1 /* Induction variable optimizations.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass tries to find the optimal set of induction variables for the loop.
21 It optimizes just the basic linear induction variables (although adding
22 support for other types should not be too hard). It includes the
23 optimizations commonly known as strength reduction, induction variable
24 coalescing and induction variable elimination. It does it in the
27 1) The interesting uses of induction variables are found. This includes
29 -- uses of induction variables in non-linear expressions
30 -- addresses of arrays
31 -- comparisons of induction variables
33 2) Candidates for the induction variables are found. This includes
35 -- old induction variables
36 -- the variables defined by expressions derived from the "interesting
39 3) The optimal (w.r. to a cost function) set of variables is chosen. The
40 cost function assigns a cost to sets of induction variables and consists
43 -- The use costs. Each of the interesting uses chooses the best induction
44 variable in the set and adds its cost to the sum. The cost reflects
45 the time spent on modifying the induction variables value to be usable
46 for the given purpose (adding base and offset for arrays, etc.).
47 -- The variable costs. Each of the variables has a cost assigned that
48 reflects the costs associated with incrementing the value of the
49 variable. The original variables are somewhat preferred.
50 -- The set cost. Depending on the size of the set, extra cost may be
51 added to reflect register pressure.
53 All the costs are defined in a machine-specific way, using the target
54 hooks and machine descriptions to determine them.
56 4) The trees are transformed to use the new variables, the dead code is
59 All of this is done loop by loop. Doing it globally is theoretically
60 possible, it might give a better performance and it might enable us
61 to decide costs more precisely, but getting all the interactions right
62 would be complicated. */
66 #include "coretypes.h"
74 #include "fold-const.h"
75 #include "stor-layout.h"
77 #include "gimple-pretty-print.h"
78 #include "internal-fn.h"
81 #include "gimple-iterator.h"
82 #include "gimplify-me.h"
85 #include "tree-ssa-loop-ivopts.h"
86 #include "tree-ssa-loop-manip.h"
87 #include "tree-ssa-loop-niter.h"
88 #include "tree-ssa-loop.h"
90 #include "insn-config.h"
100 #include "tree-ssa.h"
102 #include "tree-pass.h"
103 #include "tree-chrec.h"
104 #include "tree-scalar-evolution.h"
106 #include "langhooks.h"
107 #include "tree-affine.h"
109 #include "tree-inline.h"
110 #include "tree-ssa-propagate.h"
111 #include "tree-ssa-address.h"
112 #include "builtins.h"
113 #include "tree-vectorizer.h"
115 /* FIXME: Expressions are expanded to RTL in this pass to determine the
116 cost of different addressing modes. This should be moved to a TBD
117 interface between the GIMPLE and RTL worlds. */
120 /* The infinite cost. */
121 #define INFTY 10000000
123 #define AVG_LOOP_NITER(LOOP) 5
125 /* Returns the expected number of loop iterations for LOOP.
126 The average trip count is computed from profile data if it
129 static inline HOST_WIDE_INT
130 avg_loop_niter (struct loop
*loop
)
132 HOST_WIDE_INT niter
= estimated_stmt_executions_int (loop
);
134 return AVG_LOOP_NITER (loop
);
139 /* Representation of the induction variable. */
142 tree base
; /* Initial value of the iv. */
143 tree base_object
; /* A memory object to that the induction variable points. */
144 tree step
; /* Step of the iv (constant only). */
145 tree ssa_name
; /* The ssa name with the value. */
146 unsigned use_id
; /* The identifier in the use if it is the case. */
147 bool biv_p
; /* Is it a biv? */
148 bool have_use_for
; /* Do we already have a use for it? */
149 bool no_overflow
; /* True if the iv doesn't overflow. */
152 /* Per-ssa version information (induction variable descriptions, etc.). */
155 tree name
; /* The ssa name. */
156 struct iv
*iv
; /* Induction variable description. */
157 bool has_nonlin_use
; /* For a loop-level invariant, whether it is used in
158 an expression that is not an induction variable. */
159 bool preserve_biv
; /* For the original biv, whether to preserve it. */
160 unsigned inv_id
; /* Id of an invariant. */
166 USE_NONLINEAR_EXPR
, /* Use in a nonlinear expression. */
167 USE_ADDRESS
, /* Use in an address. */
168 USE_COMPARE
/* Use is a compare. */
171 /* Cost of a computation. */
174 int cost
; /* The runtime cost. */
175 unsigned complexity
; /* The estimate of the complexity of the code for
176 the computation (in no concrete units --
177 complexity field should be larger for more
178 complex expressions and addressing modes). */
181 static const comp_cost no_cost
= {0, 0};
182 static const comp_cost infinite_cost
= {INFTY
, INFTY
};
184 /* The candidate - cost pair. */
187 struct iv_cand
*cand
; /* The candidate. */
188 comp_cost cost
; /* The cost. */
189 bitmap depends_on
; /* The list of invariants that have to be
191 tree value
; /* For final value elimination, the expression for
192 the final value of the iv. For iv elimination,
193 the new bound to compare with. */
194 enum tree_code comp
; /* For iv elimination, the comparison. */
195 int inv_expr_id
; /* Loop invariant expression id. */
201 unsigned id
; /* The id of the use. */
202 unsigned sub_id
; /* The id of the sub use. */
203 enum use_type type
; /* Type of the use. */
204 struct iv
*iv
; /* The induction variable it is based on. */
205 gimple stmt
; /* Statement in that it occurs. */
206 tree
*op_p
; /* The place where it occurs. */
207 bitmap related_cands
; /* The set of "related" iv candidates, plus the common
210 unsigned n_map_members
; /* Number of candidates in the cost_map list. */
211 struct cost_pair
*cost_map
;
212 /* The costs wrto the iv candidates. */
214 struct iv_cand
*selected
;
215 /* The selected candidate. */
217 struct iv_use
*next
; /* The next sub use. */
218 tree addr_base
; /* Base address with const offset stripped. */
219 unsigned HOST_WIDE_INT addr_offset
;
220 /* Const offset stripped from base address. */
223 /* The position where the iv is computed. */
226 IP_NORMAL
, /* At the end, just before the exit condition. */
227 IP_END
, /* At the end of the latch block. */
228 IP_BEFORE_USE
, /* Immediately before a specific use. */
229 IP_AFTER_USE
, /* Immediately after a specific use. */
230 IP_ORIGINAL
/* The original biv. */
233 /* The induction variable candidate. */
236 unsigned id
; /* The number of the candidate. */
237 bool important
; /* Whether this is an "important" candidate, i.e. such
238 that it should be considered by all uses. */
239 ENUM_BITFIELD(iv_position
) pos
: 8; /* Where it is computed. */
240 gimple incremented_at
;/* For original biv, the statement where it is
242 tree var_before
; /* The variable used for it before increment. */
243 tree var_after
; /* The variable used for it after increment. */
244 struct iv
*iv
; /* The value of the candidate. NULL for
245 "pseudocandidate" used to indicate the possibility
246 to replace the final value of an iv by direct
247 computation of the value. */
248 unsigned cost
; /* Cost of the candidate. */
249 unsigned cost_step
; /* Cost of the candidate's increment operation. */
250 struct iv_use
*ainc_use
; /* For IP_{BEFORE,AFTER}_USE candidates, the place
251 where it is incremented. */
252 bitmap depends_on
; /* The list of invariants that are used in step of the
256 /* Loop invariant expression hashtable entry. */
257 struct iv_inv_expr_ent
264 /* The data used by the induction variable optimizations. */
266 typedef struct iv_use
*iv_use_p
;
268 typedef struct iv_cand
*iv_cand_p
;
270 /* Hashtable helpers. */
272 struct iv_inv_expr_hasher
: free_ptr_hash
<iv_inv_expr_ent
>
274 static inline hashval_t
hash (const iv_inv_expr_ent
*);
275 static inline bool equal (const iv_inv_expr_ent
*, const iv_inv_expr_ent
*);
278 /* Hash function for loop invariant expressions. */
281 iv_inv_expr_hasher::hash (const iv_inv_expr_ent
*expr
)
286 /* Hash table equality function for expressions. */
289 iv_inv_expr_hasher::equal (const iv_inv_expr_ent
*expr1
,
290 const iv_inv_expr_ent
*expr2
)
292 return expr1
->hash
== expr2
->hash
293 && operand_equal_p (expr1
->expr
, expr2
->expr
, 0);
298 /* The currently optimized loop. */
299 struct loop
*current_loop
;
300 source_location loop_loc
;
302 /* Numbers of iterations for all exits of the current loop. */
303 hash_map
<edge
, tree_niter_desc
*> *niters
;
305 /* Number of registers used in it. */
308 /* The size of version_info array allocated. */
309 unsigned version_info_size
;
311 /* The array of information for the ssa names. */
312 struct version_info
*version_info
;
314 /* The hashtable of loop invariant expressions created
316 hash_table
<iv_inv_expr_hasher
> *inv_expr_tab
;
318 /* Loop invariant expression id. */
321 /* The bitmap of indices in version_info whose value was changed. */
324 /* The uses of induction variables. */
325 vec
<iv_use_p
> iv_uses
;
327 /* The candidates. */
328 vec
<iv_cand_p
> iv_candidates
;
330 /* A bitmap of important candidates. */
331 bitmap important_candidates
;
333 /* Cache used by tree_to_aff_combination_expand. */
334 hash_map
<tree
, name_expansion
*> *name_expansion_cache
;
336 /* The maximum invariant id. */
339 /* Obstack for iv structure. */
340 struct obstack iv_obstack
;
342 /* Whether to consider just related and important candidates when replacing a
344 bool consider_all_candidates
;
346 /* Are we optimizing for speed? */
349 /* Whether the loop body includes any function calls. */
350 bool body_includes_call
;
352 /* Whether the loop body can only be exited via single exit. */
353 bool loop_single_exit_p
;
356 /* An assignment of iv candidates to uses. */
360 /* The number of uses covered by the assignment. */
363 /* Number of uses that cannot be expressed by the candidates in the set. */
366 /* Candidate assigned to a use, together with the related costs. */
367 struct cost_pair
**cand_for_use
;
369 /* Number of times each candidate is used. */
370 unsigned *n_cand_uses
;
372 /* The candidates used. */
375 /* The number of candidates in the set. */
378 /* Total number of registers needed. */
381 /* Total cost of expressing uses. */
382 comp_cost cand_use_cost
;
384 /* Total cost of candidates. */
387 /* Number of times each invariant is used. */
388 unsigned *n_invariant_uses
;
390 /* The array holding the number of uses of each loop
391 invariant expressions created by ivopt. */
392 unsigned *used_inv_expr
;
394 /* The number of created loop invariants. */
395 unsigned num_used_inv_expr
;
397 /* Total cost of the assignment. */
401 /* Difference of two iv candidate assignments. */
408 /* An old assignment (for rollback purposes). */
409 struct cost_pair
*old_cp
;
411 /* A new assignment. */
412 struct cost_pair
*new_cp
;
414 /* Next change in the list. */
415 struct iv_ca_delta
*next_change
;
418 /* Bound on number of candidates below that all candidates are considered. */
420 #define CONSIDER_ALL_CANDIDATES_BOUND \
421 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
