
7280 @cindex @code{l2} variable attribute, Blackfin
7281 Use this attribute on the Blackfin to place the variable into L2 SRAM.
7282 Variables with @code{l2} attribute are put into the specific section
7283 named @code{.l2.data}.
7284 @end table
7286 @node H8/300 Variable Attributes
7287 @subsection H8/300 Variable Attributes
7289 These variable attributes are available for H8/300 targets:
7291 @table @code
7292 @item eightbit_data
7293 @cindex @code{eightbit_data} variable attribute, H8/300
7294 @cindex eight-bit data on the H8/300, H8/300H, and H8S
7295 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
7296 variable should be placed into the eight-bit data section.
7297 The compiler generates more efficient code for certain operations
7298 on data in the eight-bit data area.  Note the eight-bit data area is limited to
7299 256 bytes of data.
7301 You must use GAS and GLD from GNU binutils version 2.7 or later for
7302 this attribute to work correctly.
7304 @item tiny_data
7305 @cindex @code{tiny_data} variable attribute, H8/300
7306 @cindex tiny data section on the H8/300H and H8S
7307 Use this attribute on the H8/300H and H8S to indicate that the specified
7308 variable should be placed into the tiny data section.
7309 The compiler generates more efficient code for loads and stores
7310 on data in the tiny data section.  Note the tiny data area is limited to
7311 slightly under 32KB of data.
7313 @end table
7315 @node IA-64 Variable Attributes
7316 @subsection IA-64 Variable Attributes
7318 The IA-64 back end supports the following variable attribute:
7320 @table @code
7321 @item model (@var{model-name})
7322 @cindex @code{model} variable attribute, IA-64
7324 On IA-64, use this attribute to set the addressability of an object.
7325 At present, the only supported identifier for @var{model-name} is
7326 @code{small}, indicating addressability via ``small'' (22-bit)
7327 addresses (so that their addresses can be loaded with the @code{addl}
7328 instruction).  Caveat: such addressing is by definition not position
7329 independent and hence this attribute must not be used for objects
7330 defined by shared libraries.
7332 @end table
7334 @node M32R/D Variable Attributes
7335 @subsection M32R/D Variable Attributes
7337 One attribute is currently defined for the M32R/D@.
7339 @table @code
7340 @item model (@var{model-name})
7341 @cindex @code{model-name} variable attribute, M32R/D
7342 @cindex variable addressability on the M32R/D
7343 Use this attribute on the M32R/D to set the addressability of an object.
7344 The identifier @var{model-name} is one of @code{small}, @code{medium},
7345 or @code{large}, representing each of the code models.
7347 Small model objects live in the lower 16MB of memory (so that their
7348 addresses can be loaded with the @code{ld24} instruction).
7350 Medium and large model objects may live anywhere in the 32-bit address space
7351 (the compiler generates @code{seth/add3} instructions to load their
7352 addresses).
7353 @end table
7355 @node MeP Variable Attributes
7356 @subsection MeP Variable Attributes
7358 The MeP target has a number of addressing modes and busses.  The
7359 @code{near} space spans the standard memory space's first 16 megabytes
7360 (24 bits).  The @code{far} space spans the entire 32-bit memory space.
7361 The @code{based} space is a 128-byte region in the memory space that
7362 is addressed relative to the @code{$tp} register.  The @code{tiny}
7363 space is a 65536-byte region relative to the @code{$gp} register.  In
7364 addition to these memory regions, the MeP target has a separate 16-bit
7365 control bus which is specified with @code{cb} attributes.
7367 @table @code
7369 @item based
7370 @cindex @code{based} variable attribute, MeP
7371 Any variable with the @code{based} attribute is assigned to the
7372 @code{.based} section, and is accessed with relative to the
7373 @code{$tp} register.
7375 @item tiny
7376 @cindex @code{tiny} variable attribute, MeP
7377 Likewise, the @code{tiny} attribute assigned variables to the
7378 @code{.tiny} section, relative to the @code{$gp} register.
7380 @item near
7381 @cindex @code{near} variable attribute, MeP
7382 Variables with the @code{near} attribute are assumed to have addresses
7383 that fit in a 24-bit addressing mode.  This is the default for large
7384 variables (@code{-mtiny=4} is the default) but this attribute can
7385 override @code{-mtiny=} for small variables, or override @code{-ml}.
7387 @item far
7388 @cindex @code{far} variable attribute, MeP
7389 Variables with the @code{far} attribute are addressed using a full
7390 32-bit address.  Since this covers the entire memory space, this
7391 allows modules to make no assumptions about where variables might be
7392 stored.
7394 @item io
7395 @cindex @code{io} variable attribute, MeP
7396 @itemx io (@var{addr})
7397 Variables with the @code{io} attribute are used to address
7398 memory-mapped peripherals.  If an address is specified, the variable
7399 is assigned that address, else it is not assigned an address (it is
7400 assumed some other module assigns an address).  Example:
7402 @smallexample
7403 int timer_count __attribute__((io(0x123)));
7404 @end smallexample
7406 @item cb
7407 @itemx cb (@var{addr})
7408 @cindex @code{cb} variable attribute, MeP
7409 Variables with the @code{cb} attribute are used to access the control
7410 bus, using special instructions.  @code{addr} indicates the control bus
7411 address.  Example:
7413 @smallexample
7414 int cpu_clock __attribute__((cb(0x123)));
7415 @end smallexample
7417 @end table
7419 @node Microsoft Windows Variable Attributes
7420 @subsection Microsoft Windows Variable Attributes
7422 You can use these attributes on Microsoft Windows targets.
7423 @ref{x86 Variable Attributes} for additional Windows compatibility
7424 attributes available on all x86 targets.
7426 @table @code
7427 @item dllimport
7428 @itemx dllexport
7429 @cindex @code{dllimport} variable attribute
7430 @cindex @code{dllexport} variable attribute
7431 The @code{dllimport} and @code{dllexport} attributes are described in
7432 @ref{Microsoft Windows Function Attributes}.
7434 @item selectany
7435 @cindex @code{selectany} variable attribute
7436 The @code{selectany} attribute causes an initialized global variable to
7437 have link-once semantics.  When multiple definitions of the variable are
7438 encountered by the linker, the first is selected and the remainder are
7439 discarded.  Following usage by the Microsoft compiler, the linker is told
7440 @emph{not} to warn about size or content differences of the multiple
7441 definitions.
7443 Although the primary usage of this attribute is for POD types, the
7444 attribute can also be applied to global C++ objects that are initialized
7445 by a constructor.  In this case, the static initialization and destruction
7446 code for the object is emitted in each translation defining the object,
7447 but the calls to the constructor and destructor are protected by a
7448 link-once guard variable.
7450 The @code{selectany} attribute is only available on Microsoft Windows
7451 targets.  You can use @code{__declspec (selectany)} as a synonym for
7452 @code{__attribute__ ((selectany))} for compatibility with other
7453 compilers.
7455 @item shared
7456 @cindex @code{shared} variable attribute
7457 On Microsoft Windows, in addition to putting variable definitions in a named
7458 section, the section can also be shared among all running copies of an
7459 executable or DLL@.  For example, this small program defines shared data
7460 by putting it in a named section @code{shared} and marking the section
7461 shareable:
7463 @smallexample
7464 int foo __attribute__((section ("shared"), shared)) = 0;
7467 main()
7469   /* @r{Read and write foo.  All running
7470      copies see the same value.}  */
7471   return 0;
7473 @end smallexample
7475 @noindent
7476 You may only use the @code{shared} attribute along with @code{section}
7477 attribute with a fully-initialized global definition because of the way
7478 linkers work.  See @code{section} attribute for more information.
7480 The @code{shared} attribute is only available on Microsoft Windows@.
7482 @end table
7484 @node MSP430 Variable Attributes
7485 @subsection MSP430 Variable Attributes
7487 @table @code
7488 @item noinit
7489 @cindex @code{noinit} variable attribute, MSP430 
7490 Any data with the @code{noinit} attribute will not be initialised by
7491 the C runtime startup code, or the program loader.  Not initialising
7492 data in this way can reduce program startup times.
7494 @item persistent
7495 @cindex @code{persistent} variable attribute, MSP430 
7496 Any variable with the @code{persistent} attribute will not be
7497 initialised by the C runtime startup code.  Instead its value will be
7498 set once, when the application is loaded, and then never initialised
7499 again, even if the processor is reset or the program restarts.
7500 Persistent data is intended to be placed into FLASH RAM, where its
7501 value will be retained across resets.  The linker script being used to
7502 create the application should ensure that persistent data is correctly
7503 placed.
7505 @item lower
7506 @itemx upper
7507 @itemx either
7508 @cindex @code{lower} variable attribute, MSP430 
7509 @cindex @code{upper} variable attribute, MSP430 
7510 @cindex @code{either} variable attribute, MSP430 
7511 These attributes are the same as the MSP430 function attributes of the
7512 same name (@pxref{MSP430 Function Attributes}).  
7513 These attributes can be applied to both functions and variables.
7514 @end table
7516 @node Nvidia PTX Variable Attributes
7517 @subsection Nvidia PTX Variable Attributes
7519 These variable attributes are supported by the Nvidia PTX back end:
7521 @table @code
7522 @item shared
7523 @cindex @code{shared} attribute, Nvidia PTX
7524 Use this attribute to place a variable in the @code{.shared} memory space.
7525 This memory space is private to each cooperative thread array; only threads
7526 within one thread block refer to the same instance of the variable.
7527 The runtime does not initialize variables in this memory space.
7528 @end table
7530 @node PowerPC Variable Attributes
7531 @subsection PowerPC Variable Attributes
7533 Three attributes currently are defined for PowerPC configurations:
7534 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
7536 @cindex @code{ms_struct} variable attribute, PowerPC
7537 @cindex @code{gcc_struct} variable attribute, PowerPC
7538 For full documentation of the struct attributes please see the
7539 documentation in @ref{x86 Variable Attributes}.
7541 @cindex @code{altivec} variable attribute, PowerPC
7542 For documentation of @code{altivec} attribute please see the
7543 documentation in @ref{PowerPC Type Attributes}.
7545 @node RL78 Variable Attributes
7546 @subsection RL78 Variable Attributes
7548 @cindex @code{saddr} variable attribute, RL78
7549 The RL78 back end supports the @code{saddr} variable attribute.  This
7550 specifies placement of the corresponding variable in the SADDR area,
7551 which can be accessed more efficiently than the default memory region.
7553 @node SPU Variable Attributes
7554 @subsection SPU Variable Attributes
7556 @cindex @code{spu_vector} variable attribute, SPU
7557 The SPU supports the @code{spu_vector} attribute for variables.  For
7558 documentation of this attribute please see the documentation in
7559 @ref{SPU Type Attributes}.
7561 @node V850 Variable Attributes
7562 @subsection V850 Variable Attributes
7564 These variable attributes are supported by the V850 back end:
7566 @table @code
7568 @item sda
7569 @cindex @code{sda} variable attribute, V850
7570 Use this attribute to explicitly place a variable in the small data area,
7571 which can hold up to 64 kilobytes.
7573 @item tda
7574 @cindex @code{tda} variable attribute, V850
7575 Use this attribute to explicitly place a variable in the tiny data area,
7576 which can hold up to 256 bytes in total.
7578 @item zda
7579 @cindex @code{zda} variable attribute, V850
7580 Use this attribute to explicitly place a variable in the first 32 kilobytes
7581 of memory.
7582 @end table
7584 @node x86 Variable Attributes
7585 @subsection x86 Variable Attributes
7587 Two attributes are currently defined for x86 configurations:
7588 @code{ms_struct} and @code{gcc_struct}.
7590 @table @code
7591 @item ms_struct
7592 @itemx gcc_struct
7593 @cindex @code{ms_struct} variable attribute, x86
7594 @cindex @code{gcc_struct} variable attribute, x86
7596 If @code{packed} is used on a structure, or if bit-fields are used,
7597 it may be that the Microsoft ABI lays out the structure differently
7598 than the way GCC normally does.  Particularly when moving packed
7599 data between functions compiled with GCC and the native Microsoft compiler
7600 (either via function call or as data in a file), it may be necessary to access
7601 either format.
7603 The @code{ms_struct} and @code{gcc_struct} attributes correspond
7604 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
7605 command-line options, respectively;
7606 see @ref{x86 Options}, for details of how structure layout is affected.
7607 @xref{x86 Type Attributes}, for information about the corresponding
7608 attributes on types.
7610 @end table
7612 @node Xstormy16 Variable Attributes
7613 @subsection Xstormy16 Variable Attributes
7615 One attribute is currently defined for xstormy16 configurations:
7616 @code{below100}.
7618 @table @code
7619 @item below100
7620 @cindex @code{below100} variable attribute, Xstormy16
7622 If a variable has the @code{below100} attribute (@code{BELOW100} is
7623 allowed also), GCC places the variable in the first 0x100 bytes of
7624 memory and use special opcodes to access it.  Such variables are
7625 placed in either the @code{.bss_below100} section or the
7626 @code{.data_below100} section.
7628 @end table
7630 @node Type Attributes
7631 @section Specifying Attributes of Types
7632 @cindex attribute of types
7633 @cindex type attributes
7635 The keyword @code{__attribute__} allows you to specify various special
7636 properties of types.  Some type attributes apply only to structure and
7637 union types, and in C++, also class types, while others can apply to
7638 any type defined via a @code{typedef} declaration.  Unless otherwise
7639 specified, the same restrictions and effects apply to attributes regardless
7640 of whether a type is a trivial structure or a C++ class with user-defined
7641 constructors, destructors, or a copy assignment.
7643 Other attributes are defined for functions (@pxref{Function Attributes}),
7644 labels (@pxref{Label  Attributes}), enumerators (@pxref{Enumerator
7645 Attributes}), statements (@pxref{Statement Attributes}), and for variables
7646 (@pxref{Variable Attributes}).
7648 The @code{__attribute__} keyword is followed by an attribute specification
7649 enclosed in double parentheses.
7651 You may specify type attributes in an enum, struct or union type
7652 declaration or definition by placing them immediately after the
7653 @code{struct}, @code{union} or @code{enum} keyword.  You can also place
7654 them just past the closing curly brace of the definition, but this is less
7655 preferred because logically the type should be fully defined at 
7656 the closing brace.
7658 You can also include type attributes in a @code{typedef} declaration.
7659 @xref{Attribute Syntax}, for details of the exact syntax for using
7660 attributes.
7662 @menu
7663 * Common Type Attributes::
7664 * ARC Type Attributes::
7665 * ARM Type Attributes::
7666 * MeP Type Attributes::
7667 * PowerPC Type Attributes::
7668 * SPU Type Attributes::
7669 * x86 Type Attributes::
7670 @end menu
7672 @node Common Type Attributes
7673 @subsection Common Type Attributes
7675 The following type attributes are supported on most targets.
7677 @table @code
7678 @cindex @code{aligned} type attribute
7679 @item aligned
7680 @itemx aligned (@var{alignment})
7681 The @code{aligned} attribute specifies a minimum alignment (in bytes) for
7682 variables of the specified type.  When specified, @var{alignment} must be
7683 a power of 2.  Specifying no @var{alignment} argument implies the maximum
7684 alignment for the target, which is often, but by no means always, 8 or 16
7685 bytes.  For example, the declarations:
7687 @smallexample
7688 struct __attribute__ ((aligned (8))) S @{ short f[3]; @};
7689 typedef int more_aligned_int __attribute__ ((aligned (8)));
7690 @end smallexample
7692 @noindent
7693 force the compiler to ensure (as far as it can) that each variable whose
7694 type is @code{struct S} or @code{more_aligned_int} is allocated and
7695 aligned @emph{at least} on a 8-byte boundary.  On a SPARC, having all
7696 variables of type @code{struct S} aligned to 8-byte boundaries allows
7697 the compiler to use the @code{ldd} and @code{std} (doubleword load and
7698 store) instructions when copying one variable of type @code{struct S} to
7699 another, thus improving run-time efficiency.
7701 Note that the alignment of any given @code{struct} or @code{union} type
7702 is required by the ISO C standard to be at least a perfect multiple of
7703 the lowest common multiple of the alignments of all of the members of
7704 the @code{struct} or @code{union} in question.  This means that you @emph{can}
7705 effectively adjust the alignment of a @code{struct} or @code{union}
7706 type by attaching an @code{aligned} attribute to any one of the members
7707 of such a type, but the notation illustrated in the example above is a
7708 more obvious, intuitive, and readable way to request the compiler to
7709 adjust the alignment of an entire @code{struct} or @code{union} type.
7711 As in the preceding example, you can explicitly specify the alignment
7712 (in bytes) that you wish the compiler to use for a given @code{struct}
7713 or @code{union} type.  Alternatively, you can leave out the alignment factor
7714 and just ask the compiler to align a type to the maximum
7715 useful alignment for the target machine you are compiling for.  For
7716 example, you could write:
7718 @smallexample
7719 struct __attribute__ ((aligned)) S @{ short f[3]; @};
7720 @end smallexample
7722 Whenever you leave out the alignment factor in an @code{aligned}
7723 attribute specification, the compiler automatically sets the alignment
7724 for the type to the largest alignment that is ever used for any data
7725 type on the target machine you are compiling for.  Doing this can often
7726 make copy operations more efficient, because the compiler can use
7727 whatever instructions copy the biggest chunks of memory when performing
7728 copies to or from the variables that have types that you have aligned
7729 this way.
7731 In the example above, if the size of each @code{short} is 2 bytes, then
7732 the size of the entire @code{struct S} type is 6 bytes.  The smallest
7733 power of two that is greater than or equal to that is 8, so the
7734 compiler sets the alignment for the entire @code{struct S} type to 8
7735 bytes.
7737 Note that although you can ask the compiler to select a time-efficient
7738 alignment for a given type and then declare only individual stand-alone
7739 objects of that type, the compiler's ability to select a time-efficient
7740 alignment is primarily useful only when you plan to create arrays of
7741 variables having the relevant (efficiently aligned) type.  If you
7742 declare or use arrays of variables of an efficiently-aligned type, then
7743 it is likely that your program also does pointer arithmetic (or
7744 subscripting, which amounts to the same thing) on pointers to the
7745 relevant type, and the code that the compiler generates for these
7746 pointer arithmetic operations is often more efficient for
7747 efficiently-aligned types than for other types.
7749 Note that the effectiveness of @code{aligned} attributes may be limited
7750 by inherent limitations in your linker.  On many systems, the linker is
7751 only able to arrange for variables to be aligned up to a certain maximum
7752 alignment.  (For some linkers, the maximum supported alignment may
7753 be very very small.)  If your linker is only able to align variables
7754 up to a maximum of 8-byte alignment, then specifying @code{aligned (16)}
7755 in an @code{__attribute__} still only provides you with 8-byte
7756 alignment.  See your linker documentation for further information.
7758 When used on a struct, or struct member, the @code{aligned} attribute can
7759 only increase the alignment; in order to decrease it, the @code{packed}
7760 attribute must be specified as well.  When used as part of a typedef, the
7761 @code{aligned} attribute can both increase and decrease alignment, and
7762 specifying the @code{packed} attribute generates a warning.
7764 @cindex @code{warn_if_not_aligned} type attribute
7765 @item warn_if_not_aligned (@var{alignment})
7766 This attribute specifies a threshold for the structure field, measured
7767 in bytes.  If the structure field is aligned below the threshold, a
7768 warning will be issued.  For example, the declaration:
7770 @smallexample
7771 typedef unsigned long long __u64
7772    __attribute__((aligned (4), warn_if_not_aligned (8)));
7774 struct foo
7776   int i1;
7777   int i2;
7778   __u64 x;
7780 @end smallexample
7782 @noindent
7783 causes the compiler to issue an warning on @code{struct foo}, like
7784 @samp{warning: alignment 4 of 'struct foo' is less than 8}.
7785 It is used to define @code{struct foo} in such a way that
7786 @code{struct foo} has the same layout and the structure field @code{x}
7787 has the same alignment when @code{__u64} is aligned at either 4 or
7788 8 bytes.  Align @code{struct foo} to 8 bytes:
7790 @smallexample
7791 struct __attribute__ ((aligned (8))) foo
7793   int i1;
7794   int i2;
7795   __u64 x;
7797 @end smallexample
7799 @noindent
7800 silences the warning.  The compiler also issues a warning, like
7801 @samp{warning: 'x' offset 12 in 'struct foo' isn't aligned to 8},
7802 when the structure field has the misaligned offset:
7804 @smallexample
7805 struct __attribute__ ((aligned (8))) foo
7807   int i1;
7808   int i2;
7809   int i3;
7810   __u64 x;
7812 @end smallexample
7814 This warning can be disabled by @option{-Wno-if-not-aligned}.
7816 @item alloc_size (@var{position})
7817 @itemx alloc_size (@var{position-1}, @var{position-2})
7818 @cindex @code{alloc_size} type attribute
7819 The @code{alloc_size} type attribute may be applied to the definition
7820 of a type of a function that returns a pointer and takes at least one
7821 argument of an integer type.  It indicates that the returned pointer
7822 points to an object whose size is given by the function argument at
7823 @var{position-1}, or by the product of the arguments at @var{position-1}
7824 and @var{position-2}.  Meaningful sizes are positive values less than
7825 @code{PTRDIFF_MAX}.  Other sizes are disagnosed when detected.  GCC uses
7826 this information to improve the results of @code{__builtin_object_size}.
7828 For instance, the following declarations
7830 @smallexample
7831 typedef __attribute__ ((alloc_size (1, 2))) void*
7832   calloc_type (size_t, size_t);
7833 typedef __attribute__ ((alloc_size (1))) void*
7834   malloc_type (size_t);
7835 @end smallexample
7837 @noindent
7838 specify that @code{calloc_type} is a type of a function that, like
7839 the standard C function @code{calloc}, returns an object whose size
7840 is given by the product of arguments 1 and 2, and that
7841 @code{malloc_type}, like the standard C function @code{malloc},
7842 returns an object whose size is given by argument 1 to the function.
7844 @item copy
7845 @itemx copy (@var{expression})
7846 @cindex @code{copy} type attribute
7847 The @code{copy} attribute applies the set of attributes with which
7848 the type of the @var{expression} has been declared to the declaration
7849 of the type to which the attribute is applied.  The attribute is
7850 designed for libraries that define aliases that are expected to
7851 specify the same set of attributes as the aliased symbols.
7852 The @code{copy} attribute can be used with types, variables, or
7853 functions.  However, the kind of symbol to which the attribute is
7854 applied (either varible or function) must match the kind of symbol
7855 to which the argument refers.
7856 The @code{copy} attribute copies only syntactic and semantic attributes
7857 but not attributes that affect a symbol's linkage or visibility such as
7858 @code{alias}, @code{visibility}, or @code{weak}.  The @code{deprecated}
7859 attribute is also not copied.  @xref{Common Function Attributes}.
7860 @xref{Common Variable Attributes}.
7862 For example, suppose @code{struct A} below is defined in some third
7863 party library header to have the alignment requirement @code{N} and
7864 to force a warning whenever a variable of the type is not so aligned
7865 due to attribute @code{packed}.  Specifying the @code{copy} attribute
7866 on the definition on the unrelated @code{struct B} has the effect of
7867 copying all relevant attributes from the type referenced by the pointer
7868 expression to @code{struct B}.
7870 @smallexample
7871 struct __attribute__ ((aligned (N), warn_if_not_aligned (N)))
7872 A @{ /* @r{@dots{}} */ @};
7873 struct __attribute__ ((copy ( (struct A *)0)) B @{ /* @r{@dots{}} */ @};
7874 @end smallexample
7876 @item deprecated
7877 @itemx deprecated (@var{msg})
7878 @cindex @code{deprecated} type attribute
7879 The @code{deprecated} attribute results in a warning if the type
7880 is used anywhere in the source file.  This is useful when identifying
7881 types that are expected to be removed in a future version of a program.
7882 If possible, the warning also includes the location of the declaration
7883 of the deprecated type, to enable users to easily find further
7884 information about why the type is deprecated, or what they should do
7885 instead.  Note that the warnings only occur for uses and then only
7886 if the type is being applied to an identifier that itself is not being
7887 declared as deprecated.
7889 @smallexample
7890 typedef int T1 __attribute__ ((deprecated));
7891 T1 x;
7892 typedef T1 T2;
7893 T2 y;
7894 typedef T1 T3 __attribute__ ((deprecated));
7895 T3 z __attribute__ ((deprecated));
7896 @end smallexample
7898 @noindent
7899 results in a warning on line 2 and 3 but not lines 4, 5, or 6.  No
7900 warning is issued for line 4 because T2 is not explicitly
7901 deprecated.  Line 5 has no warning because T3 is explicitly
7902 deprecated.  Similarly for line 6.  The optional @var{msg}
7903 argument, which must be a string, is printed in the warning if
7904 present.  Control characters in the string will be replaced with
7905 escape sequences, and if the @option{-fmessage-length} option is set
7906 to 0 (its default value) then any newline characters will be ignored.
7908 The @code{deprecated} attribute can also be used for functions and
7909 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
7911 The message attached to the attribute is affected by the setting of
7912 the @option{-fmessage-length} option.
7914 @item designated_init
7915 @cindex @code{designated_init} type attribute
7916 This attribute may only be applied to structure types.  It indicates
7917 that any initialization of an object of this type must use designated
7918 initializers rather than positional initializers.  The intent of this
7919 attribute is to allow the programmer to indicate that a structure's
7920 layout may change, and that therefore relying on positional
7921 initialization will result in future breakage.
7923 GCC emits warnings based on this attribute by default; use
7924 @option{-Wno-designated-init} to suppress them.
7926 @item may_alias
7927 @cindex @code{may_alias} type attribute
7928 Accesses through pointers to types with this attribute are not subject
7929 to type-based alias analysis, but are instead assumed to be able to alias
7930 any other type of objects.
7931 In the context of section 6.5 paragraph 7 of the C99 standard,
7932 an lvalue expression
7933 dereferencing such a pointer is treated like having a character type.
7934 See @option{-fstrict-aliasing} for more information on aliasing issues.
7935 This extension exists to support some vector APIs, in which pointers to
7936 one vector type are permitted to alias pointers to a different vector type.
7938 Note that an object of a type with this attribute does not have any
7939 special semantics.
7941 Example of use:
7943 @smallexample
7944 typedef short __attribute__ ((__may_alias__)) short_a;
7947 main (void)
7949   int a = 0x12345678;
7950   short_a *b = (short_a *) &a;
7952   b[1] = 0;
7954   if (a == 0x12345678)
7955     abort();
7957   exit(0);
7959 @end smallexample
7961 @noindent
7962 If you replaced @code{short_a} with @code{short} in the variable
7963 declaration, the above program would abort when compiled with
7964 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
7965 above.
7967 @item mode (@var{mode})
7968 @cindex @code{mode} type attribute
7969 This attribute specifies the data type for the declaration---whichever
7970 type corresponds to the mode @var{mode}.  This in effect lets you
7971 request an integer or floating-point type according to its width.
7973 @xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals},
7974 for a list of the possible keywords for @var{mode}.
7975 You may also specify a mode of @code{byte} or @code{__byte__} to
7976 indicate the mode corresponding to a one-byte integer, @code{word} or
7977 @code{__word__} for the mode of a one-word integer, and @code{pointer}
7978 or @code{__pointer__} for the mode used to represent pointers.
7980 @item packed
7981 @cindex @code{packed} type attribute
7982 This attribute, attached to a @code{struct}, @code{union}, or C++ @code{class}
7983 type definition, specifies that each of its members (other than zero-width
7984 bit-fields) is placed to minimize the memory required.  This is equivalent
7985 to specifying the @code{packed} attribute on each of the members.
7987 @opindex fshort-enums
7988 When attached to an @code{enum} definition, the @code{packed} attribute
7989 indicates that the smallest integral type should be used.
7990 Specifying the @option{-fshort-enums} flag on the command line
7991 is equivalent to specifying the @code{packed}
7992 attribute on all @code{enum} definitions.
7994 In the following example @code{struct my_packed_struct}'s members are
7995 packed closely together, but the internal layout of its @code{s} member
7996 is not packed---to do that, @code{struct my_unpacked_struct} needs to
7997 be packed too.
7999 @smallexample
8000 struct my_unpacked_struct
8001  @{
8002     char c;
8003     int i;
8004  @};
8006 struct __attribute__ ((__packed__)) my_packed_struct
8007   @{
8008      char c;
8009      int  i;
8010      struct my_unpacked_struct s;
8011   @};
8012 @end smallexample
8014 You may only specify the @code{packed} attribute on the definition
8015 of an @code{enum}, @code{struct}, @code{union}, or @code{class}, 
8016 not on a @code{typedef} that does not also define the enumerated type,
8017 structure, union, or class.
8019 @item scalar_storage_order ("@var{endianness}")
8020 @cindex @code{scalar_storage_order} type attribute
8021 When attached to a @code{union} or a @code{struct}, this attribute sets
8022 the storage order, aka endianness, of the scalar fields of the type, as
8023 well as the array fields whose component is scalar.  The supported
8024 endiannesses are @code{big-endian} and @code{little-endian}.  The attribute
8025 has no effects on fields which are themselves a @code{union}, a @code{struct}
8026 or an array whose component is a @code{union} or a @code{struct}, and it is
8027 possible for these fields to have a different scalar storage order than the
8028 enclosing type.
8030 This attribute is supported only for targets that use a uniform default
8031 scalar storage order (fortunately, most of them), i.e.@: targets that store
8032 the scalars either all in big-endian or all in little-endian.
8034 Additional restrictions are enforced for types with the reverse scalar
8035 storage order with regard to the scalar storage order of the target:
8037 @itemize
8038 @item Taking the address of a scalar field of a @code{union} or a
8039 @code{struct} with reverse scalar storage order is not permitted and yields
8040 an error.
8041 @item Taking the address of an array field, whose component is scalar, of
8042 a @code{union} or a @code{struct} with reverse scalar storage order is
8043 permitted but yields a warning, unless @option{-Wno-scalar-storage-order}
8044 is specified.
8045 @item Taking the address of a @code{union} or a @code{struct} with reverse
8046 scalar storage order is permitted.
8047 @end itemize
8049 These restrictions exist because the storage order attribute is lost when
8050 the address of a scalar or the address of an array with scalar component is
8051 taken, so storing indirectly through this address generally does not work.
8052 The second case is nevertheless allowed to be able to perform a block copy
8053 from or to the array.
8055 Moreover, the use of type punning or aliasing to toggle the storage order
8056 is not supported; that is to say, a given scalar object cannot be accessed
8057 through distinct types that assign a different storage order to it.
8059 @item transparent_union
8060 @cindex @code{transparent_union} type attribute
8062 This attribute, attached to a @code{union} type definition, indicates
8063 that any function parameter having that union type causes calls to that
8064 function to be treated in a special way.
8066 First, the argument corresponding to a transparent union type can be of
8067 any type in the union; no cast is required.  Also, if the union contains
8068 a pointer type, the corresponding argument can be a null pointer
8069 constant or a void pointer expression; and if the union contains a void
8070 pointer type, the corresponding argument can be any pointer expression.
8071 If the union member type is a pointer, qualifiers like @code{const} on
8072 the referenced type must be respected, just as with normal pointer
8073 conversions.
8075 Second, the argument is passed to the function using the calling
8076 conventions of the first member of the transparent union, not the calling
8077 conventions of the union itself.  All members of the union must have the
8078 same machine representation; this is necessary for this argument passing
8079 to work properly.
8081 Transparent unions are designed for library functions that have multiple
8082 interfaces for compatibility reasons.  For example, suppose the
8083 @code{wait} function must accept either a value of type @code{int *} to
8084 comply with POSIX, or a value of type @code{union wait *} to comply with
8085 the 4.1BSD interface.  If @code{wait}'s parameter were @code{void *},
8086 @code{wait} would accept both kinds of arguments, but it would also
8087 accept any other pointer type and this would make argument type checking
8088 less useful.  Instead, @code{<sys/wait.h>} might define the interface
8089 as follows:
8091 @smallexample
8092 typedef union __attribute__ ((__transparent_union__))
8093   @{
8094     int *__ip;
8095     union wait *__up;
8096   @} wait_status_ptr_t;
8098 pid_t wait (wait_status_ptr_t);
8099 @end smallexample
8101 @noindent
8102 This interface allows either @code{int *} or @code{union wait *}
8103 arguments to be passed, using the @code{int *} calling convention.
8104 The program can call @code{wait} with arguments of either type:
8106 @smallexample
8107 int w1 () @{ int w; return wait (&w); @}
8108 int w2 () @{ union wait w; return wait (&w); @}
8109 @end smallexample
8111 @noindent
8112 With this interface, @code{wait}'s implementation might look like this:
8114 @smallexample
8115 pid_t wait (wait_status_ptr_t p)
8117   return waitpid (-1, p.__ip, 0);
8119 @end smallexample
8121 @item unused
8122 @cindex @code{unused} type attribute
8123 When attached to a type (including a @code{union} or a @code{struct}),
8124 this attribute means that variables of that type are meant to appear
8125 possibly unused.  GCC does not produce a warning for any variables of
8126 that type, even if the variable appears to do nothing.  This is often
8127 the case with lock or thread classes, which are usually defined and then
8128 not referenced, but contain constructors and destructors that have
8129 nontrivial bookkeeping functions.
8131 @item vector_size (@var{bytes})
8132 @cindex @code{vector_size} type attribute
8133 This attribute specifies the vector size for the type, measured in bytes.
8134 The type to which it applies is known as the @dfn{base type}.  The @var{bytes}
8135 argument must be a positive power-of-two multiple of the base type size.  For
8136 example, the following declarations:
8138 @smallexample
8139 typedef __attribute__ ((vector_size (32))) int int_vec32_t ;
8140 typedef __attribute__ ((vector_size (32))) int* int_vec32_ptr_t;
8141 typedef __attribute__ ((vector_size (32))) int int_vec32_arr3_t[3];
8142 @end smallexample
8144 @noindent
8145 define @code{int_vec32_t} to be a 32-byte vector type composed of @code{int}
8146 sized units.  With @code{int} having a size of 4 bytes, the type defines
8147 a vector of eight units, four bytes each.  The mode of variables of type
8148 @code{int_vec32_t} is @code{V8SI}.  @code{int_vec32_ptr_t} is then defined
8149 to be a pointer to such a vector type, and @code{int_vec32_arr3_t} to be
8150 an array of three such vectors.  @xref{Vector Extensions} for details of
8151 manipulating objects of vector types.
8153 This attribute is only applicable to integral and floating scalar types.
8154 In function declarations the attribute applies to the function return
8155 type.
8157 For example, the following:
8158 @smallexample
8159 __attribute__ ((vector_size (16))) float get_flt_vec16 (void);
8160 @end smallexample
8161 declares @code{get_flt_vec16} to be a function returning a 16-byte vector
8162 with the base type @code{float}.
8164 @item visibility
8165 @cindex @code{visibility} type attribute
8166 In C++, attribute visibility (@pxref{Function Attributes}) can also be
8167 applied to class, struct, union and enum types.  Unlike other type
8168 attributes, the attribute must appear between the initial keyword and
8169 the name of the type; it cannot appear after the body of the type.
8171 Note that the type visibility is applied to vague linkage entities
8172 associated with the class (vtable, typeinfo node, etc.).  In
8173 particular, if a class is thrown as an exception in one shared object
8174 and caught in another, the class must have default visibility.
8175 Otherwise the two shared objects are unable to use the same
8176 typeinfo node and exception handling will break.
8178 @end table
8180 To specify multiple attributes, separate them by commas within the
8181 double parentheses: for example, @samp{__attribute__ ((aligned (16),
8182 packed))}.
8184 @node ARC Type Attributes
8185 @subsection ARC Type Attributes
8187 @cindex @code{uncached} type attribute, ARC
8188 Declaring objects with @code{uncached} allows you to exclude
8189 data-cache participation in load and store operations on those objects
8190 without involving the additional semantic implications of
8191 @code{volatile}.  The @code{.di} instruction suffix is used for all
8192 loads and stores of data declared @code{uncached}.
8194 @node ARM Type Attributes
8195 @subsection ARM Type Attributes
8197 @cindex @code{notshared} type attribute, ARM
8198 On those ARM targets that support @code{dllimport} (such as Symbian
8199 OS), you can use the @code{notshared} attribute to indicate that the
8200 virtual table and other similar data for a class should not be
8201 exported from a DLL@.  For example:
8203 @smallexample
8204 class __declspec(notshared) C @{
8205 public:
8206   __declspec(dllimport) C();
8207   virtual void f();
8210 __declspec(dllexport)
8211 C::C() @{@}
8212 @end smallexample
8214 @noindent
8215 In this code, @code{C::C} is exported from the current DLL, but the
8216 virtual table for @code{C} is not exported.  (You can use
8217 @code{__attribute__} instead of @code{__declspec} if you prefer, but
8218 most Symbian OS code uses @code{__declspec}.)
8220 @node MeP Type Attributes
8221 @subsection MeP Type Attributes
8223 @cindex @code{based} type attribute, MeP
8224 @cindex @code{tiny} type attribute, MeP
8225 @cindex @code{near} type attribute, MeP
8226 @cindex @code{far} type attribute, MeP
8227 Many of the MeP variable attributes may be applied to types as well.
8228 Specifically, the @code{based}, @code{tiny}, @code{near}, and
8229 @code{far} attributes may be applied to either.  The @code{io} and
8230 @code{cb} attributes may not be applied to types.
8232 @node PowerPC Type Attributes
8233 @subsection PowerPC Type Attributes
8235 Three attributes currently are defined for PowerPC configurations:
8236 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
8238 @cindex @code{ms_struct} type attribute, PowerPC
8239 @cindex @code{gcc_struct} type attribute, PowerPC
8240 For full documentation of the @code{ms_struct} and @code{gcc_struct}
8241 attributes please see the documentation in @ref{x86 Type Attributes}.
8243 @cindex @code{altivec} type attribute, PowerPC
8244 The @code{altivec} attribute allows one to declare AltiVec vector data
8245 types supported by the AltiVec Programming Interface Manual.  The
8246 attribute requires an argument to specify one of three vector types:
8247 @code{vector__}, @code{pixel__} (always followed by unsigned short),
8248 and @code{bool__} (always followed by unsigned).
8250 @smallexample
8251 __attribute__((altivec(vector__)))
8252 __attribute__((altivec(pixel__))) unsigned short
8253 __attribute__((altivec(bool__))) unsigned
8254 @end smallexample
8256 These attributes mainly are intended to support the @code{__vector},
8257 @code{__pixel}, and @code{__bool} AltiVec keywords.
8259 @node SPU Type Attributes
8260 @subsection SPU Type Attributes
8262 @cindex @code{spu_vector} type attribute, SPU
8263 The SPU supports the @code{spu_vector} attribute for types.  This attribute
8264 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
8265 Language Extensions Specification.  It is intended to support the
8266 @code{__vector} keyword.
8268 @node x86 Type Attributes
8269 @subsection x86 Type Attributes
8271 Two attributes are currently defined for x86 configurations:
8272 @code{ms_struct} and @code{gcc_struct}.
8274 @table @code
8276 @item ms_struct
8277 @itemx gcc_struct
8278 @cindex @code{ms_struct} type attribute, x86
8279 @cindex @code{gcc_struct} type attribute, x86
8281 If @code{packed} is used on a structure, or if bit-fields are used
8282 it may be that the Microsoft ABI packs them differently
8283 than GCC normally packs them.  Particularly when moving packed
8284 data between functions compiled with GCC and the native Microsoft compiler
8285 (either via function call or as data in a file), it may be necessary to access
8286 either format.
8288 The @code{ms_struct} and @code{gcc_struct} attributes correspond
8289 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
8290 command-line options, respectively;
8291 see @ref{x86 Options}, for details of how structure layout is affected.
8292 @xref{x86 Variable Attributes}, for information about the corresponding
8293 attributes on variables.
8295 @end table
8297 @node Label Attributes
8298 @section Label Attributes
8299 @cindex Label Attributes
8301 GCC allows attributes to be set on C labels.  @xref{Attribute Syntax}, for 
8302 details of the exact syntax for using attributes.  Other attributes are 
8303 available for functions (@pxref{Function Attributes}), variables 
8304 (@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}),
8305 statements (@pxref{Statement Attributes}), and for types
8306 (@pxref{Type Attributes}).
8308 This example uses the @code{cold} label attribute to indicate the 
8309 @code{ErrorHandling} branch is unlikely to be taken and that the
8310 @code{ErrorHandling} label is unused:
8312 @smallexample
8314    asm goto ("some asm" : : : : NoError);
8316 /* This branch (the fall-through from the asm) is less commonly used */
8317 ErrorHandling: 
8318    __attribute__((cold, unused)); /* Semi-colon is required here */
8319    printf("error\n");
8320    return 0;
8322 NoError:
8323    printf("no error\n");
8324    return 1;
8325 @end smallexample
8327 @table @code
8328 @item unused
8329 @cindex @code{unused} label attribute
8330 This feature is intended for program-generated code that may contain 
8331 unused labels, but which is compiled with @option{-Wall}.  It is
8332 not normally appropriate to use in it human-written code, though it
8333 could be useful in cases where the code that jumps to the label is
8334 contained within an @code{#ifdef} conditional.
8336 @item hot
8337 @cindex @code{hot} label attribute
8338 The @code{hot} attribute on a label is used to inform the compiler that
8339 the path following the label is more likely than paths that are not so
8340 annotated.  This attribute is used in cases where @code{__builtin_expect}
8341 cannot be used, for instance with computed goto or @code{asm goto}.
8343 @item cold
8344 @cindex @code{cold} label attribute
8345 The @code{cold} attribute on labels is used to inform the compiler that
8346 the path following the label is unlikely to be executed.  This attribute
8347 is used in cases where @code{__builtin_expect} cannot be used, for instance
8348 with computed goto or @code{asm goto}.
8350 @end table
8352 @node Enumerator Attributes
8353 @section Enumerator Attributes
8354 @cindex Enumerator Attributes
8356 GCC allows attributes to be set on enumerators.  @xref{Attribute Syntax}, for
8357 details of the exact syntax for using attributes.  Other attributes are
8358 available for functions (@pxref{Function Attributes}), variables
8359 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), statements
8360 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
8362 This example uses the @code{deprecated} enumerator attribute to indicate the
8363 @code{oldval} enumerator is deprecated:
8365 @smallexample
8366 enum E @{
8367   oldval __attribute__((deprecated)),
8368   newval
8372 fn (void)
8374   return oldval;
8376 @end smallexample
8378 @table @code
8379 @item deprecated
8380 @cindex @code{deprecated} enumerator attribute
8381 The @code{deprecated} attribute results in a warning if the enumerator
8382 is used anywhere in the source file.  This is useful when identifying
8383 enumerators that are expected to be removed in a future version of a
8384 program.  The warning also includes the location of the declaration
8385 of the deprecated enumerator, to enable users to easily find further
8386 information about why the enumerator is deprecated, or what they should
8387 do instead.  Note that the warnings only occurs for uses.
8389 @end table
8391 @node Statement Attributes
8392 @section Statement Attributes
8393 @cindex Statement Attributes
8395 GCC allows attributes to be set on null statements.  @xref{Attribute Syntax},
8396 for details of the exact syntax for using attributes.  Other attributes are
8397 available for functions (@pxref{Function Attributes}), variables
8398 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), enumerators
8399 (@pxref{Enumerator Attributes}), and for types (@pxref{Type Attributes}).
8401 This example uses the @code{fallthrough} statement attribute to indicate that
8402 the @option{-Wimplicit-fallthrough} warning should not be emitted:
8404 @smallexample
8405 switch (cond)
8406   @{
8407   case 1:
8408     bar (1);
8409     __attribute__((fallthrough));
8410   case 2:
8411     @dots{}
8412   @}
8413 @end smallexample
8415 @table @code
8416 @item fallthrough
8417 @cindex @code{fallthrough} statement attribute
8418 The @code{fallthrough} attribute with a null statement serves as a
8419 fallthrough statement.  It hints to the compiler that a statement
8420 that falls through to another case label, or user-defined label
8421 in a switch statement is intentional and thus the
8422 @option{-Wimplicit-fallthrough} warning must not trigger.  The
8423 fallthrough attribute may appear at most once in each attribute
8424 list, and may not be mixed with other attributes.  It can only
8425 be used in a switch statement (the compiler will issue an error
8426 otherwise), after a preceding statement and before a logically
8427 succeeding case label, or user-defined label.
8429 @end table
8431 @node Attribute Syntax
8432 @section Attribute Syntax
8433 @cindex attribute syntax
8435 This section describes the syntax with which @code{__attribute__} may be
8436 used, and the constructs to which attribute specifiers bind, for the C
8437 language.  Some details may vary for C++ and Objective-C@.  Because of
8438 infelicities in the grammar for attributes, some forms described here
8439 may not be successfully parsed in all cases.
8441 There are some problems with the semantics of attributes in C++.  For
8442 example, there are no manglings for attributes, although they may affect
8443 code generation, so problems may arise when attributed types are used in
8444 conjunction with templates or overloading.  Similarly, @code{typeid}
8445 does not distinguish between types with different attributes.  Support
8446 for attributes in C++ may be restricted in future to attributes on
8447 declarations only, but not on nested declarators.
8449 @xref{Function Attributes}, for details of the semantics of attributes
8450 applying to functions.  @xref{Variable Attributes}, for details of the
8451 semantics of attributes applying to variables.  @xref{Type Attributes},
8452 for details of the semantics of attributes applying to structure, union
8453 and enumerated types.
8454 @xref{Label Attributes}, for details of the semantics of attributes 
8455 applying to labels.
8456 @xref{Enumerator Attributes}, for details of the semantics of attributes
8457 applying to enumerators.
8458 @xref{Statement Attributes}, for details of the semantics of attributes
8459 applying to statements.
8461 An @dfn{attribute specifier} is of the form
8462 @code{__attribute__ ((@var{attribute-list}))}.  An @dfn{attribute list}
8463 is a possibly empty comma-separated sequence of @dfn{attributes}, where
8464 each attribute is one of the following:
8466 @itemize @bullet
8467 @item
8468 Empty.  Empty attributes are ignored.
8470 @item
8471 An attribute name
8472 (which may be an identifier such as @code{unused}, or a reserved
8473 word such as @code{const}).
8475 @item
8476 An attribute name followed by a parenthesized list of
8477 parameters for the attribute.
8478 These parameters take one of the following forms:
8480 @itemize @bullet
8481 @item
8482 An identifier.  For example, @code{mode} attributes use this form.
8484 @item
8485 An identifier followed by a comma and a non-empty comma-separated list
8486 of expressions.  For example, @code{format} attributes use this form.
8488 @item
8489 A possibly empty comma-separated list of expressions.  For example,
8490 @code{format_arg} attributes use this form with the list being a single
8491 integer constant expression, and @code{alias} attributes use this form
8492 with the list being a single string constant.
8493 @end itemize
8494 @end itemize
8496 An @dfn{attribute specifier list} is a sequence of one or more attribute
8497 specifiers, not separated by any other tokens.
8499 You may optionally specify attribute names with @samp{__}
8500 preceding and following the name.
8501 This allows you to use them in header files without
8502 being concerned about a possible macro of the same name.  For example,
8503 you may use the attribute name @code{__noreturn__} instead of @code{noreturn}.
8506 @subsubheading Label Attributes
8508 In GNU C, an attribute specifier list may appear after the colon following a
8509 label, other than a @code{case} or @code{default} label.  GNU C++ only permits
8510 attributes on labels if the attribute specifier is immediately
8511 followed by a semicolon (i.e., the label applies to an empty
8512 statement).  If the semicolon is missing, C++ label attributes are
8513 ambiguous, as it is permissible for a declaration, which could begin
8514 with an attribute list, to be labelled in C++.  Declarations cannot be
8515 labelled in C90 or C99, so the ambiguity does not arise there.
8517 @subsubheading Enumerator Attributes
8519 In GNU C, an attribute specifier list may appear as part of an enumerator.
8520 The attribute goes after the enumeration constant, before @code{=}, if
8521 present.  The optional attribute in the enumerator appertains to the
8522 enumeration constant.  It is not possible to place the attribute after
8523 the constant expression, if present.
8525 @subsubheading Statement Attributes
8526 In GNU C, an attribute specifier list may appear as part of a null
8527 statement.  The attribute goes before the semicolon.
8529 @subsubheading Type Attributes
8531 An attribute specifier list may appear as part of a @code{struct},
8532 @code{union} or @code{enum} specifier.  It may go either immediately
8533 after the @code{struct}, @code{union} or @code{enum} keyword, or after
8534 the closing brace.  The former syntax is preferred.
8535 Where attribute specifiers follow the closing brace, they are considered
8536 to relate to the structure, union or enumerated type defined, not to any
8537 enclosing declaration the type specifier appears in, and the type
8538 defined is not complete until after the attribute specifiers.
8539 @c Otherwise, there would be the following problems: a shift/reduce
8540 @c conflict between attributes binding the struct/union/enum and
8541 @c binding to the list of specifiers/qualifiers; and "aligned"
8542 @c attributes could use sizeof for the structure, but the size could be
8543 @c changed later by "packed" attributes.
8546 @subsubheading All other attributes
8548 Otherwise, an attribute specifier appears as part of a declaration,
8549 counting declarations of unnamed parameters and type names, and relates
8550 to that declaration (which may be nested in another declaration, for
8551 example in the case of a parameter declaration), or to a particular declarator
8552 within a declaration.  Where an
8553 attribute specifier is applied to a parameter declared as a function or
8554 an array, it should apply to the function or array rather than the
8555 pointer to which the parameter is implicitly converted, but this is not
8556 yet correctly implemented.
8558 Any list of specifiers and qualifiers at the start of a declaration may
8559 contain attribute specifiers, whether or not such a list may in that
8560 context contain storage class specifiers.  (Some attributes, however,
8561 are essentially in the nature of storage class specifiers, and only make
8562 sense where storage class specifiers may be used; for example,
8563 @code{section}.)  There is one necessary limitation to this syntax: the
8564 first old-style parameter declaration in a function definition cannot
8565 begin with an attribute specifier, because such an attribute applies to
8566 the function instead by syntax described below (which, however, is not
8567 yet implemented in this case).  In some other cases, attribute
8568 specifiers are permitted by this grammar but not yet supported by the
8569 compiler.  All attribute specifiers in this place relate to the
8570 declaration as a whole.  In the obsolescent usage where a type of
8571 @code{int} is implied by the absence of type specifiers, such a list of
8572 specifiers and qualifiers may be an attribute specifier list with no
8573 other specifiers or qualifiers.
8575 At present, the first parameter in a function prototype must have some
8576 type specifier that is not an attribute specifier; this resolves an
8577 ambiguity in the interpretation of @code{void f(int
8578 (__attribute__((foo)) x))}, but is subject to change.  At present, if
8579 the parentheses of a function declarator contain only attributes then
8580 those attributes are ignored, rather than yielding an error or warning
8581 or implying a single parameter of type int, but this is subject to
8582 change.
8584 An attribute specifier list may appear immediately before a declarator
8585 (other than the first) in a comma-separated list of declarators in a
8586 declaration of more than one identifier using a single list of
8587 specifiers and qualifiers.  Such attribute specifiers apply
8588 only to the identifier before whose declarator they appear.  For
8589 example, in
8591 @smallexample
8592 __attribute__((noreturn)) void d0 (void),
8593     __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
8594      d2 (void);
8595 @end smallexample
8597 @noindent
8598 the @code{noreturn} attribute applies to all the functions
8599 declared; the @code{format} attribute only applies to @code{d1}.
8601 An attribute specifier list may appear immediately before the comma,
8602 @code{=} or semicolon terminating the declaration of an identifier other
8603 than a function definition.  Such attribute specifiers apply
8604 to the declared object or function.  Where an
8605 assembler name for an object or function is specified (@pxref{Asm
8606 Labels}), the attribute must follow the @code{asm}
8607 specification.
8609 An attribute specifier list may, in future, be permitted to appear after
8610 the declarator in a function definition (before any old-style parameter
8611 declarations or the function body).
8613 Attribute specifiers may be mixed with type qualifiers appearing inside
8614 the @code{[]} of a parameter array declarator, in the C99 construct by
8615 which such qualifiers are applied to the pointer to which the array is
8616 implicitly converted.  Such attribute specifiers apply to the pointer,
8617 not to the array, but at present this is not implemented and they are
8618 ignored.
8620 An attribute specifier list may appear at the start of a nested
8621 declarator.  At present, there are some limitations in this usage: the
8622 attributes correctly apply to the declarator, but for most individual
8623 attributes the semantics this implies are not implemented.
8624 When attribute specifiers follow the @code{*} of a pointer
8625 declarator, they may be mixed with any type qualifiers present.
8626 The following describes the formal semantics of this syntax.  It makes the
8627 most sense if you are familiar with the formal specification of
8628 declarators in the ISO C standard.
8630 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
8631 D1}, where @code{T} contains declaration specifiers that specify a type
8632 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
8633 contains an identifier @var{ident}.  The type specified for @var{ident}
8634 for derived declarators whose type does not include an attribute
8635 specifier is as in the ISO C standard.
8637 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
8638 and the declaration @code{T D} specifies the type
8639 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
8640 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
8641 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
8643 If @code{D1} has the form @code{*
8644 @var{type-qualifier-and-attribute-specifier-list} D}, and the
8645 declaration @code{T D} specifies the type
8646 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
8647 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
8648 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
8649 @var{ident}.
8651 For example,
8653 @smallexample
8654 void (__attribute__((noreturn)) ****f) (void);
8655 @end smallexample
8657 @noindent
8658 specifies the type ``pointer to pointer to pointer to pointer to
8659 non-returning function returning @code{void}''.  As another example,
8661 @smallexample
8662 char *__attribute__((aligned(8))) *f;
8663 @end smallexample
8665 @noindent
8666 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
8667 Note again that this does not work with most attributes; for example,
8668 the usage of @samp{aligned} and @samp{noreturn} attributes given above
8669 is not yet supported.
8671 For compatibility with existing code written for compiler versions that
8672 did not implement attributes on nested declarators, some laxity is
8673 allowed in the placing of attributes.  If an attribute that only applies
8674 to types is applied to a declaration, it is treated as applying to
8675 the type of that declaration.  If an attribute that only applies to
8676 declarations is applied to the type of a declaration, it is treated
8677 as applying to that declaration; and, for compatibility with code
8678 placing the attributes immediately before the identifier declared, such
8679 an attribute applied to a function return type is treated as
8680 applying to the function type, and such an attribute applied to an array
8681 element type is treated as applying to the array type.  If an
8682 attribute that only applies to function types is applied to a
8683 pointer-to-function type, it is treated as applying to the pointer
8684 target type; if such an attribute is applied to a function return type
8685 that is not a pointer-to-function type, it is treated as applying
8686 to the function type.
8688 @node Function Prototypes
8689 @section Prototypes and Old-Style Function Definitions
8690 @cindex function prototype declarations
8691 @cindex old-style function definitions
8692 @cindex promotion of formal parameters
8694 GNU C extends ISO C to allow a function prototype to override a later
8695 old-style non-prototype definition.  Consider the following example:
8697 @smallexample
8698 /* @r{Use prototypes unless the compiler is old-fashioned.}  */
8699 #ifdef __STDC__
8700 #define P(x) x
8701 #else
8702 #define P(x) ()
8703 #endif
8705 /* @r{Prototype function declaration.}  */
8706 int isroot P((uid_t));
8708 /* @r{Old-style function definition.}  */
8710 isroot (x)   /* @r{??? lossage here ???} */
8711      uid_t x;
8713   return x == 0;
8715 @end smallexample
8717 Suppose the type @code{uid_t} happens to be @code{short}.  ISO C does
8718 not allow this example, because subword arguments in old-style
8719 non-prototype definitions are promoted.  Therefore in this example the
8720 function definition's argument is really an @code{int}, which does not
8721 match the prototype argument type of @code{short}.
8723 This restriction of ISO C makes it hard to write code that is portable
8724 to traditional C compilers, because the programmer does not know
8725 whether the @code{uid_t} type is @code{short}, @code{int}, or
8726 @code{long}.  Therefore, in cases like these GNU C allows a prototype
8727 to override a later old-style definition.  More precisely, in GNU C, a
8728 function prototype argument type overrides the argument type specified
8729 by a later old-style definition if the former type is the same as the
8730 latter type before promotion.  Thus in GNU C the above example is
8731 equivalent to the following:
8733 @smallexample
8734 int isroot (uid_t);
8737 isroot (uid_t x)
8739   return x == 0;
8741 @end smallexample
8743 @noindent
8744 GNU C++ does not support old-style function definitions, so this
8745 extension is irrelevant.
8747 @node C++ Comments
8748 @section C++ Style Comments
8749 @cindex @code{//}
8750 @cindex C++ comments
8751 @cindex comments, C++ style
8753 In GNU C, you may use C++ style comments, which start with @samp{//} and
8754 continue until the end of the line.  Many other C implementations allow
8755 such comments, and they are included in the 1999 C standard.  However,
8756 C++ style comments are not recognized if you specify an @option{-std}
8757 option specifying a version of ISO C before C99, or @option{-ansi}
8758 (equivalent to @option{-std=c90}).
8760 @node Dollar Signs
8761 @section Dollar Signs in Identifier Names
8762 @cindex $
8763 @cindex dollar signs in identifier names
8764 @cindex identifier names, dollar signs in
8766 In GNU C, you may normally use dollar signs in identifier names.
8767 This is because many traditional C implementations allow such identifiers.
8768 However, dollar signs in identifiers are not supported on a few target
8769 machines, typically because the target assembler does not allow them.
8771 @node Character Escapes
8772 @section The Character @key{ESC} in Constants
8774 You can use the sequence @samp{\e} in a string or character constant to
8775 stand for the ASCII character @key{ESC}.
8777 @node Alignment
8778 @section Determining the Alignment of Functions, Types or Variables
8779 @cindex alignment
8780 @cindex type alignment
8781 @cindex variable alignment
8783 The keyword @code{__alignof__} determines the alignment requirement of
8784 a function, object, or a type, or the minimum alignment usually required
8785 by a type.  Its syntax is just like @code{sizeof} and C11 @code{_Alignof}.
8787 For example, if the target machine requires a @code{double} value to be
8788 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
8789 This is true on many RISC machines.  On more traditional machine
8790 designs, @code{__alignof__ (double)} is 4 or even 2.
8792 Some machines never actually require alignment; they allow references to any
8793 data type even at an odd address.  For these machines, @code{__alignof__}
8794 reports the smallest alignment that GCC gives the data type, usually as
8795 mandated by the target ABI.
8797 If the operand of @code{__alignof__} is an lvalue rather than a type,
8798 its value is the required alignment for its type, taking into account
8799 any minimum alignment specified by attribute @code{aligned}
8800 (@pxref{Common Variable Attributes}).  For example, after this
8801 declaration:
8803 @smallexample
8804 struct foo @{ int x; char y; @} foo1;
8805 @end smallexample
8807 @noindent
8808 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
8809 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
8810 It is an error to ask for the alignment of an incomplete type other
8811 than @code{void}.
8813 If the operand of the @code{__alignof__} expression is a function,
8814 the expression evaluates to the alignment of the function which may
8815 be specified by attribute @code{aligned} (@pxref{Common Function Attributes}).
8817 @node Inline
8818 @section An Inline Function is As Fast As a Macro
8819 @cindex inline functions
8820 @cindex integrating function code
8821 @cindex open coding
8822 @cindex macros, inline alternative
8824 By declaring a function inline, you can direct GCC to make
8825 calls to that function faster.  One way GCC can achieve this is to
8826 integrate that function's code into the code for its callers.  This
8827 makes execution faster by eliminating the function-call overhead; in
8828 addition, if any of the actual argument values are constant, their
8829 known values may permit simplifications at compile time so that not
8830 all of the inline function's code needs to be included.  The effect on
8831 code size is less predictable; object code may be larger or smaller
8832 with function inlining, depending on the particular case.  You can
8833 also direct GCC to try to integrate all ``simple enough'' functions
8834 into their callers with the option @option{-finline-functions}.
8836 GCC implements three different semantics of declaring a function
8837 inline.  One is available with @option{-std=gnu89} or
8838 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
8839 on all inline declarations, another when
8840 @option{-std=c99},
8841 @option{-std=gnu99} or an option for a later C version is used
8842 (without @option{-fgnu89-inline}), and the third
8843 is used when compiling C++.
8845 To declare a function inline, use the @code{inline} keyword in its
8846 declaration, like this:
8848 @smallexample
8849 static inline int
8850 inc (int *a)
8852   return (*a)++;
8854 @end smallexample
8856 If you are writing a header file to be included in ISO C90 programs, write
8857 @code{__inline__} instead of @code{inline}.  @xref{Alternate Keywords}.
8859 The three types of inlining behave similarly in two important cases:
8860 when the @code{inline} keyword is used on a @code{static} function,
8861 like the example above, and when a function is first declared without
8862 using the @code{inline} keyword and then is defined with
8863 @code{inline}, like this:
8865 @smallexample
8866 extern int inc (int *a);
8867 inline int
8868 inc (int *a)
8870   return (*a)++;
8872 @end smallexample
8874 In both of these common cases, the program behaves the same as if you
8875 had not used the @code{inline} keyword, except for its speed.
8877 @cindex inline functions, omission of
8878 @opindex fkeep-inline-functions
8879 When a function is both inline and @code{static}, if all calls to the
8880 function are integrated into the caller, and the function's address is
8881 never used, then the function's own assembler code is never referenced.
8882 In this case, GCC does not actually output assembler code for the
8883 function, unless you specify the option @option{-fkeep-inline-functions}.
8884 If there is a nonintegrated call, then the function is compiled to
8885 assembler code as usual.  The function must also be compiled as usual if
8886 the program refers to its address, because that cannot be inlined.
8888 @opindex Winline
8889 Note that certain usages in a function definition can make it unsuitable
8890 for inline substitution.  Among these usages are: variadic functions,
8891 use of @code{alloca}, use of computed goto (@pxref{Labels as Values}),
8892 use of nonlocal goto, use of nested functions, use of @code{setjmp}, use
8893 of @code{__builtin_longjmp} and use of @code{__builtin_return} or
8894 @code{__builtin_apply_args}.  Using @option{-Winline} warns when a
8895 function marked @code{inline} could not be substituted, and gives the
8896 reason for the failure.
8898 @cindex automatic @code{inline} for C++ member fns
8899 @cindex @code{inline} automatic for C++ member fns
8900 @cindex member fns, automatically @code{inline}
8901 @cindex C++ member fns, automatically @code{inline}
8902 @opindex fno-default-inline
8903 As required by ISO C++, GCC considers member functions defined within
8904 the body of a class to be marked inline even if they are
8905 not explicitly declared with the @code{inline} keyword.  You can
8906 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
8907 Options,,Options Controlling C++ Dialect}.
8909 GCC does not inline any functions when not optimizing unless you specify
8910 the @samp{always_inline} attribute for the function, like this:
8912 @smallexample
8913 /* @r{Prototype.}  */
8914 inline void foo (const char) __attribute__((always_inline));
8915 @end smallexample
8917 The remainder of this section is specific to GNU C90 inlining.
8919 @cindex non-static inline function
8920 When an inline function is not @code{static}, then the compiler must assume
8921 that there may be calls from other source files; since a global symbol can
8922 be defined only once in any program, the function must not be defined in
8923 the other source files, so the calls therein cannot be integrated.
8924 Therefore, a non-@code{static} inline function is always compiled on its
8925 own in the usual fashion.
8927 If you specify both @code{inline} and @code{extern} in the function
8928 definition, then the definition is used only for inlining.  In no case
8929 is the function compiled on its own, not even if you refer to its
8930 address explicitly.  Such an address becomes an external reference, as
8931 if you had only declared the function, and had not defined it.
8933 This combination of @code{inline} and @code{extern} has almost the
8934 effect of a macro.  The way to use it is to put a function definition in
8935 a header file with these keywords, and put another copy of the
8936 definition (lacking @code{inline} and @code{extern}) in a library file.
8937 The definition in the header file causes most calls to the function
8938 to be inlined.  If any uses of the function remain, they refer to
8939 the single copy in the library.
8941 @node Volatiles
8942 @section When is a Volatile Object Accessed?
8943 @cindex accessing volatiles
8944 @cindex volatile read
8945 @cindex volatile write
8946 @cindex volatile access
8948 C has the concept of volatile objects.  These are normally accessed by
8949 pointers and used for accessing hardware or inter-thread
8950 communication.  The standard encourages compilers to refrain from
8951 optimizations concerning accesses to volatile objects, but leaves it
8952 implementation defined as to what constitutes a volatile access.  The
8953 minimum requirement is that at a sequence point all previous accesses
8954 to volatile objects have stabilized and no subsequent accesses have
8955 occurred.  Thus an implementation is free to reorder and combine
8956 volatile accesses that occur between sequence points, but cannot do
8957 so for accesses across a sequence point.  The use of volatile does
8958 not allow you to violate the restriction on updating objects multiple
8959 times between two sequence points.
8961 Accesses to non-volatile objects are not ordered with respect to
8962 volatile accesses.  You cannot use a volatile object as a memory
8963 barrier to order a sequence of writes to non-volatile memory.  For
8964 instance:
8966 @smallexample
8967 int *ptr = @var{something};
8968 volatile int vobj;
8969 *ptr = @var{something};
8970 vobj = 1;
8971 @end smallexample
8973 @noindent
8974 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
8975 that the write to @var{*ptr} occurs by the time the update
8976 of @var{vobj} happens.  If you need this guarantee, you must use
8977 a stronger memory barrier such as:
8979 @smallexample
8980 int *ptr = @var{something};
8981 volatile int vobj;
8982 *ptr = @var{something};
8983 asm volatile ("" : : : "memory");
8984 vobj = 1;
8985 @end smallexample
8987 A scalar volatile object is read when it is accessed in a void context:
8989 @smallexample
8990 volatile int *src = @var{somevalue};
8991 *src;
8992 @end smallexample
8994 Such expressions are rvalues, and GCC implements this as a
8995 read of the volatile object being pointed to.
8997 Assignments are also expressions and have an rvalue.  However when
8998 assigning to a scalar volatile, the volatile object is not reread,
8999 regardless of whether the assignment expression's rvalue is used or
9000 not.  If the assignment's rvalue is used, the value is that assigned
9001 to the volatile object.  For instance, there is no read of @var{vobj}
9002 in all the following cases:
9004 @smallexample
9005 int obj;
9006 volatile int vobj;
9007 vobj = @var{something};
9008 obj = vobj = @var{something};
9009 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
9010 obj = (@var{something}, vobj = @var{anotherthing});
9011 @end smallexample
9013 If you need to read the volatile object after an assignment has
9014 occurred, you must use a separate expression with an intervening
9015 sequence point.
9017 As bit-fields are not individually addressable, volatile bit-fields may
9018 be implicitly read when written to, or when adjacent bit-fields are
9019 accessed.  Bit-field operations may be optimized such that adjacent
9020 bit-fields are only partially accessed, if they straddle a storage unit
9021 boundary.  For these reasons it is unwise to use volatile bit-fields to
9022 access hardware.
9024 @node Using Assembly Language with C
9025 @section How to Use Inline Assembly Language in C Code
9026 @cindex @code{asm} keyword
9027 @cindex assembly language in C
9028 @cindex inline assembly language
9029 @cindex mixing assembly language and C
9031 The @code{asm} keyword allows you to embed assembler instructions
9032 within C code.  GCC provides two forms of inline @code{asm}
9033 statements.  A @dfn{basic @code{asm}} statement is one with no
9034 operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}}
9035 statement (@pxref{Extended Asm}) includes one or more operands.  
9036 The extended form is preferred for mixing C and assembly language
9037 within a function, but to include assembly language at
9038 top level you must use basic @code{asm}.
9040 You can also use the @code{asm} keyword to override the assembler name
9041 for a C symbol, or to place a C variable in a specific register.
9043 @menu
9044 * Basic Asm::          Inline assembler without operands.
9045 * Extended Asm::       Inline assembler with operands.
9046 * Constraints::        Constraints for @code{asm} operands
9047 * Asm Labels::         Specifying the assembler name to use for a C symbol.
9048 * Explicit Register Variables::  Defining variables residing in specified 
9049                        registers.
9050 * Size of an asm::     How GCC calculates the size of an @code{asm} block.
9051 @end menu
9053 @node Basic Asm
9054 @subsection Basic Asm --- Assembler Instructions Without Operands
9055 @cindex basic @code{asm}
9056 @cindex assembly language in C, basic
9058 A basic @code{asm} statement has the following syntax:
9060 @example
9061 asm @var{asm-qualifiers} ( @var{AssemblerInstructions} )
9062 @end example
9064 The @code{asm} keyword is a GNU extension.
9065 When writing code that can be compiled with @option{-ansi} and the
9066 various @option{-std} options, use @code{__asm__} instead of 
9067 @code{asm} (@pxref{Alternate Keywords}).
9069 @subsubheading Qualifiers
9070 @table @code
9071 @item volatile
9072 The optional @code{volatile} qualifier has no effect. 
9073 All basic @code{asm} blocks are implicitly volatile.
9075 @item inline
9076 If you use the @code{inline} qualifier, then for inlining purposes the size
9077 of the @code{asm} statement is taken as the smallest size possible (@pxref{Size
9078 of an asm}).
9079 @end table
9081 @subsubheading Parameters
9082 @table @var
9084 @item AssemblerInstructions
9085 This is a literal string that specifies the assembler code. The string can 
9086 contain any instructions recognized by the assembler, including directives. 
9087 GCC does not parse the assembler instructions themselves and 
9088 does not know what they mean or even whether they are valid assembler input. 
9090 You may place multiple assembler instructions together in a single @code{asm} 
9091 string, separated by the characters normally used in assembly code for the 
9092 system. A combination that works in most places is a newline to break the 
9093 line, plus a tab character (written as @samp{\n\t}).
9094 Some assemblers allow semicolons as a line separator. However, 
9095 note that some assembler dialects use semicolons to start a comment. 
9096 @end table
9098 @subsubheading Remarks
9099 Using extended @code{asm} (@pxref{Extended Asm}) typically produces
9100 smaller, safer, and more efficient code, and in most cases it is a
9101 better solution than basic @code{asm}.  However, there are two
9102 situations where only basic @code{asm} can be used:
9104 @itemize @bullet
9105 @item
9106 Extended @code{asm} statements have to be inside a C
9107 function, so to write inline assembly language at file scope (``top-level''),
9108 outside of C functions, you must use basic @code{asm}.
9109 You can use this technique to emit assembler directives,
9110 define assembly language macros that can be invoked elsewhere in the file,
9111 or write entire functions in assembly language.
9112 Basic @code{asm} statements outside of functions may not use any
9113 qualifiers.
9115 @item
9116 Functions declared
9117 with the @code{naked} attribute also require basic @code{asm}
9118 (@pxref{Function Attributes}).
9119 @end itemize
9121 Safely accessing C data and calling functions from basic @code{asm} is more 
9122 complex than it may appear. To access C data, it is better to use extended 
9123 @code{asm}.
9125 Do not expect a sequence of @code{asm} statements to remain perfectly 
9126 consecutive after compilation. If certain instructions need to remain 
9127 consecutive in the output, put them in a single multi-instruction @code{asm}
9128 statement. Note that GCC's optimizers can move @code{asm} statements 
9129 relative to other code, including across jumps.
9131 @code{asm} statements may not perform jumps into other @code{asm} statements. 
9132 GCC does not know about these jumps, and therefore cannot take 
9133 account of them when deciding how to optimize. Jumps from @code{asm} to C 
9134 labels are only supported in extended @code{asm}.
9136 Under certain circumstances, GCC may duplicate (or remove duplicates of) your 
9137 assembly code when optimizing. This can lead to unexpected duplicate 
9138 symbol errors during compilation if your assembly code defines symbols or 
9139 labels.
9141 @strong{Warning:} The C standards do not specify semantics for @code{asm},
9142 making it a potential source of incompatibilities between compilers.  These
9143 incompatibilities may not produce compiler warnings/errors.
9145 GCC does not parse basic @code{asm}'s @var{AssemblerInstructions}, which
9146 means there is no way to communicate to the compiler what is happening
9147 inside them.  GCC has no visibility of symbols in the @code{asm} and may
9148 discard them as unreferenced.  It also does not know about side effects of
9149 the assembler code, such as modifications to memory or registers.  Unlike
9150 some compilers, GCC assumes that no changes to general purpose registers
9151 occur.  This assumption may change in a future release.
9153 To avoid complications from future changes to the semantics and the
9154 compatibility issues between compilers, consider replacing basic @code{asm}
9155 with extended @code{asm}.  See
9156 @uref{https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended, How to convert
9157 from basic asm to extended asm} for information about how to perform this
9158 conversion.
9160 The compiler copies the assembler instructions in a basic @code{asm} 
9161 verbatim to the assembly language output file, without 
9162 processing dialects or any of the @samp{%} operators that are available with
9163 extended @code{asm}. This results in minor differences between basic 
9164 @code{asm} strings and extended @code{asm} templates. For example, to refer to 
9165 registers you might use @samp{%eax} in basic @code{asm} and
9166 @samp{%%eax} in extended @code{asm}.
9168 On targets such as x86 that support multiple assembler dialects,
9169 all basic @code{asm} blocks use the assembler dialect specified by the 
9170 @option{-masm} command-line option (@pxref{x86 Options}).  
9171 Basic @code{asm} provides no
9172 mechanism to provide different assembler strings for different dialects.
9174 For basic @code{asm} with non-empty assembler string GCC assumes
9175 the assembler block does not change any general purpose registers,
9176 but it may read or write any globally accessible variable.
9178 Here is an example of basic @code{asm} for i386:
9180 @example
9181 /* Note that this code will not compile with -masm=intel */
9182 #define DebugBreak() asm("int $3")
9183 @end example
9185 @node Extended Asm
9186 @subsection Extended Asm - Assembler Instructions with C Expression Operands
9187 @cindex extended @code{asm}
9188 @cindex assembly language in C, extended
9190 With extended @code{asm} you can read and write C variables from 
9191 assembler and perform jumps from assembler code to C labels.  
9192 Extended @code{asm} syntax uses colons (@samp{:}) to delimit
9193 the operand parameters after the assembler template:
9195 @example
9196 asm @var{asm-qualifiers} ( @var{AssemblerTemplate} 
9197                  : @var{OutputOperands} 
9198                  @r{[} : @var{InputOperands}
9199                  @r{[} : @var{Clobbers} @r{]} @r{]})
9201 asm @var{asm-qualifiers} ( @var{AssemblerTemplate} 
9202                       : 
9203                       : @var{InputOperands}
9204                       : @var{Clobbers}
9205                       : @var{GotoLabels})
9206 @end example
9207 where in the last form, @var{asm-qualifiers} contains @code{goto} (and in the
9208 first form, not).
9210 The @code{asm} keyword is a GNU extension.
9211 When writing code that can be compiled with @option{-ansi} and the
9212 various @option{-std} options, use @code{__asm__} instead of 
9213 @code{asm} (@pxref{Alternate Keywords}).
9215 @subsubheading Qualifiers
9216 @table @code
9218 @item volatile
9219 The typical use of extended @code{asm} statements is to manipulate input 
9220 values to produce output values. However, your @code{asm} statements may 
9221 also produce side effects. If so, you may need to use the @code{volatile} 
9222 qualifier to disable certain optimizations. @xref{Volatile}.
9224 @item inline
9225 If you use the @code{inline} qualifier, then for inlining purposes the size
9226 of the @code{asm} statement is taken as the smallest size possible
9227 (@pxref{Size of an asm}).
9229 @item goto
9230 This qualifier informs the compiler that the @code{asm} statement may 
9231 perform a jump to one of the labels listed in the @var{GotoLabels}.
9232 @xref{GotoLabels}.
9233 @end table
9235 @subsubheading Parameters
9236 @table @var
9237 @item AssemblerTemplate
9238 This is a literal string that is the template for the assembler code. It is a 
9239 combination of fixed text and tokens that refer to the input, output, 
9240 and goto parameters. @xref{AssemblerTemplate}.
9242 @item OutputOperands
9243 A comma-separated list of the C variables modified by the instructions in the 
9244 @var{AssemblerTemplate}.  An empty list is permitted.  @xref{OutputOperands}.
9246 @item InputOperands
9247 A comma-separated list of C expressions read by the instructions in the 
9248 @var{AssemblerTemplate}.  An empty list is permitted.  @xref{InputOperands}.
9250 @item Clobbers
9251 A comma-separated list of registers or other values changed by the 
9252 @var{AssemblerTemplate}, beyond those listed as outputs.
9253 An empty list is permitted.  @xref{Clobbers and Scratch Registers}.
9255 @item GotoLabels
9256 When you are using the @code{goto} form of @code{asm}, this section contains 
9257 the list of all C labels to which the code in the 
9258 @var{AssemblerTemplate} may jump. 
9259 @xref{GotoLabels}.
9261 @code{asm} statements may not perform jumps into other @code{asm} statements,
9262 only to the listed @var{GotoLabels}.
9263 GCC's optimizers do not know about other jumps; therefore they cannot take 
9264 account of them when deciding how to optimize.
9265 @end table
9267 The total number of input + output + goto operands is limited to 30.
9269 @subsubheading Remarks
9270 The @code{asm} statement allows you to include assembly instructions directly 
9271 within C code. This may help you to maximize performance in time-sensitive 
9272 code or to access assembly instructions that are not readily available to C 
9273 programs.
9275 Note that extended @code{asm} statements must be inside a function. Only 
9276 basic @code{asm} may be outside functions (@pxref{Basic Asm}).
9277 Functions declared with the @code{naked} attribute also require basic 
9278 @code{asm} (@pxref{Function Attributes}).
9280 While the uses of @code{asm} are many and varied, it may help to think of an 
9281 @code{asm} statement as a series of low-level instructions that convert input 
9282 parameters to output parameters. So a simple (if not particularly useful) 
9283 example for i386 using @code{asm} might look like this:
9285 @example
9286 int src = 1;
9287 int dst;   
9289 asm ("mov %1, %0\n\t"
9290     "add $1, %0"
9291     : "=r" (dst) 
9292     : "r" (src));
9294 printf("%d\n", dst);
9295 @end example
9297 This code copies @code{src} to @code{dst} and add 1 to @code{dst}.
9299 @anchor{Volatile}
9300 @subsubsection Volatile
9301 @cindex volatile @code{asm}
9302 @cindex @code{asm} volatile
9304 GCC's optimizers sometimes discard @code{asm} statements if they determine 
9305 there is no need for the output variables. Also, the optimizers may move 
9306 code out of loops if they believe that the code will always return the same 
9307 result (i.e.@: none of its input values change between calls). Using the 
9308 @code{volatile} qualifier disables these optimizations. @code{asm} statements 
9309 that have no output operands, including @code{asm goto} statements, 
9310 are implicitly volatile.
9312 This i386 code demonstrates a case that does not use (or require) the 
9313 @code{volatile} qualifier. If it is performing assertion checking, this code 
9314 uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is 
9315 unreferenced by any code. As a result, the optimizers can discard the 
9316 @code{asm} statement, which in turn removes the need for the entire 
9317 @code{DoCheck} routine. By omitting the @code{volatile} qualifier when it 
9318 isn't needed you allow the optimizers to produce the most efficient code 
9319 possible.
9321 @example
9322 void DoCheck(uint32_t dwSomeValue)
9324    uint32_t dwRes;
9326    // Assumes dwSomeValue is not zero.
9327    asm ("bsfl %1,%0"
9328      : "=r" (dwRes)
9329      : "r" (dwSomeValue)
9330      : "cc");
9332    assert(dwRes > 3);
9334 @end example
9336 The next example shows a case where the optimizers can recognize that the input 
9337 (@code{dwSomeValue}) never changes during the execution of the function and can 
9338 therefore move the @code{asm} outside the loop to produce more efficient code. 
9339 Again, using the @code{volatile} qualifier disables this type of optimization.
9341 @example
9342 void do_print(uint32_t dwSomeValue)
9344    uint32_t dwRes;
9346    for (uint32_t x=0; x < 5; x++)
9347    @{
9348       // Assumes dwSomeValue is not zero.
9349       asm ("bsfl %1,%0"
9350         : "=r" (dwRes)
9351         : "r" (dwSomeValue)
9352         : "cc");
9354       printf("%u: %u %u\n", x, dwSomeValue, dwRes);
9355    @}
9357 @end example
9359 The following example demonstrates a case where you need to use the 
9360 @code{volatile} qualifier. 
9361 It uses the x86 @code{rdtsc} instruction, which reads 
9362 the computer's time-stamp counter. Without the @code{volatile} qualifier, 
9363 the optimizers might assume that the @code{asm} block will always return the 
9364 same value and therefore optimize away the second call.
9366 @example
9367 uint64_t msr;
9369 asm volatile ( "rdtsc\n\t"    // Returns the time in EDX:EAX.
9370         "shl $32, %%rdx\n\t"  // Shift the upper bits left.
9371         "or %%rdx, %0"        // 'Or' in the lower bits.
9372         : "=a" (msr)
9373         : 
9374         : "rdx");
9376 printf("msr: %llx\n", msr);
9378 // Do other work...
9380 // Reprint the timestamp
9381 asm volatile ( "rdtsc\n\t"    // Returns the time in EDX:EAX.
9382         "shl $32, %%rdx\n\t"  // Shift the upper bits left.
9383         "or %%rdx, %0"        // 'Or' in the lower bits.
9384         : "=a" (msr)
9385         : 
9386         : "rdx");
9388 printf("msr: %llx\n", msr);
9389 @end example
9391 GCC's optimizers do not treat this code like the non-volatile code in the 
9392 earlier examples. They do not move it out of loops or omit it on the 
9393 assumption that the result from a previous call is still valid.
9395 Note that the compiler can move even @code{volatile asm} instructions relative
9396 to other code, including across jump instructions. For example, on many 
9397 targets there is a system register that controls the rounding mode of 
9398 floating-point operations. Setting it with a @code{volatile asm} statement,
9399 as in the following PowerPC example, does not work reliably.
9401 @example
9402 asm volatile("mtfsf 255, %0" : : "f" (fpenv));
9403 sum = x + y;
9404 @end example
9406 The compiler may move the addition back before the @code{volatile asm}
9407 statement. To make it work as expected, add an artificial dependency to
9408 the @code{asm} by referencing a variable in the subsequent code, for
9409 example:
9411 @example
9412 asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
9413 sum = x + y;
9414 @end example
9416 Under certain circumstances, GCC may duplicate (or remove duplicates of) your 
9417 assembly code when optimizing. This can lead to unexpected duplicate symbol 
9418 errors during compilation if your @code{asm} code defines symbols or labels. 
9419 Using @samp{%=} 
9420 (@pxref{AssemblerTemplate}) may help resolve this problem.
9422 @anchor{AssemblerTemplate}
9423 @subsubsection Assembler Template
9424 @cindex @code{asm} assembler template
9426 An assembler template is a literal string containing assembler instructions.
9427 The compiler replaces tokens in the template that refer 
9428 to inputs, outputs, and goto labels,
9429 and then outputs the resulting string to the assembler. The 
9430 string can contain any instructions recognized by the assembler, including 
9431 directives. GCC does not parse the assembler instructions 
9432 themselves and does not know what they mean or even whether they are valid 
9433 assembler input. However, it does count the statements 
9434 (@pxref{Size of an asm}).
9436 You may place multiple assembler instructions together in a single @code{asm} 
9437 string, separated by the characters normally used in assembly code for the 
9438 system. A combination that works in most places is a newline to break the 
9439 line, plus a tab character to move to the instruction field (written as 
9440 @samp{\n\t}). 
9441 Some assemblers allow semicolons as a line separator. However, note 
9442 that some assembler dialects use semicolons to start a comment. 
9444 Do not expect a sequence of @code{asm} statements to remain perfectly 
9445 consecutive after compilation, even when you are using the @code{volatile} 
9446 qualifier. If certain instructions need to remain consecutive in the output, 
9447 put them in a single multi-instruction @code{asm} statement.
9449 Accessing data from C programs without using input/output operands (such as 
9450 by using global symbols directly from the assembler template) may not work as 
9451 expected. Similarly, calling functions directly from an assembler template 
9452 requires a detailed understanding of the target assembler and ABI.
9454 Since GCC does not parse the assembler template,
9455 it has no visibility of any 
9456 symbols it references. This may result in GCC discarding those symbols as 
9457 unreferenced unless they are also listed as input, output, or goto operands.
9459 @subsubheading Special format strings
9461 In addition to the tokens described by the input, output, and goto operands, 
9462 these tokens have special meanings in the assembler template:
9464 @table @samp
9465 @item %% 
9466 Outputs a single @samp{%} into the assembler code.
9468 @item %= 
9469 Outputs a number that is unique to each instance of the @code{asm} 
9470 statement in the entire compilation. This option is useful when creating local 
9471 labels and referring to them multiple times in a single template that 
9472 generates multiple assembler instructions. 
9474 @item %@{
9475 @itemx %|
9476 @itemx %@}
9477 Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively)
9478 into the assembler code.  When unescaped, these characters have special
9479 meaning to indicate multiple assembler dialects, as described below.
9480 @end table
9482 @subsubheading Multiple assembler dialects in @code{asm} templates
9484 On targets such as x86, GCC supports multiple assembler dialects.
9485 The @option{-masm} option controls which dialect GCC uses as its 
9486 default for inline assembler. The target-specific documentation for the 
9487 @option{-masm} option contains the list of supported dialects, as well as the 
9488 default dialect if the option is not specified. This information may be 
9489 important to understand, since assembler code that works correctly when 
9490 compiled using one dialect will likely fail if compiled using another.
9491 @xref{x86 Options}.
9493 If your code needs to support multiple assembler dialects (for example, if 
9494 you are writing public headers that need to support a variety of compilation 
9495 options), use constructs of this form:
9497 @example
9498 @{ dialect0 | dialect1 | dialect2... @}
9499 @end example
9501 This construct outputs @code{dialect0} 
9502 when using dialect #0 to compile the code, 
9503 @code{dialect1} for dialect #1, etc. If there are fewer alternatives within the 
9504 braces than the number of dialects the compiler supports, the construct 
9505 outputs nothing.
