Increase timeout factor for hppa*-*-* in gcc.dg/long_branch.c
[official-gcc.git] / gcc / testsuite / gfortran.dg / norm2_1.f90
blobdb8cb52f4d5e5a1fac6281cbe5653047f01857c4
1 ! { dg-do run }
3 ! PR fortran/33197
5 ! Check implementation of L2 norm (Euclidean vector norm)
7 implicit none
9 real :: a(3) = [real :: 1, 2, huge(3.0)]
10 real :: b(3) = [real :: 1, 2, 3]
11 real :: c(4) = [real :: 1, 2, 3, -1]
12 real :: e(0) = [real :: ]
13 real :: f(4) = [real :: 0, 0, 3, 0 ]
15 real :: d(4,1) = RESHAPE ([real :: 1, 2, 3, -1], [4,1])
16 real :: g(4,1) = RESHAPE ([real :: 0, 0, 4, -1], [4,1])
18 ! Check compile-time version
20 if (abs (NORM2 ([real :: 1, 2, huge(3.0)]) - huge(3.0)) &
21 > epsilon(0.0)*huge(3.0)) STOP 1
23 if (abs (SNORM2([real :: 1, 2, huge(3.0)],3) - huge(3.0)) &
24 > epsilon(0.0)*huge(3.0)) STOP 2
26 if (abs (SNORM2([real :: 1, 2, 3],3) - NORM2([real :: 1, 2, 3])) &
27 > epsilon(0.0)*SNORM2([real :: 1, 2, 3],3)) STOP 3
29 if (NORM2([real :: ]) /= 0.0) STOP 4
30 if (abs (NORM2([real :: 0, 0, 3, 0]) - 3.0) > epsilon(0.0)) STOP 5
32 ! Check TREE version
34 if (abs (NORM2 (a) - huge(3.0)) &
35 > epsilon(0.0)*huge(3.0)) STOP 6
37 if (abs (SNORM2(b,3) - NORM2(b)) &
38 > epsilon(0.0)*SNORM2(b,3)) STOP 7
40 if (abs (SNORM2(c,4) - NORM2(c)) &
41 > epsilon(0.0)*SNORM2(c,4)) STOP 8
43 if (ANY (abs (abs(d(:,1)) - NORM2(d, 2)) &
44 > epsilon(0.0))) STOP 9
46 ! Check libgfortran version
48 if (ANY (abs (SNORM2(d,4) - NORM2(d, 1)) &
49 > epsilon(0.0)*SNORM2(d,4))) STOP 10
51 if (abs (SNORM2(f,4) - NORM2(f, 1)) &
52 > epsilon(0.0)*SNORM2(d,4)) STOP 11
54 if (ANY (abs (abs(g(:,1)) - NORM2(g, 2)) &
55 > epsilon(0.0))) STOP 12
57 contains
58 ! NORM2 algorithm based on BLAS, cf.
59 ! http://www.netlib.org/blas/snrm2.f
60 REAL FUNCTION SNORM2 (X,n)
61 INTEGER, INTENT(IN) :: n
62 REAL, INTENT(IN) :: X(n)
64 REAL :: absXi, scale, SSQ
65 INTEGER :: i
67 INTRINSIC :: ABS, SQRT
69 IF (N < 1) THEN
70 snorm2 = 0.0
71 ELSE IF (N == 1) THEN
72 snorm2 = ABS(X(1))
73 ELSE
74 scale = 0.0
75 SSQ = 1.0
77 DO i = 1, N
78 IF (X(i) /= 0.0) THEN
79 absXi = ABS(X(i))
80 IF (scale < absXi) THEN
81 SSQ = 1.0 + SSQ * (scale/absXi)**2
82 scale = absXi
83 ELSE
84 SSQ = SSQ + (absXi/scale)**2
85 END IF
86 END IF
87 END DO
88 snorm2 = scale * SQRT(SSQ)
89 END IF
90 END FUNCTION SNORM2
91 end