423 /* If there are more iv occurrences, we just give up (it is quite unlikely that
424 optimizing such a loop would help, and it would take ages). */
426 #define MAX_CONSIDERED_USES \
427 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
429 /* If there are at most this number of ivs in the set, try removing unnecessary
430 ivs from the set always. */
432 #define ALWAYS_PRUNE_CAND_SET_BOUND \
433 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
435 /* The list of trees for that the decl_rtl field must be reset is stored
438 static vec
<tree
> decl_rtl_to_reset
;
440 static comp_cost
force_expr_to_var_cost (tree
, bool);
442 /* Number of uses recorded in DATA. */
444 static inline unsigned
445 n_iv_uses (struct ivopts_data
*data
)
447 return data
->iv_uses
.length ();
450 /* Ith use recorded in DATA. */
452 static inline struct iv_use
*
453 iv_use (struct ivopts_data
*data
, unsigned i
)
455 return data
->iv_uses
[i
];
458 /* Number of candidates recorded in DATA. */
460 static inline unsigned
461 n_iv_cands (struct ivopts_data
*data
)
463 return data
->iv_candidates
.length ();
466 /* Ith candidate recorded in DATA. */
468 static inline struct iv_cand
*
469 iv_cand (struct ivopts_data
*data
, unsigned i
)
471 return data
->iv_candidates
[i
];
474 /* The single loop exit if it dominates the latch, NULL otherwise. */
477 single_dom_exit (struct loop
*loop
)
479 edge exit
= single_exit (loop
);
484 if (!just_once_each_iteration_p (loop
, exit
->src
))
490 /* Dumps information about the induction variable IV to FILE. */
493 dump_iv (FILE *file
, struct iv
*iv
, bool dump_name
)
495 if (iv
->ssa_name
&& dump_name
)
497 fprintf (file
, "ssa name ");
498 print_generic_expr (file
, iv
->ssa_name
, TDF_SLIM
);
499 fprintf (file
, "\n");
502 fprintf (file
, " type ");
503 print_generic_expr (file
, TREE_TYPE (iv
->base
), TDF_SLIM
);
504 fprintf (file
, "\n");
508 fprintf (file
, " base ");
509 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
510 fprintf (file
, "\n");
512 fprintf (file
, " step ");
513 print_generic_expr (file
, iv
->step
, TDF_SLIM
);
514 fprintf (file
, "\n");
518 fprintf (file
, " invariant ");
519 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
520 fprintf (file
, "\n");
525 fprintf (file
, " base object ");
526 print_generic_expr (file
, iv
->base_object
, TDF_SLIM
);
527 fprintf (file
, "\n");
531 fprintf (file
, " is a biv\n");
534 /* Dumps information about the USE to FILE. */
537 dump_use (FILE *file
, struct iv_use
*use
)
539 fprintf (file
, "use %d", use
->id
);
541 fprintf (file
, ".%d", use
->sub_id
);
543 fprintf (file
, "\n");
547 case USE_NONLINEAR_EXPR
:
548 fprintf (file
, " generic\n");
552 fprintf (file
, " address\n");
556 fprintf (file
, " compare\n");
563 fprintf (file
, " in statement ");
564 print_gimple_stmt (file
, use
->stmt
, 0, 0);
565 fprintf (file
, "\n");
567 fprintf (file
, " at position ");
569 print_generic_expr (file
, *use
->op_p
, TDF_SLIM
);
570 fprintf (file
, "\n");
572 dump_iv (file
, use
->iv
, false);
574 if (use
->related_cands
)
576 fprintf (file
, " related candidates ");
577 dump_bitmap (file
, use
->related_cands
);
581 /* Dumps information about the uses to FILE. */
584 dump_uses (FILE *file
, struct ivopts_data
*data
)
589 for (i
= 0; i
< n_iv_uses (data
); i
++)
591 use
= iv_use (data
, i
);
594 dump_use (file
, use
);
598 fprintf (file
, "\n");
602 /* Dumps information about induction variable candidate CAND to FILE. */
605 dump_cand (FILE *file
, struct iv_cand
*cand
)
607 struct iv
*iv
= cand
->iv
;
609 fprintf (file
, "candidate %d%s\n",
610 cand
->id
, cand
->important
? " (important)" : "");
612 if (cand
->depends_on
)
614 fprintf (file
, " depends on ");
615 dump_bitmap (file
, cand
->depends_on
);
620 fprintf (file
, " final value replacement\n");
624 if (cand
->var_before
)
626 fprintf (file
, " var_before ");
627 print_generic_expr (file
, cand
->var_before
, TDF_SLIM
);
628 fprintf (file
, "\n");
632 fprintf (file
, " var_after ");
633 print_generic_expr (file
, cand
->var_after
, TDF_SLIM
);
634 fprintf (file
, "\n");
640 fprintf (file
, " incremented before exit test\n");
644 fprintf (file
, " incremented before use %d\n", cand
->ainc_use
->id
);
648 fprintf (file
, " incremented after use %d\n", cand
->ainc_use
->id
);
652 fprintf (file
, " incremented at end\n");
656 fprintf (file
, " original biv\n");
660 dump_iv (file
, iv
, false);
663 /* Returns the info for ssa version VER. */
665 static inline struct version_info
*
666 ver_info (struct ivopts_data
*data
, unsigned ver
)
668 return data
->version_info
+ ver
;
671 /* Returns the info for ssa name NAME. */
673 static inline struct version_info
*
674 name_info (struct ivopts_data
*data
, tree name
)
676 return ver_info (data
, SSA_NAME_VERSION (name
));
679 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
683 stmt_after_ip_normal_pos (struct loop
*loop
, gimple stmt
)
685 basic_block bb
= ip_normal_pos (loop
), sbb
= gimple_bb (stmt
);
689 if (sbb
== loop
->latch
)
695 return stmt
== last_stmt (bb
);
698 /* Returns true if STMT if after the place where the original induction
699 variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
700 if the positions are identical. */
703 stmt_after_inc_pos (struct iv_cand
*cand
, gimple stmt
, bool true_if_equal
)
705 basic_block cand_bb
= gimple_bb (cand
->incremented_at
);
706 basic_block stmt_bb
= gimple_bb (stmt
);
708 if (!dominated_by_p (CDI_DOMINATORS
, stmt_bb
, cand_bb
))
711 if (stmt_bb
!= cand_bb
)
715 && gimple_uid (stmt
) == gimple_uid (cand
->incremented_at
))
717 return gimple_uid (stmt
) > gimple_uid (cand
->incremented_at
);
720 /* Returns true if STMT if after the place where the induction variable
721 CAND is incremented in LOOP. */
724 stmt_after_increment (struct loop
*loop
, struct iv_cand
*cand
, gimple stmt
)
732 return stmt_after_ip_normal_pos (loop
, stmt
);
736 return stmt_after_inc_pos (cand
, stmt
, false);
739 return stmt_after_inc_pos (cand
, stmt
, true);
746 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
749 abnormal_ssa_name_p (tree exp
)
754 if (TREE_CODE (exp
) != SSA_NAME
)
757 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp
) != 0;
760 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
761 abnormal phi node. Callback for for_each_index. */
764 idx_contains_abnormal_ssa_name_p (tree base
, tree
*index
,
765 void *data ATTRIBUTE_UNUSED
)
767 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
769 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 2)))
771 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 3)))
775 return !abnormal_ssa_name_p (*index
);
778 /* Returns true if EXPR contains a ssa name that occurs in an
779 abnormal phi node. */
782 contains_abnormal_ssa_name_p (tree expr
)
785 enum tree_code_class codeclass
;
790 code
= TREE_CODE (expr
);
791 codeclass
= TREE_CODE_CLASS (code
);
793 if (code
== SSA_NAME
)
794 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr
) != 0;
796 if (code
== INTEGER_CST
797 || is_gimple_min_invariant (expr
))
800 if (code
== ADDR_EXPR
)
801 return !for_each_index (&TREE_OPERAND (expr
, 0),
802 idx_contains_abnormal_ssa_name_p
,
805 if (code
== COND_EXPR
)
806 return contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0))
807 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1))
808 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 2));
814 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1)))
819 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0)))
831 /* Returns the structure describing number of iterations determined from
832 EXIT of DATA->current_loop, or NULL if something goes wrong. */
834 static struct tree_niter_desc
*
835 niter_for_exit (struct ivopts_data
*data
, edge exit
)
837 struct tree_niter_desc
*desc
;
838 tree_niter_desc
**slot
;
842 data
->niters
= new hash_map
<edge
, tree_niter_desc
*>;
846 slot
= data
->niters
->get (exit
);
850 /* Try to determine number of iterations. We cannot safely work with ssa
851 names that appear in phi nodes on abnormal edges, so that we do not
852 create overlapping life ranges for them (PR 27283). */
853 desc
= XNEW (struct tree_niter_desc
);
854 if (!number_of_iterations_exit (data
->current_loop
,
856 || contains_abnormal_ssa_name_p (desc
->niter
))
861 data
->niters
->put (exit
, desc
);
869 /* Returns the structure describing number of iterations determined from
870 single dominating exit of DATA->current_loop, or NULL if something
873 static struct tree_niter_desc
*
874 niter_for_single_dom_exit (struct ivopts_data
*data
)
876 edge exit
= single_dom_exit (data
->current_loop
);
881 return niter_for_exit (data
, exit
);
884 /* Initializes data structures used by the iv optimization pass, stored
888 tree_ssa_iv_optimize_init (struct ivopts_data
*data
)
890 data
->version_info_size
= 2 * num_ssa_names
;
891 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
892 data
->relevant
= BITMAP_ALLOC (NULL
);
893 data
->important_candidates
= BITMAP_ALLOC (NULL
);
894 data
->max_inv_id
= 0;
896 data
->iv_uses
.create (20);
897 data
->iv_candidates
.create (20);
898 data
->inv_expr_tab
= new hash_table
<iv_inv_expr_hasher
> (10);
899 data
->inv_expr_id
= 0;
900 data
->name_expansion_cache
= NULL
;
901 decl_rtl_to_reset
.create (20);
902 gcc_obstack_init (&data
->iv_obstack
);
905 /* Returns a memory object to that EXPR points. In case we are able to
906 determine that it does not point to any such object, NULL is returned. */
909 determine_base_object (tree expr
)
911 enum tree_code code
= TREE_CODE (expr
);
914 /* If this is a pointer casted to any type, we need to determine
915 the base object for the pointer; so handle conversions before
916 throwing away non-pointer expressions. */
917 if (CONVERT_EXPR_P (expr
))
918 return determine_base_object (TREE_OPERAND (expr
, 0));
920 if (!POINTER_TYPE_P (TREE_TYPE (expr
)))
929 obj
= TREE_OPERAND (expr
, 0);
930 base
= get_base_address (obj
);
935 if (TREE_CODE (base
) == MEM_REF
)
936 return determine_base_object (TREE_OPERAND (base
, 0));
938 return fold_convert (ptr_type_node
,
939 build_fold_addr_expr (base
));
941 case POINTER_PLUS_EXPR
:
942 return determine_base_object (TREE_OPERAND (expr
, 0));
946 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
950 return fold_convert (ptr_type_node
, expr
);
954 /* Return true if address expression with non-DECL_P operand appears
958 contain_complex_addr_expr (tree expr
)
963 switch (TREE_CODE (expr
))
965 case POINTER_PLUS_EXPR
:
968 res
|= contain_complex_addr_expr (TREE_OPERAND (expr
, 0));
969 res
|= contain_complex_addr_expr (TREE_OPERAND (expr
, 1));
973 return (!DECL_P (TREE_OPERAND (expr
, 0)));
982 /* Allocates an induction variable with given initial value BASE and step STEP
983 for loop LOOP. NO_OVERFLOW implies the iv doesn't overflow. */
986 alloc_iv (struct ivopts_data
*data
, tree base
, tree step
,
987 bool no_overflow
= false)
990 struct iv
*iv
= (struct iv
*) obstack_alloc (&data
->iv_obstack
,
992 gcc_assert (step
!= NULL_TREE
);
994 /* Lower address expression in base except ones with DECL_P as operand.