9507 For example, if an x86 compiler supports two dialects
9508 (@samp{att}, @samp{intel}), an 
9509 assembler template such as this:
9511 @example
9512 "bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
9513 @end example
9515 @noindent
9516 is equivalent to one of
9518 @example
9519 "btl %[Offset],%[Base] ; jc %l2"   @r{/* att dialect */}
9520 "bt %[Base],%[Offset]; jc %l2"     @r{/* intel dialect */}
9521 @end example
9523 Using that same compiler, this code:
9525 @example
9526 "xchg@{l@}\t@{%%@}ebx, %1"
9527 @end example
9529 @noindent
9530 corresponds to either
9532 @example
9533 "xchgl\t%%ebx, %1"                 @r{/* att dialect */}
9534 "xchg\tebx, %1"                    @r{/* intel dialect */}
9535 @end example
9537 There is no support for nesting dialect alternatives.
9539 @anchor{OutputOperands}
9540 @subsubsection Output Operands
9541 @cindex @code{asm} output operands
9543 An @code{asm} statement has zero or more output operands indicating the names
9544 of C variables modified by the assembler code.
9546 In this i386 example, @code{old} (referred to in the template string as 
9547 @code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset} 
9548 (@code{%2}) is an input:
9550 @example
9551 bool old;
9553 __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
9554          "sbb %0,%0"      // Use the CF to calculate old.
9555    : "=r" (old), "+rm" (*Base)
9556    : "Ir" (Offset)
9557    : "cc");
9559 return old;
9560 @end example
9562 Operands are separated by commas.  Each operand has this format:
9564 @example
9565 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename})
9566 @end example
9568 @table @var
9569 @item asmSymbolicName
9570 Specifies a symbolic name for the operand.
9571 Reference the name in the assembler template 
9572 by enclosing it in square brackets 
9573 (i.e.@: @samp{%[Value]}). The scope of the name is the @code{asm} statement 
9574 that contains the definition. Any valid C variable name is acceptable, 
9575 including names already defined in the surrounding code. No two operands 
9576 within the same @code{asm} statement can use the same symbolic name.
9578 When not using an @var{asmSymbolicName}, use the (zero-based) position
9579 of the operand 
9580 in the list of operands in the assembler template. For example if there are 
9581 three output operands, use @samp{%0} in the template to refer to the first, 
9582 @samp{%1} for the second, and @samp{%2} for the third. 
9584 @item constraint
9585 A string constant specifying constraints on the placement of the operand; 
9586 @xref{Constraints}, for details.
9588 Output constraints must begin with either @samp{=} (a variable overwriting an 
9589 existing value) or @samp{+} (when reading and writing). When using 
9590 @samp{=}, do not assume the location contains the existing value
9591 on entry to the @code{asm}, except 
9592 when the operand is tied to an input; @pxref{InputOperands,,Input Operands}.
9594 After the prefix, there must be one or more additional constraints 
9595 (@pxref{Constraints}) that describe where the value resides. Common 
9596 constraints include @samp{r} for register and @samp{m} for memory. 
9597 When you list more than one possible location (for example, @code{"=rm"}),
9598 the compiler chooses the most efficient one based on the current context. 
9599 If you list as many alternates as the @code{asm} statement allows, you permit 
9600 the optimizers to produce the best possible code. 
9601 If you must use a specific register, but your Machine Constraints do not
9602 provide sufficient control to select the specific register you want, 
9603 local register variables may provide a solution (@pxref{Local Register 
9604 Variables}).
9606 @item cvariablename
9607 Specifies a C lvalue expression to hold the output, typically a variable name.
9608 The enclosing parentheses are a required part of the syntax.
9610 @end table
9612 When the compiler selects the registers to use to 
9613 represent the output operands, it does not use any of the clobbered registers 
9614 (@pxref{Clobbers and Scratch Registers}).
9616 Output operand expressions must be lvalues. The compiler cannot check whether 
9617 the operands have data types that are reasonable for the instruction being 
9618 executed. For output expressions that are not directly addressable (for 
9619 example a bit-field), the constraint must allow a register. In that case, GCC 
9620 uses the register as the output of the @code{asm}, and then stores that 
9621 register into the output. 
9623 Operands using the @samp{+} constraint modifier count as two operands 
9624 (that is, both as input and output) towards the total maximum of 30 operands
9625 per @code{asm} statement.
9627 Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output
9628 operands that must not overlap an input.  Otherwise, 
9629 GCC may allocate the output operand in the same register as an unrelated 
9630 input operand, on the assumption that the assembler code consumes its 
9631 inputs before producing outputs. This assumption may be false if the assembler 
9632 code actually consists of more than one instruction.
9634 The same problem can occur if one output parameter (@var{a}) allows a register 
9635 constraint and another output parameter (@var{b}) allows a memory constraint.
9636 The code generated by GCC to access the memory address in @var{b} can contain
9637 registers which @emph{might} be shared by @var{a}, and GCC considers those 
9638 registers to be inputs to the asm. As above, GCC assumes that such input
9639 registers are consumed before any outputs are written. This assumption may 
9640 result in incorrect behavior if the @code{asm} statement writes to @var{a}
9641 before using
9642 @var{b}. Combining the @samp{&} modifier with the register constraint on @var{a}
9643 ensures that modifying @var{a} does not affect the address referenced by 
9644 @var{b}. Otherwise, the location of @var{b} 
9645 is undefined if @var{a} is modified before using @var{b}.
9647 @code{asm} supports operand modifiers on operands (for example @samp{%k2} 
9648 instead of simply @samp{%2}). Typically these qualifiers are hardware 
9649 dependent. The list of supported modifiers for x86 is found at 
9650 @ref{x86Operandmodifiers,x86 Operand modifiers}.
9652 If the C code that follows the @code{asm} makes no use of any of the output 
9653 operands, use @code{volatile} for the @code{asm} statement to prevent the 
9654 optimizers from discarding the @code{asm} statement as unneeded 
9655 (see @ref{Volatile}).
9657 This code makes no use of the optional @var{asmSymbolicName}. Therefore it 
9658 references the first output operand as @code{%0} (were there a second, it 
9659 would be @code{%1}, etc). The number of the first input operand is one greater 
9660 than that of the last output operand. In this i386 example, that makes 
9661 @code{Mask} referenced as @code{%1}:
9663 @example
9664 uint32_t Mask = 1234;
9665 uint32_t Index;
9667   asm ("bsfl %1, %0"
9668      : "=r" (Index)
9669      : "r" (Mask)
9670      : "cc");
9671 @end example
9673 That code overwrites the variable @code{Index} (@samp{=}),
9674 placing the value in a register (@samp{r}).
9675 Using the generic @samp{r} constraint instead of a constraint for a specific 
9676 register allows the compiler to pick the register to use, which can result 
9677 in more efficient code. This may not be possible if an assembler instruction 
9678 requires a specific register.
9680 The following i386 example uses the @var{asmSymbolicName} syntax.
9681 It produces the 
9682 same result as the code above, but some may consider it more readable or more 
9683 maintainable since reordering index numbers is not necessary when adding or 
9684 removing operands. The names @code{aIndex} and @code{aMask}
9685 are only used in this example to emphasize which 
9686 names get used where.
9687 It is acceptable to reuse the names @code{Index} and @code{Mask}.
9689 @example
9690 uint32_t Mask = 1234;
9691 uint32_t Index;
9693   asm ("bsfl %[aMask], %[aIndex]"
9694      : [aIndex] "=r" (Index)
9695      : [aMask] "r" (Mask)
9696      : "cc");
9697 @end example
9699 Here are some more examples of output operands.
9701 @example
9702 uint32_t c = 1;
9703 uint32_t d;
9704 uint32_t *e = &c;
9706 asm ("mov %[e], %[d]"
9707    : [d] "=rm" (d)
9708    : [e] "rm" (*e));
9709 @end example
9711 Here, @code{d} may either be in a register or in memory. Since the compiler 
9712 might already have the current value of the @code{uint32_t} location
9713 pointed to by @code{e}
9714 in a register, you can enable it to choose the best location
9715 for @code{d} by specifying both constraints.
9717 @anchor{FlagOutputOperands}
9718 @subsubsection Flag Output Operands
9719 @cindex @code{asm} flag output operands
9721 Some targets have a special register that holds the ``flags'' for the
9722 result of an operation or comparison.  Normally, the contents of that
9723 register are either unmodifed by the asm, or the @code{asm} statement is
9724 considered to clobber the contents.
9726 On some targets, a special form of output operand exists by which
9727 conditions in the flags register may be outputs of the asm.  The set of
9728 conditions supported are target specific, but the general rule is that
9729 the output variable must be a scalar integer, and the value is boolean.
9730 When supported, the target defines the preprocessor symbol
9731 @code{__GCC_ASM_FLAG_OUTPUTS__}.
9733 Because of the special nature of the flag output operands, the constraint
9734 may not include alternatives.
9736 Most often, the target has only one flags register, and thus is an implied
9737 operand of many instructions.  In this case, the operand should not be
9738 referenced within the assembler template via @code{%0} etc, as there's
9739 no corresponding text in the assembly language.
9741 @table @asis
9742 @item x86 family
9743 The flag output constraints for the x86 family are of the form
9744 @samp{=@@cc@var{cond}} where @var{cond} is one of the standard
9745 conditions defined in the ISA manual for @code{j@var{cc}} or
9746 @code{set@var{cc}}.
9748 @table @code
9749 @item a
9750 ``above'' or unsigned greater than
9751 @item ae
9752 ``above or equal'' or unsigned greater than or equal
9753 @item b
9754 ``below'' or unsigned less than
9755 @item be
9756 ``below or equal'' or unsigned less than or equal
9757 @item c
9758 carry flag set
9759 @item e
9760 @itemx z
9761 ``equal'' or zero flag set
9762 @item g
9763 signed greater than
9764 @item ge
9765 signed greater than or equal
9766 @item l
9767 signed less than
9768 @item le
9769 signed less than or equal
9770 @item o
9771 overflow flag set
9772 @item p
9773 parity flag set
9774 @item s
9775 sign flag set
9776 @item na
9777 @itemx nae
9778 @itemx nb
9779 @itemx nbe
9780 @itemx nc
9781 @itemx ne
9782 @itemx ng
9783 @itemx nge
9784 @itemx nl
9785 @itemx nle
9786 @itemx no
9787 @itemx np
9788 @itemx ns
9789 @itemx nz
9790 ``not'' @var{flag}, or inverted versions of those above
9791 @end table
9793 @end table
9795 @anchor{InputOperands}
9796 @subsubsection Input Operands
9797 @cindex @code{asm} input operands
9798 @cindex @code{asm} expressions
9800 Input operands make values from C variables and expressions available to the 
9801 assembly code.
9803 Operands are separated by commas.  Each operand has this format:
9805 @example
9806 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression})
9807 @end example
9809 @table @var
9810 @item asmSymbolicName
9811 Specifies a symbolic name for the operand.
9812 Reference the name in the assembler template 
9813 by enclosing it in square brackets 
9814 (i.e.@: @samp{%[Value]}). The scope of the name is the @code{asm} statement 
9815 that contains the definition. Any valid C variable name is acceptable, 
9816 including names already defined in the surrounding code. No two operands 
9817 within the same @code{asm} statement can use the same symbolic name.
9819 When not using an @var{asmSymbolicName}, use the (zero-based) position
9820 of the operand 
9821 in the list of operands in the assembler template. For example if there are
9822 two output operands and three inputs,
9823 use @samp{%2} in the template to refer to the first input operand,
9824 @samp{%3} for the second, and @samp{%4} for the third. 
9826 @item constraint
9827 A string constant specifying constraints on the placement of the operand; 
9828 @xref{Constraints}, for details.
9830 Input constraint strings may not begin with either @samp{=} or @samp{+}.
9831 When you list more than one possible location (for example, @samp{"irm"}), 
9832 the compiler chooses the most efficient one based on the current context.
9833 If you must use a specific register, but your Machine Constraints do not
9834 provide sufficient control to select the specific register you want, 
9835 local register variables may provide a solution (@pxref{Local Register 
9836 Variables}).
9838 Input constraints can also be digits (for example, @code{"0"}). This indicates 
9839 that the specified input must be in the same place as the output constraint 
9840 at the (zero-based) index in the output constraint list. 
9841 When using @var{asmSymbolicName} syntax for the output operands,
9842 you may use these names (enclosed in brackets @samp{[]}) instead of digits.
9844 @item cexpression
9845 This is the C variable or expression being passed to the @code{asm} statement 
9846 as input.  The enclosing parentheses are a required part of the syntax.
9848 @end table
9850 When the compiler selects the registers to use to represent the input 
9851 operands, it does not use any of the clobbered registers
9852 (@pxref{Clobbers and Scratch Registers}).
9854 If there are no output operands but there are input operands, place two 
9855 consecutive colons where the output operands would go:
9857 @example
9858 __asm__ ("some instructions"
9859    : /* No outputs. */
9860    : "r" (Offset / 8));
9861 @end example
9863 @strong{Warning:} Do @emph{not} modify the contents of input-only operands 
9864 (except for inputs tied to outputs). The compiler assumes that on exit from 
9865 the @code{asm} statement these operands contain the same values as they 
9866 had before executing the statement. 
9867 It is @emph{not} possible to use clobbers
9868 to inform the compiler that the values in these inputs are changing. One 
9869 common work-around is to tie the changing input variable to an output variable 
9870 that never gets used. Note, however, that if the code that follows the 
9871 @code{asm} statement makes no use of any of the output operands, the GCC 
9872 optimizers may discard the @code{asm} statement as unneeded 
9873 (see @ref{Volatile}).
9875 @code{asm} supports operand modifiers on operands (for example @samp{%k2} 
9876 instead of simply @samp{%2}). Typically these qualifiers are hardware 
9877 dependent. The list of supported modifiers for x86 is found at 
9878 @ref{x86Operandmodifiers,x86 Operand modifiers}.
9880 In this example using the fictitious @code{combine} instruction, the 
9881 constraint @code{"0"} for input operand 1 says that it must occupy the same 
9882 location as output operand 0. Only input operands may use numbers in 
9883 constraints, and they must each refer to an output operand. Only a number (or 
9884 the symbolic assembler name) in the constraint can guarantee that one operand 
9885 is in the same place as another. The mere fact that @code{foo} is the value of 
9886 both operands is not enough to guarantee that they are in the same place in 
9887 the generated assembler code.
9889 @example
9890 asm ("combine %2, %0" 
9891    : "=r" (foo) 
9892    : "0" (foo), "g" (bar));
9893 @end example
9895 Here is an example using symbolic names.
9897 @example
9898 asm ("cmoveq %1, %2, %[result]" 
9899    : [result] "=r"(result) 
9900    : "r" (test), "r" (new), "[result]" (old));
9901 @end example
9903 @anchor{Clobbers and Scratch Registers}
9904 @subsubsection Clobbers and Scratch Registers
9905 @cindex @code{asm} clobbers
9906 @cindex @code{asm} scratch registers
9908 While the compiler is aware of changes to entries listed in the output 
9909 operands, the inline @code{asm} code may modify more than just the outputs. For 
9910 example, calculations may require additional registers, or the processor may 
9911 overwrite a register as a side effect of a particular assembler instruction. 
9912 In order to inform the compiler of these changes, list them in the clobber 
9913 list. Clobber list items are either register names or the special clobbers 
9914 (listed below). Each clobber list item is a string constant 
9915 enclosed in double quotes and separated by commas.
9917 Clobber descriptions may not in any way overlap with an input or output 
9918 operand. For example, you may not have an operand describing a register class 
9919 with one member when listing that register in the clobber list. Variables 
9920 declared to live in specific registers (@pxref{Explicit Register 
9921 Variables}) and used 
9922 as @code{asm} input or output operands must have no part mentioned in the 
9923 clobber description. In particular, there is no way to specify that input 
9924 operands get modified without also specifying them as output operands.
9926 When the compiler selects which registers to use to represent input and output 
9927 operands, it does not use any of the clobbered registers. As a result, 
9928 clobbered registers are available for any use in the assembler code.
9930 Another restriction is that the clobber list should not contain the
9931 stack pointer register.  This is because the compiler requires the
9932 value of the stack pointer to be the same after an @code{asm}
9933 statement as it was on entry to the statement.  However, previous
9934 versions of GCC did not enforce this rule and allowed the stack
9935 pointer to appear in the list, with unclear semantics.  This behavior
9936 is deprecated and listing the stack pointer may become an error in
9937 future versions of GCC@.
9939 Here is a realistic example for the VAX showing the use of clobbered 
9940 registers: 
9942 @example
9943 asm volatile ("movc3 %0, %1, %2"
9944                    : /* No outputs. */
9945                    : "g" (from), "g" (to), "g" (count)
9946                    : "r0", "r1", "r2", "r3", "r4", "r5", "memory");
9947 @end example
9949 Also, there are two special clobber arguments:
9951 @table @code
9952 @item "cc"
9953 The @code{"cc"} clobber indicates that the assembler code modifies the flags 
9954 register. On some machines, GCC represents the condition codes as a specific 
9955 hardware register; @code{"cc"} serves to name this register.
9956 On other machines, condition code handling is different, 
9957 and specifying @code{"cc"} has no effect. But 
9958 it is valid no matter what the target.
9960 @item "memory"
9961 The @code{"memory"} clobber tells the compiler that the assembly code
9962 performs memory 
9963 reads or writes to items other than those listed in the input and output 
9964 operands (for example, accessing the memory pointed to by one of the input 
9965 parameters). To ensure memory contains correct values, GCC may need to flush 
9966 specific register values to memory before executing the @code{asm}. Further, 
9967 the compiler does not assume that any values read from memory before an 
9968 @code{asm} remain unchanged after that @code{asm}; it reloads them as 
9969 needed.  
9970 Using the @code{"memory"} clobber effectively forms a read/write
9971 memory barrier for the compiler.
9973 Note that this clobber does not prevent the @emph{processor} from doing 
9974 speculative reads past the @code{asm} statement. To prevent that, you need 
9975 processor-specific fence instructions.
9977 @end table
9979 Flushing registers to memory has performance implications and may be
9980 an issue for time-sensitive code.  You can provide better information
9981 to GCC to avoid this, as shown in the following examples.  At a
9982 minimum, aliasing rules allow GCC to know what memory @emph{doesn't}
9983 need to be flushed.
9985 Here is a fictitious sum of squares instruction, that takes two
9986 pointers to floating point values in memory and produces a floating
9987 point register output.
9988 Notice that @code{x}, and @code{y} both appear twice in the @code{asm}
9989 parameters, once to specify memory accessed, and once to specify a
9990 base register used by the @code{asm}.  You won't normally be wasting a
9991 register by doing this as GCC can use the same register for both
9992 purposes.  However, it would be foolish to use both @code{%1} and
9993 @code{%3} for @code{x} in this @code{asm} and expect them to be the
9994 same.  In fact, @code{%3} may well not be a register.  It might be a
9995 symbolic memory reference to the object pointed to by @code{x}.
9997 @smallexample
9998 asm ("sumsq %0, %1, %2"
9999      : "+f" (result)
10000      : "r" (x), "r" (y), "m" (*x), "m" (*y));
10001 @end smallexample
10003 Here is a fictitious @code{*z++ = *x++ * *y++} instruction.
10004 Notice that the @code{x}, @code{y} and @code{z} pointer registers
10005 must be specified as input/output because the @code{asm} modifies
10006 them.
10008 @smallexample
10009 asm ("vecmul %0, %1, %2"
10010      : "+r" (z), "+r" (x), "+r" (y), "=m" (*z)
10011      : "m" (*x), "m" (*y));
10012 @end smallexample
10014 An x86 example where the string memory argument is of unknown length.
10016 @smallexample
10017 asm("repne scasb"
10018     : "=c" (count), "+D" (p)
10019     : "m" (*(const char (*)[]) p), "0" (-1), "a" (0));
10020 @end smallexample
10022 If you know the above will only be reading a ten byte array then you
10023 could instead use a memory input like:
10024 @code{"m" (*(const char (*)[10]) p)}.
10026 Here is an example of a PowerPC vector scale implemented in assembly,
10027 complete with vector and condition code clobbers, and some initialized
10028 offset registers that are unchanged by the @code{asm}.
10030 @smallexample
10031 void
10032 dscal (size_t n, double *x, double alpha)
10034   asm ("/* lots of asm here */"
10035        : "+m" (*(double (*)[n]) x), "+&r" (n), "+b" (x)
10036        : "d" (alpha), "b" (32), "b" (48), "b" (64),
10037          "b" (80), "b" (96), "b" (112)
10038        : "cr0",
10039          "vs32","vs33","vs34","vs35","vs36","vs37","vs38","vs39",
10040          "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47");
10042 @end smallexample
10044 Rather than allocating fixed registers via clobbers to provide scratch
10045 registers for an @code{asm} statement, an alternative is to define a
10046 variable and make it an early-clobber output as with @code{a2} and
10047 @code{a3} in the example below.  This gives the compiler register
10048 allocator more freedom.  You can also define a variable and make it an
10049 output tied to an input as with @code{a0} and @code{a1}, tied
10050 respectively to @code{ap} and @code{lda}.  Of course, with tied
10051 outputs your @code{asm} can't use the input value after modifying the
10052 output register since they are one and the same register.  What's
10053 more, if you omit the early-clobber on the output, it is possible that
10054 GCC might allocate the same register to another of the inputs if GCC
10055 could prove they had the same value on entry to the @code{asm}.  This
10056 is why @code{a1} has an early-clobber.  Its tied input, @code{lda}
10057 might conceivably be known to have the value 16 and without an
10058 early-clobber share the same register as @code{%11}.  On the other
10059 hand, @code{ap} can't be the same as any of the other inputs, so an
10060 early-clobber on @code{a0} is not needed.  It is also not desirable in
10061 this case.  An early-clobber on @code{a0} would cause GCC to allocate
10062 a separate register for the @code{"m" (*(const double (*)[]) ap)}
10063 input.  Note that tying an input to an output is the way to set up an
10064 initialized temporary register modified by an @code{asm} statement.
10065 An input not tied to an output is assumed by GCC to be unchanged, for
10066 example @code{"b" (16)} below sets up @code{%11} to 16, and GCC might
10067 use that register in following code if the value 16 happened to be
10068 needed.  You can even use a normal @code{asm} output for a scratch if
10069 all inputs that might share the same register are consumed before the
10070 scratch is used.  The VSX registers clobbered by the @code{asm}
10071 statement could have used this technique except for GCC's limit on the
10072 number of @code{asm} parameters.
10074 @smallexample
10075 static void
10076 dgemv_kernel_4x4 (long n, const double *ap, long lda,
10077                   const double *x, double *y, double alpha)
10079   double *a0;
10080   double *a1;
10081   double *a2;
10082   double *a3;
10084   __asm__
10085     (
10086      /* lots of asm here */
10087      "#n=%1 ap=%8=%12 lda=%13 x=%7=%10 y=%0=%2 alpha=%9 o16=%11\n"
10088      "#a0=%3 a1=%4 a2=%5 a3=%6"
10089      :
10090        "+m" (*(double (*)[n]) y),
10091        "+&r" (n),       // 1
10092        "+b" (y),        // 2
10093        "=b" (a0),       // 3
10094        "=&b" (a1),      // 4
10095        "=&b" (a2),      // 5
10096        "=&b" (a3)       // 6
10097      :
10098        "m" (*(const double (*)[n]) x),
10099        "m" (*(const double (*)[]) ap),
10100        "d" (alpha),     // 9
10101        "r" (x),         // 10
10102        "b" (16),        // 11
10103        "3" (ap),        // 12
10104        "4" (lda)        // 13
10105      :
10106        "cr0",
10107        "vs32","vs33","vs34","vs35","vs36","vs37",
10108        "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47"
10109      );
10111 @end smallexample
10113 @anchor{GotoLabels}
10114 @subsubsection Goto Labels
10115 @cindex @code{asm} goto labels
10117 @code{asm goto} allows assembly code to jump to one or more C labels.  The
10118 @var{GotoLabels} section in an @code{asm goto} statement contains 
10119 a comma-separated 
10120 list of all C labels to which the assembler code may jump. GCC assumes that 
10121 @code{asm} execution falls through to the next statement (if this is not the 
10122 case, consider using the @code{__builtin_unreachable} intrinsic after the 
10123 @code{asm} statement). Optimization of @code{asm goto} may be improved by 
10124 using the @code{hot} and @code{cold} label attributes (@pxref{Label 
10125 Attributes}).
10127 An @code{asm goto} statement cannot have outputs.
10128 This is due to an internal restriction of 
10129 the compiler: control transfer instructions cannot have outputs. 
10130 If the assembler code does modify anything, use the @code{"memory"} clobber 
10131 to force the 
10132 optimizers to flush all register values to memory and reload them if 
10133 necessary after the @code{asm} statement.
10135 Also note that an @code{asm goto} statement is always implicitly
10136 considered volatile.
10138 To reference a label in the assembler template,
10139 prefix it with @samp{%l} (lowercase @samp{L}) followed 
10140 by its (zero-based) position in @var{GotoLabels} plus the number of input 
10141 operands.  For example, if the @code{asm} has three inputs and references two 
10142 labels, refer to the first label as @samp{%l3} and the second as @samp{%l4}).
10144 Alternately, you can reference labels using the actual C label name enclosed
10145 in brackets.  For example, to reference a label named @code{carry}, you can
10146 use @samp{%l[carry]}.  The label must still be listed in the @var{GotoLabels}
10147 section when using this approach.
10149 Here is an example of @code{asm goto} for i386:
10151 @example
10152 asm goto (
10153     "btl %1, %0\n\t"
10154     "jc %l2"
10155     : /* No outputs. */
10156     : "r" (p1), "r" (p2) 
10157     : "cc" 
10158     : carry);
10160 return 0;
10162 carry:
10163 return 1;
10164 @end example
10166 The following example shows an @code{asm goto} that uses a memory clobber.
10168 @example
10169 int frob(int x)
10171   int y;
10172   asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
10173             : /* No outputs. */
10174             : "r"(x), "r"(&y)
10175             : "r5", "memory" 
10176             : error);
10177   return y;
10178 error:
10179   return -1;
10181 @end example
10183 @anchor{x86Operandmodifiers}
10184 @subsubsection x86 Operand Modifiers
10186 References to input, output, and goto operands in the assembler template
10187 of extended @code{asm} statements can use 
10188 modifiers to affect the way the operands are formatted in 
10189 the code output to the assembler. For example, the 
10190 following code uses the @samp{h} and @samp{b} modifiers for x86:
10192 @example
10193 uint16_t  num;
10194 asm volatile ("xchg %h0, %b0" : "+a" (num) );
10195 @end example
10197 @noindent
10198 These modifiers generate this assembler code:
10200 @example
10201 xchg %ah, %al
10202 @end example
10204 The rest of this discussion uses the following code for illustrative purposes.
10206 @example
10207 int main()
10209    int iInt = 1;
10211 top:
10213    asm volatile goto ("some assembler instructions here"
10214    : /* No outputs. */
10215    : "q" (iInt), "X" (sizeof(unsigned char) + 1), "i" (42)
10216    : /* No clobbers. */
10217    : top);
10219 @end example
10221 With no modifiers, this is what the output from the operands would be
10222 for the @samp{att} and @samp{intel} dialects of assembler:
10224 @multitable {Operand} {$.L2} {OFFSET FLAT:.L2}
10225 @headitem Operand @tab @samp{att} @tab @samp{intel}
10226 @item @code{%0}
10227 @tab @code{%eax}
10228 @tab @code{eax}
10229 @item @code{%1}
10230 @tab @code{$2}
10231 @tab @code{2}
10232 @item @code{%3}
10233 @tab @code{$.L3}
10234 @tab @code{OFFSET FLAT:.L3}
10235 @end multitable
10237 The table below shows the list of supported modifiers and their effects.
10239 @multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {@samp{att}} {@samp{intel}}
10240 @headitem Modifier @tab Description @tab Operand @tab @samp{att} @tab @samp{intel}
10241 @item @code{a}
10242 @tab Print an absolute memory reference.
10243 @tab @code{%A0}
10244 @tab @code{*%rax}
10245 @tab @code{rax}
10246 @item @code{b}
10247 @tab Print the QImode name of the register.
10248 @tab @code{%b0}
10249 @tab @code{%al}
10250 @tab @code{al}
10251 @item @code{c}
10252 @tab Require a constant operand and print the constant expression with no punctuation.
10253 @tab @code{%c1}
10254 @tab @code{2}
10255 @tab @code{2}
10256 @item @code{E}
10257 @tab Print the address in Double Integer (DImode) mode (8 bytes) when the target is 64-bit.
10258 Otherwise mode is unspecified (VOIDmode).
10259 @tab @code{%E1}
10260 @tab @code{%(rax)}
10261 @tab @code{[rax]}
10262 @item @code{h}
10263 @tab Print the QImode name for a ``high'' register.
10264 @tab @code{%h0}
10265 @tab @code{%ah}
10266 @tab @code{ah}
10267 @item @code{H}
10268 @tab Add 8 bytes to an offsettable memory reference. Useful when accessing the
10269 high 8 bytes of SSE values. For a memref in (%rax), it generates
10270 @tab @code{%H0}
10271 @tab @code{8(%rax)}
10272 @tab @code{8[rax]}
10273 @item @code{k}
10274 @tab Print the SImode name of the register.
10275 @tab @code{%k0}
10276 @tab @code{%eax}
10277 @tab @code{eax}
10278 @item @code{l}
10279 @tab Print the label name with no punctuation.
10280 @tab @code{%l3}
10281 @tab @code{.L3}
10282 @tab @code{.L3}
10283 @item @code{p}
10284 @tab Print raw symbol name (without syntax-specific prefixes).
10285 @tab @code{%p2}
10286 @tab @code{42}
10287 @tab @code{42}
10288 @item @code{P}
10289 @tab If used for a function, print the PLT suffix and generate PIC code.
10290 For example, emit @code{foo@@PLT} instead of 'foo' for the function
10291 foo(). If used for a constant, drop all syntax-specific prefixes and
10292 issue the bare constant. See @code{p} above.
10293 @item @code{q}
10294 @tab Print the DImode name of the register.
10295 @tab @code{%q0}
10296 @tab @code{%rax}
10297 @tab @code{rax}
10298 @item @code{w}
10299 @tab Print the HImode name of the register.
10300 @tab @code{%w0}
10301 @tab @code{%ax}
10302 @tab @code{ax}
10303 @item @code{z}
10304 @tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
10305 @tab @code{%z0}
10306 @tab @code{l}
10307 @tab 
10308 @end multitable
10310 @code{V} is a special modifier which prints the name of the full integer
10311 register without @code{%}.
10313 @anchor{x86floatingpointasmoperands}
10314 @subsubsection x86 Floating-Point @code{asm} Operands
10316 On x86 targets, there are several rules on the usage of stack-like registers
10317 in the operands of an @code{asm}.  These rules apply only to the operands
10318 that are stack-like registers:
10320 @enumerate
10321 @item
10322 Given a set of input registers that die in an @code{asm}, it is
10323 necessary to know which are implicitly popped by the @code{asm}, and
10324 which must be explicitly popped by GCC@.
10326 An input register that is implicitly popped by the @code{asm} must be
10327 explicitly clobbered, unless it is constrained to match an
10328 output operand.
10330 @item
10331 For any input register that is implicitly popped by an @code{asm}, it is
10332 necessary to know how to adjust the stack to compensate for the pop.
10333 If any non-popped input is closer to the top of the reg-stack than
10334 the implicitly popped register, it would not be possible to know what the
10335 stack looked like---it's not clear how the rest of the stack ``slides
10336 up''.
10338 All implicitly popped input registers must be closer to the top of
10339 the reg-stack than any input that is not implicitly popped.
10341 It is possible that if an input dies in an @code{asm}, the compiler might
10342 use the input register for an output reload.  Consider this example:
10344 @smallexample
10345 asm ("foo" : "=t" (a) : "f" (b));
10346 @end smallexample
10348 @noindent
10349 This code says that input @code{b} is not popped by the @code{asm}, and that
10350 the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
10351 deeper after the @code{asm} than it was before.  But, it is possible that
10352 reload may think that it can use the same register for both the input and
10353 the output.
10355 To prevent this from happening,
10356 if any input operand uses the @samp{f} constraint, all output register
10357 constraints must use the @samp{&} early-clobber modifier.
10359 The example above is correctly written as:
10361 @smallexample
10362 asm ("foo" : "=&t" (a) : "f" (b));
10363 @end smallexample
10365 @item
10366 Some operands need to be in particular places on the stack.  All
10367 output operands fall in this category---GCC has no other way to
10368 know which registers the outputs appear in unless you indicate
10369 this in the constraints.
10371 Output operands must specifically indicate which register an output
10372 appears in after an @code{asm}.  @samp{=f} is not allowed: the operand
10373 constraints must select a class with a single register.
10375 @item
10376 Output operands may not be ``inserted'' between existing stack registers.
10377 Since no 387 opcode uses a read/write operand, all output operands
10378 are dead before the @code{asm}, and are pushed by the @code{asm}.
10379 It makes no sense to push anywhere but the top of the reg-stack.
10381 Output operands must start at the top of the reg-stack: output
10382 operands may not ``skip'' a register.
10384 @item
10385 Some @code{asm} statements may need extra stack space for internal
10386 calculations.  This can be guaranteed by clobbering stack registers
10387 unrelated to the inputs and outputs.
10389 @end enumerate
10391 This @code{asm}
10392 takes one input, which is internally popped, and produces two outputs.
10394 @smallexample
10395 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
10396 @end smallexample
10398 @noindent
10399 This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
10400 and replaces them with one output.  The @code{st(1)} clobber is necessary 
10401 for the compiler to know that @code{fyl2xp1} pops both inputs.
10403 @smallexample
10404 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
10405 @end smallexample
10407 @lowersections
10408 @include md.texi
10409 @raisesections
10411 @node Asm Labels
10412 @subsection Controlling Names Used in Assembler Code
10413 @cindex assembler names for identifiers
10414 @cindex names used in assembler code
10415 @cindex identifiers, names in assembler code
10417 You can specify the name to be used in the assembler code for a C
10418 function or variable by writing the @code{asm} (or @code{__asm__})
10419 keyword after the declarator.
10420 It is up to you to make sure that the assembler names you choose do not
10421 conflict with any other assembler symbols, or reference registers.
10423 @subsubheading Assembler names for data:
10425 This sample shows how to specify the assembler name for data:
10427 @smallexample
10428 int foo asm ("myfoo") = 2;
10429 @end smallexample
10431 @noindent
10432 This specifies that the name to be used for the variable @code{foo} in
10433 the assembler code should be @samp{myfoo} rather than the usual
10434 @samp{_foo}.
10436 On systems where an underscore is normally prepended to the name of a C
10437 variable, this feature allows you to define names for the
10438 linker that do not start with an underscore.
10440 GCC does not support using this feature with a non-static local variable 
10441 since such variables do not have assembler names.  If you are
10442 trying to put the variable in a particular register, see 
10443 @ref{Explicit Register Variables}.
10445 @subsubheading Assembler names for functions:
10447 To specify the assembler name for functions, write a declaration for the 
10448 function before its definition and put @code{asm} there, like this:
10450 @smallexample
10451 int func (int x, int y) asm ("MYFUNC");
10452      
10453 int func (int x, int y)
10455    /* @r{@dots{}} */
10456 @end smallexample
10458 @noindent
10459 This specifies that the name to be used for the function @code{func} in
10460 the assembler code should be @code{MYFUNC}.
10462 @node Explicit Register Variables
10463 @subsection Variables in Specified Registers
10464 @anchor{Explicit Reg Vars}
10465 @cindex explicit register variables
10466 @cindex variables in specified registers
10467 @cindex specified registers
10469 GNU C allows you to associate specific hardware registers with C 
10470 variables.  In almost all cases, allowing the compiler to assign
10471 registers produces the best code.  However under certain unusual
10472 circumstances, more precise control over the variable storage is 
10473 required.
10475 Both global and local variables can be associated with a register.  The
10476 consequences of performing this association are very different between
10477 the two, as explained in the sections below.
10479 @menu
10480 * Global Register Variables::   Variables declared at global scope.
10481 * Local Register Variables::    Variables declared within a function.
10482 @end menu
10484 @node Global Register Variables
10485 @subsubsection Defining Global Register Variables
10486 @anchor{Global Reg Vars}
10487 @cindex global register variables
10488 @cindex registers, global variables in
10489 @cindex registers, global allocation
10491 You can define a global register variable and associate it with a specified 
10492 register like this:
10494 @smallexample
10495 register int *foo asm ("r12");
10496 @end smallexample
10498 @noindent
10499 Here @code{r12} is the name of the register that should be used. Note that 
10500 this is the same syntax used for defining local register variables, but for 
10501 a global variable the declaration appears outside a function. The 
10502 @code{register} keyword is required, and cannot be combined with 
10503 @code{static}. The register name must be a valid register name for the
10504 target platform.
10506 Do not use type qualifiers such as @code{const} and @code{volatile}, as
10507 the outcome may be contrary to expectations.  In  particular, using the
10508 @code{volatile} qualifier does not fully prevent the compiler from
10509 optimizing accesses to the register.
10511 Registers are a scarce resource on most systems and allowing the 
10512 compiler to manage their usage usually results in the best code. However, 
10513 under special circumstances it can make sense to reserve some globally.
10514 For example this may be useful in programs such as programming language 
10515 interpreters that have a couple of global variables that are accessed 
10516 very often.
10518 After defining a global register variable, for the current compilation
10519 unit:
10521 @itemize @bullet
10522 @item If the register is a call-saved register, call ABI is affected:
10523 the register will not be restored in function epilogue sequences after
10524 the variable has been assigned.  Therefore, functions cannot safely
10525 return to callers that assume standard ABI.
10526 @item Conversely, if the register is a call-clobbered register, making
10527 calls to functions that use standard ABI may lose contents of the variable.
10528 Such calls may be created by the compiler even if none are evident in
10529 the original program, for example when libgcc functions are used to
10530 make up for unavailable instructions.
10531 @item Accesses to the variable may be optimized as usual and the register
10532 remains available for allocation and use in any computations, provided that
10533 observable values of the variable are not affected.
10534 @item If the variable is referenced in inline assembly, the type of access
10535 must be provided to the compiler via constraints (@pxref{Constraints}).
10536 Accesses from basic asms are not supported.
10537 @end itemize
10539 Note that these points @emph{only} apply to code that is compiled with the
10540 definition. The behavior of code that is merely linked in (for example 
10541 code from libraries) is not affected.
10543 If you want to recompile source files that do not actually use your global 
10544 register variable so they do not use the specified register for any other 
10545 purpose, you need not actually add the global register declaration to 
10546 their source code. It suffices to specify the compiler option 
10547 @option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the 
10548 register.
10550 @subsubheading Declaring the variable
10552 Global register variables cannot have initial values, because an
10553 executable file has no means to supply initial contents for a register.
10555 When selecting a register, choose one that is normally saved and 
10556 restored by function calls on your machine. This ensures that code
10557 which is unaware of this reservation (such as library routines) will 
10558 restore it before returning.
10560 On machines with register windows, be sure to choose a global
10561 register that is not affected magically by the function call mechanism.
10563 @subsubheading Using the variable
10565 @cindex @code{qsort}, and global register variables
10566 When calling routines that are not aware of the reservation, be 
10567 cautious if those routines call back into code which uses them. As an 
10568 example, if you call the system library version of @code{qsort}, it may 
10569 clobber your registers during execution, but (if you have selected 
10570 appropriate registers) it will restore them before returning. However 
10571 it will @emph{not} restore them before calling @code{qsort}'s comparison 
10572 function. As a result, global values will not reliably be available to 
10573 the comparison function unless the @code{qsort} function itself is rebuilt.
10575 Similarly, it is not safe to access the global register variables from signal
10576 handlers or from more than one thread of control. Unless you recompile 
10577 them specially for the task at hand, the system library routines may 
10578 temporarily use the register for other things.  Furthermore, since the register
10579 is not reserved exclusively for the variable, accessing it from handlers of
10580 asynchronous signals may observe unrelated temporary values residing in the
10581 register.
10583 @cindex register variable after @code{longjmp}
10584 @cindex global register after @code{longjmp}
10585 @cindex value after @code{longjmp}
10586 @findex longjmp
10587 @findex setjmp
10588 On most machines, @code{longjmp} restores to each global register
10589 variable the value it had at the time of the @code{setjmp}. On some
10590 machines, however, @code{longjmp} does not change the value of global
10591 register variables. To be portable, the function that called @code{setjmp}
10592 should make other arrangements to save the values of the global register
10593 variables, and to restore them in a @code{longjmp}. This way, the same
10594 thing happens regardless of what @code{longjmp} does.
10596 @node Local Register Variables
10597 @subsubsection Specifying Registers for Local Variables
10598 @anchor{Local Reg Vars}
10599 @cindex local variables, specifying registers
10600 @cindex specifying registers for local variables
10601 @cindex registers for local variables
10603 You can define a local register variable and associate it with a specified 
10604 register like this:
10606 @smallexample
10607 register int *foo asm ("r12");
10608 @end smallexample
10610 @noindent
10611 Here @code{r12} is the name of the register that should be used.  Note
10612 that this is the same syntax used for defining global register variables, 
10613 but for a local variable the declaration appears within a function.  The 
10614 @code{register} keyword is required, and cannot be combined with 
10615 @code{static}.  The register name must be a valid register name for the
10616 target platform.
10618 Do not use type qualifiers such as @code{const} and @code{volatile}, as
10619 the outcome may be contrary to expectations. In particular, when the
10620 @code{const} qualifier is used, the compiler may substitute the
10621 variable with its initializer in @code{asm} statements, which may cause
10622 the corresponding operand to appear in a different register.
10624 As with global register variables, it is recommended that you choose 
10625 a register that is normally saved and restored by function calls on your 
10626 machine, so that calls to library routines will not clobber it.
10628 The only supported use for this feature is to specify registers
10629 for input and output operands when calling Extended @code{asm} 
10630 (@pxref{Extended Asm}).  This may be necessary if the constraints for a 
10631 particular machine don't provide sufficient control to select the desired 
10632 register.  To force an operand into a register, create a local variable 
10633 and specify the register name after the variable's declaration.  Then use 
10634 the local variable for the @code{asm} operand and specify any constraint 
10635 letter that matches the register:
10637 @smallexample
10638 register int *p1 asm ("r0") = @dots{};
10639 register int *p2 asm ("r1") = @dots{};
10640 register int *result asm ("r0");
10641 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
10642 @end smallexample
10644 @emph{Warning:} In the above example, be aware that a register (for example 
10645 @code{r0}) can be call-clobbered by subsequent code, including function 
10646 calls and library calls for arithmetic operators on other variables (for 
10647 example the initialization of @code{p2}).  In this case, use temporary 
10648 variables for expressions between the register assignments:
10650 @smallexample
10651 int t1 = @dots{};
10652 register int *p1 asm ("r0") = @dots{};
10653 register int *p2 asm ("r1") = t1;
10654 register int *result asm ("r0");
10655 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
10656 @end smallexample
10658 Defining a register variable does not reserve the register.  Other than
10659 when invoking the Extended @code{asm}, the contents of the specified 
10660 register are not guaranteed.  For this reason, the following uses 
10661 are explicitly @emph{not} supported.  If they appear to work, it is only 
10662 happenstance, and may stop working as intended due to (seemingly) 
10663 unrelated changes in surrounding code, or even minor changes in the 
10664 optimization of a future version of gcc:
10666 @itemize @bullet
10667 @item Passing parameters to or from Basic @code{asm}
10668 @item Passing parameters to or from Extended @code{asm} without using input 
10669 or output operands.
10670 @item Passing parameters to or from routines written in assembler (or
10671 other languages) using non-standard calling conventions.
10672 @end itemize
10674 Some developers use Local Register Variables in an attempt to improve 
10675 gcc's allocation of registers, especially in large functions.  In this 
10676 case the register name is essentially a hint to the register allocator.
10677 While in some instances this can generate better code, improvements are
10678 subject to the whims of the allocator/optimizers.  Since there are no
10679 guarantees that your improvements won't be lost, this usage of Local
10680 Register Variables is discouraged.
10682 On the MIPS platform, there is related use for local register variables 
10683 with slightly different characteristics (@pxref{MIPS Coprocessors,, 
10684 Defining coprocessor specifics for MIPS targets, gccint, 
10685 GNU Compiler Collection (GCC) Internals}).
10687 @node Size of an asm
10688 @subsection Size of an @code{asm}
10690 Some targets require that GCC track the size of each instruction used
10691 in order to generate correct code.  Because the final length of the
10692 code produced by an @code{asm} statement is only known by the
10693 assembler, GCC must make an estimate as to how big it will be.  It
10694 does this by counting the number of instructions in the pattern of the
10695 @code{asm} and multiplying that by the length of the longest
10696 instruction supported by that processor.  (When working out the number
10697 of instructions, it assumes that any occurrence of a newline or of
10698 whatever statement separator character is supported by the assembler ---
10699 typically @samp{;} --- indicates the end of an instruction.)
10701 Normally, GCC's estimate is adequate to ensure that correct
10702 code is generated, but it is possible to confuse the compiler if you use
10703 pseudo instructions or assembler macros that expand into multiple real
10704 instructions, or if you use assembler directives that expand to more
10705 space in the object file than is needed for a single instruction.
10706 If this happens then the assembler may produce a diagnostic saying that
10707 a label is unreachable.
10709 @cindex @code{asm inline}
10710 This size is also used for inlining decisions.  If you use @code{asm inline}
10711 instead of just @code{asm}, then for inlining purposes the size of the asm
10712 is taken as the minimum size, ignoring how many instructions GCC thinks it is.
10714 @node Alternate Keywords
10715 @section Alternate Keywords
10716 @cindex alternate keywords
10717 @cindex keywords, alternate
10719 @option{-ansi} and the various @option{-std} options disable certain
10720 keywords.  This causes trouble when you want to use GNU C extensions, or
10721 a general-purpose header file that should be usable by all programs,
10722 including ISO C programs.  The keywords @code{asm}, @code{typeof} and
10723 @code{inline} are not available in programs compiled with
10724 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
10725 program compiled with @option{-std=c99} or @option{-std=c11}).  The
10726 ISO C99 keyword
10727 @code{restrict} is only available when @option{-std=gnu99} (which will
10728 eventually be the default) or @option{-std=c99} (or the equivalent
10729 @option{-std=iso9899:1999}), or an option for a later standard
10730 version, is used.
10732 The way to solve these problems is to put @samp{__} at the beginning and
10733 end of each problematical keyword.  For example, use @code{__asm__}
10734 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
10736 Other C compilers won't accept these alternative keywords; if you want to
10737 compile with another compiler, you can define the alternate keywords as
10738 macros to replace them with the customary keywords.  It looks like this:
10740 @smallexample
10741 #ifndef __GNUC__
10742 #define __asm__ asm
10743 #endif
10744 @end smallexample
10746 @findex __extension__
10747 @opindex pedantic
10748 @option{-pedantic} and other options cause warnings for many GNU C extensions.
10749 You can
10750 prevent such warnings within one expression by writing
10751 @code{__extension__} before the expression.  @code{__extension__} has no
10752 effect aside from this.
10754 @node Incomplete Enums
10755 @section Incomplete @code{enum} Types
10757 You can define an @code{enum} tag without specifying its possible values.
10758 This results in an incomplete type, much like what you get if you write
10759 @code{struct foo} without describing the elements.  A later declaration
10760 that does specify the possible values completes the type.
10762 You cannot allocate variables or storage using the type while it is
10763 incomplete.  However, you can work with pointers to that type.
10765 This extension may not be very useful, but it makes the handling of
10766 @code{enum} more consistent with the way @code{struct} and @code{union}
10767 are handled.
10769 This extension is not supported by GNU C++.
10771 @node Function Names
10772 @section Function Names as Strings
10773 @cindex @code{__func__} identifier
10774 @cindex @code{__FUNCTION__} identifier
10775 @cindex @code{__PRETTY_FUNCTION__} identifier
10777 GCC provides three magic constants that hold the name of the current
10778 function as a string.  In C++11 and later modes, all three are treated
10779 as constant expressions and can be used in @code{constexpr} constexts.
10780 The first of these constants is @code{__func__}, which is part of
10781 the C99 standard:
10783 The identifier @code{__func__} is implicitly declared by the translator
10784 as if, immediately following the opening brace of each function
10785 definition, the declaration
10787 @smallexample
10788 static const char __func__[] = "function-name";
10789 @end smallexample
10791 @noindent
10792 appeared, where function-name is the name of the lexically-enclosing
10793 function.  This name is the unadorned name of the function.  As an
10794 extension, at file (or, in C++, namespace scope), @code{__func__}
10795 evaluates to the empty string.
10797 @code{__FUNCTION__} is another name for @code{__func__}, provided for
10798 backward compatibility with old versions of GCC.
10800 In C, @code{__PRETTY_FUNCTION__} is yet another name for
10801 @code{__func__}, except that at file (or, in C++, namespace scope),
10802 it evaluates to the string @code{"top level"}.  In addition, in C++,
10803 @code{__PRETTY_FUNCTION__} contains the signature of the function as
10804 well as its bare name.  For example, this program:
10806 @smallexample
10807 extern "C" int printf (const char *, ...);
10809 class a @{
10810  public:
10811   void sub (int i)
10812     @{
10813       printf ("__FUNCTION__ = %s\n", __FUNCTION__);
10814       printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
10815     @}
10819 main (void)
10821   a ax;
10822   ax.sub (0);
10823   return 0;
10825 @end smallexample
10827 @noindent
10828 gives this output:
10830 @smallexample
10831 __FUNCTION__ = sub
10832 __PRETTY_FUNCTION__ = void a::sub(int)
10833 @end smallexample
10835 These identifiers are variables, not preprocessor macros, and may not
10836 be used to initialize @code{char} arrays or be concatenated with string
10837 literals.
10839 @node Return Address
10840 @section Getting the Return or Frame Address of a Function
10842 These functions may be used to get information about the callers of a
10843 function.
10845 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
10846 This function returns the return address of the current function, or of
10847 one of its callers.  The @var{level} argument is number of frames to
10848 scan up the call stack.  A value of @code{0} yields the return address
10849 of the current function, a value of @code{1} yields the return address
10850 of the caller of the current function, and so forth.  When inlining
10851 the expected behavior is that the function returns the address of
10852 the function that is returned to.  To work around this behavior use
10853 the @code{noinline} function attribute.
10855 The @var{level} argument must be a constant integer.
10857 On some machines it may be impossible to determine the return address of
10858 any function other than the current one; in such cases, or when the top
10859 of the stack has been reached, this function returns @code{0} or a
10860 random value.  In addition, @code{__builtin_frame_address} may be used
10861 to determine if the top of the stack has been reached.
10863 Additional post-processing of the returned value may be needed, see
10864 @code{__builtin_extract_return_addr}.
10866 Calling this function with a nonzero argument can have unpredictable
10867 effects, including crashing the calling program.  As a result, calls
10868 that are considered unsafe are diagnosed when the @option{-Wframe-address}
10869 option is in effect.  Such calls should only be made in debugging
10870 situations.
10871 @end deftypefn
10873 @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
10874 The address as returned by @code{__builtin_return_address} may have to be fed
10875 through this function to get the actual encoded address.  For example, on the
10876 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
10877 platforms an offset has to be added for the true next instruction to be
10878 executed.
10880 If no fixup is needed, this function simply passes through @var{addr}.
10881 @end deftypefn
10883 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
10884 This function does the reverse of @code{__builtin_extract_return_addr}.
10885 @end deftypefn
10887 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
10888 This function is similar to @code{__builtin_return_address}, but it
10889 returns the address of the function frame rather than the return address
10890 of the function.  Calling @code{__builtin_frame_address} with a value of
10891 @code{0} yields the frame address of the current function, a value of
10892 @code{1} yields the frame address of the caller of the current function,
10893 and so forth.
10895 The frame is the area on the stack that holds local variables and saved
10896 registers.  The frame address is normally the address of the first word
10897 pushed on to the stack by the function.  However, the exact definition
10898 depends upon the processor and the calling convention.  If the processor
10899 has a dedicated frame pointer register, and the function has a frame,
10900 then @code{__builtin_frame_address} returns the value of the frame
10901 pointer register.
10903 On some machines it may be impossible to determine the frame address of
10904 any function other than the current one; in such cases, or when the top
10905 of the stack has been reached, this function returns @code{0} if
10906 the first frame pointer is properly initialized by the startup code.
10908 Calling this function with a nonzero argument can have unpredictable
10909 effects, including crashing the calling program.  As a result, calls
10910 that are considered unsafe are diagnosed when the @option{-Wframe-address}
10911 option is in effect.  Such calls should only be made in debugging
10912 situations.
10913 @end deftypefn
10915 @node Vector Extensions
10916 @section Using Vector Instructions through Built-in Functions
10918 On some targets, the instruction set contains SIMD vector instructions which
10919 operate on multiple values contained in one large register at the same time.
10920 For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used
10921 this way.
10923 The first step in using these extensions is to provide the necessary data
10924 types.  This should be done using an appropriate @code{typedef}:
10926 @smallexample
10927 typedef int v4si __attribute__ ((vector_size (16)));
10928 @end smallexample
10930 @noindent
10931 The @code{int} type specifies the @dfn{base type}, while the attribute specifies
10932 the vector size for the variable, measured in bytes.  For example, the
10933 declaration above causes the compiler to set the mode for the @code{v4si}
10934 type to be 16 bytes wide and divided into @code{int} sized units.  For
10935 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
10936 corresponding mode of @code{foo} is @acronym{V4SI}.
10938 The @code{vector_size} attribute is only applicable to integral and
10939 floating scalars, although arrays, pointers, and function return values
10940 are allowed in conjunction with this construct. Only sizes that are
10941 positive power-of-two multiples of the base type size are currently allowed.
10943 All the basic integer types can be used as base types, both as signed
10944 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
10945 @code{long long}.  In addition, @code{float} and @code{double} can be
10946 used to build floating-point vector types.
10948 Specifying a combination that is not valid for the current architecture
10949 causes GCC to synthesize the instructions using a narrower mode.
10950 For example, if you specify a variable of type @code{V4SI} and your
10951 architecture does not allow for this specific SIMD type, GCC
10952 produces code that uses 4 @code{SIs}.
10954 The types defined in this manner can be used with a subset of normal C
10955 operations.  Currently, GCC allows using the following operators
10956 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
10958 The operations behave like C++ @code{valarrays}.  Addition is defined as
10959 the addition of the corresponding elements of the operands.  For
10960 example, in the code below, each of the 4 elements in @var{a} is
10961 added to the corresponding 4 elements in @var{b} and the resulting
10962 vector is stored in @var{c}.
10964 @smallexample
10965 typedef int v4si __attribute__ ((vector_size (16)));
10967 v4si a, b, c;
10969 c = a + b;
10970 @end smallexample
10972 Subtraction, multiplication, division, and the logical operations
10973 operate in a similar manner.  Likewise, the result of using the unary
10974 minus or complement operators on a vector type is a vector whose
10975 elements are the negative or complemented values of the corresponding
10976 elements in the operand.
10978 It is possible to use shifting operators @code{<<}, @code{>>} on
10979 integer-type vectors. The operation is defined as following: @code{@{a0,
10980 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
10981 @dots{}, an >> bn@}}@. Vector operands must have the same number of
10982 elements. 
10984 For convenience, it is allowed to use a binary vector operation
10985 where one operand is a scalar. In that case the compiler transforms
10986 the scalar operand into a vector where each element is the scalar from
10987 the operation. The transformation happens only if the scalar could be
10988 safely converted to the vector-element type.
10989 Consider the following code.
10991 @smallexample
10992 typedef int v4si __attribute__ ((vector_size (16)));
10994 v4si a, b, c;
10995 long l;
10997 a = b + 1;    /* a = b + @{1,1,1,1@}; */
10998 a = 2 * b;    /* a = @{2,2,2,2@} * b; */
11000 a = l + a;    /* Error, cannot convert long to int. */
11001 @end smallexample
11003 Vectors can be subscripted as if the vector were an array with
11004 the same number of elements and base type.  Out of bound accesses
11005 invoke undefined behavior at run time.  Warnings for out of bound
11006 accesses for vector subscription can be enabled with
11007 @option{-Warray-bounds}.
11009 Vector comparison is supported with standard comparison
11010 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
11011 vector expressions of integer-type or real-type. Comparison between
11012 integer-type vectors and real-type vectors are not supported.  The
11013 result of the comparison is a vector of the same width and number of
11014 elements as the comparison operands with a signed integral element
11015 type.
11017 Vectors are compared element-wise producing 0 when comparison is false
11018 and -1 (constant of the appropriate type where all bits are set)
11019 otherwise. Consider the following example.
11021 @smallexample
11022 typedef int v4si __attribute__ ((vector_size (16)));
11024 v4si a = @{1,2,3,4@};
11025 v4si b = @{3,2,1,4@};
11026 v4si c;
11028 c = a >  b;     /* The result would be @{0, 0,-1, 0@}  */
11029 c = a == b;     /* The result would be @{0,-1, 0,-1@}  */
11030 @end smallexample
11032 In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
11033 @code{b} and @code{c} are vectors of the same type and @code{a} is an
11034 integer vector with the same number of elements of the same size as @code{b}
11035 and @code{c}, computes all three arguments and creates a vector
11036 @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}.  Note that unlike in
11037 OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
11038 As in the case of binary operations, this syntax is also accepted when
11039 one of @code{b} or @code{c} is a scalar that is then transformed into a
11040 vector. If both @code{b} and @code{c} are scalars and the type of
11041 @code{true?b:c} has the same size as the element type of @code{a}, then
11042 @code{b} and @code{c} are converted to a vector type whose elements have
11043 this type and with the same number of elements as @code{a}.
11045 In C++, the logic operators @code{!, &&, ||} are available for vectors.
11046 @code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to
11047 @code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}.
11048 For mixed operations between a scalar @code{s} and a vector @code{v},
11049 @code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is
11050 short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}.
11052 @findex __builtin_shuffle
11053 Vector shuffling is available using functions
11054 @code{__builtin_shuffle (vec, mask)} and
11055 @code{__builtin_shuffle (vec0, vec1, mask)}.
11056 Both functions construct a permutation of elements from one or two
11057 vectors and return a vector of the same type as the input vector(s).
11058 The @var{mask} is an integral vector with the same width (@var{W})
11059 and element count (@var{N}) as the output vector.
11061 The elements of the input vectors are numbered in memory ordering of
11062 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}.  The
11063 elements of @var{mask} are considered modulo @var{N} in the single-operand
11064 case and modulo @math{2*@var{N}} in the two-operand case.
11066 Consider the following example,
11068 @smallexample
11069 typedef int v4si __attribute__ ((vector_size (16)));
11071 v4si a = @{1,2,3,4@};
11072 v4si b = @{5,6,7,8@};
11073 v4si mask1 = @{0,1,1,3@};
11074 v4si mask2 = @{0,4,2,5@};
11075 v4si res;
11077 res = __builtin_shuffle (a, mask1);       /* res is @{1,2,2,4@}  */
11078 res = __builtin_shuffle (a, b, mask2);    /* res is @{1,5,3,6@}  */
11079 @end smallexample
11081 Note that @code{__builtin_shuffle} is intentionally semantically
11082 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
11084 You can declare variables and use them in function calls and returns, as
11085 well as in assignments and some casts.  You can specify a vector type as
11086 a return type for a function.  Vector types can also be used as function
11087 arguments.  It is possible to cast from one vector type to another,
11088 provided they are of the same size (in fact, you can also cast vectors
11089 to and from other datatypes of the same size).
11091 You cannot operate between vectors of different lengths or different
11092 signedness without a cast.
11094 @findex __builtin_convertvector
11095 Vector conversion is available using the
11096 @code{__builtin_convertvector (vec, vectype)}
11097 function.  @var{vec} must be an expression with integral or floating
11098 vector type and @var{vectype} an integral or floating vector type with the
11099 same number of elements.  The result has @var{vectype} type and value of
11100 a C cast of every element of @var{vec} to the element type of @var{vectype}.
11102 Consider the following example,
11103 @smallexample
11104 typedef int v4si __attribute__ ((vector_size (16)));
11105 typedef float v4sf __attribute__ ((vector_size (16)));
11106 typedef double v4df __attribute__ ((vector_size (32)));
11107 typedef unsigned long long v4di __attribute__ ((vector_size (32)));
11109 v4si a = @{1,-2,3,-4@};
11110 v4sf b = @{1.5f,-2.5f,3.f,7.f@};
11111 v4di c = @{1ULL,5ULL,0ULL,10ULL@};
11112 v4sf d = __builtin_convertvector (a, v4sf); /* d is @{1.f,-2.f,3.f,-4.f@} */
11113 /* Equivalent of:
11114    v4sf d = @{ (float)a[0], (float)a[1], (float)a[2], (float)a[3] @}; */
11115 v4df e = __builtin_convertvector (a, v4df); /* e is @{1.,-2.,3.,-4.@} */
11116 v4df f = __builtin_convertvector (b, v4df); /* f is @{1.5,-2.5,3.,7.@} */
11117 v4si g = __builtin_convertvector (f, v4si); /* g is @{1,-2,3,7@} */
11118 v4si h = __builtin_convertvector (c, v4si); /* h is @{1,5,0,10@} */
11119 @end smallexample
11121 @cindex vector types, using with x86 intrinsics
11122 Sometimes it is desirable to write code using a mix of generic vector
11123 operations (for clarity) and machine-specific vector intrinsics (to
11124 access vector instructions that are not exposed via generic built-ins).
11125 On x86, intrinsic functions for integer vectors typically use the same
11126 vector type @code{__m128i} irrespective of how they interpret the vector,
11127 making it necessary to cast their arguments and return values from/to
11128 other vector types.  In C, you can make use of a @code{union} type:
11129 @c In C++ such type punning via a union is not allowed by the language
11130 @smallexample
11131 #include <immintrin.h>
11133 typedef unsigned char u8x16 __attribute__ ((vector_size (16)));
11134 typedef unsigned int  u32x4 __attribute__ ((vector_size (16)));
11136 typedef union @{
11137         __m128i mm;
11138         u8x16   u8;
11139         u32x4   u32;
11140 @} v128;
11141 @end smallexample
11143 @noindent
11144 for variables that can be used with both built-in operators and x86
11145 intrinsics:
11147 @smallexample
11148 v128 x, y = @{ 0 @};
11149 memcpy (&x, ptr, sizeof x);
11150 y.u8  += 0x80;
11151 x.mm  = _mm_adds_epu8 (x.mm, y.mm);
11152 x.u32 &= 0xffffff;
11154 /* Instead of a variable, a compound literal may be used to pass the
11155    return value of an intrinsic call to a function expecting the union: */
11156 v128 foo (v128);
11157 x = foo ((v128) @{_mm_adds_epu8 (x.mm, y.mm)@});
11158 @c This could be done implicitly with __attribute__((transparent_union)),
11159 @c but GCC does not accept it for unions of vector types (PR 88955).
11160 @end smallexample
11162 @node Offsetof
11163 @section Support for @code{offsetof}
11164 @findex __builtin_offsetof
11166 GCC implements for both C and C++ a syntactic extension to implement
11167 the @code{offsetof} macro.
11169 @smallexample
11170 primary:
11171         "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
11173 offsetof_member_designator:
11174           @code{identifier}
11175         | offsetof_member_designator "." @code{identifier}
11176         | offsetof_member_designator "[" @code{expr} "]"
11177 @end smallexample
11179 This extension is sufficient such that
11181 @smallexample
11182 #define offsetof(@var{type}, @var{member})  __builtin_offsetof (@var{type}, @var{member})
11183 @end smallexample
11185 @noindent
11186 is a suitable definition of the @code{offsetof} macro.  In C++, @var{type}
11187 may be dependent.  In either case, @var{member} may consist of a single
11188 identifier, or a sequence of member accesses and array references.
11190 @node __sync Builtins
11191 @section Legacy @code{__sync} Built-in Functions for Atomic Memory Access
11193 The following built-in functions
11194 are intended to be compatible with those described
11195 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
11196 section 7.4.  As such, they depart from normal GCC practice by not using
11197 the @samp{__builtin_} prefix and also by being overloaded so that they
11198 work on multiple types.
11200 The definition given in the Intel documentation allows only for the use of
11201 the types @code{int}, @code{long}, @code{long long} or their unsigned
11202 counterparts.  GCC allows any scalar type that is 1, 2, 4 or 8 bytes in
11203 size other than the C type @code{_Bool} or the C++ type @code{bool}.
11204 Operations on pointer arguments are performed as if the operands were
11205 of the @code{uintptr_t} type.  That is, they are not scaled by the size
11206 of the type to which the pointer points.
11208 These functions are implemented in terms of the @samp{__atomic}
11209 builtins (@pxref{__atomic Builtins}).  They should not be used for new
11210 code which should use the @samp{__atomic} builtins instead.
11212 Not all operations are supported by all target processors.  If a particular
11213 operation cannot be implemented on the target processor, a warning is
11214 generated and a call to an external function is generated.  The external
11215 function carries the same name as the built-in version,
11216 with an additional suffix
11217 @samp{_@var{n}} where @var{n} is the size of the data type.
11219 @c ??? Should we have a mechanism to suppress this warning?  This is almost
11220 @c useful for implementing the operation under the control of an external
11221 @c mutex.
11223 In most cases, these built-in functions are considered a @dfn{full barrier}.
11224 That is,
11225 no memory operand is moved across the operation, either forward or
11226 backward.  Further, instructions are issued as necessary to prevent the
11227 processor from speculating loads across the operation and from queuing stores
11228 after the operation.
11230 All of the routines are described in the Intel documentation to take
11231 ``an optional list of variables protected by the memory barrier''.  It's
11232 not clear what is meant by that; it could mean that @emph{only} the
11233 listed variables are protected, or it could mean a list of additional
11234 variables to be protected.  The list is ignored by GCC which treats it as
11235 empty.  GCC interprets an empty list as meaning that all globally
11236 accessible variables should be protected.
11238 @table @code
11239 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
11240 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
11241 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
11242 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
11243 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
11244 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
11245 @findex __sync_fetch_and_add
11246 @findex __sync_fetch_and_sub
11247 @findex __sync_fetch_and_or
11248 @findex __sync_fetch_and_and
11249 @findex __sync_fetch_and_xor
11250 @findex __sync_fetch_and_nand
11251 These built-in functions perform the operation suggested by the name, and
11252 returns the value that had previously been in memory.  That is, operations
11253 on integer operands have the following semantics.  Operations on pointer
11254 arguments are performed as if the operands were of the @code{uintptr_t}
11255 type.  That is, they are not scaled by the size of the type to which
11256 the pointer points.
11258 @smallexample
11259 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
11260 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @}   // nand
11261 @end smallexample
11263 The object pointed to by the first argument must be of integer or pointer
11264 type.  It must not be a boolean type.
11266 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
11267 as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
11269 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
11270 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
11271 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
11272 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
11273 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
11274 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
11275 @findex __sync_add_and_fetch
11276 @findex __sync_sub_and_fetch
11277 @findex __sync_or_and_fetch
11278 @findex __sync_and_and_fetch
11279 @findex __sync_xor_and_fetch
11280 @findex __sync_nand_and_fetch
11281 These built-in functions perform the operation suggested by the name, and
11282 return the new value.  That is, operations on integer operands have
11283 the following semantics.  Operations on pointer operands are performed as
11284 if the operand's type were @code{uintptr_t}.
11286 @smallexample
11287 @{ *ptr @var{op}= value; return *ptr; @}
11288 @{ *ptr = ~(*ptr & value); return *ptr; @}   // nand
11289 @end smallexample
11291 The same constraints on arguments apply as for the corresponding
11292 @code{__sync_op_and_fetch} built-in functions.
11294 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
11295 as @code{*ptr = ~(*ptr & value)} instead of
11296 @code{*ptr = ~*ptr & value}.
11298 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
11299 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
11300 @findex __sync_bool_compare_and_swap
11301 @findex __sync_val_compare_and_swap
11302 These built-in functions perform an atomic compare and swap.
11303 That is, if the current
11304 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
11305 @code{*@var{ptr}}.
11307 The ``bool'' version returns @code{true} if the comparison is successful and
11308 @var{newval} is written.  The ``val'' version returns the contents
11309 of @code{*@var{ptr}} before the operation.
11311 @item __sync_synchronize (...)
11312 @findex __sync_synchronize
11313 This built-in function issues a full memory barrier.
11315 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
11316 @findex __sync_lock_test_and_set
11317 This built-in function, as described by Intel, is not a traditional test-and-set
11318 operation, but rather an atomic exchange operation.  It writes @var{value}
11319 into @code{*@var{ptr}}, and returns the previous contents of
11320 @code{*@var{ptr}}.
11322 Many targets have only minimal support for such locks, and do not support
11323 a full exchange operation.  In this case, a target may support reduced
11324 functionality here by which the @emph{only} valid value to store is the
11325 immediate constant 1.  The exact value actually stored in @code{*@var{ptr}}
11326 is implementation defined.
11328 This built-in function is not a full barrier,
11329 but rather an @dfn{acquire barrier}.
11330 This means that references after the operation cannot move to (or be
11331 speculated to) before the operation, but previous memory stores may not
11332 be globally visible yet, and previous memory loads may not yet be
11333 satisfied.
11335 @item void __sync_lock_release (@var{type} *ptr, ...)
11336 @findex __sync_lock_release
11337 This built-in function releases the lock acquired by
11338 @code{__sync_lock_test_and_set}.
11339 Normally this means writing the constant 0 to @code{*@var{ptr}}.
11341 This built-in function is not a full barrier,
11342 but rather a @dfn{release barrier}.
11343 This means that all previous memory stores are globally visible, and all
11344 previous memory loads have been satisfied, but following memory reads
11345 are not prevented from being speculated to before the barrier.
11346 @end table
11348 @node __atomic Builtins
11349 @section Built-in Functions for Memory Model Aware Atomic Operations
11351 The following built-in functions approximately match the requirements
11352 for the C++11 memory model.  They are all
11353 identified by being prefixed with @samp{__atomic} and most are
11354 overloaded so that they work with multiple types.
11356 These functions are intended to replace the legacy @samp{__sync}
11357 builtins.  The main difference is that the memory order that is requested
11358 is a parameter to the functions.  New code should always use the
11359 @samp{__atomic} builtins rather than the @samp{__sync} builtins.
11361 Note that the @samp{__atomic} builtins assume that programs will
11362 conform to the C++11 memory model.  In particular, they assume
11363 that programs are free of data races.  See the C++11 standard for
11364 detailed requirements.
11366 The @samp{__atomic} builtins can be used with any integral scalar or
11367 pointer type that is 1, 2, 4, or 8 bytes in length.  16-byte integral
11368 types are also allowed if @samp{__int128} (@pxref{__int128}) is
11369 supported by the architecture.
11371 The four non-arithmetic functions (load, store, exchange, and 
11372 compare_exchange) all have a generic version as well.  This generic
11373 version works on any data type.  It uses the lock-free built-in function
11374 if the specific data type size makes that possible; otherwise, an
11375 external call is left to be resolved at run time.  This external call is
11376 the same format with the addition of a @samp{size_t} parameter inserted
11377 as the first parameter indicating the size of the object being pointed to.
11378 All objects must be the same size.
11380 There are 6 different memory orders that can be specified.  These map
11381 to the C++11 memory orders with the same names, see the C++11 standard
11382 or the @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki
11383 on atomic synchronization} for detailed definitions.  Individual
11384 targets may also support additional memory orders for use on specific
11385 architectures.  Refer to the target documentation for details of
11386 these.
11388 An atomic operation can both constrain code motion and
11389 be mapped to hardware instructions for synchronization between threads
11390 (e.g., a fence).  To which extent this happens is controlled by the
11391 memory orders, which are listed here in approximately ascending order of
11392 strength.  The description of each memory order is only meant to roughly
11393 illustrate the effects and is not a specification; see the C++11
11394 memory model for precise semantics.
11396 @table  @code
11397 @item __ATOMIC_RELAXED
11398 Implies no inter-thread ordering constraints.
11399 @item __ATOMIC_CONSUME
11400 This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE}
11401 memory order because of a deficiency in C++11's semantics for
11402 @code{memory_order_consume}.
11403 @item __ATOMIC_ACQUIRE
11404 Creates an inter-thread happens-before constraint from the release (or
11405 stronger) semantic store to this acquire load.  Can prevent hoisting
11406 of code to before the operation.
11407 @item __ATOMIC_RELEASE
11408 Creates an inter-thread happens-before constraint to acquire (or stronger)
11409 semantic loads that read from this release store.  Can prevent sinking
11410 of code to after the operation.
11411 @item __ATOMIC_ACQ_REL
11412 Combines the effects of both @code{__ATOMIC_ACQUIRE} and
11413 @code{__ATOMIC_RELEASE}.
11414 @item __ATOMIC_SEQ_CST
11415 Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations.
11416 @end table
11418 Note that in the C++11 memory model, @emph{fences} (e.g.,
11419 @samp{__atomic_thread_fence}) take effect in combination with other
11420 atomic operations on specific memory locations (e.g., atomic loads);
11421 operations on specific memory locations do not necessarily affect other
11422 operations in the same way.
11424 Target architectures are encouraged to provide their own patterns for
11425 each of the atomic built-in functions.  If no target is provided, the original
11426 non-memory model set of @samp{__sync} atomic built-in functions are
11427 used, along with any required synchronization fences surrounding it in
11428 order to achieve the proper behavior.  Execution in this case is subject
11429 to the same restrictions as those built-in functions.
11431 If there is no pattern or mechanism to provide a lock-free instruction
11432 sequence, a call is made to an external routine with the same parameters
11433 to be resolved at run time.
11435 When implementing patterns for these built-in functions, the memory order
11436 parameter can be ignored as long as the pattern implements the most
11437 restrictive @code{__ATOMIC_SEQ_CST} memory order.  Any of the other memory
11438 orders execute correctly with this memory order but they may not execute as
11439 efficiently as they could with a more appropriate implementation of the
11440 relaxed requirements.
11442 Note that the C++11 standard allows for the memory order parameter to be
11443 determined at run time rather than at compile time.  These built-in
11444 functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
11445 than invoke a runtime library call or inline a switch statement.  This is
11446 standard compliant, safe, and the simplest approach for now.
11448 The memory order parameter is a signed int, but only the lower 16 bits are
11449 reserved for the memory order.  The remainder of the signed int is reserved
11450 for target use and should be 0.  Use of the predefined atomic values
11451 ensures proper usage.
11453 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder)
11454 This built-in function implements an atomic load operation.  It returns the
11455 contents of @code{*@var{ptr}}.
11457 The valid memory order variants are
11458 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
11459 and @code{__ATOMIC_CONSUME}.
11461 @end deftypefn
11463 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder)
11464 This is the generic version of an atomic load.  It returns the
11465 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
11467 @end deftypefn
11469 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder)
11470 This built-in function implements an atomic store operation.  It writes 
11471 @code{@var{val}} into @code{*@var{ptr}}.  
11473 The valid memory order variants are
11474 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
11476 @end deftypefn
11478 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder)
11479 This is the generic version of an atomic store.  It stores the value
11480 of @code{*@var{val}} into @code{*@var{ptr}}.
11482 @end deftypefn
11484 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder)
11485 This built-in function implements an atomic exchange operation.  It writes
11486 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
11487 @code{*@var{ptr}}.
11489 The valid memory order variants are
11490 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
11491 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
11493 @end deftypefn
11495 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder)
11496 This is the generic version of an atomic exchange.  It stores the
11497 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
11498 of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
11500 @end deftypefn
11502 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder)
11503 This built-in function implements an atomic compare and exchange operation.
11504 This compares the contents of @code{*@var{ptr}} with the contents of
11505 @code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write}
11506 operation that writes @var{desired} into @code{*@var{ptr}}.  If they are not
11507 equal, the operation is a @emph{read} and the current contents of
11508 @code{*@var{ptr}} are written into @code{*@var{expected}}.  @var{weak} is @code{true}
11509 for weak compare_exchange, which may fail spuriously, and @code{false} for
11510 the strong variation, which never fails spuriously.  Many targets
11511 only offer the strong variation and ignore the parameter.  When in doubt, use
11512 the strong variation.
11514 If @var{desired} is written into @code{*@var{ptr}} then @code{true} is returned
11515 and memory is affected according to the
11516 memory order specified by @var{success_memorder}.  There are no
11517 restrictions on what memory order can be used here.
11519 Otherwise, @code{false} is returned and memory is affected according
11520 to @var{failure_memorder}. This memory order cannot be
11521 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}.  It also cannot be a
11522 stronger order than that specified by @var{success_memorder}.
11524 @end deftypefn
11526 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder)
11527 This built-in function implements the generic version of
11528 @code{__atomic_compare_exchange}.  The function is virtually identical to
11529 @code{__atomic_compare_exchange_n}, except the desired value is also a
11530 pointer.
11532 @end deftypefn
11534 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder)
11535 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder)
11536 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder)
11537 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder)
11538 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder)
11539 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder)
11540 These built-in functions perform the operation suggested by the name, and
11541 return the result of the operation.  Operations on pointer arguments are
11542 performed as if the operands were of the @code{uintptr_t} type.  That is,
11543 they are not scaled by the size of the type to which the pointer points.
11545 @smallexample
11546 @{ *ptr @var{op}= val; return *ptr; @}
11547 @{ *ptr = ~(*ptr & val); return *ptr; @} // nand
11548 @end smallexample
11550 The object pointed to by the first argument must be of integer or pointer
11551 type.  It must not be a boolean type.  All memory orders are valid.
11553 @end deftypefn
11555 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder)
11556 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder)
11557 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder)
11558 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder)
11559 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder)
11560 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder)
11561 These built-in functions perform the operation suggested by the name, and
11562 return the value that had previously been in @code{*@var{ptr}}.  Operations
11563 on pointer arguments are performed as if the operands were of
11564 the @code{uintptr_t} type.  That is, they are not scaled by the size of
11565 the type to which the pointer points.
11567 @smallexample
11568 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
11569 @{ tmp = *ptr; *ptr = ~(*ptr & val); return tmp; @} // nand
11570 @end smallexample
11572 The same constraints on arguments apply as for the corresponding
11573 @code{__atomic_op_fetch} built-in functions.  All memory orders are valid.
11575 @end deftypefn
11577 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder)
11579 This built-in function performs an atomic test-and-set operation on
11580 the byte at @code{*@var{ptr}}.  The byte is set to some implementation
11581 defined nonzero ``set'' value and the return value is @code{true} if and only
11582 if the previous contents were ``set''.
11583 It should be only used for operands of type @code{bool} or @code{char}. For 
11584 other types only part of the value may be set.
11586 All memory orders are valid.
11588 @end deftypefn
11590 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder)
11592 This built-in function performs an atomic clear operation on
11593 @code{*@var{ptr}}.  After the operation, @code{*@var{ptr}} contains 0.
11594 It should be only used for operands of type @code{bool} or @code{char} and 
11595 in conjunction with @code{__atomic_test_and_set}.
11596 For other types it may only clear partially. If the type is not @code{bool}
11597 prefer using @code{__atomic_store}.
11599 The valid memory order variants are
11600 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
11601 @code{__ATOMIC_RELEASE}.
11603 @end deftypefn
11605 @deftypefn {Built-in Function} void __atomic_thread_fence (int memorder)
11607 This built-in function acts as a synchronization fence between threads
11608 based on the specified memory order.
11610 All memory orders are valid.
11612 @end deftypefn
11614 @deftypefn {Built-in Function} void __atomic_signal_fence (int memorder)
11616 This built-in function acts as a synchronization fence between a thread
11617 and signal handlers based in the same thread.
11619 All memory orders are valid.
11621 @end deftypefn
11623 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size,  void *ptr)
11625 This built-in function returns @code{true} if objects of @var{size} bytes always
11626 generate lock-free atomic instructions for the target architecture.
11627 @var{size} must resolve to a compile-time constant and the result also
11628 resolves to a compile-time constant.
11630 @var{ptr} is an optional pointer to the object that may be used to determine
11631 alignment.  A value of 0 indicates typical alignment should be used.  The 
11632 compiler may also ignore this parameter.
11634 @smallexample
11635 if (__atomic_always_lock_free (sizeof (long long), 0))
11636 @end smallexample
11638 @end deftypefn
11640 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
11642 This built-in function returns @code{true} if objects of @var{size} bytes always
11643 generate lock-free atomic instructions for the target architecture.  If
11644 the built-in function is not known to be lock-free, a call is made to a
11645 runtime routine named @code{__atomic_is_lock_free}.
11647 @var{ptr} is an optional pointer to the object that may be used to determine
11648 alignment.  A value of 0 indicates typical alignment should be used.  The 
11649 compiler may also ignore this parameter.
11650 @end deftypefn
11652 @node Integer Overflow Builtins
11653 @section Built-in Functions to Perform Arithmetic with Overflow Checking
11655 The following built-in functions allow performing simple arithmetic operations
11656 together with checking whether the operations overflowed.
11658 @deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
11659 @deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res)
11660 @deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res)
11661 @deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long long int *res)
11662 @deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res)
11663 @deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
11664 @deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
11666 These built-in functions promote the first two operands into infinite precision signed
11667 type and perform addition on those promoted operands.  The result is then
11668 cast to the type the third pointer argument points to and stored there.
11669 If the stored result is equal to the infinite precision result, the built-in
11670 functions return @code{false}, otherwise they return @code{true}.  As the addition is
11671 performed in infinite signed precision, these built-in functions have fully defined
11672 behavior for all argument values.
11674 The first built-in function allows arbitrary integral types for operands and
11675 the result type must be pointer to some integral type other than enumerated or
11676 boolean type, the rest of the built-in functions have explicit integer types.
11678 The compiler will attempt to use hardware instructions to implement
11679 these built-in functions where possible, like conditional jump on overflow
11680 after addition, conditional jump on carry etc.
11682 @end deftypefn
11684 @deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
11685 @deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res)
11686 @deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res)
11687 @deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long long int *res)
11688 @deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res)
11689 @deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
11690 @deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
11692 These built-in functions are similar to the add overflow checking built-in
11693 functions above, except they perform subtraction, subtract the second argument
11694 from the first one, instead of addition.
11696 @end deftypefn
11698 @deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
11699 @deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res)
11700 @deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res)
11701 @deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long long int *res)
11702 @deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res)
11703 @deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
11704 @deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
11706 These built-in functions are similar to the add overflow checking built-in
11707 functions above, except they perform multiplication, instead of addition.
11709 @end deftypefn
11711 The following built-in functions allow checking if simple arithmetic operation
11712 would overflow.
11714 @deftypefn {Built-in Function} bool __builtin_add_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
11715 @deftypefnx {Built-in Function} bool __builtin_sub_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
11716 @deftypefnx {Built-in Function} bool __builtin_mul_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
11718 These built-in functions are similar to @code{__builtin_add_overflow},
11719 @code{__builtin_sub_overflow}, or @code{__builtin_mul_overflow}, except that
11720 they don't store the result of the arithmetic operation anywhere and the
11721 last argument is not a pointer, but some expression with integral type other
11722 than enumerated or boolean type.
11724 The built-in functions promote the first two operands into infinite precision signed type
11725 and perform addition on those promoted operands. The result is then
11726 cast to the type of the third argument.  If the cast result is equal to the infinite
11727 precision result, the built-in functions return @code{false}, otherwise they return @code{true}.
11728 The value of the third argument is ignored, just the side effects in the third argument
11729 are evaluated, and no integral argument promotions are performed on the last argument.
11730 If the third argument is a bit-field, the type used for the result cast has the
11731 precision and signedness of the given bit-field, rather than precision and signedness
11732 of the underlying type.
11734 For example, the following macro can be used to portably check, at
11735 compile-time, whether or not adding two constant integers will overflow,
11736 and perform the addition only when it is known to be safe and not to trigger
11737 a @option{-Woverflow} warning.
11739 @smallexample
11740 #define INT_ADD_OVERFLOW_P(a, b) \
11741    __builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)
11743 enum @{
11744     A = INT_MAX, B = 3,
11745     C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B,
11746     D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0)
11748 @end smallexample
11750 The compiler will attempt to use hardware instructions to implement
11751 these built-in functions where possible, like conditional jump on overflow
11752 after addition, conditional jump on carry etc.
11754 @end deftypefn
11756 @node x86 specific memory model extensions for transactional memory
11757 @section x86-Specific Memory Model Extensions for Transactional Memory
11759 The x86 architecture supports additional memory ordering flags
11760 to mark critical sections for hardware lock elision. 
11761 These must be specified in addition to an existing memory order to
11762 atomic intrinsics.
11764 @table @code
11765 @item __ATOMIC_HLE_ACQUIRE
11766 Start lock elision on a lock variable.
11767 Memory order must be @code{__ATOMIC_ACQUIRE} or stronger.
11768 @item __ATOMIC_HLE_RELEASE
11769 End lock elision on a lock variable.
11770 Memory order must be @code{__ATOMIC_RELEASE} or stronger.
11771 @end table
11773 When a lock acquire fails, it is required for good performance to abort
11774 the transaction quickly. This can be done with a @code{_mm_pause}.
11776 @smallexample
11777 #include <immintrin.h> // For _mm_pause
11779 int lockvar;
11781 /* Acquire lock with lock elision */
11782 while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
11783     _mm_pause(); /* Abort failed transaction */
11785 /* Free lock with lock elision */
11786 __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
11787 @end smallexample
11789 @node Object Size Checking
11790 @section Object Size Checking Built-in Functions
11791 @findex __builtin_object_size
11792 @findex __builtin___memcpy_chk
11793 @findex __builtin___mempcpy_chk
11794 @findex __builtin___memmove_chk
11795 @findex __builtin___memset_chk
11796 @findex __builtin___strcpy_chk
11797 @findex __builtin___stpcpy_chk
11798 @findex __builtin___strncpy_chk
11799 @findex __builtin___strcat_chk
11800 @findex __builtin___strncat_chk
11801 @findex __builtin___sprintf_chk
11802 @findex __builtin___snprintf_chk
11803 @findex __builtin___vsprintf_chk
11804 @findex __builtin___vsnprintf_chk
11805 @findex __builtin___printf_chk
11806 @findex __builtin___vprintf_chk
11807 @findex __builtin___fprintf_chk
11808 @findex __builtin___vfprintf_chk
11810 GCC implements a limited buffer overflow protection mechanism that can
11811 prevent some buffer overflow attacks by determining the sizes of objects
11812 into which data is about to be written and preventing the writes when
11813 the size isn't sufficient.  The built-in functions described below yield
11814 the best results when used together and when optimization is enabled.
11815 For example, to detect object sizes across function boundaries or to
11816 follow pointer assignments through non-trivial control flow they rely
11817 on various optimization passes enabled with @option{-O2}.  However, to
11818 a limited extent, they can be used without optimization as well.
11820 @deftypefn {Built-in Function} {size_t} __builtin_object_size (const void * @var{ptr}, int @var{type})
11821 is a built-in construct that returns a constant number of bytes from
11822 @var{ptr} to the end of the object @var{ptr} pointer points to
11823 (if known at compile time).  To determine the sizes of dynamically allocated
11824 objects the function relies on the allocation functions called to obtain
11825 the storage to be declared with the @code{alloc_size} attribute (@pxref{Common
11826 Function Attributes}).  @code{__builtin_object_size} never evaluates
11827 its arguments for side effects.  If there are any side effects in them, it
11828 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
11829 for @var{type} 2 or 3.  If there are multiple objects @var{ptr} can
11830 point to and all of them are known at compile time, the returned number
11831 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
11832 0 and minimum if nonzero.  If it is not possible to determine which objects
11833 @var{ptr} points to at compile time, @code{__builtin_object_size} should
11834 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
11835 for @var{type} 2 or 3.
11837 @var{type} is an integer constant from 0 to 3.  If the least significant
11838 bit is clear, objects are whole variables, if it is set, a closest
11839 surrounding subobject is considered the object a pointer points to.
11840 The second bit determines if maximum or minimum of remaining bytes
11841 is computed.
11843 @smallexample
11844 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
11845 char *p = &var.buf1[1], *q = &var.b;
11847 /* Here the object p points to is var.  */
11848 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
11849 /* The subobject p points to is var.buf1.  */
11850 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
11851 /* The object q points to is var.  */
11852 assert (__builtin_object_size (q, 0)
11853         == (char *) (&var + 1) - (char *) &var.b);
11854 /* The subobject q points to is var.b.  */
11855 assert (__builtin_object_size (q, 1) == sizeof (var.b));
11856 @end smallexample
11857 @end deftypefn
11859 There are built-in functions added for many common string operation
11860 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
11861 built-in is provided.  This built-in has an additional last argument,
11862 which is the number of bytes remaining in the object the @var{dest}
11863 argument points to or @code{(size_t) -1} if the size is not known.
11865 The built-in functions are optimized into the normal string functions
11866 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
11867 it is known at compile time that the destination object will not
11868 be overflowed.  If the compiler can determine at compile time that the
11869 object will always be overflowed, it issues a warning.
11871 The intended use can be e.g.@:
11873 @smallexample
11874 #undef memcpy
11875 #define bos0(dest) __builtin_object_size (dest, 0)
11876 #define memcpy(dest, src, n) \
11877   __builtin___memcpy_chk (dest, src, n, bos0 (dest))
11879 char *volatile p;
11880 char buf[10];
11881 /* It is unknown what object p points to, so this is optimized
11882    into plain memcpy - no checking is possible.  */
11883 memcpy (p, "abcde", n);
11884 /* Destination is known and length too.  It is known at compile
11885    time there will be no overflow.  */
11886 memcpy (&buf[5], "abcde", 5);
11887 /* Destination is known, but the length is not known at compile time.
11888    This will result in __memcpy_chk call that can check for overflow
11889    at run time.  */
11890 memcpy (&buf[5], "abcde", n);
11891 /* Destination is known and it is known at compile time there will
11892    be overflow.  There will be a warning and __memcpy_chk call that
11893    will abort the program at run time.  */
11894 memcpy (&buf[6], "abcde", 5);
11895 @end smallexample
11897 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
11898 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
11899 @code{strcat} and @code{strncat}.
11901 There are also checking built-in functions for formatted output functions.
11902 @smallexample
11903 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
11904 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
11905                               const char *fmt, ...);
11906 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
11907                               va_list ap);
11908 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
11909                                const char *fmt, va_list ap);
11910 @end smallexample
11912 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
11913 etc.@: functions and can contain implementation specific flags on what
11914 additional security measures the checking function might take, such as
11915 handling @code{%n} differently.
11917 The @var{os} argument is the object size @var{s} points to, like in the
11918 other built-in functions.  There is a small difference in the behavior
11919 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
11920 optimized into the non-checking functions only if @var{flag} is 0, otherwise
11921 the checking function is called with @var{os} argument set to
11922 @code{(size_t) -1}.
11924 In addition to this, there are checking built-in functions
11925 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
11926 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
11927 These have just one additional argument, @var{flag}, right before
11928 format string @var{fmt}.  If the compiler is able to optimize them to
11929 @code{fputc} etc.@: functions, it does, otherwise the checking function
11930 is called and the @var{flag} argument passed to it.
11932 @node Other Builtins
11933 @section Other Built-in Functions Provided by GCC
11934 @cindex built-in functions
11935 @findex __builtin_alloca
11936 @findex __builtin_alloca_with_align
11937 @findex __builtin_alloca_with_align_and_max
11938 @findex __builtin_call_with_static_chain
11939 @findex __builtin_extend_pointer
11940 @findex __builtin_fpclassify
11941 @findex __builtin_has_attribute
11942 @findex __builtin_isfinite
11943 @findex __builtin_isnormal
11944 @findex __builtin_isgreater
11945 @findex __builtin_isgreaterequal
11946 @findex __builtin_isinf_sign
11947 @findex __builtin_isless
11948 @findex __builtin_islessequal
11949 @findex __builtin_islessgreater
11950 @findex __builtin_isunordered
11951 @findex __builtin_object_size
11952 @findex __builtin_powi
11953 @findex __builtin_powif
11954 @findex __builtin_powil
11955 @findex __builtin_speculation_safe_value
11956 @findex _Exit
11957 @findex _exit
11958 @findex abort
11959 @findex abs
11960 @findex acos
11961 @findex acosf
11962 @findex acosh
11963 @findex acoshf
11964 @findex acoshl
11965 @findex acosl
11966 @findex alloca
11967 @findex asin
11968 @findex asinf
11969 @findex asinh
11970 @findex asinhf
11971 @findex asinhl
11972 @findex asinl
11973 @findex atan
11974 @findex atan2
11975 @findex atan2f
11976 @findex atan2l
11977 @findex atanf
11978 @findex atanh
11979 @findex atanhf
11980 @findex atanhl
11981 @findex atanl
11982 @findex bcmp
11983 @findex bzero
11984 @findex cabs
11985 @findex cabsf
11986 @findex cabsl
11987 @findex cacos
11988 @findex cacosf
11989 @findex cacosh
11990 @findex cacoshf
11991 @findex cacoshl
11992 @findex cacosl
11993 @findex calloc
11994 @findex carg
11995 @findex cargf
11996 @findex cargl
11997 @findex casin
11998 @findex casinf
11999 @findex casinh
12000 @findex casinhf
12001 @findex casinhl
12002 @findex casinl
12003 @findex catan
12004 @findex catanf
12005 @findex catanh
12006 @findex catanhf
12007 @findex catanhl
12008 @findex catanl
12009 @findex cbrt
12010 @findex cbrtf
12011 @findex cbrtl
12012 @findex ccos
12013 @findex ccosf
12014 @findex ccosh
12015 @findex ccoshf
12016 @findex ccoshl
12017 @findex ccosl
12018 @findex ceil
12019 @findex ceilf
12020 @findex ceill
12021 @findex cexp
12022 @findex cexpf
12023 @findex cexpl
12024 @findex cimag
12025 @findex cimagf
12026 @findex cimagl
12027 @findex clog
12028 @findex clogf
12029 @findex clogl
12030 @findex clog10
12031 @findex clog10f
12032 @findex clog10l
12033 @findex conj
12034 @findex conjf
12035 @findex conjl
12036 @findex copysign
12037 @findex copysignf
12038 @findex copysignl
12039 @findex cos
12040 @findex cosf
12041 @findex cosh
12042 @findex coshf
12043 @findex coshl
12044 @findex cosl
12045 @findex cpow
12046 @findex cpowf
12047 @findex cpowl
12048 @findex cproj
12049 @findex cprojf
12050 @findex cprojl
12051 @findex creal
12052 @findex crealf
12053 @findex creall
12054 @findex csin
12055 @findex csinf
12056 @findex csinh
12057 @findex csinhf
12058 @findex csinhl
12059 @findex csinl
12060 @findex csqrt
12061 @findex csqrtf
12062 @findex csqrtl
12063 @findex ctan
12064 @findex ctanf
12065 @findex ctanh
12066 @findex ctanhf
12067 @findex ctanhl
12068 @findex ctanl
12069 @findex dcgettext
12070 @findex dgettext
12071 @findex drem
12072 @findex dremf
12073 @findex dreml
12074 @findex erf
12075 @findex erfc
12076 @findex erfcf
12077 @findex erfcl
12078 @findex erff
12079 @findex erfl
12080 @findex exit
12081 @findex exp
12082 @findex exp10
12083 @findex exp10f
12084 @findex exp10l
12085 @findex exp2
12086 @findex exp2f
12087 @findex exp2l
12088 @findex expf
12089 @findex expl
12090 @findex expm1
12091 @findex expm1f
12092 @findex expm1l
12093 @findex fabs
12094 @findex fabsf
12095 @findex fabsl
12096 @findex fdim
12097 @findex fdimf
12098 @findex fdiml
12099 @findex ffs
12100 @findex floor
12101 @findex floorf
12102 @findex floorl
12103 @findex fma
12104 @findex fmaf
12105 @findex fmal
12106 @findex fmax
12107 @findex fmaxf
12108 @findex fmaxl
12109 @findex fmin
12110 @findex fminf
12111 @findex fminl
12112 @findex fmod
12113 @findex fmodf
12114 @findex fmodl
12115 @findex fprintf
12116 @findex fprintf_unlocked
12117 @findex fputs
12118 @findex fputs_unlocked
12119 @findex frexp
12120 @findex frexpf
12121 @findex frexpl
12122 @findex fscanf
12123 @findex gamma
12124 @findex gammaf
12125 @findex gammal
12126 @findex gamma_r
12127 @findex gammaf_r
12128 @findex gammal_r
12129 @findex gettext
12130 @findex hypot
12131 @findex hypotf
12132 @findex hypotl
12133 @findex ilogb
12134 @findex ilogbf
12135 @findex ilogbl
12136 @findex imaxabs
12137 @findex index
12138 @findex isalnum
12139 @findex isalpha
12140 @findex isascii
12141 @findex isblank
12142 @findex iscntrl
12143 @findex isdigit
12144 @findex isgraph
12145 @findex islower
12146 @findex isprint
12147 @findex ispunct
12148 @findex isspace
12149 @findex isupper
12150 @findex iswalnum
12151 @findex iswalpha
12152 @findex iswblank
12153 @findex iswcntrl
12154 @findex iswdigit
12155 @findex iswgraph
12156 @findex iswlower
12157 @findex iswprint
12158 @findex iswpunct
12159 @findex iswspace
12160 @findex iswupper
12161 @findex iswxdigit
12162 @findex isxdigit
12163 @findex j0
12164 @findex j0f
12165 @findex j0l
12166 @findex j1
12167 @findex j1f
12168 @findex j1l
12169 @findex jn
12170 @findex jnf
12171 @findex jnl
12172 @findex labs
12173 @findex ldexp
12174 @findex ldexpf
12175 @findex ldexpl
12176 @findex lgamma
12177 @findex lgammaf
12178 @findex lgammal
12179 @findex lgamma_r
12180 @findex lgammaf_r
12181 @findex lgammal_r
12182 @findex llabs
12183 @findex llrint
12184 @findex llrintf
12185 @findex llrintl
12186 @findex llround
12187 @findex llroundf
12188 @findex llroundl
12189 @findex log
12190 @findex log10
12191 @findex log10f
12192 @findex log10l
12193 @findex log1p
12194 @findex log1pf
12195 @findex log1pl
12196 @findex log2
12197 @findex log2f
12198 @findex log2l
12199 @findex logb
12200 @findex logbf
12201 @findex logbl
12202 @findex logf
12203 @findex logl
12204 @findex lrint
12205 @findex lrintf
12206 @findex lrintl
12207 @findex lround
12208 @findex lroundf
12209 @findex lroundl
12210 @findex malloc
12211 @findex memchr
12212 @findex memcmp
12213 @findex memcpy
12214 @findex mempcpy
12215 @findex memset
12216 @findex modf
12217 @findex modff
12218 @findex modfl
12219 @findex nearbyint
12220 @findex nearbyintf
12221 @findex nearbyintl
12222 @findex nextafter
12223 @findex nextafterf
12224 @findex nextafterl
12225 @findex nexttoward
12226 @findex nexttowardf
12227 @findex nexttowardl
12228 @findex pow
12229 @findex pow10
12230 @findex pow10f
12231 @findex pow10l
12232 @findex powf
12233 @findex powl
12234 @findex printf
12235 @findex printf_unlocked
12236 @findex putchar
12237 @findex puts
12238 @findex remainder
12239 @findex remainderf
12240 @findex remainderl
12241 @findex remquo
12242 @findex remquof
12243 @findex remquol
12244 @findex rindex
12245 @findex rint
12246 @findex rintf
12247 @findex rintl
12248 @findex round
12249 @findex roundf
12250 @findex roundl
12251 @findex scalb
12252 @findex scalbf
12253 @findex scalbl
12254 @findex scalbln
12255 @findex scalblnf
12256 @findex scalblnf
12257 @findex scalbn
12258 @findex scalbnf
12259 @findex scanfnl
12260 @findex signbit
12261 @findex signbitf
12262 @findex signbitl
12263 @findex signbitd32
12264 @findex signbitd64
12265 @findex signbitd128
12266 @findex significand
12267 @findex significandf
12268 @findex significandl
12269 @findex sin
12270 @findex sincos
12271 @findex sincosf
12272 @findex sincosl
12273 @findex sinf
12274 @findex sinh
12275 @findex sinhf
12276 @findex sinhl
12277 @findex sinl
12278 @findex snprintf
12279 @findex sprintf
12280 @findex sqrt
12281 @findex sqrtf
12282 @findex sqrtl
12283 @findex sscanf
12284 @findex stpcpy
12285 @findex stpncpy
12286 @findex strcasecmp
12287 @findex strcat
12288 @findex strchr
12289 @findex strcmp
12290 @findex strcpy
12291 @findex strcspn
12292 @findex strdup
12293 @findex strfmon
12294 @findex strftime
12295 @findex strlen
12296 @findex strncasecmp
12297 @findex strncat
12298 @findex strncmp
12299 @findex strncpy
12300 @findex strndup
12301 @findex strnlen
12302 @findex strpbrk
12303 @findex strrchr
12304 @findex strspn
12305 @findex strstr
12306 @findex tan
12307 @findex tanf
12308 @findex tanh
12309 @findex tanhf
12310 @findex tanhl
12311 @findex tanl
12312 @findex tgamma
12313 @findex tgammaf
12314 @findex tgammal
12315 @findex toascii
12316 @findex tolower
12317 @findex toupper
12318 @findex towlower
12319 @findex towupper
12320 @findex trunc
12321 @findex truncf
12322 @findex truncl
12323 @findex vfprintf
12324 @findex vfscanf
12325 @findex vprintf
12326 @findex vscanf
12327 @findex vsnprintf
12328 @findex vsprintf
12329 @findex vsscanf
12330 @findex y0
12331 @findex y0f
12332 @findex y0l
12333 @findex y1
12334 @findex y1f
12335 @findex y1l
12336 @findex yn
12337 @findex ynf
12338 @findex ynl
12340 GCC provides a large number of built-in functions other than the ones
12341 mentioned above.  Some of these are for internal use in the processing
12342 of exceptions or variable-length argument lists and are not
12343 documented here because they may change from time to time; we do not
12344 recommend general use of these functions.
12346 The remaining functions are provided for optimization purposes.
12348 With the exception of built-ins that have library equivalents such as
12349 the standard C library functions discussed below, or that expand to
12350 library calls, GCC built-in functions are always expanded inline and
12351 thus do not have corresponding entry points and their address cannot
12352 be obtained.  Attempting to use them in an expression other than
12353 a function call results in a compile-time error.
12355 @opindex fno-builtin
12356 GCC includes built-in versions of many of the functions in the standard
12357 C library.  These functions come in two forms: one whose names start with
12358 the @code{__builtin_} prefix, and the other without.  Both forms have the
12359 same type (including prototype), the same address (when their address is
12360 taken), and the same meaning as the C library functions even if you specify
12361 the @option{-fno-builtin} option @pxref{C Dialect Options}).  Many of these
12362 functions are only optimized in certain cases; if they are not optimized in
12363 a particular case, a call to the library function is emitted.
12365 @opindex ansi
12366 @opindex std
12367 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
12368 @option{-std=c99} or @option{-std=c11}), the functions
12369 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
12370 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
12371 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
12372 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
12373 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
12374 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
12375 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
12376 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
12377 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
12378 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
12379 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
12380 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
12381 @code{signbitd64}, @code{signbitd128}, @code{significandf},
12382 @code{significandl}, @code{significand}, @code{sincosf},
12383 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
12384 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
12385 @code{strndup}, @code{strnlen}, @code{toascii}, @code{y0f}, @code{y0l},
12386 @code{y0}, @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
12387 @code{yn}
12388 may be handled as built-in functions.
12389 All these functions have corresponding versions
12390 prefixed with @code{__builtin_}, which may be used even in strict C90
12391 mode.
12393 The ISO C99 functions
12394 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
12395 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
12396 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
12397 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
12398 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
12399 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
12400 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
12401 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
12402 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
12403 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
12404 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
12405 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
12406 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
12407 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
12408 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
12409 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
12410 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
12411 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
12412 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
12413 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
12414 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
12415 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
12416 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
12417 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
12418 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
12419 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
12420 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
12421 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
12422 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
12423 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
12424 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
12425 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
12426 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
12427 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
12428 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
12429 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
12430 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
12431 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
12432 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
12433 are handled as built-in functions
12434 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
12436 There are also built-in versions of the ISO C99 functions
12437 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
12438 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
12439 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
12440 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
12441 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
12442 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
12443 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
12444 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
12445 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
12446 that are recognized in any mode since ISO C90 reserves these names for
12447 the purpose to which ISO C99 puts them.  All these functions have
12448 corresponding versions prefixed with @code{__builtin_}.
12450 There are also built-in functions @code{__builtin_fabsf@var{n}},
12451 @code{__builtin_fabsf@var{n}x}, @code{__builtin_copysignf@var{n}} and
12452 @code{__builtin_copysignf@var{n}x}, corresponding to the TS 18661-3
12453 functions @code{fabsf@var{n}}, @code{fabsf@var{n}x},
12454 @code{copysignf@var{n}} and @code{copysignf@var{n}x}, for supported
12455 types @code{_Float@var{n}} and @code{_Float@var{n}x}.
12457 There are also GNU extension functions @code{clog10}, @code{clog10f} and
12458 @code{clog10l} which names are reserved by ISO C99 for future use.
12459 All these functions have versions prefixed with @code{__builtin_}.
12461 The ISO C94 functions
12462 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
12463 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
12464 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
12465 @code{towupper}
12466 are handled as built-in functions
12467 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
12469 The ISO C90 functions
12470 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
12471 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
12472 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
12473 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
12474 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
12475 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
12476 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
12477 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
12478 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
12479 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
12480 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
12481 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
12482 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
12483 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
12484 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
12485 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
12486 are all recognized as built-in functions unless
12487 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
12488 is specified for an individual function).  All of these functions have
12489 corresponding versions prefixed with @code{__builtin_}.
12491 GCC provides built-in versions of the ISO C99 floating-point comparison
12492 macros that avoid raising exceptions for unordered operands.  They have
12493 the same names as the standard macros ( @code{isgreater},
12494 @code{isgreaterequal}, @code{isless}, @code{islessequal},
12495 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
12496 prefixed.  We intend for a library implementor to be able to simply
12497 @code{#define} each standard macro to its built-in equivalent.
12498 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
12499 @code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with
12500 @code{__builtin_} prefixed.  The @code{isinf} and @code{isnan}
12501 built-in functions appear both with and without the @code{__builtin_} prefix.
12503 @deftypefn {Built-in Function} void *__builtin_alloca (size_t size)
12504 The @code{__builtin_alloca} function must be called at block scope.
12505 The function allocates an object @var{size} bytes large on the stack
12506 of the calling function.  The object is aligned on the default stack
12507 alignment boundary for the target determined by the
12508 @code{__BIGGEST_ALIGNMENT__} macro.  The @code{__builtin_alloca}
12509 function returns a pointer to the first byte of the allocated object.
12510 The lifetime of the allocated object ends just before the calling
12511 function returns to its caller.   This is so even when
12512 @code{__builtin_alloca} is called within a nested block.
12514 For example, the following function allocates eight objects of @code{n}
12515 bytes each on the stack, storing a pointer to each in consecutive elements
12516 of the array @code{a}.  It then passes the array to function @code{g}
12517 which can safely use the storage pointed to by each of the array elements.
12519 @smallexample
12520 void f (unsigned n)
12522   void *a [8];
12523   for (int i = 0; i != 8; ++i)
12524     a [i] = __builtin_alloca (n);
12526   g (a, n);   // @r{safe}
12528 @end smallexample
12530 Since the @code{__builtin_alloca} function doesn't validate its argument
12531 it is the responsibility of its caller to make sure the argument doesn't
12532 cause it to exceed the stack size limit.
12533 The @code{__builtin_alloca} function is provided to make it possible to
12534 allocate on the stack arrays of bytes with an upper bound that may be
12535 computed at run time.  Since C99 Variable Length Arrays offer
12536 similar functionality under a portable, more convenient, and safer
12537 interface they are recommended instead, in both C99 and C++ programs
12538 where GCC provides them as an extension.
12539 @xref{Variable Length}, for details.
12541 @end deftypefn
12543 @deftypefn {Built-in Function} void *__builtin_alloca_with_align (size_t size, size_t alignment)
12544 The @code{__builtin_alloca_with_align} function must be called at block
12545 scope.  The function allocates an object @var{size} bytes large on
12546 the stack of the calling function.  The allocated object is aligned on
12547 the boundary specified by the argument @var{alignment} whose unit is given
12548 in bits (not bytes).  The @var{size} argument must be positive and not
12549 exceed the stack size limit.  The @var{alignment} argument must be a constant
12550 integer expression that evaluates to a power of 2 greater than or equal to
12551 @code{CHAR_BIT} and less than some unspecified maximum.  Invocations
12552 with other values are rejected with an error indicating the valid bounds.
12553 The function returns a pointer to the first byte of the allocated object.
12554 The lifetime of the allocated object ends at the end of the block in which
12555 the function was called.  The allocated storage is released no later than
12556 just before the calling function returns to its caller, but may be released
12557 at the end of the block in which the function was called.
12559 For example, in the following function the call to @code{g} is unsafe
12560 because when @code{overalign} is non-zero, the space allocated by
12561 @code{__builtin_alloca_with_align} may have been released at the end
12562 of the @code{if} statement in which it was called.
12564 @smallexample
12565 void f (unsigned n, bool overalign)
12567   void *p;
12568   if (overalign)
12569     p = __builtin_alloca_with_align (n, 64 /* bits */);
12570   else
12571     p = __builtin_alloc (n);
12573   g (p, n);   // @r{unsafe}
12575 @end smallexample
12577 Since the @code{__builtin_alloca_with_align} function doesn't validate its
12578 @var{size} argument it is the responsibility of its caller to make sure
12579 the argument doesn't cause it to exceed the stack size limit.
12580 The @code{__builtin_alloca_with_align} function is provided to make
12581 it possible to allocate on the stack overaligned arrays of bytes with
12582 an upper bound that may be computed at run time.  Since C99
12583 Variable Length Arrays offer the same functionality under
12584 a portable, more convenient, and safer interface they are recommended
12585 instead, in both C99 and C++ programs where GCC provides them as
12586 an extension.  @xref{Variable Length}, for details.
12588 @end deftypefn
12590 @deftypefn {Built-in Function} void *__builtin_alloca_with_align_and_max (size_t size, size_t alignment, size_t max_size)
12591 Similar to @code{__builtin_alloca_with_align} but takes an extra argument
12592 specifying an upper bound for @var{size} in case its value cannot be computed
12593 at compile time, for use by @option{-fstack-usage}, @option{-Wstack-usage}
12594 and @option{-Walloca-larger-than}.  @var{max_size} must be a constant integer
12595 expression, it has no effect on code generation and no attempt is made to
12596 check its compatibility with @var{size}.
12598 @end deftypefn
12600 @deftypefn {Built-in Function} bool __builtin_has_attribute (@var{type-or-expression}, @var{attribute})
12601 The @code{__builtin_has_attribute} function evaluates to an integer constant
12602 expression equal to @code{true} if the symbol or type referenced by
12603 the @var{type-or-expression} argument has been declared with
12604 the @var{attribute} referenced by the second argument.  Neither argument
12605 is evaluated.  The @var{type-or-expression} argument is subject to the same
12606 restrictions as the argument to @code{typeof} (@pxref{Typeof}).  The
12607 @var{attribute} argument is an attribute name optionally followed by
12608 a comma-separated list of arguments enclosed in parentheses.  Both forms
12609 of attribute names---with and without double leading and trailing
12610 underscores---are recognized.  @xref{Attribute Syntax}, for details.
12611 When no attribute arguments are specified for an attribute that expects
12612 one or more arguments the function returns @code{true} if
12613 @var{type-or-expression} has been declared with the attribute regardless
12614 of the attribute argument values.  Arguments provided for an attribute
12615 that expects some are validated and matched up to the provided number.
12616 The function returns @code{true} if all provided arguments match.  For
12617 example, the first call to the function below evaluates to @code{true}
12618 because @code{x} is declared with the @code{aligned} attribute but
12619 the second call evaluates to @code{false} because @code{x} is declared
12620 @code{aligned (8)} and not @code{aligned (4)}.
12622 @smallexample
12623 __attribute__ ((aligned (8))) int x;
12624 _Static_assert (__builtin_has_attribute (x, aligned), "aligned");
12625 _Static_assert (!__builtin_has_attribute (x, aligned (4)), "aligned (4)");
12626 @end smallexample
12628 Due to a limitation the @code{__builtin_has_attribute} function returns
12629 @code{false} for the @code{mode} attribute even if the type or variable
12630 referenced by the @var{type-or-expression} argument was declared with one.
12631 The function is also not supported with labels, and in C with enumerators.
12633 Note that unlike the @code{__has_attribute} preprocessor operator which
12634 is suitable for use in @code{#if} preprocessing directives
12635 @code{__builtin_has_attribute} is an intrinsic function that is not
12636 recognized in such contexts.
12638 @end deftypefn
12640 @deftypefn {Built-in Function} @var{type} __builtin_speculation_safe_value (@var{type} val, @var{type} failval)
12642 This built-in function can be used to help mitigate against unsafe
12643 speculative execution.  @var{type} may be any integral type or any
12644 pointer type.
12646 @enumerate
12647 @item
12648 If the CPU is not speculatively executing the code, then @var{val}
12649 is returned.
12650 @item
12651 If the CPU is executing speculatively then either:
12652 @itemize
12653 @item
12654 The function may cause execution to pause until it is known that the
12655 code is no-longer being executed speculatively (in which case
12656 @var{val} can be returned, as above); or
12657 @item
12658 The function may use target-dependent speculation tracking state to cause
12659 @var{failval} to be returned when it is known that speculative
12660 execution has incorrectly predicted a conditional branch operation.
12661 @end itemize
12662 @end enumerate
12664 The second argument, @var{failval}, is optional and defaults to zero
12665 if omitted.
12667 GCC defines the preprocessor macro
12668 @code{__HAVE_BUILTIN_SPECULATION_SAFE_VALUE} for targets that have been
12669 updated to support this builtin.
12671 The built-in function can be used where a variable appears to be used in a
12672 safe way, but the CPU, due to speculative execution may temporarily ignore
12673 the bounds checks.  Consider, for example, the following function:
12675 @smallexample
12676 int array[500];
12677 int f (unsigned untrusted_index)
12679   if (untrusted_index < 500)
12680     return array[untrusted_index];
12681   return 0;
12683 @end smallexample
12685 If the function is called repeatedly with @code{untrusted_index} less
12686 than the limit of 500, then a branch predictor will learn that the
12687 block of code that returns a value stored in @code{array} will be
12688 executed.  If the function is subsequently called with an
12689 out-of-range value it will still try to execute that block of code
12690 first until the CPU determines that the prediction was incorrect
12691 (the CPU will unwind any incorrect operations at that point).
12692 However, depending on how the result of the function is used, it might be
12693 possible to leave traces in the cache that can reveal what was stored
12694 at the out-of-bounds location.  The built-in function can be used to
12695 provide some protection against leaking data in this way by changing
12696 the code to:
12698 @smallexample
12699 int array[500];
12700 int f (unsigned untrusted_index)
12702   if (untrusted_index < 500)
12703     return array[__builtin_speculation_safe_value (untrusted_index)];
12704   return 0;
12706 @end smallexample
12708 The built-in function will either cause execution to stall until the
12709 conditional branch has been fully resolved, or it may permit
12710 speculative execution to continue, but using 0 instead of
12711 @code{untrusted_value} if that exceeds the limit.
12713 If accessing any memory location is potentially unsafe when speculative
12714 execution is incorrect, then the code can be rewritten as
12716 @smallexample
12717 int array[500];
12718 int f (unsigned untrusted_index)
12720   if (untrusted_index < 500)
12721     return *__builtin_speculation_safe_value (&array[untrusted_index], NULL);
12722   return 0;
12724 @end smallexample
12726 which will cause a @code{NULL} pointer to be used for the unsafe case.
12728 @end deftypefn
12730 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
12732 You can use the built-in function @code{__builtin_types_compatible_p} to
12733 determine whether two types are the same.
12735 This built-in function returns 1 if the unqualified versions of the
12736 types @var{type1} and @var{type2} (which are types, not expressions) are
12737 compatible, 0 otherwise.  The result of this built-in function can be
12738 used in integer constant expressions.
12740 This built-in function ignores top level qualifiers (e.g., @code{const},
12741 @code{volatile}).  For example, @code{int} is equivalent to @code{const
12742 int}.
12744 The type @code{int[]} and @code{int[5]} are compatible.  On the other
12745 hand, @code{int} and @code{char *} are not compatible, even if the size
12746 of their types, on the particular architecture are the same.  Also, the
12747 amount of pointer indirection is taken into account when determining
12748 similarity.  Consequently, @code{short *} is not similar to
12749 @code{short **}.  Furthermore, two types that are typedefed are
12750 considered compatible if their underlying types are compatible.
12752 An @code{enum} type is not considered to be compatible with another
12753 @code{enum} type even if both are compatible with the same integer
12754 type; this is what the C standard specifies.
12755 For example, @code{enum @{foo, bar@}} is not similar to
12756 @code{enum @{hot, dog@}}.
12758 You typically use this function in code whose execution varies
12759 depending on the arguments' types.  For example:
12761 @smallexample
12762 #define foo(x)                                                  \
12763   (@{                                                           \
12764     typeof (x) tmp = (x);                                       \
12765     if (__builtin_types_compatible_p (typeof (x), long double)) \
12766       tmp = foo_long_double (tmp);                              \
12767     else if (__builtin_types_compatible_p (typeof (x), double)) \
12768       tmp = foo_double (tmp);                                   \
12769     else if (__builtin_types_compatible_p (typeof (x), float))  \
12770       tmp = foo_float (tmp);                                    \
12771     else                                                        \
12772       abort ();                                                 \
12773     tmp;                                                        \
12774   @})
12775 @end smallexample
12777 @emph{Note:} This construct is only available for C@.
12779 @end deftypefn
12781 @deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp})
12783 The @var{call_exp} expression must be a function call, and the
12784 @var{pointer_exp} expression must be a pointer.  The @var{pointer_exp}
12785 is passed to the function call in the target's static chain location.
12786 The result of builtin is the result of the function call.
12788 @emph{Note:} This builtin is only available for C@.
12789 This builtin can be used to call Go closures from C.
12791 @end deftypefn
12793 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
12795 You can use the built-in function @code{__builtin_choose_expr} to
12796 evaluate code depending on the value of a constant expression.  This
12797 built-in function returns @var{exp1} if @var{const_exp}, which is an
12798 integer constant expression, is nonzero.  Otherwise it returns @var{exp2}.
12800 This built-in function is analogous to the @samp{? :} operator in C,
12801 except that the expression returned has its type unaltered by promotion
12802 rules.  Also, the built-in function does not evaluate the expression
12803 that is not chosen.  For example, if @var{const_exp} evaluates to @code{true},
12804 @var{exp2} is not evaluated even if it has side effects.
12806 This built-in function can return an lvalue if the chosen argument is an
12807 lvalue.
12809 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
12810 type.  Similarly, if @var{exp2} is returned, its return type is the same
12811 as @var{exp2}.
12813 Example:
12815 @smallexample
12816 #define foo(x)                                                    \
12817   __builtin_choose_expr (                                         \
12818     __builtin_types_compatible_p (typeof (x), double),            \
12819     foo_double (x),                                               \
12820     __builtin_choose_expr (                                       \
12821       __builtin_types_compatible_p (typeof (x), float),           \
12822       foo_float (x),                                              \
12823       /* @r{The void expression results in a compile-time error}  \
12824          @r{when assigning the result to something.}  */          \
12825       (void)0))
12826 @end smallexample
12828 @emph{Note:} This construct is only available for C@.  Furthermore, the
12829 unused expression (@var{exp1} or @var{exp2} depending on the value of
12830 @var{const_exp}) may still generate syntax errors.  This may change in
12831 future revisions.
12833 @end deftypefn
12835 @deftypefn {Built-in Function} @var{type} __builtin_tgmath (@var{functions}, @var{arguments})
12837 The built-in function @code{__builtin_tgmath}, available only for C
12838 and Objective-C, calls a function determined according to the rules of
12839 @code{<tgmath.h>} macros.  It is intended to be used in
12840 implementations of that header, so that expansions of macros from that
12841 header only expand each of their arguments once, to avoid problems
12842 when calls to such macros are nested inside the arguments of other
12843 calls to such macros; in addition, it results in better diagnostics
12844 for invalid calls to @code{<tgmath.h>} macros than implementations
12845 using other GNU C language features.  For example, the @code{pow}
12846 type-generic macro might be defined as:
12848 @smallexample
12849 #define pow(a, b) __builtin_tgmath (powf, pow, powl, \
12850                                     cpowf, cpow, cpowl, a, b)
12851 @end smallexample
12853 The arguments to @code{__builtin_tgmath} are at least two pointers to
12854 functions, followed by the arguments to the type-generic macro (which
12855 will be passed as arguments to the selected function).  All the
12856 pointers to functions must be pointers to prototyped functions, none
12857 of which may have variable arguments, and all of which must have the
12858 same number of parameters; the number of parameters of the first
12859 function determines how many arguments to @code{__builtin_tgmath} are
12860 interpreted as function pointers, and how many as the arguments to the
12861 called function.
12863 The types of the specified functions must all be different, but
12864 related to each other in the same way as a set of functions that may
12865 be selected between by a macro in @code{<tgmath.h>}.  This means that
12866 the functions are parameterized by a floating-point type @var{t},
12867 different for each such function.  The function return types may all
12868 be the same type, or they may be @var{t} for each function, or they
12869 may be the real type corresponding to @var{t} for each function (if
12870 some of the types @var{t} are complex).  Likewise, for each parameter
12871 position, the type of the parameter in that position may always be the
12872 same type, or may be @var{t} for each function (this case must apply
12873 for at least one parameter position), or may be the real type
12874 corresponding to @var{t} for each function.
12876 The standard rules for @code{<tgmath.h>} macros are used to find a
12877 common type @var{u} from the types of the arguments for parameters
12878 whose types vary between the functions; complex integer types (a GNU
12879 extension) are treated like @code{_Complex double} for this purpose
12880 (or @code{_Complex _Float64} if all the function return types are the
12881 same @code{_Float@var{n}} or @code{_Float@var{n}x} type).
12882 If the function return types vary, or are all the same integer type,
12883 the function called is the one for which @var{t} is @var{u}, and it is
12884 an error if there is no such function.  If the function return types
12885 are all the same floating-point type, the type-generic macro is taken
12886 to be one of those from TS 18661 that rounds the result to a narrower
12887 type; if there is a function for which @var{t} is @var{u}, it is
12888 called, and otherwise the first function, if any, for which @var{t}
12889 has at least the range and precision of @var{u} is called, and it is
12890 an error if there is no such function.
12892 @end deftypefn
12894 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
12896 The built-in function @code{__builtin_complex} is provided for use in
12897 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
12898 @code{CMPLXL}.  @var{real} and @var{imag} must have the same type, a
12899 real binary floating-point type, and the result has the corresponding
12900 complex type with real and imaginary parts @var{real} and @var{imag}.
12901 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
12902 infinities, NaNs and negative zeros are involved.
12904 @end deftypefn
12906 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
12907 You can use the built-in function @code{__builtin_constant_p} to
12908 determine if a value is known to be constant at compile time and hence
12909 that GCC can perform constant-folding on expressions involving that
12910 value.  The argument of the function is the value to test.  The function
12911 returns the integer 1 if the argument is known to be a compile-time
12912 constant and 0 if it is not known to be a compile-time constant.  A
12913 return of 0 does not indicate that the value is @emph{not} a constant,
12914 but merely that GCC cannot prove it is a constant with the specified
12915 value of the @option{-O} option.
12917 You typically use this function in an embedded application where
12918 memory is a critical resource.  If you have some complex calculation,
12919 you may want it to be folded if it involves constants, but need to call
12920 a function if it does not.  For example:
12922 @smallexample
12923 #define Scale_Value(X)      \
12924   (__builtin_constant_p (X) \
12925   ? ((X) * SCALE + OFFSET) : Scale (X))
12926 @end smallexample
12928 You may use this built-in function in either a macro or an inline
12929 function.  However, if you use it in an inlined function and pass an
12930 argument of the function as the argument to the built-in, GCC 
12931 never returns 1 when you call the inline function with a string constant
12932 or compound literal (@pxref{Compound Literals}) and does not return 1
12933 when you pass a constant numeric value to the inline function unless you
12934 specify the @option{-O} option.
12936 You may also use @code{__builtin_constant_p} in initializers for static
12937 data.  For instance, you can write
12939 @smallexample
12940 static const int table[] = @{
12941    __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
12942    /* @r{@dots{}} */
12944 @end smallexample
12946 @noindent
12947 This is an acceptable initializer even if @var{EXPRESSION} is not a
12948 constant expression, including the case where
12949 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
12950 folded to a constant but @var{EXPRESSION} contains operands that are
12951 not otherwise permitted in a static initializer (for example,
12952 @code{0 && foo ()}).  GCC must be more conservative about evaluating the
12953 built-in in this case, because it has no opportunity to perform
12954 optimization.
12955 @end deftypefn
12957 @deftypefn {Built-in Function} bool __builtin_is_constant_evaluated (void)
12958 The @code{__builtin_is_constant_evaluated} function is available only
12959 in C++.  The built-in is intended to be used by implementations of
12960 the @code{std::is_constant_evaluated} C++ function.  Programs should make
12961 use of the latter function rather than invoking the built-in directly.
12963 The main use case of the built-in is to determine whether a @code{constexpr}
12964 function is being called in a @code{constexpr} context.  A call to
12965 the function evaluates to a core constant expression with the value
12966 @code{true} if and only if it occurs within the evaluation of an expression
12967 or conversion that is manifestly constant-evaluated as defined in the C++
12968 standard.  Manifestly constant-evaluated contexts include constant-expressions,
12969 the conditions of @code{constexpr if} statements, constraint-expressions, and
12970 initializers of variables usable in constant expressions.   For more details
12971 refer to the latest revision of the C++ standard.
12972 @end deftypefn
12974 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
12975 @opindex fprofile-arcs
12976 You may use @code{__builtin_expect} to provide the compiler with
12977 branch prediction information.  In general, you should prefer to
12978 use actual profile feedback for this (@option{-fprofile-arcs}), as
12979 programmers are notoriously bad at predicting how their programs
12980 actually perform.  However, there are applications in which this
12981 data is hard to collect.
12983 The return value is the value of @var{exp}, which should be an integral
12984 expression.  The semantics of the built-in are that it is expected that
12985 @var{exp} == @var{c}.  For example:
12987 @smallexample
12988 if (__builtin_expect (x, 0))
12989   foo ();
12990 @end smallexample
12992 @noindent
12993 indicates that we do not expect to call @code{foo}, since
12994 we expect @code{x} to be zero.  Since you are limited to integral
12995 expressions for @var{exp}, you should use constructions such as
12997 @smallexample
12998 if (__builtin_expect (ptr != NULL, 1))
12999   foo (*ptr);
13000 @end smallexample
13002 @noindent
13003 when testing pointer or floating-point values.
13005 For the purposes of branch prediction optimizations, the probability that
13006 a @code{__builtin_expect} expression is @code{true} is controlled by GCC's
13007 @code{builtin-expect-probability} parameter, which defaults to 90%.  
13008 You can also use @code{__builtin_expect_with_probability} to explicitly 
13009 assign a probability value to individual expressions.
13010 @end deftypefn
13012 @deftypefn {Built-in Function} long __builtin_expect_with_probability
13013 (long @var{exp}, long @var{c}, double @var{probability})
13015 This function has the same semantics as @code{__builtin_expect},
13016 but the caller provides the expected probability that @var{exp} == @var{c}.
13017 The last argument, @var{probability}, is a floating-point value in the
13018 range 0.0 to 1.0, inclusive.  The @var{probability} argument must be
13019 constant floating-point expression.
13020 @end deftypefn
13022 @deftypefn {Built-in Function} void __builtin_trap (void)
13023 This function causes the program to exit abnormally.  GCC implements
13024 this function by using a target-dependent mechanism (such as
13025 intentionally executing an illegal instruction) or by calling
13026 @code{abort}.  The mechanism used may vary from release to release so
13027 you should not rely on any particular implementation.
13028 @end deftypefn
13030 @deftypefn {Built-in Function} void __builtin_unreachable (void)
13031 If control flow reaches the point of the @code{__builtin_unreachable},
13032 the program is undefined.  It is useful in situations where the
13033 compiler cannot deduce the unreachability of the code.
13035 One such case is immediately following an @code{asm} statement that
13036 either never terminates, or one that transfers control elsewhere
13037 and never returns.  In this example, without the
13038 @code{__builtin_unreachable}, GCC issues a warning that control
13039 reaches the end of a non-void function.  It also generates code
13040 to return after the @code{asm}.
13042 @smallexample
13043 int f (int c, int v)
13045   if (c)
13046     @{
13047       return v;
13048     @}
13049   else
13050     @{
13051       asm("jmp error_handler");
13052       __builtin_unreachable ();
13053     @}
13055 @end smallexample
13057 @noindent
13058 Because the @code{asm} statement unconditionally transfers control out
13059 of the function, control never reaches the end of the function
13060 body.  The @code{__builtin_unreachable} is in fact unreachable and
13061 communicates this fact to the compiler.
13063 Another use for @code{__builtin_unreachable} is following a call a
13064 function that never returns but that is not declared
13065 @code{__attribute__((noreturn))}, as in this example:
13067 @smallexample
13068 void function_that_never_returns (void);
13070 int g (int c)
13072   if (c)
13073     @{
13074       return 1;
13075     @}
13076   else
13077     @{
13078       function_that_never_returns ();
13079       __builtin_unreachable ();
13080     @}
13082 @end smallexample
13084 @end deftypefn
13086 @deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
13087 This function returns its first argument, and allows the compiler
13088 to assume that the returned pointer is at least @var{align} bytes
13089 aligned.  This built-in can have either two or three arguments,
13090 if it has three, the third argument should have integer type, and
13091 if it is nonzero means misalignment offset.  For example:
13093 @smallexample
13094 void *x = __builtin_assume_aligned (arg, 16);
13095 @end smallexample
13097 @noindent
13098 means that the compiler can assume @code{x}, set to @code{arg}, is at least
13099 16-byte aligned, while:
13101 @smallexample
13102 void *x = __builtin_assume_aligned (arg, 32, 8);
13103 @end smallexample
13105 @noindent
13106 means that the compiler can assume for @code{x}, set to @code{arg}, that
13107 @code{(char *) x - 8} is 32-byte aligned.
13108 @end deftypefn
13110 @deftypefn {Built-in Function} int __builtin_LINE ()
13111 This function is the equivalent of the preprocessor @code{__LINE__}
13112 macro and returns a constant integer expression that evaluates to
13113 the line number of the invocation of the built-in.  When used as a C++
13114 default argument for a function @var{F}, it returns the line number
13115 of the call to @var{F}.
13116 @end deftypefn
13118 @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
13119 This function is the equivalent of the @code{__FUNCTION__} symbol
13120 and returns an address constant pointing to the name of the function
13121 from which the built-in was invoked, or the empty string if
13122 the invocation is not at function scope.  When used as a C++ default
13123 argument for a function @var{F}, it returns the name of @var{F}'s
13124 caller or the empty string if the call was not made at function
13125 scope.
13126 @end deftypefn
13128 @deftypefn {Built-in Function} {const char *} __builtin_FILE ()
13129 This function is the equivalent of the preprocessor @code{__FILE__}
13130 macro and returns an address constant pointing to the file name
13131 containing the invocation of the built-in, or the empty string if
13132 the invocation is not at function scope.  When used as a C++ default
13133 argument for a function @var{F}, it returns the file name of the call
13134 to @var{F} or the empty string if the call was not made at function
13135 scope.
13137 For example, in the following, each call to function @code{foo} will
13138 print a line similar to @code{"file.c:123: foo: message"} with the name
13139 of the file and the line number of the @code{printf} call, the name of
13140 the function @code{foo}, followed by the word @code{message}.
13142 @smallexample
13143 const char*
13144 function (const char *func = __builtin_FUNCTION ())
13146   return func;
13149 void foo (void)
13151   printf ("%s:%i: %s: message\n", file (), line (), function ());
13153 @end smallexample
13155 @end deftypefn
13157 @deftypefn {Built-in Function} void __builtin___clear_cache (void *@var{begin}, void *@var{end})
13158 This function is used to flush the processor's instruction cache for
13159 the region of memory between @var{begin} inclusive and @var{end}
13160 exclusive.  Some targets require that the instruction cache be
13161 flushed, after modifying memory containing code, in order to obtain
13162 deterministic behavior.
13164 If the target does not require instruction cache flushes,
13165 @code{__builtin___clear_cache} has no effect.  Otherwise either
13166 instructions are emitted in-line to clear the instruction cache or a
13167 call to the @code{__clear_cache} function in libgcc is made.
13168 @end deftypefn
13170 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
13171 This function is used to minimize cache-miss latency by moving data into
13172 a cache before it is accessed.
13173 You can insert calls to @code{__builtin_prefetch} into code for which
13174 you know addresses of data in memory that is likely to be accessed soon.
13175 If the target supports them, data prefetch instructions are generated.
13176 If the prefetch is done early enough before the access then the data will
13177 be in the cache by the time it is accessed.
13179 The value of @var{addr} is the address of the memory to prefetch.
13180 There are two optional arguments, @var{rw} and @var{locality}.
13181 The value of @var{rw} is a compile-time constant one or zero; one
13182 means that the prefetch is preparing for a write to the memory address
13183 and zero, the default, means that the prefetch is preparing for a read.
13184 The value @var{locality} must be a compile-time constant integer between
13185 zero and three.  A value of zero means that the data has no temporal
13186 locality, so it need not be left in the cache after the access.  A value
13187 of three means that the data has a high degree of temporal locality and
13188 should be left in all levels of cache possible.  Values of one and two
13189 mean, respectively, a low or moderate degree of temporal locality.  The
13190 default is three.
13192 @smallexample
13193 for (i = 0; i < n; i++)
13194   @{
13195     a[i] = a[i] + b[i];
13196     __builtin_prefetch (&a[i+j], 1, 1);
13197     __builtin_prefetch (&b[i+j], 0, 1);
13198     /* @r{@dots{}} */
13199   @}
13200 @end smallexample
13202 Data prefetch does not generate faults if @var{addr} is invalid, but
13203 the address expression itself must be valid.  For example, a prefetch
13204 of @code{p->next} does not fault if @code{p->next} is not a valid
13205 address, but evaluation faults if @code{p} is not a valid address.
13207 If the target does not support data prefetch, the address expression
13208 is evaluated if it includes side effects but no other code is generated
13209 and GCC does not issue a warning.
13210 @end deftypefn
13212 @deftypefn {Built-in Function}{size_t} __builtin_object_size (const void * @var{ptr}, int @var{type})
13213 Returns the size of an object pointed to by @var{ptr}.  @xref{Object Size
13214 Checking}, for a detailed description of the function.
13215 @end deftypefn
13217 @deftypefn {Built-in Function} double __builtin_huge_val (void)
13218 Returns a positive infinity, if supported by the floating-point format,
13219 else @code{DBL_MAX}.  This function is suitable for implementing the
13220 ISO C macro @code{HUGE_VAL}.
13221 @end deftypefn
13223 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
13224 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
13225 @end deftypefn
13227 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
13228 Similar to @code{__builtin_huge_val}, except the return
13229 type is @code{long double}.
13230 @end deftypefn
13232 @deftypefn {Built-in Function} _Float@var{n} __builtin_huge_valf@var{n} (void)
13233 Similar to @code{__builtin_huge_val}, except the return type is
13234 @code{_Float@var{n}}.
13235 @end deftypefn
13237 @deftypefn {Built-in Function} _Float@var{n}x __builtin_huge_valf@var{n}x (void)
13238 Similar to @code{__builtin_huge_val}, except the return type is
13239 @code{_Float@var{n}x}.
13240 @end deftypefn
13242 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
13243 This built-in implements the C99 fpclassify functionality.  The first
13244 five int arguments should be the target library's notion of the
13245 possible FP classes and are used for return values.  They must be
13246 constant values and they must appear in this order: @code{FP_NAN},
13247 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
13248 @code{FP_ZERO}.  The ellipsis is for exactly one floating-point value
13249 to classify.  GCC treats the last argument as type-generic, which
13250 means it does not do default promotion from float to double.
13251 @end deftypefn
13253 @deftypefn {Built-in Function} double __builtin_inf (void)
13254 Similar to @code{__builtin_huge_val}, except a warning is generated
13255 if the target floating-point format does not support infinities.
13256 @end deftypefn
13258 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
13259 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
13260 @end deftypefn
13262 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
13263 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
13264 @end deftypefn
13266 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
13267 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
13268 @end deftypefn
13270 @deftypefn {Built-in Function} float __builtin_inff (void)
13271 Similar to @code{__builtin_inf}, except the return type is @code{float}.
13272 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
13273 @end deftypefn
13275 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
13276 Similar to @code{__builtin_inf}, except the return
13277 type is @code{long double}.
13278 @end deftypefn
13280 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n} (void)
13281 Similar to @code{__builtin_inf}, except the return
13282 type is @code{_Float@var{n}}.
13283 @end deftypefn
13285 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n}x (void)
13286 Similar to @code{__builtin_inf}, except the return
13287 type is @code{_Float@var{n}x}.
13288 @end deftypefn
13290 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
13291 Similar to @code{isinf}, except the return value is -1 for
13292 an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
13293 Note while the parameter list is an
13294 ellipsis, this function only accepts exactly one floating-point
13295 argument.  GCC treats this parameter as type-generic, which means it
13296 does not do default promotion from float to double.
13297 @end deftypefn
13299 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
13300 This is an implementation of the ISO C99 function @code{nan}.
13302 Since ISO C99 defines this function in terms of @code{strtod}, which we
13303 do not implement, a description of the parsing is in order.  The string
13304 is parsed as by @code{strtol}; that is, the base is recognized by
13305 leading @samp{0} or @samp{0x} prefixes.  The number parsed is placed
13306 in the significand such that the least significant bit of the number
13307 is at the least significant bit of the significand.  The number is
13308 truncated to fit the significand field provided.  The significand is
13309 forced to be a quiet NaN@.
13311 This function, if given a string literal all of which would have been
13312 consumed by @code{strtol}, is evaluated early enough that it is considered a
13313 compile-time constant.
13314 @end deftypefn
13316 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
13317 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
13318 @end deftypefn
13320 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
13321 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
13322 @end deftypefn
13324 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
13325 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
13326 @end deftypefn
13328 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
13329 Similar to @code{__builtin_nan}, except the return type is @code{float}.
13330 @end deftypefn
13332 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
13333 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
13334 @end deftypefn
13336 @deftypefn {Built-in Function} _Float@var{n} __builtin_nanf@var{n} (const char *str)
13337 Similar to @code{__builtin_nan}, except the return type is
13338 @code{_Float@var{n}}.
13339 @end deftypefn
13341 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nanf@var{n}x (const char *str)
13342 Similar to @code{__builtin_nan}, except the return type is
13343 @code{_Float@var{n}x}.
13344 @end deftypefn
13346 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
13347 Similar to @code{__builtin_nan}, except the significand is forced
13348 to be a signaling NaN@.  The @code{nans} function is proposed by
13349 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
13350 @end deftypefn
13352 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
13353 Similar to @code{__builtin_nans}, except the return type is @code{float}.
13354 @end deftypefn
13356 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
13357 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
13358 @end deftypefn
13360 @deftypefn {Built-in Function} _Float@var{n} __builtin_nansf@var{n} (const char *str)
13361 Similar to @code{__builtin_nans}, except the return type is
13362 @code{_Float@var{n}}.
13363 @end deftypefn
13365 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nansf@var{n}x (const char *str)
13366 Similar to @code{__builtin_nans}, except the return type is
13367 @code{_Float@var{n}x}.
13368 @end deftypefn
13370 @deftypefn {Built-in Function} int __builtin_ffs (int x)
13371 Returns one plus the index of the least significant 1-bit of @var{x}, or
13372 if @var{x} is zero, returns zero.
13373 @end deftypefn
13375 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
13376 Returns the number of leading 0-bits in @var{x}, starting at the most
13377 significant bit position.  If @var{x} is 0, the result is undefined.
13378 @end deftypefn
13380 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
13381 Returns the number of trailing 0-bits in @var{x}, starting at the least
13382 significant bit position.  If @var{x} is 0, the result is undefined.
13383 @end deftypefn
13385 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
13386 Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
13387 number of bits following the most significant bit that are identical
13388 to it.  There are no special cases for 0 or other values. 
13389 @end deftypefn
13391 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
13392 Returns the number of 1-bits in @var{x}.
13393 @end deftypefn
13395 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
13396 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
13397 modulo 2.
13398 @end deftypefn
13400 @deftypefn {Built-in Function} int __builtin_ffsl (long)
13401 Similar to @code{__builtin_ffs}, except the argument type is
13402 @code{long}.
13403 @end deftypefn
13405 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
13406 Similar to @code{__builtin_clz}, except the argument type is
13407 @code{unsigned long}.
13408 @end deftypefn
13410 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
13411 Similar to @code{__builtin_ctz}, except the argument type is
13412 @code{unsigned long}.
13413 @end deftypefn
13415 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
13416 Similar to @code{__builtin_clrsb}, except the argument type is
13417 @code{long}.
13418 @end deftypefn
13420 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
13421 Similar to @code{__builtin_popcount}, except the argument type is
13422 @code{unsigned long}.
13423 @end deftypefn
13425 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
13426 Similar to @code{__builtin_parity}, except the argument type is
13427 @code{unsigned long}.
13428 @end deftypefn
13430 @deftypefn {Built-in Function} int __builtin_ffsll (long long)
13431 Similar to @code{__builtin_ffs}, except the argument type is
13432 @code{long long}.
13433 @end deftypefn
13435 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
13436 Similar to @code{__builtin_clz}, except the argument type is
13437 @code{unsigned long long}.
13438 @end deftypefn
13440 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
13441 Similar to @code{__builtin_ctz}, except the argument type is
13442 @code{unsigned long long}.
13443 @end deftypefn
13445 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
13446 Similar to @code{__builtin_clrsb}, except the argument type is
13447 @code{long long}.
13448 @end deftypefn
13450 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
13451 Similar to @code{__builtin_popcount}, except the argument type is
13452 @code{unsigned long long}.
13453 @end deftypefn
13455 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
13456 Similar to @code{__builtin_parity}, except the argument type is
13457 @code{unsigned long long}.
13458 @end deftypefn
13460 @deftypefn {Built-in Function} double __builtin_powi (double, int)
13461 Returns the first argument raised to the power of the second.  Unlike the
13462 @code{pow} function no guarantees about precision and rounding are made.
13463 @end deftypefn
13465 @deftypefn {Built-in Function} float __builtin_powif (float, int)
13466 Similar to @code{__builtin_powi}, except the argument and return types
13467 are @code{float}.
13468 @end deftypefn
13470 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
13471 Similar to @code{__builtin_powi}, except the argument and return types
13472 are @code{long double}.
13473 @end deftypefn
13475 @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
13476 Returns @var{x} with the order of the bytes reversed; for example,
13477 @code{0xaabb} becomes @code{0xbbaa}.  Byte here always means
13478 exactly 8 bits.
13479 @end deftypefn
13481 @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
13482 Similar to @code{__builtin_bswap16}, except the argument and return types
13483 are 32 bit.
13484 @end deftypefn
13486 @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
13487 Similar to @code{__builtin_bswap32}, except the argument and return types
13488 are 64 bit.
13489 @end deftypefn
13491 @deftypefn {Built-in Function} Pmode __builtin_extend_pointer (void * x)
13492 On targets where the user visible pointer size is smaller than the size
13493 of an actual hardware address this function returns the extended user
13494 pointer.  Targets where this is true included ILP32 mode on x86_64 or
13495 Aarch64.  This function is mainly useful when writing inline assembly
13496 code.
13497 @end deftypefn
13499 @deftypefn {Built-in Function} int __builtin_goacc_parlevel_id (int x)
13500 Returns the openacc gang, worker or vector id depending on whether @var{x} is
13501 0, 1 or 2.
13502 @end deftypefn
13504 @deftypefn {Built-in Function} int __builtin_goacc_parlevel_size (int x)
13505 Returns the openacc gang, worker or vector size depending on whether @var{x} is
13506 0, 1 or 2.
13507 @end deftypefn
13509 @node Target Builtins
13510 @section Built-in Functions Specific to Particular Target Machines
13512 On some target machines, GCC supports many built-in functions specific
13513 to those machines.  Generally these generate calls to specific machine
13514 instructions, but allow the compiler to schedule those calls.
13516 @menu
13517 * AArch64 Built-in Functions::
13518 * Alpha Built-in Functions::
13519 * Altera Nios II Built-in Functions::
13520 * ARC Built-in Functions::
13521 * ARC SIMD Built-in Functions::
13522 * ARM iWMMXt Built-in Functions::
13523 * ARM C Language Extensions (ACLE)::
13524 * ARM Floating Point Status and Control Intrinsics::
13525 * ARM ARMv8-M Security Extensions::
13526 * AVR Built-in Functions::
13527 * Blackfin Built-in Functions::
13528 * FR-V Built-in Functions::
13529 * MIPS DSP Built-in Functions::
13530 * MIPS Paired-Single Support::
13531 * MIPS Loongson Built-in Functions::
13532 * MIPS SIMD Architecture (MSA) Support::
13533 * Other MIPS Built-in Functions::
13534 * MSP430 Built-in Functions::
13535 * NDS32 Built-in Functions::
13536 * picoChip Built-in Functions::
13537 * Basic PowerPC Built-in Functions::
13538 * PowerPC AltiVec/VSX Built-in Functions::
13539 * PowerPC Hardware Transactional Memory Built-in Functions::
13540 * PowerPC Atomic Memory Operation Functions::
13541 * RX Built-in Functions::
13542 * S/390 System z Built-in Functions::
13543 * SH Built-in Functions::
13544 * SPARC VIS Built-in Functions::
13545 * SPU Built-in Functions::
13546 * TI C6X Built-in Functions::
13547 * TILE-Gx Built-in Functions::
13548 * TILEPro Built-in Functions::
13549 * x86 Built-in Functions::
13550 * x86 transactional memory intrinsics::
13551 * x86 control-flow protection intrinsics::
13552 @end menu
13554 @node AArch64 Built-in Functions
13555 @subsection AArch64 Built-in Functions
13557 These built-in functions are available for the AArch64 family of
13558 processors.
13559 @smallexample
13560 unsigned int __builtin_aarch64_get_fpcr ()
13561 void __builtin_aarch64_set_fpcr (unsigned int)
13562 unsigned int __builtin_aarch64_get_fpsr ()
13563 void __builtin_aarch64_set_fpsr (unsigned int)
13564 @end smallexample
13566 @node Alpha Built-in Functions
13567 @subsection Alpha Built-in Functions
13569 These built-in functions are available for the Alpha family of
13570 processors, depending on the command-line switches used.
13572 The following built-in functions are always available.  They
13573 all generate the machine instruction that is part of the name.
13575 @smallexample
13576 long __builtin_alpha_implver (void)
13577 long __builtin_alpha_rpcc (void)
13578 long __builtin_alpha_amask (long)
13579 long __builtin_alpha_cmpbge (long, long)
13580 long __builtin_alpha_extbl (long, long)
13581 long __builtin_alpha_extwl (long, long)
13582 long __builtin_alpha_extll (long, long)
13583 long __builtin_alpha_extql (long, long)
13584 long __builtin_alpha_extwh (long, long)
13585 long __builtin_alpha_extlh (long, long)
13586 long __builtin_alpha_extqh (long, long)
13587 long __builtin_alpha_insbl (long, long)
13588 long __builtin_alpha_inswl (long, long)
13589 long __builtin_alpha_insll (long, long)
13590 long __builtin_alpha_insql (long, long)
13591 long __builtin_alpha_inswh (long, long)
13592 long __builtin_alpha_inslh (long, long)
13593 long __builtin_alpha_insqh (long, long)
13594 long __builtin_alpha_mskbl (long, long)
13595 long __builtin_alpha_mskwl (long, long)
13596 long __builtin_alpha_mskll (long, long)
13597 long __builtin_alpha_mskql (long, long)
13598 long __builtin_alpha_mskwh (long, long)
13599 long __builtin_alpha_msklh (long, long)
13600 long __builtin_alpha_mskqh (long, long)
13601 long __builtin_alpha_umulh (long, long)
13602 long __builtin_alpha_zap (long, long)
13603 long __builtin_alpha_zapnot (long, long)
13604 @end smallexample
13606 The following built-in functions are always with @option{-mmax}
13607 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
13608 later.  They all generate the machine instruction that is part
13609 of the name.
13611 @smallexample
13612 long __builtin_alpha_pklb (long)
13613 long __builtin_alpha_pkwb (long)
13614 long __builtin_alpha_unpkbl (long)
13615 long __builtin_alpha_unpkbw (long)
13616 long __builtin_alpha_minub8 (long, long)
13617 long __builtin_alpha_minsb8 (long, long)
13618 long __builtin_alpha_minuw4 (long, long)
13619 long __builtin_alpha_minsw4 (long, long)
13620 long __builtin_alpha_maxub8 (long, long)
13621 long __builtin_alpha_maxsb8 (long, long)
13622 long __builtin_alpha_maxuw4 (long, long)
13623 long __builtin_alpha_maxsw4 (long, long)
13624 long __builtin_alpha_perr (long, long)
13625 @end smallexample
13627 The following built-in functions are always with @option{-mcix}
13628 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
13629 later.  They all generate the machine instruction that is part
13630 of the name.
13632 @smallexample
13633 long __builtin_alpha_cttz (long)
13634 long __builtin_alpha_ctlz (long)
13635 long __builtin_alpha_ctpop (long)
13636 @end smallexample
13638 The following built-in functions are available on systems that use the OSF/1
13639 PALcode.  Normally they invoke the @code{rduniq} and @code{wruniq}
13640 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
13641 @code{rdval} and @code{wrval}.
13643 @smallexample
13644 void *__builtin_thread_pointer (void)
13645 void __builtin_set_thread_pointer (void *)
13646 @end smallexample
13648 @node Altera Nios II Built-in Functions
13649 @subsection Altera Nios II Built-in Functions
13651 These built-in functions are available for the Altera Nios II
13652 family of processors.
13654 The following built-in functions are always available.  They
13655 all generate the machine instruction that is part of the name.
13657 @example
13658 int __builtin_ldbio (volatile const void *)
13659 int __builtin_ldbuio (volatile const void *)
13660 int __builtin_ldhio (volatile const void *)
13661 int __builtin_ldhuio (volatile const void *)
13662 int __builtin_ldwio (volatile const void *)
13663 void __builtin_stbio (volatile void *, int)
13664 void __builtin_sthio (volatile void *, int)
13665 void __builtin_stwio (volatile void *, int)
13666 void __builtin_sync (void)
13667 int __builtin_rdctl (int) 
13668 int __builtin_rdprs (int, int)
13669 void __builtin_wrctl (int, int)
13670 void __builtin_flushd (volatile void *)
13671 void __builtin_flushda (volatile void *)
13672 int __builtin_wrpie (int);
13673 void __builtin_eni (int);
13674 int __builtin_ldex (volatile const void *)
13675 int __builtin_stex (volatile void *, int)
13676 int __builtin_ldsex (volatile const void *)
13677 int __builtin_stsex (volatile void *, int)
13678 @end example
13680 The following built-in functions are always available.  They
13681 all generate a Nios II Custom Instruction. The name of the
13682 function represents the types that the function takes and
13683 returns. The letter before the @code{n} is the return type
13684 or void if absent. The @code{n} represents the first parameter
13685 to all the custom instructions, the custom instruction number.
13686 The two letters after the @code{n} represent the up to two
13687 parameters to the function.
13689 The letters represent the following data types:
13690 @table @code
13691 @item <no letter>
13692 @code{void} for return type and no parameter for parameter types.
13694 @item i
13695 @code{int} for return type and parameter type
13697 @item f
13698 @code{float} for return type and parameter type
13700 @item p
13701 @code{void *} for return type and parameter type
13703 @end table
13705 And the function names are:
13706 @example
13707 void __builtin_custom_n (void)
13708 void __builtin_custom_ni (int)
13709 void __builtin_custom_nf (float)
13710 void __builtin_custom_np (void *)
13711 void __builtin_custom_nii (int, int)
13712 void __builtin_custom_nif (int, float)
13713 void __builtin_custom_nip (int, void *)
13714 void __builtin_custom_nfi (float, int)
13715 void __builtin_custom_nff (float, float)
13716 void __builtin_custom_nfp (float, void *)
13717 void __builtin_custom_npi (void *, int)
13718 void __builtin_custom_npf (void *, float)
13719 void __builtin_custom_npp (void *, void *)
13720 int __builtin_custom_in (void)
13721 int __builtin_custom_ini (int)
13722 int __builtin_custom_inf (float)
13723 int __builtin_custom_inp (void *)
13724 int __builtin_custom_inii (int, int)
13725 int __builtin_custom_inif (int, float)
13726 int __builtin_custom_inip (int, void *)
13727 int __builtin_custom_infi (float, int)
13728 int __builtin_custom_inff (float, float)
13729 int __builtin_custom_infp (float, void *)
13730 int __builtin_custom_inpi (void *, int)
13731 int __builtin_custom_inpf (void *, float)
13732 int __builtin_custom_inpp (void *, void *)
13733 float __builtin_custom_fn (void)
13734 float __builtin_custom_fni (int)
13735 float __builtin_custom_fnf (float)
13736 float __builtin_custom_fnp (void *)
13737 float __builtin_custom_fnii (int, int)
13738 float __builtin_custom_fnif (int, float)
13739 float __builtin_custom_fnip (int, void *)
13740 float __builtin_custom_fnfi (float, int)
13741 float __builtin_custom_fnff (float, float)
13742 float __builtin_custom_fnfp (float, void *)
13743 float __builtin_custom_fnpi (void *, int)
13744 float __builtin_custom_fnpf (void *, float)
13745 float __builtin_custom_fnpp (void *, void *)
13746 void * __builtin_custom_pn (void)
13747 void * __builtin_custom_pni (int)
13748 void * __builtin_custom_pnf (float)
13749 void * __builtin_custom_pnp (void *)
13750 void * __builtin_custom_pnii (int, int)
13751 void * __builtin_custom_pnif (int, float)
13752 void * __builtin_custom_pnip (int, void *)
13753 void * __builtin_custom_pnfi (float, int)
13754 void * __builtin_custom_pnff (float, float)
13755 void * __builtin_custom_pnfp (float, void *)
13756 void * __builtin_custom_pnpi (void *, int)
13757 void * __builtin_custom_pnpf (void *, float)
13758 void * __builtin_custom_pnpp (void *, void *)
13759 @end example
13761 @node ARC Built-in Functions
13762 @subsection ARC Built-in Functions
13764 The following built-in functions are provided for ARC targets.  The
13765 built-ins generate the corresponding assembly instructions.  In the
13766 examples given below, the generated code often requires an operand or
13767 result to be in a register.  Where necessary further code will be
13768 generated to ensure this is true, but for brevity this is not
13769 described in each case.
13771 @emph{Note:} Using a built-in to generate an instruction not supported
13772 by a target may cause problems. At present the compiler is not
13773 guaranteed to detect such misuse, and as a result an internal compiler
13774 error may be generated.
13776 @deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
13777 Return 1 if @var{val} is known to have the byte alignment given
13778 by @var{alignval}, otherwise return 0.
13779 Note that this is different from
13780 @smallexample
13781 __alignof__(*(char *)@var{val}) >= alignval
13782 @end smallexample
13783 because __alignof__ sees only the type of the dereference, whereas
13784 __builtin_arc_align uses alignment information from the pointer
13785 as well as from the pointed-to type.
13786 The information available will depend on optimization level.
13787 @end deftypefn
13789 @deftypefn {Built-in Function} void __builtin_arc_brk (void)
13790 Generates
13791 @example
13793 @end example
13794 @end deftypefn
13796 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
13797 The operand is the number of a register to be read.  Generates:
13798 @example
13799 mov  @var{dest}, r@var{regno}
13800 @end example
13801 where the value in @var{dest} will be the result returned from the
13802 built-in.
13803 @end deftypefn
13805 @deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
13806 The first operand is the number of a register to be written, the
13807 second operand is a compile time constant to write into that
13808 register.  Generates:
13809 @example
13810 mov  r@var{regno}, @var{val}
13811 @end example
13812 @end deftypefn
13814 @deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
13815 Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
13816 Generates:
13817 @example
13818 divaw  @var{dest}, @var{a}, @var{b}
13819 @end example
13820 where the value in @var{dest} will be the result returned from the
13821 built-in.
13822 @end deftypefn
13824 @deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
13825 Generates
13826 @example
13827 flag  @var{a}
13828 @end example
13829 @end deftypefn
13831 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
13832 The operand, @var{auxv}, is the address of an auxiliary register and
13833 must be a compile time constant.  Generates:
13834 @example
13835 lr  @var{dest}, [@var{auxr}]
13836 @end example
13837 Where the value in @var{dest} will be the result returned from the
13838 built-in.
13839 @end deftypefn
13841 @deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
13842 Only available with @option{-mmul64}.  Generates:
13843 @example
13844 mul64  @var{a}, @var{b}
13845 @end example
13846 @end deftypefn
13848 @deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
13849 Only available with @option{-mmul64}.  Generates:
13850 @example
13851 mulu64  @var{a}, @var{b}
13852 @end example
13853 @end deftypefn
13855 @deftypefn {Built-in Function} void __builtin_arc_nop (void)
13856 Generates:
13857 @example
13859 @end example
13860 @end deftypefn
13862 @deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
13863 Only valid if the @samp{norm} instruction is available through the
13864 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
13865 Generates:
13866 @example
13867 norm  @var{dest}, @var{src}
13868 @end example
13869 Where the value in @var{dest} will be the result returned from the
13870 built-in.
13871 @end deftypefn
13873 @deftypefn {Built-in Function}  {short int} __builtin_arc_normw (short int @var{src})
13874 Only valid if the @samp{normw} instruction is available through the
13875 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
13876 Generates:
13877 @example
13878 normw  @var{dest}, @var{src}
13879 @end example
13880 Where the value in @var{dest} will be the result returned from the
13881 built-in.
13882 @end deftypefn
13884 @deftypefn {Built-in Function}  void __builtin_arc_rtie (void)
13885 Generates:
13886 @example
13887 rtie
13888 @end example
13889 @end deftypefn
13891 @deftypefn {Built-in Function}  void __builtin_arc_sleep (int @var{a}
13892 Generates:
13893 @example
13894 sleep  @var{a}
13895 @end example
13896 @end deftypefn
13898 @deftypefn {Built-in Function}  void __builtin_arc_sr (unsigned int @var{auxr}, unsigned int @var{val})
13899 The first argument, @var{auxv}, is the address of an auxiliary
13900 register, the second argument, @var{val}, is a compile time constant
13901 to be written to the register.  Generates:
13902 @example
13903 sr  @var{auxr}, [@var{val}]
13904 @end example
13905 @end deftypefn
13907 @deftypefn {Built-in Function}  int __builtin_arc_swap (int @var{src})
13908 Only valid with @option{-mswap}.  Generates:
13909 @example
13910 swap  @var{dest}, @var{src}
13911 @end example
13912 Where the value in @var{dest} will be the result returned from the
13913 built-in.
13914 @end deftypefn
13916 @deftypefn {Built-in Function}  void __builtin_arc_swi (void)
13917 Generates:
13918 @example
13920 @end example
13921 @end deftypefn
13923 @deftypefn {Built-in Function}  void __builtin_arc_sync (void)
13924 Only available with @option{-mcpu=ARC700}.  Generates:
13925 @example
13926 sync
13927 @end example
13928 @end deftypefn
13930 @deftypefn {Built-in Function}  void __builtin_arc_trap_s (unsigned int @var{c})
13931 Only available with @option{-mcpu=ARC700}.  Generates:
13932 @example
13933 trap_s  @var{c}
13934 @end example
13935 @end deftypefn
13937 @deftypefn {Built-in Function}  void __builtin_arc_unimp_s (void)
13938 Only available with @option{-mcpu=ARC700}.  Generates:
13939 @example
13940 unimp_s
13941 @end example
13942 @end deftypefn
13944 The instructions generated by the following builtins are not
13945 considered as candidates for scheduling.  They are not moved around by
13946 the compiler during scheduling, and thus can be expected to appear
13947 where they are put in the C code:
13948 @example
13949 __builtin_arc_brk()
13950 __builtin_arc_core_read()
13951 __builtin_arc_core_write()
13952 __builtin_arc_flag()
13953 __builtin_arc_lr()
13954 __builtin_arc_sleep()
13955 __builtin_arc_sr()
13956 __builtin_arc_swi()
13957 @end example
13959 @node ARC SIMD Built-in Functions
13960 @subsection ARC SIMD Built-in Functions
13962 SIMD builtins provided by the compiler can be used to generate the
13963 vector instructions.  This section describes the available builtins
13964 and their usage in programs.  With the @option{-msimd} option, the
13965 compiler provides 128-bit vector types, which can be specified using
13966 the @code{vector_size} attribute.  The header file @file{arc-simd.h}
13967 can be included to use the following predefined types:
13968 @example
13969 typedef int __v4si   __attribute__((vector_size(16)));
13970 typedef short __v8hi __attribute__((vector_size(16)));
13971 @end example
13973 These types can be used to define 128-bit variables.  The built-in
13974 functions listed in the following section can be used on these
13975 variables to generate the vector operations.
13977 For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
13978 @file{arc-simd.h} also provides equivalent macros called
13979 @code{_@var{someinsn}} that can be used for programming ease and
13980 improved readability.  The following macros for DMA control are also
13981 provided:
13982 @example
13983 #define _setup_dma_in_channel_reg _vdiwr
13984 #define _setup_dma_out_channel_reg _vdowr
13985 @end example
13987 The following is a complete list of all the SIMD built-ins provided
13988 for ARC, grouped by calling signature.
13990 The following take two @code{__v8hi} arguments and return a
13991 @code{__v8hi} result:
13992 @example
13993 __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
13994 __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
13995 __v8hi __builtin_arc_vand (__v8hi, __v8hi)
13996 __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
13997 __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
13998 __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
13999 __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
14000 __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
14001 __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
14002 __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
14003 __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
14004 __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
14005 __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
14006 __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
14007 __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
14008 __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
14009 __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
14010 __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
14011 __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
14012 __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
14013 __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
14014 __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
14015 __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
14016 __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
14017 __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
14018 __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
14019 __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
14020 __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
14021 __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
14022 __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
14023 __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
14024 __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
14025 __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
14026 __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
14027 __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
14028 __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
14029 __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
14030 __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
14031 __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
14032 __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
14033 __v8hi __builtin_arc_vor (__v8hi, __v8hi)
14034 __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
14035 __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
14036 __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
14037 __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
14038 __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
14039 __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
14040 __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
14041 @end example
14043 The following take one @code{__v8hi} and one @code{int} argument and return a
14044 @code{__v8hi} result:
14046 @example
14047 __v8hi __builtin_arc_vbaddw (__v8hi, int)
14048 __v8hi __builtin_arc_vbmaxw (__v8hi, int)
14049 __v8hi __builtin_arc_vbminw (__v8hi, int)
14050 __v8hi __builtin_arc_vbmulaw (__v8hi, int)
14051 __v8hi __builtin_arc_vbmulfw (__v8hi, int)
14052 __v8hi __builtin_arc_vbmulw (__v8hi, int)
14053 __v8hi __builtin_arc_vbrsubw (__v8hi, int)
14054 __v8hi __builtin_arc_vbsubw (__v8hi, int)
14055 @end example
14057 The following take one @code{__v8hi} argument and one @code{int} argument which
14058 must be a 3-bit compile time constant indicating a register number
14059 I0-I7.  They return a @code{__v8hi} result.
14060 @example
14061 __v8hi __builtin_arc_vasrw (__v8hi, const int)
14062 __v8hi __builtin_arc_vsr8 (__v8hi, const int)
14063 __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
14064 @end example
14066 The following take one @code{__v8hi} argument and one @code{int}
14067 argument which must be a 6-bit compile time constant.  They return a
14068 @code{__v8hi} result.
14069 @example
14070 __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
14071 __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
14072 __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
14073 __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
14074 __v8hi __builtin_arc_vasrwi (__v8hi, const int)
14075 __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
14076 __v8hi __builtin_arc_vsr8i (__v8hi, const int)
14077 @end example
14079 The following take one @code{__v8hi} argument and one @code{int} argument which
14080 must be a 8-bit compile time constant.  They return a @code{__v8hi}
14081 result.
14082 @example
14083 __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
14084 __v8hi __builtin_arc_vmvaw (__v8hi, const int)
14085 __v8hi __builtin_arc_vmvw (__v8hi, const int)
14086 __v8hi __builtin_arc_vmvzw (__v8hi, const int)
14087 @end example
14089 The following take two @code{int} arguments, the second of which which
14090 must be a 8-bit compile time constant.  They return a @code{__v8hi}
14091 result:
14092 @example
14093 __v8hi __builtin_arc_vmovaw (int, const int)
14094 __v8hi __builtin_arc_vmovw (int, const int)
14095 __v8hi __builtin_arc_vmovzw (int, const int)
14096 @end example
14098 The following take a single @code{__v8hi} argument and return a
14099 @code{__v8hi} result:
14100 @example
14101 __v8hi __builtin_arc_vabsaw (__v8hi)
14102 __v8hi __builtin_arc_vabsw (__v8hi)
14103 __v8hi __builtin_arc_vaddsuw (__v8hi)
14104 __v8hi __builtin_arc_vexch1 (__v8hi)
14105 __v8hi __builtin_arc_vexch2 (__v8hi)
14106 __v8hi __builtin_arc_vexch4 (__v8hi)
14107 __v8hi __builtin_arc_vsignw (__v8hi)
14108 __v8hi __builtin_arc_vupbaw (__v8hi)
14109 __v8hi __builtin_arc_vupbw (__v8hi)
14110 __v8hi __builtin_arc_vupsbaw (__v8hi)
14111 __v8hi __builtin_arc_vupsbw (__v8hi)
14112 @end example
14114 The following take two @code{int} arguments and return no result:
14115 @example
14116 void __builtin_arc_vdirun (int, int)
14117 void __builtin_arc_vdorun (int, int)
14118 @end example
14120 The following take two @code{int} arguments and return no result.  The
14121 first argument must a 3-bit compile time constant indicating one of
14122 the DR0-DR7 DMA setup channels:
14123 @example
14124 void __builtin_arc_vdiwr (const int, int)
14125 void __builtin_arc_vdowr (const int, int)
14126 @end example
14128 The following take an @code{int} argument and return no result:
14129 @example
14130 void __builtin_arc_vendrec (int)
14131 void __builtin_arc_vrec (int)
14132 void __builtin_arc_vrecrun (int)
14133 void __builtin_arc_vrun (int)
14134 @end example
14136 The following take a @code{__v8hi} argument and two @code{int}
14137 arguments and return a @code{__v8hi} result.  The second argument must
14138 be a 3-bit compile time constants, indicating one the registers I0-I7,
14139 and the third argument must be an 8-bit compile time constant.
14141 @emph{Note:} Although the equivalent hardware instructions do not take
14142 an SIMD register as an operand, these builtins overwrite the relevant
14143 bits of the @code{__v8hi} register provided as the first argument with
14144 the value loaded from the @code{[Ib, u8]} location in the SDM.
14146 @example
14147 __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
14148 __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
14149 __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
14150 __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
14151 @end example
14153 The following take two @code{int} arguments and return a @code{__v8hi}
14154 result.  The first argument must be a 3-bit compile time constants,
14155 indicating one the registers I0-I7, and the second argument must be an
14156 8-bit compile time constant.
14158 @example
14159 __v8hi __builtin_arc_vld128 (const int, const int)
14160 __v8hi __builtin_arc_vld64w (const int, const int)
14161 @end example
14163 The following take a @code{__v8hi} argument and two @code{int}
14164 arguments and return no result.  The second argument must be a 3-bit
14165 compile time constants, indicating one the registers I0-I7, and the
14166 third argument must be an 8-bit compile time constant.
14168 @example
14169 void __builtin_arc_vst128 (__v8hi, const int, const int)
14170 void __builtin_arc_vst64 (__v8hi, const int, const int)
14171 @end example
14173 The following take a @code{__v8hi} argument and three @code{int}
14174 arguments and return no result.  The second argument must be a 3-bit
14175 compile-time constant, identifying the 16-bit sub-register to be
14176 stored, the third argument must be a 3-bit compile time constants,
14177 indicating one the registers I0-I7, and the fourth argument must be an
14178 8-bit compile time constant.