996 1) More accurate cost can be computed for address expressions;
997 2) Duplicate candidates won't be created for bases in different
998 forms, like &a[0] and &a. */
1000 if ((TREE_CODE (expr
) == ADDR_EXPR
&& !DECL_P (TREE_OPERAND (expr
, 0)))
1001 || contain_complex_addr_expr (expr
))
1004 tree_to_aff_combination (expr
, TREE_TYPE (base
), &comb
);
1005 base
= fold_convert (TREE_TYPE (base
), aff_combination_to_tree (&comb
));
1009 iv
->base_object
= determine_base_object (base
);
1012 iv
->have_use_for
= false;
1014 iv
->ssa_name
= NULL_TREE
;
1015 iv
->no_overflow
= no_overflow
;
1020 /* Sets STEP and BASE for induction variable IV. NO_OVERFLOW implies the IV
1021 doesn't overflow. */
1024 set_iv (struct ivopts_data
*data
, tree iv
, tree base
, tree step
,
1027 struct version_info
*info
= name_info (data
, iv
);
1029 gcc_assert (!info
->iv
);
1031 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (iv
));
1032 info
->iv
= alloc_iv (data
, base
, step
, no_overflow
);
1033 info
->iv
->ssa_name
= iv
;
1036 /* Finds induction variable declaration for VAR. */
1039 get_iv (struct ivopts_data
*data
, tree var
)
1042 tree type
= TREE_TYPE (var
);
1044 if (!POINTER_TYPE_P (type
)
1045 && !INTEGRAL_TYPE_P (type
))
1048 if (!name_info (data
, var
)->iv
)
1050 bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1053 || !flow_bb_inside_loop_p (data
->current_loop
, bb
))
1054 set_iv (data
, var
, var
, build_int_cst (type
, 0), true);
1057 return name_info (data
, var
)->iv
;
1060 /* Return the first non-invariant ssa var found in EXPR. */
1063 extract_single_var_from_expr (tree expr
)
1067 enum tree_code code
;
1069 if (!expr
|| is_gimple_min_invariant (expr
))
1072 code
= TREE_CODE (expr
);
1073 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
1075 n
= TREE_OPERAND_LENGTH (expr
);
1076 for (i
= 0; i
< n
; i
++)
1078 tmp
= extract_single_var_from_expr (TREE_OPERAND (expr
, i
));
1084 return (TREE_CODE (expr
) == SSA_NAME
) ? expr
: NULL
;
1087 /* Finds basic ivs. */
1090 find_bivs (struct ivopts_data
*data
)
1094 tree step
, type
, base
, stop
;
1096 struct loop
*loop
= data
->current_loop
;
1099 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1103 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi
)))
1106 if (virtual_operand_p (PHI_RESULT (phi
)))
1109 if (!simple_iv (loop
, loop
, PHI_RESULT (phi
), &iv
, true))
1112 if (integer_zerop (iv
.step
))
1116 base
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1117 /* Stop expanding iv base at the first ssa var referred by iv step.
1118 Ideally we should stop at any ssa var, because that's expensive
1119 and unusual to happen, we just do it on the first one.
1121 See PR64705 for the rationale. */
1122 stop
= extract_single_var_from_expr (step
);
1123 base
= expand_simple_operations (base
, stop
);
1124 if (contains_abnormal_ssa_name_p (base
)
1125 || contains_abnormal_ssa_name_p (step
))
1128 type
= TREE_TYPE (PHI_RESULT (phi
));
1129 base
= fold_convert (type
, base
);
1132 if (POINTER_TYPE_P (type
))
1133 step
= convert_to_ptrofftype (step
);
1135 step
= fold_convert (type
, step
);
1138 set_iv (data
, PHI_RESULT (phi
), base
, step
, iv
.no_overflow
);
1145 /* Marks basic ivs. */
1148 mark_bivs (struct ivopts_data
*data
)
1153 struct iv
*iv
, *incr_iv
;
1154 struct loop
*loop
= data
->current_loop
;
1155 basic_block incr_bb
;
1158 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1162 iv
= get_iv (data
, PHI_RESULT (phi
));
1166 var
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
1167 def
= SSA_NAME_DEF_STMT (var
);
1168 /* Don't mark iv peeled from other one as biv. */
1170 && gimple_code (def
) == GIMPLE_PHI
1171 && gimple_bb (def
) == loop
->header
)
1174 incr_iv
= get_iv (data
, var
);
1178 /* If the increment is in the subloop, ignore it. */
1179 incr_bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1180 if (incr_bb
->loop_father
!= data
->current_loop
1181 || (incr_bb
->flags
& BB_IRREDUCIBLE_LOOP
))
1185 incr_iv
->biv_p
= true;
1189 /* Checks whether STMT defines a linear induction variable and stores its
1190 parameters to IV. */
1193 find_givs_in_stmt_scev (struct ivopts_data
*data
, gimple stmt
, affine_iv
*iv
)
1196 struct loop
*loop
= data
->current_loop
;
1198 iv
->base
= NULL_TREE
;
1199 iv
->step
= NULL_TREE
;
1201 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1204 lhs
= gimple_assign_lhs (stmt
);
1205 if (TREE_CODE (lhs
) != SSA_NAME
)
1208 if (!simple_iv (loop
, loop_containing_stmt (stmt
), lhs
, iv
, true))
1211 /* Stop expanding iv base at the first ssa var referred by iv step.
1212 Ideally we should stop at any ssa var, because that's expensive
1213 and unusual to happen, we just do it on the first one.
1215 See PR64705 for the rationale. */
1216 stop
= extract_single_var_from_expr (iv
->step
);
1217 iv
->base
= expand_simple_operations (iv
->base
, stop
);
1218 if (contains_abnormal_ssa_name_p (iv
->base
)
1219 || contains_abnormal_ssa_name_p (iv
->step
))
1222 /* If STMT could throw, then do not consider STMT as defining a GIV.
1223 While this will suppress optimizations, we can not safely delete this
1224 GIV and associated statements, even if it appears it is not used. */
1225 if (stmt_could_throw_p (stmt
))
1231 /* Finds general ivs in statement STMT. */
1234 find_givs_in_stmt (struct ivopts_data
*data
, gimple stmt
)
1238 if (!find_givs_in_stmt_scev (data
, stmt
, &iv
))
1241 set_iv (data
, gimple_assign_lhs (stmt
), iv
.base
, iv
.step
, iv
.no_overflow
);
1244 /* Finds general ivs in basic block BB. */
1247 find_givs_in_bb (struct ivopts_data
*data
, basic_block bb
)
1249 gimple_stmt_iterator bsi
;
1251 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1252 find_givs_in_stmt (data
, gsi_stmt (bsi
));
1255 /* Finds general ivs. */
1258 find_givs (struct ivopts_data
*data
)
1260 struct loop
*loop
= data
->current_loop
;
1261 basic_block
*body
= get_loop_body_in_dom_order (loop
);
1264 for (i
= 0; i
< loop
->num_nodes
; i
++)
1265 find_givs_in_bb (data
, body
[i
]);
1269 /* For each ssa name defined in LOOP determines whether it is an induction
1270 variable and if so, its initial value and step. */
1273 find_induction_variables (struct ivopts_data
*data
)
1278 if (!find_bivs (data
))
1284 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1286 struct tree_niter_desc
*niter
= niter_for_single_dom_exit (data
);
1290 fprintf (dump_file
, " number of iterations ");
1291 print_generic_expr (dump_file
, niter
->niter
, TDF_SLIM
);
1292 if (!integer_zerop (niter
->may_be_zero
))
1294 fprintf (dump_file
, "; zero if ");
1295 print_generic_expr (dump_file
, niter
->may_be_zero
, TDF_SLIM
);
1297 fprintf (dump_file
, "\n\n");
1300 fprintf (dump_file
, "Induction variables:\n\n");
1302 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
1304 if (ver_info (data
, i
)->iv
)
1305 dump_iv (dump_file
, ver_info (data
, i
)->iv
, true);
1312 /* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV.
1313 For address type use, ADDR_BASE is the stripped IV base, ADDR_OFFSET
1314 is the const offset stripped from IV base. For uses of other types,
1315 ADDR_BASE and ADDR_OFFSET are zero by default. */
1317 static struct iv_use
*
1318 record_use (struct ivopts_data
*data
, tree
*use_p
, struct iv
*iv
,
1319 gimple stmt
, enum use_type use_type
, tree addr_base
= NULL
,
1320 unsigned HOST_WIDE_INT addr_offset
= 0)
1322 struct iv_use
*use
= XCNEW (struct iv_use
);
1324 use
->id
= n_iv_uses (data
);
1326 use
->type
= use_type
;
1330 use
->related_cands
= BITMAP_ALLOC (NULL
);
1332 use
->addr_base
= addr_base
;
1333 use
->addr_offset
= addr_offset
;
1335 data
->iv_uses
.safe_push (use
);
1340 /* Records a sub use of type USE_TYPE at *USE_P in STMT whose value is IV.
1341 The sub use is recorded under the one whose use id is ID_GROUP. */
1343 static struct iv_use
*
1344 record_sub_use (struct ivopts_data
*data
, tree
*use_p
,
1345 struct iv
*iv
, gimple stmt
, enum use_type use_type
,
1346 tree addr_base
, unsigned HOST_WIDE_INT addr_offset
,
1347 unsigned int id_group
)
1349 struct iv_use
*use
= XCNEW (struct iv_use
);
1350 struct iv_use
*group
= iv_use (data
, id_group
);
1352 use
->id
= group
->id
;
1354 use
->type
= use_type
;
1358 use
->related_cands
= NULL
;
1359 use
->addr_base
= addr_base
;
1360 use
->addr_offset
= addr_offset
;
1362 /* Sub use list is maintained in offset ascending order. */
1363 if (addr_offset
<= group
->addr_offset
)
1365 use
->related_cands
= group
->related_cands
;
1366 group
->related_cands
= NULL
;
1368 data
->iv_uses
[id_group
] = use
;
1376 group
= group
->next
;
1378 while (group
&& addr_offset
> group
->addr_offset
);
1379 use
->next
= pre
->next
;
1386 /* Checks whether OP is a loop-level invariant and if so, records it.