14180 @example
14181 void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
14182 void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
14183 @end example
14185 @node ARM iWMMXt Built-in Functions
14186 @subsection ARM iWMMXt Built-in Functions
14188 These built-in functions are available for the ARM family of
14189 processors when the @option{-mcpu=iwmmxt} switch is used:
14191 @smallexample
14192 typedef int v2si __attribute__ ((vector_size (8)));
14193 typedef short v4hi __attribute__ ((vector_size (8)));
14194 typedef char v8qi __attribute__ ((vector_size (8)));
14196 int __builtin_arm_getwcgr0 (void)
14197 void __builtin_arm_setwcgr0 (int)
14198 int __builtin_arm_getwcgr1 (void)
14199 void __builtin_arm_setwcgr1 (int)
14200 int __builtin_arm_getwcgr2 (void)
14201 void __builtin_arm_setwcgr2 (int)
14202 int __builtin_arm_getwcgr3 (void)
14203 void __builtin_arm_setwcgr3 (int)
14204 int __builtin_arm_textrmsb (v8qi, int)
14205 int __builtin_arm_textrmsh (v4hi, int)
14206 int __builtin_arm_textrmsw (v2si, int)
14207 int __builtin_arm_textrmub (v8qi, int)
14208 int __builtin_arm_textrmuh (v4hi, int)
14209 int __builtin_arm_textrmuw (v2si, int)
14210 v8qi __builtin_arm_tinsrb (v8qi, int, int)
14211 v4hi __builtin_arm_tinsrh (v4hi, int, int)
14212 v2si __builtin_arm_tinsrw (v2si, int, int)
14213 long long __builtin_arm_tmia (long long, int, int)
14214 long long __builtin_arm_tmiabb (long long, int, int)
14215 long long __builtin_arm_tmiabt (long long, int, int)
14216 long long __builtin_arm_tmiaph (long long, int, int)
14217 long long __builtin_arm_tmiatb (long long, int, int)
14218 long long __builtin_arm_tmiatt (long long, int, int)
14219 int __builtin_arm_tmovmskb (v8qi)
14220 int __builtin_arm_tmovmskh (v4hi)
14221 int __builtin_arm_tmovmskw (v2si)
14222 long long __builtin_arm_waccb (v8qi)
14223 long long __builtin_arm_wacch (v4hi)
14224 long long __builtin_arm_waccw (v2si)
14225 v8qi __builtin_arm_waddb (v8qi, v8qi)
14226 v8qi __builtin_arm_waddbss (v8qi, v8qi)
14227 v8qi __builtin_arm_waddbus (v8qi, v8qi)
14228 v4hi __builtin_arm_waddh (v4hi, v4hi)
14229 v4hi __builtin_arm_waddhss (v4hi, v4hi)
14230 v4hi __builtin_arm_waddhus (v4hi, v4hi)
14231 v2si __builtin_arm_waddw (v2si, v2si)
14232 v2si __builtin_arm_waddwss (v2si, v2si)
14233 v2si __builtin_arm_waddwus (v2si, v2si)
14234 v8qi __builtin_arm_walign (v8qi, v8qi, int)
14235 long long __builtin_arm_wand(long long, long long)
14236 long long __builtin_arm_wandn (long long, long long)
14237 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
14238 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
14239 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
14240 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
14241 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
14242 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
14243 v2si __builtin_arm_wcmpeqw (v2si, v2si)
14244 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
14245 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
14246 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
14247 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
14248 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
14249 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
14250 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
14251 long long __builtin_arm_wmacsz (v4hi, v4hi)
14252 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
14253 long long __builtin_arm_wmacuz (v4hi, v4hi)
14254 v4hi __builtin_arm_wmadds (v4hi, v4hi)
14255 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
14256 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
14257 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
14258 v2si __builtin_arm_wmaxsw (v2si, v2si)
14259 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
14260 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
14261 v2si __builtin_arm_wmaxuw (v2si, v2si)
14262 v8qi __builtin_arm_wminsb (v8qi, v8qi)
14263 v4hi __builtin_arm_wminsh (v4hi, v4hi)
14264 v2si __builtin_arm_wminsw (v2si, v2si)
14265 v8qi __builtin_arm_wminub (v8qi, v8qi)
14266 v4hi __builtin_arm_wminuh (v4hi, v4hi)
14267 v2si __builtin_arm_wminuw (v2si, v2si)
14268 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
14269 v4hi __builtin_arm_wmulul (v4hi, v4hi)
14270 v4hi __builtin_arm_wmulum (v4hi, v4hi)
14271 long long __builtin_arm_wor (long long, long long)
14272 v2si __builtin_arm_wpackdss (long long, long long)
14273 v2si __builtin_arm_wpackdus (long long, long long)
14274 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
14275 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
14276 v4hi __builtin_arm_wpackwss (v2si, v2si)
14277 v4hi __builtin_arm_wpackwus (v2si, v2si)
14278 long long __builtin_arm_wrord (long long, long long)
14279 long long __builtin_arm_wrordi (long long, int)
14280 v4hi __builtin_arm_wrorh (v4hi, long long)
14281 v4hi __builtin_arm_wrorhi (v4hi, int)
14282 v2si __builtin_arm_wrorw (v2si, long long)
14283 v2si __builtin_arm_wrorwi (v2si, int)
14284 v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
14285 v2si __builtin_arm_wsadbz (v8qi, v8qi)
14286 v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
14287 v2si __builtin_arm_wsadhz (v4hi, v4hi)
14288 v4hi __builtin_arm_wshufh (v4hi, int)
14289 long long __builtin_arm_wslld (long long, long long)
14290 long long __builtin_arm_wslldi (long long, int)
14291 v4hi __builtin_arm_wsllh (v4hi, long long)
14292 v4hi __builtin_arm_wsllhi (v4hi, int)
14293 v2si __builtin_arm_wsllw (v2si, long long)
14294 v2si __builtin_arm_wsllwi (v2si, int)
14295 long long __builtin_arm_wsrad (long long, long long)
14296 long long __builtin_arm_wsradi (long long, int)
14297 v4hi __builtin_arm_wsrah (v4hi, long long)
14298 v4hi __builtin_arm_wsrahi (v4hi, int)
14299 v2si __builtin_arm_wsraw (v2si, long long)
14300 v2si __builtin_arm_wsrawi (v2si, int)
14301 long long __builtin_arm_wsrld (long long, long long)
14302 long long __builtin_arm_wsrldi (long long, int)
14303 v4hi __builtin_arm_wsrlh (v4hi, long long)
14304 v4hi __builtin_arm_wsrlhi (v4hi, int)
14305 v2si __builtin_arm_wsrlw (v2si, long long)
14306 v2si __builtin_arm_wsrlwi (v2si, int)
14307 v8qi __builtin_arm_wsubb (v8qi, v8qi)
14308 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
14309 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
14310 v4hi __builtin_arm_wsubh (v4hi, v4hi)
14311 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
14312 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
14313 v2si __builtin_arm_wsubw (v2si, v2si)
14314 v2si __builtin_arm_wsubwss (v2si, v2si)
14315 v2si __builtin_arm_wsubwus (v2si, v2si)
14316 v4hi __builtin_arm_wunpckehsb (v8qi)
14317 v2si __builtin_arm_wunpckehsh (v4hi)
14318 long long __builtin_arm_wunpckehsw (v2si)
14319 v4hi __builtin_arm_wunpckehub (v8qi)
14320 v2si __builtin_arm_wunpckehuh (v4hi)
14321 long long __builtin_arm_wunpckehuw (v2si)
14322 v4hi __builtin_arm_wunpckelsb (v8qi)
14323 v2si __builtin_arm_wunpckelsh (v4hi)
14324 long long __builtin_arm_wunpckelsw (v2si)
14325 v4hi __builtin_arm_wunpckelub (v8qi)
14326 v2si __builtin_arm_wunpckeluh (v4hi)
14327 long long __builtin_arm_wunpckeluw (v2si)
14328 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
14329 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
14330 v2si __builtin_arm_wunpckihw (v2si, v2si)
14331 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
14332 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
14333 v2si __builtin_arm_wunpckilw (v2si, v2si)
14334 long long __builtin_arm_wxor (long long, long long)
14335 long long __builtin_arm_wzero ()
14336 @end smallexample
14339 @node ARM C Language Extensions (ACLE)
14340 @subsection ARM C Language Extensions (ACLE)
14342 GCC implements extensions for C as described in the ARM C Language
14343 Extensions (ACLE) specification, which can be found at
14344 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf}.
14346 As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
14347 the ARM C Language Extensions Specification.  The complete list of Advanced SIMD
14348 intrinsics can be found at
14349 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf}.
14350 The built-in intrinsics for the Advanced SIMD extension are available when
14351 NEON is enabled.
14353 Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully.  Both
14354 back ends support CRC32 intrinsics and the ARM back end supports the
14355 Coprocessor intrinsics, all from @file{arm_acle.h}.  The ARM back end's 16-bit
14356 floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
14357 AArch64's back end does not have support for 16-bit floating point Advanced SIMD
14358 intrinsics yet.
14360 See @ref{ARM Options} and @ref{AArch64 Options} for more information on the
14361 availability of extensions.
14363 @node ARM Floating Point Status and Control Intrinsics
14364 @subsection ARM Floating Point Status and Control Intrinsics
14366 These built-in functions are available for the ARM family of
14367 processors with floating-point unit.
14369 @smallexample
14370 unsigned int __builtin_arm_get_fpscr ()
14371 void __builtin_arm_set_fpscr (unsigned int)
14372 @end smallexample
14374 @node ARM ARMv8-M Security Extensions
14375 @subsection ARM ARMv8-M Security Extensions
14377 GCC implements the ARMv8-M Security Extensions as described in the ARMv8-M
14378 Security Extensions: Requirements on Development Tools Engineering
14379 Specification, which can be found at
14380 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
14382 As part of the Security Extensions GCC implements two new function attributes:
14383 @code{cmse_nonsecure_entry} and @code{cmse_nonsecure_call}.
14385 As part of the Security Extensions GCC implements the intrinsics below.  FPTR
14386 is used here to mean any function pointer type.
14388 @smallexample
14389 cmse_address_info_t cmse_TT (void *)
14390 cmse_address_info_t cmse_TT_fptr (FPTR)
14391 cmse_address_info_t cmse_TTT (void *)
14392 cmse_address_info_t cmse_TTT_fptr (FPTR)
14393 cmse_address_info_t cmse_TTA (void *)
14394 cmse_address_info_t cmse_TTA_fptr (FPTR)
14395 cmse_address_info_t cmse_TTAT (void *)
14396 cmse_address_info_t cmse_TTAT_fptr (FPTR)
14397 void * cmse_check_address_range (void *, size_t, int)
14398 typeof(p) cmse_nsfptr_create (FPTR p)
14399 intptr_t cmse_is_nsfptr (FPTR)
14400 int cmse_nonsecure_caller (void)
14401 @end smallexample
14403 @node AVR Built-in Functions
14404 @subsection AVR Built-in Functions
14406 For each built-in function for AVR, there is an equally named,
14407 uppercase built-in macro defined. That way users can easily query if
14408 or if not a specific built-in is implemented or not. For example, if
14409 @code{__builtin_avr_nop} is available the macro
14410 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
14412 @table @code
14414 @item void __builtin_avr_nop (void)
14415 @itemx void __builtin_avr_sei (void)
14416 @itemx void __builtin_avr_cli (void)
14417 @itemx void __builtin_avr_sleep (void)
14418 @itemx void __builtin_avr_wdr (void)
14419 @itemx unsigned char __builtin_avr_swap (unsigned char)
14420 @itemx unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
14421 @itemx int __builtin_avr_fmuls (char, char)
14422 @itemx int __builtin_avr_fmulsu (char, unsigned char)
14423 These built-in functions map to the respective machine
14424 instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
14425 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
14426 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
14427 as library call if no hardware multiplier is available.
14429 @item void __builtin_avr_delay_cycles (unsigned long ticks)
14430 Delay execution for @var{ticks} cycles. Note that this
14431 built-in does not take into account the effect of interrupts that
14432 might increase delay time. @var{ticks} must be a compile-time
14433 integer constant; delays with a variable number of cycles are not supported.
14435 @item char __builtin_avr_flash_segment (const __memx void*)
14436 This built-in takes a byte address to the 24-bit
14437 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
14438 the number of the flash segment (the 64 KiB chunk) where the address
14439 points to.  Counting starts at @code{0}.
14440 If the address does not point to flash memory, return @code{-1}.
14442 @item uint8_t __builtin_avr_insert_bits (uint32_t map, uint8_t bits, uint8_t val)
14443 Insert bits from @var{bits} into @var{val} and return the resulting
14444 value. The nibbles of @var{map} determine how the insertion is
14445 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
14446 @enumerate
14447 @item If @var{X} is @code{0xf},
14448 then the @var{n}-th bit of @var{val} is returned unaltered.
14450 @item If X is in the range 0@dots{}7,
14451 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
14453 @item If X is in the range 8@dots{}@code{0xe},
14454 then the @var{n}-th result bit is undefined.
14455 @end enumerate
14457 @noindent
14458 One typical use case for this built-in is adjusting input and
14459 output values to non-contiguous port layouts. Some examples:
14461 @smallexample
14462 // same as val, bits is unused
14463 __builtin_avr_insert_bits (0xffffffff, bits, val)
14464 @end smallexample
14466 @smallexample
14467 // same as bits, val is unused
14468 __builtin_avr_insert_bits (0x76543210, bits, val)
14469 @end smallexample
14471 @smallexample
14472 // same as rotating bits by 4
14473 __builtin_avr_insert_bits (0x32107654, bits, 0)
14474 @end smallexample
14476 @smallexample
14477 // high nibble of result is the high nibble of val
14478 // low nibble of result is the low nibble of bits
14479 __builtin_avr_insert_bits (0xffff3210, bits, val)
14480 @end smallexample
14482 @smallexample
14483 // reverse the bit order of bits
14484 __builtin_avr_insert_bits (0x01234567, bits, 0)
14485 @end smallexample
14487 @item void __builtin_avr_nops (unsigned count)
14488 Insert @var{count} @code{NOP} instructions.
14489 The number of instructions must be a compile-time integer constant.
14491 @end table
14493 @noindent
14494 There are many more AVR-specific built-in functions that are used to
14495 implement the ISO/IEC TR 18037 ``Embedded C'' fixed-point functions of
14496 section 7.18a.6.  You don't need to use these built-ins directly.
14497 Instead, use the declarations as supplied by the @code{stdfix.h} header
14498 with GNU-C99:
14500 @smallexample
14501 #include <stdfix.h>
14503 // Re-interpret the bit representation of unsigned 16-bit
14504 // integer @var{uval} as Q-format 0.16 value.
14505 unsigned fract get_bits (uint_ur_t uval)
14507     return urbits (uval);
14509 @end smallexample
14511 @node Blackfin Built-in Functions
14512 @subsection Blackfin Built-in Functions
14514 Currently, there are two Blackfin-specific built-in functions.  These are
14515 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
14516 using inline assembly; by using these built-in functions the compiler can
14517 automatically add workarounds for hardware errata involving these
14518 instructions.  These functions are named as follows:
14520 @smallexample
14521 void __builtin_bfin_csync (void)
14522 void __builtin_bfin_ssync (void)
14523 @end smallexample
14525 @node FR-V Built-in Functions
14526 @subsection FR-V Built-in Functions
14528 GCC provides many FR-V-specific built-in functions.  In general,
14529 these functions are intended to be compatible with those described
14530 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
14531 Semiconductor}.  The two exceptions are @code{__MDUNPACKH} and
14532 @code{__MBTOHE}, the GCC forms of which pass 128-bit values by
14533 pointer rather than by value.
14535 Most of the functions are named after specific FR-V instructions.
14536 Such functions are said to be ``directly mapped'' and are summarized
14537 here in tabular form.
14539 @menu
14540 * Argument Types::
14541 * Directly-mapped Integer Functions::
14542 * Directly-mapped Media Functions::
14543 * Raw read/write Functions::
14544 * Other Built-in Functions::
14545 @end menu
14547 @node Argument Types
14548 @subsubsection Argument Types
14550 The arguments to the built-in functions can be divided into three groups:
14551 register numbers, compile-time constants and run-time values.  In order
14552 to make this classification clear at a glance, the arguments and return
14553 values are given the following pseudo types:
14555 @multitable @columnfractions .20 .30 .15 .35
14556 @item Pseudo type @tab Real C type @tab Constant? @tab Description
14557 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
14558 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
14559 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
14560 @item @code{uw2} @tab @code{unsigned long long} @tab No
14561 @tab an unsigned doubleword
14562 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
14563 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
14564 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
14565 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
14566 @end multitable
14568 These pseudo types are not defined by GCC, they are simply a notational
14569 convenience used in this manual.
14571 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
14572 and @code{sw2} are evaluated at run time.  They correspond to
14573 register operands in the underlying FR-V instructions.
14575 @code{const} arguments represent immediate operands in the underlying
14576 FR-V instructions.  They must be compile-time constants.
14578 @code{acc} arguments are evaluated at compile time and specify the number
14579 of an accumulator register.  For example, an @code{acc} argument of 2
14580 selects the ACC2 register.
14582 @code{iacc} arguments are similar to @code{acc} arguments but specify the
14583 number of an IACC register.  See @pxref{Other Built-in Functions}
14584 for more details.
14586 @node Directly-mapped Integer Functions
14587 @subsubsection Directly-Mapped Integer Functions
14589 The functions listed below map directly to FR-V I-type instructions.
14591 @multitable @columnfractions .45 .32 .23
14592 @item Function prototype @tab Example usage @tab Assembly output
14593 @item @code{sw1 __ADDSS (sw1, sw1)}
14594 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
14595 @tab @code{ADDSS @var{a},@var{b},@var{c}}
14596 @item @code{sw1 __SCAN (sw1, sw1)}
14597 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
14598 @tab @code{SCAN @var{a},@var{b},@var{c}}
14599 @item @code{sw1 __SCUTSS (sw1)}
14600 @tab @code{@var{b} = __SCUTSS (@var{a})}
14601 @tab @code{SCUTSS @var{a},@var{b}}
14602 @item @code{sw1 __SLASS (sw1, sw1)}
14603 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
14604 @tab @code{SLASS @var{a},@var{b},@var{c}}
14605 @item @code{void __SMASS (sw1, sw1)}
14606 @tab @code{__SMASS (@var{a}, @var{b})}
14607 @tab @code{SMASS @var{a},@var{b}}
14608 @item @code{void __SMSSS (sw1, sw1)}
14609 @tab @code{__SMSSS (@var{a}, @var{b})}
14610 @tab @code{SMSSS @var{a},@var{b}}
14611 @item @code{void __SMU (sw1, sw1)}
14612 @tab @code{__SMU (@var{a}, @var{b})}
14613 @tab @code{SMU @var{a},@var{b}}
14614 @item @code{sw2 __SMUL (sw1, sw1)}
14615 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
14616 @tab @code{SMUL @var{a},@var{b},@var{c}}
14617 @item @code{sw1 __SUBSS (sw1, sw1)}
14618 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
14619 @tab @code{SUBSS @var{a},@var{b},@var{c}}
14620 @item @code{uw2 __UMUL (uw1, uw1)}
14621 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
14622 @tab @code{UMUL @var{a},@var{b},@var{c}}
14623 @end multitable
14625 @node Directly-mapped Media Functions
14626 @subsubsection Directly-Mapped Media Functions
14628 The functions listed below map directly to FR-V M-type instructions.
14630 @multitable @columnfractions .45 .32 .23
14631 @item Function prototype @tab Example usage @tab Assembly output
14632 @item @code{uw1 __MABSHS (sw1)}
14633 @tab @code{@var{b} = __MABSHS (@var{a})}
14634 @tab @code{MABSHS @var{a},@var{b}}
14635 @item @code{void __MADDACCS (acc, acc)}
14636 @tab @code{__MADDACCS (@var{b}, @var{a})}
14637 @tab @code{MADDACCS @var{a},@var{b}}
14638 @item @code{sw1 __MADDHSS (sw1, sw1)}
14639 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
14640 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
14641 @item @code{uw1 __MADDHUS (uw1, uw1)}
14642 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
14643 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
14644 @item @code{uw1 __MAND (uw1, uw1)}
14645 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
14646 @tab @code{MAND @var{a},@var{b},@var{c}}
14647 @item @code{void __MASACCS (acc, acc)}
14648 @tab @code{__MASACCS (@var{b}, @var{a})}
14649 @tab @code{MASACCS @var{a},@var{b}}
14650 @item @code{uw1 __MAVEH (uw1, uw1)}
14651 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
14652 @tab @code{MAVEH @var{a},@var{b},@var{c}}
14653 @item @code{uw2 __MBTOH (uw1)}
14654 @tab @code{@var{b} = __MBTOH (@var{a})}
14655 @tab @code{MBTOH @var{a},@var{b}}
14656 @item @code{void __MBTOHE (uw1 *, uw1)}
14657 @tab @code{__MBTOHE (&@var{b}, @var{a})}
14658 @tab @code{MBTOHE @var{a},@var{b}}
14659 @item @code{void __MCLRACC (acc)}
14660 @tab @code{__MCLRACC (@var{a})}
14661 @tab @code{MCLRACC @var{a}}
14662 @item @code{void __MCLRACCA (void)}
14663 @tab @code{__MCLRACCA ()}
14664 @tab @code{MCLRACCA}
14665 @item @code{uw1 __Mcop1 (uw1, uw1)}
14666 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
14667 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
14668 @item @code{uw1 __Mcop2 (uw1, uw1)}
14669 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
14670 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
14671 @item @code{uw1 __MCPLHI (uw2, const)}
14672 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
14673 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
14674 @item @code{uw1 __MCPLI (uw2, const)}
14675 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
14676 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
14677 @item @code{void __MCPXIS (acc, sw1, sw1)}
14678 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
14679 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
14680 @item @code{void __MCPXIU (acc, uw1, uw1)}
14681 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
14682 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
14683 @item @code{void __MCPXRS (acc, sw1, sw1)}
14684 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
14685 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
14686 @item @code{void __MCPXRU (acc, uw1, uw1)}
14687 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
14688 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
14689 @item @code{uw1 __MCUT (acc, uw1)}
14690 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
14691 @tab @code{MCUT @var{a},@var{b},@var{c}}
14692 @item @code{uw1 __MCUTSS (acc, sw1)}
14693 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
14694 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
14695 @item @code{void __MDADDACCS (acc, acc)}
14696 @tab @code{__MDADDACCS (@var{b}, @var{a})}
14697 @tab @code{MDADDACCS @var{a},@var{b}}
14698 @item @code{void __MDASACCS (acc, acc)}
14699 @tab @code{__MDASACCS (@var{b}, @var{a})}
14700 @tab @code{MDASACCS @var{a},@var{b}}
14701 @item @code{uw2 __MDCUTSSI (acc, const)}
14702 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
14703 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
14704 @item @code{uw2 __MDPACKH (uw2, uw2)}
14705 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
14706 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
14707 @item @code{uw2 __MDROTLI (uw2, const)}
14708 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
14709 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
14710 @item @code{void __MDSUBACCS (acc, acc)}
14711 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
14712 @tab @code{MDSUBACCS @var{a},@var{b}}
14713 @item @code{void __MDUNPACKH (uw1 *, uw2)}
14714 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
14715 @tab @code{MDUNPACKH @var{a},@var{b}}
14716 @item @code{uw2 __MEXPDHD (uw1, const)}
14717 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
14718 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
14719 @item @code{uw1 __MEXPDHW (uw1, const)}
14720 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
14721 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
14722 @item @code{uw1 __MHDSETH (uw1, const)}
14723 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
14724 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
14725 @item @code{sw1 __MHDSETS (const)}
14726 @tab @code{@var{b} = __MHDSETS (@var{a})}
14727 @tab @code{MHDSETS #@var{a},@var{b}}
14728 @item @code{uw1 __MHSETHIH (uw1, const)}
14729 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
14730 @tab @code{MHSETHIH #@var{a},@var{b}}
14731 @item @code{sw1 __MHSETHIS (sw1, const)}
14732 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
14733 @tab @code{MHSETHIS #@var{a},@var{b}}
14734 @item @code{uw1 __MHSETLOH (uw1, const)}
14735 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
14736 @tab @code{MHSETLOH #@var{a},@var{b}}
14737 @item @code{sw1 __MHSETLOS (sw1, const)}
14738 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
14739 @tab @code{MHSETLOS #@var{a},@var{b}}
14740 @item @code{uw1 __MHTOB (uw2)}
14741 @tab @code{@var{b} = __MHTOB (@var{a})}
14742 @tab @code{MHTOB @var{a},@var{b}}
14743 @item @code{void __MMACHS (acc, sw1, sw1)}
14744 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
14745 @tab @code{MMACHS @var{a},@var{b},@var{c}}
14746 @item @code{void __MMACHU (acc, uw1, uw1)}
14747 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
14748 @tab @code{MMACHU @var{a},@var{b},@var{c}}
14749 @item @code{void __MMRDHS (acc, sw1, sw1)}
14750 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
14751 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
14752 @item @code{void __MMRDHU (acc, uw1, uw1)}
14753 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
14754 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
14755 @item @code{void __MMULHS (acc, sw1, sw1)}
14756 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
14757 @tab @code{MMULHS @var{a},@var{b},@var{c}}
14758 @item @code{void __MMULHU (acc, uw1, uw1)}
14759 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
14760 @tab @code{MMULHU @var{a},@var{b},@var{c}}
14761 @item @code{void __MMULXHS (acc, sw1, sw1)}
14762 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
14763 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
14764 @item @code{void __MMULXHU (acc, uw1, uw1)}
14765 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
14766 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
14767 @item @code{uw1 __MNOT (uw1)}
14768 @tab @code{@var{b} = __MNOT (@var{a})}
14769 @tab @code{MNOT @var{a},@var{b}}
14770 @item @code{uw1 __MOR (uw1, uw1)}
14771 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
14772 @tab @code{MOR @var{a},@var{b},@var{c}}
14773 @item @code{uw1 __MPACKH (uh, uh)}
14774 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
14775 @tab @code{MPACKH @var{a},@var{b},@var{c}}
14776 @item @code{sw2 __MQADDHSS (sw2, sw2)}
14777 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
14778 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
14779 @item @code{uw2 __MQADDHUS (uw2, uw2)}
14780 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
14781 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
14782 @item @code{void __MQCPXIS (acc, sw2, sw2)}
14783 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
14784 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
14785 @item @code{void __MQCPXIU (acc, uw2, uw2)}
14786 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
14787 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
14788 @item @code{void __MQCPXRS (acc, sw2, sw2)}
14789 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
14790 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
14791 @item @code{void __MQCPXRU (acc, uw2, uw2)}
14792 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
14793 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
14794 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
14795 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
14796 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
14797 @item @code{sw2 __MQLMTHS (sw2, sw2)}
14798 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
14799 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
14800 @item @code{void __MQMACHS (acc, sw2, sw2)}
14801 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
14802 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
14803 @item @code{void __MQMACHU (acc, uw2, uw2)}
14804 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
14805 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
14806 @item @code{void __MQMACXHS (acc, sw2, sw2)}
14807 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
14808 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
14809 @item @code{void __MQMULHS (acc, sw2, sw2)}
14810 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
14811 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
14812 @item @code{void __MQMULHU (acc, uw2, uw2)}
14813 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
14814 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
14815 @item @code{void __MQMULXHS (acc, sw2, sw2)}
14816 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
14817 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
14818 @item @code{void __MQMULXHU (acc, uw2, uw2)}
14819 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
14820 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
14821 @item @code{sw2 __MQSATHS (sw2, sw2)}
14822 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
14823 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
14824 @item @code{uw2 __MQSLLHI (uw2, int)}
14825 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
14826 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
14827 @item @code{sw2 __MQSRAHI (sw2, int)}
14828 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
14829 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
14830 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
14831 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
14832 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
14833 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
14834 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
14835 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
14836 @item @code{void __MQXMACHS (acc, sw2, sw2)}
14837 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
14838 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
14839 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
14840 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
14841 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
14842 @item @code{uw1 __MRDACC (acc)}
14843 @tab @code{@var{b} = __MRDACC (@var{a})}
14844 @tab @code{MRDACC @var{a},@var{b}}
14845 @item @code{uw1 __MRDACCG (acc)}
14846 @tab @code{@var{b} = __MRDACCG (@var{a})}
14847 @tab @code{MRDACCG @var{a},@var{b}}
14848 @item @code{uw1 __MROTLI (uw1, const)}
14849 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
14850 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
14851 @item @code{uw1 __MROTRI (uw1, const)}
14852 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
14853 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
14854 @item @code{sw1 __MSATHS (sw1, sw1)}
14855 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
14856 @tab @code{MSATHS @var{a},@var{b},@var{c}}
14857 @item @code{uw1 __MSATHU (uw1, uw1)}
14858 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
14859 @tab @code{MSATHU @var{a},@var{b},@var{c}}
14860 @item @code{uw1 __MSLLHI (uw1, const)}
14861 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
14862 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
14863 @item @code{sw1 __MSRAHI (sw1, const)}
14864 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
14865 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
14866 @item @code{uw1 __MSRLHI (uw1, const)}
14867 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
14868 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
14869 @item @code{void __MSUBACCS (acc, acc)}
14870 @tab @code{__MSUBACCS (@var{b}, @var{a})}
14871 @tab @code{MSUBACCS @var{a},@var{b}}
14872 @item @code{sw1 __MSUBHSS (sw1, sw1)}
14873 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
14874 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
14875 @item @code{uw1 __MSUBHUS (uw1, uw1)}
14876 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
14877 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
14878 @item @code{void __MTRAP (void)}
14879 @tab @code{__MTRAP ()}
14880 @tab @code{MTRAP}
14881 @item @code{uw2 __MUNPACKH (uw1)}
14882 @tab @code{@var{b} = __MUNPACKH (@var{a})}
14883 @tab @code{MUNPACKH @var{a},@var{b}}
14884 @item @code{uw1 __MWCUT (uw2, uw1)}
14885 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
14886 @tab @code{MWCUT @var{a},@var{b},@var{c}}
14887 @item @code{void __MWTACC (acc, uw1)}
14888 @tab @code{__MWTACC (@var{b}, @var{a})}
14889 @tab @code{MWTACC @var{a},@var{b}}
14890 @item @code{void __MWTACCG (acc, uw1)}
14891 @tab @code{__MWTACCG (@var{b}, @var{a})}
14892 @tab @code{MWTACCG @var{a},@var{b}}
14893 @item @code{uw1 __MXOR (uw1, uw1)}
14894 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
14895 @tab @code{MXOR @var{a},@var{b},@var{c}}
14896 @end multitable
14898 @node Raw read/write Functions
14899 @subsubsection Raw Read/Write Functions
14901 This sections describes built-in functions related to read and write
14902 instructions to access memory.  These functions generate
14903 @code{membar} instructions to flush the I/O load and stores where
14904 appropriate, as described in Fujitsu's manual described above.
14906 @table @code
14908 @item unsigned char __builtin_read8 (void *@var{data})
14909 @item unsigned short __builtin_read16 (void *@var{data})
14910 @item unsigned long __builtin_read32 (void *@var{data})
14911 @item unsigned long long __builtin_read64 (void *@var{data})
14913 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
14914 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
14915 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
14916 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
14917 @end table
14919 @node Other Built-in Functions
14920 @subsubsection Other Built-in Functions
14922 This section describes built-in functions that are not named after
14923 a specific FR-V instruction.
14925 @table @code
14926 @item sw2 __IACCreadll (iacc @var{reg})
14927 Return the full 64-bit value of IACC0@.  The @var{reg} argument is reserved
14928 for future expansion and must be 0.
14930 @item sw1 __IACCreadl (iacc @var{reg})
14931 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
14932 Other values of @var{reg} are rejected as invalid.
14934 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
14935 Set the full 64-bit value of IACC0 to @var{x}.  The @var{reg} argument
14936 is reserved for future expansion and must be 0.
14938 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
14939 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
14940 is 1.  Other values of @var{reg} are rejected as invalid.
14942 @item void __data_prefetch0 (const void *@var{x})
14943 Use the @code{dcpl} instruction to load the contents of address @var{x}
14944 into the data cache.
14946 @item void __data_prefetch (const void *@var{x})
14947 Use the @code{nldub} instruction to load the contents of address @var{x}
14948 into the data cache.  The instruction is issued in slot I1@.
14949 @end table
14951 @node MIPS DSP Built-in Functions
14952 @subsection MIPS DSP Built-in Functions
14954 The MIPS DSP Application-Specific Extension (ASE) includes new
14955 instructions that are designed to improve the performance of DSP and
14956 media applications.  It provides instructions that operate on packed
14957 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
14959 GCC supports MIPS DSP operations using both the generic
14960 vector extensions (@pxref{Vector Extensions}) and a collection of
14961 MIPS-specific built-in functions.  Both kinds of support are
14962 enabled by the @option{-mdsp} command-line option.
14964 Revision 2 of the ASE was introduced in the second half of 2006.
14965 This revision adds extra instructions to the original ASE, but is
14966 otherwise backwards-compatible with it.  You can select revision 2
14967 using the command-line option @option{-mdspr2}; this option implies
14968 @option{-mdsp}.
14970 The SCOUNT and POS bits of the DSP control register are global.  The
14971 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
14972 POS bits.  During optimization, the compiler does not delete these
14973 instructions and it does not delete calls to functions containing
14974 these instructions.
14976 At present, GCC only provides support for operations on 32-bit
14977 vectors.  The vector type associated with 8-bit integer data is
14978 usually called @code{v4i8}, the vector type associated with Q7
14979 is usually called @code{v4q7}, the vector type associated with 16-bit
14980 integer data is usually called @code{v2i16}, and the vector type
14981 associated with Q15 is usually called @code{v2q15}.  They can be
14982 defined in C as follows:
14984 @smallexample
14985 typedef signed char v4i8 __attribute__ ((vector_size(4)));
14986 typedef signed char v4q7 __attribute__ ((vector_size(4)));
14987 typedef short v2i16 __attribute__ ((vector_size(4)));
14988 typedef short v2q15 __attribute__ ((vector_size(4)));
14989 @end smallexample
14991 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
14992 initialized in the same way as aggregates.  For example:
14994 @smallexample
14995 v4i8 a = @{1, 2, 3, 4@};
14996 v4i8 b;
14997 b = (v4i8) @{5, 6, 7, 8@};
14999 v2q15 c = @{0x0fcb, 0x3a75@};
15000 v2q15 d;
15001 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
15002 @end smallexample
15004 @emph{Note:} The CPU's endianness determines the order in which values
15005 are packed.  On little-endian targets, the first value is the least
15006 significant and the last value is the most significant.  The opposite
15007 order applies to big-endian targets.  For example, the code above
15008 sets the lowest byte of @code{a} to @code{1} on little-endian targets
15009 and @code{4} on big-endian targets.
15011 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
15012 representation.  As shown in this example, the integer representation
15013 of a Q7 value can be obtained by multiplying the fractional value by
15014 @code{0x1.0p7}.  The equivalent for Q15 values is to multiply by
15015 @code{0x1.0p15}.  The equivalent for Q31 values is to multiply by
15016 @code{0x1.0p31}.
15018 The table below lists the @code{v4i8} and @code{v2q15} operations for which
15019 hardware support exists.  @code{a} and @code{b} are @code{v4i8} values,
15020 and @code{c} and @code{d} are @code{v2q15} values.
15022 @multitable @columnfractions .50 .50
15023 @item C code @tab MIPS instruction
15024 @item @code{a + b} @tab @code{addu.qb}
15025 @item @code{c + d} @tab @code{addq.ph}
15026 @item @code{a - b} @tab @code{subu.qb}
15027 @item @code{c - d} @tab @code{subq.ph}
15028 @end multitable
15030 The table below lists the @code{v2i16} operation for which
15031 hardware support exists for the DSP ASE REV 2.  @code{e} and @code{f} are
15032 @code{v2i16} values.
15034 @multitable @columnfractions .50 .50
15035 @item C code @tab MIPS instruction
15036 @item @code{e * f} @tab @code{mul.ph}
15037 @end multitable
15039 It is easier to describe the DSP built-in functions if we first define
15040 the following types:
15042 @smallexample
15043 typedef int q31;
15044 typedef int i32;
15045 typedef unsigned int ui32;
15046 typedef long long a64;
15047 @end smallexample
15049 @code{q31} and @code{i32} are actually the same as @code{int}, but we
15050 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
15051 indicate a 32-bit integer value.  Similarly, @code{a64} is the same as
15052 @code{long long}, but we use @code{a64} to indicate values that are
15053 placed in one of the four DSP accumulators (@code{$ac0},
15054 @code{$ac1}, @code{$ac2} or @code{$ac3}).
15056 Also, some built-in functions prefer or require immediate numbers as
15057 parameters, because the corresponding DSP instructions accept both immediate
15058 numbers and register operands, or accept immediate numbers only.  The
15059 immediate parameters are listed as follows.
15061 @smallexample
15062 imm0_3: 0 to 3.
15063 imm0_7: 0 to 7.
15064 imm0_15: 0 to 15.
15065 imm0_31: 0 to 31.
15066 imm0_63: 0 to 63.
15067 imm0_255: 0 to 255.
15068 imm_n32_31: -32 to 31.
15069 imm_n512_511: -512 to 511.
15070 @end smallexample
15072 The following built-in functions map directly to a particular MIPS DSP
15073 instruction.  Please refer to the architecture specification
15074 for details on what each instruction does.
15076 @smallexample
15077 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
15078 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
15079 q31 __builtin_mips_addq_s_w (q31, q31)
15080 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
15081 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
15082 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
15083 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
15084 q31 __builtin_mips_subq_s_w (q31, q31)
15085 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
15086 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
15087 i32 __builtin_mips_addsc (i32, i32)
15088 i32 __builtin_mips_addwc (i32, i32)
15089 i32 __builtin_mips_modsub (i32, i32)
15090 i32 __builtin_mips_raddu_w_qb (v4i8)
15091 v2q15 __builtin_mips_absq_s_ph (v2q15)
15092 q31 __builtin_mips_absq_s_w (q31)
15093 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
15094 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
15095 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
15096 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
15097 q31 __builtin_mips_preceq_w_phl (v2q15)
15098 q31 __builtin_mips_preceq_w_phr (v2q15)
15099 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
15100 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
15101 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
15102 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
15103 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
15104 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
15105 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
15106 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
15107 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
15108 v4i8 __builtin_mips_shll_qb (v4i8, i32)
15109 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
15110 v2q15 __builtin_mips_shll_ph (v2q15, i32)
15111 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
15112 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
15113 q31 __builtin_mips_shll_s_w (q31, imm0_31)
15114 q31 __builtin_mips_shll_s_w (q31, i32)
15115 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
15116 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
15117 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
15118 v2q15 __builtin_mips_shra_ph (v2q15, i32)
15119 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
15120 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
15121 q31 __builtin_mips_shra_r_w (q31, imm0_31)
15122 q31 __builtin_mips_shra_r_w (q31, i32)
15123 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
15124 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
15125 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
15126 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
15127 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
15128 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
15129 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
15130 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
15131 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
15132 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
15133 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
15134 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
15135 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
15136 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
15137 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
15138 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
15139 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
15140 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
15141 i32 __builtin_mips_bitrev (i32)
15142 i32 __builtin_mips_insv (i32, i32)
15143 v4i8 __builtin_mips_repl_qb (imm0_255)
15144 v4i8 __builtin_mips_repl_qb (i32)
15145 v2q15 __builtin_mips_repl_ph (imm_n512_511)
15146 v2q15 __builtin_mips_repl_ph (i32)
15147 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
15148 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
15149 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
15150 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
15151 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
15152 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
15153 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
15154 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
15155 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
15156 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
15157 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
15158 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
15159 i32 __builtin_mips_extr_w (a64, imm0_31)
15160 i32 __builtin_mips_extr_w (a64, i32)
15161 i32 __builtin_mips_extr_r_w (a64, imm0_31)
15162 i32 __builtin_mips_extr_s_h (a64, i32)
15163 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
15164 i32 __builtin_mips_extr_rs_w (a64, i32)
15165 i32 __builtin_mips_extr_s_h (a64, imm0_31)
15166 i32 __builtin_mips_extr_r_w (a64, i32)
15167 i32 __builtin_mips_extp (a64, imm0_31)
15168 i32 __builtin_mips_extp (a64, i32)
15169 i32 __builtin_mips_extpdp (a64, imm0_31)
15170 i32 __builtin_mips_extpdp (a64, i32)
15171 a64 __builtin_mips_shilo (a64, imm_n32_31)
15172 a64 __builtin_mips_shilo (a64, i32)
15173 a64 __builtin_mips_mthlip (a64, i32)
15174 void __builtin_mips_wrdsp (i32, imm0_63)
15175 i32 __builtin_mips_rddsp (imm0_63)
15176 i32 __builtin_mips_lbux (void *, i32)
15177 i32 __builtin_mips_lhx (void *, i32)
15178 i32 __builtin_mips_lwx (void *, i32)
15179 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
15180 i32 __builtin_mips_bposge32 (void)
15181 a64 __builtin_mips_madd (a64, i32, i32);
15182 a64 __builtin_mips_maddu (a64, ui32, ui32);
15183 a64 __builtin_mips_msub (a64, i32, i32);
15184 a64 __builtin_mips_msubu (a64, ui32, ui32);
15185 a64 __builtin_mips_mult (i32, i32);
15186 a64 __builtin_mips_multu (ui32, ui32);
15187 @end smallexample
15189 The following built-in functions map directly to a particular MIPS DSP REV 2
15190 instruction.  Please refer to the architecture specification
15191 for details on what each instruction does.
15193 @smallexample
15194 v4q7 __builtin_mips_absq_s_qb (v4q7);
15195 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
15196 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
15197 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
15198 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
15199 i32 __builtin_mips_append (i32, i32, imm0_31);
15200 i32 __builtin_mips_balign (i32, i32, imm0_3);
15201 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
15202 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
15203 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
15204 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
15205 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
15206 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
15207 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
15208 q31 __builtin_mips_mulq_rs_w (q31, q31);
15209 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
15210 q31 __builtin_mips_mulq_s_w (q31, q31);
15211 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
15212 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
15213 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
15214 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
15215 i32 __builtin_mips_prepend (i32, i32, imm0_31);
15216 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
15217 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
15218 v4i8 __builtin_mips_shra_qb (v4i8, i32);
15219 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
15220 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
15221 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
15222 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
15223 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
15224 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
15225 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
15226 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
15227 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
15228 q31 __builtin_mips_addqh_w (q31, q31);
15229 q31 __builtin_mips_addqh_r_w (q31, q31);
15230 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
15231 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
15232 q31 __builtin_mips_subqh_w (q31, q31);
15233 q31 __builtin_mips_subqh_r_w (q31, q31);
15234 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
15235 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
15236 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
15237 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
15238 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
15239 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
15240 @end smallexample
15243 @node MIPS Paired-Single Support
15244 @subsection MIPS Paired-Single Support
15246 The MIPS64 architecture includes a number of instructions that
15247 operate on pairs of single-precision floating-point values.
15248 Each pair is packed into a 64-bit floating-point register,
15249 with one element being designated the ``upper half'' and
15250 the other being designated the ``lower half''.
15252 GCC supports paired-single operations using both the generic
15253 vector extensions (@pxref{Vector Extensions}) and a collection of
15254 MIPS-specific built-in functions.  Both kinds of support are
15255 enabled by the @option{-mpaired-single} command-line option.
15257 The vector type associated with paired-single values is usually
15258 called @code{v2sf}.  It can be defined in C as follows:
15260 @smallexample
15261 typedef float v2sf __attribute__ ((vector_size (8)));
15262 @end smallexample
15264 @code{v2sf} values are initialized in the same way as aggregates.
15265 For example:
15267 @smallexample
15268 v2sf a = @{1.5, 9.1@};
15269 v2sf b;
15270 float e, f;
15271 b = (v2sf) @{e, f@};
15272 @end smallexample
15274 @emph{Note:} The CPU's endianness determines which value is stored in
15275 the upper half of a register and which value is stored in the lower half.
15276 On little-endian targets, the first value is the lower one and the second
15277 value is the upper one.  The opposite order applies to big-endian targets.
15278 For example, the code above sets the lower half of @code{a} to
15279 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
15281 @node MIPS Loongson Built-in Functions
15282 @subsection MIPS Loongson Built-in Functions
15284 GCC provides intrinsics to access the SIMD instructions provided by the
15285 ST Microelectronics Loongson-2E and -2F processors.  These intrinsics,
15286 available after inclusion of the @code{loongson.h} header file,
15287 operate on the following 64-bit vector types:
15289 @itemize
15290 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
15291 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
15292 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
15293 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
15294 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
15295 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
15296 @end itemize
15298 The intrinsics provided are listed below; each is named after the
15299 machine instruction to which it corresponds, with suffixes added as
15300 appropriate to distinguish intrinsics that expand to the same machine
15301 instruction yet have different argument types.  Refer to the architecture
15302 documentation for a description of the functionality of each
15303 instruction.
15305 @smallexample
15306 int16x4_t packsswh (int32x2_t s, int32x2_t t);
15307 int8x8_t packsshb (int16x4_t s, int16x4_t t);
15308 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
15309 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
15310 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
15311 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
15312 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
15313 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
15314 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
15315 uint64_t paddd_u (uint64_t s, uint64_t t);
15316 int64_t paddd_s (int64_t s, int64_t t);
15317 int16x4_t paddsh (int16x4_t s, int16x4_t t);
15318 int8x8_t paddsb (int8x8_t s, int8x8_t t);
15319 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
15320 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
15321 uint64_t pandn_ud (uint64_t s, uint64_t t);
15322 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
15323 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
15324 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
15325 int64_t pandn_sd (int64_t s, int64_t t);
15326 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
15327 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
15328 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
15329 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
15330 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
15331 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
15332 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
15333 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
15334 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
15335 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
15336 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
15337 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
15338 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
15339 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
15340 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
15341 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
15342 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
15343 uint16x4_t pextrh_u (uint16x4_t s, int field);
15344 int16x4_t pextrh_s (int16x4_t s, int field);
15345 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
15346 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
15347 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
15348 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
15349 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
15350 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
15351 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
15352 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
15353 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
15354 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
15355 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
15356 int16x4_t pminsh (int16x4_t s, int16x4_t t);
15357 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
15358 uint8x8_t pmovmskb_u (uint8x8_t s);
15359 int8x8_t pmovmskb_s (int8x8_t s);
15360 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
15361 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
15362 int16x4_t pmullh (int16x4_t s, int16x4_t t);
15363 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
15364 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
15365 uint16x4_t biadd (uint8x8_t s);
15366 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
15367 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
15368 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
15369 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
15370 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
15371 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
15372 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
15373 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
15374 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
15375 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
15376 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
15377 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
15378 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
15379 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
15380 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
15381 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
15382 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
15383 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
15384 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
15385 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
15386 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
15387 uint64_t psubd_u (uint64_t s, uint64_t t);
15388 int64_t psubd_s (int64_t s, int64_t t);
15389 int16x4_t psubsh (int16x4_t s, int16x4_t t);
15390 int8x8_t psubsb (int8x8_t s, int8x8_t t);
15391 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
15392 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
15393 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
15394 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
15395 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
15396 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
15397 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
15398 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
15399 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
15400 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
15401 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
15402 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
15403 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
15404 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
15405 @end smallexample
15407 @menu
15408 * Paired-Single Arithmetic::
15409 * Paired-Single Built-in Functions::
15410 * MIPS-3D Built-in Functions::
15411 @end menu
15413 @node Paired-Single Arithmetic
15414 @subsubsection Paired-Single Arithmetic
15416 The table below lists the @code{v2sf} operations for which hardware
15417 support exists.  @code{a}, @code{b} and @code{c} are @code{v2sf}
15418 values and @code{x} is an integral value.
15420 @multitable @columnfractions .50 .50
15421 @item C code @tab MIPS instruction
15422 @item @code{a + b} @tab @code{add.ps}
15423 @item @code{a - b} @tab @code{sub.ps}
15424 @item @code{-a} @tab @code{neg.ps}
15425 @item @code{a * b} @tab @code{mul.ps}
15426 @item @code{a * b + c} @tab @code{madd.ps}
15427 @item @code{a * b - c} @tab @code{msub.ps}
15428 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
15429 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
15430 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
15431 @end multitable
15433 Note that the multiply-accumulate instructions can be disabled
15434 using the command-line option @code{-mno-fused-madd}.
15436 @node Paired-Single Built-in Functions
15437 @subsubsection Paired-Single Built-in Functions
15439 The following paired-single functions map directly to a particular
15440 MIPS instruction.  Please refer to the architecture specification
15441 for details on what each instruction does.
15443 @table @code
15444 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
15445 Pair lower lower (@code{pll.ps}).
15447 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
15448 Pair upper lower (@code{pul.ps}).
15450 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
15451 Pair lower upper (@code{plu.ps}).
15453 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
15454 Pair upper upper (@code{puu.ps}).
15456 @item v2sf __builtin_mips_cvt_ps_s (float, float)
15457 Convert pair to paired single (@code{cvt.ps.s}).
15459 @item float __builtin_mips_cvt_s_pl (v2sf)
15460 Convert pair lower to single (@code{cvt.s.pl}).
15462 @item float __builtin_mips_cvt_s_pu (v2sf)
15463 Convert pair upper to single (@code{cvt.s.pu}).
15465 @item v2sf __builtin_mips_abs_ps (v2sf)
15466 Absolute value (@code{abs.ps}).
15468 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
15469 Align variable (@code{alnv.ps}).
15471 @emph{Note:} The value of the third parameter must be 0 or 4
15472 modulo 8, otherwise the result is unpredictable.  Please read the
15473 instruction description for details.
15474 @end table
15476 The following multi-instruction functions are also available.
15477 In each case, @var{cond} can be any of the 16 floating-point conditions:
15478 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
15479 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
15480 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
15482 @table @code
15483 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
15484 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
15485 Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
15486 @code{movt.ps}/@code{movf.ps}).
15488 The @code{movt} functions return the value @var{x} computed by:
15490 @smallexample
15491 c.@var{cond}.ps @var{cc},@var{a},@var{b}
15492 mov.ps @var{x},@var{c}
15493 movt.ps @var{x},@var{d},@var{cc}
15494 @end smallexample
15496 The @code{movf} functions are similar but use @code{movf.ps} instead
15497 of @code{movt.ps}.
15499 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
15500 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
15501 Comparison of two paired-single values (@code{c.@var{cond}.ps},
15502 @code{bc1t}/@code{bc1f}).
15504 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
15505 and return either the upper or lower half of the result.  For example:
15507 @smallexample
15508 v2sf a, b;
15509 if (__builtin_mips_upper_c_eq_ps (a, b))
15510   upper_halves_are_equal ();
15511 else
15512   upper_halves_are_unequal ();
15514 if (__builtin_mips_lower_c_eq_ps (a, b))
15515   lower_halves_are_equal ();
15516 else
15517   lower_halves_are_unequal ();
15518 @end smallexample
15519 @end table
15521 @node MIPS-3D Built-in Functions
15522 @subsubsection MIPS-3D Built-in Functions
15524 The MIPS-3D Application-Specific Extension (ASE) includes additional
15525 paired-single instructions that are designed to improve the performance
15526 of 3D graphics operations.  Support for these instructions is controlled
15527 by the @option{-mips3d} command-line option.
15529 The functions listed below map directly to a particular MIPS-3D
15530 instruction.  Please refer to the architecture specification for
15531 more details on what each instruction does.
15533 @table @code
15534 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
15535 Reduction add (@code{addr.ps}).
15537 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
15538 Reduction multiply (@code{mulr.ps}).
15540 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
15541 Convert paired single to paired word (@code{cvt.pw.ps}).
15543 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
15544 Convert paired word to paired single (@code{cvt.ps.pw}).
15546 @item float __builtin_mips_recip1_s (float)
15547 @itemx double __builtin_mips_recip1_d (double)
15548 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
15549 Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
15551 @item float __builtin_mips_recip2_s (float, float)
15552 @itemx double __builtin_mips_recip2_d (double, double)
15553 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
15554 Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
15556 @item float __builtin_mips_rsqrt1_s (float)
15557 @itemx double __builtin_mips_rsqrt1_d (double)
15558 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
15559 Reduced-precision reciprocal square root (sequence step 1)
15560 (@code{rsqrt1.@var{fmt}}).
15562 @item float __builtin_mips_rsqrt2_s (float, float)
15563 @itemx double __builtin_mips_rsqrt2_d (double, double)
15564 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
15565 Reduced-precision reciprocal square root (sequence step 2)
15566 (@code{rsqrt2.@var{fmt}}).
15567 @end table
15569 The following multi-instruction functions are also available.
15570 In each case, @var{cond} can be any of the 16 floating-point conditions:
15571 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
15572 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
15573 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
15575 @table @code
15576 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
15577 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
15578 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
15579 @code{bc1t}/@code{bc1f}).
15581 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
15582 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
15583 For example:
15585 @smallexample
15586 float a, b;
15587 if (__builtin_mips_cabs_eq_s (a, b))
15588   true ();
15589 else
15590   false ();
15591 @end smallexample
15593 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
15594 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
15595 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
15596 @code{bc1t}/@code{bc1f}).
15598 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
15599 and return either the upper or lower half of the result.  For example:
15601 @smallexample
15602 v2sf a, b;
15603 if (__builtin_mips_upper_cabs_eq_ps (a, b))
15604   upper_halves_are_equal ();
15605 else
15606   upper_halves_are_unequal ();
15608 if (__builtin_mips_lower_cabs_eq_ps (a, b))
15609   lower_halves_are_equal ();
15610 else
15611   lower_halves_are_unequal ();
15612 @end smallexample
15614 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
15615 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
15616 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
15617 @code{movt.ps}/@code{movf.ps}).
15619 The @code{movt} functions return the value @var{x} computed by:
15621 @smallexample
15622 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
15623 mov.ps @var{x},@var{c}
15624 movt.ps @var{x},@var{d},@var{cc}
15625 @end smallexample
15627 The @code{movf} functions are similar but use @code{movf.ps} instead
15628 of @code{movt.ps}.
15630 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
15631 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
15632 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
15633 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
15634 Comparison of two paired-single values
15635 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
15636 @code{bc1any2t}/@code{bc1any2f}).
15638 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
15639 or @code{cabs.@var{cond}.ps}.  The @code{any} forms return @code{true} if either
15640 result is @code{true} and the @code{all} forms return @code{true} if both results are @code{true}.
15641 For example:
15643 @smallexample
15644 v2sf a, b;
15645 if (__builtin_mips_any_c_eq_ps (a, b))
15646   one_is_true ();
15647 else
15648   both_are_false ();
15650 if (__builtin_mips_all_c_eq_ps (a, b))
15651   both_are_true ();
15652 else
15653   one_is_false ();
15654 @end smallexample
15656 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
15657 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
15658 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
15659 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
15660 Comparison of four paired-single values
15661 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
15662 @code{bc1any4t}/@code{bc1any4f}).
15664 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
15665 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
15666 The @code{any} forms return @code{true} if any of the four results are @code{true}
15667 and the @code{all} forms return @code{true} if all four results are @code{true}.
15668 For example:
15670 @smallexample
15671 v2sf a, b, c, d;
15672 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
15673   some_are_true ();
15674 else
15675   all_are_false ();
15677 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
15678   all_are_true ();
15679 else
15680   some_are_false ();
15681 @end smallexample
15682 @end table
15684 @node MIPS SIMD Architecture (MSA) Support
15685 @subsection MIPS SIMD Architecture (MSA) Support
15687 @menu
15688 * MIPS SIMD Architecture Built-in Functions::
15689 @end menu
15691 GCC provides intrinsics to access the SIMD instructions provided by the
15692 MSA MIPS SIMD Architecture.  The interface is made available by including
15693 @code{<msa.h>} and using @option{-mmsa -mhard-float -mfp64 -mnan=2008}.
15694 For each @code{__builtin_msa_*}, there is a shortened name of the intrinsic,
15695 @code{__msa_*}.
15697 MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32- and
15698 64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating point
15699 data elements.  The following vectors typedefs are included in @code{msa.h}:
15700 @itemize
15701 @item @code{v16i8}, a vector of sixteen signed 8-bit integers;
15702 @item @code{v16u8}, a vector of sixteen unsigned 8-bit integers;
15703 @item @code{v8i16}, a vector of eight signed 16-bit integers;
15704 @item @code{v8u16}, a vector of eight unsigned 16-bit integers;
15705 @item @code{v4i32}, a vector of four signed 32-bit integers;
15706 @item @code{v4u32}, a vector of four unsigned 32-bit integers;
15707 @item @code{v2i64}, a vector of two signed 64-bit integers;
15708 @item @code{v2u64}, a vector of two unsigned 64-bit integers;
15709 @item @code{v4f32}, a vector of four 32-bit floats;
15710 @item @code{v2f64}, a vector of two 64-bit doubles.
15711 @end itemize
15713 Instructions and corresponding built-ins may have additional restrictions and/or
15714 input/output values manipulated:
15715 @itemize
15716 @item @code{imm0_1}, an integer literal in range 0 to 1;
15717 @item @code{imm0_3}, an integer literal in range 0 to 3;
15718 @item @code{imm0_7}, an integer literal in range 0 to 7;
15719 @item @code{imm0_15}, an integer literal in range 0 to 15;
15720 @item @code{imm0_31}, an integer literal in range 0 to 31;
15721 @item @code{imm0_63}, an integer literal in range 0 to 63;
15722 @item @code{imm0_255}, an integer literal in range 0 to 255;
15723 @item @code{imm_n16_15}, an integer literal in range -16 to 15;
15724 @item @code{imm_n512_511}, an integer literal in range -512 to 511;
15725 @item @code{imm_n1024_1022}, an integer literal in range -512 to 511 left
15726 shifted by 1 bit, i.e., -1024, -1022, @dots{}, 1020, 1022;
15727 @item @code{imm_n2048_2044}, an integer literal in range -512 to 511 left
15728 shifted by 2 bits, i.e., -2048, -2044, @dots{}, 2040, 2044;
15729 @item @code{imm_n4096_4088}, an integer literal in range -512 to 511 left
15730 shifted by 3 bits, i.e., -4096, -4088, @dots{}, 4080, 4088;
15731 @item @code{imm1_4}, an integer literal in range 1 to 4;
15732 @item @code{i32, i64, u32, u64, f32, f64}, defined as follows:
15733 @end itemize
15735 @smallexample
15737 typedef int i32;
15738 #if __LONG_MAX__ == __LONG_LONG_MAX__
15739 typedef long i64;
15740 #else
15741 typedef long long i64;
15742 #endif
15744 typedef unsigned int u32;
15745 #if __LONG_MAX__ == __LONG_LONG_MAX__
15746 typedef unsigned long u64;
15747 #else
15748 typedef unsigned long long u64;
15749 #endif
15751 typedef double f64;
15752 typedef float f32;
15754 @end smallexample
15756 @node MIPS SIMD Architecture Built-in Functions
15757 @subsubsection MIPS SIMD Architecture Built-in Functions
15759 The intrinsics provided are listed below; each is named after the
15760 machine instruction.
15762 @smallexample
15763 v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
15764 v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
15765 v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
15766 v2i64 __builtin_msa_add_a_d (v2i64, v2i64);
15768 v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
15769 v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
15770 v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
15771 v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);
15773 v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
15774 v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
15775 v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
15776 v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);
15778 v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
15779 v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
15780 v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
15781 v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);
15783 v16i8 __builtin_msa_addv_b (v16i8, v16i8);
15784 v8i16 __builtin_msa_addv_h (v8i16, v8i16);
15785 v4i32 __builtin_msa_addv_w (v4i32, v4i32);
15786 v2i64 __builtin_msa_addv_d (v2i64, v2i64);
15788 v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
15789 v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
15790 v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
15791 v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);
15793 v16u8 __builtin_msa_and_v (v16u8, v16u8);
15795 v16u8 __builtin_msa_andi_b (v16u8, imm0_255);
15797 v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
15798 v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
15799 v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
15800 v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);
15802 v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
15803 v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
15804 v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
15805 v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);
15807 v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
15808 v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
15809 v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
15810 v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);
15812 v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
15813 v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
15814 v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
15815 v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);
15817 v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
15818 v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
15819 v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
15820 v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);
15822 v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
15823 v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
15824 v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
15825 v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);
15827 v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
15828 v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
15829 v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
15830 v2u64 __builtin_msa_bclr_d (v2u64, v2u64);
15832 v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
15833 v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
15834 v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
15835 v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);
15837 v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
15838 v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
15839 v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
15840 v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);
15842 v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
15843 v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
15844 v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
15845 v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);
15847 v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
15848 v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
15849 v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
15850 v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);
15852 v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
15853 v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
15854 v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
15855 v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);
15857 v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);
15859 v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);
15861 v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);
15863 v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);
15865 v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
15866 v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
15867 v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
15868 v2u64 __builtin_msa_bneg_d (v2u64, v2u64);
15870 v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
15871 v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
15872 v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
15873 v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);
15875 i32 __builtin_msa_bnz_b (v16u8);
15876 i32 __builtin_msa_bnz_h (v8u16);
15877 i32 __builtin_msa_bnz_w (v4u32);
15878 i32 __builtin_msa_bnz_d (v2u64);
15880 i32 __builtin_msa_bnz_v (v16u8);
15882 v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);
15884 v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);
15886 v16u8 __builtin_msa_bset_b (v16u8, v16u8);
15887 v8u16 __builtin_msa_bset_h (v8u16, v8u16);
15888 v4u32 __builtin_msa_bset_w (v4u32, v4u32);
15889 v2u64 __builtin_msa_bset_d (v2u64, v2u64);
15891 v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
15892 v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
15893 v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
15894 v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);
15896 i32 __builtin_msa_bz_b (v16u8);
15897 i32 __builtin_msa_bz_h (v8u16);
15898 i32 __builtin_msa_bz_w (v4u32);
15899 i32 __builtin_msa_bz_d (v2u64);
15901 i32 __builtin_msa_bz_v (v16u8);
15903 v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
15904 v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
15905 v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
15906 v2i64 __builtin_msa_ceq_d (v2i64, v2i64);
15908 v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
15909 v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
15910 v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
15911 v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);
15913 i32 __builtin_msa_cfcmsa (imm0_31);
15915 v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
15916 v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
15917 v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
15918 v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);
15920 v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
15921 v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
15922 v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
15923 v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);
15925 v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
15926 v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
15927 v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
15928 v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);
15930 v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
15931 v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
15932 v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
15933 v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);
15935 v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
15936 v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
15937 v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
15938 v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);
15940 v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
15941 v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
15942 v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
15943 v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);
15945 v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
15946 v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
15947 v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
15948 v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);
15950 v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
15951 v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
15952 v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
15953 v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);
15955 i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
15956 i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
15957 i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
15958 i64 __builtin_msa_copy_s_d (v2i64, imm0_1);
15960 u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
15961 u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
15962 u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
15963 u64 __builtin_msa_copy_u_d (v2i64, imm0_1);
15965 void __builtin_msa_ctcmsa (imm0_31, i32);
15967 v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
15968 v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
15969 v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
15970 v2i64 __builtin_msa_div_s_d (v2i64, v2i64);
15972 v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
15973 v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
15974 v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
15975 v2u64 __builtin_msa_div_u_d (v2u64, v2u64);
15977 v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
15978 v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
15979 v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);
15981 v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
15982 v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
15983 v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);
15985 v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
15986 v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
15987 v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);
15989 v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
15990 v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
15991 v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);
15993 v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
15994 v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
15995 v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);
15997 v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
15998 v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
15999 v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);
16001 v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
16002 v2f64 __builtin_msa_fadd_d (v2f64, v2f64);
16004 v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
16005 v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);
16007 v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
16008 v2i64 __builtin_msa_fceq_d (v2f64, v2f64);
16010 v4i32 __builtin_msa_fclass_w (v4f32);
16011 v2i64 __builtin_msa_fclass_d (v2f64);
16013 v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
16014 v2i64 __builtin_msa_fcle_d (v2f64, v2f64);
16016 v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
16017 v2i64 __builtin_msa_fclt_d (v2f64, v2f64);
16019 v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
16020 v2i64 __builtin_msa_fcne_d (v2f64, v2f64);
16022 v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
16023 v2i64 __builtin_msa_fcor_d (v2f64, v2f64);
16025 v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
16026 v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);
16028 v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
16029 v2i64 __builtin_msa_fcule_d (v2f64, v2f64);
16031 v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
16032 v2i64 __builtin_msa_fcult_d (v2f64, v2f64);
16034 v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
16035 v2i64 __builtin_msa_fcun_d (v2f64, v2f64);
16037 v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
16038 v2i64 __builtin_msa_fcune_d (v2f64, v2f64);
16040 v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
16041 v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);
16043 v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
16044 v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);
16046 v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
16047 v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);
16049 v4f32 __builtin_msa_fexupl_w (v8i16);
16050 v2f64 __builtin_msa_fexupl_d (v4f32);
16052 v4f32 __builtin_msa_fexupr_w (v8i16);
16053 v2f64 __builtin_msa_fexupr_d (v4f32);
16055 v4f32 __builtin_msa_ffint_s_w (v4i32);
16056 v2f64 __builtin_msa_ffint_s_d (v2i64);
16058 v4f32 __builtin_msa_ffint_u_w (v4u32);
16059 v2f64 __builtin_msa_ffint_u_d (v2u64);
16061 v4f32 __builtin_msa_ffql_w (v8i16);
16062 v2f64 __builtin_msa_ffql_d (v4i32);
16064 v4f32 __builtin_msa_ffqr_w (v8i16);
16065 v2f64 __builtin_msa_ffqr_d (v4i32);
16067 v16i8 __builtin_msa_fill_b (i32);
16068 v8i16 __builtin_msa_fill_h (i32);
16069 v4i32 __builtin_msa_fill_w (i32);
16070 v2i64 __builtin_msa_fill_d (i64);
16072 v4f32 __builtin_msa_flog2_w (v4f32);
16073 v2f64 __builtin_msa_flog2_d (v2f64);
16075 v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
16076 v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);
16078 v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
16079 v2f64 __builtin_msa_fmax_d (v2f64, v2f64);
16081 v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
16082 v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);
16084 v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
16085 v2f64 __builtin_msa_fmin_d (v2f64, v2f64);
16087 v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
16088 v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);
16090 v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
16091 v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);
16093 v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
16094 v2f64 __builtin_msa_fmul_d (v2f64, v2f64);
16096 v4f32 __builtin_msa_frint_w (v4f32);
16097 v2f64 __builtin_msa_frint_d (v2f64);
16099 v4f32 __builtin_msa_frcp_w (v4f32);
16100 v2f64 __builtin_msa_frcp_d (v2f64);
16102 v4f32 __builtin_msa_frsqrt_w (v4f32);
16103 v2f64 __builtin_msa_frsqrt_d (v2f64);
16105 v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
16106 v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);
16108 v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
16109 v2i64 __builtin_msa_fseq_d (v2f64, v2f64);
16111 v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
16112 v2i64 __builtin_msa_fsle_d (v2f64, v2f64);
16114 v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
16115 v2i64 __builtin_msa_fslt_d (v2f64, v2f64);
16117 v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
16118 v2i64 __builtin_msa_fsne_d (v2f64, v2f64);
16120 v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
16121 v2i64 __builtin_msa_fsor_d (v2f64, v2f64);
16123 v4f32 __builtin_msa_fsqrt_w (v4f32);
16124 v2f64 __builtin_msa_fsqrt_d (v2f64);
16126 v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
16127 v2f64 __builtin_msa_fsub_d (v2f64, v2f64);
16129 v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
16130 v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);
16132 v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
16133 v2i64 __builtin_msa_fsule_d (v2f64, v2f64);
16135 v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
16136 v2i64 __builtin_msa_fsult_d (v2f64, v2f64);
16138 v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
16139 v2i64 __builtin_msa_fsun_d (v2f64, v2f64);
16141 v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
16142 v2i64 __builtin_msa_fsune_d (v2f64, v2f64);
16144 v4i32 __builtin_msa_ftint_s_w (v4f32);
16145 v2i64 __builtin_msa_ftint_s_d (v2f64);
16147 v4u32 __builtin_msa_ftint_u_w (v4f32);
16148 v2u64 __builtin_msa_ftint_u_d (v2f64);
16150 v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
16151 v4i32 __builtin_msa_ftq_w (v2f64, v2f64);
16153 v4i32 __builtin_msa_ftrunc_s_w (v4f32);
16154 v2i64 __builtin_msa_ftrunc_s_d (v2f64);
16156 v4u32 __builtin_msa_ftrunc_u_w (v4f32);
16157 v2u64 __builtin_msa_ftrunc_u_d (v2f64);
16159 v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
16160 v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
16161 v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);
16163 v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
16164 v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
16165 v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);
16167 v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
16168 v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
16169 v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);
16171 v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
16172 v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
16173 v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);
16175 v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
16176 v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
16177 v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
16178 v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);
16180 v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
16181 v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
16182 v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
16183 v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);
16185 v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
16186 v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
16187 v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
16188 v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);
16190 v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
16191 v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
16192 v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
16193 v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);
16195 v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
16196 v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
16197 v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
16198 v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);
16200 v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
16201 v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
16202 v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
16203 v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);
16205 v16i8 __builtin_msa_ld_b (void *, imm_n512_511);
16206 v8i16 __builtin_msa_ld_h (void *, imm_n1024_1022);
16207 v4i32 __builtin_msa_ld_w (void *, imm_n2048_2044);
16208 v2i64 __builtin_msa_ld_d (void *, imm_n4096_4088);
16210 v16i8 __builtin_msa_ldi_b (imm_n512_511);
16211 v8i16 __builtin_msa_ldi_h (imm_n512_511);
16212 v4i32 __builtin_msa_ldi_w (imm_n512_511);
16213 v2i64 __builtin_msa_ldi_d (imm_n512_511);
16215 v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
16216 v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);
16218 v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
16219 v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);
16221 v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
16222 v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
16223 v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
16224 v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);
16226 v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
16227 v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
16228 v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
16229 v2i64 __builtin_msa_max_a_d (v2i64, v2i64);
16231 v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
16232 v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
16233 v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
16234 v2i64 __builtin_msa_max_s_d (v2i64, v2i64);
16236 v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
16237 v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
16238 v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
16239 v2u64 __builtin_msa_max_u_d (v2u64, v2u64);
16241 v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
16242 v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
16243 v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
16244 v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);
16246 v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
16247 v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
16248 v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
16249 v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);
16251 v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
16252 v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
16253 v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
16254 v2i64 __builtin_msa_min_a_d (v2i64, v2i64);
16256 v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
16257 v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
16258 v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
16259 v2i64 __builtin_msa_min_s_d (v2i64, v2i64);
16261 v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
16262 v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
16263 v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
16264 v2u64 __builtin_msa_min_u_d (v2u64, v2u64);
16266 v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
16267 v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
16268 v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
16269 v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);
16271 v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
16272 v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
16273 v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
16274 v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);
16276 v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
16277 v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
16278 v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
16279 v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);
16281 v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
16282 v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
16283 v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
16284 v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);
16286 v16i8 __builtin_msa_move_v (v16i8);
16288 v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
16289 v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);
16291 v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
16292 v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);
16294 v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
16295 v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
16296 v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
16297 v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);
16299 v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
16300 v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);
16302 v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
16303 v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);
16305 v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
16306 v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
16307 v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
16308 v2i64 __builtin_msa_mulv_d (v2i64, v2i64);
16310 v16i8 __builtin_msa_nloc_b (v16i8);
16311 v8i16 __builtin_msa_nloc_h (v8i16);
16312 v4i32 __builtin_msa_nloc_w (v4i32);
16313 v2i64 __builtin_msa_nloc_d (v2i64);
16315 v16i8 __builtin_msa_nlzc_b (v16i8);
16316 v8i16 __builtin_msa_nlzc_h (v8i16);
16317 v4i32 __builtin_msa_nlzc_w (v4i32);
16318 v2i64 __builtin_msa_nlzc_d (v2i64);
16320 v16u8 __builtin_msa_nor_v (v16u8, v16u8);
16322 v16u8 __builtin_msa_nori_b (v16u8, imm0_255);
16324 v16u8 __builtin_msa_or_v (v16u8, v16u8);
16326 v16u8 __builtin_msa_ori_b (v16u8, imm0_255);
16328 v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
16329 v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
16330 v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
16331 v2i64 __builtin_msa_pckev_d (v2i64, v2i64);
16333 v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
16334 v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
16335 v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
16336 v2i64 __builtin_msa_pckod_d (v2i64, v2i64);
16338 v16i8 __builtin_msa_pcnt_b (v16i8);
16339 v8i16 __builtin_msa_pcnt_h (v8i16);
16340 v4i32 __builtin_msa_pcnt_w (v4i32);
16341 v2i64 __builtin_msa_pcnt_d (v2i64);
16343 v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
16344 v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
16345 v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
16346 v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);
16348 v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
16349 v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
16350 v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
16351 v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);
16353 v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
16354 v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
16355 v4i32 __builtin_msa_shf_w (v4i32, imm0_255);
16357 v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
16358 v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
16359 v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
16360 v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);
16362 v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
16363 v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
16364 v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
16365 v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);
16367 v16i8 __builtin_msa_sll_b (v16i8, v16i8);
16368 v8i16 __builtin_msa_sll_h (v8i16, v8i16);
16369 v4i32 __builtin_msa_sll_w (v4i32, v4i32);
16370 v2i64 __builtin_msa_sll_d (v2i64, v2i64);
16372 v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
16373 v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
16374 v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
16375 v2i64 __builtin_msa_slli_d (v2i64, imm0_63);
16377 v16i8 __builtin_msa_splat_b (v16i8, i32);
16378 v8i16 __builtin_msa_splat_h (v8i16, i32);
16379 v4i32 __builtin_msa_splat_w (v4i32, i32);
16380 v2i64 __builtin_msa_splat_d (v2i64, i32);
16382 v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
16383 v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
16384 v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
16385 v2i64 __builtin_msa_splati_d (v2i64, imm0_1);
16387 v16i8 __builtin_msa_sra_b (v16i8, v16i8);
16388 v8i16 __builtin_msa_sra_h (v8i16, v8i16);
16389 v4i32 __builtin_msa_sra_w (v4i32, v4i32);
16390 v2i64 __builtin_msa_sra_d (v2i64, v2i64);
16392 v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
16393 v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
16394 v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
16395 v2i64 __builtin_msa_srai_d (v2i64, imm0_63);
16397 v16i8 __builtin_msa_srar_b (v16i8, v16i8);
16398 v8i16 __builtin_msa_srar_h (v8i16, v8i16);
16399 v4i32 __builtin_msa_srar_w (v4i32, v4i32);
16400 v2i64 __builtin_msa_srar_d (v2i64, v2i64);
16402 v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
16403 v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
16404 v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
16405 v2i64 __builtin_msa_srari_d (v2i64, imm0_63);
16407 v16i8 __builtin_msa_srl_b (v16i8, v16i8);
16408 v8i16 __builtin_msa_srl_h (v8i16, v8i16);
16409 v4i32 __builtin_msa_srl_w (v4i32, v4i32);
16410 v2i64 __builtin_msa_srl_d (v2i64, v2i64);
16412 v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
16413 v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
16414 v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
16415 v2i64 __builtin_msa_srli_d (v2i64, imm0_63);
16417 v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
16418 v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
16419 v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
16420 v2i64 __builtin_msa_srlr_d (v2i64, v2i64);
16422 v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
16423 v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
16424 v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
16425 v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);
16427 void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
16428 void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
16429 void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
16430 void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);
16432 v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
16433 v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
16434 v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
16435 v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);
16437 v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
16438 v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
16439 v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
16440 v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);
16442 v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
16443 v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
16444 v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
16445 v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);
16447 v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
16448 v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
16449 v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
16450 v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);
16452 v16i8 __builtin_msa_subv_b (v16i8, v16i8);
16453 v8i16 __builtin_msa_subv_h (v8i16, v8i16);
16454 v4i32 __builtin_msa_subv_w (v4i32, v4i32);
16455 v2i64 __builtin_msa_subv_d (v2i64, v2i64);
16457 v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
16458 v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
16459 v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
16460 v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);
16462 v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
16463 v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
16464 v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
16465 v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);
16467 v16u8 __builtin_msa_xor_v (v16u8, v16u8);
16469 v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
16470 @end smallexample
16472 @node Other MIPS Built-in Functions
16473 @subsection Other MIPS Built-in Functions
16475 GCC provides other MIPS-specific built-in functions:
16477 @table @code
16478 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
16479 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
16480 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
16481 when this function is available.
16483 @item unsigned int __builtin_mips_get_fcsr (void)
16484 @itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
16485 Get and set the contents of the floating-point control and status register
16486 (FPU control register 31).  These functions are only available in hard-float
16487 code but can be called in both MIPS16 and non-MIPS16 contexts.
16489 @code{__builtin_mips_set_fcsr} can be used to change any bit of the
16490 register except the condition codes, which GCC assumes are preserved.
16491 @end table
16493 @node MSP430 Built-in Functions
16494 @subsection MSP430 Built-in Functions
16496 GCC provides a couple of special builtin functions to aid in the
16497 writing of interrupt handlers in C.
16499 @table @code
16500 @item __bic_SR_register_on_exit (int @var{mask})
16501 This clears the indicated bits in the saved copy of the status register
16502 currently residing on the stack.  This only works inside interrupt
16503 handlers and the changes to the status register will only take affect
16504 once the handler returns.
16506 @item __bis_SR_register_on_exit (int @var{mask})
16507 This sets the indicated bits in the saved copy of the status register
16508 currently residing on the stack.  This only works inside interrupt
16509 handlers and the changes to the status register will only take affect
16510 once the handler returns.
16512 @item __delay_cycles (long long @var{cycles})
16513 This inserts an instruction sequence that takes exactly @var{cycles}
16514 cycles (between 0 and about 17E9) to complete.  The inserted sequence
16515 may use jumps, loops, or no-ops, and does not interfere with any other
16516 instructions.  Note that @var{cycles} must be a compile-time constant
16517 integer - that is, you must pass a number, not a variable that may be
16518 optimized to a constant later.  The number of cycles delayed by this
16519 builtin is exact.
16520 @end table
16522 @node NDS32 Built-in Functions
16523 @subsection NDS32 Built-in Functions
16525 These built-in functions are available for the NDS32 target:
16527 @deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
16528 Insert an ISYNC instruction into the instruction stream where
16529 @var{addr} is an instruction address for serialization.
16530 @end deftypefn
16532 @deftypefn {Built-in Function} void __builtin_nds32_isb (void)
16533 Insert an ISB instruction into the instruction stream.
16534 @end deftypefn
16536 @deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
16537 Return the content of a system register which is mapped by @var{sr}.
16538 @end deftypefn
16540 @deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
16541 Return the content of a user space register which is mapped by @var{usr}.
16542 @end deftypefn
16544 @deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
16545 Move the @var{value} to a system register which is mapped by @var{sr}.
16546 @end deftypefn
16548 @deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
16549 Move the @var{value} to a user space register which is mapped by @var{usr}.
16550 @end deftypefn
16552 @deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
16553 Enable global interrupt.
16554 @end deftypefn
16556 @deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
16557 Disable global interrupt.
16558 @end deftypefn
16560 @node picoChip Built-in Functions
16561 @subsection picoChip Built-in Functions
16563 GCC provides an interface to selected machine instructions from the
16564 picoChip instruction set.
16566 @table @code
16567 @item int __builtin_sbc (int @var{value})
16568 Sign bit count.  Return the number of consecutive bits in @var{value}
16569 that have the same value as the sign bit.  The result is the number of
16570 leading sign bits minus one, giving the number of redundant sign bits in
16571 @var{value}.
16573 @item int __builtin_byteswap (int @var{value})
16574 Byte swap.  Return the result of swapping the upper and lower bytes of
16575 @var{value}.
16577 @item int __builtin_brev (int @var{value})
16578 Bit reversal.  Return the result of reversing the bits in
16579 @var{value}.  Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
16580 and so on.
16582 @item int __builtin_adds (int @var{x}, int @var{y})
16583 Saturating addition.  Return the result of adding @var{x} and @var{y},
16584 storing the value 32767 if the result overflows.
16586 @item int __builtin_subs (int @var{x}, int @var{y})
16587 Saturating subtraction.  Return the result of subtracting @var{y} from
16588 @var{x}, storing the value @minus{}32768 if the result overflows.
16590 @item void __builtin_halt (void)
16591 Halt.  The processor stops execution.  This built-in is useful for
16592 implementing assertions.
16594 @end table
16596 @node Basic PowerPC Built-in Functions
16597 @subsection Basic PowerPC Built-in Functions
16599 @menu
16600 * Basic PowerPC Built-in Functions Available on all Configurations::
16601 * Basic PowerPC Built-in Functions Available on ISA 2.05::
16602 * Basic PowerPC Built-in Functions Available on ISA 2.06::
16603 * Basic PowerPC Built-in Functions Available on ISA 2.07::
16604 * Basic PowerPC Built-in Functions Available on ISA 3.0::
16605 @end menu
16607 This section describes PowerPC built-in functions that do not require
16608 the inclusion of any special header files to declare prototypes or
16609 provide macro definitions.  The sections that follow describe
16610 additional PowerPC built-in functions.
16612 @node Basic PowerPC Built-in Functions Available on all Configurations
16613 @subsubsection Basic PowerPC Built-in Functions Available on all Configurations
16615 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
16616 This function is a @code{nop} on the PowerPC platform and is included solely
16617 to maintain API compatibility with the x86 builtins.
16618 @end deftypefn
16620 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
16621 This function returns a value of @code{1} if the run-time CPU is of type
16622 @var{cpuname} and returns @code{0} otherwise
16624 The @code{__builtin_cpu_is} function requires GLIBC 2.23 or newer
16625 which exports the hardware capability bits.  GCC defines the macro
16626 @code{__BUILTIN_CPU_SUPPORTS__} if the @code{__builtin_cpu_supports}
16627 built-in function is fully supported.
16629 If GCC was configured to use a GLIBC before 2.23, the built-in
16630 function @code{__builtin_cpu_is} always returns a 0 and the compiler
16631 issues a warning.
16633 The following CPU names can be detected:
16635 @table @samp
16636 @item power9
16637 IBM POWER9 Server CPU.
16638 @item power8
16639 IBM POWER8 Server CPU.
16640 @item power7
16641 IBM POWER7 Server CPU.
16642 @item power6x
16643 IBM POWER6 Server CPU (RAW mode).
16644 @item power6
16645 IBM POWER6 Server CPU (Architected mode).
16646 @item power5+
16647 IBM POWER5+ Server CPU.
16648 @item power5
16649 IBM POWER5 Server CPU.
16650 @item ppc970
16651 IBM 970 Server CPU (ie, Apple G5).
16652 @item power4
16653 IBM POWER4 Server CPU.
16654 @item ppca2
16655 IBM A2 64-bit Embedded CPU
16656 @item ppc476
16657 IBM PowerPC 476FP 32-bit Embedded CPU.
16658 @item ppc464
16659 IBM PowerPC 464 32-bit Embedded CPU.
16660 @item ppc440
16661 PowerPC 440 32-bit Embedded CPU.
16662 @item ppc405
16663 PowerPC 405 32-bit Embedded CPU.
16664 @item ppc-cell-be
16665 IBM PowerPC Cell Broadband Engine Architecture CPU.
16666 @end table
16668 Here is an example:
16669 @smallexample
16670 #ifdef __BUILTIN_CPU_SUPPORTS__
16671   if (__builtin_cpu_is ("power8"))
16672     @{
16673        do_power8 (); // POWER8 specific implementation.
16674     @}
16675   else
16676 #endif
16677     @{
16678        do_generic (); // Generic implementation.
16679     @}
16680 @end smallexample
16681 @end deftypefn
16683 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
16684 This function returns a value of @code{1} if the run-time CPU supports the HWCAP
16685 feature @var{feature} and returns @code{0} otherwise.
16687 The @code{__builtin_cpu_supports} function requires GLIBC 2.23 or
16688 newer which exports the hardware capability bits.  GCC defines the
16689 macro @code{__BUILTIN_CPU_SUPPORTS__} if the
16690 @code{__builtin_cpu_supports} built-in function is fully supported.
16692 If GCC was configured to use a GLIBC before 2.23, the built-in
16693 function @code{__builtin_cpu_suports} always returns a 0 and the
16694 compiler issues a warning.
16696 The following features can be
16697 detected:
16699 @table @samp
16700 @item 4xxmac
16701 4xx CPU has a Multiply Accumulator.
16702 @item altivec
16703 CPU has a SIMD/Vector Unit.
16704 @item arch_2_05
16705 CPU supports ISA 2.05 (eg, POWER6)
16706 @item arch_2_06
16707 CPU supports ISA 2.06 (eg, POWER7)
16708 @item arch_2_07
16709 CPU supports ISA 2.07 (eg, POWER8)
16710 @item arch_3_00
16711 CPU supports ISA 3.0 (eg, POWER9)
16712 @item archpmu
16713 CPU supports the set of compatible performance monitoring events.
16714 @item booke
16715 CPU supports the Embedded ISA category.
16716 @item cellbe
16717 CPU has a CELL broadband engine.
16718 @item darn
16719 CPU supports the @code{darn} (deliver a random number) instruction.
16720 @item dfp
16721 CPU has a decimal floating point unit.
16722 @item dscr
16723 CPU supports the data stream control register.
16724 @item ebb
16725 CPU supports event base branching.
16726 @item efpdouble
16727 CPU has a SPE double precision floating point unit.
16728 @item efpsingle
16729 CPU has a SPE single precision floating point unit.
16730 @item fpu
16731 CPU has a floating point unit.
16732 @item htm
16733 CPU has hardware transaction memory instructions.
16734 @item htm-nosc
16735 Kernel aborts hardware transactions when a syscall is made.
16736 @item htm-no-suspend
16737 CPU supports hardware transaction memory but does not support the
16738 @code{tsuspend.} instruction.
16739 @item ic_snoop
16740 CPU supports icache snooping capabilities.
16741 @item ieee128
16742 CPU supports 128-bit IEEE binary floating point instructions.
16743 @item isel
16744 CPU supports the integer select instruction.
16745 @item mmu
16746 CPU has a memory management unit.
16747 @item notb
16748 CPU does not have a timebase (eg, 601 and 403gx).
16749 @item pa6t
16750 CPU supports the PA Semi 6T CORE ISA.
16751 @item power4
16752 CPU supports ISA 2.00 (eg, POWER4)
16753 @item power5
16754 CPU supports ISA 2.02 (eg, POWER5)
16755 @item power5+
16756 CPU supports ISA 2.03 (eg, POWER5+)
16757 @item power6x
16758 CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.
16759 @item ppc32
16760 CPU supports 32-bit mode execution.
16761 @item ppc601
16762 CPU supports the old POWER ISA (eg, 601)
16763 @item ppc64
16764 CPU supports 64-bit mode execution.
16765 @item ppcle
16766 CPU supports a little-endian mode that uses address swizzling.
16767 @item scv
16768 Kernel supports system call vectored.
16769 @item smt
16770 CPU support simultaneous multi-threading.
16771 @item spe
16772 CPU has a signal processing extension unit.
16773 @item tar
16774 CPU supports the target address register.
16775 @item true_le
16776 CPU supports true little-endian mode.
16777 @item ucache
16778 CPU has unified I/D cache.
16779 @item vcrypto
16780 CPU supports the vector cryptography instructions.
16781 @item vsx
16782 CPU supports the vector-scalar extension.
16783 @end table
16785 Here is an example:
16786 @smallexample
16787 #ifdef __BUILTIN_CPU_SUPPORTS__
16788   if (__builtin_cpu_supports ("fpu"))
16789     @{
16790        asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
16791     @}
16792   else
16793 #endif
16794     @{
16795        dst = __fadd (src1, src2); // Software FP addition function.
16796     @}
16797 @end smallexample
16798 @end deftypefn
16800 The following built-in functions are also available on all PowerPC
16801 processors:
16802 @smallexample
16803 uint64_t __builtin_ppc_get_timebase ();
16804 unsigned long __builtin_ppc_mftb ();
16805 double __builtin_unpack_ibm128 (__ibm128, int);
16806 __ibm128 __builtin_pack_ibm128 (double, double);
16807 double __builtin_mffs (void);
16808 void __builtin_mtfsb0 (const int);
16809 void __builtin_mtfsb1 (const int);
16810 void __builtin_set_fpscr_rn (int);
16811 @end smallexample
16813 The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
16814 functions generate instructions to read the Time Base Register.  The
16815 @code{__builtin_ppc_get_timebase} function may generate multiple
16816 instructions and always returns the 64 bits of the Time Base Register.
16817 The @code{__builtin_ppc_mftb} function always generates one instruction and
16818 returns the Time Base Register value as an unsigned long, throwing away
16819 the most significant word on 32-bit environments.  The @code{__builtin_mffs}
16820 return the value of the FPSCR register.  Note, ISA 3.0 supports the
16821 @code{__builtin_mffsl()} which permits software to read the control and
16822 non-sticky status bits in the FSPCR without the higher latency associated with
16823 accessing the sticky status bits.  The
16824 @code{__builtin_mtfsb0} and @code{__builtin_mtfsb1} take the bit to change
16825 as an argument.  The valid bit range is between 0 and 31.  The builtins map to
16826 the @code{mtfsb0} and @code{mtfsb1} instructions which take the argument and
16827 add 32.  Hence these instructions only modify the FPSCR[32:63] bits by
16828 changing the specified bit to a zero or one respectively.  The
16829 @code{__builtin_set_fpscr_rn} builtin allows changing both of the floating
16830 point rounding mode bits.  The argument is a 2-bit value.  The argument can
16831 either be a @code{const int} or stored in a variable. The builtin uses
16832 the ISA 3.0
16833 instruction @code{mffscrn} if available, otherwise it reads the FPSCR, masks
16834 the current rounding mode bits out and OR's in the new value.
16836 @node Basic PowerPC Built-in Functions Available on ISA 2.05
16837 @subsubsection Basic PowerPC Built-in Functions Available on ISA 2.05
16839 The basic built-in functions described in this section are
16840 available on the PowerPC family of processors starting with ISA 2.05
16841 or later.  Unless specific options are explicitly disabled on the
16842 command line, specifying option @option{-mcpu=power6} has the effect of
16843 enabling the @option{-mpowerpc64}, @option{-mpowerpc-gpopt},
16844 @option{-mpowerpc-gfxopt}, @option{-mmfcrf}, @option{-mpopcntb},
16845 @option{-mfprnd}, @option{-mcmpb}, @option{-mhard-dfp}, and
16846 @option{-mrecip-precision} options.  Specify the
16847 @option{-maltivec} and @option{-mfpgpr} options explicitly in
16848 combination with the above options if they are desired.
16850 The following functions require option @option{-mcmpb}.
16851 @smallexample
16852 unsigned long long __builtin_cmpb (unsigned long long int, unsigned long long int);
16853 unsigned int __builtin_cmpb (unsigned int, unsigned int);
16854 @end smallexample
16856 The @code{__builtin_cmpb} function
16857 performs a byte-wise compare on the contents of its two arguments,
16858 returning the result of the byte-wise comparison as the returned
16859 value.  For each byte comparison, the corresponding byte of the return
16860 value holds 0xff if the input bytes are equal and 0 if the input bytes
16861 are not equal.  If either of the arguments to this built-in function
16862 is wider than 32 bits, the function call expands into the form that
16863 expects @code{unsigned long long int} arguments
16864 which is only available on 64-bit targets.
16866 The following built-in functions are available
16867 when hardware decimal floating point
16868 (@option{-mhard-dfp}) is available:
16869 @smallexample
16870 void __builtin_set_fpscr_drn(int);
16871 _Decimal64 __builtin_ddedpd (int, _Decimal64);
16872 _Decimal128 __builtin_ddedpdq (int, _Decimal128);
16873 _Decimal64 __builtin_denbcd (int, _Decimal64);
16874 _Decimal128 __builtin_denbcdq (int, _Decimal128);
16875 _Decimal64 __builtin_diex (long long, _Decimal64);
16876 _Decimal128 _builtin_diexq (long long, _Decimal128);
16877 _Decimal64 __builtin_dscli (_Decimal64, int);
16878 _Decimal128 __builtin_dscliq (_Decimal128, int);
16879 _Decimal64 __builtin_dscri (_Decimal64, int);
16880 _Decimal128 __builtin_dscriq (_Decimal128, int);
16881 long long __builtin_dxex (_Decimal64);
16882 long long __builtin_dxexq (_Decimal128);
16883 _Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
16884 unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
16886 The @code{__builtin_set_fpscr_drn} builtin allows changing the three decimal
16887 floating point rounding mode bits.  The argument is a 3-bit value.  The
16888 argument can either be a @code{const int} or the value can be stored in
16889 a variable.
16890 The builtin uses the ISA 3.0 instruction @code{mffscdrn} if available.
16891 Otherwise the builtin reads the FPSCR, masks the current decimal rounding
16892 mode bits out and OR's in the new value.
16894 @end smallexample
16896 The following functions require @option{-mhard-float},
16897 @option{-mpowerpc-gfxopt}, and @option{-mpopcntb} options.
16899 @smallexample
16900 double __builtin_recipdiv (double, double);
16901 float __builtin_recipdivf (float, float);
16902 double __builtin_rsqrt (double);
16903 float __builtin_rsqrtf (float);
16904 @end smallexample
16906 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
16907 @code{__builtin_rsqrtf} functions generate multiple instructions to
16908 implement the reciprocal sqrt functionality using reciprocal sqrt
16909 estimate instructions.
16911 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
16912 functions generate multiple instructions to implement division using
16913 the reciprocal estimate instructions.
16915 The following functions require @option{-mhard-float} and
16916 @option{-mmultiple} options.
16918 The @code{__builtin_unpack_longdouble} function takes a
16919 @code{long double} argument and a compile time constant of 0 or 1.  If
16920 the constant is 0, the first @code{double} within the
16921 @code{long double} is returned, otherwise the second @code{double}
16922 is returned.  The @code{__builtin_unpack_longdouble} function is only
16923 available if @code{long double} uses the IBM extended double
16924 representation.
16926 The @code{__builtin_pack_longdouble} function takes two @code{double}
16927 arguments and returns a @code{long double} value that combines the two
16928 arguments.  The @code{__builtin_pack_longdouble} function is only
16929 available if @code{long double} uses the IBM extended double
16930 representation.
16932 The @code{__builtin_unpack_ibm128} function takes a @code{__ibm128}
16933 argument and a compile time constant of 0 or 1.  If the constant is 0,
16934 the first @code{double} within the @code{__ibm128} is returned,
16935 otherwise the second @code{double} is returned.
16937 The @code{__builtin_pack_ibm128} function takes two @code{double}
16938 arguments and returns a @code{__ibm128} value that combines the two
16939 arguments.
16941 Additional built-in functions are available for the 64-bit PowerPC
16942 family of processors, for efficient use of 128-bit floating point
16943 (@code{__float128}) values.
16945 @node Basic PowerPC Built-in Functions Available on ISA 2.06
16946 @subsubsection Basic PowerPC Built-in Functions Available on ISA 2.06
16948 The basic built-in functions described in this section are
16949 available on the PowerPC family of processors starting with ISA 2.05
16950 or later.  Unless specific options are explicitly disabled on the
16951 command line, specifying option @option{-mcpu=power7} has the effect of
16952 enabling all the same options as for @option{-mcpu=power6} in
16953 addition to the @option{-maltivec}, @option{-mpopcntd}, and
16954 @option{-mvsx} options.
16956 The following basic built-in functions require @option{-mpopcntd}:
16957 @smallexample
16958 unsigned int __builtin_addg6s (unsigned int, unsigned int);
16959 long long __builtin_bpermd (long long, long long);
16960 unsigned int __builtin_cbcdtd (unsigned int);
16961 unsigned int __builtin_cdtbcd (unsigned int);
16962 long long __builtin_divde (long long, long long);
16963 unsigned long long __builtin_divdeu (unsigned long long, unsigned long long);
16964 int __builtin_divwe (int, int);
16965 unsigned int __builtin_divweu (unsigned int, unsigned int);
16966 vector __int128 __builtin_pack_vector_int128 (long long, long long);
16967 void __builtin_rs6000_speculation_barrier (void);
16968 long long __builtin_unpack_vector_int128 (vector __int128, signed char);
16969 @end smallexample
16971 Of these, the @code{__builtin_divde} and @code{__builtin_divdeu} functions
16972 require a 64-bit environment.
16974 The following basic built-in functions, which are also supported on
16975 x86 targets, require @option{-mfloat128}.
16976 @smallexample
16977 __float128 __builtin_fabsq (__float128);
16978 __float128 __builtin_copysignq (__float128, __float128);
16979 __float128 __builtin_infq (void);
16980 __float128 __builtin_huge_valq (void);
16981 __float128 __builtin_nanq (void);
16982 __float128 __builtin_nansq (void);
16984 __float128 __builtin_sqrtf128 (__float128);
16985 __float128 __builtin_fmaf128 (__float128, __float128, __float128);
16986 @end smallexample
16988 @node Basic PowerPC Built-in Functions Available on ISA 2.07
16989 @subsubsection Basic PowerPC Built-in Functions Available on ISA 2.07
16991 The basic built-in functions described in this section are
16992 available on the PowerPC family of processors starting with ISA 2.07
16993 or later.  Unless specific options are explicitly disabled on the
16994 command line, specifying option @option{-mcpu=power8} has the effect of
16995 enabling all the same options as for @option{-mcpu=power7} in
16996 addition to the @option{-mpower8-fusion}, @option{-mpower8-vector},
16997 @option{-mcrypto}, @option{-mhtm}, @option{-mquad-memory}, and
16998 @option{-mquad-memory-atomic} options.
17000 This section intentionally empty.
17002 @node Basic PowerPC Built-in Functions Available on ISA 3.0
17003 @subsubsection Basic PowerPC Built-in Functions Available on ISA 3.0
17005 The basic built-in functions described in this section are
17006 available on the PowerPC family of processors starting with ISA 3.0
17007 or later.  Unless specific options are explicitly disabled on the
17008 command line, specifying option @option{-mcpu=power9} has the effect of
17009 enabling all the same options as for @option{-mcpu=power8} in
17010 addition to the @option{-misel} option.
17012 The following built-in functions are available on Linux 64-bit systems
17013 that use the ISA 3.0 instruction set (@option{-mcpu=power9}):
17015 @table @code
17016 @item __float128 __builtin_addf128_round_to_odd (__float128, __float128)
17017 Perform a 128-bit IEEE floating point add using round to odd as the
17018 rounding mode.
17019 @findex __builtin_addf128_round_to_odd
17021 @item __float128 __builtin_subf128_round_to_odd (__float128, __float128)
17022 Perform a 128-bit IEEE floating point subtract using round to odd as
17023 the rounding mode.
17024 @findex __builtin_subf128_round_to_odd
17026 @item __float128 __builtin_mulf128_round_to_odd (__float128, __float128)
17027 Perform a 128-bit IEEE floating point multiply using round to odd as
17028 the rounding mode.
17029 @findex __builtin_mulf128_round_to_odd
17031 @item __float128 __builtin_divf128_round_to_odd (__float128, __float128)
17032 Perform a 128-bit IEEE floating point divide using round to odd as
17033 the rounding mode.
17034 @findex __builtin_divf128_round_to_odd
17036 @item __float128 __builtin_sqrtf128_round_to_odd (__float128)
17037 Perform a 128-bit IEEE floating point square root using round to odd
17038 as the rounding mode.
17039 @findex __builtin_sqrtf128_round_to_odd
17041 @item __float128 __builtin_fmaf128_round_to_odd (__float128, __float128, __float128)
17042 Perform a 128-bit IEEE floating point fused multiply and add operation
17043 using round to odd as the rounding mode.
17044 @findex __builtin_fmaf128_round_to_odd
17046 @item double __builtin_truncf128_round_to_odd (__float128)
17047 Convert a 128-bit IEEE floating point value to @code{double} using
17048 round to odd as the rounding mode.
17049 @findex __builtin_truncf128_round_to_odd
17050 @end table
17052 The following additional built-in functions are also available for the
17053 PowerPC family of processors, starting with ISA 3.0 or later:
17054 @smallexample
17055 long long __builtin_darn (void);
17056 long long __builtin_darn_raw (void);
17057 int __builtin_darn_32 (void);
17058 @end smallexample
17060 The @code{__builtin_darn} and @code{__builtin_darn_raw}
17061 functions require a
17062 64-bit environment supporting ISA 3.0 or later.
17063 The @code{__builtin_darn} function provides a 64-bit conditioned
17064 random number.  The @code{__builtin_darn_raw} function provides a
17065 64-bit raw random number.  The @code{__builtin_darn_32} function
17066 provides a 32-bit conditioned random number.
17068 The following additional built-in functions are also available for the
17069 PowerPC family of processors, starting with ISA 3.0 or later:
17071 @smallexample
17072 int __builtin_byte_in_set (unsigned char u, unsigned long long set);
17073 int __builtin_byte_in_range (unsigned char u, unsigned int range);
17074 int __builtin_byte_in_either_range (unsigned char u, unsigned int ranges);
17076 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
17077 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
17078 int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
17079 int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);
17081 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
17082 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
17083 int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
17084 int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);
17086 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
17087 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
17088 int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
17089 int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);
17091 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
17092 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
17093 int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
17094 int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);
17096 double __builtin_mffsl(void);
17098 @end smallexample
17099 The @code{__builtin_byte_in_set} function requires a
17100 64-bit environment supporting ISA 3.0 or later.  This function returns
17101 a non-zero value if and only if its @code{u} argument exactly equals one of
17102 the eight bytes contained within its 64-bit @code{set} argument.
17104 The @code{__builtin_byte_in_range} and
17105 @code{__builtin_byte_in_either_range} require an environment
17106 supporting ISA 3.0 or later.  For these two functions, the
17107 @code{range} argument is encoded as 4 bytes, organized as
17108 @code{hi_1:lo_1:hi_2:lo_2}.
17109 The @code{__builtin_byte_in_range} function returns a
17110 non-zero value if and only if its @code{u} argument is within the
17111 range bounded between @code{lo_2} and @code{hi_2} inclusive.
17112 The @code{__builtin_byte_in_either_range} function returns non-zero if
17113 and only if its @code{u} argument is within either the range bounded
17114 between @code{lo_1} and @code{hi_1} inclusive or the range bounded
17115 between @code{lo_2} and @code{hi_2} inclusive.
17117 The @code{__builtin_dfp_dtstsfi_lt} function returns a non-zero value
17118 if and only if the number of signficant digits of its @code{value} argument
17119 is less than its @code{comparison} argument.  The
17120 @code{__builtin_dfp_dtstsfi_lt_dd} and
17121 @code{__builtin_dfp_dtstsfi_lt_td} functions behave similarly, but
17122 require that the type of the @code{value} argument be
17123 @code{__Decimal64} and @code{__Decimal128} respectively.
17125 The @code{__builtin_dfp_dtstsfi_gt} function returns a non-zero value
17126 if and only if the number of signficant digits of its @code{value} argument
17127 is greater than its @code{comparison} argument.  The
17128 @code{__builtin_dfp_dtstsfi_gt_dd} and
17129 @code{__builtin_dfp_dtstsfi_gt_td} functions behave similarly, but
17130 require that the type of the @code{value} argument be
17131 @code{__Decimal64} and @code{__Decimal128} respectively.
17133 The @code{__builtin_dfp_dtstsfi_eq} function returns a non-zero value
17134 if and only if the number of signficant digits of its @code{value} argument
17135 equals its @code{comparison} argument.  The
17136 @code{__builtin_dfp_dtstsfi_eq_dd} and
17137 @code{__builtin_dfp_dtstsfi_eq_td} functions behave similarly, but
17138 require that the type of the @code{value} argument be
17139 @code{__Decimal64} and @code{__Decimal128} respectively.
17141 The @code{__builtin_dfp_dtstsfi_ov} function returns a non-zero value
17142 if and only if its @code{value} argument has an undefined number of
17143 significant digits, such as when @code{value} is an encoding of @code{NaN}.
17144 The @code{__builtin_dfp_dtstsfi_ov_dd} and
17145 @code{__builtin_dfp_dtstsfi_ov_td} functions behave similarly, but
17146 require that the type of the @code{value} argument be
17147 @code{__Decimal64} and @code{__Decimal128} respectively.
17149 The @code{__builtin_mffsl} uses the ISA 3.0 @code{mffsl} instruction to read
17150 the FPSCR.  The instruction is a lower latency version of the @code{mffs}
17151 instruction.  If the @code{mffsl} instruction is not available, then the
17152 builtin uses the older @code{mffs} instruction to read the FPSCR.
17155 @node PowerPC AltiVec/VSX Built-in Functions
17156 @subsection PowerPC AltiVec/VSX Built-in Functions
17158 GCC provides an interface for the PowerPC family of processors to access
17159 the AltiVec operations described in Motorola's AltiVec Programming
17160 Interface Manual.  The interface is made available by including
17161 @code{<altivec.h>} and using @option{-maltivec} and
17162 @option{-mabi=altivec}.  The interface supports the following vector
17163 types.
17165 @smallexample
17166 vector unsigned char
17167 vector signed char
17168 vector bool char
17170 vector unsigned short
17171 vector signed short
17172 vector bool short
17173 vector pixel
17175 vector unsigned int
17176 vector signed int
17177 vector bool int
17178 vector float
17179 @end smallexample
17181 GCC's implementation of the high-level language interface available from
17182 C and C++ code differs from Motorola's documentation in several ways.
17184 @itemize @bullet
17186 @item
17187 A vector constant is a list of constant expressions within curly braces.
17189 @item
17190 A vector initializer requires no cast if the vector constant is of the
17191 same type as the variable it is initializing.
17193 @item
17194 If @code{signed} or @code{unsigned} is omitted, the signedness of the
17195 vector type is the default signedness of the base type.  The default
17196 varies depending on the operating system, so a portable program should
17197 always specify the signedness.
17199 @item
17200 Compiling with @option{-maltivec} adds keywords @code{__vector},
17201 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
17202 @code{bool}.  When compiling ISO C, the context-sensitive substitution
17203 of the keywords @code{vector}, @code{pixel} and @code{bool} is
17204 disabled.  To use them, you must include @code{<altivec.h>} instead.
17206 @item
17207 GCC allows using a @code{typedef} name as the type specifier for a
17208 vector type, but only under the following circumstances:
17210 @itemize @bullet
17212 @item
17213 When using @code{__vector} instead of @code{vector}; for example,
17215 @smallexample
17216 typedef signed short int16;
17217 __vector int16 data;
17218 @end smallexample
17220 @item
17221 When using @code{vector} in keyword-and-predefine mode; for example,
17223 @smallexample
17224 typedef signed short int16;
17225 vector int16 data;
17226 @end smallexample
17228 Note that keyword-and-predefine mode is enabled by disabling GNU
17229 extensions (e.g., by using @code{-std=c11}) and including
17230 @code{<altivec.h>}.
17231 @end itemize
17233 @item
17234 For C, overloaded functions are implemented with macros so the following
17235 does not work:
17237 @smallexample
17238   vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
17239 @end smallexample
17241 @noindent
17242 Since @code{vec_add} is a macro, the vector constant in the example
17243 is treated as four separate arguments.  Wrap the entire argument in
17244 parentheses for this to work.
17245 @end itemize
17247 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
17248 Internally, GCC uses built-in functions to achieve the functionality in
17249 the aforementioned header file, but they are not supported and are
17250 subject to change without notice.
17252 GCC complies with the OpenPOWER 64-Bit ELF V2 ABI Specification,
17253 which may be found at
17254 @uref{http://openpowerfoundation.org/wp-content/uploads/resources/leabi-prd/content/index.html}.
17255 Appendix A of this document lists the vector API interfaces that must be
17256 provided by compliant compilers.  Programmers should preferentially use
17257 the interfaces described therein.  However, historically GCC has provided
17258 additional interfaces for access to vector instructions.  These are
17259 briefly described below.
17261 @menu
17262 * PowerPC AltiVec Built-in Functions on ISA 2.05::
17263 * PowerPC AltiVec Built-in Functions Available on ISA 2.06::
17264 * PowerPC AltiVec Built-in Functions Available on ISA 2.07::
17265 * PowerPC AltiVec Built-in Functions Available on ISA 3.0::
17266 @end menu
17268 @node PowerPC AltiVec Built-in Functions on ISA 2.05
17269 @subsubsection PowerPC AltiVec Built-in Functions on ISA 2.05
17271 The following interfaces are supported for the generic and specific
17272 AltiVec operations and the AltiVec predicates.  In cases where there
17273 is a direct mapping between generic and specific operations, only the
17274 generic names are shown here, although the specific operations can also
17275 be used.
17277 Arguments that are documented as @code{const int} require literal
17278 integral values within the range required for that operation.
17280 @smallexample
17281 vector signed char vec_abs (vector signed char);
17282 vector signed short vec_abs (vector signed short);
17283 vector signed int vec_abs (vector signed int);
17284 vector float vec_abs (vector float);
17286 vector signed char vec_abss (vector signed char);
17287 vector signed short vec_abss (vector signed short);
17288 vector signed int vec_abss (vector signed int);
17290 vector signed char vec_add (vector bool char, vector signed char);
17291 vector signed char vec_add (vector signed char, vector bool char);
17292 vector signed char vec_add (vector signed char, vector signed char);
17293 vector unsigned char vec_add (vector bool char, vector unsigned char);
17294 vector unsigned char vec_add (vector unsigned char, vector bool char);
17295 vector unsigned char vec_add (vector unsigned char, vector unsigned char);
17296 vector signed short vec_add (vector bool short, vector signed short);
17297 vector signed short vec_add (vector signed short, vector bool short);
17298 vector signed short vec_add (vector signed short, vector signed short);
17299 vector unsigned short vec_add (vector bool short, vector unsigned short);
17300 vector unsigned short vec_add (vector unsigned short, vector bool short);
17301 vector unsigned short vec_add (vector unsigned short, vector unsigned short);
17302 vector signed int vec_add (vector bool int, vector signed int);
17303 vector signed int vec_add (vector signed int, vector bool int);
17304 vector signed int vec_add (vector signed int, vector signed int);
17305 vector unsigned int vec_add (vector bool int, vector unsigned int);
17306 vector unsigned int vec_add (vector unsigned int, vector bool int);
17307 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
17308 vector float vec_add (vector float, vector float);
17310 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
17312 vector unsigned char vec_adds (vector bool char, vector unsigned char);
17313 vector unsigned char vec_adds (vector unsigned char, vector bool char);
17314 vector unsigned char vec_adds (vector unsigned char, vector unsigned char);
17315 vector signed char vec_adds (vector bool char, vector signed char);
17316 vector signed char vec_adds (vector signed char, vector bool char);
17317 vector signed char vec_adds (vector signed char, vector signed char);
17318 vector unsigned short vec_adds (vector bool short, vector unsigned short);
17319 vector unsigned short vec_adds (vector unsigned short, vector bool short);
17320 vector unsigned short vec_adds (vector unsigned short, vector unsigned short);
17321 vector signed short vec_adds (vector bool short, vector signed short);
17322 vector signed short vec_adds (vector signed short, vector bool short);
17323 vector signed short vec_adds (vector signed short, vector signed short);
17324 vector unsigned int vec_adds (vector bool int, vector unsigned int);
17325 vector unsigned int vec_adds (vector unsigned int, vector bool int);
17326 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
17327 vector signed int vec_adds (vector bool int, vector signed int);
17328 vector signed int vec_adds (vector signed int, vector bool int);
17329 vector signed int vec_adds (vector signed int, vector signed int);
17331 int vec_all_eq (vector signed char, vector bool char);
17332 int vec_all_eq (vector signed char, vector signed char);
17333 int vec_all_eq (vector unsigned char, vector bool char);
17334 int vec_all_eq (vector unsigned char, vector unsigned char);
17335 int vec_all_eq (vector bool char, vector bool char);
17336 int vec_all_eq (vector bool char, vector unsigned char);
17337 int vec_all_eq (vector bool char, vector signed char);
17338 int vec_all_eq (vector signed short, vector bool short);
17339 int vec_all_eq (vector signed short, vector signed short);
17340 int vec_all_eq (vector unsigned short, vector bool short);
17341 int vec_all_eq (vector unsigned short, vector unsigned short);
17342 int vec_all_eq (vector bool short, vector bool short);
17343 int vec_all_eq (vector bool short, vector unsigned short);
17344 int vec_all_eq (vector bool short, vector signed short);
17345 int vec_all_eq (vector pixel, vector pixel);
17346 int vec_all_eq (vector signed int, vector bool int);
17347 int vec_all_eq (vector signed int, vector signed int);
17348 int vec_all_eq (vector unsigned int, vector bool int);
17349 int vec_all_eq (vector unsigned int, vector unsigned int);
17350 int vec_all_eq (vector bool int, vector bool int);
17351 int vec_all_eq (vector bool int, vector unsigned int);
17352 int vec_all_eq (vector bool int, vector signed int);
17353 int vec_all_eq (vector float, vector float);
17355 int vec_all_ge (vector bool char, vector unsigned char);
17356 int vec_all_ge (vector unsigned char, vector bool char);
17357 int vec_all_ge (vector unsigned char, vector unsigned char);
17358 int vec_all_ge (vector bool char, vector signed char);
17359 int vec_all_ge (vector signed char, vector bool char);
17360 int vec_all_ge (vector signed char, vector signed char);
17361 int vec_all_ge (vector bool short, vector unsigned short);
17362 int vec_all_ge (vector unsigned short, vector bool short);
17363 int vec_all_ge (vector unsigned short, vector unsigned short);
17364 int vec_all_ge (vector signed short, vector signed short);
17365 int vec_all_ge (vector bool short, vector signed short);
17366 int vec_all_ge (vector signed short, vector bool short);
17367 int vec_all_ge (vector bool int, vector unsigned int);
17368 int vec_all_ge (vector unsigned int, vector bool int);
17369 int vec_all_ge (vector unsigned int, vector unsigned int);
17370 int vec_all_ge (vector bool int, vector signed int);
17371 int vec_all_ge (vector signed int, vector bool int);
17372 int vec_all_ge (vector signed int, vector signed int);
17373 int vec_all_ge (vector float, vector float);
17375 int vec_all_gt (vector bool char, vector unsigned char);
17376 int vec_all_gt (vector unsigned char, vector bool char);
17377 int vec_all_gt (vector unsigned char, vector unsigned char);
17378 int vec_all_gt (vector bool char, vector signed char);
17379 int vec_all_gt (vector signed char, vector bool char);
17380 int vec_all_gt (vector signed char, vector signed char);
17381 int vec_all_gt (vector bool short, vector unsigned short);
17382 int vec_all_gt (vector unsigned short, vector bool short);
17383 int vec_all_gt (vector unsigned short, vector unsigned short);
17384 int vec_all_gt (vector bool short, vector signed short);
17385 int vec_all_gt (vector signed short, vector bool short);
17386 int vec_all_gt (vector signed short, vector signed short);
17387 int vec_all_gt (vector bool int, vector unsigned int);
17388 int vec_all_gt (vector unsigned int, vector bool int);
17389 int vec_all_gt (vector unsigned int, vector unsigned int);
17390 int vec_all_gt (vector bool int, vector signed int);
17391 int vec_all_gt (vector signed int, vector bool int);
17392 int vec_all_gt (vector signed int, vector signed int);
17393 int vec_all_gt (vector float, vector float);
17395 int vec_all_in (vector float, vector float);
17397 int vec_all_le (vector bool char, vector unsigned char);
17398 int vec_all_le (vector unsigned char, vector bool char);
17399 int vec_all_le (vector unsigned char, vector unsigned char);
17400 int vec_all_le (vector bool char, vector signed char);
17401 int vec_all_le (vector signed char, vector bool char);
17402 int vec_all_le (vector signed char, vector signed char);
17403 int vec_all_le (vector bool short, vector unsigned short);
17404 int vec_all_le (vector unsigned short, vector bool short);
17405 int vec_all_le (vector unsigned short, vector unsigned short);
17406 int vec_all_le (vector bool short, vector signed short);
17407 int vec_all_le (vector signed short, vector bool short);
17408 int vec_all_le (vector signed short, vector signed short);
17409 int vec_all_le (vector bool int, vector unsigned int);
17410 int vec_all_le (vector unsigned int, vector bool int);
17411 int vec_all_le (vector unsigned int, vector unsigned int);
17412 int vec_all_le (vector bool int, vector signed int);
17413 int vec_all_le (vector signed int, vector bool int);
17414 int vec_all_le (vector signed int, vector signed int);
17415 int vec_all_le (vector float, vector float);
17417 int vec_all_lt (vector bool char, vector unsigned char);
17418 int vec_all_lt (vector unsigned char, vector bool char);
17419 int vec_all_lt (vector unsigned char, vector unsigned char);
17420 int vec_all_lt (vector bool char, vector signed char);
17421 int vec_all_lt (vector signed char, vector bool char);
17422 int vec_all_lt (vector signed char, vector signed char);
17423 int vec_all_lt (vector bool short, vector unsigned short);
17424 int vec_all_lt (vector unsigned short, vector bool short);
17425 int vec_all_lt (vector unsigned short, vector unsigned short);
17426 int vec_all_lt (vector bool short, vector signed short);
17427 int vec_all_lt (vector signed short, vector bool short);
17428 int vec_all_lt (vector signed short, vector signed short);
17429 int vec_all_lt (vector bool int, vector unsigned int);
17430 int vec_all_lt (vector unsigned int, vector bool int);
17431 int vec_all_lt (vector unsigned int, vector unsigned int);
17432 int vec_all_lt (vector bool int, vector signed int);
17433 int vec_all_lt (vector signed int, vector bool int);
17434 int vec_all_lt (vector signed int, vector signed int);
17435 int vec_all_lt (vector float, vector float);
17437 int vec_all_nan (vector float);
17439 int vec_all_ne (vector signed char, vector bool char);
17440 int vec_all_ne (vector signed char, vector signed char);
17441 int vec_all_ne (vector unsigned char, vector bool char);
17442 int vec_all_ne (vector unsigned char, vector unsigned char);
17443 int vec_all_ne (vector bool char, vector bool char);
17444 int vec_all_ne (vector bool char, vector unsigned char);
17445 int vec_all_ne (vector bool char, vector signed char);
17446 int vec_all_ne (vector signed short, vector bool short);
17447 int vec_all_ne (vector signed short, vector signed short);
17448 int vec_all_ne (vector unsigned short, vector bool short);
17449 int vec_all_ne (vector unsigned short, vector unsigned short);
17450 int vec_all_ne (vector bool short, vector bool short);
17451 int vec_all_ne (vector bool short, vector unsigned short);
17452 int vec_all_ne (vector bool short, vector signed short);
17453 int vec_all_ne (vector pixel, vector pixel);
17454 int vec_all_ne (vector signed int, vector bool int);
17455 int vec_all_ne (vector signed int, vector signed int);
17456 int vec_all_ne (vector unsigned int, vector bool int);
17457 int vec_all_ne (vector unsigned int, vector unsigned int);
17458 int vec_all_ne (vector bool int, vector bool int);
17459 int vec_all_ne (vector bool int, vector unsigned int);
17460 int vec_all_ne (vector bool int, vector signed int);
17461 int vec_all_ne (vector float, vector float);
17463 int vec_all_nge (vector float, vector float);
17465 int vec_all_ngt (vector float, vector float);
17467 int vec_all_nle (vector float, vector float);
17469 int vec_all_nlt (vector float, vector float);
17471 int vec_all_numeric (vector float);
17473 vector float vec_and (vector float, vector float);
17474 vector float vec_and (vector float, vector bool int);
17475 vector float vec_and (vector bool int, vector float);
17476 vector bool int vec_and (vector bool int, vector bool int);
17477 vector signed int vec_and (vector bool int, vector signed int);
17478 vector signed int vec_and (vector signed int, vector bool int);
17479 vector signed int vec_and (vector signed int, vector signed int);
17480 vector unsigned int vec_and (vector bool int, vector unsigned int);
17481 vector unsigned int vec_and (vector unsigned int, vector bool int);
17482 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
17483 vector bool short vec_and (vector bool short, vector bool short);
17484 vector signed short vec_and (vector bool short, vector signed short);
17485 vector signed short vec_and (vector signed short, vector bool short);
17486 vector signed short vec_and (vector signed short, vector signed short);
17487 vector unsigned short vec_and (vector bool short, vector unsigned short);
17488 vector unsigned short vec_and (vector unsigned short, vector bool short);
17489 vector unsigned short vec_and (vector unsigned short, vector unsigned short);
17490 vector signed char vec_and (vector bool char, vector signed char);
17491 vector bool char vec_and (vector bool char, vector bool char);
17492 vector signed char vec_and (vector signed char, vector bool char);
17493 vector signed char vec_and (vector signed char, vector signed char);
17494 vector unsigned char vec_and (vector bool char, vector unsigned char);
17495 vector unsigned char vec_and (vector unsigned char, vector bool char);
17496 vector unsigned char vec_and (vector unsigned char, vector unsigned char);
17498 vector float vec_andc (vector float, vector float);
17499 vector float vec_andc (vector float, vector bool int);
17500 vector float vec_andc (vector bool int, vector float);
17501 vector bool int vec_andc (vector bool int, vector bool int);
17502 vector signed int vec_andc (vector bool int, vector signed int);
17503 vector signed int vec_andc (vector signed int, vector bool int);
17504 vector signed int vec_andc (vector signed int, vector signed int);
17505 vector unsigned int vec_andc (vector bool int, vector unsigned int);
17506 vector unsigned int vec_andc (vector unsigned int, vector bool int);
17507 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
17508 vector bool short vec_andc (vector bool short, vector bool short);
17509 vector signed short vec_andc (vector bool short, vector signed short);
17510 vector signed short vec_andc (vector signed short, vector bool short);
17511 vector signed short vec_andc (vector signed short, vector signed short);
17512 vector unsigned short vec_andc (vector bool short, vector unsigned short);
17513 vector unsigned short vec_andc (vector unsigned short, vector bool short);
17514 vector unsigned short vec_andc (vector unsigned short, vector unsigned short);
17515 vector signed char vec_andc (vector bool char, vector signed char);
17516 vector bool char vec_andc (vector bool char, vector bool char);
17517 vector signed char vec_andc (vector signed char, vector bool char);
17518 vector signed char vec_andc (vector signed char, vector signed char);
17519 vector unsigned char vec_andc (vector bool char, vector unsigned char);
17520 vector unsigned char vec_andc (vector unsigned char, vector bool char);
17521 vector unsigned char vec_andc (vector unsigned char, vector unsigned char);
17523 int vec_any_eq (vector signed char, vector bool char);
17524 int vec_any_eq (vector signed char, vector signed char);
17525 int vec_any_eq (vector unsigned char, vector bool char);
17526 int vec_any_eq (vector unsigned char, vector unsigned char);
17527 int vec_any_eq (vector bool char, vector bool char);
17528 int vec_any_eq (vector bool char, vector unsigned char);
17529 int vec_any_eq (vector bool char, vector signed char);
17530 int vec_any_eq (vector signed short, vector bool short);
17531 int vec_any_eq (vector signed short, vector signed short);
17532 int vec_any_eq (vector unsigned short, vector bool short);
17533 int vec_any_eq (vector unsigned short, vector unsigned short);
17534 int vec_any_eq (vector bool short, vector bool short);
17535 int vec_any_eq (vector bool short, vector unsigned short);
17536 int vec_any_eq (vector bool short, vector signed short);
17537 int vec_any_eq (vector pixel, vector pixel);
17538 int vec_any_eq (vector signed int, vector bool int);
17539 int vec_any_eq (vector signed int, vector signed int);
17540 int vec_any_eq (vector unsigned int, vector bool int);
17541 int vec_any_eq (vector unsigned int, vector unsigned int);
17542 int vec_any_eq (vector bool int, vector bool int);
17543 int vec_any_eq (vector bool int, vector unsigned int);
17544 int vec_any_eq (vector bool int, vector signed int);
17545 int vec_any_eq (vector float, vector float);
17547 int vec_any_ge (vector signed char, vector bool char);
17548 int vec_any_ge (vector unsigned char, vector bool char);
17549 int vec_any_ge (vector unsigned char, vector unsigned char);
17550 int vec_any_ge (vector signed char, vector signed char);
17551 int vec_any_ge (vector bool char, vector unsigned char);
17552 int vec_any_ge (vector bool char, vector signed char);
17553 int vec_any_ge (vector unsigned short, vector bool short);
17554 int vec_any_ge (vector unsigned short, vector unsigned short);
17555 int vec_any_ge (vector signed short, vector signed short);
17556 int vec_any_ge (vector signed short, vector bool short);
17557 int vec_any_ge (vector bool short, vector unsigned short);
17558 int vec_any_ge (vector bool short, vector signed short);
17559 int vec_any_ge (vector signed int, vector bool int);
17560 int vec_any_ge (vector unsigned int, vector bool int);
17561 int vec_any_ge (vector unsigned int, vector unsigned int);
17562 int vec_any_ge (vector signed int, vector signed int);
17563 int vec_any_ge (vector bool int, vector unsigned int);
17564 int vec_any_ge (vector bool int, vector signed int);
17565 int vec_any_ge (vector float, vector float);
17567 int vec_any_gt (vector bool char, vector unsigned char);
17568 int vec_any_gt (vector unsigned char, vector bool char);
17569 int vec_any_gt (vector unsigned char, vector unsigned char);
17570 int vec_any_gt (vector bool char, vector signed char);
17571 int vec_any_gt (vector signed char, vector bool char);
17572 int vec_any_gt (vector signed char, vector signed char);
17573 int vec_any_gt (vector bool short, vector unsigned short);
17574 int vec_any_gt (vector unsigned short, vector bool short);
17575 int vec_any_gt (vector unsigned short, vector unsigned short);
17576 int vec_any_gt (vector bool short, vector signed short);
17577 int vec_any_gt (vector signed short, vector bool short);
17578 int vec_any_gt (vector signed short, vector signed short);
17579 int vec_any_gt (vector bool int, vector unsigned int);
17580 int vec_any_gt (vector unsigned int, vector bool int);
17581 int vec_any_gt (vector unsigned int, vector unsigned int);
17582 int vec_any_gt (vector bool int, vector signed int);
17583 int vec_any_gt (vector signed int, vector bool int);
17584 int vec_any_gt (vector signed int, vector signed int);
17585 int vec_any_gt (vector float, vector float);
17587 int vec_any_le (vector bool char, vector unsigned char);
17588 int vec_any_le (vector unsigned char, vector bool char);
17589 int vec_any_le (vector unsigned char, vector unsigned char);
17590 int vec_any_le (vector bool char, vector signed char);
17591 int vec_any_le (vector signed char, vector bool char);
17592 int vec_any_le (vector signed char, vector signed char);
17593 int vec_any_le (vector bool short, vector unsigned short);
17594 int vec_any_le (vector unsigned short, vector bool short);
17595 int vec_any_le (vector unsigned short, vector unsigned short);
17596 int vec_any_le (vector bool short, vector signed short);
17597 int vec_any_le (vector signed short, vector bool short);
17598 int vec_any_le (vector signed short, vector signed short);
17599 int vec_any_le (vector bool int, vector unsigned int);
17600 int vec_any_le (vector unsigned int, vector bool int);
17601 int vec_any_le (vector unsigned int, vector unsigned int);
17602 int vec_any_le (vector bool int, vector signed int);
17603 int vec_any_le (vector signed int, vector bool int);
17604 int vec_any_le (vector signed int, vector signed int);
17605 int vec_any_le (vector float, vector float);
17607 int vec_any_lt (vector bool char, vector unsigned char);
17608 int vec_any_lt (vector unsigned char, vector bool char);
17609 int vec_any_lt (vector unsigned char, vector unsigned char);
17610 int vec_any_lt (vector bool char, vector signed char);
17611 int vec_any_lt (vector signed char, vector bool char);
17612 int vec_any_lt (vector signed char, vector signed char);
17613 int vec_any_lt (vector bool short, vector unsigned short);
17614 int vec_any_lt (vector unsigned short, vector bool short);
17615 int vec_any_lt (vector unsigned short, vector unsigned short);
17616 int vec_any_lt (vector bool short, vector signed short);
17617 int vec_any_lt (vector signed short, vector bool short);
17618 int vec_any_lt (vector signed short, vector signed short);
17619 int vec_any_lt (vector bool int, vector unsigned int);
17620 int vec_any_lt (vector unsigned int, vector bool int);
17621 int vec_any_lt (vector unsigned int, vector unsigned int);
17622 int vec_any_lt (vector bool int, vector signed int);
17623 int vec_any_lt (vector signed int, vector bool int);
17624 int vec_any_lt (vector signed int, vector signed int);
17625 int vec_any_lt (vector float, vector float);
17627 int vec_any_nan (vector float);
17629 int vec_any_ne (vector signed char, vector bool char);
17630 int vec_any_ne (vector signed char, vector signed char);
17631 int vec_any_ne (vector unsigned char, vector bool char);
17632 int vec_any_ne (vector unsigned char, vector unsigned char);
17633 int vec_any_ne (vector bool char, vector bool char);
17634 int vec_any_ne (vector bool char, vector unsigned char);
17635 int vec_any_ne (vector bool char, vector signed char);
17636 int vec_any_ne (vector signed short, vector bool short);
17637 int vec_any_ne (vector signed short, vector signed short);
17638 int vec_any_ne (vector unsigned short, vector bool short);
17639 int vec_any_ne (vector unsigned short, vector unsigned short);
17640 int vec_any_ne (vector bool short, vector bool short);
17641 int vec_any_ne (vector bool short, vector unsigned short);
17642 int vec_any_ne (vector bool short, vector signed short);
17643 int vec_any_ne (vector pixel, vector pixel);
17644 int vec_any_ne (vector signed int, vector bool int);
17645 int vec_any_ne (vector signed int, vector signed int);
17646 int vec_any_ne (vector unsigned int, vector bool int);
17647 int vec_any_ne (vector unsigned int, vector unsigned int);
17648 int vec_any_ne (vector bool int, vector bool int);
17649 int vec_any_ne (vector bool int, vector unsigned int);
17650 int vec_any_ne (vector bool int, vector signed int);
17651 int vec_any_ne (vector float, vector float);
17653 int vec_any_nge (vector float, vector float);
17655 int vec_any_ngt (vector float, vector float);
17657 int vec_any_nle (vector float, vector float);
17659 int vec_any_nlt (vector float, vector float);
17661 int vec_any_numeric (vector float);
17663 int vec_any_out (vector float, vector float);
17665 vector unsigned char vec_avg (vector unsigned char, vector unsigned char);
17666 vector signed char vec_avg (vector signed char, vector signed char);
17667 vector unsigned short vec_avg (vector unsigned short, vector unsigned short);
17668 vector signed short vec_avg (vector signed short, vector signed short);
17669 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
17670 vector signed int vec_avg (vector signed int, vector signed int);
17672 vector float vec_ceil (vector float);
17674 vector signed int vec_cmpb (vector float, vector float);
17676 vector bool char vec_cmpeq (vector bool char, vector bool char);
17677 vector bool short vec_cmpeq (vector bool short, vector bool short);
17678 vector bool int vec_cmpeq (vector bool int, vector bool int);
17679 vector bool char vec_cmpeq (vector signed char, vector signed char);
17680 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
17681 vector bool short vec_cmpeq (vector signed short, vector signed short);
17682 vector bool short vec_cmpeq (vector unsigned short, vector unsigned short);
17683 vector bool int vec_cmpeq (vector signed int, vector signed int);
17684 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
17685 vector bool int vec_cmpeq (vector float, vector float);
17687 vector bool int vec_cmpge (vector float, vector float);
17689 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
17690 vector bool char vec_cmpgt (vector signed char, vector signed char);
17691 vector bool short vec_cmpgt (vector unsigned short, vector unsigned short);
17692 vector bool short vec_cmpgt (vector signed short, vector signed short);
17693 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
17694 vector bool int vec_cmpgt (vector signed int, vector signed int);
17695 vector bool int vec_cmpgt (vector float, vector float);
17697 vector bool int vec_cmple (vector float, vector float);
17699 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
17700 vector bool char vec_cmplt (vector signed char, vector signed char);
17701 vector bool short vec_cmplt (vector unsigned short, vector unsigned short);
17702 vector bool short vec_cmplt (vector signed short, vector signed short);
17703 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
17704 vector bool int vec_cmplt (vector signed int, vector signed int);
17705 vector bool int vec_cmplt (vector float, vector float);
17707 vector float vec_cpsgn (vector float, vector float);
17709 vector float vec_ctf (vector unsigned int, const int);
17710 vector float vec_ctf (vector signed int, const int);
17712 vector signed int vec_cts (vector float, const int);
17714 vector unsigned int vec_ctu (vector float, const int);
17716 void vec_dss (const int);
17718 void vec_dssall (void);
17720 void vec_dst (const vector unsigned char *, int, const int);
17721 void vec_dst (const vector signed char *, int, const int);
17722 void vec_dst (const vector bool char *, int, const int);
17723 void vec_dst (const vector unsigned short *, int, const int);
17724 void vec_dst (const vector signed short *, int, const int);
17725 void vec_dst (const vector bool short *, int, const int);
17726 void vec_dst (const vector pixel *, int, const int);
17727 void vec_dst (const vector unsigned int *, int, const int);
17728 void vec_dst (const vector signed int *, int, const int);
17729 void vec_dst (const vector bool int *, int, const int);
17730 void vec_dst (const vector float *, int, const int);
17731 void vec_dst (const unsigned char *, int, const int);
17732 void vec_dst (const signed char *, int, const int);
17733 void vec_dst (const unsigned short *, int, const int);
17734 void vec_dst (const short *, int, const int);
17735 void vec_dst (const unsigned int *, int, const int);
17736 void vec_dst (const int *, int, const int);
17737 void vec_dst (const float *, int, const int);
17739 void vec_dstst (const vector unsigned char *, int, const int);
17740 void vec_dstst (const vector signed char *, int, const int);
17741 void vec_dstst (const vector bool char *, int, const int);
17742 void vec_dstst (const vector unsigned short *, int, const int);
17743 void vec_dstst (const vector signed short *, int, const int);
17744 void vec_dstst (const vector bool short *, int, const int);
17745 void vec_dstst (const vector pixel *, int, const int);
17746 void vec_dstst (const vector unsigned int *, int, const int);
17747 void vec_dstst (const vector signed int *, int, const int);
17748 void vec_dstst (const vector bool int *, int, const int);
17749 void vec_dstst (const vector float *, int, const int);
17750 void vec_dstst (const unsigned char *, int, const int);
17751 void vec_dstst (const signed char *, int, const int);
17752 void vec_dstst (const unsigned short *, int, const int);
17753 void vec_dstst (const short *, int, const int);
17754 void vec_dstst (const unsigned int *, int, const int);
17755 void vec_dstst (const int *, int, const int);
17756 void vec_dstst (const unsigned long *, int, const int);
17757 void vec_dstst (const long *, int, const int);
17758 void vec_dstst (const float *, int, const int);
17760 void vec_dststt (const vector unsigned char *, int, const int);
17761 void vec_dststt (const vector signed char *, int, const int);
17762 void vec_dststt (const vector bool char *, int, const int);
17763 void vec_dststt (const vector unsigned short *, int, const int);
17764 void vec_dststt (const vector signed short *, int, const int);
17765 void vec_dststt (const vector bool short *, int, const int);
17766 void vec_dststt (const vector pixel *, int, const int);
17767 void vec_dststt (const vector unsigned int *, int, const int);
17768 void vec_dststt (const vector signed int *, int, const int);
17769 void vec_dststt (const vector bool int *, int, const int);
17770 void vec_dststt (const vector float *, int, const int);
17771 void vec_dststt (const unsigned char *, int, const int);
17772 void vec_dststt (const signed char *, int, const int);
17773 void vec_dststt (const unsigned short *, int, const int);
17774 void vec_dststt (const short *, int, const int);
17775 void vec_dststt (const unsigned int *, int, const int);
17776 void vec_dststt (const int *, int, const int);
17777 void vec_dststt (const float *, int, const int);
17779 void vec_dstt (const vector unsigned char *, int, const int);
17780 void vec_dstt (const vector signed char *, int, const int);
17781 void vec_dstt (const vector bool char *, int, const int);
17782 void vec_dstt (const vector unsigned short *, int, const int);
17783 void vec_dstt (const vector signed short *, int, const int);
17784 void vec_dstt (const vector bool short *, int, const int);
17785 void vec_dstt (const vector pixel *, int, const int);
17786 void vec_dstt (const vector unsigned int *, int, const int);
17787 void vec_dstt (const vector signed int *, int, const int);
17788 void vec_dstt (const vector bool int *, int, const int);
17789 void vec_dstt (const vector float *, int, const int);
17790 void vec_dstt (const unsigned char *, int, const int);
17791 void vec_dstt (const signed char *, int, const int);
17792 void vec_dstt (const unsigned short *, int, const int);
17793 void vec_dstt (const short *, int, const int);
17794 void vec_dstt (const unsigned int *, int, const int);
17795 void vec_dstt (const int *, int, const int);
17796 void vec_dstt (const float *, int, const int);
17798 vector float vec_expte (vector float);
17800 vector float vec_floor (vector float);
17802 vector float vec_ld (int, const vector float *);
17803 vector float vec_ld (int, const float *);
17804 vector bool int vec_ld (int, const vector bool int *);
17805 vector signed int vec_ld (int, const vector signed int *);
17806 vector signed int vec_ld (int, const int *);
17807 vector unsigned int vec_ld (int, const vector unsigned int *);
17808 vector unsigned int vec_ld (int, const unsigned int *);
17809 vector bool short vec_ld (int, const vector bool short *);
17810 vector pixel vec_ld (int, const vector pixel *);
17811 vector signed short vec_ld (int, const vector signed short *);
17812 vector signed short vec_ld (int, const short *);
17813 vector unsigned short vec_ld (int, const vector unsigned short *);
17814 vector unsigned short vec_ld (int, const unsigned short *);
17815 vector bool char vec_ld (int, const vector bool char *);
17816 vector signed char vec_ld (int, const vector signed char *);
17817 vector signed char vec_ld (int, const signed char *);
17818 vector unsigned char vec_ld (int, const vector unsigned char *);
17819 vector unsigned char vec_ld (int, const unsigned char *);
17821 vector signed char vec_lde (int, const signed char *);
17822 vector unsigned char vec_lde (int, const unsigned char *);
17823 vector signed short vec_lde (int, const short *);
17824 vector unsigned short vec_lde (int, const unsigned short *);
17825 vector float vec_lde (int, const float *);
17826 vector signed int vec_lde (int, const int *);
17827 vector unsigned int vec_lde (int, const unsigned int *);
17829 vector float vec_ldl (int, const vector float *);
17830 vector float vec_ldl (int, const float *);
17831 vector bool int vec_ldl (int, const vector bool int *);
17832 vector signed int vec_ldl (int, const vector signed int *);
17833 vector signed int vec_ldl (int, const int *);
17834 vector unsigned int vec_ldl (int, const vector unsigned int *);
17835 vector unsigned int vec_ldl (int, const unsigned int *);
17836 vector bool short vec_ldl (int, const vector bool short *);
17837 vector pixel vec_ldl (int, const vector pixel *);
17838 vector signed short vec_ldl (int, const vector signed short *);
17839 vector signed short vec_ldl (int, const short *);
17840 vector unsigned short vec_ldl (int, const vector unsigned short *);
17841 vector unsigned short vec_ldl (int, const unsigned short *);
17842 vector bool char vec_ldl (int, const vector bool char *);
17843 vector signed char vec_ldl (int, const vector signed char *);
17844 vector signed char vec_ldl (int, const signed char *);
17845 vector unsigned char vec_ldl (int, const vector unsigned char *);
17846 vector unsigned char vec_ldl (int, const unsigned char *);
17848 vector float vec_loge (vector float);
17850 vector signed char vec_lvebx (int, char *);
17851 vector unsigned char vec_lvebx (int, unsigned char *);
17853 vector signed short vec_lvehx (int, short *);
17854 vector unsigned short vec_lvehx (int, unsigned short *);
17856 vector float vec_lvewx (int, float *);
17857 vector signed int vec_lvewx (int, int *);
17858 vector unsigned int vec_lvewx (int, unsigned int *);
17860 vector unsigned char vec_lvsl (int, const unsigned char *);
17861 vector unsigned char vec_lvsl (int, const signed char *);
17862 vector unsigned char vec_lvsl (int, const unsigned short *);
17863 vector unsigned char vec_lvsl (int, const short *);
17864 vector unsigned char vec_lvsl (int, const unsigned int *);
17865 vector unsigned char vec_lvsl (int, const int *);
17866 vector unsigned char vec_lvsl (int, const float *);
17868 vector unsigned char vec_lvsr (int, const unsigned char *);
17869 vector unsigned char vec_lvsr (int, const signed char *);
17870 vector unsigned char vec_lvsr (int, const unsigned short *);
17871 vector unsigned char vec_lvsr (int, const short *);
17872 vector unsigned char vec_lvsr (int, const unsigned int *);
17873 vector unsigned char vec_lvsr (int, const int *);
17874 vector unsigned char vec_lvsr (int, const float *);
17876 vector float vec_madd (vector float, vector float, vector float);
17878 vector signed short vec_madds (vector signed short, vector signed short,
17879                                vector signed short);
17881 vector unsigned char vec_max (vector bool char, vector unsigned char);
17882 vector unsigned char vec_max (vector unsigned char, vector bool char);
17883 vector unsigned char vec_max (vector unsigned char, vector unsigned char);
17884 vector signed char vec_max (vector bool char, vector signed char);
17885 vector signed char vec_max (vector signed char, vector bool char);
17886 vector signed char vec_max (vector signed char, vector signed char);
17887 vector unsigned short vec_max (vector bool short, vector unsigned short);
17888 vector unsigned short vec_max (vector unsigned short, vector bool short);
17889 vector unsigned short vec_max (vector unsigned short, vector unsigned short);
17890 vector signed short vec_max (vector bool short, vector signed short);
17891 vector signed short vec_max (vector signed short, vector bool short);
17892 vector signed short vec_max (vector signed short, vector signed short);
17893 vector unsigned int vec_max (vector bool int, vector unsigned int);
17894 vector unsigned int vec_max (vector unsigned int, vector bool int);
17895 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
17896 vector signed int vec_max (vector bool int, vector signed int);
17897 vector signed int vec_max (vector signed int, vector bool int);
17898 vector signed int vec_max (vector signed int, vector signed int);
17899 vector float vec_max (vector float, vector float);
17901 vector bool char vec_mergeh (vector bool char, vector bool char);
17902 vector signed char vec_mergeh (vector signed char, vector signed char);
17903 vector unsigned char vec_mergeh (vector unsigned char, vector unsigned char);
17904 vector bool short vec_mergeh (vector bool short, vector bool short);
17905 vector pixel vec_mergeh (vector pixel, vector pixel);
17906 vector signed short vec_mergeh (vector signed short, vector signed short);
17907 vector unsigned short vec_mergeh (vector unsigned short, vector unsigned short);
17908 vector float vec_mergeh (vector float, vector float);
17909 vector bool int vec_mergeh (vector bool int, vector bool int);
17910 vector signed int vec_mergeh (vector signed int, vector signed int);
17911 vector unsigned int vec_mergeh (vector unsigned int, vector unsigned int);
17913 vector bool char vec_mergel (vector bool char, vector bool char);
17914 vector signed char vec_mergel (vector signed char, vector signed char);
17915 vector unsigned char vec_mergel (vector unsigned char, vector unsigned char);
17916 vector bool short vec_mergel (vector bool short, vector bool short);
17917 vector pixel vec_mergel (vector pixel, vector pixel);
17918 vector signed short vec_mergel (vector signed short, vector signed short);
17919 vector unsigned short vec_mergel (vector unsigned short, vector unsigned short);
17920 vector float vec_mergel (vector float, vector float);
17921 vector bool int vec_mergel (vector bool int, vector bool int);
17922 vector signed int vec_mergel (vector signed int, vector signed int);
17923 vector unsigned int vec_mergel (vector unsigned int, vector unsigned int);
17925 vector unsigned short vec_mfvscr (void);
17927 vector unsigned char vec_min (vector bool char, vector unsigned char);
17928 vector unsigned char vec_min (vector unsigned char, vector bool char);
17929 vector unsigned char vec_min (vector unsigned char, vector unsigned char);
17930 vector signed char vec_min (vector bool char, vector signed char);
17931 vector signed char vec_min (vector signed char, vector bool char);
17932 vector signed char vec_min (vector signed char, vector signed char);
17933 vector unsigned short vec_min (vector bool short, vector unsigned short);
17934 vector unsigned short vec_min (vector unsigned short, vector bool short);
17935 vector unsigned short vec_min (vector unsigned short, vector unsigned short);
17936 vector signed short vec_min (vector bool short, vector signed short);
17937 vector signed short vec_min (vector signed short, vector bool short);
17938 vector signed short vec_min (vector signed short, vector signed short);
17939 vector unsigned int vec_min (vector bool int, vector unsigned int);
17940 vector unsigned int vec_min (vector unsigned int, vector bool int);
17941 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
17942 vector signed int vec_min (vector bool int, vector signed int);
17943 vector signed int vec_min (vector signed int, vector bool int);
17944 vector signed int vec_min (vector signed int, vector signed int);
17945 vector float vec_min (vector float, vector float);
17947 vector signed short vec_mladd (vector signed short, vector signed short,
17948                                vector signed short);
17949 vector signed short vec_mladd (vector signed short, vector unsigned short,
17950                                vector unsigned short);
17951 vector signed short vec_mladd (vector unsigned short, vector signed short,
17952                                vector signed short);
17953 vector unsigned short vec_mladd (vector unsigned short, vector unsigned short,
17954                                  vector unsigned short);
17956 vector signed short vec_mradds (vector signed short, vector signed short,
17957                                 vector signed short);
17959 vector unsigned int vec_msum (vector unsigned char, vector unsigned char,
17960                               vector unsigned int);
17961 vector signed int vec_msum (vector signed char, vector unsigned char,
17962                             vector signed int);
17963 vector unsigned int vec_msum (vector unsigned short, vector unsigned short,
17964                               vector unsigned int);
17965 vector signed int vec_msum (vector signed short, vector signed short,
17966                             vector signed int);
17968 vector unsigned int vec_msums (vector unsigned short, vector unsigned short,
17969                                vector unsigned int);
17970 vector signed int vec_msums (vector signed short, vector signed short,
17971                              vector signed int);
17973 void vec_mtvscr (vector signed int);
17974 void vec_mtvscr (vector unsigned int);
17975 void vec_mtvscr (vector bool int);
17976 void vec_mtvscr (vector signed short);
17977 void vec_mtvscr (vector unsigned short);
17978 void vec_mtvscr (vector bool short);
17979 void vec_mtvscr (vector pixel);
17980 void vec_mtvscr (vector signed char);
17981 void vec_mtvscr (vector unsigned char);
17982 void vec_mtvscr (vector bool char);
17984 vector float vec_mul (vector float, vector float);
17986 vector unsigned short vec_mule (vector unsigned char, vector unsigned char);
17987 vector signed short vec_mule (vector signed char, vector signed char);
17988 vector unsigned int vec_mule (vector unsigned short, vector unsigned short);
17989 vector signed int vec_mule (vector signed short, vector signed short);
17991 vector unsigned short vec_mulo (vector unsigned char, vector unsigned char);
17992 vector signed short vec_mulo (vector signed char, vector signed char);
17993 vector unsigned int vec_mulo (vector unsigned short, vector unsigned short);
17994 vector signed int vec_mulo (vector signed short, vector signed short);
17996 vector signed char vec_nabs (vector signed char);
17997 vector signed short vec_nabs (vector signed short);
17998 vector signed int vec_nabs (vector signed int);
17999 vector float vec_nabs (vector float);
18001 vector float vec_nmsub (vector float, vector float, vector float);
18003 vector float vec_nor (vector float, vector float);
18004 vector signed int vec_nor (vector signed int, vector signed int);
18005 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
18006 vector bool int vec_nor (vector bool int, vector bool int);
18007 vector signed short vec_nor (vector signed short, vector signed short);
18008 vector unsigned short vec_nor (vector unsigned short, vector unsigned short);
18009 vector bool short vec_nor (vector bool short, vector bool short);
18010 vector signed char vec_nor (vector signed char, vector signed char);
18011 vector unsigned char vec_nor (vector unsigned char, vector unsigned char);
18012 vector bool char vec_nor (vector bool char, vector bool char);
18014 vector float vec_or (vector float, vector float);
18015 vector float vec_or (vector float, vector bool int);
18016 vector float vec_or (vector bool int, vector float);
18017 vector bool int vec_or (vector bool int, vector bool int);
18018 vector signed int vec_or (vector bool int, vector signed int);
18019 vector signed int vec_or (vector signed int, vector bool int);
18020 vector signed int vec_or (vector signed int, vector signed int);
18021 vector unsigned int vec_or (vector bool int, vector unsigned int);
18022 vector unsigned int vec_or (vector unsigned int, vector bool int);
18023 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
18024 vector bool short vec_or (vector bool short, vector bool short);
18025 vector signed short vec_or (vector bool short, vector signed short);
18026 vector signed short vec_or (vector signed short, vector bool short);
18027 vector signed short vec_or (vector signed short, vector signed short);
18028 vector unsigned short vec_or (vector bool short, vector unsigned short);
18029 vector unsigned short vec_or (vector unsigned short, vector bool short);
18030 vector unsigned short vec_or (vector unsigned short, vector unsigned short);
18031 vector signed char vec_or (vector bool char, vector signed char);
18032 vector bool char vec_or (vector bool char, vector bool char);
18033 vector signed char vec_or (vector signed char, vector bool char);
18034 vector signed char vec_or (vector signed char, vector signed char);
18035 vector unsigned char vec_or (vector bool char, vector unsigned char);
18036 vector unsigned char vec_or (vector unsigned char, vector bool char);
18037 vector unsigned char vec_or (vector unsigned char, vector unsigned char);
18039 vector signed char vec_pack (vector signed short, vector signed short);
18040 vector unsigned char vec_pack (vector unsigned short, vector unsigned short);
18041 vector bool char vec_pack (vector bool short, vector bool short);
18042 vector signed short vec_pack (vector signed int, vector signed int);
18043 vector unsigned short vec_pack (vector unsigned int, vector unsigned int);
18044 vector bool short vec_pack (vector bool int, vector bool int);
18046 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
18048 vector unsigned char vec_packs (vector unsigned short, vector unsigned short);
18049 vector signed char vec_packs (vector signed short, vector signed short);
18050 vector unsigned short vec_packs (vector unsigned int, vector unsigned int);
18051 vector signed short vec_packs (vector signed int, vector signed int);
18053 vector unsigned char vec_packsu (vector unsigned short, vector unsigned short);
18054 vector unsigned char vec_packsu (vector signed short, vector signed short);
18055 vector unsigned short vec_packsu (vector unsigned int, vector unsigned int);
18056 vector unsigned short vec_packsu (vector signed int, vector signed int);
18058 vector float vec_perm (vector float, vector float, vector unsigned char);
18059 vector signed int vec_perm (vector signed int, vector signed int, vector unsigned char);
18060 vector unsigned int vec_perm (vector unsigned int, vector unsigned int,
18061                               vector unsigned char);
18062 vector bool int vec_perm (vector bool int, vector bool int, vector unsigned char);
18063 vector signed short vec_perm (vector signed short, vector signed short,
18064                               vector unsigned char);
18065 vector unsigned short vec_perm (vector unsigned short, vector unsigned short,
18066                                 vector unsigned char);
18067 vector bool short vec_perm (vector bool short, vector bool short, vector unsigned char);
18068 vector pixel vec_perm (vector pixel, vector pixel, vector unsigned char);
18069 vector signed char vec_perm (vector signed char, vector signed char,
18070                              vector unsigned char);
18071 vector unsigned char vec_perm (vector unsigned char, vector unsigned char,
18072                                vector unsigned char);
18073 vector bool char vec_perm (vector bool char, vector bool char, vector unsigned char);
18075 vector float vec_re (vector float);
18077 vector bool char vec_reve (vector bool char);
18078 vector signed char vec_reve (vector signed char);
18079 vector unsigned char vec_reve (vector unsigned char);
18080 vector bool int vec_reve (vector bool int);
18081 vector signed int vec_reve (vector signed int);
18082 vector unsigned int vec_reve (vector unsigned int);
18083 vector bool short vec_reve (vector bool short);
18084 vector signed short vec_reve (vector signed short);
18085 vector unsigned short vec_reve (vector unsigned short);
18087 vector signed char vec_rl (vector signed char, vector unsigned char);
18088 vector unsigned char vec_rl (vector unsigned char, vector unsigned char);
18089 vector signed short vec_rl (vector signed short, vector unsigned short);
18090 vector unsigned short vec_rl (vector unsigned short, vector unsigned short);
18091 vector signed int vec_rl (vector signed int, vector unsigned int);
18092 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
18094 vector float vec_round (vector float);
18096 vector float vec_rsqrt (vector float);
18098 vector float vec_rsqrte (vector float);
18100 vector float vec_sel (vector float, vector float, vector bool int);
18101 vector float vec_sel (vector float, vector float, vector unsigned int);
18102 vector signed int vec_sel (vector signed int, vector signed int, vector bool int);
18103 vector signed int vec_sel (vector signed int, vector signed int, vector unsigned int);
18104 vector unsigned int vec_sel (vector unsigned int, vector unsigned int, vector bool int);
18105 vector unsigned int vec_sel (vector unsigned int, vector unsigned int,
18106                              vector unsigned int);
18107 vector bool int vec_sel (vector bool int, vector bool int, vector bool int);
18108 vector bool int vec_sel (vector bool int, vector bool int, vector unsigned int);
18109 vector signed short vec_sel (vector signed short, vector signed short,
18110                              vector bool short);
18111 vector signed short vec_sel (vector signed short, vector signed short,
18112                              vector unsigned short);
18113 vector unsigned short vec_sel (vector unsigned short, vector unsigned short,
18114                                vector bool short);
18115 vector unsigned short vec_sel (vector unsigned short, vector unsigned short,
18116                                vector unsigned short);
18117 vector bool short vec_sel (vector bool short, vector bool short, vector bool short);
18118 vector bool short vec_sel (vector bool short, vector bool short, vector unsigned short);
18119 vector signed char vec_sel (vector signed char, vector signed char, vector bool char);
18120 vector signed char vec_sel (vector signed char, vector signed char,
18121                             vector unsigned char);
18122 vector unsigned char vec_sel (vector unsigned char, vector unsigned char,
18123                               vector bool char);
18124 vector unsigned char vec_sel (vector unsigned char, vector unsigned char,
18125                               vector unsigned char);
18126 vector bool char vec_sel (vector bool char, vector bool char, vector bool char);
18127 vector bool char vec_sel (vector bool char, vector bool char, vector unsigned char);
18129 vector signed char vec_sl (vector signed char, vector unsigned char);
18130 vector unsigned char vec_sl (vector unsigned char, vector unsigned char);
18131 vector signed short vec_sl (vector signed short, vector unsigned short);
18132 vector unsigned short vec_sl (vector unsigned short, vector unsigned short);
18133 vector signed int vec_sl (vector signed int, vector unsigned int);
18134 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
18136 vector float vec_sld (vector float, vector float, const int);
18137 vector signed int vec_sld (vector signed int, vector signed int, const int);
18138 vector unsigned int vec_sld (vector unsigned int, vector unsigned int, const int);
18139 vector bool int vec_sld (vector bool int, vector bool int, const int);
18140 vector signed short vec_sld (vector signed short, vector signed short, const int);
18141 vector unsigned short vec_sld (vector unsigned short, vector unsigned short, const int);
18142 vector bool short vec_sld (vector bool short, vector bool short, const int);
18143 vector pixel vec_sld (vector pixel, vector pixel, const int);
18144 vector signed char vec_sld (vector signed char, vector signed char, const int);
18145 vector unsigned char vec_sld (vector unsigned char, vector unsigned char, const int);
18146 vector bool char vec_sld (vector bool char, vector bool char, const int);
18148 vector signed int vec_sll (vector signed int, vector unsigned int);
18149 vector signed int vec_sll (vector signed int, vector unsigned short);
18150 vector signed int vec_sll (vector signed int, vector unsigned char);
18151 vector unsigned int vec_sll (vector unsigned int, vector unsigned int);
18152 vector unsigned int vec_sll (vector unsigned int, vector unsigned short);
18153 vector unsigned int vec_sll (vector unsigned int, vector unsigned char);
18154 vector bool int vec_sll (vector bool int, vector unsigned int);
18155 vector bool int vec_sll (vector bool int, vector unsigned short);
18156 vector bool int vec_sll (vector bool int, vector unsigned char);
18157 vector signed short vec_sll (vector signed short, vector unsigned int);
18158 vector signed short vec_sll (vector signed short, vector unsigned short);
18159 vector signed short vec_sll (vector signed short, vector unsigned char);
18160 vector unsigned short vec_sll (vector unsigned short, vector unsigned int);
18161 vector unsigned short vec_sll (vector unsigned short, vector unsigned short);
18162 vector unsigned short vec_sll (vector unsigned short, vector unsigned char);
18163 vector bool short vec_sll (vector bool short, vector unsigned int);
18164 vector bool short vec_sll (vector bool short, vector unsigned short);
18165 vector bool short vec_sll (vector bool short, vector unsigned char);
18166 vector pixel vec_sll (vector pixel, vector unsigned int);
18167 vector pixel vec_sll (vector pixel, vector unsigned short);
18168 vector pixel vec_sll (vector pixel, vector unsigned char);
18169 vector signed char vec_sll (vector signed char, vector unsigned int);
18170 vector signed char vec_sll (vector signed char, vector unsigned short);
18171 vector signed char vec_sll (vector signed char, vector unsigned char);
18172 vector unsigned char vec_sll (vector unsigned char, vector unsigned int);
18173 vector unsigned char vec_sll (vector unsigned char, vector unsigned short);
18174 vector unsigned char vec_sll (vector unsigned char, vector unsigned char);
18175 vector bool char vec_sll (vector bool char, vector unsigned int);
18176 vector bool char vec_sll (vector bool char, vector unsigned short);
18177 vector bool char vec_sll (vector bool char, vector unsigned char);
18179 vector float vec_slo (vector float, vector signed char);
18180 vector float vec_slo (vector float, vector unsigned char);
18181 vector signed int vec_slo (vector signed int, vector signed char);
18182 vector signed int vec_slo (vector signed int, vector unsigned char);
18183 vector unsigned int vec_slo (vector unsigned int, vector signed char);
18184 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
18185 vector signed short vec_slo (vector signed short, vector signed char);
18186 vector signed short vec_slo (vector signed short, vector unsigned char);
18187 vector unsigned short vec_slo (vector unsigned short, vector signed char);
18188 vector unsigned short vec_slo (vector unsigned short, vector unsigned char);
18189 vector pixel vec_slo (vector pixel, vector signed char);
18190 vector pixel vec_slo (vector pixel, vector unsigned char);
18191 vector signed char vec_slo (vector signed char, vector signed char);
18192 vector signed char vec_slo (vector signed char, vector unsigned char);
18193 vector unsigned char vec_slo (vector unsigned char, vector signed char);
18194 vector unsigned char vec_slo (vector unsigned char, vector unsigned char);
18196 vector signed char vec_splat (vector signed char, const int);
18197 vector unsigned char vec_splat (vector unsigned char, const int);
18198 vector bool char vec_splat (vector bool char, const int);
18199 vector signed short vec_splat (vector signed short, const int);
18200 vector unsigned short vec_splat (vector unsigned short, const int);
18201 vector bool short vec_splat (vector bool short, const int);
18202 vector pixel vec_splat (vector pixel, const int);
18203 vector float vec_splat (vector float, const int);
18204 vector signed int vec_splat (vector signed int, const int);
18205 vector unsigned int vec_splat (vector unsigned int, const int);
18206 vector bool int vec_splat (vector bool int, const int);
18208 vector signed short vec_splat_s16 (const int);
18210 vector signed int vec_splat_s32 (const int);
18212 vector signed char vec_splat_s8 (const int);
18214 vector unsigned short vec_splat_u16 (const int);
18216 vector unsigned int vec_splat_u32 (const int);
18218 vector unsigned char vec_splat_u8 (const int);
18220 vector signed char vec_splats (signed char);
18221 vector unsigned char vec_splats (unsigned char);
18222 vector signed short vec_splats (signed short);
18223 vector unsigned short vec_splats (unsigned short);
18224 vector signed int vec_splats (signed int);
18225 vector unsigned int vec_splats (unsigned int);
18226 vector float vec_splats (float);
18228 vector signed char vec_sr (vector signed char, vector unsigned char);
18229 vector unsigned char vec_sr (vector unsigned char, vector unsigned char);
18230 vector signed short vec_sr (vector signed short, vector unsigned short);
18231 vector unsigned short vec_sr (vector unsigned short, vector unsigned short);
18232 vector signed int vec_sr (vector signed int, vector unsigned int);
18233 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
18235 vector signed char vec_sra (vector signed char, vector unsigned char);
18236 vector unsigned char vec_sra (vector unsigned char, vector unsigned char);
18237 vector signed short vec_sra (vector signed short, vector unsigned short);
18238 vector unsigned short vec_sra (vector unsigned short, vector unsigned short);
18239 vector signed int vec_sra (vector signed int, vector unsigned int);
18240 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
18242 vector signed int vec_srl (vector signed int, vector unsigned int);
18243 vector signed int vec_srl (vector signed int, vector unsigned short);
18244 vector signed int vec_srl (vector signed int, vector unsigned char);
18245 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
18246 vector unsigned int vec_srl (vector unsigned int, vector unsigned short);
18247 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
18248 vector bool int vec_srl (vector bool int, vector unsigned int);
18249 vector bool int vec_srl (vector bool int, vector unsigned short);
18250 vector bool int vec_srl (vector bool int, vector unsigned char);
18251 vector signed short vec_srl (vector signed short, vector unsigned int);
18252 vector signed short vec_srl (vector signed short, vector unsigned short);
18253 vector signed short vec_srl (vector signed short, vector unsigned char);
18254 vector unsigned short vec_srl (vector unsigned short, vector unsigned int);
18255 vector unsigned short vec_srl (vector unsigned short, vector unsigned short);
18256 vector unsigned short vec_srl (vector unsigned short, vector unsigned char);
18257 vector bool short vec_srl (vector bool short, vector unsigned int);
18258 vector bool short vec_srl (vector bool short, vector unsigned short);
18259 vector bool short vec_srl (vector bool short, vector unsigned char);
18260 vector pixel vec_srl (vector pixel, vector unsigned int);
18261 vector pixel vec_srl (vector pixel, vector unsigned short);
18262 vector pixel vec_srl (vector pixel, vector unsigned char);
18263 vector signed char vec_srl (vector signed char, vector unsigned int);
18264 vector signed char vec_srl (vector signed char, vector unsigned short);
18265 vector signed char vec_srl (vector signed char, vector unsigned char);
18266 vector unsigned char vec_srl (vector unsigned char, vector unsigned int);
18267 vector unsigned char vec_srl (vector unsigned char, vector unsigned short);
18268 vector unsigned char vec_srl (vector unsigned char, vector unsigned char);
18269 vector bool char vec_srl (vector bool char, vector unsigned int);
18270 vector bool char vec_srl (vector bool char, vector unsigned short);
18271 vector bool char vec_srl (vector bool char, vector unsigned char);
18273 vector float vec_sro (vector float, vector signed char);
18274 vector float vec_sro (vector float, vector unsigned char);
18275 vector signed int vec_sro (vector signed int, vector signed char);
18276 vector signed int vec_sro (vector signed int, vector unsigned char);
18277 vector unsigned int vec_sro (vector unsigned int, vector signed char);
18278 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
18279 vector signed short vec_sro (vector signed short, vector signed char);
18280 vector signed short vec_sro (vector signed short, vector unsigned char);
18281 vector unsigned short vec_sro (vector unsigned short, vector signed char);
18282 vector unsigned short vec_sro (vector unsigned short, vector unsigned char);
18283 vector pixel vec_sro (vector pixel, vector signed char);
18284 vector pixel vec_sro (vector pixel, vector unsigned char);
18285 vector signed char vec_sro (vector signed char, vector signed char);
18286 vector signed char vec_sro (vector signed char, vector unsigned char);
18287 vector unsigned char vec_sro (vector unsigned char, vector signed char);
18288 vector unsigned char vec_sro (vector unsigned char, vector unsigned char);
18290 void vec_st (vector float, int, vector float *);
18291 void vec_st (vector float, int, float *);
18292 void vec_st (vector signed int, int, vector signed int *);
18293 void vec_st (vector signed int, int, int *);
18294 void vec_st (vector unsigned int, int, vector unsigned int *);
18295 void vec_st (vector unsigned int, int, unsigned int *);
18296 void vec_st (vector bool int, int, vector bool int *);
18297 void vec_st (vector bool int, int, unsigned int *);
18298 void vec_st (vector bool int, int, int *);
18299 void vec_st (vector signed short, int, vector signed short *);
18300 void vec_st (vector signed short, int, short *);
18301 void vec_st (vector unsigned short, int, vector unsigned short *);
18302 void vec_st (vector unsigned short, int, unsigned short *);
18303 void vec_st (vector bool short, int, vector bool short *);
18304 void vec_st (vector bool short, int, unsigned short *);
18305 void vec_st (vector pixel, int, vector pixel *);
18306 void vec_st (vector bool short, int, short *);
18307 void vec_st (vector signed char, int, vector signed char *);
18308 void vec_st (vector signed char, int, signed char *);
18309 void vec_st (vector unsigned char, int, vector unsigned char *);
18310 void vec_st (vector unsigned char, int, unsigned char *);
18311 void vec_st (vector bool char, int, vector bool char *);
18312 void vec_st (vector bool char, int, unsigned char *);
18313 void vec_st (vector bool char, int, signed char *);
18315 void vec_ste (vector signed char, int, signed char *);
18316 void vec_ste (vector unsigned char, int, unsigned char *);
18317 void vec_ste (vector bool char, int, signed char *);
18318 void vec_ste (vector bool char, int, unsigned char *);
18319 void vec_ste (vector signed short, int, short *);
18320 void vec_ste (vector unsigned short, int, unsigned short *);
18321 void vec_ste (vector bool short, int, short *);
18322 void vec_ste (vector bool short, int, unsigned short *);
18323 void vec_ste (vector pixel, int, short *);
18324 void vec_ste (vector pixel, int, unsigned short *);
18325 void vec_ste (vector float, int, float *);
18326 void vec_ste (vector signed int, int, int *);
18327 void vec_ste (vector unsigned int, int, unsigned int *);
18328 void vec_ste (vector bool int, int, int *);
18329 void vec_ste (vector bool int, int, unsigned int *);
18331 void vec_stl (vector float, int, vector float *);
18332 void vec_stl (vector float, int, float *);
18333 void vec_stl (vector signed int, int, vector signed int *);
18334 void vec_stl (vector signed int, int, int *);
18335 void vec_stl (vector unsigned int, int, vector unsigned int *);
18336 void vec_stl (vector unsigned int, int, unsigned int *);
18337 void vec_stl (vector bool int, int, vector bool int *);
18338 void vec_stl (vector bool int, int, unsigned int *);
18339 void vec_stl (vector bool int, int, int *);
18340 void vec_stl (vector signed short, int, vector signed short *);
18341 void vec_stl (vector signed short, int, short *);
18342 void vec_stl (vector unsigned short, int, vector unsigned short *);
18343 void vec_stl (vector unsigned short, int, unsigned short *);
18344 void vec_stl (vector bool short, int, vector bool short *);
18345 void vec_stl (vector bool short, int, unsigned short *);
18346 void vec_stl (vector bool short, int, short *);
18347 void vec_stl (vector pixel, int, vector pixel *);
18348 void vec_stl (vector signed char, int, vector signed char *);
18349 void vec_stl (vector signed char, int, signed char *);
18350 void vec_stl (vector unsigned char, int, vector unsigned char *);
18351 void vec_stl (vector unsigned char, int, unsigned char *);
18352 void vec_stl (vector bool char, int, vector bool char *);
18353 void vec_stl (vector bool char, int, unsigned char *);
18354 void vec_stl (vector bool char, int, signed char *);
18356 void vec_stvebx (vector signed char, int, signed char *);
18357 void vec_stvebx (vector unsigned char, int, unsigned char *);
18358 void vec_stvebx (vector bool char, int, signed char *);
18359 void vec_stvebx (vector bool char, int, unsigned char *);
18361 void vec_stvehx (vector signed short, int, short *);
18362 void vec_stvehx (vector unsigned short, int, unsigned short *);
18363 void vec_stvehx (vector bool short, int, short *);
18364 void vec_stvehx (vector bool short, int, unsigned short *);
18366 void vec_stvewx (vector float, int, float *);
18367 void vec_stvewx (vector signed int, int, int *);
18368 void vec_stvewx (vector unsigned int, int, unsigned int *);
18369 void vec_stvewx (vector bool int, int, int *);
18370 void vec_stvewx (vector bool int, int, unsigned int *);
18372 vector signed char vec_sub (vector bool char, vector signed char);
18373 vector signed char vec_sub (vector signed char, vector bool char);
18374 vector signed char vec_sub (vector signed char, vector signed char);
18375 vector unsigned char vec_sub (vector bool char, vector unsigned char);
18376 vector unsigned char vec_sub (vector unsigned char, vector bool char);
18377 vector unsigned char vec_sub (vector unsigned char, vector unsigned char);
18378 vector signed short vec_sub (vector bool short, vector signed short);
18379 vector signed short vec_sub (vector signed short, vector bool short);
18380 vector signed short vec_sub (vector signed short, vector signed short);
18381 vector unsigned short vec_sub (vector bool short, vector unsigned short);
18382 vector unsigned short vec_sub (vector unsigned short, vector bool short);
18383 vector unsigned short vec_sub (vector unsigned short, vector unsigned short);
18384 vector signed int vec_sub (vector bool int, vector signed int);
18385 vector signed int vec_sub (vector signed int, vector bool int);
18386 vector signed int vec_sub (vector signed int, vector signed int);
18387 vector unsigned int vec_sub (vector bool int, vector unsigned int);
18388 vector unsigned int vec_sub (vector unsigned int, vector bool int);
18389 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
18390 vector float vec_sub (vector float, vector float);
18392 vector signed int vec_subc (vector signed int, vector signed int);
18393 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
18395 vector signed int vec_sube (vector signed int, vector signed int,
18396                             vector signed int);
18397 vector unsigned int vec_sube (vector unsigned int, vector unsigned int,
18398                               vector unsigned int);
18400 vector signed int vec_subec (vector signed int, vector signed int,
18401                              vector signed int);
18402 vector unsigned int vec_subec (vector unsigned int, vector unsigned int,
18403                                vector unsigned int);
18405 vector unsigned char vec_subs (vector bool char, vector unsigned char);
18406 vector unsigned char vec_subs (vector unsigned char, vector bool char);
18407 vector unsigned char vec_subs (vector unsigned char, vector unsigned char);
18408 vector signed char vec_subs (vector bool char, vector signed char);
18409 vector signed char vec_subs (vector signed char, vector bool char);
18410 vector signed char vec_subs (vector signed char, vector signed char);
18411 vector unsigned short vec_subs (vector bool short, vector unsigned short);
18412 vector unsigned short vec_subs (vector unsigned short, vector bool short);
18413 vector unsigned short vec_subs (vector unsigned short, vector unsigned short);
18414 vector signed short vec_subs (vector bool short, vector signed short);
18415 vector signed short vec_subs (vector signed short, vector bool short);
18416 vector signed short vec_subs (vector signed short, vector signed short);
18417 vector unsigned int vec_subs (vector bool int, vector unsigned int);
18418 vector unsigned int vec_subs (vector unsigned int, vector bool int);
18419 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
18420 vector signed int vec_subs (vector bool int, vector signed int);
18421 vector signed int vec_subs (vector signed int, vector bool int);
18422 vector signed int vec_subs (vector signed int, vector signed int);
18424 vector signed int vec_sum2s (vector signed int, vector signed int);
18426 vector unsigned int vec_sum4s (vector unsigned char, vector unsigned int);
18427 vector signed int vec_sum4s (vector signed char, vector signed int);
18428 vector signed int vec_sum4s (vector signed short, vector signed int);
18430 vector signed int vec_sums (vector signed int, vector signed int);
18432 vector float vec_trunc (vector float);
18434 vector signed short vec_unpackh (vector signed char);
18435 vector bool short vec_unpackh (vector bool char);
18436 vector signed int vec_unpackh (vector signed short);
18437 vector bool int vec_unpackh (vector bool short);
18438 vector unsigned int vec_unpackh (vector pixel);
18440 vector signed short vec_unpackl (vector signed char);
18441 vector bool short vec_unpackl (vector bool char);
18442 vector unsigned int vec_unpackl (vector pixel);
18443 vector signed int vec_unpackl (vector signed short);
18444 vector bool int vec_unpackl (vector bool short);
18446 vector float vec_vaddfp (vector float, vector float);
18448 vector signed char vec_vaddsbs (vector bool char, vector signed char);
18449 vector signed char vec_vaddsbs (vector signed char, vector bool char);
18450 vector signed char vec_vaddsbs (vector signed char, vector signed char);
18452 vector signed short vec_vaddshs (vector bool short, vector signed short);
18453 vector signed short vec_vaddshs (vector signed short, vector bool short);
18454 vector signed short vec_vaddshs (vector signed short, vector signed short);
18456 vector signed int vec_vaddsws (vector bool int, vector signed int);
18457 vector signed int vec_vaddsws (vector signed int, vector bool int);
18458 vector signed int vec_vaddsws (vector signed int, vector signed int);
18460 vector signed char vec_vaddubm (vector bool char, vector signed char);
18461 vector signed char vec_vaddubm (vector signed char, vector bool char);
18462 vector signed char vec_vaddubm (vector signed char, vector signed char);
18463 vector unsigned char vec_vaddubm (vector bool char, vector unsigned char);
18464 vector unsigned char vec_vaddubm (vector unsigned char, vector bool char);
18465 vector unsigned char vec_vaddubm (vector unsigned char, vector unsigned char);
18467 vector unsigned char vec_vaddubs (vector bool char, vector unsigned char);
18468 vector unsigned char vec_vaddubs (vector unsigned char, vector bool char);
18469 vector unsigned char vec_vaddubs (vector unsigned char, vector unsigned char);
18471 vector signed short vec_vadduhm (vector bool short, vector signed short);
18472 vector signed short vec_vadduhm (vector signed short, vector bool short);
18473 vector signed short vec_vadduhm (vector signed short, vector signed short);
18474 vector unsigned short vec_vadduhm (vector bool short, vector unsigned short);
18475 vector unsigned short vec_vadduhm (vector unsigned short, vector bool short);
18476 vector unsigned short vec_vadduhm (vector unsigned short, vector unsigned short);
18478 vector unsigned short vec_vadduhs (vector bool short, vector unsigned short);
18479 vector unsigned short vec_vadduhs (vector unsigned short, vector bool short);
18480 vector unsigned short vec_vadduhs (vector unsigned short, vector unsigned short);
18482 vector signed int vec_vadduwm (vector bool int, vector signed int);
18483 vector signed int vec_vadduwm (vector signed int, vector bool int);
18484 vector signed int vec_vadduwm (vector signed int, vector signed int);
18485 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
18486 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
18487 vector unsigned int vec_vadduwm (vector unsigned int, vector unsigned int);
18489 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
18490 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
18491 vector unsigned int vec_vadduws (vector unsigned int, vector unsigned int);
18493 vector signed char vec_vavgsb (vector signed char, vector signed char);
18495 vector signed short vec_vavgsh (vector signed short, vector signed short);
18497 vector signed int vec_vavgsw (vector signed int, vector signed int);
18499 vector unsigned char vec_vavgub (vector unsigned char, vector unsigned char);
18501 vector unsigned short vec_vavguh (vector unsigned short, vector unsigned short);
18503 vector unsigned int vec_vavguw (vector unsigned int, vector unsigned int);
18505 vector float vec_vcfsx (vector signed int, const int);
18507 vector float vec_vcfux (vector unsigned int, const int);
18509 vector bool int vec_vcmpeqfp (vector float, vector float);
18511 vector bool char vec_vcmpequb (vector signed char, vector signed char);
18512 vector bool char vec_vcmpequb (vector unsigned char, vector unsigned char);
18514 vector bool short vec_vcmpequh (vector signed short, vector signed short);
18515 vector bool short vec_vcmpequh (vector unsigned short, vector unsigned short);
18517 vector bool int vec_vcmpequw (vector signed int, vector signed int);
18518 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
18520 vector bool int vec_vcmpgtfp (vector float, vector float);
18522 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
18524 vector bool short vec_vcmpgtsh (vector signed short, vector signed short);
18526 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
18528 vector bool char vec_vcmpgtub (vector unsigned char, vector unsigned char);
18530 vector bool short vec_vcmpgtuh (vector unsigned short, vector unsigned short);
18532 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
18534 vector float vec_vmaxfp (vector float, vector float);
18536 vector signed char vec_vmaxsb (vector bool char, vector signed char);
18537 vector signed char vec_vmaxsb (vector signed char, vector bool char);
18538 vector signed char vec_vmaxsb (vector signed char, vector signed char);
18540 vector signed short vec_vmaxsh (vector bool short, vector signed short);
18541 vector signed short vec_vmaxsh (vector signed short, vector bool short);
18542 vector signed short vec_vmaxsh (vector signed short, vector signed short);
18544 vector signed int vec_vmaxsw (vector bool int, vector signed int);
18545 vector signed int vec_vmaxsw (vector signed int, vector bool int);
18546 vector signed int vec_vmaxsw (vector signed int, vector signed int);
18548 vector unsigned char vec_vmaxub (vector bool char, vector unsigned char);
18549 vector unsigned char vec_vmaxub (vector unsigned char, vector bool char);
18550 vector unsigned char vec_vmaxub (vector unsigned char, vector unsigned char);
18552 vector unsigned short vec_vmaxuh (vector bool short, vector unsigned short);
18553 vector unsigned short vec_vmaxuh (vector unsigned short, vector bool short);
18554 vector unsigned short vec_vmaxuh (vector unsigned short, vector unsigned short);
18556 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
18557 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
18558 vector unsigned int vec_vmaxuw (vector unsigned int, vector unsigned int);
18560 vector float vec_vminfp (vector float, vector float);
18562 vector signed char vec_vminsb (vector bool char, vector signed char);
18563 vector signed char vec_vminsb (vector signed char, vector bool char);
18564 vector signed char vec_vminsb (vector signed char, vector signed char);
18566 vector signed short vec_vminsh (vector bool short, vector signed short);
18567 vector signed short vec_vminsh (vector signed short, vector bool short);
18568 vector signed short vec_vminsh (vector signed short, vector signed short);
18570 vector signed int vec_vminsw (vector bool int, vector signed int);
18571 vector signed int vec_vminsw (vector signed int, vector bool int);
18572 vector signed int vec_vminsw (vector signed int, vector signed int);
18574 vector unsigned char vec_vminub (vector bool char, vector unsigned char);
18575 vector unsigned char vec_vminub (vector unsigned char, vector bool char);
18576 vector unsigned char vec_vminub (vector unsigned char, vector unsigned char);
18578 vector unsigned short vec_vminuh (vector bool short, vector unsigned short);
18579 vector unsigned short vec_vminuh (vector unsigned short, vector bool short);
18580 vector unsigned short vec_vminuh (vector unsigned short, vector unsigned short);
18582 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
18583 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
18584 vector unsigned int vec_vminuw (vector unsigned int, vector unsigned int);
18586 vector bool char vec_vmrghb (vector bool char, vector bool char);
18587 vector signed char vec_vmrghb (vector signed char, vector signed char);
18588 vector unsigned char vec_vmrghb (vector unsigned char, vector unsigned char);
18590 vector bool short vec_vmrghh (vector bool short, vector bool short);
18591 vector signed short vec_vmrghh (vector signed short, vector signed short);
18592 vector unsigned short vec_vmrghh (vector unsigned short, vector unsigned short);
18593 vector pixel vec_vmrghh (vector pixel, vector pixel);
18595 vector float vec_vmrghw (vector float, vector float);
18596 vector bool int vec_vmrghw (vector bool int, vector bool int);
18597 vector signed int vec_vmrghw (vector signed int, vector signed int);
18598 vector unsigned int vec_vmrghw (vector unsigned int, vector unsigned int);
18600 vector bool char vec_vmrglb (vector bool char, vector bool char);
18601 vector signed char vec_vmrglb (vector signed char, vector signed char);
18602 vector unsigned char vec_vmrglb (vector unsigned char, vector unsigned char);
18604 vector bool short vec_vmrglh (vector bool short, vector bool short);
18605 vector signed short vec_vmrglh (vector signed short, vector signed short);
18606 vector unsigned short vec_vmrglh (vector unsigned short, vector unsigned short);
18607 vector pixel vec_vmrglh (vector pixel, vector pixel);
18609 vector float vec_vmrglw (vector float, vector float);
18610 vector signed int vec_vmrglw (vector signed int, vector signed int);
18611 vector unsigned int vec_vmrglw (vector unsigned int, vector unsigned int);
18612 vector bool int vec_vmrglw (vector bool int, vector bool int);
18614 vector signed int vec_vmsummbm (vector signed char, vector unsigned char,
18615                                 vector signed int);
18617 vector signed int vec_vmsumshm (vector signed short, vector signed short,
18618                                 vector signed int);
18620 vector signed int vec_vmsumshs (vector signed short, vector signed short,
18621                                 vector signed int);
18623 vector unsigned int vec_vmsumubm (vector unsigned char, vector unsigned char,
18624                                   vector unsigned int);
18626 vector unsigned int vec_vmsumuhm (vector unsigned short, vector unsigned short,
18627                                   vector unsigned int);
18629 vector unsigned int vec_vmsumuhs (vector unsigned short, vector unsigned short,
18630                                   vector unsigned int);
18632 vector signed short vec_vmulesb (vector signed char, vector signed char);
18634 vector signed int vec_vmulesh (vector signed short, vector signed short);
18636 vector unsigned short vec_vmuleub (vector unsigned char, vector unsigned char);
18638 vector unsigned int vec_vmuleuh (vector unsigned short, vector unsigned short);
18640 vector signed short vec_vmulosb (vector signed char, vector signed char);
18642 vector signed int vec_vmulosh (vector signed short, vector signed short);
18644 vector unsigned short vec_vmuloub (vector unsigned char, vector unsigned char);
18646 vector unsigned int vec_vmulouh (vector unsigned short, vector unsigned short);
18648 vector signed char vec_vpkshss (vector signed short, vector signed short);
18650 vector unsigned char vec_vpkshus (vector signed short, vector signed short);
18652 vector signed short vec_vpkswss (vector signed int, vector signed int);
18654 vector unsigned short vec_vpkswus (vector signed int, vector signed int);
18656 vector bool char vec_vpkuhum (vector bool short, vector bool short);
18657 vector signed char vec_vpkuhum (vector signed short, vector signed short);
18658 vector unsigned char vec_vpkuhum (vector unsigned short, vector unsigned short);
18660 vector unsigned char vec_vpkuhus (vector unsigned short, vector unsigned short);
18662 vector bool short vec_vpkuwum (vector bool int, vector bool int);
18663 vector signed short vec_vpkuwum (vector signed int, vector signed int);
18664 vector unsigned short vec_vpkuwum (vector unsigned int, vector unsigned int);
18666 vector unsigned short vec_vpkuwus (vector unsigned int, vector unsigned int);
18668 vector signed char vec_vrlb (vector signed char, vector unsigned char);
18669 vector unsigned char vec_vrlb (vector unsigned char, vector unsigned char);
18671 vector signed short vec_vrlh (vector signed short, vector unsigned short);
18672 vector unsigned short vec_vrlh (vector unsigned short, vector unsigned short);
18674 vector signed int vec_vrlw (vector signed int, vector unsigned int);
18675 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
18677 vector signed char vec_vslb (vector signed char, vector unsigned char);
18678 vector unsigned char vec_vslb (vector unsigned char, vector unsigned char);
18680 vector signed short vec_vslh (vector signed short, vector unsigned short);
18681 vector unsigned short vec_vslh (vector unsigned short, vector unsigned short);
18683 vector signed int vec_vslw (vector signed int, vector unsigned int);
18684 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
18686 vector signed char vec_vspltb (vector signed char, const int);
18687 vector unsigned char vec_vspltb (vector unsigned char, const int);
18688 vector bool char vec_vspltb (vector bool char, const int);
18690 vector bool short vec_vsplth (vector bool short, const int);
18691 vector signed short vec_vsplth (vector signed short, const int);
18692 vector unsigned short vec_vsplth (vector unsigned short, const int);
18693 vector pixel vec_vsplth (vector pixel, const int);
18695 vector float vec_vspltw (vector float, const int);
18696 vector signed int vec_vspltw (vector signed int, const int);
18697 vector unsigned int vec_vspltw (vector unsigned int, const int);
18698 vector bool int vec_vspltw (vector bool int, const int);
18700 vector signed char vec_vsrab (vector signed char, vector unsigned char);
18701 vector unsigned char vec_vsrab (vector unsigned char, vector unsigned char);
18703 vector signed short vec_vsrah (vector signed short, vector unsigned short);
18704 vector unsigned short vec_vsrah (vector unsigned short, vector unsigned short);
18706 vector signed int vec_vsraw (vector signed int, vector unsigned int);
18707 vector unsigned int vec_vsraw (vector unsigned int, vector unsigned int);
18709 vector signed char vec_vsrb (vector signed char, vector unsigned char);
18710 vector unsigned char vec_vsrb (vector unsigned char, vector unsigned char);
18712 vector signed short vec_vsrh (vector signed short, vector unsigned short);
18713 vector unsigned short vec_vsrh (vector unsigned short, vector unsigned short);
18715 vector signed int vec_vsrw (vector signed int, vector unsigned int);
18716 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
18718 vector float vec_vsubfp (vector float, vector float);
18720 vector signed char vec_vsubsbs (vector bool char, vector signed char);
18721 vector signed char vec_vsubsbs (vector signed char, vector bool char);
18722 vector signed char vec_vsubsbs (vector signed char, vector signed char);
18724 vector signed short vec_vsubshs (vector bool short, vector signed short);
18725 vector signed short vec_vsubshs (vector signed short, vector bool short);
18726 vector signed short vec_vsubshs (vector signed short, vector signed short);
18728 vector signed int vec_vsubsws (vector bool int, vector signed int);
18729 vector signed int vec_vsubsws (vector signed int, vector bool int);
18730 vector signed int vec_vsubsws (vector signed int, vector signed int);
18732 vector signed char vec_vsububm (vector bool char, vector signed char);
18733 vector signed char vec_vsububm (vector signed char, vector bool char);
18734 vector signed char vec_vsububm (vector signed char, vector signed char);
18735 vector unsigned char vec_vsububm (vector bool char, vector unsigned char);
18736 vector unsigned char vec_vsububm (vector unsigned char, vector bool char);
18737 vector unsigned char vec_vsububm (vector unsigned char, vector unsigned char);
18739 vector unsigned char vec_vsububs (vector bool char, vector unsigned char);
18740 vector unsigned char vec_vsububs (vector unsigned char, vector bool char);
18741 vector unsigned char vec_vsububs (vector unsigned char, vector unsigned char);
18743 vector signed short vec_vsubuhm (vector bool short, vector signed short);
18744 vector signed short vec_vsubuhm (vector signed short, vector bool short);
18745 vector signed short vec_vsubuhm (vector signed short, vector signed short);
18746 vector unsigned short vec_vsubuhm (vector bool short, vector unsigned short);
18747 vector unsigned short vec_vsubuhm (vector unsigned short, vector bool short);
18748 vector unsigned short vec_vsubuhm (vector unsigned short, vector unsigned short);
18750 vector unsigned short vec_vsubuhs (vector bool short, vector unsigned short);
18751 vector unsigned short vec_vsubuhs (vector unsigned short, vector bool short);
18752 vector unsigned short vec_vsubuhs (vector unsigned short, vector unsigned short);
18754 vector signed int vec_vsubuwm (vector bool int, vector signed int);
18755 vector signed int vec_vsubuwm (vector signed int, vector bool int);
18756 vector signed int vec_vsubuwm (vector signed int, vector signed int);
18757 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
18758 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
18759 vector unsigned int vec_vsubuwm (vector unsigned int, vector unsigned int);
18761 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
18762 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
18763 vector unsigned int vec_vsubuws (vector unsigned int, vector unsigned int);
18765 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
18767 vector signed int vec_vsum4shs (vector signed short, vector signed int);
18769 vector unsigned int vec_vsum4ubs (vector unsigned char, vector unsigned int);
18771 vector unsigned int vec_vupkhpx (vector pixel);
18773 vector bool short vec_vupkhsb (vector bool char);
18774 vector signed short vec_vupkhsb (vector signed char);
18776 vector bool int vec_vupkhsh (vector bool short);
18777 vector signed int vec_vupkhsh (vector signed short);
18779 vector unsigned int vec_vupklpx (vector pixel);
18781 vector bool short vec_vupklsb (vector bool char);
18782 vector signed short vec_vupklsb (vector signed char);
18784 vector bool int vec_vupklsh (vector bool short);
18785 vector signed int vec_vupklsh (vector signed short);
18787 vector float vec_xor (vector float, vector float);
18788 vector float vec_xor (vector float, vector bool int);
18789 vector float vec_xor (vector bool int, vector float);
18790 vector bool int vec_xor (vector bool int, vector bool int);
18791 vector signed int vec_xor (vector bool int, vector signed int);
18792 vector signed int vec_xor (vector signed int, vector bool int);
18793 vector signed int vec_xor (vector signed int, vector signed int);
18794 vector unsigned int vec_xor (vector bool int, vector unsigned int);
18795 vector unsigned int vec_xor (vector unsigned int, vector bool int);
18796 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
18797 vector bool short vec_xor (vector bool short, vector bool short);
18798 vector signed short vec_xor (vector bool short, vector signed short);
18799 vector signed short vec_xor (vector signed short, vector bool short);
18800 vector signed short vec_xor (vector signed short, vector signed short);
18801 vector unsigned short vec_xor (vector bool short, vector unsigned short);
18802 vector unsigned short vec_xor (vector unsigned short, vector bool short);
18803 vector unsigned short vec_xor (vector unsigned short, vector unsigned short);
18804 vector signed char vec_xor (vector bool char, vector signed char);
18805 vector bool char vec_xor (vector bool char, vector bool char);
18806 vector signed char vec_xor (vector signed char, vector bool char);
18807 vector signed char vec_xor (vector signed char, vector signed char);
18808 vector unsigned char vec_xor (vector bool char, vector unsigned char);
18809 vector unsigned char vec_xor (vector unsigned char, vector bool char);
18810 vector unsigned char vec_xor (vector unsigned char, vector unsigned char);
18811 @end smallexample
18813 @node PowerPC AltiVec Built-in Functions Available on ISA 2.06
18814 @subsubsection PowerPC AltiVec Built-in Functions Available on ISA 2.06
18816 The AltiVec built-in functions described in this section are
18817 available on the PowerPC family of processors starting with ISA 2.06
18818 or later.  These are normally enabled by adding @option{-mvsx} to the
18819 command line.