1387 NONLINEAR_USE is true if the invariant is used in a way we do not
1388 handle specially. */
1391 record_invariant (struct ivopts_data
*data
, tree op
, bool nonlinear_use
)
1394 struct version_info
*info
;
1396 if (TREE_CODE (op
) != SSA_NAME
1397 || virtual_operand_p (op
))
1400 bb
= gimple_bb (SSA_NAME_DEF_STMT (op
));
1402 && flow_bb_inside_loop_p (data
->current_loop
, bb
))
1405 info
= name_info (data
, op
);
1407 info
->has_nonlin_use
|= nonlinear_use
;
1409 info
->inv_id
= ++data
->max_inv_id
;
1410 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (op
));
1413 /* Checks whether the use OP is interesting and if so, records it. */
1415 static struct iv_use
*
1416 find_interesting_uses_op (struct ivopts_data
*data
, tree op
)
1422 if (TREE_CODE (op
) != SSA_NAME
)
1425 iv
= get_iv (data
, op
);
1429 if (iv
->have_use_for
)
1431 use
= iv_use (data
, iv
->use_id
);
1433 gcc_assert (use
->type
== USE_NONLINEAR_EXPR
);
1437 if (integer_zerop (iv
->step
))
1439 record_invariant (data
, op
, true);
1442 iv
->have_use_for
= true;
1444 stmt
= SSA_NAME_DEF_STMT (op
);
1445 gcc_assert (gimple_code (stmt
) == GIMPLE_PHI
1446 || is_gimple_assign (stmt
));
1448 use
= record_use (data
, NULL
, iv
, stmt
, USE_NONLINEAR_EXPR
);
1449 iv
->use_id
= use
->id
;
1454 /* Given a condition in statement STMT, checks whether it is a compare
1455 of an induction variable and an invariant. If this is the case,
1456 CONTROL_VAR is set to location of the iv, BOUND to the location of
1457 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1458 induction variable descriptions, and true is returned. If this is not
1459 the case, CONTROL_VAR and BOUND are set to the arguments of the
1460 condition and false is returned. */
1463 extract_cond_operands (struct ivopts_data
*data
, gimple stmt
,
1464 tree
**control_var
, tree
**bound
,
1465 struct iv
**iv_var
, struct iv
**iv_bound
)
1467 /* The objects returned when COND has constant operands. */
1468 static struct iv const_iv
;
1470 tree
*op0
= &zero
, *op1
= &zero
;
1471 struct iv
*iv0
= &const_iv
, *iv1
= &const_iv
;
1474 if (gimple_code (stmt
) == GIMPLE_COND
)
1476 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1477 op0
= gimple_cond_lhs_ptr (cond_stmt
);
1478 op1
= gimple_cond_rhs_ptr (cond_stmt
);
1482 op0
= gimple_assign_rhs1_ptr (stmt
);
1483 op1
= gimple_assign_rhs2_ptr (stmt
);
1486 zero
= integer_zero_node
;
1487 const_iv
.step
= integer_zero_node
;
1489 if (TREE_CODE (*op0
) == SSA_NAME
)
1490 iv0
= get_iv (data
, *op0
);
1491 if (TREE_CODE (*op1
) == SSA_NAME
)
1492 iv1
= get_iv (data
, *op1
);
1494 /* Exactly one of the compared values must be an iv, and the other one must
1499 if (integer_zerop (iv0
->step
))
1501 /* Control variable may be on the other side. */
1502 std::swap (op0
, op1
);
1503 std::swap (iv0
, iv1
);
1505 ret
= !integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
);
1520 /* Checks whether the condition in STMT is interesting and if so,
1524 find_interesting_uses_cond (struct ivopts_data
*data
, gimple stmt
)
1526 tree
*var_p
, *bound_p
;
1529 if (!extract_cond_operands (data
, stmt
, &var_p
, &bound_p
, &var_iv
, NULL
))
1531 find_interesting_uses_op (data
, *var_p
);
1532 find_interesting_uses_op (data
, *bound_p
);
1536 record_use (data
, NULL
, var_iv
, stmt
, USE_COMPARE
);
1539 /* Returns the outermost loop EXPR is obviously invariant in
1540 relative to the loop LOOP, i.e. if all its operands are defined
1541 outside of the returned loop. Returns NULL if EXPR is not
1542 even obviously invariant in LOOP. */
1545 outermost_invariant_loop_for_expr (struct loop
*loop
, tree expr
)
1550 if (is_gimple_min_invariant (expr
))
1551 return current_loops
->tree_root
;
1553 if (TREE_CODE (expr
) == SSA_NAME
)
1555 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1558 if (flow_bb_inside_loop_p (loop
, def_bb
))
1560 return superloop_at_depth (loop
,
1561 loop_depth (def_bb
->loop_father
) + 1);
1564 return current_loops
->tree_root
;
1570 unsigned maxdepth
= 0;
1571 len
= TREE_OPERAND_LENGTH (expr
);
1572 for (i
= 0; i
< len
; i
++)
1574 struct loop
*ivloop
;
1575 if (!TREE_OPERAND (expr
, i
))
1578 ivloop
= outermost_invariant_loop_for_expr (loop
, TREE_OPERAND (expr
, i
));
1581 maxdepth
= MAX (maxdepth
, loop_depth (ivloop
));
1584 return superloop_at_depth (loop
, maxdepth
);
1587 /* Returns true if expression EXPR is obviously invariant in LOOP,
1588 i.e. if all its operands are defined outside of the LOOP. LOOP
1589 should not be the function body. */
1592 expr_invariant_in_loop_p (struct loop
*loop
, tree expr
)
1597 gcc_assert (loop_depth (loop
) > 0);
1599 if (is_gimple_min_invariant (expr
))
1602 if (TREE_CODE (expr
) == SSA_NAME
)
1604 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1606 && flow_bb_inside_loop_p (loop
, def_bb
))
1615 len
= TREE_OPERAND_LENGTH (expr
);
1616 for (i
= 0; i
< len
; i
++)
1617 if (TREE_OPERAND (expr
, i
)
1618 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (expr
, i
)))
1624 /* Cumulates the steps of indices into DATA and replaces their values with the
1625 initial ones. Returns false when the value of the index cannot be determined.
1626 Callback for for_each_index. */
1628 struct ifs_ivopts_data
1630 struct ivopts_data
*ivopts_data
;
1636 idx_find_step (tree base
, tree
*idx
, void *data
)
1638 struct ifs_ivopts_data
*dta
= (struct ifs_ivopts_data
*) data
;
1640 bool use_overflow_semantics
= false;
1641 tree step
, iv_base
, iv_step
, lbound
, off
;
1642 struct loop
*loop
= dta
->ivopts_data
->current_loop
;
1644 /* If base is a component ref, require that the offset of the reference
1646 if (TREE_CODE (base
) == COMPONENT_REF
)
1648 off
= component_ref_field_offset (base
);
1649 return expr_invariant_in_loop_p (loop
, off
);
1652 /* If base is array, first check whether we will be able to move the
1653 reference out of the loop (in order to take its address in strength
1654 reduction). In order for this to work we need both lower bound
1655 and step to be loop invariants. */
1656 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1658 /* Moreover, for a range, the size needs to be invariant as well. */
1659 if (TREE_CODE (base
) == ARRAY_RANGE_REF
1660 && !expr_invariant_in_loop_p (loop
, TYPE_SIZE (TREE_TYPE (base
))))
1663 step
= array_ref_element_size (base
);
1664 lbound
= array_ref_low_bound (base
);
1666 if (!expr_invariant_in_loop_p (loop
, step
)
1667 || !expr_invariant_in_loop_p (loop
, lbound
))
1671 if (TREE_CODE (*idx
) != SSA_NAME
)
1674 iv
= get_iv (dta
->ivopts_data
, *idx
);
1678 /* XXX We produce for a base of *D42 with iv->base being &x[0]
1679 *&x[0], which is not folded and does not trigger the
1680 ARRAY_REF path below. */
1683 if (integer_zerop (iv
->step
))
1686 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1688 step
= array_ref_element_size (base
);
1690 /* We only handle addresses whose step is an integer constant. */
1691 if (TREE_CODE (step
) != INTEGER_CST
)
1695 /* The step for pointer arithmetics already is 1 byte. */
1696 step
= size_one_node
;
1700 if (iv
->no_overflow
&& nowrap_type_p (TREE_TYPE (iv_step
)))
1701 use_overflow_semantics
= true;
1703 if (!convert_affine_scev (dta
->ivopts_data
->current_loop
,
1704 sizetype
, &iv_base
, &iv_step
, dta
->stmt
,
1705 use_overflow_semantics
))
1707 /* The index might wrap. */
1711 step
= fold_build2 (MULT_EXPR
, sizetype
, step
, iv_step
);
1712 dta
->step
= fold_build2 (PLUS_EXPR
, sizetype
, dta
->step
, step
);
1717 /* Records use in index IDX. Callback for for_each_index. Ivopts data
1718 object is passed to it in DATA. */
1721 idx_record_use (tree base
, tree
*idx
,
1724 struct ivopts_data
*data
= (struct ivopts_data
*) vdata
;
1725 find_interesting_uses_op (data
, *idx
);
1726 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1728 find_interesting_uses_op (data
, array_ref_element_size (base
));
1729 find_interesting_uses_op (data
, array_ref_low_bound (base
));
1734 /* If we can prove that TOP = cst * BOT for some constant cst,
1735 store cst to MUL and return true. Otherwise return false.
1736 The returned value is always sign-extended, regardless of the
1737 signedness of TOP and BOT. */
1740 constant_multiple_of (tree top
, tree bot
, widest_int
*mul
)
1743 enum tree_code code
;
1744 unsigned precision
= TYPE_PRECISION (TREE_TYPE (top
));
1745 widest_int res
, p0
, p1
;
1750 if (operand_equal_p (top
, bot
, 0))
1756 code
= TREE_CODE (top
);
1760 mby
= TREE_OPERAND (top
, 1);
1761 if (TREE_CODE (mby
) != INTEGER_CST
)
1764 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &res
))
1767 *mul
= wi::sext (res
* wi::to_widest (mby
), precision
);
1772 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &p0
)
1773 || !constant_multiple_of (TREE_OPERAND (top
, 1), bot
, &p1
))
1776 if (code
== MINUS_EXPR
)
1778 *mul
= wi::sext (p0
+ p1
, precision
);
1782 if (TREE_CODE (bot
) != INTEGER_CST
)
1785 p0
= widest_int::from (top
, SIGNED
);
1786 p1
= widest_int::from (bot
, SIGNED
);
1789 *mul
= wi::sext (wi::divmod_trunc (p0
, p1
, SIGNED
, &res
), precision
);
1797 /* Return true if memory reference REF with step STEP may be unaligned. */
1800 may_be_unaligned_p (tree ref
, tree step
)
1802 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
1803 thus they are not misaligned. */
1804 if (TREE_CODE (ref
) == TARGET_MEM_REF
)
1807 unsigned int align
= TYPE_ALIGN (TREE_TYPE (ref
));
1808 if (GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref
))) > align
)
1809 align
= GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref
)));
1811 unsigned HOST_WIDE_INT bitpos
;
1812 unsigned int ref_align
;
1813 get_object_alignment_1 (ref
, &ref_align
, &bitpos
);
1814 if (ref_align
< align
1815 || (bitpos
% align
) != 0
1816 || (bitpos
% BITS_PER_UNIT
) != 0)
1819 unsigned int trailing_zeros
= tree_ctz (step
);
1820 if (trailing_zeros
< HOST_BITS_PER_INT
1821 && (1U << trailing_zeros
) * BITS_PER_UNIT
< align
)
1827 /* Return true if EXPR may be non-addressable. */
1830 may_be_nonaddressable_p (tree expr
)
1832 switch (TREE_CODE (expr
))
1834 case TARGET_MEM_REF
:
1835 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
1836 target, thus they are always addressable. */
1840 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr
, 1))
1841 || may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
1843 case VIEW_CONVERT_EXPR
:
1844 /* This kind of view-conversions may wrap non-addressable objects
1845 and make them look addressable. After some processing the
1846 non-addressability may be uncovered again, causing ADDR_EXPRs
1847 of inappropriate objects to be built. */
1848 if (is_gimple_reg (TREE_OPERAND (expr
, 0))
1849 || !is_gimple_addressable (TREE_OPERAND (expr
, 0)))
1852 /* ... fall through ... */
1855 case ARRAY_RANGE_REF
:
1856 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
1869 strip_offset (tree expr
, unsigned HOST_WIDE_INT
*offset
);
1871 /* Record a use of type USE_TYPE at *USE_P in STMT whose value is IV.