18821 When @option{-mvsx} is used, the following additional vector types are
18822 implemented.
18824 @smallexample
18825 vector unsigned __int128
18826 vector signed __int128
18827 vector unsigned long long int
18828 vector signed long long int
18829 vector double
18830 @end smallexample
18832 The long long types are only implemented for 64-bit code generation.
18834 @smallexample
18836 vector bool long long vec_and (vector bool long long int, vector bool long long);
18838 vector double vec_ctf (vector unsigned long, const int);
18839 vector double vec_ctf (vector signed long, const int);
18841 vector signed long vec_cts (vector double, const int);
18843 vector unsigned long vec_ctu (vector double, const int);
18845 void vec_dst (const unsigned long *, int, const int);
18846 void vec_dst (const long *, int, const int);
18848 void vec_dststt (const unsigned long *, int, const int);
18849 void vec_dststt (const long *, int, const int);
18851 void vec_dstt (const unsigned long *, int, const int);
18852 void vec_dstt (const long *, int, const int);
18854 vector unsigned char vec_lvsl (int, const unsigned long *);
18855 vector unsigned char vec_lvsl (int, const long *);
18857 vector unsigned char vec_lvsr (int, const unsigned long *);
18858 vector unsigned char vec_lvsr (int, const long *);
18860 vector double vec_mul (vector double, vector double);
18861 vector long vec_mul (vector long, vector long);
18862 vector unsigned long vec_mul (vector unsigned long, vector unsigned long);
18864 vector unsigned long long vec_mule (vector unsigned int, vector unsigned int);
18865 vector signed long long vec_mule (vector signed int, vector signed int);
18867 vector unsigned long long vec_mulo (vector unsigned int, vector unsigned int);
18868 vector signed long long vec_mulo (vector signed int, vector signed int);
18870 vector double vec_nabs (vector double);
18872 vector bool long long vec_reve (vector bool long long);
18873 vector signed long long vec_reve (vector signed long long);
18874 vector unsigned long long vec_reve (vector unsigned long long);
18875 vector double vec_sld (vector double, vector double, const int);
18877 vector bool long long int vec_sld (vector bool long long int,
18878                                    vector bool long long int, const int);
18879 vector long long int vec_sld (vector long long int, vector  long long int, const int);
18880 vector unsigned long long int vec_sld (vector unsigned long long int,
18881                                        vector unsigned long long int, const int);
18883 vector long long int vec_sll (vector long long int, vector unsigned char);
18884 vector unsigned long long int vec_sll (vector unsigned long long int,
18885                                        vector unsigned char);
18887 vector signed long long vec_slo (vector signed long long, vector signed char);
18888 vector signed long long vec_slo (vector signed long long, vector unsigned char);
18889 vector unsigned long long vec_slo (vector unsigned long long, vector signed char);
18890 vector unsigned long long vec_slo (vector unsigned long long, vector unsigned char);
18892 vector signed long vec_splat (vector signed long, const int);
18893 vector unsigned long vec_splat (vector unsigned long, const int);
18895 vector long long int vec_srl (vector long long int, vector unsigned char);
18896 vector unsigned long long int vec_srl (vector unsigned long long int,
18897                                        vector unsigned char);
18899 vector long long int vec_sro (vector long long int, vector char);
18900 vector long long int vec_sro (vector long long int, vector unsigned char);
18901 vector unsigned long long int vec_sro (vector unsigned long long int, vector char);
18902 vector unsigned long long int vec_sro (vector unsigned long long int,
18903                                        vector unsigned char);
18905 vector signed __int128 vec_subc (vector signed __int128, vector signed __int128);
18906 vector unsigned __int128 vec_subc (vector unsigned __int128, vector unsigned __int128);
18908 vector signed __int128 vec_sube (vector signed __int128, vector signed __int128,
18909                                  vector signed __int128);
18910 vector unsigned __int128 vec_sube (vector unsigned __int128, vector unsigned __int128,
18911                                    vector unsigned __int128);
18913 vector signed __int128 vec_subec (vector signed __int128, vector signed __int128,
18914                                   vector signed __int128);
18915 vector unsigned __int128 vec_subec (vector unsigned __int128, vector unsigned __int128,
18916                                     vector unsigned __int128);
18918 vector double vec_unpackh (vector float);
18920 vector double vec_unpackl (vector float);
18922 vector double vec_doublee (vector float);
18923 vector double vec_doublee (vector signed int);
18924 vector double vec_doublee (vector unsigned int);
18926 vector double vec_doubleo (vector float);
18927 vector double vec_doubleo (vector signed int);
18928 vector double vec_doubleo (vector unsigned int);
18930 vector double vec_doubleh (vector float);
18931 vector double vec_doubleh (vector signed int);
18932 vector double vec_doubleh (vector unsigned int);
18934 vector double vec_doublel (vector float);
18935 vector double vec_doublel (vector signed int);
18936 vector double vec_doublel (vector unsigned int);
18938 vector float vec_float (vector signed int);
18939 vector float vec_float (vector unsigned int);
18941 vector float vec_float2 (vector signed long long, vector signed long long);
18942 vector float vec_float2 (vector unsigned long long, vector signed long long);
18944 vector float vec_floate (vector double);
18945 vector float vec_floate (vector signed long long);
18946 vector float vec_floate (vector unsigned long long);
18948 vector float vec_floato (vector double);
18949 vector float vec_floato (vector signed long long);
18950 vector float vec_floato (vector unsigned long long);
18952 vector signed long long vec_signed (vector double);
18953 vector signed int vec_signed (vector float);
18955 vector signed int vec_signede (vector double);
18957 vector signed int vec_signedo (vector double);
18959 vector signed char vec_sldw (vector signed char, vector signed char, const int);
18960 vector unsigned char vec_sldw (vector unsigned char, vector unsigned char, const int);
18961 vector signed short vec_sldw (vector signed short, vector signed short, const int);
18962 vector unsigned short vec_sldw (vector unsigned short,
18963                                 vector unsigned short, const int);
18964 vector signed int vec_sldw (vector signed int, vector signed int, const int);
18965 vector unsigned int vec_sldw (vector unsigned int, vector unsigned int, const int);
18966 vector signed long long vec_sldw (vector signed long long,
18967                                   vector signed long long, const int);
18968 vector unsigned long long vec_sldw (vector unsigned long long,
18969                                     vector unsigned long long, const int);
18971 vector signed long long vec_unsigned (vector double);
18972 vector signed int vec_unsigned (vector float);
18974 vector signed int vec_unsignede (vector double);
18976 vector signed int vec_unsignedo (vector double);
18978 vector double vec_abs (vector double);
18979 vector double vec_add (vector double, vector double);
18980 vector double vec_and (vector double, vector double);
18981 vector double vec_and (vector double, vector bool long);
18982 vector double vec_and (vector bool long, vector double);
18983 vector long vec_and (vector long, vector long);
18984 vector long vec_and (vector long, vector bool long);
18985 vector long vec_and (vector bool long, vector long);
18986 vector unsigned long vec_and (vector unsigned long, vector unsigned long);
18987 vector unsigned long vec_and (vector unsigned long, vector bool long);
18988 vector unsigned long vec_and (vector bool long, vector unsigned long);
18989 vector double vec_andc (vector double, vector double);
18990 vector double vec_andc (vector double, vector bool long);
18991 vector double vec_andc (vector bool long, vector double);
18992 vector long vec_andc (vector long, vector long);
18993 vector long vec_andc (vector long, vector bool long);
18994 vector long vec_andc (vector bool long, vector long);
18995 vector unsigned long vec_andc (vector unsigned long, vector unsigned long);
18996 vector unsigned long vec_andc (vector unsigned long, vector bool long);
18997 vector unsigned long vec_andc (vector bool long, vector unsigned long);
18998 vector double vec_ceil (vector double);
18999 vector bool long vec_cmpeq (vector double, vector double);
19000 vector bool long vec_cmpge (vector double, vector double);
19001 vector bool long vec_cmpgt (vector double, vector double);
19002 vector bool long vec_cmple (vector double, vector double);
19003 vector bool long vec_cmplt (vector double, vector double);
19004 vector double vec_cpsgn (vector double, vector double);
19005 vector float vec_div (vector float, vector float);
19006 vector double vec_div (vector double, vector double);
19007 vector long vec_div (vector long, vector long);
19008 vector unsigned long vec_div (vector unsigned long, vector unsigned long);
19009 vector double vec_floor (vector double);
19010 vector signed long long vec_ld (int, const vector signed long long *);
19011 vector signed long long vec_ld (int, const signed long long *);
19012 vector unsigned long long vec_ld (int, const vector unsigned long long *);
19013 vector unsigned long long vec_ld (int, const unsigned long long *);
19014 vector __int128 vec_ld (int, const vector __int128 *);
19015 vector unsigned __int128 vec_ld (int, const vector unsigned __int128 *);
19016 vector __int128 vec_ld (int, const __int128 *);
19017 vector unsigned __int128 vec_ld (int, const unsigned __int128 *);
19018 vector double vec_ld (int, const vector double *);
19019 vector double vec_ld (int, const double *);
19020 vector double vec_ldl (int, const vector double *);
19021 vector double vec_ldl (int, const double *);
19022 vector unsigned char vec_lvsl (int, const double *);
19023 vector unsigned char vec_lvsr (int, const double *);
19024 vector double vec_madd (vector double, vector double, vector double);
19025 vector double vec_max (vector double, vector double);
19026 vector signed long vec_mergeh (vector signed long, vector signed long);
19027 vector signed long vec_mergeh (vector signed long, vector bool long);
19028 vector signed long vec_mergeh (vector bool long, vector signed long);
19029 vector unsigned long vec_mergeh (vector unsigned long, vector unsigned long);
19030 vector unsigned long vec_mergeh (vector unsigned long, vector bool long);
19031 vector unsigned long vec_mergeh (vector bool long, vector unsigned long);
19032 vector signed long vec_mergel (vector signed long, vector signed long);
19033 vector signed long vec_mergel (vector signed long, vector bool long);
19034 vector signed long vec_mergel (vector bool long, vector signed long);
19035 vector unsigned long vec_mergel (vector unsigned long, vector unsigned long);
19036 vector unsigned long vec_mergel (vector unsigned long, vector bool long);
19037 vector unsigned long vec_mergel (vector bool long, vector unsigned long);
19038 vector double vec_min (vector double, vector double);
19039 vector float vec_msub (vector float, vector float, vector float);
19040 vector double vec_msub (vector double, vector double, vector double);
19041 vector float vec_nearbyint (vector float);
19042 vector double vec_nearbyint (vector double);
19043 vector float vec_nmadd (vector float, vector float, vector float);
19044 vector double vec_nmadd (vector double, vector double, vector double);
19045 vector double vec_nmsub (vector double, vector double, vector double);
19046 vector double vec_nor (vector double, vector double);
19047 vector long vec_nor (vector long, vector long);
19048 vector long vec_nor (vector long, vector bool long);
19049 vector long vec_nor (vector bool long, vector long);
19050 vector unsigned long vec_nor (vector unsigned long, vector unsigned long);
19051 vector unsigned long vec_nor (vector unsigned long, vector bool long);
19052 vector unsigned long vec_nor (vector bool long, vector unsigned long);
19053 vector double vec_or (vector double, vector double);
19054 vector double vec_or (vector double, vector bool long);
19055 vector double vec_or (vector bool long, vector double);
19056 vector long vec_or (vector long, vector long);
19057 vector long vec_or (vector long, vector bool long);
19058 vector long vec_or (vector bool long, vector long);
19059 vector unsigned long vec_or (vector unsigned long, vector unsigned long);
19060 vector unsigned long vec_or (vector unsigned long, vector bool long);
19061 vector unsigned long vec_or (vector bool long, vector unsigned long);
19062 vector double vec_perm (vector double, vector double, vector unsigned char);
19063 vector long vec_perm (vector long, vector long, vector unsigned char);
19064 vector unsigned long vec_perm (vector unsigned long, vector unsigned long,
19065                                vector unsigned char);
19066 vector bool char vec_permxor (vector bool char, vector bool char,
19067                               vector bool char);
19068 vector unsigned char vec_permxor (vector signed char, vector signed char,
19069                                   vector signed char);
19070 vector unsigned char vec_permxor (vector unsigned char, vector unsigned char,
19071                                   vector unsigned char);
19072 vector double vec_rint (vector double);
19073 vector double vec_recip (vector double, vector double);
19074 vector double vec_rsqrt (vector double);
19075 vector double vec_rsqrte (vector double);
19076 vector double vec_sel (vector double, vector double, vector bool long);
19077 vector double vec_sel (vector double, vector double, vector unsigned long);
19078 vector long vec_sel (vector long, vector long, vector long);
19079 vector long vec_sel (vector long, vector long, vector unsigned long);
19080 vector long vec_sel (vector long, vector long, vector bool long);
19081 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
19082                               vector long);
19083 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
19084                               vector unsigned long);
19085 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
19086                               vector bool long);
19087 vector double vec_splats (double);
19088 vector signed long vec_splats (signed long);
19089 vector unsigned long vec_splats (unsigned long);
19090 vector float vec_sqrt (vector float);
19091 vector double vec_sqrt (vector double);
19092 void vec_st (vector signed long long, int, vector signed long long *);
19093 void vec_st (vector signed long long, int, signed long long *);
19094 void vec_st (vector unsigned long long, int, vector unsigned long long *);
19095 void vec_st (vector unsigned long long, int, unsigned long long *);
19096 void vec_st (vector bool long long, int, vector bool long long *);
19097 void vec_st (vector bool long long, int, signed long long *);
19098 void vec_st (vector bool long long, int, unsigned long long *);
19099 void vec_st (vector double, int, vector double *);
19100 void vec_st (vector double, int, double *);
19101 vector double vec_sub (vector double, vector double);
19102 vector double vec_trunc (vector double);
19103 vector double vec_xl (int, vector double *);
19104 vector double vec_xl (int, double *);
19105 vector long long vec_xl (int, vector long long *);
19106 vector long long vec_xl (int, long long *);
19107 vector unsigned long long vec_xl (int, vector unsigned long long *);
19108 vector unsigned long long vec_xl (int, unsigned long long *);
19109 vector float vec_xl (int, vector float *);
19110 vector float vec_xl (int, float *);
19111 vector int vec_xl (int, vector int *);
19112 vector int vec_xl (int, int *);
19113 vector unsigned int vec_xl (int, vector unsigned int *);
19114 vector unsigned int vec_xl (int, unsigned int *);
19115 vector double vec_xor (vector double, vector double);
19116 vector double vec_xor (vector double, vector bool long);
19117 vector double vec_xor (vector bool long, vector double);
19118 vector long vec_xor (vector long, vector long);
19119 vector long vec_xor (vector long, vector bool long);
19120 vector long vec_xor (vector bool long, vector long);
19121 vector unsigned long vec_xor (vector unsigned long, vector unsigned long);
19122 vector unsigned long vec_xor (vector unsigned long, vector bool long);
19123 vector unsigned long vec_xor (vector bool long, vector unsigned long);
19124 void vec_xst (vector double, int, vector double *);
19125 void vec_xst (vector double, int, double *);
19126 void vec_xst (vector long long, int, vector long long *);
19127 void vec_xst (vector long long, int, long long *);
19128 void vec_xst (vector unsigned long long, int, vector unsigned long long *);
19129 void vec_xst (vector unsigned long long, int, unsigned long long *);
19130 void vec_xst (vector float, int, vector float *);
19131 void vec_xst (vector float, int, float *);
19132 void vec_xst (vector int, int, vector int *);
19133 void vec_xst (vector int, int, int *);
19134 void vec_xst (vector unsigned int, int, vector unsigned int *);
19135 void vec_xst (vector unsigned int, int, unsigned int *);
19136 int vec_all_eq (vector double, vector double);
19137 int vec_all_ge (vector double, vector double);
19138 int vec_all_gt (vector double, vector double);
19139 int vec_all_le (vector double, vector double);
19140 int vec_all_lt (vector double, vector double);
19141 int vec_all_nan (vector double);
19142 int vec_all_ne (vector double, vector double);
19143 int vec_all_nge (vector double, vector double);
19144 int vec_all_ngt (vector double, vector double);
19145 int vec_all_nle (vector double, vector double);
19146 int vec_all_nlt (vector double, vector double);
19147 int vec_all_numeric (vector double);
19148 int vec_any_eq (vector double, vector double);
19149 int vec_any_ge (vector double, vector double);
19150 int vec_any_gt (vector double, vector double);
19151 int vec_any_le (vector double, vector double);
19152 int vec_any_lt (vector double, vector double);
19153 int vec_any_nan (vector double);
19154 int vec_any_ne (vector double, vector double);
19155 int vec_any_nge (vector double, vector double);
19156 int vec_any_ngt (vector double, vector double);
19157 int vec_any_nle (vector double, vector double);
19158 int vec_any_nlt (vector double, vector double);
19159 int vec_any_numeric (vector double);
19161 vector double vec_vsx_ld (int, const vector double *);
19162 vector double vec_vsx_ld (int, const double *);
19163 vector float vec_vsx_ld (int, const vector float *);
19164 vector float vec_vsx_ld (int, const float *);
19165 vector bool int vec_vsx_ld (int, const vector bool int *);
19166 vector signed int vec_vsx_ld (int, const vector signed int *);
19167 vector signed int vec_vsx_ld (int, const int *);
19168 vector signed int vec_vsx_ld (int, const long *);
19169 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
19170 vector unsigned int vec_vsx_ld (int, const unsigned int *);
19171 vector unsigned int vec_vsx_ld (int, const unsigned long *);
19172 vector bool short vec_vsx_ld (int, const vector bool short *);
19173 vector pixel vec_vsx_ld (int, const vector pixel *);
19174 vector signed short vec_vsx_ld (int, const vector signed short *);
19175 vector signed short vec_vsx_ld (int, const short *);
19176 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
19177 vector unsigned short vec_vsx_ld (int, const unsigned short *);
19178 vector bool char vec_vsx_ld (int, const vector bool char *);
19179 vector signed char vec_vsx_ld (int, const vector signed char *);
19180 vector signed char vec_vsx_ld (int, const signed char *);
19181 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
19182 vector unsigned char vec_vsx_ld (int, const unsigned char *);
19184 void vec_vsx_st (vector double, int, vector double *);
19185 void vec_vsx_st (vector double, int, double *);
19186 void vec_vsx_st (vector float, int, vector float *);
19187 void vec_vsx_st (vector float, int, float *);
19188 void vec_vsx_st (vector signed int, int, vector signed int *);
19189 void vec_vsx_st (vector signed int, int, int *);
19190 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
19191 void vec_vsx_st (vector unsigned int, int, unsigned int *);
19192 void vec_vsx_st (vector bool int, int, vector bool int *);
19193 void vec_vsx_st (vector bool int, int, unsigned int *);
19194 void vec_vsx_st (vector bool int, int, int *);
19195 void vec_vsx_st (vector signed short, int, vector signed short *);
19196 void vec_vsx_st (vector signed short, int, short *);
19197 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
19198 void vec_vsx_st (vector unsigned short, int, unsigned short *);
19199 void vec_vsx_st (vector bool short, int, vector bool short *);
19200 void vec_vsx_st (vector bool short, int, unsigned short *);
19201 void vec_vsx_st (vector pixel, int, vector pixel *);
19202 void vec_vsx_st (vector pixel, int, unsigned short *);
19203 void vec_vsx_st (vector pixel, int, short *);
19204 void vec_vsx_st (vector bool short, int, short *);
19205 void vec_vsx_st (vector signed char, int, vector signed char *);
19206 void vec_vsx_st (vector signed char, int, signed char *);
19207 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
19208 void vec_vsx_st (vector unsigned char, int, unsigned char *);
19209 void vec_vsx_st (vector bool char, int, vector bool char *);
19210 void vec_vsx_st (vector bool char, int, unsigned char *);
19211 void vec_vsx_st (vector bool char, int, signed char *);
19213 vector double vec_xxpermdi (vector double, vector double, const int);
19214 vector float vec_xxpermdi (vector float, vector float, const int);
19215 vector long long vec_xxpermdi (vector long long, vector long long, const int);
19216 vector unsigned long long vec_xxpermdi (vector unsigned long long,
19217                                         vector unsigned long long, const int);
19218 vector int vec_xxpermdi (vector int, vector int, const int);
19219 vector unsigned int vec_xxpermdi (vector unsigned int,
19220                                   vector unsigned int, const int);
19221 vector short vec_xxpermdi (vector short, vector short, const int);
19222 vector unsigned short vec_xxpermdi (vector unsigned short,
19223                                     vector unsigned short, const int);
19224 vector signed char vec_xxpermdi (vector signed char, vector signed char,
19225                                  const int);
19226 vector unsigned char vec_xxpermdi (vector unsigned char,
19227                                    vector unsigned char, const int);
19229 vector double vec_xxsldi (vector double, vector double, int);
19230 vector float vec_xxsldi (vector float, vector float, int);
19231 vector long long vec_xxsldi (vector long long, vector long long, int);
19232 vector unsigned long long vec_xxsldi (vector unsigned long long,
19233                                       vector unsigned long long, int);
19234 vector int vec_xxsldi (vector int, vector int, int);
19235 vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
19236 vector short vec_xxsldi (vector short, vector short, int);
19237 vector unsigned short vec_xxsldi (vector unsigned short,
19238                                   vector unsigned short, int);
19239 vector signed char vec_xxsldi (vector signed char, vector signed char, int);
19240 vector unsigned char vec_xxsldi (vector unsigned char,
19241                                  vector unsigned char, int);
19242 @end smallexample
19244 Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
19245 generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
19246 if the VSX instruction set is available.  The @samp{vec_vsx_ld} and
19247 @samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
19248 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
19250 @node PowerPC AltiVec Built-in Functions Available on ISA 2.07
19251 @subsubsection PowerPC AltiVec Built-in Functions Available on ISA 2.07
19253 If the ISA 2.07 additions to the vector/scalar (power8-vector)
19254 instruction set are available, the following additional functions are
19255 available for both 32-bit and 64-bit targets.  For 64-bit targets, you
19256 can use @var{vector long} instead of @var{vector long long},
19257 @var{vector bool long} instead of @var{vector bool long long}, and
19258 @var{vector unsigned long} instead of @var{vector unsigned long long}.
19260 @smallexample
19261 vector signed char vec_neg (vector signed char);
19262 vector signed short vec_neg (vector signed short);
19263 vector signed int vec_neg (vector signed int);
19264 vector signed long long vec_neg (vector signed long long);
19265 vector float  char vec_neg (vector float);
19266 vector double vec_neg (vector double);
19268 vector signed int vec_signed2 (vector double, vector double);
19270 vector signed int vec_unsigned2 (vector double, vector double);
19272 vector long long vec_abs (vector long long);
19274 vector long long vec_add (vector long long, vector long long);
19275 vector unsigned long long vec_add (vector unsigned long long,
19276                                    vector unsigned long long);
19278 int vec_all_eq (vector long long, vector long long);
19279 int vec_all_eq (vector unsigned long long, vector unsigned long long);
19280 int vec_all_ge (vector long long, vector long long);
19281 int vec_all_ge (vector unsigned long long, vector unsigned long long);
19282 int vec_all_gt (vector long long, vector long long);
19283 int vec_all_gt (vector unsigned long long, vector unsigned long long);
19284 int vec_all_le (vector long long, vector long long);
19285 int vec_all_le (vector unsigned long long, vector unsigned long long);
19286 int vec_all_lt (vector long long, vector long long);
19287 int vec_all_lt (vector unsigned long long, vector unsigned long long);
19288 int vec_all_ne (vector long long, vector long long);
19289 int vec_all_ne (vector unsigned long long, vector unsigned long long);
19291 int vec_any_eq (vector long long, vector long long);
19292 int vec_any_eq (vector unsigned long long, vector unsigned long long);
19293 int vec_any_ge (vector long long, vector long long);
19294 int vec_any_ge (vector unsigned long long, vector unsigned long long);
19295 int vec_any_gt (vector long long, vector long long);
19296 int vec_any_gt (vector unsigned long long, vector unsigned long long);
19297 int vec_any_le (vector long long, vector long long);
19298 int vec_any_le (vector unsigned long long, vector unsigned long long);
19299 int vec_any_lt (vector long long, vector long long);
19300 int vec_any_lt (vector unsigned long long, vector unsigned long long);
19301 int vec_any_ne (vector long long, vector long long);
19302 int vec_any_ne (vector unsigned long long, vector unsigned long long);
19304 vector bool long long vec_cmpeq (vector bool long long, vector bool long long);
19306 vector long long vec_eqv (vector long long, vector long long);
19307 vector long long vec_eqv (vector bool long long, vector long long);
19308 vector long long vec_eqv (vector long long, vector bool long long);
19309 vector unsigned long long vec_eqv (vector unsigned long long, vector unsigned long long);
19310 vector unsigned long long vec_eqv (vector bool long long, vector unsigned long long);
19311 vector unsigned long long vec_eqv (vector unsigned long long,
19312                                    vector bool long long);
19313 vector int vec_eqv (vector int, vector int);
19314 vector int vec_eqv (vector bool int, vector int);
19315 vector int vec_eqv (vector int, vector bool int);
19316 vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
19317 vector unsigned int vec_eqv (vector bool unsigned int, vector unsigned int);
19318 vector unsigned int vec_eqv (vector unsigned int, vector bool unsigned int);
19319 vector short vec_eqv (vector short, vector short);
19320 vector short vec_eqv (vector bool short, vector short);
19321 vector short vec_eqv (vector short, vector bool short);
19322 vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
19323 vector unsigned short vec_eqv (vector bool unsigned short, vector unsigned short);
19324 vector unsigned short vec_eqv (vector unsigned short, vector bool unsigned short);
19325 vector signed char vec_eqv (vector signed char, vector signed char);
19326 vector signed char vec_eqv (vector bool signed char, vector signed char);
19327 vector signed char vec_eqv (vector signed char, vector bool signed char);
19328 vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
19329 vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
19330 vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
19332 vector long long vec_max (vector long long, vector long long);
19333 vector unsigned long long vec_max (vector unsigned long long,
19334                                    vector unsigned long long);
19336 vector signed int vec_mergee (vector signed int, vector signed int);
19337 vector unsigned int vec_mergee (vector unsigned int, vector unsigned int);
19338 vector bool int vec_mergee (vector bool int, vector bool int);
19340 vector signed int vec_mergeo (vector signed int, vector signed int);
19341 vector unsigned int vec_mergeo (vector unsigned int, vector unsigned int);
19342 vector bool int vec_mergeo (vector bool int, vector bool int);
19344 vector long long vec_min (vector long long, vector long long);
19345 vector unsigned long long vec_min (vector unsigned long long,
19346                                    vector unsigned long long);
19348 vector signed long long vec_nabs (vector signed long long);
19350 vector long long vec_nand (vector long long, vector long long);
19351 vector long long vec_nand (vector bool long long, vector long long);
19352 vector long long vec_nand (vector long long, vector bool long long);
19353 vector unsigned long long vec_nand (vector unsigned long long,
19354                                     vector unsigned long long);
19355 vector unsigned long long vec_nand (vector bool long long, vector unsigned long long);
19356 vector unsigned long long vec_nand (vector unsigned long long, vector bool long long);
19357 vector int vec_nand (vector int, vector int);
19358 vector int vec_nand (vector bool int, vector int);
19359 vector int vec_nand (vector int, vector bool int);
19360 vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
19361 vector unsigned int vec_nand (vector bool unsigned int, vector unsigned int);
19362 vector unsigned int vec_nand (vector unsigned int, vector bool unsigned int);
19363 vector short vec_nand (vector short, vector short);
19364 vector short vec_nand (vector bool short, vector short);
19365 vector short vec_nand (vector short, vector bool short);
19366 vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
19367 vector unsigned short vec_nand (vector bool unsigned short, vector unsigned short);
19368 vector unsigned short vec_nand (vector unsigned short, vector bool unsigned short);
19369 vector signed char vec_nand (vector signed char, vector signed char);
19370 vector signed char vec_nand (vector bool signed char, vector signed char);
19371 vector signed char vec_nand (vector signed char, vector bool signed char);
19372 vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
19373 vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
19374 vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
19376 vector long long vec_orc (vector long long, vector long long);
19377 vector long long vec_orc (vector bool long long, vector long long);
19378 vector long long vec_orc (vector long long, vector bool long long);
19379 vector unsigned long long vec_orc (vector unsigned long long,
19380                                    vector unsigned long long);
19381 vector unsigned long long vec_orc (vector bool long long, vector unsigned long long);
19382 vector unsigned long long vec_orc (vector unsigned long long, vector bool long long);
19383 vector int vec_orc (vector int, vector int);
19384 vector int vec_orc (vector bool int, vector int);
19385 vector int vec_orc (vector int, vector bool int);
19386 vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
19387 vector unsigned int vec_orc (vector bool unsigned int, vector unsigned int);
19388 vector unsigned int vec_orc (vector unsigned int, vector bool unsigned int);
19389 vector short vec_orc (vector short, vector short);
19390 vector short vec_orc (vector bool short, vector short);
19391 vector short vec_orc (vector short, vector bool short);
19392 vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
19393 vector unsigned short vec_orc (vector bool unsigned short, vector unsigned short);
19394 vector unsigned short vec_orc (vector unsigned short, vector bool unsigned short);
19395 vector signed char vec_orc (vector signed char, vector signed char);
19396 vector signed char vec_orc (vector bool signed char, vector signed char);
19397 vector signed char vec_orc (vector signed char, vector bool signed char);
19398 vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
19399 vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
19400 vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
19402 vector int vec_pack (vector long long, vector long long);
19403 vector unsigned int vec_pack (vector unsigned long long, vector unsigned long long);
19404 vector bool int vec_pack (vector bool long long, vector bool long long);
19405 vector float vec_pack (vector double, vector double);
19407 vector int vec_packs (vector long long, vector long long);
19408 vector unsigned int vec_packs (vector unsigned long long, vector unsigned long long);
19410 vector unsigned char vec_packsu (vector signed short, vector signed short)
19411 vector unsigned char vec_packsu (vector unsigned short, vector unsigned short)
19412 vector unsigned short int vec_packsu (vector signed int, vector signed int);
19413 vector unsigned short int vec_packsu (vector unsigned int, vector unsigned int);
19414 vector unsigned int vec_packsu (vector long long, vector long long);
19415 vector unsigned int vec_packsu (vector unsigned long long, vector unsigned long long);
19416 vector unsigned int vec_packsu (vector signed long long, vector signed long long);
19418 vector unsigned char vec_popcnt (vector signed char);
19419 vector unsigned char vec_popcnt (vector unsigned char);
19420 vector unsigned short vec_popcnt (vector signed short);
19421 vector unsigned short vec_popcnt (vector unsigned short);
19422 vector unsigned int vec_popcnt (vector signed int);
19423 vector unsigned int vec_popcnt (vector unsigned int);
19424 vector unsigned long long vec_popcnt (vector signed long long);
19425 vector unsigned long long vec_popcnt (vector unsigned long long);
19427 vector long long vec_rl (vector long long, vector unsigned long long);
19428 vector long long vec_rl (vector unsigned long long, vector unsigned long long);
19430 vector long long vec_sl (vector long long, vector unsigned long long);
19431 vector long long vec_sl (vector unsigned long long, vector unsigned long long);
19433 vector long long vec_sr (vector long long, vector unsigned long long);
19434 vector unsigned long long char vec_sr (vector unsigned long long,
19435                                        vector unsigned long long);
19437 vector long long vec_sra (vector long long, vector unsigned long long);
19438 vector unsigned long long vec_sra (vector unsigned long long,
19439                                    vector unsigned long long);
19441 vector long long vec_sub (vector long long, vector long long);
19442 vector unsigned long long vec_sub (vector unsigned long long,
19443                                    vector unsigned long long);
19445 vector long long vec_unpackh (vector int);
19446 vector unsigned long long vec_unpackh (vector unsigned int);
19448 vector long long vec_unpackl (vector int);
19449 vector unsigned long long vec_unpackl (vector unsigned int);
19451 vector long long vec_vaddudm (vector long long, vector long long);
19452 vector long long vec_vaddudm (vector bool long long, vector long long);
19453 vector long long vec_vaddudm (vector long long, vector bool long long);
19454 vector unsigned long long vec_vaddudm (vector unsigned long long,
19455                                        vector unsigned long long);
19456 vector unsigned long long vec_vaddudm (vector bool unsigned long long,
19457                                        vector unsigned long long);
19458 vector unsigned long long vec_vaddudm (vector unsigned long long,
19459                                        vector bool unsigned long long);
19461 vector long long vec_vbpermq (vector signed char, vector signed char);
19462 vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
19464 vector unsigned char vec_bperm (vector unsigned char, vector unsigned char);
19465 vector unsigned char vec_bperm (vector unsigned long long, vector unsigned char);
19466 vector unsigned long long vec_bperm (vector unsigned __int128, vector unsigned char);
19468 vector long long vec_cntlz (vector long long);
19469 vector unsigned long long vec_cntlz (vector unsigned long long);
19470 vector int vec_cntlz (vector int);
19471 vector unsigned int vec_cntlz (vector int);
19472 vector short vec_cntlz (vector short);
19473 vector unsigned short vec_cntlz (vector unsigned short);
19474 vector signed char vec_cntlz (vector signed char);
19475 vector unsigned char vec_cntlz (vector unsigned char);
19477 vector long long vec_vclz (vector long long);
19478 vector unsigned long long vec_vclz (vector unsigned long long);
19479 vector int vec_vclz (vector int);
19480 vector unsigned int vec_vclz (vector int);
19481 vector short vec_vclz (vector short);
19482 vector unsigned short vec_vclz (vector unsigned short);
19483 vector signed char vec_vclz (vector signed char);
19484 vector unsigned char vec_vclz (vector unsigned char);
19486 vector signed char vec_vclzb (vector signed char);
19487 vector unsigned char vec_vclzb (vector unsigned char);
19489 vector long long vec_vclzd (vector long long);
19490 vector unsigned long long vec_vclzd (vector unsigned long long);
19492 vector short vec_vclzh (vector short);
19493 vector unsigned short vec_vclzh (vector unsigned short);
19495 vector int vec_vclzw (vector int);
19496 vector unsigned int vec_vclzw (vector int);
19498 vector signed char vec_vgbbd (vector signed char);
19499 vector unsigned char vec_vgbbd (vector unsigned char);
19501 vector long long vec_vmaxsd (vector long long, vector long long);
19503 vector unsigned long long vec_vmaxud (vector unsigned long long,
19504                                       unsigned vector long long);
19506 vector long long vec_vminsd (vector long long, vector long long);
19508 vector unsigned long long vec_vminud (vector long long, vector long long);
19510 vector int vec_vpksdss (vector long long, vector long long);
19511 vector unsigned int vec_vpksdss (vector long long, vector long long);
19513 vector unsigned int vec_vpkudus (vector unsigned long long,
19514                                  vector unsigned long long);
19516 vector int vec_vpkudum (vector long long, vector long long);
19517 vector unsigned int vec_vpkudum (vector unsigned long long,
19518                                  vector unsigned long long);
19519 vector bool int vec_vpkudum (vector bool long long, vector bool long long);
19521 vector long long vec_vpopcnt (vector long long);
19522 vector unsigned long long vec_vpopcnt (vector unsigned long long);
19523 vector int vec_vpopcnt (vector int);
19524 vector unsigned int vec_vpopcnt (vector int);
19525 vector short vec_vpopcnt (vector short);
19526 vector unsigned short vec_vpopcnt (vector unsigned short);
19527 vector signed char vec_vpopcnt (vector signed char);
19528 vector unsigned char vec_vpopcnt (vector unsigned char);
19530 vector signed char vec_vpopcntb (vector signed char);
19531 vector unsigned char vec_vpopcntb (vector unsigned char);
19533 vector long long vec_vpopcntd (vector long long);
19534 vector unsigned long long vec_vpopcntd (vector unsigned long long);
19536 vector short vec_vpopcnth (vector short);
19537 vector unsigned short vec_vpopcnth (vector unsigned short);
19539 vector int vec_vpopcntw (vector int);
19540 vector unsigned int vec_vpopcntw (vector int);
19542 vector long long vec_vrld (vector long long, vector unsigned long long);
19543 vector unsigned long long vec_vrld (vector unsigned long long,
19544                                     vector unsigned long long);
19546 vector long long vec_vsld (vector long long, vector unsigned long long);
19547 vector long long vec_vsld (vector unsigned long long,
19548                            vector unsigned long long);
19550 vector long long vec_vsrad (vector long long, vector unsigned long long);
19551 vector unsigned long long vec_vsrad (vector unsigned long long,
19552                                      vector unsigned long long);
19554 vector long long vec_vsrd (vector long long, vector unsigned long long);
19555 vector unsigned long long char vec_vsrd (vector unsigned long long,
19556                                          vector unsigned long long);
19558 vector long long vec_vsubudm (vector long long, vector long long);
19559 vector long long vec_vsubudm (vector bool long long, vector long long);
19560 vector long long vec_vsubudm (vector long long, vector bool long long);
19561 vector unsigned long long vec_vsubudm (vector unsigned long long,
19562                                        vector unsigned long long);
19563 vector unsigned long long vec_vsubudm (vector bool long long,
19564                                        vector unsigned long long);
19565 vector unsigned long long vec_vsubudm (vector unsigned long long,
19566                                        vector bool long long);
19568 vector long long vec_vupkhsw (vector int);
19569 vector unsigned long long vec_vupkhsw (vector unsigned int);
19571 vector long long vec_vupklsw (vector int);
19572 vector unsigned long long vec_vupklsw (vector int);
19573 @end smallexample
19575 If the ISA 2.07 additions to the vector/scalar (power8-vector)
19576 instruction set are available, the following additional functions are
19577 available for 64-bit targets.  New vector types
19578 (@var{vector __int128} and @var{vector __uint128}) are available
19579 to hold the @var{__int128} and @var{__uint128} types to use these
19580 builtins.
19582 The normal vector extract, and set operations work on
19583 @var{vector __int128} and @var{vector __uint128} types,
19584 but the index value must be 0.
19586 @smallexample
19587 vector __int128 vec_vaddcuq (vector __int128, vector __int128);
19588 vector __uint128 vec_vaddcuq (vector __uint128, vector __uint128);
19590 vector __int128 vec_vadduqm (vector __int128, vector __int128);
19591 vector __uint128 vec_vadduqm (vector __uint128, vector __uint128);
19593 vector __int128 vec_vaddecuq (vector __int128, vector __int128,
19594                                 vector __int128);
19595 vector __uint128 vec_vaddecuq (vector __uint128, vector __uint128,
19596                                  vector __uint128);
19598 vector __int128 vec_vaddeuqm (vector __int128, vector __int128,
19599                                 vector __int128);
19600 vector __uint128 vec_vaddeuqm (vector __uint128, vector __uint128,
19601                                  vector __uint128);
19603 vector __int128 vec_vsubecuq (vector __int128, vector __int128,
19604                                 vector __int128);
19605 vector __uint128 vec_vsubecuq (vector __uint128, vector __uint128,
19606                                  vector __uint128);
19608 vector __int128 vec_vsubeuqm (vector __int128, vector __int128,
19609                                 vector __int128);
19610 vector __uint128 vec_vsubeuqm (vector __uint128, vector __uint128,
19611                                  vector __uint128);
19613 vector __int128 vec_vsubcuq (vector __int128, vector __int128);
19614 vector __uint128 vec_vsubcuq (vector __uint128, vector __uint128);
19616 __int128 vec_vsubuqm (__int128, __int128);
19617 __uint128 vec_vsubuqm (__uint128, __uint128);
19619 vector __int128 __builtin_bcdadd (vector __int128, vector __int128, const int);
19620 int __builtin_bcdadd_lt (vector __int128, vector __int128, const int);
19621 int __builtin_bcdadd_eq (vector __int128, vector __int128, const int);
19622 int __builtin_bcdadd_gt (vector __int128, vector __int128, const int);
19623 int __builtin_bcdadd_ov (vector __int128, vector __int128, const int);
19624 vector __int128 __builtin_bcdsub (vector __int128, vector __int128, const int);
19625 int __builtin_bcdsub_lt (vector __int128, vector __int128, const int);
19626 int __builtin_bcdsub_eq (vector __int128, vector __int128, const int);
19627 int __builtin_bcdsub_gt (vector __int128, vector __int128, const int);
19628 int __builtin_bcdsub_ov (vector __int128, vector __int128, const int);
19629 @end smallexample
19631 @node PowerPC AltiVec Built-in Functions Available on ISA 3.0
19632 @subsubsection PowerPC AltiVec Built-in Functions Available on ISA 3.0
19634 The following additional built-in functions are also available for the
19635 PowerPC family of processors, starting with ISA 3.0
19636 (@option{-mcpu=power9}) or later:
19637 @smallexample
19638 unsigned int scalar_extract_exp (double source);
19639 unsigned long long int scalar_extract_exp (__ieee128 source);
19641 unsigned long long int scalar_extract_sig (double source);
19642 unsigned __int128 scalar_extract_sig (__ieee128 source);
19644 double scalar_insert_exp (unsigned long long int significand,
19645                           unsigned long long int exponent);
19646 double scalar_insert_exp (double significand, unsigned long long int exponent);
19648 ieee_128 scalar_insert_exp (unsigned __int128 significand,
19649                             unsigned long long int exponent);
19650 ieee_128 scalar_insert_exp (ieee_128 significand, unsigned long long int exponent);
19652 int scalar_cmp_exp_gt (double arg1, double arg2);
19653 int scalar_cmp_exp_lt (double arg1, double arg2);
19654 int scalar_cmp_exp_eq (double arg1, double arg2);
19655 int scalar_cmp_exp_unordered (double arg1, double arg2);
19657 bool scalar_test_data_class (float source, const int condition);
19658 bool scalar_test_data_class (double source, const int condition);
19659 bool scalar_test_data_class (__ieee128 source, const int condition);
19661 bool scalar_test_neg (float source);
19662 bool scalar_test_neg (double source);
19663 bool scalar_test_neg (__ieee128 source);
19664 @end smallexample
19666 The @code{scalar_extract_exp} and @code{scalar_extract_sig}
19667 functions require a 64-bit environment supporting ISA 3.0 or later.
19668 The @code{scalar_extract_exp} and @code{scalar_extract_sig} built-in
19669 functions return the significand and the biased exponent value
19670 respectively of their @code{source} arguments.
19671 When supplied with a 64-bit @code{source} argument, the
19672 result returned by @code{scalar_extract_sig} has
19673 the @code{0x0010000000000000} bit set if the
19674 function's @code{source} argument is in normalized form.
19675 Otherwise, this bit is set to 0.
19676 When supplied with a 128-bit @code{source} argument, the
19677 @code{0x00010000000000000000000000000000} bit of the result is
19678 treated similarly.
19679 Note that the sign of the significand is not represented in the result
19680 returned from the @code{scalar_extract_sig} function.  Use the
19681 @code{scalar_test_neg} function to test the sign of its @code{double}
19682 argument.
19684 The @code{scalar_insert_exp}
19685 functions require a 64-bit environment supporting ISA 3.0 or later.
19686 When supplied with a 64-bit first argument, the
19687 @code{scalar_insert_exp} built-in function returns a double-precision
19688 floating point value that is constructed by assembling the values of its
19689 @code{significand} and @code{exponent} arguments.  The sign of the
19690 result is copied from the most significant bit of the
19691 @code{significand} argument.  The significand and exponent components
19692 of the result are composed of the least significant 11 bits of the
19693 @code{exponent} argument and the least significant 52 bits of the
19694 @code{significand} argument respectively.
19696 When supplied with a 128-bit first argument, the
19697 @code{scalar_insert_exp} built-in function returns a quad-precision
19698 ieee floating point value.  The sign bit of the result is copied from
19699 the most significant bit of the @code{significand} argument.
19700 The significand and exponent components of the result are composed of
19701 the least significant 15 bits of the @code{exponent} argument and the
19702 least significant 112 bits of the @code{significand} argument respectively.
19704 The @code{scalar_cmp_exp_gt}, @code{scalar_cmp_exp_lt},
19705 @code{scalar_cmp_exp_eq}, and @code{scalar_cmp_exp_unordered} built-in
19706 functions return a non-zero value if @code{arg1} is greater than, less
19707 than, equal to, or not comparable to @code{arg2} respectively.  The
19708 arguments are not comparable if one or the other equals NaN (not a
19709 number). 
19711 The @code{scalar_test_data_class} built-in function returns 1
19712 if any of the condition tests enabled by the value of the
19713 @code{condition} variable are true, and 0 otherwise.  The
19714 @code{condition} argument must be a compile-time constant integer with
19715 value not exceeding 127.  The
19716 @code{condition} argument is encoded as a bitmask with each bit
19717 enabling the testing of a different condition, as characterized by the
19718 following:
19719 @smallexample
19720 0x40    Test for NaN
19721 0x20    Test for +Infinity
19722 0x10    Test for -Infinity
19723 0x08    Test for +Zero
19724 0x04    Test for -Zero
19725 0x02    Test for +Denormal
19726 0x01    Test for -Denormal
19727 @end smallexample
19729 The @code{scalar_test_neg} built-in function returns 1 if its
19730 @code{source} argument holds a negative value, 0 otherwise.
19732 The following built-in functions are also available for the PowerPC family
19733 of processors, starting with ISA 3.0 or later
19734 (@option{-mcpu=power9}).  These string functions are described
19735 separately in order to group the descriptions closer to the function
19736 prototypes:
19737 @smallexample
19738 int vec_all_nez (vector signed char, vector signed char);
19739 int vec_all_nez (vector unsigned char, vector unsigned char);
19740 int vec_all_nez (vector signed short, vector signed short);
19741 int vec_all_nez (vector unsigned short, vector unsigned short);
19742 int vec_all_nez (vector signed int, vector signed int);
19743 int vec_all_nez (vector unsigned int, vector unsigned int);
19745 int vec_any_eqz (vector signed char, vector signed char);
19746 int vec_any_eqz (vector unsigned char, vector unsigned char);
19747 int vec_any_eqz (vector signed short, vector signed short);
19748 int vec_any_eqz (vector unsigned short, vector unsigned short);
19749 int vec_any_eqz (vector signed int, vector signed int);
19750 int vec_any_eqz (vector unsigned int, vector unsigned int);
19752 vector bool char vec_cmpnez (vector signed char arg1, vector signed char arg2);
19753 vector bool char vec_cmpnez (vector unsigned char arg1, vector unsigned char arg2);
19754 vector bool short vec_cmpnez (vector signed short arg1, vector signed short arg2);
19755 vector bool short vec_cmpnez (vector unsigned short arg1, vector unsigned short arg2);
19756 vector bool int vec_cmpnez (vector signed int arg1, vector signed int arg2);
19757 vector bool int vec_cmpnez (vector unsigned int, vector unsigned int);
19759 vector signed char vec_cnttz (vector signed char);
19760 vector unsigned char vec_cnttz (vector unsigned char);
19761 vector signed short vec_cnttz (vector signed short);
19762 vector unsigned short vec_cnttz (vector unsigned short);
19763 vector signed int vec_cnttz (vector signed int);
19764 vector unsigned int vec_cnttz (vector unsigned int);
19765 vector signed long long vec_cnttz (vector signed long long);
19766 vector unsigned long long vec_cnttz (vector unsigned long long);
19768 signed int vec_cntlz_lsbb (vector signed char);
19769 signed int vec_cntlz_lsbb (vector unsigned char);
19771 signed int vec_cnttz_lsbb (vector signed char);
19772 signed int vec_cnttz_lsbb (vector unsigned char);
19774 unsigned int vec_first_match_index (vector signed char, vector signed char);
19775 unsigned int vec_first_match_index (vector unsigned char, vector unsigned char);
19776 unsigned int vec_first_match_index (vector signed int, vector signed int);
19777 unsigned int vec_first_match_index (vector unsigned int, vector unsigned int);
19778 unsigned int vec_first_match_index (vector signed short, vector signed short);
19779 unsigned int vec_first_match_index (vector unsigned short, vector unsigned short);
19780 unsigned int vec_first_match_or_eos_index (vector signed char, vector signed char);
19781 unsigned int vec_first_match_or_eos_index (vector unsigned char, vector unsigned char);
19782 unsigned int vec_first_match_or_eos_index (vector signed int, vector signed int);
19783 unsigned int vec_first_match_or_eos_index (vector unsigned int, vector unsigned int);
19784 unsigned int vec_first_match_or_eos_index (vector signed short, vector signed short);
19785 unsigned int vec_first_match_or_eos_index (vector unsigned short,
19786                                            vector unsigned short);
19787 unsigned int vec_first_mismatch_index (vector signed char, vector signed char);
19788 unsigned int vec_first_mismatch_index (vector unsigned char, vector unsigned char);
19789 unsigned int vec_first_mismatch_index (vector signed int, vector signed int);
19790 unsigned int vec_first_mismatch_index (vector unsigned int, vector unsigned int);
19791 unsigned int vec_first_mismatch_index (vector signed short, vector signed short);
19792 unsigned int vec_first_mismatch_index (vector unsigned short, vector unsigned short);
19793 unsigned int vec_first_mismatch_or_eos_index (vector signed char, vector signed char);
19794 unsigned int vec_first_mismatch_or_eos_index (vector unsigned char,
19795                                               vector unsigned char);
19796 unsigned int vec_first_mismatch_or_eos_index (vector signed int, vector signed int);
19797 unsigned int vec_first_mismatch_or_eos_index (vector unsigned int, vector unsigned int);
19798 unsigned int vec_first_mismatch_or_eos_index (vector signed short, vector signed short);
19799 unsigned int vec_first_mismatch_or_eos_index (vector unsigned short,
19800                                               vector unsigned short);
19802 vector unsigned short vec_pack_to_short_fp32 (vector float, vector float);
19804 vector signed char vec_xl_be (signed long long, signed char *);
19805 vector unsigned char vec_xl_be (signed long long, unsigned char *);
19806 vector signed int vec_xl_be (signed long long, signed int *);
19807 vector unsigned int vec_xl_be (signed long long, unsigned int *);
19808 vector signed __int128 vec_xl_be (signed long long, signed __int128 *);
19809 vector unsigned __int128 vec_xl_be (signed long long, unsigned __int128 *);
19810 vector signed long long vec_xl_be (signed long long, signed long long *);
19811 vector unsigned long long vec_xl_be (signed long long, unsigned long long *);
19812 vector signed short vec_xl_be (signed long long, signed short *);
19813 vector unsigned short vec_xl_be (signed long long, unsigned short *);
19814 vector double vec_xl_be (signed long long, double *);
19815 vector float vec_xl_be (signed long long, float *);
19817 vector signed char vec_xl_len (signed char *addr, size_t len);
19818 vector unsigned char vec_xl_len (unsigned char *addr, size_t len);
19819 vector signed int vec_xl_len (signed int *addr, size_t len);
19820 vector unsigned int vec_xl_len (unsigned int *addr, size_t len);
19821 vector signed __int128 vec_xl_len (signed __int128 *addr, size_t len);
19822 vector unsigned __int128 vec_xl_len (unsigned __int128 *addr, size_t len);
19823 vector signed long long vec_xl_len (signed long long *addr, size_t len);
19824 vector unsigned long long vec_xl_len (unsigned long long *addr, size_t len);
19825 vector signed short vec_xl_len (signed short *addr, size_t len);
19826 vector unsigned short vec_xl_len (unsigned short *addr, size_t len);
19827 vector double vec_xl_len (double *addr, size_t len);
19828 vector float vec_xl_len (float *addr, size_t len);
19830 vector unsigned char vec_xl_len_r (unsigned char *addr, size_t len);
19832 void vec_xst_len (vector signed char data, signed char *addr, size_t len);
19833 void vec_xst_len (vector unsigned char data, unsigned char *addr, size_t len);
19834 void vec_xst_len (vector signed int data, signed int *addr, size_t len);
19835 void vec_xst_len (vector unsigned int data, unsigned int *addr, size_t len);
19836 void vec_xst_len (vector unsigned __int128 data, unsigned __int128 *addr, size_t len);
19837 void vec_xst_len (vector signed long long data, signed long long *addr, size_t len);
19838 void vec_xst_len (vector unsigned long long data, unsigned long long *addr, size_t len);
19839 void vec_xst_len (vector signed short data, signed short *addr, size_t len);
19840 void vec_xst_len (vector unsigned short data, unsigned short *addr, size_t len);
19841 void vec_xst_len (vector signed __int128 data, signed __int128 *addr, size_t len);
19842 void vec_xst_len (vector double data, double *addr, size_t len);
19843 void vec_xst_len (vector float data, float *addr, size_t len);
19845 void vec_xst_len_r (vector unsigned char data, unsigned char *addr, size_t len);
19847 signed char vec_xlx (unsigned int index, vector signed char data);
19848 unsigned char vec_xlx (unsigned int index, vector unsigned char data);
19849 signed short vec_xlx (unsigned int index, vector signed short data);
19850 unsigned short vec_xlx (unsigned int index, vector unsigned short data);
19851 signed int vec_xlx (unsigned int index, vector signed int data);
19852 unsigned int vec_xlx (unsigned int index, vector unsigned int data);
19853 float vec_xlx (unsigned int index, vector float data);
19855 signed char vec_xrx (unsigned int index, vector signed char data);
19856 unsigned char vec_xrx (unsigned int index, vector unsigned char data);
19857 signed short vec_xrx (unsigned int index, vector signed short data);
19858 unsigned short vec_xrx (unsigned int index, vector unsigned short data);
19859 signed int vec_xrx (unsigned int index, vector signed int data);
19860 unsigned int vec_xrx (unsigned int index, vector unsigned int data);
19861 float vec_xrx (unsigned int index, vector float data);
19862 @end smallexample
19864 The @code{vec_all_nez}, @code{vec_any_eqz}, and @code{vec_cmpnez}
19865 perform pairwise comparisons between the elements at the same
19866 positions within their two vector arguments.
19867 The @code{vec_all_nez} function returns a
19868 non-zero value if and only if all pairwise comparisons are not
19869 equal and no element of either vector argument contains a zero.
19870 The @code{vec_any_eqz} function returns a
19871 non-zero value if and only if at least one pairwise comparison is equal
19872 or if at least one element of either vector argument contains a zero.
19873 The @code{vec_cmpnez} function returns a vector of the same type as
19874 its two arguments, within which each element consists of all ones to
19875 denote that either the corresponding elements of the incoming arguments are
19876 not equal or that at least one of the corresponding elements contains
19877 zero.  Otherwise, the element of the returned vector contains all zeros.
19879 The @code{vec_cntlz_lsbb} function returns the count of the number of
19880 consecutive leading byte elements (starting from position 0 within the
19881 supplied vector argument) for which the least-significant bit
19882 equals zero.  The @code{vec_cnttz_lsbb} function returns the count of
19883 the number of consecutive trailing byte elements (starting from
19884 position 15 and counting backwards within the supplied vector
19885 argument) for which the least-significant bit equals zero.
19887 The @code{vec_xl_len} and @code{vec_xst_len} functions require a
19888 64-bit environment supporting ISA 3.0 or later.  The @code{vec_xl_len}
19889 function loads a variable length vector from memory.  The
19890 @code{vec_xst_len} function stores a variable length vector to memory.
19891 With both the @code{vec_xl_len} and @code{vec_xst_len} functions, the
19892 @code{addr} argument represents the memory address to or from which
19893 data will be transferred, and the
19894 @code{len} argument represents the number of bytes to be
19895 transferred, as computed by the C expression @code{min((len & 0xff), 16)}.
19896 If this expression's value is not a multiple of the vector element's
19897 size, the behavior of this function is undefined.
19898 In the case that the underlying computer is configured to run in
19899 big-endian mode, the data transfer moves bytes 0 to @code{(len - 1)} of
19900 the corresponding vector.  In little-endian mode, the data transfer
19901 moves bytes @code{(16 - len)} to @code{15} of the corresponding
19902 vector.  For the load function, any bytes of the result vector that
19903 are not loaded from memory are set to zero.
19904 The value of the @code{addr} argument need not be aligned on a
19905 multiple of the vector's element size.
19907 The @code{vec_xlx} and @code{vec_xrx} functions extract the single
19908 element selected by the @code{index} argument from the vector
19909 represented by the @code{data} argument.  The @code{index} argument
19910 always specifies a byte offset, regardless of the size of the vector
19911 element.  With @code{vec_xlx}, @code{index} is the offset of the first
19912 byte of the element to be extracted.  With @code{vec_xrx}, @code{index}
19913 represents the last byte of the element to be extracted, measured
19914 from the right end of the vector.  In other words, the last byte of
19915 the element to be extracted is found at position @code{(15 - index)}.
19916 There is no requirement that @code{index} be a multiple of the vector
19917 element size.  However, if the size of the vector element added to
19918 @code{index} is greater than 15, the content of the returned value is
19919 undefined.
19921 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
19922 are available:
19924 @smallexample
19925 vector unsigned long long vec_bperm (vector unsigned long long, vector unsigned char);
19927 vector bool char vec_cmpne (vector bool char, vector bool char);
19928 vector bool char vec_cmpne (vector signed char, vector signed char);
19929 vector bool char vec_cmpne (vector unsigned char, vector unsigned char);
19930 vector bool int vec_cmpne (vector bool int, vector bool int);
19931 vector bool int vec_cmpne (vector signed int, vector signed int);
19932 vector bool int vec_cmpne (vector unsigned int, vector unsigned int);
19933 vector bool long long vec_cmpne (vector bool long long, vector bool long long);
19934 vector bool long long vec_cmpne (vector signed long long, vector signed long long);
19935 vector bool long long vec_cmpne (vector unsigned long long, vector unsigned long long);
19936 vector bool short vec_cmpne (vector bool short, vector bool short);
19937 vector bool short vec_cmpne (vector signed short, vector signed short);
19938 vector bool short vec_cmpne (vector unsigned short, vector unsigned short);
19939 vector bool long long vec_cmpne (vector double, vector double);
19940 vector bool int vec_cmpne (vector float, vector float);
19942 vector float vec_extract_fp32_from_shorth (vector unsigned short);
19943 vector float vec_extract_fp32_from_shortl (vector unsigned short);
19945 vector long long vec_vctz (vector long long);
19946 vector unsigned long long vec_vctz (vector unsigned long long);
19947 vector int vec_vctz (vector int);
19948 vector unsigned int vec_vctz (vector int);
19949 vector short vec_vctz (vector short);
19950 vector unsigned short vec_vctz (vector unsigned short);
19951 vector signed char vec_vctz (vector signed char);
19952 vector unsigned char vec_vctz (vector unsigned char);
19954 vector signed char vec_vctzb (vector signed char);
19955 vector unsigned char vec_vctzb (vector unsigned char);
19957 vector long long vec_vctzd (vector long long);
19958 vector unsigned long long vec_vctzd (vector unsigned long long);
19960 vector short vec_vctzh (vector short);
19961 vector unsigned short vec_vctzh (vector unsigned short);
19963 vector int vec_vctzw (vector int);
19964 vector unsigned int vec_vctzw (vector int);
19966 vector unsigned long long vec_extract4b (vector unsigned char, const int);
19968 vector unsigned char vec_insert4b (vector signed int, vector unsigned char,
19969                                    const int);
19970 vector unsigned char vec_insert4b (vector unsigned int, vector unsigned char,
19971                                    const int);
19973 vector unsigned int vec_parity_lsbb (vector signed int);
19974 vector unsigned int vec_parity_lsbb (vector unsigned int);
19975 vector unsigned __int128 vec_parity_lsbb (vector signed __int128);
19976 vector unsigned __int128 vec_parity_lsbb (vector unsigned __int128);
19977 vector unsigned long long vec_parity_lsbb (vector signed long long);
19978 vector unsigned long long vec_parity_lsbb (vector unsigned long long);
19980 vector int vec_vprtyb (vector int);
19981 vector unsigned int vec_vprtyb (vector unsigned int);
19982 vector long long vec_vprtyb (vector long long);
19983 vector unsigned long long vec_vprtyb (vector unsigned long long);
19985 vector int vec_vprtybw (vector int);
19986 vector unsigned int vec_vprtybw (vector unsigned int);
19988 vector long long vec_vprtybd (vector long long);
19989 vector unsigned long long vec_vprtybd (vector unsigned long long);
19990 @end smallexample
19992 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
19993 are available:
19995 @smallexample
19996 vector long vec_vprtyb (vector long);
19997 vector unsigned long vec_vprtyb (vector unsigned long);
19998 vector __int128 vec_vprtyb (vector __int128);
19999 vector __uint128 vec_vprtyb (vector __uint128);
20001 vector long vec_vprtybd (vector long);
20002 vector unsigned long vec_vprtybd (vector unsigned long);
20004 vector __int128 vec_vprtybq (vector __int128);
20005 vector __uint128 vec_vprtybd (vector __uint128);
20006 @end smallexample
20008 The following built-in vector functions are available for the PowerPC family
20009 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
20010 @smallexample
20011 __vector unsigned char
20012 vec_slv (__vector unsigned char src, __vector unsigned char shift_distance);
20013 __vector unsigned char
20014 vec_srv (__vector unsigned char src, __vector unsigned char shift_distance);
20015 @end smallexample
20017 The @code{vec_slv} and @code{vec_srv} functions operate on
20018 all of the bytes of their @code{src} and @code{shift_distance}
20019 arguments in parallel.  The behavior of the @code{vec_slv} is as if
20020 there existed a temporary array of 17 unsigned characters
20021 @code{slv_array} within which elements 0 through 15 are the same as
20022 the entries in the @code{src} array and element 16 equals 0.  The
20023 result returned from the @code{vec_slv} function is a
20024 @code{__vector} of 16 unsigned characters within which element
20025 @code{i} is computed using the C expression
20026 @code{0xff & (*((unsigned short *)(slv_array + i)) << (0x07 &
20027 shift_distance[i]))},
20028 with this resulting value coerced to the @code{unsigned char} type.
20029 The behavior of the @code{vec_srv} is as if
20030 there existed a temporary array of 17 unsigned characters
20031 @code{srv_array} within which element 0 equals zero and
20032 elements 1 through 16 equal the elements 0 through 15 of
20033 the @code{src} array.  The
20034 result returned from the @code{vec_srv} function is a
20035 @code{__vector} of 16 unsigned characters within which element
20036 @code{i} is computed using the C expression
20037 @code{0xff & (*((unsigned short *)(srv_array + i)) >>
20038 (0x07 & shift_distance[i]))},
20039 with this resulting value coerced to the @code{unsigned char} type.
20041 The following built-in functions are available for the PowerPC family
20042 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
20043 @smallexample
20044 __vector unsigned char
20045 vec_absd (__vector unsigned char arg1, __vector unsigned char arg2);
20046 __vector unsigned short
20047 vec_absd (__vector unsigned short arg1, __vector unsigned short arg2);
20048 __vector unsigned int
20049 vec_absd (__vector unsigned int arg1, __vector unsigned int arg2);
20051 __vector unsigned char
20052 vec_absdb (__vector unsigned char arg1, __vector unsigned char arg2);
20053 __vector unsigned short
20054 vec_absdh (__vector unsigned short arg1, __vector unsigned short arg2);
20055 __vector unsigned int
20056 vec_absdw (__vector unsigned int arg1, __vector unsigned int arg2);
20057 @end smallexample
20059 The @code{vec_absd}, @code{vec_absdb}, @code{vec_absdh}, and
20060 @code{vec_absdw} built-in functions each computes the absolute
20061 differences of the pairs of vector elements supplied in its two vector
20062 arguments, placing the absolute differences into the corresponding
20063 elements of the vector result.
20065 The following built-in functions are available for the PowerPC family
20066 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
20067 @smallexample
20068 __vector unsigned int vec_extract_exp (__vector float source);
20069 __vector unsigned long long int vec_extract_exp (__vector double source);
20071 __vector unsigned int vec_extract_sig (__vector float source);
20072 __vector unsigned long long int vec_extract_sig (__vector double source);
20074 __vector float vec_insert_exp (__vector unsigned int significands,
20075                                __vector unsigned int exponents);
20076 __vector float vec_insert_exp (__vector unsigned float significands,
20077                                __vector unsigned int exponents);
20078 __vector double vec_insert_exp (__vector unsigned long long int significands,
20079                                 __vector unsigned long long int exponents);
20080 __vector double vec_insert_exp (__vector unsigned double significands,
20081                                 __vector unsigned long long int exponents);
20083 __vector bool int vec_test_data_class (__vector float source, const int condition);
20084 __vector bool long long int vec_test_data_class (__vector double source,
20085                                                  const int condition);
20086 @end smallexample
20088 The @code{vec_extract_sig} and @code{vec_extract_exp} built-in
20089 functions return vectors representing the significands and biased
20090 exponent values of their @code{source} arguments respectively.
20091 Within the result vector returned by @code{vec_extract_sig}, the
20092 @code{0x800000} bit of each vector element returned when the
20093 function's @code{source} argument is of type @code{float} is set to 1
20094 if the corresponding floating point value is in normalized form.
20095 Otherwise, this bit is set to 0.  When the @code{source} argument is
20096 of type @code{double}, the @code{0x10000000000000} bit within each of
20097 the result vector's elements is set according to the same rules.
20098 Note that the sign of the significand is not represented in the result
20099 returned from the @code{vec_extract_sig} function.  To extract the
20100 sign bits, use the
20101 @code{vec_cpsgn} function, which returns a new vector within which all
20102 of the sign bits of its second argument vector are overwritten with the
20103 sign bits copied from the coresponding elements of its first argument
20104 vector, and all other (non-sign) bits of the second argument vector
20105 are copied unchanged into the result vector.
20107 The @code{vec_insert_exp} built-in functions return a vector of
20108 single- or double-precision floating
20109 point values constructed by assembling the values of their
20110 @code{significands} and @code{exponents} arguments into the
20111 corresponding elements of the returned vector.
20112 The sign of each
20113 element of the result is copied from the most significant bit of the
20114 corresponding entry within the @code{significands} argument.
20115 Note that the relevant
20116 bits of the @code{significands} argument are the same, for both integer
20117 and floating point types.
20119 significand and exponent components of each element of the result are
20120 composed of the least significant bits of the corresponding
20121 @code{significands} element and the least significant bits of the
20122 corresponding @code{exponents} element.
20124 The @code{vec_test_data_class} built-in function returns a vector
20125 representing the results of testing the @code{source} vector for the
20126 condition selected by the @code{condition} argument.  The
20127 @code{condition} argument must be a compile-time constant integer with
20128 value not exceeding 127.  The
20129 @code{condition} argument is encoded as a bitmask with each bit
20130 enabling the testing of a different condition, as characterized by the
20131 following:
20132 @smallexample
20133 0x40    Test for NaN
20134 0x20    Test for +Infinity
20135 0x10    Test for -Infinity
20136 0x08    Test for +Zero
20137 0x04    Test for -Zero
20138 0x02    Test for +Denormal
20139 0x01    Test for -Denormal
20140 @end smallexample
20142 If any of the enabled test conditions is true, the corresponding entry
20143 in the result vector is -1.  Otherwise (all of the enabled test
20144 conditions are false), the corresponding entry of the result vector is 0.
20146 The following built-in functions are available for the PowerPC family
20147 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
20148 @smallexample
20149 vector unsigned int vec_rlmi (vector unsigned int, vector unsigned int,
20150                               vector unsigned int);
20151 vector unsigned long long vec_rlmi (vector unsigned long long,
20152                                     vector unsigned long long,
20153                                     vector unsigned long long);
20154 vector unsigned int vec_rlnm (vector unsigned int, vector unsigned int,
20155                               vector unsigned int);
20156 vector unsigned long long vec_rlnm (vector unsigned long long,
20157                                     vector unsigned long long,
20158                                     vector unsigned long long);
20159 vector unsigned int vec_vrlnm (vector unsigned int, vector unsigned int);
20160 vector unsigned long long vec_vrlnm (vector unsigned long long,
20161                                      vector unsigned long long);
20162 @end smallexample
20164 The result of @code{vec_rlmi} is obtained by rotating each element of
20165 the first argument vector left and inserting it under mask into the
20166 second argument vector.  The third argument vector contains the mask
20167 beginning in bits 11:15, the mask end in bits 19:23, and the shift
20168 count in bits 27:31, of each element.
20170 The result of @code{vec_rlnm} is obtained by rotating each element of
20171 the first argument vector left and ANDing it with a mask specified by
20172 the second and third argument vectors.  The second argument vector
20173 contains the shift count for each element in the low-order byte.  The
20174 third argument vector contains the mask end for each element in the
20175 low-order byte, with the mask begin in the next higher byte.
20177 The result of @code{vec_vrlnm} is obtained by rotating each element
20178 of the first argument vector left and ANDing it with a mask.  The
20179 second argument vector contains the mask  beginning in bits 11:15,
20180 the mask end in bits 19:23, and the shift count in bits 27:31,
20181 of each element.