1872 If there is an existing use which has same stripped iv base and step,
1873 this function records this one as a sub use to that; otherwise records
1874 it as a normal one. */
1876 static struct iv_use
*
1877 record_group_use (struct ivopts_data
*data
, tree
*use_p
,
1878 struct iv
*iv
, gimple stmt
, enum use_type use_type
)
1883 unsigned HOST_WIDE_INT addr_offset
;
1885 /* Only support sub use for address type uses, that is, with base
1887 if (!iv
->base_object
)
1888 return record_use (data
, use_p
, iv
, stmt
, use_type
);
1890 addr_base
= strip_offset (iv
->base
, &addr_offset
);
1891 for (i
= 0; i
< n_iv_uses (data
); i
++)
1893 use
= iv_use (data
, i
);
1894 if (use
->type
!= USE_ADDRESS
|| !use
->iv
->base_object
)
1897 /* Check if it has the same stripped base and step. */
1898 if (operand_equal_p (iv
->base_object
, use
->iv
->base_object
, 0)
1899 && operand_equal_p (iv
->step
, use
->iv
->step
, 0)
1900 && operand_equal_p (addr_base
, use
->addr_base
, 0))
1904 if (i
== n_iv_uses (data
))
1905 return record_use (data
, use_p
, iv
, stmt
,
1906 use_type
, addr_base
, addr_offset
);
1908 return record_sub_use (data
, use_p
, iv
, stmt
,
1909 use_type
, addr_base
, addr_offset
, i
);
1912 /* Finds addresses in *OP_P inside STMT. */
1915 find_interesting_uses_address (struct ivopts_data
*data
, gimple stmt
, tree
*op_p
)
1917 tree base
= *op_p
, step
= size_zero_node
;
1919 struct ifs_ivopts_data ifs_ivopts_data
;
1921 /* Do not play with volatile memory references. A bit too conservative,
1922 perhaps, but safe. */
1923 if (gimple_has_volatile_ops (stmt
))
1926 /* Ignore bitfields for now. Not really something terribly complicated
1928 if (TREE_CODE (base
) == BIT_FIELD_REF
)
1931 base
= unshare_expr (base
);
1933 if (TREE_CODE (base
) == TARGET_MEM_REF
)
1935 tree type
= build_pointer_type (TREE_TYPE (base
));
1939 && TREE_CODE (TMR_BASE (base
)) == SSA_NAME
)
1941 civ
= get_iv (data
, TMR_BASE (base
));
1945 TMR_BASE (base
) = civ
->base
;
1948 if (TMR_INDEX2 (base
)
1949 && TREE_CODE (TMR_INDEX2 (base
)) == SSA_NAME
)
1951 civ
= get_iv (data
, TMR_INDEX2 (base
));
1955 TMR_INDEX2 (base
) = civ
->base
;
1958 if (TMR_INDEX (base
)
1959 && TREE_CODE (TMR_INDEX (base
)) == SSA_NAME
)
1961 civ
= get_iv (data
, TMR_INDEX (base
));
1965 TMR_INDEX (base
) = civ
->base
;
1970 if (TMR_STEP (base
))
1971 astep
= fold_build2 (MULT_EXPR
, type
, TMR_STEP (base
), astep
);
1973 step
= fold_build2 (PLUS_EXPR
, type
, step
, astep
);
1977 if (integer_zerop (step
))
1979 base
= tree_mem_ref_addr (type
, base
);
1983 ifs_ivopts_data
.ivopts_data
= data
;
1984 ifs_ivopts_data
.stmt
= stmt
;
1985 ifs_ivopts_data
.step
= size_zero_node
;
1986 if (!for_each_index (&base
, idx_find_step
, &ifs_ivopts_data
)
1987 || integer_zerop (ifs_ivopts_data
.step
))
1989 step
= ifs_ivopts_data
.step
;
1991 /* Check that the base expression is addressable. This needs
1992 to be done after substituting bases of IVs into it. */
1993 if (may_be_nonaddressable_p (base
))
1996 /* Moreover, on strict alignment platforms, check that it is
1997 sufficiently aligned. */
1998 if (STRICT_ALIGNMENT
&& may_be_unaligned_p (base
, step
))
2001 base
= build_fold_addr_expr (base
);
2003 /* Substituting bases of IVs into the base expression might
2004 have caused folding opportunities. */
2005 if (TREE_CODE (base
) == ADDR_EXPR
)
2007 tree
*ref
= &TREE_OPERAND (base
, 0);
2008 while (handled_component_p (*ref
))
2009 ref
= &TREE_OPERAND (*ref
, 0);
2010 if (TREE_CODE (*ref
) == MEM_REF
)
2012 tree tem
= fold_binary (MEM_REF
, TREE_TYPE (*ref
),
2013 TREE_OPERAND (*ref
, 0),
2014 TREE_OPERAND (*ref
, 1));
2021 civ
= alloc_iv (data
, base
, step
);
2022 record_group_use (data
, op_p
, civ
, stmt
, USE_ADDRESS
);
2026 for_each_index (op_p
, idx_record_use
, data
);
2029 /* Finds and records invariants used in STMT. */
2032 find_invariants_stmt (struct ivopts_data
*data
, gimple stmt
)
2035 use_operand_p use_p
;
2038 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
2040 op
= USE_FROM_PTR (use_p
);
2041 record_invariant (data
, op
, false);
2045 /* Finds interesting uses of induction variables in the statement STMT. */
2048 find_interesting_uses_stmt (struct ivopts_data
*data
, gimple stmt
)
2051 tree op
, *lhs
, *rhs
;
2053 use_operand_p use_p
;
2054 enum tree_code code
;
2056 find_invariants_stmt (data
, stmt
);
2058 if (gimple_code (stmt
) == GIMPLE_COND
)
2060 find_interesting_uses_cond (data
, stmt
);
2064 if (is_gimple_assign (stmt
))
2066 lhs
= gimple_assign_lhs_ptr (stmt
);
2067 rhs
= gimple_assign_rhs1_ptr (stmt
);
2069 if (TREE_CODE (*lhs
) == SSA_NAME
)
2071 /* If the statement defines an induction variable, the uses are not
2072 interesting by themselves. */
2074 iv
= get_iv (data
, *lhs
);
2076 if (iv
&& !integer_zerop (iv
->step
))
2080 code
= gimple_assign_rhs_code (stmt
);
2081 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
2082 && (REFERENCE_CLASS_P (*rhs
)
2083 || is_gimple_val (*rhs
)))
2085 if (REFERENCE_CLASS_P (*rhs
))
2086 find_interesting_uses_address (data
, stmt
, rhs
);
2088 find_interesting_uses_op (data
, *rhs
);
2090 if (REFERENCE_CLASS_P (*lhs
))
2091 find_interesting_uses_address (data
, stmt
, lhs
);
2094 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
2096 find_interesting_uses_cond (data
, stmt
);
2100 /* TODO -- we should also handle address uses of type
2102 memory = call (whatever);
2109 if (gimple_code (stmt
) == GIMPLE_PHI
2110 && gimple_bb (stmt
) == data
->current_loop
->header
)
2112 iv
= get_iv (data
, PHI_RESULT (stmt
));
2114 if (iv
&& !integer_zerop (iv
->step
))
2118 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
2120 op
= USE_FROM_PTR (use_p
);
2122 if (TREE_CODE (op
) != SSA_NAME
)
2125 iv
= get_iv (data
, op
);
2129 find_interesting_uses_op (data
, op
);
2133 /* Finds interesting uses of induction variables outside of loops
2134 on loop exit edge EXIT. */
2137 find_interesting_uses_outside (struct ivopts_data
*data
, edge exit
)
2143 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); gsi_next (&psi
))
2146 def
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
2147 if (!virtual_operand_p (def
))
2148 find_interesting_uses_op (data
, def
);
2152 /* Finds uses of the induction variables that are interesting. */
2155 find_interesting_uses (struct ivopts_data
*data
)
2158 gimple_stmt_iterator bsi
;
2159 basic_block
*body
= get_loop_body (data
->current_loop
);
2161 struct version_info
*info
;
2164 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2165 fprintf (dump_file
, "Uses:\n\n");
2167 for (i
= 0; i
< data
->current_loop
->num_nodes
; i
++)
2172 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2173 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2174 && !flow_bb_inside_loop_p (data
->current_loop
, e
->dest
))
2175 find_interesting_uses_outside (data
, e
);
2177 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2178 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2179 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2180 if (!is_gimple_debug (gsi_stmt (bsi
)))
2181 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2184 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2188 fprintf (dump_file
, "\n");
2190 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
2192 info
= ver_info (data
, i
);
2195 fprintf (dump_file
, " ");
2196 print_generic_expr (dump_file
, info
->name
, TDF_SLIM
);
2197 fprintf (dump_file
, " is invariant (%d)%s\n",
2198 info
->inv_id
, info
->has_nonlin_use
? "" : ", eliminable");
2202 fprintf (dump_file
, "\n");
2208 /* Compute maximum offset of [base + offset] addressing mode
2209 for memory reference represented by USE. */
2211 static HOST_WIDE_INT
2212 compute_max_addr_offset (struct iv_use
*use
)
2216 HOST_WIDE_INT i
, off
;
2217 unsigned list_index
, num
;
2219 machine_mode mem_mode
, addr_mode
;
2220 static vec
<HOST_WIDE_INT
> max_offset_list
;
2222 as
= TYPE_ADDR_SPACE (TREE_TYPE (use
->iv
->base
));
2223 mem_mode
= TYPE_MODE (TREE_TYPE (*use
->op_p
));
2225 num
= max_offset_list
.length ();
2226 list_index
= (unsigned) as
* MAX_MACHINE_MODE
+ (unsigned) mem_mode
;
2227 if (list_index
>= num
)
2229 max_offset_list
.safe_grow (list_index
+ MAX_MACHINE_MODE
);
2230 for (; num
< max_offset_list
.length (); num
++)
2231 max_offset_list
[num
] = -1;
2234 off
= max_offset_list
[list_index
];
2238 addr_mode
= targetm
.addr_space
.address_mode (as
);
2239 reg
= gen_raw_REG (addr_mode
, LAST_VIRTUAL_REGISTER
+ 1);
2240 addr
= gen_rtx_fmt_ee (PLUS
, addr_mode
, reg
, NULL_RTX
);
2242 width
= GET_MODE_BITSIZE (addr_mode
) - 1;
2243 if (width
> (HOST_BITS_PER_WIDE_INT
- 1))
2244 width
= HOST_BITS_PER_WIDE_INT
- 1;
2246 for (i
= width
; i
> 0; i
--)
2248 off
= ((unsigned HOST_WIDE_INT
) 1 << i
) - 1;
2249 XEXP (addr
, 1) = gen_int_mode (off
, addr_mode
);
2250 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
2253 /* For some strict-alignment targets, the offset must be naturally
2254 aligned. Try an aligned offset if mem_mode is not QImode. */
2255 off
= ((unsigned HOST_WIDE_INT
) 1 << i
);
2256 if (off
> GET_MODE_SIZE (mem_mode
) && mem_mode
!= QImode
)
2258 off
-= GET_MODE_SIZE (mem_mode
);
2259 XEXP (addr
, 1) = gen_int_mode (off
, addr_mode
);
2260 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
2267 max_offset_list
[list_index
] = off
;
2271 /* Check if all small groups should be split. Return true if and
2274 1) At least one groups contain two uses with different offsets.
2275 2) No group contains more than two uses with different offsets.
2277 Return false otherwise. We want to split such groups because:
2279 1) Small groups don't have much benefit and may interfer with
2280 general candidate selection.
2281 2) Size for problem with only small groups is usually small and
2282 general algorithm can handle it well.
2284 TODO -- Above claim may not hold when auto increment is supported. */
2287 split_all_small_groups (struct ivopts_data
*data
)
2289 bool split_p
= false;
2290 unsigned int i
, n
, distinct
;
2291 struct iv_use
*pre
, *use
;
2293 n
= n_iv_uses (data
);
2294 for (i
= 0; i
< n
; i
++)
2296 use
= iv_use (data
, i
);
2301 gcc_assert (use
->type
== USE_ADDRESS
);
2302 for (pre
= use
, use
= use
->next
; use
; pre
= use
, use
= use
->next
)
2304 if (pre
->addr_offset
!= use
->addr_offset
)
2317 /* For each group of address type uses, this function further groups
2318 these uses according to the maximum offset supported by target's
2319 [base + offset] addressing mode. */
2322 group_address_uses (struct ivopts_data
*data
)
2324 HOST_WIDE_INT max_offset
= -1;
2325 unsigned int i
, n
, sub_id
;
2326 struct iv_use
*pre
, *use
;
2327 unsigned HOST_WIDE_INT addr_offset_first
;
2329 /* Reset max offset to split all small groups. */
2330 if (split_all_small_groups (data
))
2333 n
= n_iv_uses (data
);
2334 for (i
= 0; i
< n
; i
++)
2336 use
= iv_use (data
, i
);
2340 gcc_assert (use
->type
== USE_ADDRESS
);
2341 if (max_offset
!= 0)
2342 max_offset
= compute_max_addr_offset (use
);
2347 addr_offset_first
= use
->addr_offset
;
2348 /* Only uses with offset that can fit in offset part against
2349 the first use can be grouped together. */
2350 for (pre
= use
, use
= use
->next
;
2351 use
&& (use
->addr_offset
- addr_offset_first
2352 <= (unsigned HOST_WIDE_INT
) max_offset
);
2353 pre
= use
, use
= use
->next
)
2356 use
->sub_id
= ++sub_id
;
2359 /* Break the list and create new group. */
2363 use
->id
= n_iv_uses (data
);
2364 use
->related_cands
= BITMAP_ALLOC (NULL
);
2365 data
->iv_uses
.safe_push (use
);
2370 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2371 dump_uses (dump_file
, data
);
2374 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
2375 is true, assume we are inside an address. If TOP_COMPREF is true, assume
2376 we are at the top-level of the processed address. */
2379 strip_offset_1 (tree expr
, bool inside_addr
, bool top_compref
,
2380 HOST_WIDE_INT
*offset
)
2382 tree op0
= NULL_TREE
, op1
= NULL_TREE
, tmp
, step
;
2383 enum tree_code code
;
2384 tree type
, orig_type
= TREE_TYPE (expr
);
2385 HOST_WIDE_INT off0
, off1
, st
;
2386 tree orig_expr
= expr
;
2390 type
= TREE_TYPE (expr
);
2391 code
= TREE_CODE (expr
);
2397 if (!cst_and_fits_in_hwi (expr
)
2398 || integer_zerop (expr
))
2401 *offset
= int_cst_value (expr
);
2402 return build_int_cst (orig_type
, 0);
2404 case POINTER_PLUS_EXPR
:
2407 op0
= TREE_OPERAND (expr
, 0);
2408 op1
= TREE_OPERAND (expr
, 1);
2410 op0
= strip_offset_1 (op0
, false, false, &off0
);
2411 op1
= strip_offset_1 (op1
, false, false, &off1
);
2413 *offset
= (code
== MINUS_EXPR
? off0
- off1
: off0
+ off1
);
2414 if (op0
== TREE_OPERAND (expr
, 0)
2415 && op1
== TREE_OPERAND (expr
, 1))
2418 if (integer_zerop (op1
))
2420 else if (integer_zerop (op0
))
2422 if (code
== MINUS_EXPR
)
2423 expr
= fold_build1 (NEGATE_EXPR
, type
, op1
);
2428 expr
= fold_build2 (code
, type
, op0
, op1
);
2430 return fold_convert (orig_type
, expr
);
2433 op1
= TREE_OPERAND (expr
, 1);
2434 if (!cst_and_fits_in_hwi (op1
))
2437 op0
= TREE_OPERAND (expr
, 0);
2438 op0
= strip_offset_1 (op0
, false, false, &off0
);
2439 if (op0
== TREE_OPERAND (expr
, 0))
2442 *offset
= off0
* int_cst_value (op1
);
2443 if (integer_zerop (op0
))
2446 expr
= fold_build2 (MULT_EXPR
, type
, op0
, op1
);
2448 return fold_convert (orig_type
, expr
);
2451 case ARRAY_RANGE_REF
:
2455 step
= array_ref_element_size (expr
);
2456 if (!cst_and_fits_in_hwi (step
))
2459 st
= int_cst_value (step
);
2460 op1
= TREE_OPERAND (expr
, 1);
2461 op1
= strip_offset_1 (op1
, false, false, &off1
);
2462 *offset
= off1
* st
;
2465 && integer_zerop (op1
))
2467 /* Strip the component reference completely. */
2468 op0
= TREE_OPERAND (expr
, 0);
2469 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2482 tmp
= component_ref_field_offset (expr
);
2483 field
= TREE_OPERAND (expr
, 1);
2485 && cst_and_fits_in_hwi (tmp
)
2486 && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field
)))
2488 HOST_WIDE_INT boffset
, abs_off
;
2490 /* Strip the component reference completely. */
2491 op0
= TREE_OPERAND (expr
, 0);
2492 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2493 boffset
= int_cst_value (DECL_FIELD_BIT_OFFSET (field
));
2494 abs_off
= abs_hwi (boffset
) / BITS_PER_UNIT
;
2498 *offset
= off0
+ int_cst_value (tmp
) + abs_off
;
2505 op0
= TREE_OPERAND (expr
, 0);
2506 op0
= strip_offset_1 (op0
, true, true, &off0
);
2509 if (op0
== TREE_OPERAND (expr
, 0))
2512 expr
= build_fold_addr_expr (op0
);
2513 return fold_convert (orig_type
, expr
);
2516 /* ??? Offset operand? */
2517 inside_addr
= false;
2524 /* Default handling of expressions for that we want to recurse into
2525 the first operand. */
2526 op0
= TREE_OPERAND (expr
, 0);
2527 op0
= strip_offset_1 (op0
, inside_addr
, false, &off0
);
2530 if (op0
== TREE_OPERAND (expr
, 0)
2531 && (!op1
|| op1
== TREE_OPERAND (expr
, 1)))
2534 expr
= copy_node (expr
);
2535 TREE_OPERAND (expr
, 0) = op0
;
2537 TREE_OPERAND (expr
, 1) = op1
;
2539 /* Inside address, we might strip the top level component references,
2540 thus changing type of the expression. Handling of ADDR_EXPR
2542 expr
= fold_convert (orig_type
, expr
);
2547 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2550 strip_offset (tree expr
, unsigned HOST_WIDE_INT
*offset
)
2553 tree core
= strip_offset_1 (expr
, false, false, &off
);
2558 /* Returns variant of TYPE that can be used as base for different uses.
2559 We return unsigned type with the same precision, which avoids problems
2563 generic_type_for (tree type
)
2565 if (POINTER_TYPE_P (type
))
2566 return unsigned_type_for (type
);
2568 if (TYPE_UNSIGNED (type
))
2571 return unsigned_type_for (type
);
2574 /* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
2575 the bitmap to that we should store it. */
2577 static struct ivopts_data
*fd_ivopts_data
;
2579 find_depends (tree
*expr_p
, int *ws ATTRIBUTE_UNUSED
, void *data
)
2581 bitmap
*depends_on
= (bitmap
*) data
;
2582 struct version_info
*info
;
2584 if (TREE_CODE (*expr_p
) != SSA_NAME
)
2586 info
= name_info (fd_ivopts_data
, *expr_p
);
2588 if (!info
->inv_id
|| info
->has_nonlin_use
)
2592 *depends_on
= BITMAP_ALLOC (NULL
);
2593 bitmap_set_bit (*depends_on
, info
->inv_id
);
2598 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2599 position to POS. If USE is not NULL, the candidate is set as related to
2600 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
2601 replacement of the final value of the iv by a direct computation. */
2603 static struct iv_cand
*
2604 add_candidate_1 (struct ivopts_data
*data
,
2605 tree base
, tree step
, bool important
, enum iv_position pos
,
2606 struct iv_use
*use
, gimple incremented_at
)
2609 struct iv_cand
*cand
= NULL
;
2610 tree type
, orig_type
;
2612 /* For non-original variables, make sure their values are computed in a type
2613 that does not invoke undefined behavior on overflows (since in general,
2614 we cannot prove that these induction variables are non-wrapping). */
2615 if (pos
!= IP_ORIGINAL
)
2617 orig_type
= TREE_TYPE (base
);
2618 type
= generic_type_for (orig_type
);
2619 if (type
!= orig_type
)
2621 base
= fold_convert (type
, base
);
2622 step
= fold_convert (type
, step
);
2626 for (i
= 0; i
< n_iv_cands (data
); i
++)
2628 cand
= iv_cand (data
, i
);
2630 if (cand
->pos
!= pos
)
2633 if (cand
->incremented_at
!= incremented_at
2634 || ((pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
2635 && cand
->ainc_use
!= use
))
2649 if (operand_equal_p (base
, cand
->iv
->base
, 0)
2650 && operand_equal_p (step
, cand
->iv
->step
, 0)
2651 && (TYPE_PRECISION (TREE_TYPE (base
))
2652 == TYPE_PRECISION (TREE_TYPE (cand
->iv
->base
))))
2656 if (i
== n_iv_cands (data
))
2658 cand
= XCNEW (struct iv_cand
);
2664 cand
->iv
= alloc_iv (data
, base
, step
);
2667 if (pos
!= IP_ORIGINAL
&& cand
->iv
)
2669 cand
->var_before
= create_tmp_var_raw (TREE_TYPE (base
), "ivtmp");
2670 cand
->var_after
= cand
->var_before
;
2672 cand
->important
= important
;
2673 cand
->incremented_at
= incremented_at
;
2674 data
->iv_candidates
.safe_push (cand
);
2677 && TREE_CODE (step
) != INTEGER_CST
)
2679 fd_ivopts_data
= data
;
2680 walk_tree (&step
, find_depends
, &cand
->depends_on
, NULL
);
2683 if (pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
2684 cand
->ainc_use
= use
;
2686 cand
->ainc_use
= NULL
;
2688 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2689 dump_cand (dump_file
, cand
);
2692 if (important
&& !cand
->important
)
2694 cand
->important
= true;
2695 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2696 fprintf (dump_file
, "Candidate %d is important\n", cand
->id
);
2701 bitmap_set_bit (use
->related_cands
, i
);
2702 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2703 fprintf (dump_file
, "Candidate %d is related to use %d\n",
2710 /* Returns true if incrementing the induction variable at the end of the LOOP
2713 The purpose is to avoid splitting latch edge with a biv increment, thus
2714 creating a jump, possibly confusing other optimization passes and leaving
2715 less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
2716 is not available (so we do not have a better alternative), or if the latch
2717 edge is already nonempty. */
2720 allow_ip_end_pos_p (struct loop
*loop
)
2722 if (!ip_normal_pos (loop
))
2725 if (!empty_block_p (ip_end_pos (loop
)))
2731 /* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
2732 Important field is set to IMPORTANT. */
2735 add_autoinc_candidates (struct ivopts_data
*data
, tree base
, tree step
,
2736 bool important
, struct iv_use
*use
)
2738 basic_block use_bb
= gimple_bb (use
->stmt
);
2739 machine_mode mem_mode
;
2740 unsigned HOST_WIDE_INT cstepi
;
2742 /* If we insert the increment in any position other than the standard
2743 ones, we must ensure that it is incremented once per iteration.