20183 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
20184 are available:
20185 @smallexample
20186 vector signed bool char vec_revb (vector signed char);
20187 vector signed char vec_revb (vector signed char);
20188 vector unsigned char vec_revb (vector unsigned char);
20189 vector bool short vec_revb (vector bool short);
20190 vector short vec_revb (vector short);
20191 vector unsigned short vec_revb (vector unsigned short);
20192 vector bool int vec_revb (vector bool int);
20193 vector int vec_revb (vector int);
20194 vector unsigned int vec_revb (vector unsigned int);
20195 vector float vec_revb (vector float);
20196 vector bool long long vec_revb (vector bool long long);
20197 vector long long vec_revb (vector long long);
20198 vector unsigned long long vec_revb (vector unsigned long long);
20199 vector double vec_revb (vector double);
20200 @end smallexample
20202 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
20203 are available:
20204 @smallexample
20205 vector long vec_revb (vector long);
20206 vector unsigned long vec_revb (vector unsigned long);
20207 vector __int128 vec_revb (vector __int128);
20208 vector __uint128 vec_revb (vector __uint128);
20209 @end smallexample
20211 The @code{vec_revb} built-in function reverses the bytes on an element
20212 by element basis.  A vector of @code{vector unsigned char} or
20213 @code{vector signed char} reverses the bytes in the whole word.
20215 If the cryptographic instructions are enabled (@option{-mcrypto} or
20216 @option{-mcpu=power8}), the following builtins are enabled.
20218 @smallexample
20219 vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
20221 vector unsigned char vec_sbox_be (vector unsigned char);
20223 vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
20224                                                     vector unsigned long long);
20226 vector unsigned char vec_cipher_be (vector unsigned char, vector unsigned char);
20228 vector unsigned long long __builtin_crypto_vcipherlast
20229                                      (vector unsigned long long,
20230                                       vector unsigned long long);
20232 vector unsigned char vec_cipherlast_be (vector unsigned char,
20233                                         vector unsigned char);
20235 vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
20236                                                      vector unsigned long long);
20238 vector unsigned char vec_ncipher_be (vector unsigned char,
20239                                      vector unsigned char);
20241 vector unsigned long long __builtin_crypto_vncipherlast (vector unsigned long long,
20242                                                          vector unsigned long long);
20244 vector unsigned char vec_ncipherlast_be (vector unsigned char,
20245                                          vector unsigned char);
20247 vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
20248                                                 vector unsigned char,
20249                                                 vector unsigned char);
20251 vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
20252                                                  vector unsigned short,
20253                                                  vector unsigned short);
20255 vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
20256                                                vector unsigned int,
20257                                                vector unsigned int);
20259 vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
20260                                                      vector unsigned long long,
20261                                                      vector unsigned long long);
20263 vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
20264                                                vector unsigned char);
20266 vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
20267                                                 vector unsigned short);
20269 vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
20270                                               vector unsigned int);
20272 vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
20273                                                     vector unsigned long long);
20275 vector unsigned long long __builtin_crypto_vshasigmad (vector unsigned long long,
20276                                                        int, int);
20278 vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int, int, int);
20279 @end smallexample
20281 The second argument to @var{__builtin_crypto_vshasigmad} and
20282 @var{__builtin_crypto_vshasigmaw} must be a constant
20283 integer that is 0 or 1.  The third argument to these built-in functions
20284 must be a constant integer in the range of 0 to 15.
20286 If the ISA 3.0 instruction set additions 
20287 are enabled (@option{-mcpu=power9}), the following additional
20288 functions are available for both 32-bit and 64-bit targets.
20289 @smallexample
20290 vector short vec_xl (int, vector short *);
20291 vector short vec_xl (int, short *);
20292 vector unsigned short vec_xl (int, vector unsigned short *);
20293 vector unsigned short vec_xl (int, unsigned short *);
20294 vector char vec_xl (int, vector char *);
20295 vector char vec_xl (int, char *);
20296 vector unsigned char vec_xl (int, vector unsigned char *);
20297 vector unsigned char vec_xl (int, unsigned char *);
20299 void vec_xst (vector short, int, vector short *);
20300 void vec_xst (vector short, int, short *);
20301 void vec_xst (vector unsigned short, int, vector unsigned short *);
20302 void vec_xst (vector unsigned short, int, unsigned short *);
20303 void vec_xst (vector char, int, vector char *);
20304 void vec_xst (vector char, int, char *);
20305 void vec_xst (vector unsigned char, int, vector unsigned char *);
20306 void vec_xst (vector unsigned char, int, unsigned char *);
20307 @end smallexample
20308 @node PowerPC Hardware Transactional Memory Built-in Functions
20309 @subsection PowerPC Hardware Transactional Memory Built-in Functions
20310 GCC provides two interfaces for accessing the Hardware Transactional
20311 Memory (HTM) instructions available on some of the PowerPC family
20312 of processors (eg, POWER8).  The two interfaces come in a low level
20313 interface, consisting of built-in functions specific to PowerPC and a
20314 higher level interface consisting of inline functions that are common
20315 between PowerPC and S/390.
20317 @subsubsection PowerPC HTM Low Level Built-in Functions
20319 The following low level built-in functions are available with
20320 @option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
20321 They all generate the machine instruction that is part of the name.
20323 The HTM builtins (with the exception of @code{__builtin_tbegin}) return
20324 the full 4-bit condition register value set by their associated hardware
20325 instruction.  The header file @code{htmintrin.h} defines some macros that can
20326 be used to decipher the return value.  The @code{__builtin_tbegin} builtin
20327 returns a simple @code{true} or @code{false} value depending on whether a transaction was
20328 successfully started or not.  The arguments of the builtins match exactly the
20329 type and order of the associated hardware instruction's operands, except for
20330 the @code{__builtin_tcheck} builtin, which does not take any input arguments.
20331 Refer to the ISA manual for a description of each instruction's operands.
20333 @smallexample
20334 unsigned int __builtin_tbegin (unsigned int)
20335 unsigned int __builtin_tend (unsigned int)
20337 unsigned int __builtin_tabort (unsigned int)
20338 unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
20339 unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
20340 unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
20341 unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
20343 unsigned int __builtin_tcheck (void)
20344 unsigned int __builtin_treclaim (unsigned int)
20345 unsigned int __builtin_trechkpt (void)
20346 unsigned int __builtin_tsr (unsigned int)
20347 @end smallexample
20349 In addition to the above HTM built-ins, we have added built-ins for
20350 some common extended mnemonics of the HTM instructions:
20352 @smallexample
20353 unsigned int __builtin_tendall (void)
20354 unsigned int __builtin_tresume (void)
20355 unsigned int __builtin_tsuspend (void)
20356 @end smallexample
20358 Note that the semantics of the above HTM builtins are required to mimic
20359 the locking semantics used for critical sections.  Builtins that are used
20360 to create a new transaction or restart a suspended transaction must have
20361 lock acquisition like semantics while those builtins that end or suspend a
20362 transaction must have lock release like semantics.  Specifically, this must
20363 mimic lock semantics as specified by C++11, for example: Lock acquisition is
20364 as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
20365 that returns 0, and lock release is as-if an execution of
20366 __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
20367 implicit implementation-defined lock used for all transactions.  The HTM
20368 instructions associated with with the builtins inherently provide the
20369 correct acquisition and release hardware barriers required.  However,
20370 the compiler must also be prohibited from moving loads and stores across
20371 the builtins in a way that would violate their semantics.  This has been
20372 accomplished by adding memory barriers to the associated HTM instructions
20373 (which is a conservative approach to provide acquire and release semantics).
20374 Earlier versions of the compiler did not treat the HTM instructions as
20375 memory barriers.  A @code{__TM_FENCE__} macro has been added, which can
20376 be used to determine whether the current compiler treats HTM instructions
20377 as memory barriers or not.  This allows the user to explicitly add memory
20378 barriers to their code when using an older version of the compiler.
20380 The following set of built-in functions are available to gain access
20381 to the HTM specific special purpose registers.
20383 @smallexample
20384 unsigned long __builtin_get_texasr (void)
20385 unsigned long __builtin_get_texasru (void)
20386 unsigned long __builtin_get_tfhar (void)
20387 unsigned long __builtin_get_tfiar (void)
20389 void __builtin_set_texasr (unsigned long);
20390 void __builtin_set_texasru (unsigned long);
20391 void __builtin_set_tfhar (unsigned long);
20392 void __builtin_set_tfiar (unsigned long);
20393 @end smallexample
20395 Example usage of these low level built-in functions may look like:
20397 @smallexample
20398 #include <htmintrin.h>
20400 int num_retries = 10;
20402 while (1)
20403   @{
20404     if (__builtin_tbegin (0))
20405       @{
20406         /* Transaction State Initiated.  */
20407         if (is_locked (lock))
20408           __builtin_tabort (0);
20409         ... transaction code...
20410         __builtin_tend (0);
20411         break;
20412       @}
20413     else
20414       @{
20415         /* Transaction State Failed.  Use locks if the transaction
20416            failure is "persistent" or we've tried too many times.  */
20417         if (num_retries-- <= 0
20418             || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
20419           @{
20420             acquire_lock (lock);
20421             ... non transactional fallback path...
20422             release_lock (lock);
20423             break;
20424           @}
20425       @}
20426   @}
20427 @end smallexample
20429 One final built-in function has been added that returns the value of
20430 the 2-bit Transaction State field of the Machine Status Register (MSR)
20431 as stored in @code{CR0}.
20433 @smallexample
20434 unsigned long __builtin_ttest (void)
20435 @end smallexample
20437 This built-in can be used to determine the current transaction state
20438 using the following code example:
20440 @smallexample
20441 #include <htmintrin.h>
20443 unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
20445 if (tx_state == _HTM_TRANSACTIONAL)
20446   @{
20447     /* Code to use in transactional state.  */
20448   @}
20449 else if (tx_state == _HTM_NONTRANSACTIONAL)
20450   @{
20451     /* Code to use in non-transactional state.  */
20452   @}
20453 else if (tx_state == _HTM_SUSPENDED)
20454   @{
20455     /* Code to use in transaction suspended state.  */
20456   @}
20457 @end smallexample
20459 @subsubsection PowerPC HTM High Level Inline Functions
20461 The following high level HTM interface is made available by including
20462 @code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
20463 where CPU is `power8' or later.  This interface is common between PowerPC
20464 and S/390, allowing users to write one HTM source implementation that
20465 can be compiled and executed on either system.
20467 @smallexample
20468 long __TM_simple_begin (void)
20469 long __TM_begin (void* const TM_buff)
20470 long __TM_end (void)
20471 void __TM_abort (void)
20472 void __TM_named_abort (unsigned char const code)
20473 void __TM_resume (void)
20474 void __TM_suspend (void)
20476 long __TM_is_user_abort (void* const TM_buff)
20477 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
20478 long __TM_is_illegal (void* const TM_buff)
20479 long __TM_is_footprint_exceeded (void* const TM_buff)
20480 long __TM_nesting_depth (void* const TM_buff)
20481 long __TM_is_nested_too_deep(void* const TM_buff)
20482 long __TM_is_conflict(void* const TM_buff)
20483 long __TM_is_failure_persistent(void* const TM_buff)
20484 long __TM_failure_address(void* const TM_buff)
20485 long long __TM_failure_code(void* const TM_buff)
20486 @end smallexample
20488 Using these common set of HTM inline functions, we can create
20489 a more portable version of the HTM example in the previous
20490 section that will work on either PowerPC or S/390:
20492 @smallexample
20493 #include <htmxlintrin.h>
20495 int num_retries = 10;
20496 TM_buff_type TM_buff;
20498 while (1)
20499   @{
20500     if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
20501       @{
20502         /* Transaction State Initiated.  */
20503         if (is_locked (lock))
20504           __TM_abort ();
20505         ... transaction code...
20506         __TM_end ();
20507         break;
20508       @}
20509     else
20510       @{
20511         /* Transaction State Failed.  Use locks if the transaction
20512            failure is "persistent" or we've tried too many times.  */
20513         if (num_retries-- <= 0
20514             || __TM_is_failure_persistent (TM_buff))
20515           @{
20516             acquire_lock (lock);
20517             ... non transactional fallback path...
20518             release_lock (lock);
20519             break;
20520           @}
20521       @}
20522   @}
20523 @end smallexample
20525 @node PowerPC Atomic Memory Operation Functions
20526 @subsection PowerPC Atomic Memory Operation Functions
20527 ISA 3.0 of the PowerPC added new atomic memory operation (amo)
20528 instructions.  GCC provides support for these instructions in 64-bit
20529 environments.  All of the functions are declared in the include file
20530 @code{amo.h}.
20532 The functions supported are:
20534 @smallexample
20535 #include <amo.h>
20537 uint32_t amo_lwat_add (uint32_t *, uint32_t);
20538 uint32_t amo_lwat_xor (uint32_t *, uint32_t);
20539 uint32_t amo_lwat_ior (uint32_t *, uint32_t);
20540 uint32_t amo_lwat_and (uint32_t *, uint32_t);
20541 uint32_t amo_lwat_umax (uint32_t *, uint32_t);
20542 uint32_t amo_lwat_umin (uint32_t *, uint32_t);
20543 uint32_t amo_lwat_swap (uint32_t *, uint32_t);
20545 int32_t amo_lwat_sadd (int32_t *, int32_t);
20546 int32_t amo_lwat_smax (int32_t *, int32_t);
20547 int32_t amo_lwat_smin (int32_t *, int32_t);
20548 int32_t amo_lwat_sswap (int32_t *, int32_t);
20550 uint64_t amo_ldat_add (uint64_t *, uint64_t);
20551 uint64_t amo_ldat_xor (uint64_t *, uint64_t);
20552 uint64_t amo_ldat_ior (uint64_t *, uint64_t);
20553 uint64_t amo_ldat_and (uint64_t *, uint64_t);
20554 uint64_t amo_ldat_umax (uint64_t *, uint64_t);
20555 uint64_t amo_ldat_umin (uint64_t *, uint64_t);
20556 uint64_t amo_ldat_swap (uint64_t *, uint64_t);
20558 int64_t amo_ldat_sadd (int64_t *, int64_t);
20559 int64_t amo_ldat_smax (int64_t *, int64_t);
20560 int64_t amo_ldat_smin (int64_t *, int64_t);
20561 int64_t amo_ldat_sswap (int64_t *, int64_t);
20563 void amo_stwat_add (uint32_t *, uint32_t);
20564 void amo_stwat_xor (uint32_t *, uint32_t);
20565 void amo_stwat_ior (uint32_t *, uint32_t);
20566 void amo_stwat_and (uint32_t *, uint32_t);
20567 void amo_stwat_umax (uint32_t *, uint32_t);
20568 void amo_stwat_umin (uint32_t *, uint32_t);
20570 void amo_stwat_sadd (int32_t *, int32_t);
20571 void amo_stwat_smax (int32_t *, int32_t);
20572 void amo_stwat_smin (int32_t *, int32_t);
20574 void amo_stdat_add (uint64_t *, uint64_t);
20575 void amo_stdat_xor (uint64_t *, uint64_t);
20576 void amo_stdat_ior (uint64_t *, uint64_t);
20577 void amo_stdat_and (uint64_t *, uint64_t);
20578 void amo_stdat_umax (uint64_t *, uint64_t);
20579 void amo_stdat_umin (uint64_t *, uint64_t);
20581 void amo_stdat_sadd (int64_t *, int64_t);
20582 void amo_stdat_smax (int64_t *, int64_t);
20583 void amo_stdat_smin (int64_t *, int64_t);
20584 @end smallexample
20586 @node RX Built-in Functions
20587 @subsection RX Built-in Functions
20588 GCC supports some of the RX instructions which cannot be expressed in
20589 the C programming language via the use of built-in functions.  The
20590 following functions are supported:
20592 @deftypefn {Built-in Function}  void __builtin_rx_brk (void)
20593 Generates the @code{brk} machine instruction.
20594 @end deftypefn
20596 @deftypefn {Built-in Function}  void __builtin_rx_clrpsw (int)
20597 Generates the @code{clrpsw} machine instruction to clear the specified
20598 bit in the processor status word.
20599 @end deftypefn
20601 @deftypefn {Built-in Function}  void __builtin_rx_int (int)
20602 Generates the @code{int} machine instruction to generate an interrupt
20603 with the specified value.
20604 @end deftypefn
20606 @deftypefn {Built-in Function}  void __builtin_rx_machi (int, int)
20607 Generates the @code{machi} machine instruction to add the result of
20608 multiplying the top 16 bits of the two arguments into the
20609 accumulator.
20610 @end deftypefn
20612 @deftypefn {Built-in Function}  void __builtin_rx_maclo (int, int)
20613 Generates the @code{maclo} machine instruction to add the result of
20614 multiplying the bottom 16 bits of the two arguments into the
20615 accumulator.
20616 @end deftypefn
20618 @deftypefn {Built-in Function}  void __builtin_rx_mulhi (int, int)
20619 Generates the @code{mulhi} machine instruction to place the result of
20620 multiplying the top 16 bits of the two arguments into the
20621 accumulator.
20622 @end deftypefn
20624 @deftypefn {Built-in Function}  void __builtin_rx_mullo (int, int)
20625 Generates the @code{mullo} machine instruction to place the result of
20626 multiplying the bottom 16 bits of the two arguments into the
20627 accumulator.
20628 @end deftypefn
20630 @deftypefn {Built-in Function}  int  __builtin_rx_mvfachi (void)
20631 Generates the @code{mvfachi} machine instruction to read the top
20632 32 bits of the accumulator.
20633 @end deftypefn
20635 @deftypefn {Built-in Function}  int  __builtin_rx_mvfacmi (void)
20636 Generates the @code{mvfacmi} machine instruction to read the middle
20637 32 bits of the accumulator.
20638 @end deftypefn
20640 @deftypefn {Built-in Function}  int __builtin_rx_mvfc (int)
20641 Generates the @code{mvfc} machine instruction which reads the control
20642 register specified in its argument and returns its value.
20643 @end deftypefn
20645 @deftypefn {Built-in Function}  void __builtin_rx_mvtachi (int)
20646 Generates the @code{mvtachi} machine instruction to set the top
20647 32 bits of the accumulator.
20648 @end deftypefn
20650 @deftypefn {Built-in Function}  void __builtin_rx_mvtaclo (int)
20651 Generates the @code{mvtaclo} machine instruction to set the bottom
20652 32 bits of the accumulator.
20653 @end deftypefn
20655 @deftypefn {Built-in Function}  void __builtin_rx_mvtc (int reg, int val)
20656 Generates the @code{mvtc} machine instruction which sets control
20657 register number @code{reg} to @code{val}.
20658 @end deftypefn
20660 @deftypefn {Built-in Function}  void __builtin_rx_mvtipl (int)
20661 Generates the @code{mvtipl} machine instruction set the interrupt
20662 priority level.
20663 @end deftypefn
20665 @deftypefn {Built-in Function}  void __builtin_rx_racw (int)
20666 Generates the @code{racw} machine instruction to round the accumulator
20667 according to the specified mode.
20668 @end deftypefn
20670 @deftypefn {Built-in Function}  int __builtin_rx_revw (int)
20671 Generates the @code{revw} machine instruction which swaps the bytes in
20672 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
20673 and also bits 16--23 occupy bits 24--31 and vice versa.
20674 @end deftypefn
20676 @deftypefn {Built-in Function}  void __builtin_rx_rmpa (void)
20677 Generates the @code{rmpa} machine instruction which initiates a
20678 repeated multiply and accumulate sequence.
20679 @end deftypefn
20681 @deftypefn {Built-in Function}  void __builtin_rx_round (float)
20682 Generates the @code{round} machine instruction which returns the
20683 floating-point argument rounded according to the current rounding mode
20684 set in the floating-point status word register.
20685 @end deftypefn
20687 @deftypefn {Built-in Function}  int __builtin_rx_sat (int)
20688 Generates the @code{sat} machine instruction which returns the
20689 saturated value of the argument.
20690 @end deftypefn
20692 @deftypefn {Built-in Function}  void __builtin_rx_setpsw (int)
20693 Generates the @code{setpsw} machine instruction to set the specified
20694 bit in the processor status word.
20695 @end deftypefn
20697 @deftypefn {Built-in Function}  void __builtin_rx_wait (void)
20698 Generates the @code{wait} machine instruction.
20699 @end deftypefn
20701 @node S/390 System z Built-in Functions
20702 @subsection S/390 System z Built-in Functions
20703 @deftypefn {Built-in Function} int __builtin_tbegin (void*)
20704 Generates the @code{tbegin} machine instruction starting a
20705 non-constrained hardware transaction.  If the parameter is non-NULL the
20706 memory area is used to store the transaction diagnostic buffer and
20707 will be passed as first operand to @code{tbegin}.  This buffer can be
20708 defined using the @code{struct __htm_tdb} C struct defined in
20709 @code{htmintrin.h} and must reside on a double-word boundary.  The
20710 second tbegin operand is set to @code{0xff0c}. This enables
20711 save/restore of all GPRs and disables aborts for FPR and AR
20712 manipulations inside the transaction body.  The condition code set by
20713 the tbegin instruction is returned as integer value.  The tbegin
20714 instruction by definition overwrites the content of all FPRs.  The
20715 compiler will generate code which saves and restores the FPRs.  For
20716 soft-float code it is recommended to used the @code{*_nofloat}
20717 variant.  In order to prevent a TDB from being written it is required
20718 to pass a constant zero value as parameter.  Passing a zero value
20719 through a variable is not sufficient.  Although modifications of
20720 access registers inside the transaction will not trigger an
20721 transaction abort it is not supported to actually modify them.  Access
20722 registers do not get saved when entering a transaction. They will have
20723 undefined state when reaching the abort code.
20724 @end deftypefn
20726 Macros for the possible return codes of tbegin are defined in the
20727 @code{htmintrin.h} header file:
20729 @table @code
20730 @item _HTM_TBEGIN_STARTED
20731 @code{tbegin} has been executed as part of normal processing.  The
20732 transaction body is supposed to be executed.
20733 @item _HTM_TBEGIN_INDETERMINATE
20734 The transaction was aborted due to an indeterminate condition which
20735 might be persistent.
20736 @item _HTM_TBEGIN_TRANSIENT
20737 The transaction aborted due to a transient failure.  The transaction
20738 should be re-executed in that case.
20739 @item _HTM_TBEGIN_PERSISTENT
20740 The transaction aborted due to a persistent failure.  Re-execution
20741 under same circumstances will not be productive.
20742 @end table
20744 @defmac _HTM_FIRST_USER_ABORT_CODE
20745 The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
20746 specifies the first abort code which can be used for
20747 @code{__builtin_tabort}.  Values below this threshold are reserved for
20748 machine use.
20749 @end defmac
20751 @deftp {Data type} {struct __htm_tdb}
20752 The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
20753 the structure of the transaction diagnostic block as specified in the
20754 Principles of Operation manual chapter 5-91.
20755 @end deftp
20757 @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
20758 Same as @code{__builtin_tbegin} but without FPR saves and restores.
20759 Using this variant in code making use of FPRs will leave the FPRs in
20760 undefined state when entering the transaction abort handler code.
20761 @end deftypefn
20763 @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
20764 In addition to @code{__builtin_tbegin} a loop for transient failures
20765 is generated.  If tbegin returns a condition code of 2 the transaction
20766 will be retried as often as specified in the second argument.  The
20767 perform processor assist instruction is used to tell the CPU about the
20768 number of fails so far.
20769 @end deftypefn
20771 @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
20772 Same as @code{__builtin_tbegin_retry} but without FPR saves and
20773 restores.  Using this variant in code making use of FPRs will leave
20774 the FPRs in undefined state when entering the transaction abort
20775 handler code.
20776 @end deftypefn
20778 @deftypefn {Built-in Function} void __builtin_tbeginc (void)
20779 Generates the @code{tbeginc} machine instruction starting a constrained
20780 hardware transaction.  The second operand is set to @code{0xff08}.
20781 @end deftypefn
20783 @deftypefn {Built-in Function} int __builtin_tend (void)
20784 Generates the @code{tend} machine instruction finishing a transaction
20785 and making the changes visible to other threads.  The condition code
20786 generated by tend is returned as integer value.
20787 @end deftypefn
20789 @deftypefn {Built-in Function} void __builtin_tabort (int)
20790 Generates the @code{tabort} machine instruction with the specified
20791 abort code.  Abort codes from 0 through 255 are reserved and will
20792 result in an error message.
20793 @end deftypefn
20795 @deftypefn {Built-in Function} void __builtin_tx_assist (int)
20796 Generates the @code{ppa rX,rY,1} machine instruction.  Where the
20797 integer parameter is loaded into rX and a value of zero is loaded into
20798 rY.  The integer parameter specifies the number of times the
20799 transaction repeatedly aborted.
20800 @end deftypefn
20802 @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
20803 Generates the @code{etnd} machine instruction.  The current nesting
20804 depth is returned as integer value.  For a nesting depth of 0 the code
20805 is not executed as part of an transaction.
20806 @end deftypefn
20808 @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
20810 Generates the @code{ntstg} machine instruction.  The second argument
20811 is written to the first arguments location.  The store operation will
20812 not be rolled-back in case of an transaction abort.
20813 @end deftypefn
20815 @node SH Built-in Functions
20816 @subsection SH Built-in Functions
20817 The following built-in functions are supported on the SH1, SH2, SH3 and SH4
20818 families of processors:
20820 @deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
20821 Sets the @samp{GBR} register to the specified value @var{ptr}.  This is usually
20822 used by system code that manages threads and execution contexts.  The compiler
20823 normally does not generate code that modifies the contents of @samp{GBR} and
20824 thus the value is preserved across function calls.  Changing the @samp{GBR}
20825 value in user code must be done with caution, since the compiler might use
20826 @samp{GBR} in order to access thread local variables.
20828 @end deftypefn
20830 @deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
20831 Returns the value that is currently set in the @samp{GBR} register.
20832 Memory loads and stores that use the thread pointer as a base address are
20833 turned into @samp{GBR} based displacement loads and stores, if possible.
20834 For example:
20835 @smallexample
20836 struct my_tcb
20838    int a, b, c, d, e;
20841 int get_tcb_value (void)
20843   // Generate @samp{mov.l @@(8,gbr),r0} instruction
20844   return ((my_tcb*)__builtin_thread_pointer ())->c;
20847 @end smallexample
20848 @end deftypefn
20850 @deftypefn {Built-in Function} {unsigned int} __builtin_sh_get_fpscr (void)
20851 Returns the value that is currently set in the @samp{FPSCR} register.
20852 @end deftypefn
20854 @deftypefn {Built-in Function} {void} __builtin_sh_set_fpscr (unsigned int @var{val})
20855 Sets the @samp{FPSCR} register to the specified value @var{val}, while
20856 preserving the current values of the FR, SZ and PR bits.
20857 @end deftypefn
20859 @node SPARC VIS Built-in Functions
20860 @subsection SPARC VIS Built-in Functions
20862 GCC supports SIMD operations on the SPARC using both the generic vector
20863 extensions (@pxref{Vector Extensions}) as well as built-in functions for
20864 the SPARC Visual Instruction Set (VIS).  When you use the @option{-mvis}
20865 switch, the VIS extension is exposed as the following built-in functions:
20867 @smallexample
20868 typedef int v1si __attribute__ ((vector_size (4)));
20869 typedef int v2si __attribute__ ((vector_size (8)));
20870 typedef short v4hi __attribute__ ((vector_size (8)));
20871 typedef short v2hi __attribute__ ((vector_size (4)));
20872 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
20873 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
20875 void __builtin_vis_write_gsr (int64_t);
20876 int64_t __builtin_vis_read_gsr (void);
20878 void * __builtin_vis_alignaddr (void *, long);
20879 void * __builtin_vis_alignaddrl (void *, long);
20880 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
20881 v2si __builtin_vis_faligndatav2si (v2si, v2si);
20882 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
20883 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
20885 v4hi __builtin_vis_fexpand (v4qi);
20887 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
20888 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
20889 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
20890 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
20891 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
20892 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
20893 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
20895 v4qi __builtin_vis_fpack16 (v4hi);
20896 v8qi __builtin_vis_fpack32 (v2si, v8qi);
20897 v2hi __builtin_vis_fpackfix (v2si);
20898 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
20900 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
20902 long __builtin_vis_edge8 (void *, void *);
20903 long __builtin_vis_edge8l (void *, void *);
20904 long __builtin_vis_edge16 (void *, void *);
20905 long __builtin_vis_edge16l (void *, void *);
20906 long __builtin_vis_edge32 (void *, void *);
20907 long __builtin_vis_edge32l (void *, void *);
20909 long __builtin_vis_fcmple16 (v4hi, v4hi);
20910 long __builtin_vis_fcmple32 (v2si, v2si);
20911 long __builtin_vis_fcmpne16 (v4hi, v4hi);
20912 long __builtin_vis_fcmpne32 (v2si, v2si);
20913 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
20914 long __builtin_vis_fcmpgt32 (v2si, v2si);
20915 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
20916 long __builtin_vis_fcmpeq32 (v2si, v2si);
20918 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
20919 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
20920 v2si __builtin_vis_fpadd32 (v2si, v2si);
20921 v1si __builtin_vis_fpadd32s (v1si, v1si);
20922 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
20923 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
20924 v2si __builtin_vis_fpsub32 (v2si, v2si);
20925 v1si __builtin_vis_fpsub32s (v1si, v1si);
20927 long __builtin_vis_array8 (long, long);
20928 long __builtin_vis_array16 (long, long);
20929 long __builtin_vis_array32 (long, long);
20930 @end smallexample
20932 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
20933 functions also become available:
20935 @smallexample
20936 long __builtin_vis_bmask (long, long);
20937 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
20938 v2si __builtin_vis_bshufflev2si (v2si, v2si);
20939 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
20940 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
20942 long __builtin_vis_edge8n (void *, void *);
20943 long __builtin_vis_edge8ln (void *, void *);
20944 long __builtin_vis_edge16n (void *, void *);
20945 long __builtin_vis_edge16ln (void *, void *);
20946 long __builtin_vis_edge32n (void *, void *);
20947 long __builtin_vis_edge32ln (void *, void *);
20948 @end smallexample
20950 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
20951 functions also become available:
20953 @smallexample
20954 void __builtin_vis_cmask8 (long);
20955 void __builtin_vis_cmask16 (long);
20956 void __builtin_vis_cmask32 (long);
20958 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
20960 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
20961 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
20962 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
20963 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
20964 v2si __builtin_vis_fsll16 (v2si, v2si);
20965 v2si __builtin_vis_fslas16 (v2si, v2si);
20966 v2si __builtin_vis_fsrl16 (v2si, v2si);
20967 v2si __builtin_vis_fsra16 (v2si, v2si);
20969 long __builtin_vis_pdistn (v8qi, v8qi);
20971 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
20973 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
20974 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
20976 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
20977 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
20978 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
20979 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
20980 v2si __builtin_vis_fpadds32 (v2si, v2si);
20981 v1si __builtin_vis_fpadds32s (v1si, v1si);
20982 v2si __builtin_vis_fpsubs32 (v2si, v2si);
20983 v1si __builtin_vis_fpsubs32s (v1si, v1si);
20985 long __builtin_vis_fucmple8 (v8qi, v8qi);
20986 long __builtin_vis_fucmpne8 (v8qi, v8qi);
20987 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
20988 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
20990 float __builtin_vis_fhadds (float, float);
20991 double __builtin_vis_fhaddd (double, double);
20992 float __builtin_vis_fhsubs (float, float);
20993 double __builtin_vis_fhsubd (double, double);
20994 float __builtin_vis_fnhadds (float, float);
20995 double __builtin_vis_fnhaddd (double, double);
20997 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
20998 int64_t __builtin_vis_xmulx (int64_t, int64_t);
20999 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
21000 @end smallexample
21002 When you use the @option{-mvis4} switch, the VIS version 4.0 built-in
21003 functions also become available:
21005 @smallexample
21006 v8qi __builtin_vis_fpadd8 (v8qi, v8qi);
21007 v8qi __builtin_vis_fpadds8 (v8qi, v8qi);
21008 v8qi __builtin_vis_fpaddus8 (v8qi, v8qi);
21009 v4hi __builtin_vis_fpaddus16 (v4hi, v4hi);
21011 v8qi __builtin_vis_fpsub8 (v8qi, v8qi);
21012 v8qi __builtin_vis_fpsubs8 (v8qi, v8qi);
21013 v8qi __builtin_vis_fpsubus8 (v8qi, v8qi);
21014 v4hi __builtin_vis_fpsubus16 (v4hi, v4hi);
21016 long __builtin_vis_fpcmple8 (v8qi, v8qi);
21017 long __builtin_vis_fpcmpgt8 (v8qi, v8qi);
21018 long __builtin_vis_fpcmpule16 (v4hi, v4hi);
21019 long __builtin_vis_fpcmpugt16 (v4hi, v4hi);
21020 long __builtin_vis_fpcmpule32 (v2si, v2si);
21021 long __builtin_vis_fpcmpugt32 (v2si, v2si);
21023 v8qi __builtin_vis_fpmax8 (v8qi, v8qi);
21024 v4hi __builtin_vis_fpmax16 (v4hi, v4hi);
21025 v2si __builtin_vis_fpmax32 (v2si, v2si);
21027 v8qi __builtin_vis_fpmaxu8 (v8qi, v8qi);
21028 v4hi __builtin_vis_fpmaxu16 (v4hi, v4hi);
21029 v2si __builtin_vis_fpmaxu32 (v2si, v2si);
21032 v8qi __builtin_vis_fpmin8 (v8qi, v8qi);
21033 v4hi __builtin_vis_fpmin16 (v4hi, v4hi);
21034 v2si __builtin_vis_fpmin32 (v2si, v2si);
21036 v8qi __builtin_vis_fpminu8 (v8qi, v8qi);
21037 v4hi __builtin_vis_fpminu16 (v4hi, v4hi);
21038 v2si __builtin_vis_fpminu32 (v2si, v2si);
21039 @end smallexample
21041 When you use the @option{-mvis4b} switch, the VIS version 4.0B
21042 built-in functions also become available:
21044 @smallexample
21045 v8qi __builtin_vis_dictunpack8 (double, int);
21046 v4hi __builtin_vis_dictunpack16 (double, int);
21047 v2si __builtin_vis_dictunpack32 (double, int);
21049 long __builtin_vis_fpcmple8shl (v8qi, v8qi, int);
21050 long __builtin_vis_fpcmpgt8shl (v8qi, v8qi, int);
21051 long __builtin_vis_fpcmpeq8shl (v8qi, v8qi, int);
21052 long __builtin_vis_fpcmpne8shl (v8qi, v8qi, int);
21054 long __builtin_vis_fpcmple16shl (v4hi, v4hi, int);
21055 long __builtin_vis_fpcmpgt16shl (v4hi, v4hi, int);
21056 long __builtin_vis_fpcmpeq16shl (v4hi, v4hi, int);
21057 long __builtin_vis_fpcmpne16shl (v4hi, v4hi, int);
21059 long __builtin_vis_fpcmple32shl (v2si, v2si, int);
21060 long __builtin_vis_fpcmpgt32shl (v2si, v2si, int);
21061 long __builtin_vis_fpcmpeq32shl (v2si, v2si, int);
21062 long __builtin_vis_fpcmpne32shl (v2si, v2si, int);
21064 long __builtin_vis_fpcmpule8shl (v8qi, v8qi, int);
21065 long __builtin_vis_fpcmpugt8shl (v8qi, v8qi, int);
21066 long __builtin_vis_fpcmpule16shl (v4hi, v4hi, int);
21067 long __builtin_vis_fpcmpugt16shl (v4hi, v4hi, int);
21068 long __builtin_vis_fpcmpule32shl (v2si, v2si, int);
21069 long __builtin_vis_fpcmpugt32shl (v2si, v2si, int);
21071 long __builtin_vis_fpcmpde8shl (v8qi, v8qi, int);
21072 long __builtin_vis_fpcmpde16shl (v4hi, v4hi, int);
21073 long __builtin_vis_fpcmpde32shl (v2si, v2si, int);
21075 long __builtin_vis_fpcmpur8shl (v8qi, v8qi, int);
21076 long __builtin_vis_fpcmpur16shl (v4hi, v4hi, int);
21077 long __builtin_vis_fpcmpur32shl (v2si, v2si, int);
21078 @end smallexample
21080 @node SPU Built-in Functions
21081 @subsection SPU Built-in Functions
21083 GCC provides extensions for the SPU processor as described in the
21084 Sony/Toshiba/IBM SPU Language Extensions Specification.  GCC's
21085 implementation differs in several ways.
21087 @itemize @bullet
21089 @item
21090 The optional extension of specifying vector constants in parentheses is
21091 not supported.
21093 @item
21094 A vector initializer requires no cast if the vector constant is of the
21095 same type as the variable it is initializing.
21097 @item
21098 If @code{signed} or @code{unsigned} is omitted, the signedness of the
21099 vector type is the default signedness of the base type.  The default
21100 varies depending on the operating system, so a portable program should
21101 always specify the signedness.
21103 @item
21104 By default, the keyword @code{__vector} is added. The macro
21105 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
21106 undefined.
21108 @item
21109 GCC allows using a @code{typedef} name as the type specifier for a
21110 vector type.
21112 @item
21113 For C, overloaded functions are implemented with macros so the following
21114 does not work:
21116 @smallexample
21117   spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
21118 @end smallexample
21120 @noindent
21121 Since @code{spu_add} is a macro, the vector constant in the example
21122 is treated as four separate arguments.  Wrap the entire argument in
21123 parentheses for this to work.
21125 @item
21126 The extended version of @code{__builtin_expect} is not supported.
21128 @end itemize
21130 @emph{Note:} Only the interface described in the aforementioned
21131 specification is supported. Internally, GCC uses built-in functions to
21132 implement the required functionality, but these are not supported and
21133 are subject to change without notice.
21135 @node TI C6X Built-in Functions
21136 @subsection TI C6X Built-in Functions
21138 GCC provides intrinsics to access certain instructions of the TI C6X
21139 processors.  These intrinsics, listed below, are available after
21140 inclusion of the @code{c6x_intrinsics.h} header file.  They map directly
21141 to C6X instructions.
21143 @smallexample
21145 int _sadd (int, int)
21146 int _ssub (int, int)
21147 int _sadd2 (int, int)
21148 int _ssub2 (int, int)
21149 long long _mpy2 (int, int)
21150 long long _smpy2 (int, int)
21151 int _add4 (int, int)
21152 int _sub4 (int, int)
21153 int _saddu4 (int, int)
21155 int _smpy (int, int)
21156 int _smpyh (int, int)
21157 int _smpyhl (int, int)
21158 int _smpylh (int, int)
21160 int _sshl (int, int)
21161 int _subc (int, int)
21163 int _avg2 (int, int)
21164 int _avgu4 (int, int)
21166 int _clrr (int, int)
21167 int _extr (int, int)
21168 int _extru (int, int)
21169 int _abs (int)
21170 int _abs2 (int)
21172 @end smallexample
21174 @node TILE-Gx Built-in Functions
21175 @subsection TILE-Gx Built-in Functions
21177 GCC provides intrinsics to access every instruction of the TILE-Gx
21178 processor.  The intrinsics are of the form:
21180 @smallexample
21182 unsigned long long __insn_@var{op} (...)
21184 @end smallexample
21186 Where @var{op} is the name of the instruction.  Refer to the ISA manual
21187 for the complete list of instructions.
21189 GCC also provides intrinsics to directly access the network registers.
21190 The intrinsics are:
21192 @smallexample
21194 unsigned long long __tile_idn0_receive (void)
21195 unsigned long long __tile_idn1_receive (void)
21196 unsigned long long __tile_udn0_receive (void)
21197 unsigned long long __tile_udn1_receive (void)
21198 unsigned long long __tile_udn2_receive (void)
21199 unsigned long long __tile_udn3_receive (void)
21200 void __tile_idn_send (unsigned long long)
21201 void __tile_udn_send (unsigned long long)
21203 @end smallexample
21205 The intrinsic @code{void __tile_network_barrier (void)} is used to
21206 guarantee that no network operations before it are reordered with
21207 those after it.
21209 @node TILEPro Built-in Functions
21210 @subsection TILEPro Built-in Functions
21212 GCC provides intrinsics to access every instruction of the TILEPro
21213 processor.  The intrinsics are of the form:
21215 @smallexample
21217 unsigned __insn_@var{op} (...)
21219 @end smallexample
21221 @noindent
21222 where @var{op} is the name of the instruction.  Refer to the ISA manual
21223 for the complete list of instructions.
21225 GCC also provides intrinsics to directly access the network registers.
21226 The intrinsics are:
21228 @smallexample
21230 unsigned __tile_idn0_receive (void)
21231 unsigned __tile_idn1_receive (void)
21232 unsigned __tile_sn_receive (void)
21233 unsigned __tile_udn0_receive (void)
21234 unsigned __tile_udn1_receive (void)
21235 unsigned __tile_udn2_receive (void)
21236 unsigned __tile_udn3_receive (void)
21237 void __tile_idn_send (unsigned)
21238 void __tile_sn_send (unsigned)
21239 void __tile_udn_send (unsigned)
21241 @end smallexample
21243 The intrinsic @code{void __tile_network_barrier (void)} is used to
21244 guarantee that no network operations before it are reordered with
21245 those after it.
21247 @node x86 Built-in Functions
21248 @subsection x86 Built-in Functions
21250 These built-in functions are available for the x86-32 and x86-64 family
21251 of computers, depending on the command-line switches used.
21253 If you specify command-line switches such as @option{-msse},
21254 the compiler could use the extended instruction sets even if the built-ins
21255 are not used explicitly in the program.  For this reason, applications
21256 that perform run-time CPU detection must compile separate files for each
21257 supported architecture, using the appropriate flags.  In particular,
21258 the file containing the CPU detection code should be compiled without
21259 these options.
21261 The following machine modes are available for use with MMX built-in functions
21262 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
21263 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
21264 vector of eight 8-bit integers.  Some of the built-in functions operate on
21265 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
21267 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
21268 of two 32-bit floating-point values.
21270 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
21271 floating-point values.  Some instructions use a vector of four 32-bit
21272 integers, these use @code{V4SI}.  Finally, some instructions operate on an
21273 entire vector register, interpreting it as a 128-bit integer, these use mode
21274 @code{TI}.
21276 The x86-32 and x86-64 family of processors use additional built-in
21277 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
21278 floating point and @code{TC} 128-bit complex floating-point values.
21280 The following floating-point built-in functions are always available.  All
21281 of them implement the function that is part of the name.
21283 @smallexample
21284 __float128 __builtin_fabsq (__float128)
21285 __float128 __builtin_copysignq (__float128, __float128)
21286 @end smallexample
21288 The following built-in functions are always available.
21290 @table @code
21291 @item __float128 __builtin_infq (void)
21292 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
21293 @findex __builtin_infq
21295 @item __float128 __builtin_huge_valq (void)
21296 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
21297 @findex __builtin_huge_valq
21299 @item __float128 __builtin_nanq (void)
21300 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
21301 @findex __builtin_nanq
21303 @item __float128 __builtin_nansq (void)
21304 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
21305 @findex __builtin_nansq
21306 @end table
21308 The following built-in function is always available.
21310 @table @code
21311 @item void __builtin_ia32_pause (void)
21312 Generates the @code{pause} machine instruction with a compiler memory
21313 barrier.
21314 @end table
21316 The following built-in functions are always available and can be used to
21317 check the target platform type.
21319 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
21320 This function runs the CPU detection code to check the type of CPU and the
21321 features supported.  This built-in function needs to be invoked along with the built-in functions
21322 to check CPU type and features, @code{__builtin_cpu_is} and
21323 @code{__builtin_cpu_supports}, only when used in a function that is
21324 executed before any constructors are called.  The CPU detection code is
21325 automatically executed in a very high priority constructor.
21327 For example, this function has to be used in @code{ifunc} resolvers that
21328 check for CPU type using the built-in functions @code{__builtin_cpu_is}
21329 and @code{__builtin_cpu_supports}, or in constructors on targets that
21330 don't support constructor priority.
21331 @smallexample
21333 static void (*resolve_memcpy (void)) (void)
21335   // ifunc resolvers fire before constructors, explicitly call the init
21336   // function.
21337   __builtin_cpu_init ();
21338   if (__builtin_cpu_supports ("ssse3"))
21339     return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
21340   else
21341     return default_memcpy;
21344 void *memcpy (void *, const void *, size_t)
21345      __attribute__ ((ifunc ("resolve_memcpy")));
21346 @end smallexample
21348 @end deftypefn
21350 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
21351 This function returns a positive integer if the run-time CPU
21352 is of type @var{cpuname}
21353 and returns @code{0} otherwise. The following CPU names can be detected:
21355 @table @samp
21356 @item amd
21357 AMD CPU.
21359 @item intel
21360 Intel CPU.
21362 @item atom
21363 Intel Atom CPU.
21365 @item slm
21366 Intel Silvermont CPU.
21368 @item core2
21369 Intel Core 2 CPU.
21371 @item corei7
21372 Intel Core i7 CPU.
21374 @item nehalem
21375 Intel Core i7 Nehalem CPU.
21377 @item westmere
21378 Intel Core i7 Westmere CPU.
21380 @item sandybridge
21381 Intel Core i7 Sandy Bridge CPU.
21383 @item ivybridge
21384 Intel Core i7 Ivy Bridge CPU.
21386 @item haswell
21387 Intel Core i7 Haswell CPU.
21389 @item broadwell
21390 Intel Core i7 Broadwell CPU.
21392 @item skylake
21393 Intel Core i7 Skylake CPU.
21395 @item skylake-avx512
21396 Intel Core i7 Skylake AVX512 CPU.
21398 @item cannonlake
21399 Intel Core i7 Cannon Lake CPU.
21401 @item icelake-client
21402 Intel Core i7 Ice Lake Client CPU.
21404 @item icelake-server
21405 Intel Core i7 Ice Lake Server CPU.
21407 @item cascadelake
21408 Intel Core i7 Cascadelake CPU.
21410 @item bonnell
21411 Intel Atom Bonnell CPU.
21413 @item silvermont
21414 Intel Atom Silvermont CPU.
21416 @item goldmont
21417 Intel Atom Goldmont CPU.
21419 @item goldmont-plus
21420 Intel Atom Goldmont Plus CPU.
21422 @item tremont
21423 Intel Atom Tremont CPU.
21425 @item knl
21426 Intel Knights Landing CPU.
21428 @item knm
21429 Intel Knights Mill CPU.
21431 @item amdfam10h
21432 AMD Family 10h CPU.
21434 @item barcelona
21435 AMD Family 10h Barcelona CPU.
21437 @item shanghai
21438 AMD Family 10h Shanghai CPU.
21440 @item istanbul
21441 AMD Family 10h Istanbul CPU.
21443 @item btver1
21444 AMD Family 14h CPU.
21446 @item amdfam15h
21447 AMD Family 15h CPU.
21449 @item bdver1
21450 AMD Family 15h Bulldozer version 1.
21452 @item bdver2
21453 AMD Family 15h Bulldozer version 2.
21455 @item bdver3
21456 AMD Family 15h Bulldozer version 3.
21458 @item bdver4
21459 AMD Family 15h Bulldozer version 4.
21461 @item btver2
21462 AMD Family 16h CPU.
21464 @item amdfam17h
21465 AMD Family 17h CPU.
21467 @item znver1
21468 AMD Family 17h Zen version 1.
21470 @item znver2
21471 AMD Family 17h Zen version 2.
21472 @end table
21474 Here is an example:
21475 @smallexample
21476 if (__builtin_cpu_is ("corei7"))
21477   @{
21478      do_corei7 (); // Core i7 specific implementation.
21479   @}
21480 else
21481   @{
21482      do_generic (); // Generic implementation.
21483   @}
21484 @end smallexample
21485 @end deftypefn
21487 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
21488 This function returns a positive integer if the run-time CPU
21489 supports @var{feature}
21490 and returns @code{0} otherwise. The following features can be detected:
21492 @table @samp
21493 @item cmov
21494 CMOV instruction.
21495 @item mmx
21496 MMX instructions.
21497 @item popcnt
21498 POPCNT instruction.
21499 @item sse
21500 SSE instructions.
21501 @item sse2
21502 SSE2 instructions.
21503 @item sse3
21504 SSE3 instructions.
21505 @item ssse3
21506 SSSE3 instructions.
21507 @item sse4.1
21508 SSE4.1 instructions.
21509 @item sse4.2
21510 SSE4.2 instructions.
21511 @item avx
21512 AVX instructions.
21513 @item avx2
21514 AVX2 instructions.
21515 @item sse4a
21516 SSE4A instructions.
21517 @item fma4
21518 FMA4 instructions.
21519 @item xop
21520 XOP instructions.
21521 @item fma
21522 FMA instructions.
21523 @item avx512f
21524 AVX512F instructions.
21525 @item bmi
21526 BMI instructions.
21527 @item bmi2
21528 BMI2 instructions.
21529 @item aes
21530 AES instructions.
21531 @item pclmul
21532 PCLMUL instructions.
21533 @item avx512vl
21534 AVX512VL instructions.
21535 @item avx512bw
21536 AVX512BW instructions.
21537 @item avx512dq
21538 AVX512DQ instructions.
21539 @item avx512cd
21540 AVX512CD instructions.
21541 @item avx512er
21542 AVX512ER instructions.
21543 @item avx512pf
21544 AVX512PF instructions.
21545 @item avx512vbmi
21546 AVX512VBMI instructions.
21547 @item avx512ifma
21548 AVX512IFMA instructions.
21549 @item avx5124vnniw
21550 AVX5124VNNIW instructions.
21551 @item avx5124fmaps
21552 AVX5124FMAPS instructions.
21553 @item avx512vpopcntdq
21554 AVX512VPOPCNTDQ instructions.
21555 @item avx512vbmi2
21556 AVX512VBMI2 instructions.
21557 @item gfni
21558 GFNI instructions.
21559 @item vpclmulqdq
21560 VPCLMULQDQ instructions.
21561 @item avx512vnni
21562 AVX512VNNI instructions.
21563 @item avx512bitalg
21564 AVX512BITALG instructions.
21565 @end table
21567 Here is an example:
21568 @smallexample
21569 if (__builtin_cpu_supports ("popcnt"))
21570   @{
21571      asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
21572   @}
21573 else
21574   @{
21575      count = generic_countbits (n); //generic implementation.
21576   @}
21577 @end smallexample
21578 @end deftypefn
21581 The following built-in functions are made available by @option{-mmmx}.
21582 All of them generate the machine instruction that is part of the name.
21584 @smallexample
21585 v8qi __builtin_ia32_paddb (v8qi, v8qi)
21586 v4hi __builtin_ia32_paddw (v4hi, v4hi)
21587 v2si __builtin_ia32_paddd (v2si, v2si)
21588 v8qi __builtin_ia32_psubb (v8qi, v8qi)
21589 v4hi __builtin_ia32_psubw (v4hi, v4hi)
21590 v2si __builtin_ia32_psubd (v2si, v2si)
21591 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
21592 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
21593 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
21594 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
21595 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
21596 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
21597 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
21598 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
21599 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
21600 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
21601 di __builtin_ia32_pand (di, di)
21602 di __builtin_ia32_pandn (di,di)
21603 di __builtin_ia32_por (di, di)
21604 di __builtin_ia32_pxor (di, di)
21605 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
21606 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
21607 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
21608 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
21609 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
21610 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
21611 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
21612 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
21613 v2si __builtin_ia32_punpckhdq (v2si, v2si)
21614 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
21615 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
21616 v2si __builtin_ia32_punpckldq (v2si, v2si)
21617 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
21618 v4hi __builtin_ia32_packssdw (v2si, v2si)
21619 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
21621 v4hi __builtin_ia32_psllw (v4hi, v4hi)
21622 v2si __builtin_ia32_pslld (v2si, v2si)
21623 v1di __builtin_ia32_psllq (v1di, v1di)
21624 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
21625 v2si __builtin_ia32_psrld (v2si, v2si)
21626 v1di __builtin_ia32_psrlq (v1di, v1di)
21627 v4hi __builtin_ia32_psraw (v4hi, v4hi)
21628 v2si __builtin_ia32_psrad (v2si, v2si)
21629 v4hi __builtin_ia32_psllwi (v4hi, int)
21630 v2si __builtin_ia32_pslldi (v2si, int)
21631 v1di __builtin_ia32_psllqi (v1di, int)
21632 v4hi __builtin_ia32_psrlwi (v4hi, int)
21633 v2si __builtin_ia32_psrldi (v2si, int)
21634 v1di __builtin_ia32_psrlqi (v1di, int)
21635 v4hi __builtin_ia32_psrawi (v4hi, int)
21636 v2si __builtin_ia32_psradi (v2si, int)
21638 @end smallexample
21640 The following built-in functions are made available either with
21641 @option{-msse}, or with @option{-m3dnowa}.  All of them generate
21642 the machine instruction that is part of the name.
21644 @smallexample
21645 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
21646 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
21647 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
21648 v1di __builtin_ia32_psadbw (v8qi, v8qi)
21649 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
21650 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
21651 v8qi __builtin_ia32_pminub (v8qi, v8qi)
21652 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
21653 int __builtin_ia32_pmovmskb (v8qi)
21654 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
21655 void __builtin_ia32_movntq (di *, di)
21656 void __builtin_ia32_sfence (void)
21657 @end smallexample
21659 The following built-in functions are available when @option{-msse} is used.
21660 All of them generate the machine instruction that is part of the name.
21662 @smallexample
21663 int __builtin_ia32_comieq (v4sf, v4sf)
21664 int __builtin_ia32_comineq (v4sf, v4sf)
21665 int __builtin_ia32_comilt (v4sf, v4sf)
21666 int __builtin_ia32_comile (v4sf, v4sf)
21667 int __builtin_ia32_comigt (v4sf, v4sf)
21668 int __builtin_ia32_comige (v4sf, v4sf)
21669 int __builtin_ia32_ucomieq (v4sf, v4sf)
21670 int __builtin_ia32_ucomineq (v4sf, v4sf)
21671 int __builtin_ia32_ucomilt (v4sf, v4sf)
21672 int __builtin_ia32_ucomile (v4sf, v4sf)
21673 int __builtin_ia32_ucomigt (v4sf, v4sf)
21674 int __builtin_ia32_ucomige (v4sf, v4sf)
21675 v4sf __builtin_ia32_addps (v4sf, v4sf)
21676 v4sf __builtin_ia32_subps (v4sf, v4sf)
21677 v4sf __builtin_ia32_mulps (v4sf, v4sf)
21678 v4sf __builtin_ia32_divps (v4sf, v4sf)
21679 v4sf __builtin_ia32_addss (v4sf, v4sf)
21680 v4sf __builtin_ia32_subss (v4sf, v4sf)
21681 v4sf __builtin_ia32_mulss (v4sf, v4sf)
21682 v4sf __builtin_ia32_divss (v4sf, v4sf)
21683 v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
21684 v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
21685 v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
21686 v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
21687 v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
21688 v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
21689 v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
21690 v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
21691 v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
21692 v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
21693 v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
21694 v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
21695 v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
21696 v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
21697 v4sf __builtin_ia32_cmpless (v4sf, v4sf)
21698 v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
21699 v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
21700 v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
21701 v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
21702 v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
21703 v4sf __builtin_ia32_maxps (v4sf, v4sf)
21704 v4sf __builtin_ia32_maxss (v4sf, v4sf)
21705 v4sf __builtin_ia32_minps (v4sf, v4sf)
21706 v4sf __builtin_ia32_minss (v4sf, v4sf)
21707 v4sf __builtin_ia32_andps (v4sf, v4sf)
21708 v4sf __builtin_ia32_andnps (v4sf, v4sf)
21709 v4sf __builtin_ia32_orps (v4sf, v4sf)
21710 v4sf __builtin_ia32_xorps (v4sf, v4sf)
21711 v4sf __builtin_ia32_movss (v4sf, v4sf)
21712 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
21713 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
21714 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
21715 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
21716 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
21717 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
21718 v2si __builtin_ia32_cvtps2pi (v4sf)
21719 int __builtin_ia32_cvtss2si (v4sf)
21720 v2si __builtin_ia32_cvttps2pi (v4sf)
21721 int __builtin_ia32_cvttss2si (v4sf)
21722 v4sf __builtin_ia32_rcpps (v4sf)
21723 v4sf __builtin_ia32_rsqrtps (v4sf)
21724 v4sf __builtin_ia32_sqrtps (v4sf)
21725 v4sf __builtin_ia32_rcpss (v4sf)
21726 v4sf __builtin_ia32_rsqrtss (v4sf)
21727 v4sf __builtin_ia32_sqrtss (v4sf)
21728 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
21729 void __builtin_ia32_movntps (float *, v4sf)
21730 int __builtin_ia32_movmskps (v4sf)
21731 @end smallexample
21733 The following built-in functions are available when @option{-msse} is used.
21735 @table @code
21736 @item v4sf __builtin_ia32_loadups (float *)
21737 Generates the @code{movups} machine instruction as a load from memory.
21738 @item void __builtin_ia32_storeups (float *, v4sf)
21739 Generates the @code{movups} machine instruction as a store to memory.
21740 @item v4sf __builtin_ia32_loadss (float *)
21741 Generates the @code{movss} machine instruction as a load from memory.
21742 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
21743 Generates the @code{movhps} machine instruction as a load from memory.
21744 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
21745 Generates the @code{movlps} machine instruction as a load from memory
21746 @item void __builtin_ia32_storehps (v2sf *, v4sf)
21747 Generates the @code{movhps} machine instruction as a store to memory.
21748 @item void __builtin_ia32_storelps (v2sf *, v4sf)
21749 Generates the @code{movlps} machine instruction as a store to memory.
21750 @end table
21752 The following built-in functions are available when @option{-msse2} is used.
21753 All of them generate the machine instruction that is part of the name.
21755 @smallexample
21756 int __builtin_ia32_comisdeq (v2df, v2df)
21757 int __builtin_ia32_comisdlt (v2df, v2df)
21758 int __builtin_ia32_comisdle (v2df, v2df)
21759 int __builtin_ia32_comisdgt (v2df, v2df)
21760 int __builtin_ia32_comisdge (v2df, v2df)
21761 int __builtin_ia32_comisdneq (v2df, v2df)
21762 int __builtin_ia32_ucomisdeq (v2df, v2df)
21763 int __builtin_ia32_ucomisdlt (v2df, v2df)
21764 int __builtin_ia32_ucomisdle (v2df, v2df)
21765 int __builtin_ia32_ucomisdgt (v2df, v2df)
21766 int __builtin_ia32_ucomisdge (v2df, v2df)
21767 int __builtin_ia32_ucomisdneq (v2df, v2df)
21768 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
21769 v2df __builtin_ia32_cmpltpd (v2df, v2df)
21770 v2df __builtin_ia32_cmplepd (v2df, v2df)
21771 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
21772 v2df __builtin_ia32_cmpgepd (v2df, v2df)
21773 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
21774 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
21775 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
21776 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
21777 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
21778 v2df __builtin_ia32_cmpngepd (v2df, v2df)
21779 v2df __builtin_ia32_cmpordpd (v2df, v2df)
21780 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
21781 v2df __builtin_ia32_cmpltsd (v2df, v2df)
21782 v2df __builtin_ia32_cmplesd (v2df, v2df)
21783 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
21784 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
21785 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
21786 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
21787 v2df __builtin_ia32_cmpordsd (v2df, v2df)
21788 v2di __builtin_ia32_paddq (v2di, v2di)
21789 v2di __builtin_ia32_psubq (v2di, v2di)
21790 v2df __builtin_ia32_addpd (v2df, v2df)
21791 v2df __builtin_ia32_subpd (v2df, v2df)
21792 v2df __builtin_ia32_mulpd (v2df, v2df)
21793 v2df __builtin_ia32_divpd (v2df, v2df)
21794 v2df __builtin_ia32_addsd (v2df, v2df)
21795 v2df __builtin_ia32_subsd (v2df, v2df)
21796 v2df __builtin_ia32_mulsd (v2df, v2df)
21797 v2df __builtin_ia32_divsd (v2df, v2df)
21798 v2df __builtin_ia32_minpd (v2df, v2df)
21799 v2df __builtin_ia32_maxpd (v2df, v2df)
21800 v2df __builtin_ia32_minsd (v2df, v2df)
21801 v2df __builtin_ia32_maxsd (v2df, v2df)
21802 v2df __builtin_ia32_andpd (v2df, v2df)
21803 v2df __builtin_ia32_andnpd (v2df, v2df)
21804 v2df __builtin_ia32_orpd (v2df, v2df)
21805 v2df __builtin_ia32_xorpd (v2df, v2df)
21806 v2df __builtin_ia32_movsd (v2df, v2df)
21807 v2df __builtin_ia32_unpckhpd (v2df, v2df)
21808 v2df __builtin_ia32_unpcklpd (v2df, v2df)
21809 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
21810 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
21811 v4si __builtin_ia32_paddd128 (v4si, v4si)
21812 v2di __builtin_ia32_paddq128 (v2di, v2di)
21813 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
21814 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
21815 v4si __builtin_ia32_psubd128 (v4si, v4si)
21816 v2di __builtin_ia32_psubq128 (v2di, v2di)
21817 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
21818 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
21819 v2di __builtin_ia32_pand128 (v2di, v2di)
21820 v2di __builtin_ia32_pandn128 (v2di, v2di)
21821 v2di __builtin_ia32_por128 (v2di, v2di)
21822 v2di __builtin_ia32_pxor128 (v2di, v2di)
21823 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
21824 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
21825 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
21826 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
21827 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
21828 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
21829 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
21830 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
21831 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
21832 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
21833 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
21834 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
21835 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
21836 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
21837 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
21838 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
21839 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
21840 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
21841 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
21842 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
21843 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
21844 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
21845 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
21846 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
21847 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
21848 v2df __builtin_ia32_loadupd (double *)
21849 void __builtin_ia32_storeupd (double *, v2df)
21850 v2df __builtin_ia32_loadhpd (v2df, double const *)
21851 v2df __builtin_ia32_loadlpd (v2df, double const *)
21852 int __builtin_ia32_movmskpd (v2df)
21853 int __builtin_ia32_pmovmskb128 (v16qi)
21854 void __builtin_ia32_movnti (int *, int)
21855 void __builtin_ia32_movnti64 (long long int *, long long int)
21856 void __builtin_ia32_movntpd (double *, v2df)
21857 void __builtin_ia32_movntdq (v2df *, v2df)
21858 v4si __builtin_ia32_pshufd (v4si, int)
21859 v8hi __builtin_ia32_pshuflw (v8hi, int)
21860 v8hi __builtin_ia32_pshufhw (v8hi, int)
21861 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
21862 v2df __builtin_ia32_sqrtpd (v2df)
21863 v2df __builtin_ia32_sqrtsd (v2df)
21864 v2df __builtin_ia32_shufpd (v2df, v2df, int)
21865 v2df __builtin_ia32_cvtdq2pd (v4si)
21866 v4sf __builtin_ia32_cvtdq2ps (v4si)
21867 v4si __builtin_ia32_cvtpd2dq (v2df)
21868 v2si __builtin_ia32_cvtpd2pi (v2df)
21869 v4sf __builtin_ia32_cvtpd2ps (v2df)
21870 v4si __builtin_ia32_cvttpd2dq (v2df)
21871 v2si __builtin_ia32_cvttpd2pi (v2df)
21872 v2df __builtin_ia32_cvtpi2pd (v2si)
21873 int __builtin_ia32_cvtsd2si (v2df)
21874 int __builtin_ia32_cvttsd2si (v2df)
21875 long long __builtin_ia32_cvtsd2si64 (v2df)
21876 long long __builtin_ia32_cvttsd2si64 (v2df)
21877 v4si __builtin_ia32_cvtps2dq (v4sf)
21878 v2df __builtin_ia32_cvtps2pd (v4sf)
21879 v4si __builtin_ia32_cvttps2dq (v4sf)
21880 v2df __builtin_ia32_cvtsi2sd (v2df, int)
21881 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
21882 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
21883 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
21884 void __builtin_ia32_clflush (const void *)
21885 void __builtin_ia32_lfence (void)
21886 void __builtin_ia32_mfence (void)
21887 v16qi __builtin_ia32_loaddqu (const char *)
21888 void __builtin_ia32_storedqu (char *, v16qi)
21889 v1di __builtin_ia32_pmuludq (v2si, v2si)
21890 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
21891 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
21892 v4si __builtin_ia32_pslld128 (v4si, v4si)
21893 v2di __builtin_ia32_psllq128 (v2di, v2di)
21894 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
21895 v4si __builtin_ia32_psrld128 (v4si, v4si)
21896 v2di __builtin_ia32_psrlq128 (v2di, v2di)
21897 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
21898 v4si __builtin_ia32_psrad128 (v4si, v4si)
21899 v2di __builtin_ia32_pslldqi128 (v2di, int)
21900 v8hi __builtin_ia32_psllwi128 (v8hi, int)
21901 v4si __builtin_ia32_pslldi128 (v4si, int)
21902 v2di __builtin_ia32_psllqi128 (v2di, int)
21903 v2di __builtin_ia32_psrldqi128 (v2di, int)
21904 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
21905 v4si __builtin_ia32_psrldi128 (v4si, int)
21906 v2di __builtin_ia32_psrlqi128 (v2di, int)
21907 v8hi __builtin_ia32_psrawi128 (v8hi, int)
21908 v4si __builtin_ia32_psradi128 (v4si, int)
21909 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
21910 v2di __builtin_ia32_movq128 (v2di)
21911 @end smallexample
21913 The following built-in functions are available when @option{-msse3} is used.
21914 All of them generate the machine instruction that is part of the name.
21916 @smallexample
21917 v2df __builtin_ia32_addsubpd (v2df, v2df)
21918 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
21919 v2df __builtin_ia32_haddpd (v2df, v2df)
21920 v4sf __builtin_ia32_haddps (v4sf, v4sf)
21921 v2df __builtin_ia32_hsubpd (v2df, v2df)
21922 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
21923 v16qi __builtin_ia32_lddqu (char const *)
21924 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
21925 v4sf __builtin_ia32_movshdup (v4sf)
21926 v4sf __builtin_ia32_movsldup (v4sf)
21927 void __builtin_ia32_mwait (unsigned int, unsigned int)
21928 @end smallexample
21930 The following built-in functions are available when @option{-mssse3} is used.
21931 All of them generate the machine instruction that is part of the name.
21933 @smallexample
21934 v2si __builtin_ia32_phaddd (v2si, v2si)
21935 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
21936 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
21937 v2si __builtin_ia32_phsubd (v2si, v2si)
21938 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
21939 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
21940 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
21941 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
21942 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
21943 v8qi __builtin_ia32_psignb (v8qi, v8qi)
21944 v2si __builtin_ia32_psignd (v2si, v2si)
21945 v4hi __builtin_ia32_psignw (v4hi, v4hi)
21946 v1di __builtin_ia32_palignr (v1di, v1di, int)
21947 v8qi __builtin_ia32_pabsb (v8qi)
21948 v2si __builtin_ia32_pabsd (v2si)
21949 v4hi __builtin_ia32_pabsw (v4hi)
21950 @end smallexample
21952 The following built-in functions are available when @option{-mssse3} is used.
21953 All of them generate the machine instruction that is part of the name.
21955 @smallexample
21956 v4si __builtin_ia32_phaddd128 (v4si, v4si)
21957 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
21958 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
21959 v4si __builtin_ia32_phsubd128 (v4si, v4si)
21960 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
21961 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
21962 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
21963 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
21964 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
21965 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
21966 v4si __builtin_ia32_psignd128 (v4si, v4si)
21967 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
21968 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
21969 v16qi __builtin_ia32_pabsb128 (v16qi)
21970 v4si __builtin_ia32_pabsd128 (v4si)
21971 v8hi __builtin_ia32_pabsw128 (v8hi)
21972 @end smallexample
21974 The following built-in functions are available when @option{-msse4.1} is
21975 used.  All of them generate the machine instruction that is part of the
21976 name.
21978 @smallexample
21979 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
21980 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
21981 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
21982 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
21983 v2df __builtin_ia32_dppd (v2df, v2df, const int)
21984 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
21985 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
21986 v2di __builtin_ia32_movntdqa (v2di *);
21987 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
21988 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
21989 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
21990 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
21991 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
21992 v8hi __builtin_ia32_phminposuw128 (v8hi)
21993 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
21994 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
21995 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
21996 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
21997 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
21998 v4si __builtin_ia32_pminsd128 (v4si, v4si)
21999 v4si __builtin_ia32_pminud128 (v4si, v4si)
22000 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
22001 v4si __builtin_ia32_pmovsxbd128 (v16qi)
22002 v2di __builtin_ia32_pmovsxbq128 (v16qi)
22003 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
22004 v2di __builtin_ia32_pmovsxdq128 (v4si)
22005 v4si __builtin_ia32_pmovsxwd128 (v8hi)
22006 v2di __builtin_ia32_pmovsxwq128 (v8hi)
22007 v4si __builtin_ia32_pmovzxbd128 (v16qi)
22008 v2di __builtin_ia32_pmovzxbq128 (v16qi)
22009 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
22010 v2di __builtin_ia32_pmovzxdq128 (v4si)
22011 v4si __builtin_ia32_pmovzxwd128 (v8hi)
22012 v2di __builtin_ia32_pmovzxwq128 (v8hi)
22013 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
22014 v4si __builtin_ia32_pmulld128 (v4si, v4si)
22015 int __builtin_ia32_ptestc128 (v2di, v2di)
22016 int __builtin_ia32_ptestnzc128 (v2di, v2di)
22017 int __builtin_ia32_ptestz128 (v2di, v2di)
22018 v2df __builtin_ia32_roundpd (v2df, const int)
22019 v4sf __builtin_ia32_roundps (v4sf, const int)
22020 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
22021 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
22022 @end smallexample
22024 The following built-in functions are available when @option{-msse4.1} is
22025 used.
22027 @table @code
22028 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
22029 Generates the @code{insertps} machine instruction.
22030 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
22031 Generates the @code{pextrb} machine instruction.
22032 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
22033 Generates the @code{pinsrb} machine instruction.
22034 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
22035 Generates the @code{pinsrd} machine instruction.
22036 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
22037 Generates the @code{pinsrq} machine instruction in 64bit mode.
22038 @end table
22040 The following built-in functions are changed to generate new SSE4.1
22041 instructions when @option{-msse4.1} is used.
22043 @table @code
22044 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
22045 Generates the @code{extractps} machine instruction.
22046 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
22047 Generates the @code{pextrd} machine instruction.
22048 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
22049 Generates the @code{pextrq} machine instruction in 64bit mode.
22050 @end table
22052 The following built-in functions are available when @option{-msse4.2} is
22053 used.  All of them generate the machine instruction that is part of the
22054 name.
22056 @smallexample
22057 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
22058 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
22059 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
22060 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
22061 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
22062 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
22063 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
22064 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
22065 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
22066 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
22067 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
22068 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
22069 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
22070 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
22071 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
22072 @end smallexample
22074 The following built-in functions are available when @option{-msse4.2} is
22075 used.
22077 @table @code
22078 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
22079 Generates the @code{crc32b} machine instruction.
22080 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
22081 Generates the @code{crc32w} machine instruction.
22082 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
22083 Generates the @code{crc32l} machine instruction.
22084 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
22085 Generates the @code{crc32q} machine instruction.
22086 @end table
22088 The following built-in functions are changed to generate new SSE4.2
22089 instructions when @option{-msse4.2} is used.
22091 @table @code
22092 @item int __builtin_popcount (unsigned int)
22093 Generates the @code{popcntl} machine instruction.
22094 @item int __builtin_popcountl (unsigned long)
22095 Generates the @code{popcntl} or @code{popcntq} machine instruction,
22096 depending on the size of @code{unsigned long}.
22097 @item int __builtin_popcountll (unsigned long long)
22098 Generates the @code{popcntq} machine instruction.
22099 @end table
22101 The following built-in functions are available when @option{-mavx} is
22102 used. All of them generate the machine instruction that is part of the
22103 name.
22105 @smallexample
22106 v4df __builtin_ia32_addpd256 (v4df,v4df)
22107 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
22108 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
22109 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
22110 v4df __builtin_ia32_andnpd256 (v4df,v4df)
22111 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
22112 v4df __builtin_ia32_andpd256 (v4df,v4df)
22113 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
22114 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
22115 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
22116 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
22117 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
22118 v2df __builtin_ia32_cmppd (v2df,v2df,int)
22119 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
22120 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
22121 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
22122 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
22123 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
22124 v4df __builtin_ia32_cvtdq2pd256 (v4si)
22125 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
22126 v4si __builtin_ia32_cvtpd2dq256 (v4df)
22127 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
22128 v8si __builtin_ia32_cvtps2dq256 (v8sf)
22129 v4df __builtin_ia32_cvtps2pd256 (v4sf)
22130 v4si __builtin_ia32_cvttpd2dq256 (v4df)
22131 v8si __builtin_ia32_cvttps2dq256 (v8sf)
22132 v4df __builtin_ia32_divpd256 (v4df,v4df)
22133 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
22134 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
22135 v4df __builtin_ia32_haddpd256 (v4df,v4df)
22136 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
22137 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
22138 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
22139 v32qi __builtin_ia32_lddqu256 (pcchar)
22140 v32qi __builtin_ia32_loaddqu256 (pcchar)
22141 v4df __builtin_ia32_loadupd256 (pcdouble)
22142 v8sf __builtin_ia32_loadups256 (pcfloat)
22143 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
22144 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
22145 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
22146 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
22147 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
22148 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
22149 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
22150 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
22151 v4df __builtin_ia32_maxpd256 (v4df,v4df)
22152 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
22153 v4df __builtin_ia32_minpd256 (v4df,v4df)
22154 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
22155 v4df __builtin_ia32_movddup256 (v4df)
22156 int __builtin_ia32_movmskpd256 (v4df)
22157 int __builtin_ia32_movmskps256 (v8sf)
22158 v8sf __builtin_ia32_movshdup256 (v8sf)
22159 v8sf __builtin_ia32_movsldup256 (v8sf)
22160 v4df __builtin_ia32_mulpd256 (v4df,v4df)
22161 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
22162 v4df __builtin_ia32_orpd256 (v4df,v4df)
22163 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
22164 v2df __builtin_ia32_pd_pd256 (v4df)
22165 v4df __builtin_ia32_pd256_pd (v2df)
22166 v4sf __builtin_ia32_ps_ps256 (v8sf)
22167 v8sf __builtin_ia32_ps256_ps (v4sf)
22168 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
22169 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
22170 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
22171 v8sf __builtin_ia32_rcpps256 (v8sf)
22172 v4df __builtin_ia32_roundpd256 (v4df,int)
22173 v8sf __builtin_ia32_roundps256 (v8sf,int)
22174 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
22175 v8sf __builtin_ia32_rsqrtps256 (v8sf)
22176 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
22177 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
22178 v4si __builtin_ia32_si_si256 (v8si)
22179 v8si __builtin_ia32_si256_si (v4si)
22180 v4df __builtin_ia32_sqrtpd256 (v4df)
22181 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
22182 v8sf __builtin_ia32_sqrtps256 (v8sf)
22183 void __builtin_ia32_storedqu256 (pchar,v32qi)
22184 void __builtin_ia32_storeupd256 (pdouble,v4df)
22185 void __builtin_ia32_storeups256 (pfloat,v8sf)
22186 v4df __builtin_ia32_subpd256 (v4df,v4df)
22187 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
22188 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
22189 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
22190 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
22191 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
22192 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
22193 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
22194 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
22195 v4sf __builtin_ia32_vbroadcastss (pcfloat)
22196 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
22197 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
22198 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
22199 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
22200 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
22201 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
22202 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
22203 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
22204 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
22205 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
22206 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
22207 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
22208 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
22209 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
22210 v2df __builtin_ia32_vpermilpd (v2df,int)
22211 v4df __builtin_ia32_vpermilpd256 (v4df,int)
22212 v4sf __builtin_ia32_vpermilps (v4sf,int)
22213 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
22214 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
22215 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
22216 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
22217 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
22218 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
22219 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
22220 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
22221 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
22222 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
22223 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
22224 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
22225 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
22226 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
22227 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
22228 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
22229 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
22230 void __builtin_ia32_vzeroall (void)
22231 void __builtin_ia32_vzeroupper (void)
22232 v4df __builtin_ia32_xorpd256 (v4df,v4df)
22233 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
22234 @end smallexample
22236 The following built-in functions are available when @option{-mavx2} is
22237 used. All of them generate the machine instruction that is part of the
22238 name.
22240 @smallexample
22241 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
22242 v32qi __builtin_ia32_pabsb256 (v32qi)
22243 v16hi __builtin_ia32_pabsw256 (v16hi)
22244 v8si __builtin_ia32_pabsd256 (v8si)
22245 v16hi __builtin_ia32_packssdw256 (v8si,v8si)
22246 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
22247 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
22248 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
22249 v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
22250 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
22251 v8si __builtin_ia32_paddd256 (v8si,v8si)
22252 v4di __builtin_ia32_paddq256 (v4di,v4di)
22253 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
22254 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
22255 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
22256 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
22257 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
22258 v4di __builtin_ia32_andsi256 (v4di,v4di)
22259 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
22260 v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
22261 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
22262 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
22263 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
22264 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
22265 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
22266 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
22267 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
22268 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
22269 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
22270 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
22271 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
22272 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
22273 v8si __builtin_ia32_phaddd256 (v8si,v8si)
22274 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
22275 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
22276 v8si __builtin_ia32_phsubd256 (v8si,v8si)
22277 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
22278 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
22279 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
22280 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
22281 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
22282 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
22283 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
22284 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
22285 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
22286 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
22287 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
22288 v8si __builtin_ia32_pminsd256 (v8si,v8si)
22289 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
22290 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
22291 v8si __builtin_ia32_pminud256 (v8si,v8si)
22292 int __builtin_ia32_pmovmskb256 (v32qi)
22293 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
22294 v8si __builtin_ia32_pmovsxbd256 (v16qi)
22295 v4di __builtin_ia32_pmovsxbq256 (v16qi)
22296 v8si __builtin_ia32_pmovsxwd256 (v8hi)
22297 v4di __builtin_ia32_pmovsxwq256 (v8hi)
22298 v4di __builtin_ia32_pmovsxdq256 (v4si)
22299 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
22300 v8si __builtin_ia32_pmovzxbd256 (v16qi)
22301 v4di __builtin_ia32_pmovzxbq256 (v16qi)
22302 v8si __builtin_ia32_pmovzxwd256 (v8hi)
22303 v4di __builtin_ia32_pmovzxwq256 (v8hi)
22304 v4di __builtin_ia32_pmovzxdq256 (v4si)
22305 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
22306 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
22307 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
22308 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
22309 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
22310 v8si __builtin_ia32_pmulld256 (v8si,v8si)
22311 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
22312 v4di __builtin_ia32_por256 (v4di,v4di)
22313 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
22314 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
22315 v8si __builtin_ia32_pshufd256 (v8si,int)
22316 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
22317 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
22318 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
22319 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
22320 v8si __builtin_ia32_psignd256 (v8si,v8si)
22321 v4di __builtin_ia32_pslldqi256 (v4di,int)
22322 v16hi __builtin_ia32_psllwi256 (16hi,int)
22323 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
22324 v8si __builtin_ia32_pslldi256 (v8si,int)
22325 v8si __builtin_ia32_pslld256(v8si,v4si)
22326 v4di __builtin_ia32_psllqi256 (v4di,int)
22327 v4di __builtin_ia32_psllq256(v4di,v2di)
22328 v16hi __builtin_ia32_psrawi256 (v16hi,int)
22329 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
22330 v8si __builtin_ia32_psradi256 (v8si,int)
22331 v8si __builtin_ia32_psrad256 (v8si,v4si)
22332 v4di __builtin_ia32_psrldqi256 (v4di, int)
22333 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
22334 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
22335 v8si __builtin_ia32_psrldi256 (v8si,int)
22336 v8si __builtin_ia32_psrld256 (v8si,v4si)
22337 v4di __builtin_ia32_psrlqi256 (v4di,int)
22338 v4di __builtin_ia32_psrlq256(v4di,v2di)
22339 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
22340 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
22341 v8si __builtin_ia32_psubd256 (v8si,v8si)
22342 v4di __builtin_ia32_psubq256 (v4di,v4di)
22343 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
22344 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
22345 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
22346 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
22347 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
22348 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
22349 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
22350 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
22351 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
22352 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
22353 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
22354 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
22355 v4di __builtin_ia32_pxor256 (v4di,v4di)
22356 v4di __builtin_ia32_movntdqa256 (pv4di)
22357 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
22358 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
22359 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
22360 v4di __builtin_ia32_vbroadcastsi256 (v2di)
22361 v4si __builtin_ia32_pblendd128 (v4si,v4si)
22362 v8si __builtin_ia32_pblendd256 (v8si,v8si)
22363 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
22364 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
22365 v8si __builtin_ia32_pbroadcastd256 (v4si)
22366 v4di __builtin_ia32_pbroadcastq256 (v2di)
22367 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
22368 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
22369 v4si __builtin_ia32_pbroadcastd128 (v4si)
22370 v2di __builtin_ia32_pbroadcastq128 (v2di)
22371 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
22372 v4df __builtin_ia32_permdf256 (v4df,int)
22373 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
22374 v4di __builtin_ia32_permdi256 (v4di,int)
22375 v4di __builtin_ia32_permti256 (v4di,v4di,int)
22376 v4di __builtin_ia32_extract128i256 (v4di,int)
22377 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
22378 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
22379 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
22380 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
22381 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
22382 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
22383 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
22384 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
22385 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
22386 v8si __builtin_ia32_psllv8si (v8si,v8si)
22387 v4si __builtin_ia32_psllv4si (v4si,v4si)
22388 v4di __builtin_ia32_psllv4di (v4di,v4di)
22389 v2di __builtin_ia32_psllv2di (v2di,v2di)
22390 v8si __builtin_ia32_psrav8si (v8si,v8si)
22391 v4si __builtin_ia32_psrav4si (v4si,v4si)
22392 v8si __builtin_ia32_psrlv8si (v8si,v8si)
22393 v4si __builtin_ia32_psrlv4si (v4si,v4si)
22394 v4di __builtin_ia32_psrlv4di (v4di,v4di)
22395 v2di __builtin_ia32_psrlv2di (v2di,v2di)
22396 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
22397 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
22398 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
22399 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
22400 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
22401 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
22402 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
22403 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
22404 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
22405 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
22406 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
22407 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
22408 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
22409 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
22410 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
22411 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
22412 @end smallexample
22414 The following built-in functions are available when @option{-maes} is
22415 used.  All of them generate the machine instruction that is part of the
22416 name.
22418 @smallexample
22419 v2di __builtin_ia32_aesenc128 (v2di, v2di)
22420 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
22421 v2di __builtin_ia32_aesdec128 (v2di, v2di)
22422 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
22423 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
22424 v2di __builtin_ia32_aesimc128 (v2di)
22425 @end smallexample
22427 The following built-in function is available when @option{-mpclmul} is
22428 used.
22430 @table @code
22431 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
22432 Generates the @code{pclmulqdq} machine instruction.
22433 @end table
22435 The following built-in function is available when @option{-mfsgsbase} is
22436 used.  All of them generate the machine instruction that is part of the
22437 name.
22439 @smallexample
22440 unsigned int __builtin_ia32_rdfsbase32 (void)
22441 unsigned long long __builtin_ia32_rdfsbase64 (void)
22442 unsigned int __builtin_ia32_rdgsbase32 (void)
22443 unsigned long long __builtin_ia32_rdgsbase64 (void)
22444 void _writefsbase_u32 (unsigned int)
22445 void _writefsbase_u64 (unsigned long long)
22446 void _writegsbase_u32 (unsigned int)
22447 void _writegsbase_u64 (unsigned long long)
22448 @end smallexample
22450 The following built-in function is available when @option{-mrdrnd} is
22451 used.  All of them generate the machine instruction that is part of the
22452 name.
22454 @smallexample
22455 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
22456 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
22457 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
22458 @end smallexample
22460 The following built-in function is available when @option{-mptwrite} is
22461 used.  All of them generate the machine instruction that is part of the
22462 name.