2744 It must not be in an inner nested loop, or one side of an if
2746 if (use_bb
->loop_father
!= data
->current_loop
2747 || !dominated_by_p (CDI_DOMINATORS
, data
->current_loop
->latch
, use_bb
)
2748 || stmt_could_throw_p (use
->stmt
)
2749 || !cst_and_fits_in_hwi (step
))
2752 cstepi
= int_cst_value (step
);
2754 mem_mode
= TYPE_MODE (TREE_TYPE (*use
->op_p
));
2755 if (((USE_LOAD_PRE_INCREMENT (mem_mode
)
2756 || USE_STORE_PRE_INCREMENT (mem_mode
))
2757 && GET_MODE_SIZE (mem_mode
) == cstepi
)
2758 || ((USE_LOAD_PRE_DECREMENT (mem_mode
)
2759 || USE_STORE_PRE_DECREMENT (mem_mode
))
2760 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
2762 enum tree_code code
= MINUS_EXPR
;
2764 tree new_step
= step
;
2766 if (POINTER_TYPE_P (TREE_TYPE (base
)))
2768 new_step
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (step
), step
);
2769 code
= POINTER_PLUS_EXPR
;
2772 new_step
= fold_convert (TREE_TYPE (base
), new_step
);
2773 new_base
= fold_build2 (code
, TREE_TYPE (base
), base
, new_step
);
2774 add_candidate_1 (data
, new_base
, step
, important
, IP_BEFORE_USE
, use
,
2777 if (((USE_LOAD_POST_INCREMENT (mem_mode
)
2778 || USE_STORE_POST_INCREMENT (mem_mode
))
2779 && GET_MODE_SIZE (mem_mode
) == cstepi
)
2780 || ((USE_LOAD_POST_DECREMENT (mem_mode
)
2781 || USE_STORE_POST_DECREMENT (mem_mode
))
2782 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
2784 add_candidate_1 (data
, base
, step
, important
, IP_AFTER_USE
, use
,
2789 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2790 position to POS. If USE is not NULL, the candidate is set as related to
2791 it. The candidate computation is scheduled before exit condition and at
2795 add_candidate (struct ivopts_data
*data
,
2796 tree base
, tree step
, bool important
, struct iv_use
*use
)
2798 gcc_assert (use
== NULL
|| use
->sub_id
== 0);
2800 if (ip_normal_pos (data
->current_loop
))
2801 add_candidate_1 (data
, base
, step
, important
, IP_NORMAL
, use
, NULL
);
2802 if (ip_end_pos (data
->current_loop
)
2803 && allow_ip_end_pos_p (data
->current_loop
))
2804 add_candidate_1 (data
, base
, step
, important
, IP_END
, use
, NULL
);
2807 /* Adds standard iv candidates. */
2810 add_standard_iv_candidates (struct ivopts_data
*data
)
2812 add_candidate (data
, integer_zero_node
, integer_one_node
, true, NULL
);
2814 /* The same for a double-integer type if it is still fast enough. */
2816 (long_integer_type_node
) > TYPE_PRECISION (integer_type_node
)
2817 && TYPE_PRECISION (long_integer_type_node
) <= BITS_PER_WORD
)
2818 add_candidate (data
, build_int_cst (long_integer_type_node
, 0),
2819 build_int_cst (long_integer_type_node
, 1), true, NULL
);
2821 /* The same for a double-integer type if it is still fast enough. */
2823 (long_long_integer_type_node
) > TYPE_PRECISION (long_integer_type_node
)
2824 && TYPE_PRECISION (long_long_integer_type_node
) <= BITS_PER_WORD
)
2825 add_candidate (data
, build_int_cst (long_long_integer_type_node
, 0),
2826 build_int_cst (long_long_integer_type_node
, 1), true, NULL
);
2830 /* Adds candidates bases on the old induction variable IV. */
2833 add_iv_candidate_for_biv (struct ivopts_data
*data
, struct iv
*iv
)
2837 struct iv_cand
*cand
;
2839 add_candidate (data
, iv
->base
, iv
->step
, true, NULL
);
2841 /* The same, but with initial value zero. */
2842 if (POINTER_TYPE_P (TREE_TYPE (iv
->base
)))
2843 add_candidate (data
, size_int (0), iv
->step
, true, NULL
);
2845 add_candidate (data
, build_int_cst (TREE_TYPE (iv
->base
), 0),
2846 iv
->step
, true, NULL
);
2848 phi
= SSA_NAME_DEF_STMT (iv
->ssa_name
);
2849 if (gimple_code (phi
) == GIMPLE_PHI
)
2851 /* Additionally record the possibility of leaving the original iv
2853 def
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (data
->current_loop
));
2854 /* Don't add candidate if it's from another PHI node because
2855 it's an affine iv appearing in the form of PEELED_CHREC. */
2856 phi
= SSA_NAME_DEF_STMT (def
);
2857 if (gimple_code (phi
) != GIMPLE_PHI
)
2859 cand
= add_candidate_1 (data
,
2860 iv
->base
, iv
->step
, true, IP_ORIGINAL
, NULL
,
2861 SSA_NAME_DEF_STMT (def
));
2862 cand
->var_before
= iv
->ssa_name
;
2863 cand
->var_after
= def
;
2866 gcc_assert (gimple_bb (phi
) == data
->current_loop
->header
);
2870 /* Adds candidates based on the old induction variables. */
2873 add_iv_candidate_for_bivs (struct ivopts_data
*data
)
2879 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
2881 iv
= ver_info (data
, i
)->iv
;
2882 if (iv
&& iv
->biv_p
&& !integer_zerop (iv
->step
))
2883 add_iv_candidate_for_biv (data
, iv
);
2887 /* Adds candidates based on the value of USE's iv. */
2890 add_iv_candidate_for_use (struct ivopts_data
*data
, struct iv_use
*use
)
2892 unsigned HOST_WIDE_INT offset
;
2895 struct iv
*iv
= use
->iv
;
2897 add_candidate (data
, iv
->base
, iv
->step
, false, use
);
2899 /* The same, but with initial value zero. Make such variable important,
2900 since it is generic enough so that possibly many uses may be based
2902 basetype
= TREE_TYPE (iv
->base
);
2903 if (POINTER_TYPE_P (basetype
))
2904 basetype
= sizetype
;
2905 add_candidate (data
, build_int_cst (basetype
, 0), iv
->step
, true, use
);
2907 /* Third, try removing the constant offset. Make sure to even
2908 add a candidate for &a[0] vs. (T *)&a. */
2909 base
= strip_offset (iv
->base
, &offset
);
2910 if (offset
|| base
!= iv
->base
)
2911 add_candidate (data
, base
, iv
->step
, false, use
);
2913 /* At last, add auto-incremental candidates. Make such variables
2914 important since other iv uses with same base object may be based
2916 if (use
!= NULL
&& use
->type
== USE_ADDRESS
)
2917 add_autoinc_candidates (data
, iv
->base
, iv
->step
, true, use
);
2920 /* Adds candidates based on the uses. */
2923 add_iv_candidate_for_uses (struct ivopts_data
*data
)
2927 for (i
= 0; i
< n_iv_uses (data
); i
++)
2929 struct iv_use
*use
= iv_use (data
, i
);
2936 case USE_NONLINEAR_EXPR
:
2939 /* Just add the ivs based on the value of the iv used here. */
2940 add_iv_candidate_for_use (data
, use
);
2949 /* Record important candidates and add them to related_cands bitmaps
2953 record_important_candidates (struct ivopts_data
*data
)
2958 for (i
= 0; i
< n_iv_cands (data
); i
++)
2960 struct iv_cand
*cand
= iv_cand (data
, i
);
2962 if (cand
->important
)
2963 bitmap_set_bit (data
->important_candidates
, i
);
2966 data
->consider_all_candidates
= (n_iv_cands (data
)
2967 <= CONSIDER_ALL_CANDIDATES_BOUND
);
2969 if (data
->consider_all_candidates
)
2971 /* We will not need "related_cands" bitmaps in this case,
2972 so release them to decrease peak memory consumption. */
2973 for (i
= 0; i
< n_iv_uses (data
); i
++)
2975 use
= iv_use (data
, i
);
2976 BITMAP_FREE (use
->related_cands
);
2981 /* Add important candidates to the related_cands bitmaps. */
2982 for (i
= 0; i
< n_iv_uses (data
); i
++)
2983 bitmap_ior_into (iv_use (data
, i
)->related_cands
,
2984 data
->important_candidates
);
2988 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
2989 If consider_all_candidates is true, we use a two-dimensional array, otherwise
2990 we allocate a simple list to every use. */
2993 alloc_use_cost_map (struct ivopts_data
*data
)
2995 unsigned i
, size
, s
;
2997 for (i
= 0; i
< n_iv_uses (data
); i
++)
2999 struct iv_use
*use
= iv_use (data
, i
);
3001 if (data
->consider_all_candidates
)
3002 size
= n_iv_cands (data
);
3005 s
= bitmap_count_bits (use
->related_cands
);
3007 /* Round up to the power of two, so that moduling by it is fast. */
3008 size
= s
? (1 << ceil_log2 (s
)) : 1;
3011 use
->n_map_members
= size
;
3012 use
->cost_map
= XCNEWVEC (struct cost_pair
, size
);
3016 /* Returns description of computation cost of expression whose runtime
3017 cost is RUNTIME and complexity corresponds to COMPLEXITY. */
3020 new_cost (unsigned runtime
, unsigned complexity
)
3024 cost
.cost
= runtime
;
3025 cost
.complexity
= complexity
;
3030 /* Returns true if COST is infinite. */
3033 infinite_cost_p (comp_cost cost
)
3035 return cost
.cost
== INFTY
;
3038 /* Adds costs COST1 and COST2. */
3041 add_costs (comp_cost cost1
, comp_cost cost2
)
3043 if (infinite_cost_p (cost1
) || infinite_cost_p (cost2
))
3044 return infinite_cost
;
3046 cost1
.cost
+= cost2
.cost
;
3047 cost1
.complexity
+= cost2
.complexity
;
3051 /* Subtracts costs COST1 and COST2. */
3054 sub_costs (comp_cost cost1
, comp_cost cost2
)
3056 cost1
.cost
-= cost2
.cost
;
3057 cost1
.complexity
-= cost2
.complexity
;
3062 /* Returns a negative number if COST1 < COST2, a positive number if
3063 COST1 > COST2, and 0 if COST1 = COST2. */
3066 compare_costs (comp_cost cost1
, comp_cost cost2
)
3068 if (cost1
.cost
== cost2
.cost
)
3069 return cost1
.complexity
- cost2
.complexity
;
3071 return cost1
.cost
- cost2
.cost
;
3074 /* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
3075 on invariants DEPENDS_ON and that the value used in expressing it
3076 is VALUE, and in case of iv elimination the comparison operator is COMP. */
3079 set_use_iv_cost (struct ivopts_data
*data
,
3080 struct iv_use
*use
, struct iv_cand
*cand
,
3081 comp_cost cost
, bitmap depends_on
, tree value
,
3082 enum tree_code comp
, int inv_expr_id
)
3086 if (infinite_cost_p (cost
))
3088 BITMAP_FREE (depends_on
);
3092 if (data
->consider_all_candidates
)
3094 use
->cost_map
[cand
->id
].cand
= cand
;
3095 use
->cost_map
[cand
->id
].cost
= cost
;
3096 use
->cost_map
[cand
->id
].depends_on
= depends_on
;
3097 use
->cost_map
[cand
->id
].value
= value
;
3098 use
->cost_map
[cand
->id
].comp
= comp
;
3099 use
->cost_map
[cand
->id
].inv_expr_id
= inv_expr_id
;
3103 /* n_map_members is a power of two, so this computes modulo. */
3104 s
= cand
->id
& (use
->n_map_members
- 1);
3105 for (i
= s
; i
< use
->n_map_members
; i
++)
3106 if (!use
->cost_map
[i
].cand
)
3108 for (i
= 0; i
< s
; i
++)
3109 if (!use
->cost_map
[i
].cand
)
3115 use
->cost_map
[i
].cand
= cand
;
3116 use
->cost_map
[i
].cost
= cost
;
3117 use
->cost_map
[i
].depends_on
= depends_on
;
3118 use
->cost_map
[i
].value
= value
;
3119 use
->cost_map
[i
].comp
= comp
;
3120 use
->cost_map
[i
].inv_expr_id
= inv_expr_id
;
3123 /* Gets cost of (USE, CANDIDATE) pair. */
3125 static struct cost_pair
*
3126 get_use_iv_cost (struct ivopts_data
*data
, struct iv_use
*use
,
3127 struct iv_cand
*cand
)
3130 struct cost_pair
*ret
;
3135 if (data
->consider_all_candidates
)
3137 ret
= use
->cost_map
+ cand
->id
;
3144 /* n_map_members is a power of two, so this computes modulo. */
3145 s
= cand
->id
& (use
->n_map_members
- 1);
3146 for (i
= s
; i
< use
->n_map_members
; i
++)
3147 if (use
->cost_map
[i
].cand
== cand
)
3148 return use
->cost_map
+ i
;
3149 else if (use
->cost_map
[i
].cand
== NULL
)
3151 for (i
= 0; i
< s
; i
++)
3152 if (use
->cost_map
[i
].cand
== cand
)
3153 return use
->cost_map
+ i
;
3154 else if (use
->cost_map
[i
].cand
== NULL
)
3160 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
3162 produce_memory_decl_rtl (tree obj
, int *regno
)
3164 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (obj
));
3165 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3169 if (TREE_STATIC (obj
) || DECL_EXTERNAL (obj
))
3171 const char *name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj
));
3172 x
= gen_rtx_SYMBOL_REF (address_mode
, name
);
3173 SET_SYMBOL_REF_DECL (x
, obj
);
3174 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
3175 set_mem_addr_space (x
, as
);
3176 targetm
.encode_section_info (obj
, x
, true);
3180 x
= gen_raw_REG (address_mode
, (*regno
)++);