22464 @smallexample
22465 void __builtin_ia32_ptwrite32 (unsigned)
22466 void __builtin_ia32_ptwrite64 (unsigned long long)
22467 @end smallexample
22469 The following built-in functions are available when @option{-msse4a} is used.
22470 All of them generate the machine instruction that is part of the name.
22472 @smallexample
22473 void __builtin_ia32_movntsd (double *, v2df)
22474 void __builtin_ia32_movntss (float *, v4sf)
22475 v2di __builtin_ia32_extrq  (v2di, v16qi)
22476 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
22477 v2di __builtin_ia32_insertq (v2di, v2di)
22478 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
22479 @end smallexample
22481 The following built-in functions are available when @option{-mxop} is used.
22482 @smallexample
22483 v2df __builtin_ia32_vfrczpd (v2df)
22484 v4sf __builtin_ia32_vfrczps (v4sf)
22485 v2df __builtin_ia32_vfrczsd (v2df)
22486 v4sf __builtin_ia32_vfrczss (v4sf)
22487 v4df __builtin_ia32_vfrczpd256 (v4df)
22488 v8sf __builtin_ia32_vfrczps256 (v8sf)
22489 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
22490 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
22491 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
22492 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
22493 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
22494 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
22495 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
22496 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
22497 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
22498 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
22499 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
22500 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
22501 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
22502 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
22503 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
22504 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
22505 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
22506 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
22507 v4si __builtin_ia32_vpcomequd (v4si, v4si)
22508 v2di __builtin_ia32_vpcomequq (v2di, v2di)
22509 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
22510 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
22511 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
22512 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
22513 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
22514 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
22515 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
22516 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
22517 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
22518 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
22519 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
22520 v4si __builtin_ia32_vpcomged (v4si, v4si)
22521 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
22522 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
22523 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
22524 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
22525 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
22526 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
22527 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
22528 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
22529 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
22530 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
22531 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
22532 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
22533 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
22534 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
22535 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
22536 v4si __builtin_ia32_vpcomled (v4si, v4si)
22537 v2di __builtin_ia32_vpcomleq (v2di, v2di)
22538 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
22539 v4si __builtin_ia32_vpcomleud (v4si, v4si)
22540 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
22541 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
22542 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
22543 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
22544 v4si __builtin_ia32_vpcomltd (v4si, v4si)
22545 v2di __builtin_ia32_vpcomltq (v2di, v2di)
22546 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
22547 v4si __builtin_ia32_vpcomltud (v4si, v4si)
22548 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
22549 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
22550 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
22551 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
22552 v4si __builtin_ia32_vpcomned (v4si, v4si)
22553 v2di __builtin_ia32_vpcomneq (v2di, v2di)
22554 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
22555 v4si __builtin_ia32_vpcomneud (v4si, v4si)
22556 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
22557 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
22558 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
22559 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
22560 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
22561 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
22562 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
22563 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
22564 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
22565 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
22566 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
22567 v4si __builtin_ia32_vphaddbd (v16qi)
22568 v2di __builtin_ia32_vphaddbq (v16qi)
22569 v8hi __builtin_ia32_vphaddbw (v16qi)
22570 v2di __builtin_ia32_vphadddq (v4si)
22571 v4si __builtin_ia32_vphaddubd (v16qi)
22572 v2di __builtin_ia32_vphaddubq (v16qi)
22573 v8hi __builtin_ia32_vphaddubw (v16qi)
22574 v2di __builtin_ia32_vphaddudq (v4si)
22575 v4si __builtin_ia32_vphadduwd (v8hi)
22576 v2di __builtin_ia32_vphadduwq (v8hi)
22577 v4si __builtin_ia32_vphaddwd (v8hi)
22578 v2di __builtin_ia32_vphaddwq (v8hi)
22579 v8hi __builtin_ia32_vphsubbw (v16qi)
22580 v2di __builtin_ia32_vphsubdq (v4si)
22581 v4si __builtin_ia32_vphsubwd (v8hi)
22582 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
22583 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
22584 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
22585 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
22586 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
22587 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
22588 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
22589 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
22590 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
22591 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
22592 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
22593 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
22594 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
22595 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
22596 v4si __builtin_ia32_vprotd (v4si, v4si)
22597 v2di __builtin_ia32_vprotq (v2di, v2di)
22598 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
22599 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
22600 v4si __builtin_ia32_vpshad (v4si, v4si)
22601 v2di __builtin_ia32_vpshaq (v2di, v2di)
22602 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
22603 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
22604 v4si __builtin_ia32_vpshld (v4si, v4si)
22605 v2di __builtin_ia32_vpshlq (v2di, v2di)
22606 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
22607 @end smallexample
22609 The following built-in functions are available when @option{-mfma4} is used.
22610 All of them generate the machine instruction that is part of the name.
22612 @smallexample
22613 v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
22614 v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
22615 v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
22616 v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
22617 v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
22618 v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
22619 v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
22620 v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
22621 v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
22622 v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
22623 v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
22624 v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
22625 v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
22626 v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
22627 v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
22628 v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
22629 v2df __builtin_ia32_vfmaddsubpd  (v2df, v2df, v2df)
22630 v4sf __builtin_ia32_vfmaddsubps  (v4sf, v4sf, v4sf)
22631 v2df __builtin_ia32_vfmsubaddpd  (v2df, v2df, v2df)
22632 v4sf __builtin_ia32_vfmsubaddps  (v4sf, v4sf, v4sf)
22633 v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
22634 v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
22635 v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
22636 v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
22637 v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
22638 v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
22639 v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
22640 v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
22641 v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
22642 v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
22643 v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
22644 v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
22646 @end smallexample
22648 The following built-in functions are available when @option{-mlwp} is used.
22650 @smallexample
22651 void __builtin_ia32_llwpcb16 (void *);
22652 void __builtin_ia32_llwpcb32 (void *);
22653 void __builtin_ia32_llwpcb64 (void *);
22654 void * __builtin_ia32_llwpcb16 (void);
22655 void * __builtin_ia32_llwpcb32 (void);
22656 void * __builtin_ia32_llwpcb64 (void);
22657 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
22658 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
22659 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
22660 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
22661 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
22662 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
22663 @end smallexample
22665 The following built-in functions are available when @option{-mbmi} is used.
22666 All of them generate the machine instruction that is part of the name.
22667 @smallexample
22668 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
22669 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
22670 @end smallexample
22672 The following built-in functions are available when @option{-mbmi2} is used.
22673 All of them generate the machine instruction that is part of the name.
22674 @smallexample
22675 unsigned int _bzhi_u32 (unsigned int, unsigned int)
22676 unsigned int _pdep_u32 (unsigned int, unsigned int)
22677 unsigned int _pext_u32 (unsigned int, unsigned int)
22678 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
22679 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
22680 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
22681 @end smallexample
22683 The following built-in functions are available when @option{-mlzcnt} is used.
22684 All of them generate the machine instruction that is part of the name.
22685 @smallexample
22686 unsigned short __builtin_ia32_lzcnt_u16(unsigned short);
22687 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
22688 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
22689 @end smallexample
22691 The following built-in functions are available when @option{-mfxsr} is used.
22692 All of them generate the machine instruction that is part of the name.
22693 @smallexample
22694 void __builtin_ia32_fxsave (void *)
22695 void __builtin_ia32_fxrstor (void *)
22696 void __builtin_ia32_fxsave64 (void *)
22697 void __builtin_ia32_fxrstor64 (void *)
22698 @end smallexample
22700 The following built-in functions are available when @option{-mxsave} is used.
22701 All of them generate the machine instruction that is part of the name.
22702 @smallexample
22703 void __builtin_ia32_xsave (void *, long long)
22704 void __builtin_ia32_xrstor (void *, long long)
22705 void __builtin_ia32_xsave64 (void *, long long)
22706 void __builtin_ia32_xrstor64 (void *, long long)
22707 @end smallexample
22709 The following built-in functions are available when @option{-mxsaveopt} is used.
22710 All of them generate the machine instruction that is part of the name.
22711 @smallexample
22712 void __builtin_ia32_xsaveopt (void *, long long)
22713 void __builtin_ia32_xsaveopt64 (void *, long long)
22714 @end smallexample
22716 The following built-in functions are available when @option{-mtbm} is used.
22717 Both of them generate the immediate form of the bextr machine instruction.
22718 @smallexample
22719 unsigned int __builtin_ia32_bextri_u32 (unsigned int,
22720                                         const unsigned int);
22721 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long,
22722                                               const unsigned long long);
22723 @end smallexample
22726 The following built-in functions are available when @option{-m3dnow} is used.
22727 All of them generate the machine instruction that is part of the name.
22729 @smallexample
22730 void __builtin_ia32_femms (void)
22731 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
22732 v2si __builtin_ia32_pf2id (v2sf)
22733 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
22734 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
22735 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
22736 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
22737 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
22738 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
22739 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
22740 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
22741 v2sf __builtin_ia32_pfrcp (v2sf)
22742 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
22743 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
22744 v2sf __builtin_ia32_pfrsqrt (v2sf)
22745 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
22746 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
22747 v2sf __builtin_ia32_pi2fd (v2si)
22748 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
22749 @end smallexample
22751 The following built-in functions are available when @option{-m3dnowa} is used.
22752 All of them generate the machine instruction that is part of the name.
22754 @smallexample
22755 v2si __builtin_ia32_pf2iw (v2sf)
22756 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
22757 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
22758 v2sf __builtin_ia32_pi2fw (v2si)
22759 v2sf __builtin_ia32_pswapdsf (v2sf)
22760 v2si __builtin_ia32_pswapdsi (v2si)
22761 @end smallexample
22763 The following built-in functions are available when @option{-mrtm} is used
22764 They are used for restricted transactional memory. These are the internal
22765 low level functions. Normally the functions in 
22766 @ref{x86 transactional memory intrinsics} should be used instead.
22768 @smallexample
22769 int __builtin_ia32_xbegin ()
22770 void __builtin_ia32_xend ()
22771 void __builtin_ia32_xabort (status)
22772 int __builtin_ia32_xtest ()
22773 @end smallexample
22775 The following built-in functions are available when @option{-mmwaitx} is used.
22776 All of them generate the machine instruction that is part of the name.
22777 @smallexample
22778 void __builtin_ia32_monitorx (void *, unsigned int, unsigned int)
22779 void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int)
22780 @end smallexample
22782 The following built-in functions are available when @option{-mclzero} is used.
22783 All of them generate the machine instruction that is part of the name.
22784 @smallexample
22785 void __builtin_i32_clzero (void *)
22786 @end smallexample
22788 The following built-in functions are available when @option{-mpku} is used.
22789 They generate reads and writes to PKRU.
22790 @smallexample
22791 void __builtin_ia32_wrpkru (unsigned int)
22792 unsigned int __builtin_ia32_rdpkru ()
22793 @end smallexample
22795 The following built-in functions are available when @option{-mcet} or
22796 @option{-mshstk} option is used.  They support shadow stack
22797 machine instructions from Intel Control-flow Enforcement Technology (CET).
22798 Each built-in function generates the  machine instruction that is part
22799 of the function's name.  These are the internal low-level functions.
22800 Normally the functions in @ref{x86 control-flow protection intrinsics}
22801 should be used instead.
22803 @smallexample
22804 unsigned int __builtin_ia32_rdsspd (void)
22805 unsigned long long __builtin_ia32_rdsspq (void)
22806 void __builtin_ia32_incsspd (unsigned int)
22807 void __builtin_ia32_incsspq (unsigned long long)
22808 void __builtin_ia32_saveprevssp(void);
22809 void __builtin_ia32_rstorssp(void *);
22810 void __builtin_ia32_wrssd(unsigned int, void *);
22811 void __builtin_ia32_wrssq(unsigned long long, void *);
22812 void __builtin_ia32_wrussd(unsigned int, void *);
22813 void __builtin_ia32_wrussq(unsigned long long, void *);
22814 void __builtin_ia32_setssbsy(void);
22815 void __builtin_ia32_clrssbsy(void *);
22816 @end smallexample
22818 @node x86 transactional memory intrinsics
22819 @subsection x86 Transactional Memory Intrinsics
22821 These hardware transactional memory intrinsics for x86 allow you to use
22822 memory transactions with RTM (Restricted Transactional Memory).
22823 This support is enabled with the @option{-mrtm} option.
22824 For using HLE (Hardware Lock Elision) see 
22825 @ref{x86 specific memory model extensions for transactional memory} instead.
22827 A memory transaction commits all changes to memory in an atomic way,
22828 as visible to other threads. If the transaction fails it is rolled back
22829 and all side effects discarded.
22831 Generally there is no guarantee that a memory transaction ever succeeds
22832 and suitable fallback code always needs to be supplied.
22834 @deftypefn {RTM Function} {unsigned} _xbegin ()
22835 Start a RTM (Restricted Transactional Memory) transaction. 
22836 Returns @code{_XBEGIN_STARTED} when the transaction
22837 started successfully (note this is not 0, so the constant has to be 
22838 explicitly tested).  
22840 If the transaction aborts, all side effects
22841 are undone and an abort code encoded as a bit mask is returned.
22842 The following macros are defined:
22844 @table @code
22845 @item _XABORT_EXPLICIT
22846 Transaction was explicitly aborted with @code{_xabort}.  The parameter passed
22847 to @code{_xabort} is available with @code{_XABORT_CODE(status)}.
22848 @item _XABORT_RETRY
22849 Transaction retry is possible.
22850 @item _XABORT_CONFLICT
22851 Transaction abort due to a memory conflict with another thread.
22852 @item _XABORT_CAPACITY
22853 Transaction abort due to the transaction using too much memory.
22854 @item _XABORT_DEBUG
22855 Transaction abort due to a debug trap.
22856 @item _XABORT_NESTED
22857 Transaction abort in an inner nested transaction.
22858 @end table
22860 There is no guarantee
22861 any transaction ever succeeds, so there always needs to be a valid
22862 fallback path.
22863 @end deftypefn
22865 @deftypefn {RTM Function} {void} _xend ()
22866 Commit the current transaction. When no transaction is active this faults.
22867 All memory side effects of the transaction become visible
22868 to other threads in an atomic manner.
22869 @end deftypefn
22871 @deftypefn {RTM Function} {int} _xtest ()
22872 Return a nonzero value if a transaction is currently active, otherwise 0.
22873 @end deftypefn
22875 @deftypefn {RTM Function} {void} _xabort (status)
22876 Abort the current transaction. When no transaction is active this is a no-op.
22877 The @var{status} is an 8-bit constant; its value is encoded in the return 
22878 value from @code{_xbegin}.
22879 @end deftypefn
22881 Here is an example showing handling for @code{_XABORT_RETRY}
22882 and a fallback path for other failures:
22884 @smallexample
22885 #include <immintrin.h>
22887 int n_tries, max_tries;
22888 unsigned status = _XABORT_EXPLICIT;
22891 for (n_tries = 0; n_tries < max_tries; n_tries++) 
22892   @{
22893     status = _xbegin ();
22894     if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
22895       break;
22896   @}
22897 if (status == _XBEGIN_STARTED) 
22898   @{
22899     ... transaction code...
22900     _xend ();
22901   @} 
22902 else 
22903   @{
22904     ... non-transactional fallback path...
22905   @}
22906 @end smallexample
22908 @noindent
22909 Note that, in most cases, the transactional and non-transactional code
22910 must synchronize together to ensure consistency.
22912 @node x86 control-flow protection intrinsics
22913 @subsection x86 Control-Flow Protection Intrinsics
22915 @deftypefn {CET Function} {ret_type} _get_ssp (void)
22916 Get the current value of shadow stack pointer if shadow stack support
22917 from Intel CET is enabled in the hardware or @code{0} otherwise.
22918 The @code{ret_type} is @code{unsigned long long} for 64-bit targets 
22919 and @code{unsigned int} for 32-bit targets.
22920 @end deftypefn
22922 @deftypefn {CET Function} void _inc_ssp (unsigned int)
22923 Increment the current shadow stack pointer by the size specified by the
22924 function argument.  The argument is masked to a byte value for security
22925 reasons, so to increment by more than 255 bytes you must call the function
22926 multiple times.
22927 @end deftypefn
22929 The shadow stack unwind code looks like:
22931 @smallexample
22932 #include <immintrin.h>
22934 /* Unwind the shadow stack for EH.  */
22935 #define _Unwind_Frames_Extra(x)       \
22936   do                                  \
22937     @{                                \
22938       _Unwind_Word ssp = _get_ssp (); \
22939       if (ssp != 0)                   \
22940         @{                            \
22941           _Unwind_Word tmp = (x);     \
22942           while (tmp > 255)           \
22943             @{                        \
22944               _inc_ssp (tmp);         \
22945               tmp -= 255;             \
22946             @}                        \
22947           _inc_ssp (tmp);             \
22948         @}                            \
22949     @}                                \
22950     while (0)
22951 @end smallexample
22953 @noindent
22954 This code runs unconditionally on all 64-bit processors.  For 32-bit
22955 processors the code runs on those that support multi-byte NOP instructions.
22957 @node Target Format Checks
22958 @section Format Checks Specific to Particular Target Machines
22960 For some target machines, GCC supports additional options to the
22961 format attribute
22962 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
22964 @menu
22965 * Solaris Format Checks::
22966 * Darwin Format Checks::
22967 @end menu
22969 @node Solaris Format Checks
22970 @subsection Solaris Format Checks
22972 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
22973 check.  @code{cmn_err} accepts a subset of the standard @code{printf}
22974 conversions, and the two-argument @code{%b} conversion for displaying
22975 bit-fields.  See the Solaris man page for @code{cmn_err} for more information.
22977 @node Darwin Format Checks
22978 @subsection Darwin Format Checks
22980 In addition to the full set of format archetypes (attribute format style
22981 arguments such as @code{printf}, @code{scanf}, @code{strftime}, and
22982 @code{strfmon}), Darwin targets also support the @code{CFString} (or
22983 @code{__CFString__}) archetype in the @code{format} attribute.
22984 Declarations with this archetype are parsed for correct syntax
22985 and argument types.  However, parsing of the format string itself and
22986 validating arguments against it in calls to such functions is currently
22987 not performed.
22989 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
22990 also be used as format arguments.  Note that the relevant headers are only likely to be
22991 available on Darwin (OSX) installations.  On such installations, the XCode and system
22992 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
22993 associated functions.
22995 @node Pragmas
22996 @section Pragmas Accepted by GCC
22997 @cindex pragmas
22998 @cindex @code{#pragma}
23000 GCC supports several types of pragmas, primarily in order to compile
23001 code originally written for other compilers.  Note that in general
23002 we do not recommend the use of pragmas; @xref{Function Attributes},
23003 for further explanation.
23005 The GNU C preprocessor recognizes several pragmas in addition to the
23006 compiler pragmas documented here.  Refer to the CPP manual for more
23007 information.
23009 @menu
23010 * AArch64 Pragmas::
23011 * ARM Pragmas::
23012 * M32C Pragmas::
23013 * MeP Pragmas::
23014 * RS/6000 and PowerPC Pragmas::
23015 * S/390 Pragmas::
23016 * Darwin Pragmas::
23017 * Solaris Pragmas::
23018 * Symbol-Renaming Pragmas::
23019 * Structure-Layout Pragmas::
23020 * Weak Pragmas::
23021 * Diagnostic Pragmas::
23022 * Visibility Pragmas::
23023 * Push/Pop Macro Pragmas::
23024 * Function Specific Option Pragmas::
23025 * Loop-Specific Pragmas::
23026 @end menu
23028 @node AArch64 Pragmas
23029 @subsection AArch64 Pragmas
23031 The pragmas defined by the AArch64 target correspond to the AArch64
23032 target function attributes.  They can be specified as below:
23033 @smallexample
23034 #pragma GCC target("string")
23035 @end smallexample
23037 where @code{@var{string}} can be any string accepted as an AArch64 target
23038 attribute.  @xref{AArch64 Function Attributes}, for more details
23039 on the permissible values of @code{string}.
23041 @node ARM Pragmas
23042 @subsection ARM Pragmas
23044 The ARM target defines pragmas for controlling the default addition of
23045 @code{long_call} and @code{short_call} attributes to functions.
23046 @xref{Function Attributes}, for information about the effects of these
23047 attributes.
23049 @table @code
23050 @item long_calls
23051 @cindex pragma, long_calls
23052 Set all subsequent functions to have the @code{long_call} attribute.
23054 @item no_long_calls
23055 @cindex pragma, no_long_calls
23056 Set all subsequent functions to have the @code{short_call} attribute.
23058 @item long_calls_off
23059 @cindex pragma, long_calls_off
23060 Do not affect the @code{long_call} or @code{short_call} attributes of
23061 subsequent functions.
23062 @end table
23064 @node M32C Pragmas
23065 @subsection M32C Pragmas
23067 @table @code
23068 @item GCC memregs @var{number}
23069 @cindex pragma, memregs
23070 Overrides the command-line option @code{-memregs=} for the current
23071 file.  Use with care!  This pragma must be before any function in the
23072 file, and mixing different memregs values in different objects may
23073 make them incompatible.  This pragma is useful when a
23074 performance-critical function uses a memreg for temporary values,
23075 as it may allow you to reduce the number of memregs used.
23077 @item ADDRESS @var{name} @var{address}
23078 @cindex pragma, address
23079 For any declared symbols matching @var{name}, this does three things
23080 to that symbol: it forces the symbol to be located at the given
23081 address (a number), it forces the symbol to be volatile, and it
23082 changes the symbol's scope to be static.  This pragma exists for
23083 compatibility with other compilers, but note that the common
23084 @code{1234H} numeric syntax is not supported (use @code{0x1234}
23085 instead).  Example:
23087 @smallexample
23088 #pragma ADDRESS port3 0x103
23089 char port3;
23090 @end smallexample
23092 @end table
23094 @node MeP Pragmas
23095 @subsection MeP Pragmas
23097 @table @code
23099 @item custom io_volatile (on|off)
23100 @cindex pragma, custom io_volatile
23101 Overrides the command-line option @code{-mio-volatile} for the current
23102 file.  Note that for compatibility with future GCC releases, this
23103 option should only be used once before any @code{io} variables in each
23104 file.
23106 @item GCC coprocessor available @var{registers}
23107 @cindex pragma, coprocessor available
23108 Specifies which coprocessor registers are available to the register
23109 allocator.  @var{registers} may be a single register, register range
23110 separated by ellipses, or comma-separated list of those.  Example:
23112 @smallexample
23113 #pragma GCC coprocessor available $c0...$c10, $c28
23114 @end smallexample
23116 @item GCC coprocessor call_saved @var{registers}
23117 @cindex pragma, coprocessor call_saved
23118 Specifies which coprocessor registers are to be saved and restored by
23119 any function using them.  @var{registers} may be a single register,
23120 register range separated by ellipses, or comma-separated list of
23121 those.  Example:
23123 @smallexample
23124 #pragma GCC coprocessor call_saved $c4...$c6, $c31
23125 @end smallexample
23127 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
23128 @cindex pragma, coprocessor subclass
23129 Creates and defines a register class.  These register classes can be
23130 used by inline @code{asm} constructs.  @var{registers} may be a single
23131 register, register range separated by ellipses, or comma-separated
23132 list of those.  Example:
23134 @smallexample
23135 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
23137 asm ("cpfoo %0" : "=B" (x));
23138 @end smallexample
23140 @item GCC disinterrupt @var{name} , @var{name} @dots{}
23141 @cindex pragma, disinterrupt
23142 For the named functions, the compiler adds code to disable interrupts
23143 for the duration of those functions.  If any functions so named 
23144 are not encountered in the source, a warning is emitted that the pragma is
23145 not used.  Examples:
23147 @smallexample
23148 #pragma disinterrupt foo
23149 #pragma disinterrupt bar, grill
23150 int foo () @{ @dots{} @}
23151 @end smallexample
23153 @item GCC call @var{name} , @var{name} @dots{}
23154 @cindex pragma, call
23155 For the named functions, the compiler always uses a register-indirect
23156 call model when calling the named functions.  Examples:
23158 @smallexample
23159 extern int foo ();
23160 #pragma call foo
23161 @end smallexample
23163 @end table
23165 @node RS/6000 and PowerPC Pragmas
23166 @subsection RS/6000 and PowerPC Pragmas
23168 The RS/6000 and PowerPC targets define one pragma for controlling
23169 whether or not the @code{longcall} attribute is added to function
23170 declarations by default.  This pragma overrides the @option{-mlongcall}
23171 option, but not the @code{longcall} and @code{shortcall} attributes.
23172 @xref{RS/6000 and PowerPC Options}, for more information about when long
23173 calls are and are not necessary.
23175 @table @code
23176 @item longcall (1)
23177 @cindex pragma, longcall
23178 Apply the @code{longcall} attribute to all subsequent function
23179 declarations.
23181 @item longcall (0)
23182 Do not apply the @code{longcall} attribute to subsequent function
23183 declarations.
23184 @end table
23186 @c Describe h8300 pragmas here.
23187 @c Describe sh pragmas here.
23188 @c Describe v850 pragmas here.
23190 @node S/390 Pragmas
23191 @subsection S/390 Pragmas
23193 The pragmas defined by the S/390 target correspond to the S/390
23194 target function attributes and some the additional options:
23196 @table @samp
23197 @item zvector
23198 @itemx no-zvector
23199 @end table
23201 Note that options of the pragma, unlike options of the target
23202 attribute, do change the value of preprocessor macros like
23203 @code{__VEC__}.  They can be specified as below:
23205 @smallexample
23206 #pragma GCC target("string[,string]...")
23207 #pragma GCC target("string"[,"string"]...)
23208 @end smallexample
23210 @node Darwin Pragmas
23211 @subsection Darwin Pragmas
23213 The following pragmas are available for all architectures running the
23214 Darwin operating system.  These are useful for compatibility with other
23215 Mac OS compilers.
23217 @table @code
23218 @item mark @var{tokens}@dots{}
23219 @cindex pragma, mark
23220 This pragma is accepted, but has no effect.
23222 @item options align=@var{alignment}
23223 @cindex pragma, options align
23224 This pragma sets the alignment of fields in structures.  The values of
23225 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
23226 @code{power}, to emulate PowerPC alignment.  Uses of this pragma nest
23227 properly; to restore the previous setting, use @code{reset} for the
23228 @var{alignment}.
23230 @item segment @var{tokens}@dots{}
23231 @cindex pragma, segment
23232 This pragma is accepted, but has no effect.
23234 @item unused (@var{var} [, @var{var}]@dots{})
23235 @cindex pragma, unused
23236 This pragma declares variables to be possibly unused.  GCC does not
23237 produce warnings for the listed variables.  The effect is similar to
23238 that of the @code{unused} attribute, except that this pragma may appear
23239 anywhere within the variables' scopes.
23240 @end table
23242 @node Solaris Pragmas
23243 @subsection Solaris Pragmas
23245 The Solaris target supports @code{#pragma redefine_extname}
23246 (@pxref{Symbol-Renaming Pragmas}).  It also supports additional
23247 @code{#pragma} directives for compatibility with the system compiler.
23249 @table @code
23250 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
23251 @cindex pragma, align
23253 Increase the minimum alignment of each @var{variable} to @var{alignment}.
23254 This is the same as GCC's @code{aligned} attribute @pxref{Variable
23255 Attributes}).  Macro expansion occurs on the arguments to this pragma
23256 when compiling C and Objective-C@.  It does not currently occur when
23257 compiling C++, but this is a bug which may be fixed in a future
23258 release.
23260 @item fini (@var{function} [, @var{function}]...)
23261 @cindex pragma, fini
23263 This pragma causes each listed @var{function} to be called after
23264 main, or during shared module unloading, by adding a call to the
23265 @code{.fini} section.
23267 @item init (@var{function} [, @var{function}]...)
23268 @cindex pragma, init
23270 This pragma causes each listed @var{function} to be called during
23271 initialization (before @code{main}) or during shared module loading, by
23272 adding a call to the @code{.init} section.
23274 @end table
23276 @node Symbol-Renaming Pragmas
23277 @subsection Symbol-Renaming Pragmas
23279 GCC supports a @code{#pragma} directive that changes the name used in
23280 assembly for a given declaration. While this pragma is supported on all
23281 platforms, it is intended primarily to provide compatibility with the
23282 Solaris system headers. This effect can also be achieved using the asm
23283 labels extension (@pxref{Asm Labels}).
23285 @table @code
23286 @item redefine_extname @var{oldname} @var{newname}
23287 @cindex pragma, redefine_extname
23289 This pragma gives the C function @var{oldname} the assembly symbol
23290 @var{newname}.  The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
23291 is defined if this pragma is available (currently on all platforms).
23292 @end table
23294 This pragma and the @code{asm} labels extension interact in a complicated
23295 manner.  Here are some corner cases you may want to be aware of:
23297 @enumerate
23298 @item This pragma silently applies only to declarations with external
23299 linkage.  The @code{asm} label feature does not have this restriction.
23301 @item In C++, this pragma silently applies only to declarations with
23302 ``C'' linkage.  Again, @code{asm} labels do not have this restriction.
23304 @item If either of the ways of changing the assembly name of a
23305 declaration are applied to a declaration whose assembly name has
23306 already been determined (either by a previous use of one of these
23307 features, or because the compiler needed the assembly name in order to
23308 generate code), and the new name is different, a warning issues and
23309 the name does not change.
23311 @item The @var{oldname} used by @code{#pragma redefine_extname} is
23312 always the C-language name.
23313 @end enumerate
23315 @node Structure-Layout Pragmas
23316 @subsection Structure-Layout Pragmas
23318 For compatibility with Microsoft Windows compilers, GCC supports a
23319 set of @code{#pragma} directives that change the maximum alignment of
23320 members of structures (other than zero-width bit-fields), unions, and
23321 classes subsequently defined. The @var{n} value below always is required
23322 to be a small power of two and specifies the new alignment in bytes.
23324 @enumerate
23325 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
23326 @item @code{#pragma pack()} sets the alignment to the one that was in
23327 effect when compilation started (see also command-line option
23328 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
23329 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
23330 setting on an internal stack and then optionally sets the new alignment.
23331 @item @code{#pragma pack(pop)} restores the alignment setting to the one
23332 saved at the top of the internal stack (and removes that stack entry).
23333 Note that @code{#pragma pack([@var{n}])} does not influence this internal
23334 stack; thus it is possible to have @code{#pragma pack(push)} followed by
23335 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
23336 @code{#pragma pack(pop)}.
23337 @end enumerate
23339 Some targets, e.g.@: x86 and PowerPC, support the @code{#pragma ms_struct}
23340 directive which lays out structures and unions subsequently defined as the
23341 documented @code{__attribute__ ((ms_struct))}.
23343 @enumerate
23344 @item @code{#pragma ms_struct on} turns on the Microsoft layout.
23345 @item @code{#pragma ms_struct off} turns off the Microsoft layout.
23346 @item @code{#pragma ms_struct reset} goes back to the default layout.
23347 @end enumerate
23349 Most targets also support the @code{#pragma scalar_storage_order} directive
23350 which lays out structures and unions subsequently defined as the documented
23351 @code{__attribute__ ((scalar_storage_order))}.
23353 @enumerate
23354 @item @code{#pragma scalar_storage_order big-endian} sets the storage order
23355 of the scalar fields to big-endian.
23356 @item @code{#pragma scalar_storage_order little-endian} sets the storage order
23357 of the scalar fields to little-endian.
23358 @item @code{#pragma scalar_storage_order default} goes back to the endianness
23359 that was in effect when compilation started (see also command-line option
23360 @option{-fsso-struct=@var{endianness}} @pxref{C Dialect Options}).
23361 @end enumerate
23363 @node Weak Pragmas
23364 @subsection Weak Pragmas
23366 For compatibility with SVR4, GCC supports a set of @code{#pragma}
23367 directives for declaring symbols to be weak, and defining weak
23368 aliases.
23370 @table @code
23371 @item #pragma weak @var{symbol}
23372 @cindex pragma, weak
23373 This pragma declares @var{symbol} to be weak, as if the declaration
23374 had the attribute of the same name.  The pragma may appear before
23375 or after the declaration of @var{symbol}.  It is not an error for
23376 @var{symbol} to never be defined at all.
23378 @item #pragma weak @var{symbol1} = @var{symbol2}
23379 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
23380 It is an error if @var{symbol2} is not defined in the current
23381 translation unit.
23382 @end table
23384 @node Diagnostic Pragmas
23385 @subsection Diagnostic Pragmas
23387 GCC allows the user to selectively enable or disable certain types of
23388 diagnostics, and change the kind of the diagnostic.  For example, a
23389 project's policy might require that all sources compile with
23390 @option{-Werror} but certain files might have exceptions allowing
23391 specific types of warnings.  Or, a project might selectively enable
23392 diagnostics and treat them as errors depending on which preprocessor
23393 macros are defined.
23395 @table @code
23396 @item #pragma GCC diagnostic @var{kind} @var{option}
23397 @cindex pragma, diagnostic
23399 Modifies the disposition of a diagnostic.  Note that not all
23400 diagnostics are modifiable; at the moment only warnings (normally
23401 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
23402 Use @option{-fdiagnostics-show-option} to determine which diagnostics
23403 are controllable and which option controls them.
23405 @var{kind} is @samp{error} to treat this diagnostic as an error,
23406 @samp{warning} to treat it like a warning (even if @option{-Werror} is
23407 in effect), or @samp{ignored} if the diagnostic is to be ignored.
23408 @var{option} is a double quoted string that matches the command-line
23409 option.
23411 @smallexample
23412 #pragma GCC diagnostic warning "-Wformat"
23413 #pragma GCC diagnostic error "-Wformat"
23414 #pragma GCC diagnostic ignored "-Wformat"
23415 @end smallexample
23417 Note that these pragmas override any command-line options.  GCC keeps
23418 track of the location of each pragma, and issues diagnostics according
23419 to the state as of that point in the source file.  Thus, pragmas occurring
23420 after a line do not affect diagnostics caused by that line.
23422 @item #pragma GCC diagnostic push
23423 @itemx #pragma GCC diagnostic pop
23425 Causes GCC to remember the state of the diagnostics as of each
23426 @code{push}, and restore to that point at each @code{pop}.  If a
23427 @code{pop} has no matching @code{push}, the command-line options are
23428 restored.
23430 @smallexample
23431 #pragma GCC diagnostic error "-Wuninitialized"
23432   foo(a);                       /* error is given for this one */
23433 #pragma GCC diagnostic push
23434 #pragma GCC diagnostic ignored "-Wuninitialized"
23435   foo(b);                       /* no diagnostic for this one */
23436 #pragma GCC diagnostic pop
23437   foo(c);                       /* error is given for this one */
23438 #pragma GCC diagnostic pop
23439   foo(d);                       /* depends on command-line options */
23440 @end smallexample
23442 @end table
23444 GCC also offers a simple mechanism for printing messages during
23445 compilation.
23447 @table @code
23448 @item #pragma message @var{string}
23449 @cindex pragma, diagnostic
23451 Prints @var{string} as a compiler message on compilation.  The message
23452 is informational only, and is neither a compilation warning nor an
23453 error.  Newlines can be included in the string by using the @samp{\n}
23454 escape sequence.
23456 @smallexample
23457 #pragma message "Compiling " __FILE__ "..."
23458 @end smallexample
23460 @var{string} may be parenthesized, and is printed with location
23461 information.  For example,
23463 @smallexample
23464 #define DO_PRAGMA(x) _Pragma (#x)
23465 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
23467 TODO(Remember to fix this)
23468 @end smallexample
23470 @noindent
23471 prints @samp{/tmp/file.c:4: note: #pragma message:
23472 TODO - Remember to fix this}.
23474 @item #pragma GCC error @var{message}
23475 @cindex pragma, diagnostic
23476 Generates an error message.  This pragma @emph{is} considered to
23477 indicate an error in the compilation, and it will be treated as such.
23479 Newlines can be included in the string by using the @samp{\n}
23480 escape sequence.  They will be displayed as newlines even if the
23481 @option{-fmessage-length} option is set to zero.
23483 The error is only generated if the pragma is present in the code after
23484 pre-processing has been completed.  It does not matter however if the
23485 code containing the pragma is unreachable:
23487 @smallexample
23488 #if 0
23489 #pragma GCC error "this error is not seen"
23490 #endif
23491 void foo (void)
23493   return;
23494 #pragma GCC error "this error is seen"
23496 @end smallexample
23498 @item #pragma GCC warning @var{message}
23499 @cindex pragma, diagnostic
23500 This is just like @samp{pragma GCC error} except that a warning
23501 message is issued instead of an error message.  Unless
23502 @option{-Werror} is in effect, in which case this pragma will generate
23503 an error as well.
23505 @end table
23507 @node Visibility Pragmas
23508 @subsection Visibility Pragmas
23510 @table @code
23511 @item #pragma GCC visibility push(@var{visibility})
23512 @itemx #pragma GCC visibility pop
23513 @cindex pragma, visibility
23515 This pragma allows the user to set the visibility for multiple
23516 declarations without having to give each a visibility attribute
23517 (@pxref{Function Attributes}).
23519 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
23520 declarations.  Class members and template specializations are not
23521 affected; if you want to override the visibility for a particular
23522 member or instantiation, you must use an attribute.
23524 @end table
23527 @node Push/Pop Macro Pragmas
23528 @subsection Push/Pop Macro Pragmas
23530 For compatibility with Microsoft Windows compilers, GCC supports
23531 @samp{#pragma push_macro(@var{"macro_name"})}
23532 and @samp{#pragma pop_macro(@var{"macro_name"})}.
23534 @table @code
23535 @item #pragma push_macro(@var{"macro_name"})
23536 @cindex pragma, push_macro
23537 This pragma saves the value of the macro named as @var{macro_name} to
23538 the top of the stack for this macro.
23540 @item #pragma pop_macro(@var{"macro_name"})
23541 @cindex pragma, pop_macro
23542 This pragma sets the value of the macro named as @var{macro_name} to
23543 the value on top of the stack for this macro. If the stack for
23544 @var{macro_name} is empty, the value of the macro remains unchanged.
23545 @end table
23547 For example:
23549 @smallexample
23550 #define X  1
23551 #pragma push_macro("X")
23552 #undef X
23553 #define X -1
23554 #pragma pop_macro("X")
23555 int x [X];
23556 @end smallexample
23558 @noindent
23559 In this example, the definition of X as 1 is saved by @code{#pragma
23560 push_macro} and restored by @code{#pragma pop_macro}.
23562 @node Function Specific Option Pragmas
23563 @subsection Function Specific Option Pragmas
23565 @table @code
23566 @item #pragma GCC target (@var{string}, @dots{})
23567 @cindex pragma GCC target
23569 This pragma allows you to set target-specific options for functions
23570 defined later in the source file.  One or more strings can be
23571 specified.  Each function that is defined after this point is treated
23572 as if it had been declared with one @code{target(}@var{string}@code{)}
23573 attribute for each @var{string} argument.  The parentheses around
23574 the strings in the pragma are optional.  @xref{Function Attributes},
23575 for more information about the @code{target} attribute and the attribute
23576 syntax.
23578 The @code{#pragma GCC target} pragma is presently implemented for
23579 x86, ARM, AArch64, PowerPC, S/390, and Nios II targets only.
23581 @item #pragma GCC optimize (@var{string}, @dots{})
23582 @cindex pragma GCC optimize
23584 This pragma allows you to set global optimization options for functions
23585 defined later in the source file.  One or more strings can be
23586 specified.  Each function that is defined after this point is treated
23587 as if it had been declared with one @code{optimize(}@var{string}@code{)}
23588 attribute for each @var{string} argument.  The parentheses around
23589 the strings in the pragma are optional.  @xref{Function Attributes},
23590 for more information about the @code{optimize} attribute and the attribute
23591 syntax.
23593 @item #pragma GCC push_options
23594 @itemx #pragma GCC pop_options
23595 @cindex pragma GCC push_options
23596 @cindex pragma GCC pop_options
23598 These pragmas maintain a stack of the current target and optimization
23599 options.  It is intended for include files where you temporarily want
23600 to switch to using a different @samp{#pragma GCC target} or
23601 @samp{#pragma GCC optimize} and then to pop back to the previous
23602 options.
23604 @item #pragma GCC reset_options
23605 @cindex pragma GCC reset_options
23607 This pragma clears the current @code{#pragma GCC target} and
23608 @code{#pragma GCC optimize} to use the default switches as specified
23609 on the command line.
23611 @end table
23613 @node Loop-Specific Pragmas
23614 @subsection Loop-Specific Pragmas
23616 @table @code
23617 @item #pragma GCC ivdep
23618 @cindex pragma GCC ivdep
23620 With this pragma, the programmer asserts that there are no loop-carried
23621 dependencies which would prevent consecutive iterations of
23622 the following loop from executing concurrently with SIMD
23623 (single instruction multiple data) instructions.
23625 For example, the compiler can only unconditionally vectorize the following
23626 loop with the pragma:
23628 @smallexample
23629 void foo (int n, int *a, int *b, int *c)
23631   int i, j;
23632 #pragma GCC ivdep
23633   for (i = 0; i < n; ++i)
23634     a[i] = b[i] + c[i];
23636 @end smallexample
23638 @noindent
23639 In this example, using the @code{restrict} qualifier had the same
23640 effect. In the following example, that would not be possible. Assume
23641 @math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
23642 that it can unconditionally vectorize the following loop:
23644 @smallexample
23645 void ignore_vec_dep (int *a, int k, int c, int m)
23647 #pragma GCC ivdep
23648   for (int i = 0; i < m; i++)
23649     a[i] = a[i + k] * c;
23651 @end smallexample
23653 @item #pragma GCC unroll @var{n}
23654 @cindex pragma GCC unroll @var{n}
23656 You can use this pragma to control how many times a loop should be unrolled.
23657 It must be placed immediately before a @code{for}, @code{while} or @code{do}
23658 loop or a @code{#pragma GCC ivdep}, and applies only to the loop that follows.
23659 @var{n} is an integer constant expression specifying the unrolling factor.
23660 The values of @math{0} and @math{1} block any unrolling of the loop.
23662 @end table
23664 @node Unnamed Fields
23665 @section Unnamed Structure and Union Fields
23666 @cindex @code{struct}
23667 @cindex @code{union}
23669 As permitted by ISO C11 and for compatibility with other compilers,
23670 GCC allows you to define
23671 a structure or union that contains, as fields, structures and unions
23672 without names.  For example:
23674 @smallexample
23675 struct @{
23676   int a;
23677   union @{
23678     int b;
23679     float c;
23680   @};
23681   int d;
23682 @} foo;
23683 @end smallexample
23685 @noindent
23686 In this example, you are able to access members of the unnamed
23687 union with code like @samp{foo.b}.  Note that only unnamed structs and
23688 unions are allowed, you may not have, for example, an unnamed
23689 @code{int}.
23691 You must never create such structures that cause ambiguous field definitions.
23692 For example, in this structure:
23694 @smallexample
23695 struct @{
23696   int a;
23697   struct @{
23698     int a;
23699   @};
23700 @} foo;
23701 @end smallexample
23703 @noindent
23704 it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
23705 The compiler gives errors for such constructs.
23707 @opindex fms-extensions
23708 Unless @option{-fms-extensions} is used, the unnamed field must be a
23709 structure or union definition without a tag (for example, @samp{struct
23710 @{ int a; @};}).  If @option{-fms-extensions} is used, the field may
23711 also be a definition with a tag such as @samp{struct foo @{ int a;
23712 @};}, a reference to a previously defined structure or union such as
23713 @samp{struct foo;}, or a reference to a @code{typedef} name for a
23714 previously defined structure or union type.
23716 @opindex fplan9-extensions
23717 The option @option{-fplan9-extensions} enables
23718 @option{-fms-extensions} as well as two other extensions.  First, a
23719 pointer to a structure is automatically converted to a pointer to an
23720 anonymous field for assignments and function calls.  For example:
23722 @smallexample
23723 struct s1 @{ int a; @};
23724 struct s2 @{ struct s1; @};
23725 extern void f1 (struct s1 *);
23726 void f2 (struct s2 *p) @{ f1 (p); @}
23727 @end smallexample
23729 @noindent
23730 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
23731 converted into a pointer to the anonymous field.
23733 Second, when the type of an anonymous field is a @code{typedef} for a
23734 @code{struct} or @code{union}, code may refer to the field using the
23735 name of the @code{typedef}.
23737 @smallexample
23738 typedef struct @{ int a; @} s1;
23739 struct s2 @{ s1; @};
23740 s1 f1 (struct s2 *p) @{ return p->s1; @}
23741 @end smallexample
23743 These usages are only permitted when they are not ambiguous.
23745 @node Thread-Local
23746 @section Thread-Local Storage
23747 @cindex Thread-Local Storage
23748 @cindex @acronym{TLS}
23749 @cindex @code{__thread}
23751 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
23752 are allocated such that there is one instance of the variable per extant
23753 thread.  The runtime model GCC uses to implement this originates
23754 in the IA-64 processor-specific ABI, but has since been migrated
23755 to other processors as well.  It requires significant support from
23756 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
23757 system libraries (@file{libc.so} and @file{libpthread.so}), so it
23758 is not available everywhere.
23760 At the user level, the extension is visible with a new storage
23761 class keyword: @code{__thread}.  For example:
23763 @smallexample
23764 __thread int i;
23765 extern __thread struct state s;
23766 static __thread char *p;
23767 @end smallexample
23769 The @code{__thread} specifier may be used alone, with the @code{extern}
23770 or @code{static} specifiers, but with no other storage class specifier.
23771 When used with @code{extern} or @code{static}, @code{__thread} must appear
23772 immediately after the other storage class specifier.
23774 The @code{__thread} specifier may be applied to any global, file-scoped
23775 static, function-scoped static, or static data member of a class.  It may
23776 not be applied to block-scoped automatic or non-static data member.
23778 When the address-of operator is applied to a thread-local variable, it is
23779 evaluated at run time and returns the address of the current thread's
23780 instance of that variable.  An address so obtained may be used by any
23781 thread.  When a thread terminates, any pointers to thread-local variables
23782 in that thread become invalid.
23784 No static initialization may refer to the address of a thread-local variable.
23786 In C++, if an initializer is present for a thread-local variable, it must
23787 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
23788 standard.
23790 See @uref{https://www.akkadia.org/drepper/tls.pdf,
23791 ELF Handling For Thread-Local Storage} for a detailed explanation of
23792 the four thread-local storage addressing models, and how the runtime
23793 is expected to function.
23795 @menu
23796 * C99 Thread-Local Edits::
23797 * C++98 Thread-Local Edits::
23798 @end menu
23800 @node C99 Thread-Local Edits
23801 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
23803 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
23804 that document the exact semantics of the language extension.
23806 @itemize @bullet
23807 @item
23808 @cite{5.1.2  Execution environments}
23810 Add new text after paragraph 1
23812 @quotation
23813 Within either execution environment, a @dfn{thread} is a flow of
23814 control within a program.  It is implementation defined whether
23815 or not there may be more than one thread associated with a program.
23816 It is implementation defined how threads beyond the first are
23817 created, the name and type of the function called at thread
23818 startup, and how threads may be terminated.  However, objects
23819 with thread storage duration shall be initialized before thread
23820 startup.
23821 @end quotation
23823 @item
23824 @cite{6.2.4  Storage durations of objects}
23826 Add new text before paragraph 3
23828 @quotation
23829 An object whose identifier is declared with the storage-class
23830 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
23831 Its lifetime is the entire execution of the thread, and its
23832 stored value is initialized only once, prior to thread startup.
23833 @end quotation
23835 @item
23836 @cite{6.4.1  Keywords}
23838 Add @code{__thread}.
23840 @item
23841 @cite{6.7.1  Storage-class specifiers}
23843 Add @code{__thread} to the list of storage class specifiers in
23844 paragraph 1.
23846 Change paragraph 2 to
23848 @quotation
23849 With the exception of @code{__thread}, at most one storage-class
23850 specifier may be given [@dots{}].  The @code{__thread} specifier may
23851 be used alone, or immediately following @code{extern} or
23852 @code{static}.
23853 @end quotation
23855 Add new text after paragraph 6
23857 @quotation
23858 The declaration of an identifier for a variable that has
23859 block scope that specifies @code{__thread} shall also
23860 specify either @code{extern} or @code{static}.
23862 The @code{__thread} specifier shall be used only with
23863 variables.
23864 @end quotation
23865 @end itemize
23867 @node C++98 Thread-Local Edits
23868 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
23870 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
23871 that document the exact semantics of the language extension.
23873 @itemize @bullet
23874 @item
23875 @b{[intro.execution]}
23877 New text after paragraph 4
23879 @quotation
23880 A @dfn{thread} is a flow of control within the abstract machine.
23881 It is implementation defined whether or not there may be more than
23882 one thread.
23883 @end quotation
23885 New text after paragraph 7
23887 @quotation
23888 It is unspecified whether additional action must be taken to
23889 ensure when and whether side effects are visible to other threads.
23890 @end quotation
23892 @item
23893 @b{[lex.key]}
23895 Add @code{__thread}.
23897 @item
23898 @b{[basic.start.main]}
23900 Add after paragraph 5
23902 @quotation
23903 The thread that begins execution at the @code{main} function is called
23904 the @dfn{main thread}.  It is implementation defined how functions
23905 beginning threads other than the main thread are designated or typed.
23906 A function so designated, as well as the @code{main} function, is called
23907 a @dfn{thread startup function}.  It is implementation defined what
23908 happens if a thread startup function returns.  It is implementation
23909 defined what happens to other threads when any thread calls @code{exit}.
23910 @end quotation
23912 @item
23913 @b{[basic.start.init]}
23915 Add after paragraph 4
23917 @quotation
23918 The storage for an object of thread storage duration shall be
23919 statically initialized before the first statement of the thread startup
23920 function.  An object of thread storage duration shall not require
23921 dynamic initialization.
23922 @end quotation
23924 @item
23925 @b{[basic.start.term]}
23927 Add after paragraph 3
23929 @quotation
23930 The type of an object with thread storage duration shall not have a
23931 non-trivial destructor, nor shall it be an array type whose elements
23932 (directly or indirectly) have non-trivial destructors.
23933 @end quotation
23935 @item
23936 @b{[basic.stc]}
23938 Add ``thread storage duration'' to the list in paragraph 1.
23940 Change paragraph 2
23942 @quotation
23943 Thread, static, and automatic storage durations are associated with
23944 objects introduced by declarations [@dots{}].
23945 @end quotation
23947 Add @code{__thread} to the list of specifiers in paragraph 3.
23949 @item
23950 @b{[basic.stc.thread]}
23952 New section before @b{[basic.stc.static]}
23954 @quotation
23955 The keyword @code{__thread} applied to a non-local object gives the
23956 object thread storage duration.
23958 A local variable or class data member declared both @code{static}
23959 and @code{__thread} gives the variable or member thread storage
23960 duration.
23961 @end quotation
23963 @item
23964 @b{[basic.stc.static]}
23966 Change paragraph 1
23968 @quotation
23969 All objects that have neither thread storage duration, dynamic
23970 storage duration nor are local [@dots{}].
23971 @end quotation
23973 @item
23974 @b{[dcl.stc]}
23976 Add @code{__thread} to the list in paragraph 1.
23978 Change paragraph 1
23980 @quotation
23981 With the exception of @code{__thread}, at most one
23982 @var{storage-class-specifier} shall appear in a given
23983 @var{decl-specifier-seq}.  The @code{__thread} specifier may
23984 be used alone, or immediately following the @code{extern} or
23985 @code{static} specifiers.  [@dots{}]
23986 @end quotation
23988 Add after paragraph 5
23990 @quotation
23991 The @code{__thread} specifier can be applied only to the names of objects
23992 and to anonymous unions.
23993 @end quotation
23995 @item
23996 @b{[class.mem]}
23998 Add after paragraph 6
24000 @quotation
24001 Non-@code{static} members shall not be @code{__thread}.
24002 @end quotation
24003 @end itemize
24005 @node Binary constants
24006 @section Binary Constants using the @samp{0b} Prefix
24007 @cindex Binary constants using the @samp{0b} prefix
24009 Integer constants can be written as binary constants, consisting of a
24010 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
24011 @samp{0B}.  This is particularly useful in environments that operate a
24012 lot on the bit level (like microcontrollers).
24014 The following statements are identical:
24016 @smallexample
24017 i =       42;
24018 i =     0x2a;
24019 i =      052;
24020 i = 0b101010;
24021 @end smallexample
24023 The type of these constants follows the same rules as for octal or
24024 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
24025 can be applied.
24027 @node C++ Extensions
24028 @chapter Extensions to the C++ Language
24029 @cindex extensions, C++ language
24030 @cindex C++ language extensions
24032 The GNU compiler provides these extensions to the C++ language (and you
24033 can also use most of the C language extensions in your C++ programs).  If you
24034 want to write code that checks whether these features are available, you can
24035 test for the GNU compiler the same way as for C programs: check for a
24036 predefined macro @code{__GNUC__}.  You can also use @code{__GNUG__} to
24037 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
24038 Predefined Macros,cpp,The GNU C Preprocessor}).
24040 @menu
24041 * C++ Volatiles::       What constitutes an access to a volatile object.
24042 * Restricted Pointers:: C99 restricted pointers and references.
24043 * Vague Linkage::       Where G++ puts inlines, vtables and such.
24044 * C++ Interface::       You can use a single C++ header file for both
24045                         declarations and definitions.
24046 * Template Instantiation:: Methods for ensuring that exactly one copy of
24047                         each needed template instantiation is emitted.
24048 * Bound member functions:: You can extract a function pointer to the
24049                         method denoted by a @samp{->*} or @samp{.*} expression.
24050 * C++ Attributes::      Variable, function, and type attributes for C++ only.
24051 * Function Multiversioning::   Declaring multiple function versions.
24052 * Type Traits::         Compiler support for type traits.
24053 * C++ Concepts::        Improved support for generic programming.
24054 * Deprecated Features:: Things will disappear from G++.
24055 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
24056 @end menu
24058 @node C++ Volatiles
24059 @section When is a Volatile C++ Object Accessed?
24060 @cindex accessing volatiles
24061 @cindex volatile read
24062 @cindex volatile write
24063 @cindex volatile access
24065 The C++ standard differs from the C standard in its treatment of
24066 volatile objects.  It fails to specify what constitutes a volatile
24067 access, except to say that C++ should behave in a similar manner to C
24068 with respect to volatiles, where possible.  However, the different
24069 lvalueness of expressions between C and C++ complicate the behavior.
24070 G++ behaves the same as GCC for volatile access, @xref{C
24071 Extensions,,Volatiles}, for a description of GCC's behavior.
24073 The C and C++ language specifications differ when an object is
24074 accessed in a void context:
24076 @smallexample
24077 volatile int *src = @var{somevalue};
24078 *src;
24079 @end smallexample
24081 The C++ standard specifies that such expressions do not undergo lvalue
24082 to rvalue conversion, and that the type of the dereferenced object may
24083 be incomplete.  The C++ standard does not specify explicitly that it
24084 is lvalue to rvalue conversion that is responsible for causing an
24085 access.  There is reason to believe that it is, because otherwise
24086 certain simple expressions become undefined.  However, because it
24087 would surprise most programmers, G++ treats dereferencing a pointer to
24088 volatile object of complete type as GCC would do for an equivalent
24089 type in C@.  When the object has incomplete type, G++ issues a
24090 warning; if you wish to force an error, you must force a conversion to
24091 rvalue with, for instance, a static cast.
24093 When using a reference to volatile, G++ does not treat equivalent
24094 expressions as accesses to volatiles, but instead issues a warning that
24095 no volatile is accessed.  The rationale for this is that otherwise it
24096 becomes difficult to determine where volatile access occur, and not
24097 possible to ignore the return value from functions returning volatile
24098 references.  Again, if you wish to force a read, cast the reference to
24099 an rvalue.
24101 G++ implements the same behavior as GCC does when assigning to a
24102 volatile object---there is no reread of the assigned-to object, the
24103 assigned rvalue is reused.  Note that in C++ assignment expressions
24104 are lvalues, and if used as an lvalue, the volatile object is
24105 referred to.  For instance, @var{vref} refers to @var{vobj}, as
24106 expected, in the following example:
24108 @smallexample
24109 volatile int vobj;
24110 volatile int &vref = vobj = @var{something};
24111 @end smallexample
24113 @node Restricted Pointers
24114 @section Restricting Pointer Aliasing
24115 @cindex restricted pointers
24116 @cindex restricted references
24117 @cindex restricted this pointer
24119 As with the C front end, G++ understands the C99 feature of restricted pointers,
24120 specified with the @code{__restrict__}, or @code{__restrict} type
24121 qualifier.  Because you cannot compile C++ by specifying the @option{-std=c99}
24122 language flag, @code{restrict} is not a keyword in C++.
24124 In addition to allowing restricted pointers, you can specify restricted
24125 references, which indicate that the reference is not aliased in the local
24126 context.
24128 @smallexample
24129 void fn (int *__restrict__ rptr, int &__restrict__ rref)
24131   /* @r{@dots{}} */
24133 @end smallexample
24135 @noindent
24136 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
24137 @var{rref} refers to a (different) unaliased integer.
24139 You may also specify whether a member function's @var{this} pointer is
24140 unaliased by using @code{__restrict__} as a member function qualifier.
24142 @smallexample
24143 void T::fn () __restrict__
24145   /* @r{@dots{}} */
24147 @end smallexample
24149 @noindent
24150 Within the body of @code{T::fn}, @var{this} has the effective
24151 definition @code{T *__restrict__ const this}.  Notice that the
24152 interpretation of a @code{__restrict__} member function qualifier is
24153 different to that of @code{const} or @code{volatile} qualifier, in that it
24154 is applied to the pointer rather than the object.  This is consistent with
24155 other compilers that implement restricted pointers.
24157 As with all outermost parameter qualifiers, @code{__restrict__} is
24158 ignored in function definition matching.  This means you only need to
24159 specify @code{__restrict__} in a function definition, rather than
24160 in a function prototype as well.
24162 @node Vague Linkage
24163 @section Vague Linkage
24164 @cindex vague linkage
24166 There are several constructs in C++ that require space in the object
24167 file but are not clearly tied to a single translation unit.  We say that
24168 these constructs have ``vague linkage''.  Typically such constructs are
24169 emitted wherever they are needed, though sometimes we can be more
24170 clever.
24172 @table @asis
24173 @item Inline Functions
24174 Inline functions are typically defined in a header file which can be
24175 included in many different compilations.  Hopefully they can usually be
24176 inlined, but sometimes an out-of-line copy is necessary, if the address
24177 of the function is taken or if inlining fails.  In general, we emit an
24178 out-of-line copy in all translation units where one is needed.  As an
24179 exception, we only emit inline virtual functions with the vtable, since
24180 it always requires a copy.
24182 Local static variables and string constants used in an inline function
24183 are also considered to have vague linkage, since they must be shared
24184 between all inlined and out-of-line instances of the function.
24186 @item VTables
24187 @cindex vtable
24188 C++ virtual functions are implemented in most compilers using a lookup
24189 table, known as a vtable.  The vtable contains pointers to the virtual
24190 functions provided by a class, and each object of the class contains a
24191 pointer to its vtable (or vtables, in some multiple-inheritance
24192 situations).  If the class declares any non-inline, non-pure virtual
24193 functions, the first one is chosen as the ``key method'' for the class,
24194 and the vtable is only emitted in the translation unit where the key
24195 method is defined.
24197 @emph{Note:} If the chosen key method is later defined as inline, the
24198 vtable is still emitted in every translation unit that defines it.
24199 Make sure that any inline virtuals are declared inline in the class
24200 body, even if they are not defined there.
24202 @item @code{type_info} objects
24203 @cindex @code{type_info}
24204 @cindex RTTI
24205 C++ requires information about types to be written out in order to
24206 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
24207 For polymorphic classes (classes with virtual functions), the @samp{type_info}
24208 object is written out along with the vtable so that @samp{dynamic_cast}
24209 can determine the dynamic type of a class object at run time.  For all
24210 other types, we write out the @samp{type_info} object when it is used: when
24211 applying @samp{typeid} to an expression, throwing an object, or
24212 referring to a type in a catch clause or exception specification.
24214 @item Template Instantiations
24215 Most everything in this section also applies to template instantiations,
24216 but there are other options as well.
24217 @xref{Template Instantiation,,Where's the Template?}.
24219 @end table
24221 When used with GNU ld version 2.8 or later on an ELF system such as
24222 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
24223 these constructs will be discarded at link time.  This is known as
24224 COMDAT support.
24226 On targets that don't support COMDAT, but do support weak symbols, GCC
24227 uses them.  This way one copy overrides all the others, but
24228 the unused copies still take up space in the executable.
24230 For targets that do not support either COMDAT or weak symbols,
24231 most entities with vague linkage are emitted as local symbols to
24232 avoid duplicate definition errors from the linker.  This does not happen
24233 for local statics in inlines, however, as having multiple copies
24234 almost certainly breaks things.
24236 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
24237 another way to control placement of these constructs.
24239 @node C++ Interface
24240 @section C++ Interface and Implementation Pragmas
24242 @cindex interface and implementation headers, C++
24243 @cindex C++ interface and implementation headers
24244 @cindex pragmas, interface and implementation
24246 @code{#pragma interface} and @code{#pragma implementation} provide the
24247 user with a way of explicitly directing the compiler to emit entities
24248 with vague linkage (and debugging information) in a particular
24249 translation unit.
24251 @emph{Note:} These @code{#pragma}s have been superceded as of GCC 2.7.2
24252 by COMDAT support and the ``key method'' heuristic
24253 mentioned in @ref{Vague Linkage}.  Using them can actually cause your
24254 program to grow due to unnecessary out-of-line copies of inline
24255 functions.
24257 @table @code
24258 @item #pragma interface
24259 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
24260 @kindex #pragma interface
24261 Use this directive in @emph{header files} that define object classes, to save
24262 space in most of the object files that use those classes.  Normally,
24263 local copies of certain information (backup copies of inline member
24264 functions, debugging information, and the internal tables that implement
24265 virtual functions) must be kept in each object file that includes class
24266 definitions.  You can use this pragma to avoid such duplication.  When a
24267 header file containing @samp{#pragma interface} is included in a
24268 compilation, this auxiliary information is not generated (unless
24269 the main input source file itself uses @samp{#pragma implementation}).
24270 Instead, the object files contain references to be resolved at link
24271 time.
24273 The second form of this directive is useful for the case where you have
24274 multiple headers with the same name in different directories.  If you
24275 use this form, you must specify the same string to @samp{#pragma
24276 implementation}.
24278 @item #pragma implementation
24279 @itemx #pragma implementation "@var{objects}.h"
24280 @kindex #pragma implementation
24281 Use this pragma in a @emph{main input file}, when you want full output from
24282 included header files to be generated (and made globally visible).  The
24283 included header file, in turn, should use @samp{#pragma interface}.
24284 Backup copies of inline member functions, debugging information, and the
24285 internal tables used to implement virtual functions are all generated in
24286 implementation files.
24288 @cindex implied @code{#pragma implementation}
24289 @cindex @code{#pragma implementation}, implied
24290 @cindex naming convention, implementation headers
24291 If you use @samp{#pragma implementation} with no argument, it applies to
24292 an include file with the same basename@footnote{A file's @dfn{basename}
24293 is the name stripped of all leading path information and of trailing
24294 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
24295 file.  For example, in @file{allclass.cc}, giving just
24296 @samp{#pragma implementation}
24297 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
24299 Use the string argument if you want a single implementation file to
24300 include code from multiple header files.  (You must also use
24301 @samp{#include} to include the header file; @samp{#pragma
24302 implementation} only specifies how to use the file---it doesn't actually
24303 include it.)
24305 There is no way to split up the contents of a single header file into
24306 multiple implementation files.
24307 @end table
24309 @cindex inlining and C++ pragmas
24310 @cindex C++ pragmas, effect on inlining
24311 @cindex pragmas in C++, effect on inlining
24312 @samp{#pragma implementation} and @samp{#pragma interface} also have an
24313 effect on function inlining.
24315 If you define a class in a header file marked with @samp{#pragma
24316 interface}, the effect on an inline function defined in that class is
24317 similar to an explicit @code{extern} declaration---the compiler emits
24318 no code at all to define an independent version of the function.  Its
24319 definition is used only for inlining with its callers.
24321 @opindex fno-implement-inlines
24322 Conversely, when you include the same header file in a main source file
24323 that declares it as @samp{#pragma implementation}, the compiler emits
24324 code for the function itself; this defines a version of the function
24325 that can be found via pointers (or by callers compiled without
24326 inlining).  If all calls to the function can be inlined, you can avoid
24327 emitting the function by compiling with @option{-fno-implement-inlines}.
24328 If any calls are not inlined, you will get linker errors.
24330 @node Template Instantiation
24331 @section Where's the Template?
24332 @cindex template instantiation
24334 C++ templates were the first language feature to require more
24335 intelligence from the environment than was traditionally found on a UNIX
24336 system.  Somehow the compiler and linker have to make sure that each
24337 template instance occurs exactly once in the executable if it is needed,
24338 and not at all otherwise.  There are two basic approaches to this
24339 problem, which are referred to as the Borland model and the Cfront model.
24341 @table @asis
24342 @item Borland model
24343 Borland C++ solved the template instantiation problem by adding the code
24344 equivalent of common blocks to their linker; the compiler emits template
24345 instances in each translation unit that uses them, and the linker
24346 collapses them together.  The advantage of this model is that the linker
24347 only has to consider the object files themselves; there is no external
24348 complexity to worry about.  The disadvantage is that compilation time
24349 is increased because the template code is being compiled repeatedly.
24350 Code written for this model tends to include definitions of all
24351 templates in the header file, since they must be seen to be
24352 instantiated.
24354 @item Cfront model
24355 The AT&T C++ translator, Cfront, solved the template instantiation
24356 problem by creating the notion of a template repository, an
24357 automatically maintained place where template instances are stored.  A
24358 more modern version of the repository works as follows: As individual
24359 object files are built, the compiler places any template definitions and
24360 instantiations encountered in the repository.  At link time, the link
24361 wrapper adds in the objects in the repository and compiles any needed
24362 instances that were not previously emitted.  The advantages of this
24363 model are more optimal compilation speed and the ability to use the
24364 system linker; to implement the Borland model a compiler vendor also
24365 needs to replace the linker.  The disadvantages are vastly increased
24366 complexity, and thus potential for error; for some code this can be
24367 just as transparent, but in practice it can been very difficult to build
24368 multiple programs in one directory and one program in multiple
24369 directories.  Code written for this model tends to separate definitions
24370 of non-inline member templates into a separate file, which should be
24371 compiled separately.
24372 @end table
24374 G++ implements the Borland model on targets where the linker supports it,
24375 including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
24376 Otherwise G++ implements neither automatic model.
24378 You have the following options for dealing with template instantiations:
24380 @enumerate
24381 @item
24382 Do nothing.  Code written for the Borland model works fine, but
24383 each translation unit contains instances of each of the templates it
24384 uses.  The duplicate instances will be discarded by the linker, but in
24385 a large program, this can lead to an unacceptable amount of code
24386 duplication in object files or shared libraries.
24388 Duplicate instances of a template can be avoided by defining an explicit
24389 instantiation in one object file, and preventing the compiler from doing
24390 implicit instantiations in any other object files by using an explicit
24391 instantiation declaration, using the @code{extern template} syntax:
24393 @smallexample
24394 extern template int max (int, int);
24395 @end smallexample
24397 This syntax is defined in the C++ 2011 standard, but has been supported by
24398 G++ and other compilers since well before 2011.
24400 Explicit instantiations can be used for the largest or most frequently
24401 duplicated instances, without having to know exactly which other instances
24402 are used in the rest of the program.  You can scatter the explicit
24403 instantiations throughout your program, perhaps putting them in the
24404 translation units where the instances are used or the translation units
24405 that define the templates themselves; you can put all of the explicit
24406 instantiations you need into one big file; or you can create small files
24407 like
24409 @smallexample
24410 #include "Foo.h"
24411 #include "Foo.cc"
24413 template class Foo<int>;
24414 template ostream& operator <<
24415                 (ostream&, const Foo<int>&);
24416 @end smallexample
24418 @noindent
24419 for each of the instances you need, and create a template instantiation
24420 library from those.
24422 This is the simplest option, but also offers flexibility and
24423 fine-grained control when necessary. It is also the most portable
24424 alternative and programs using this approach will work with most modern
24425 compilers.
24427 @item
24428 @opindex frepo
24429 Compile your template-using code with @option{-frepo}.  The compiler
24430 generates files with the extension @samp{.rpo} listing all of the
24431 template instantiations used in the corresponding object files that
24432 could be instantiated there; the link wrapper, @samp{collect2},
24433 then updates the @samp{.rpo} files to tell the compiler where to place
24434 those instantiations and rebuild any affected object files.  The
24435 link-time overhead is negligible after the first pass, as the compiler
24436 continues to place the instantiations in the same files.
24438 This can be a suitable option for application code written for the Borland
24439 model, as it usually just works.  Code written for the Cfront model 
24440 needs to be modified so that the template definitions are available at
24441 one or more points of instantiation; usually this is as simple as adding
24442 @code{#include <tmethods.cc>} to the end of each template header.
24444 For library code, if you want the library to provide all of the template
24445 instantiations it needs, just try to link all of its object files
24446 together; the link will fail, but cause the instantiations to be
24447 generated as a side effect.  Be warned, however, that this may cause
24448 conflicts if multiple libraries try to provide the same instantiations.
24449 For greater control, use explicit instantiation as described in the next
24450 option.
24452 @item
24453 @opindex fno-implicit-templates
24454 Compile your code with @option{-fno-implicit-templates} to disable the
24455 implicit generation of template instances, and explicitly instantiate
24456 all the ones you use.  This approach requires more knowledge of exactly
24457 which instances you need than do the others, but it's less
24458 mysterious and allows greater control if you want to ensure that only
24459 the intended instances are used.
24461 If you are using Cfront-model code, you can probably get away with not
24462 using @option{-fno-implicit-templates} when compiling files that don't
24463 @samp{#include} the member template definitions.
24465 If you use one big file to do the instantiations, you may want to
24466 compile it without @option{-fno-implicit-templates} so you get all of the
24467 instances required by your explicit instantiations (but not by any
24468 other files) without having to specify them as well.
24470 In addition to forward declaration of explicit instantiations
24471 (with @code{extern}), G++ has extended the template instantiation
24472 syntax to support instantiation of the compiler support data for a
24473 template class (i.e.@: the vtable) without instantiating any of its
24474 members (with @code{inline}), and instantiation of only the static data
24475 members of a template class, without the support data or member
24476 functions (with @code{static}):
24478 @smallexample
24479 inline template class Foo<int>;
24480 static template class Foo<int>;
24481 @end smallexample
24482 @end enumerate
24484 @node Bound member functions
24485 @section Extracting the Function Pointer from a Bound Pointer to Member Function
24486 @cindex pmf
24487 @cindex pointer to member function
24488 @cindex bound pointer to member function
24490 In C++, pointer to member functions (PMFs) are implemented using a wide
24491 pointer of sorts to handle all the possible call mechanisms; the PMF
24492 needs to store information about how to adjust the @samp{this} pointer,
24493 and if the function pointed to is virtual, where to find the vtable, and
24494 where in the vtable to look for the member function.  If you are using
24495 PMFs in an inner loop, you should really reconsider that decision.  If
24496 that is not an option, you can extract the pointer to the function that
24497 would be called for a given object/PMF pair and call it directly inside
24498 the inner loop, to save a bit of time.
24500 Note that you still pay the penalty for the call through a
24501 function pointer; on most modern architectures, such a call defeats the
24502 branch prediction features of the CPU@.  This is also true of normal
24503 virtual function calls.
24505 The syntax for this extension is
24507 @smallexample
24508 extern A a;
24509 extern int (A::*fp)();
24510 typedef int (*fptr)(A *);
24512 fptr p = (fptr)(a.*fp);
24513 @end smallexample
24515 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
24516 no object is needed to obtain the address of the function.  They can be
24517 converted to function pointers directly:
24519 @smallexample
24520 fptr p1 = (fptr)(&A::foo);
24521 @end smallexample
24523 @opindex Wno-pmf-conversions
24524 You must specify @option{-Wno-pmf-conversions} to use this extension.
24526 @node C++ Attributes
24527 @section C++-Specific Variable, Function, and Type Attributes
24529 Some attributes only make sense for C++ programs.
24531 @table @code
24532 @item abi_tag ("@var{tag}", ...)
24533 @cindex @code{abi_tag} function attribute
24534 @cindex @code{abi_tag} variable attribute
24535 @cindex @code{abi_tag} type attribute
24536 The @code{abi_tag} attribute can be applied to a function, variable, or class
24537 declaration.  It modifies the mangled name of the entity to
24538 incorporate the tag name, in order to distinguish the function or
24539 class from an earlier version with a different ABI; perhaps the class
24540 has changed size, or the function has a different return type that is
24541 not encoded in the mangled name.
24543 The attribute can also be applied to an inline namespace, but does not
24544 affect the mangled name of the namespace; in this case it is only used
24545 for @option{-Wabi-tag} warnings and automatic tagging of functions and
24546 variables.  Tagging inline namespaces is generally preferable to
24547 tagging individual declarations, but the latter is sometimes
24548 necessary, such as when only certain members of a class need to be
24549 tagged.
24551 The argument can be a list of strings of arbitrary length.  The
24552 strings are sorted on output, so the order of the list is
24553 unimportant.
24555 A redeclaration of an entity must not add new ABI tags,
24556 since doing so would change the mangled name.
24558 The ABI tags apply to a name, so all instantiations and
24559 specializations of a template have the same tags.  The attribute will
24560 be ignored if applied to an explicit specialization or instantiation.
24562 The @option{-Wabi-tag} flag enables a warning about a class which does
24563 not have all the ABI tags used by its subobjects and virtual functions; for users with code
24564 that needs to coexist with an earlier ABI, using this option can help
24565 to find all affected types that need to be tagged.
24567 When a type involving an ABI tag is used as the type of a variable or
24568 return type of a function where that tag is not already present in the
24569 signature of the function, the tag is automatically applied to the
24570 variable or function.  @option{-Wabi-tag} also warns about this
24571 situation; this warning can be avoided by explicitly tagging the
24572 variable or function or moving it into a tagged inline namespace.
24574 @item init_priority (@var{priority})
24575 @cindex @code{init_priority} variable attribute
24577 In Standard C++, objects defined at namespace scope are guaranteed to be
24578 initialized in an order in strict accordance with that of their definitions
24579 @emph{in a given translation unit}.  No guarantee is made for initializations
24580 across translation units.  However, GNU C++ allows users to control the
24581 order of initialization of objects defined at namespace scope with the
24582 @code{init_priority} attribute by specifying a relative @var{priority},
24583 a constant integral expression currently bounded between 101 and 65535
24584 inclusive.  Lower numbers indicate a higher priority.
24586 In the following example, @code{A} would normally be created before
24587 @code{B}, but the @code{init_priority} attribute reverses that order:
24589 @smallexample
24590 Some_Class  A  __attribute__ ((init_priority (2000)));
24591 Some_Class  B  __attribute__ ((init_priority (543)));
24592 @end smallexample
24594 @noindent
24595 Note that the particular values of @var{priority} do not matter; only their
24596 relative ordering.
24598 @item warn_unused
24599 @cindex @code{warn_unused} type attribute
24601 For C++ types with non-trivial constructors and/or destructors it is
24602 impossible for the compiler to determine whether a variable of this
24603 type is truly unused if it is not referenced. This type attribute
24604 informs the compiler that variables of this type should be warned
24605 about if they appear to be unused, just like variables of fundamental
24606 types.
24608 This attribute is appropriate for types which just represent a value,
24609 such as @code{std::string}; it is not appropriate for types which
24610 control a resource, such as @code{std::lock_guard}.
24612 This attribute is also accepted in C, but it is unnecessary because C
24613 does not have constructors or destructors.
24615 @end table
24617 @node Function Multiversioning
24618 @section Function Multiversioning
24619 @cindex function versions
24621 With the GNU C++ front end, for x86 targets, you may specify multiple
24622 versions of a function, where each function is specialized for a
24623 specific target feature.  At runtime, the appropriate version of the
24624 function is automatically executed depending on the characteristics of
24625 the execution platform.  Here is an example.
24627 @smallexample
24628 __attribute__ ((target ("default")))
24629 int foo ()
24631   // The default version of foo.
24632   return 0;
24635 __attribute__ ((target ("sse4.2")))
24636 int foo ()
24638   // foo version for SSE4.2
24639   return 1;
24642 __attribute__ ((target ("arch=atom")))
24643 int foo ()
24645   // foo version for the Intel ATOM processor
24646   return 2;
24649 __attribute__ ((target ("arch=amdfam10")))
24650 int foo ()
24652   // foo version for the AMD Family 0x10 processors.
24653   return 3;
24656 int main ()
24658   int (*p)() = &foo;
24659   assert ((*p) () == foo ());
24660   return 0;
24662 @end smallexample
24664 In the above example, four versions of function foo are created. The
24665 first version of foo with the target attribute "default" is the default
24666 version.  This version gets executed when no other target specific
24667 version qualifies for execution on a particular platform. A new version
24668 of foo is created by using the same function signature but with a
24669 different target string.  Function foo is called or a pointer to it is
24670 taken just like a regular function.  GCC takes care of doing the
24671 dispatching to call the right version at runtime.  Refer to the
24672 @uref{http://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
24673 Function Multiversioning} for more details.
24675 @node Type Traits
24676 @section Type Traits
24678 The C++ front end implements syntactic extensions that allow
24679 compile-time determination of 
24680 various characteristics of a type (or of a
24681 pair of types).
24683 @table @code
24684 @item __has_nothrow_assign (type)
24685 If @code{type} is @code{const}-qualified or is a reference type then
24686 the trait is @code{false}.  Otherwise if @code{__has_trivial_assign (type)}
24687 is @code{true} then the trait is @code{true}, else if @code{type} is
24688 a cv-qualified class or union type with copy assignment operators that are
24689 known not to throw an exception then the trait is @code{true}, else it is
24690 @code{false}.
24691 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24692 @code{void}, or an array of unknown bound.
24694 @item __has_nothrow_copy (type)
24695 If @code{__has_trivial_copy (type)} is @code{true} then the trait is
24696 @code{true}, else if @code{type} is a cv-qualified class or union type
24697 with copy constructors that are known not to throw an exception then
24698 the trait is @code{true}, else it is @code{false}.
24699 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24700 @code{void}, or an array of unknown bound.
24702 @item __has_nothrow_constructor (type)
24703 If @code{__has_trivial_constructor (type)} is @code{true} then the trait
24704 is @code{true}, else if @code{type} is a cv class or union type (or array
24705 thereof) with a default constructor that is known not to throw an
24706 exception then the trait is @code{true}, else it is @code{false}.
24707 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24708 @code{void}, or an array of unknown bound.
24710 @item __has_trivial_assign (type)
24711 If @code{type} is @code{const}- qualified or is a reference type then
24712 the trait is @code{false}.  Otherwise if @code{__is_pod (type)} is
24713 @code{true} then the trait is @code{true}, else if @code{type} is
24714 a cv-qualified class or union type with a trivial copy assignment
24715 ([class.copy]) then the trait is @code{true}, else it is @code{false}.
24716 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24717 @code{void}, or an array of unknown bound.
24719 @item __has_trivial_copy (type)
24720 If @code{__is_pod (type)} is @code{true} or @code{type} is a reference
24721 type then the trait is @code{true}, else if @code{type} is a cv class
24722 or union type with a trivial copy constructor ([class.copy]) then the trait
24723 is @code{true}, else it is @code{false}.  Requires: @code{type} shall be
24724 a complete type, (possibly cv-qualified) @code{void}, or an array of unknown
24725 bound.
24727 @item __has_trivial_constructor (type)
24728 If @code{__is_pod (type)} is @code{true} then the trait is @code{true},
24729 else if @code{type} is a cv-qualified class or union type (or array thereof)
24730 with a trivial default constructor ([class.ctor]) then the trait is @code{true},
24731 else it is @code{false}.
24732 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24733 @code{void}, or an array of unknown bound.
24735 @item __has_trivial_destructor (type)
24736 If @code{__is_pod (type)} is @code{true} or @code{type} is a reference type
24737 then the trait is @code{true}, else if @code{type} is a cv class or union
24738 type (or array thereof) with a trivial destructor ([class.dtor]) then
24739 the trait is @code{true}, else it is @code{false}.
24740 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24741 @code{void}, or an array of unknown bound.
24743 @item __has_virtual_destructor (type)
24744 If @code{type} is a class type with a virtual destructor
24745 ([class.dtor]) then the trait is @code{true}, else it is @code{false}.
24746 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24747 @code{void}, or an array of unknown bound.
24749 @item __is_abstract (type)
24750 If @code{type} is an abstract class ([class.abstract]) then the trait
24751 is @code{true}, else it is @code{false}.
24752 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24753 @code{void}, or an array of unknown bound.
24755 @item __is_base_of (base_type, derived_type)
24756 If @code{base_type} is a base class of @code{derived_type}
24757 ([class.derived]) then the trait is @code{true}, otherwise it is @code{false}.
24758 Top-level cv-qualifications of @code{base_type} and
24759 @code{derived_type} are ignored.  For the purposes of this trait, a
24760 class type is considered is own base.
24761 Requires: if @code{__is_class (base_type)} and @code{__is_class (derived_type)}
24762 are @code{true} and @code{base_type} and @code{derived_type} are not the same
24763 type (disregarding cv-qualifiers), @code{derived_type} shall be a complete
24764 type.  A diagnostic is produced if this requirement is not met.
24766 @item __is_class (type)
24767 If @code{type} is a cv-qualified class type, and not a union type
24768 ([basic.compound]) the trait is @code{true}, else it is @code{false}.
24770 @item __is_empty (type)
24771 If @code{__is_class (type)} is @code{false} then the trait is @code{false}.
24772 Otherwise @code{type} is considered empty if and only if: @code{type}
24773 has no non-static data members, or all non-static data members, if
24774 any, are bit-fields of length 0, and @code{type} has no virtual
24775 members, and @code{type} has no virtual base classes, and @code{type}
24776 has no base classes @code{base_type} for which
24777 @code{__is_empty (base_type)} is @code{false}.
24778 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24779 @code{void}, or an array of unknown bound.
24781 @item __is_enum (type)
24782 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
24783 @code{true}, else it is @code{false}.
24785 @item __is_literal_type (type)
24786 If @code{type} is a literal type ([basic.types]) the trait is
24787 @code{true}, else it is @code{false}.
24788 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24789 @code{void}, or an array of unknown bound.
24791 @item __is_pod (type)
24792 If @code{type} is a cv POD type ([basic.types]) then the trait is @code{true},
24793 else it is @code{false}.
24794 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24795 @code{void}, or an array of unknown bound.
24797 @item __is_polymorphic (type)
24798 If @code{type} is a polymorphic class ([class.virtual]) then the trait
24799 is @code{true}, else it is @code{false}.
24800 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24801 @code{void}, or an array of unknown bound.
24803 @item __is_standard_layout (type)
24804 If @code{type} is a standard-layout type ([basic.types]) the trait is
24805 @code{true}, else it is @code{false}.
24806 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24807 @code{void}, or an array of unknown bound.
24809 @item __is_trivial (type)
24810 If @code{type} is a trivial type ([basic.types]) the trait is
24811 @code{true}, else it is @code{false}.
24812 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
24813 @code{void}, or an array of unknown bound.
24815 @item __is_union (type)
24816 If @code{type} is a cv union type ([basic.compound]) the trait is
24817 @code{true}, else it is @code{false}.
24819 @item __underlying_type (type)
24820 The underlying type of @code{type}.
24821 Requires: @code{type} shall be an enumeration type ([dcl.enum]).
24823 @item __integer_pack (length)
24824 When used as the pattern of a pack expansion within a template
24825 definition, expands to a template argument pack containing integers
24826 from @code{0} to @code{length-1}.  This is provided for efficient
24827 implementation of @code{std::make_integer_sequence}.
24829 @end table
24832 @node C++ Concepts
24833 @section C++ Concepts
24835 C++ concepts provide much-improved support for generic programming. In
24836 particular, they allow the specification of constraints on template arguments.
24837 The constraints are used to extend the usual overloading and partial
24838 specialization capabilities of the language, allowing generic data structures
24839 and algorithms to be ``refined'' based on their properties rather than their
24840 type names.
24842 The following keywords are reserved for concepts.
24844 @table @code
24845 @item assumes
24846 States an expression as an assumption, and if possible, verifies that the
24847 assumption is valid. For example, @code{assume(n > 0)}.
24849 @item axiom
24850 Introduces an axiom definition. Axioms introduce requirements on values.
24852 @item forall
24853 Introduces a universally quantified object in an axiom. For example,
24854 @code{forall (int n) n + 0 == n}).
24856 @item concept
24857 Introduces a concept definition. Concepts are sets of syntactic and semantic
24858 requirements on types and their values.
24860 @item requires
24861 Introduces constraints on template arguments or requirements for a member
24862 function of a class template.
24864 @end table
24866 The front end also exposes a number of internal mechanism that can be used
24867 to simplify the writing of type traits. Note that some of these traits are
24868 likely to be removed in the future.
24870 @table @code
24871 @item __is_same (type1, type2)
24872 A binary type trait: @code{true} whenever the type arguments are the same.
24874 @end table
24877 @node Deprecated Features
24878 @section Deprecated Features
24880 In the past, the GNU C++ compiler was extended to experiment with new
24881 features, at a time when the C++ language was still evolving.  Now that
24882 the C++ standard is complete, some of those features are superseded by
24883 superior alternatives.  Using the old features might cause a warning in
24884 some cases that the feature will be dropped in the future.  In other
24885 cases, the feature might be gone already.
24887 G++ allows a virtual function returning @samp{void *} to be overridden
24888 by one returning a different pointer type.  This extension to the
24889 covariant return type rules is now deprecated and will be removed from a
24890 future version.
24892 The use of default arguments in function pointers, function typedefs
24893 and other places where they are not permitted by the standard is
24894 deprecated and will be removed from a future version of G++.
24896 G++ allows floating-point literals to appear in integral constant expressions,
24897 e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
24898 This extension is deprecated and will be removed from a future version.
24900 G++ allows static data members of const floating-point type to be declared
24901 with an initializer in a class definition. The standard only allows
24902 initializers for static members of const integral types and const
24903 enumeration types so this extension has been deprecated and will be removed
24904 from a future version.
24906 G++ allows attributes to follow a parenthesized direct initializer,
24907 e.g.@: @samp{ int f (0) __attribute__ ((something)); } This extension
24908 has been ignored since G++ 3.3 and is deprecated.
24910 G++ allows anonymous structs and unions to have members that are not
24911 public non-static data members (i.e.@: fields).  These extensions are
24912 deprecated.
24914 @node Backwards Compatibility
24915 @section Backwards Compatibility
24916 @cindex Backwards Compatibility
24917 @cindex ARM [Annotated C++ Reference Manual]
24919 Now that there is a definitive ISO standard C++, G++ has a specification
24920 to adhere to.  The C++ language evolved over time, and features that
24921 used to be acceptable in previous drafts of the standard, such as the ARM
24922 [Annotated C++ Reference Manual], are no longer accepted.  In order to allow
24923 compilation of C++ written to such drafts, G++ contains some backwards
24924 compatibilities.  @emph{All such backwards compatibility features are
24925 liable to disappear in future versions of G++.} They should be considered
24926 deprecated.   @xref{Deprecated Features}.
24928 @table @code
24930 @item Implicit C language
24931 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
24932 scope to set the language.  On such systems, all system header files are
24933 implicitly scoped inside a C language scope.  Such headers must
24934 correctly prototype function argument types, there is no leeway for
24935 @code{()} to indicate an unspecified set of arguments.
24937 @end table
24939 @c  LocalWords:  emph deftypefn builtin ARCv2EM SIMD builtins msimd
24940 @c  LocalWords:  typedef v4si v8hi DMA dma vdiwr vdowr