3181 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
3182 set_mem_addr_space (x
, as
);
3188 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
3189 walk_tree. DATA contains the actual fake register number. */
3192 prepare_decl_rtl (tree
*expr_p
, int *ws
, void *data
)
3194 tree obj
= NULL_TREE
;
3196 int *regno
= (int *) data
;
3198 switch (TREE_CODE (*expr_p
))
3201 for (expr_p
= &TREE_OPERAND (*expr_p
, 0);
3202 handled_component_p (*expr_p
);
3203 expr_p
= &TREE_OPERAND (*expr_p
, 0))
3206 if (DECL_P (obj
) && HAS_RTL_P (obj
) && !DECL_RTL_SET_P (obj
))
3207 x
= produce_memory_decl_rtl (obj
, regno
);
3212 obj
= SSA_NAME_VAR (*expr_p
);
3213 /* Defer handling of anonymous SSA_NAMEs to the expander. */
3216 if (!DECL_RTL_SET_P (obj
))
3217 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
3226 if (DECL_RTL_SET_P (obj
))
3229 if (DECL_MODE (obj
) == BLKmode
)
3230 x
= produce_memory_decl_rtl (obj
, regno
);
3232 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
3242 decl_rtl_to_reset
.safe_push (obj
);
3243 SET_DECL_RTL (obj
, x
);
3249 /* Determines cost of the computation of EXPR. */
3252 computation_cost (tree expr
, bool speed
)
3256 tree type
= TREE_TYPE (expr
);
3258 /* Avoid using hard regs in ways which may be unsupported. */
3259 int regno
= LAST_VIRTUAL_REGISTER
+ 1;
3260 struct cgraph_node
*node
= cgraph_node::get (current_function_decl
);
3261 enum node_frequency real_frequency
= node
->frequency
;
3263 node
->frequency
= NODE_FREQUENCY_NORMAL
;
3264 crtl
->maybe_hot_insn_p
= speed
;
3265 walk_tree (&expr
, prepare_decl_rtl
, ®no
, NULL
);
3267 rslt
= expand_expr (expr
, NULL_RTX
, TYPE_MODE (type
), EXPAND_NORMAL
);
3270 default_rtl_profile ();
3271 node
->frequency
= real_frequency
;
3273 cost
= seq_cost (seq
, speed
);
3275 cost
+= address_cost (XEXP (rslt
, 0), TYPE_MODE (type
),
3276 TYPE_ADDR_SPACE (type
), speed
);
3277 else if (!REG_P (rslt
))
3278 cost
+= set_src_cost (rslt
, TYPE_MODE (type
), speed
);
3283 /* Returns variable containing the value of candidate CAND at statement AT. */
3286 var_at_stmt (struct loop
*loop
, struct iv_cand
*cand
, gimple stmt
)
3288 if (stmt_after_increment (loop
, cand
, stmt
))
3289 return cand
->var_after
;
3291 return cand
->var_before
;
3294 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
3295 same precision that is at least as wide as the precision of TYPE, stores
3296 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
3300 determine_common_wider_type (tree
*a
, tree
*b
)
3302 tree wider_type
= NULL
;
3304 tree atype
= TREE_TYPE (*a
);
3306 if (CONVERT_EXPR_P (*a
))
3308 suba
= TREE_OPERAND (*a
, 0);
3309 wider_type
= TREE_TYPE (suba
);
3310 if (TYPE_PRECISION (wider_type
) < TYPE_PRECISION (atype
))
3316 if (CONVERT_EXPR_P (*b
))
3318 subb
= TREE_OPERAND (*b
, 0);
3319 if (TYPE_PRECISION (wider_type
) != TYPE_PRECISION (TREE_TYPE (subb
)))
3330 /* Determines the expression by that USE is expressed from induction variable
3331 CAND at statement AT in LOOP. The expression is stored in a decomposed
3332 form into AFF. Returns false if USE cannot be expressed using CAND. */
3335 get_computation_aff (struct loop
*loop
,
3336 struct iv_use
*use
, struct iv_cand
*cand
, gimple at
,
3337 struct aff_tree
*aff
)
3339 tree ubase
= use
->iv
->base
;
3340 tree ustep
= use
->iv
->step
;
3341 tree cbase
= cand
->iv
->base
;
3342 tree cstep
= cand
->iv
->step
, cstep_common
;
3343 tree utype
= TREE_TYPE (ubase
), ctype
= TREE_TYPE (cbase
);
3344 tree common_type
, var
;
3346 aff_tree cbase_aff
, var_aff
;
3349 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
3351 /* We do not have a precision to express the values of use. */
3355 var
= var_at_stmt (loop
, cand
, at
);
3356 uutype
= unsigned_type_for (utype
);
3358 /* If the conversion is not noop, perform it. */
3359 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
3361 cstep
= fold_convert (uutype
, cstep
);
3362 cbase
= fold_convert (uutype
, cbase
);
3363 var
= fold_convert (uutype
, var
);
3366 if (!constant_multiple_of (ustep
, cstep
, &rat
))
3369 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
3370 type, we achieve better folding by computing their difference in this
3371 wider type, and cast the result to UUTYPE. We do not need to worry about
3372 overflows, as all the arithmetics will in the end be performed in UUTYPE
3374 common_type
= determine_common_wider_type (&ubase
, &cbase
);
3376 /* use = ubase - ratio * cbase + ratio * var. */
3377 tree_to_aff_combination (ubase
, common_type
, aff
);
3378 tree_to_aff_combination (cbase
, common_type
, &cbase_aff
);
3379 tree_to_aff_combination (var
, uutype
, &var_aff
);
3381 /* We need to shift the value if we are after the increment. */
3382 if (stmt_after_increment (loop
, cand
, at
))
3386 if (common_type
!= uutype
)
3387 cstep_common
= fold_convert (common_type
, cstep
);
3389 cstep_common
= cstep
;
3391 tree_to_aff_combination (cstep_common
, common_type
, &cstep_aff
);
3392 aff_combination_add (&cbase_aff
, &cstep_aff
);
3395 aff_combination_scale (&cbase_aff
, -rat
);
3396 aff_combination_add (aff
, &cbase_aff
);
3397 if (common_type
!= uutype
)
3398 aff_combination_convert (aff
, uutype
);
3400 aff_combination_scale (&var_aff
, rat
);
3401 aff_combination_add (aff
, &var_aff
);
3406 /* Return the type of USE. */
3409 get_use_type (struct iv_use
*use
)
3411 tree base_type
= TREE_TYPE (use
->iv
->base
);
3414 if (use
->type
== USE_ADDRESS
)
3416 /* The base_type may be a void pointer. Create a pointer type based on
3417 the mem_ref instead. */
3418 type
= build_pointer_type (TREE_TYPE (*use
->op_p
));
3419 gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type
))
3420 == TYPE_ADDR_SPACE (TREE_TYPE (base_type
)));
3428 /* Determines the expression by that USE is expressed from induction variable
3429 CAND at statement AT in LOOP. The computation is unshared. */
3432 get_computation_at (struct loop
*loop
,
3433 struct iv_use
*use
, struct iv_cand
*cand
, gimple at
)
3436 tree type
= get_use_type (use
);
3438 if (!get_computation_aff (loop
, use
, cand
, at
, &aff
))
3440 unshare_aff_combination (&aff
);
3441 return fold_convert (type
, aff_combination_to_tree (&aff
));
3444 /* Determines the expression by that USE is expressed from induction variable
3445 CAND in LOOP. The computation is unshared. */
3448 get_computation (struct loop
*loop
, struct iv_use
*use
, struct iv_cand
*cand
)
3450 return get_computation_at (loop
, use
, cand
, use
->stmt
);
3453 /* Adjust the cost COST for being in loop setup rather than loop body.
3454 If we're optimizing for space, the loop setup overhead is constant;
3455 if we're optimizing for speed, amortize it over the per-iteration cost. */
3457 adjust_setup_cost (struct ivopts_data
*data
, unsigned cost
)
3461 else if (optimize_loop_for_speed_p (data
->current_loop
))
3462 return cost
/ avg_loop_niter (data
->current_loop
);
3467 /* Returns true if multiplying by RATIO is allowed in an address. Test the
3468 validity for a memory reference accessing memory of mode MODE in
3469 address space AS. */
3473 multiplier_allowed_in_address_p (HOST_WIDE_INT ratio
, machine_mode mode
,
3476 #define MAX_RATIO 128
3477 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mode
;
3478 static vec
<sbitmap
> valid_mult_list
;
3481 if (data_index
>= valid_mult_list
.length ())
3482 valid_mult_list
.safe_grow_cleared (data_index
+ 1);
3484 valid_mult
= valid_mult_list
[data_index
];
3487 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3488 rtx reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3489 rtx reg2
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
3493 valid_mult
= sbitmap_alloc (2 * MAX_RATIO
+ 1);
3494 bitmap_clear (valid_mult
);
3495 scaled
= gen_rtx_fmt_ee (MULT
, address_mode
, reg1
, NULL_RTX
);
3496 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, scaled
, reg2
);
3497 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3499 XEXP (scaled
, 1) = gen_int_mode (i
, address_mode
);
3500 if (memory_address_addr_space_p (mode
, addr
, as
)
3501 || memory_address_addr_space_p (mode
, scaled
, as
))
3502 bitmap_set_bit (valid_mult
, i
+ MAX_RATIO
);
3505 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3507 fprintf (dump_file
, " allowed multipliers:");
3508 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3509 if (bitmap_bit_p (valid_mult
, i
+ MAX_RATIO
))
3510 fprintf (dump_file
, " %d", (int) i
);
3511 fprintf (dump_file
, "\n");
3512 fprintf (dump_file
, "\n");
3515 valid_mult_list
[data_index
] = valid_mult
;
3518 if (ratio
> MAX_RATIO
|| ratio
< -MAX_RATIO
)
3521 return bitmap_bit_p (valid_mult
, ratio
+ MAX_RATIO
);
3524 /* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
3525 If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
3526 variable is omitted. Compute the cost for a memory reference that accesses
3527 a memory location of mode MEM_MODE in address space AS.
3529 MAY_AUTOINC is set to true if the autoincrement (increasing index by
3530 size of MEM_MODE / RATIO) is available. To make this determination, we
3531 look at the size of the increment to be made, which is given in CSTEP.
3532 CSTEP may be zero if the step is unknown.
3533 STMT_AFTER_INC is true iff the statement we're looking at is after the
3534 increment of the original biv.
3536 TODO -- there must be some better way. This all is quite crude. */
3540 AINC_PRE_INC
, /* Pre increment. */
3541 AINC_PRE_DEC
, /* Pre decrement. */
3542 AINC_POST_INC
, /* Post increment. */
3543 AINC_POST_DEC
, /* Post decrement. */
3544 AINC_NONE
/* Also the number of auto increment types. */
3547 typedef struct address_cost_data_s
3549 HOST_WIDE_INT min_offset
, max_offset
;
3550 unsigned costs
[2][2][2][2];
3551 unsigned ainc_costs
[AINC_NONE
];
3552 } *address_cost_data
;
3556 get_address_cost (bool symbol_present
, bool var_present
,
3557 unsigned HOST_WIDE_INT offset
, HOST_WIDE_INT ratio
,
3558 HOST_WIDE_INT cstep
, machine_mode mem_mode
,
3559 addr_space_t as
, bool speed
,
3560 bool stmt_after_inc
, bool *may_autoinc
)
3562 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3563 static vec
<address_cost_data
> address_cost_data_list
;
3564 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mem_mode
;
3565 address_cost_data data
;
3566 static bool has_preinc
[MAX_MACHINE_MODE
], has_postinc
[MAX_MACHINE_MODE
];
3567 static bool has_predec
[MAX_MACHINE_MODE
], has_postdec
[MAX_MACHINE_MODE
];
3568 unsigned cost
, acost
, complexity
;
3569 enum ainc_type autoinc_type
;
3570 bool offset_p
, ratio_p
, autoinc
;
3571 HOST_WIDE_INT s_offset
, autoinc_offset
, msize
;
3572 unsigned HOST_WIDE_INT mask
;
3575 if (data_index
>= address_cost_data_list
.length ())
3576 address_cost_data_list
.safe_grow_cleared (data_index
+ 1);
3578 data
= address_cost_data_list
[data_index
];
3582 HOST_WIDE_INT rat
, off
= 0;
3583 int old_cse_not_expected
, width
;
3584 unsigned sym_p
, var_p
, off_p
, rat_p
, add_c
;
3589 data
= (address_cost_data
) xcalloc (1, sizeof (*data
));
3591 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3593 width
= GET_MODE_BITSIZE (address_mode
) - 1;
3594 if (width
> (HOST_BITS_PER_WIDE_INT
- 1))
3595 width
= HOST_BITS_PER_WIDE_INT
- 1;
3596 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, reg1
, NULL_RTX
);
3598 for (i
= width
; i
>= 0; i
--)
3600 off
= -((unsigned HOST_WIDE_INT
) 1 << i
);
3601 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3602 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3605 data
->min_offset
= (i
== -1? 0 : off
);
3607 for (i
= width
; i
>= 0; i
--)
3609 off
= ((unsigned HOST_WIDE_INT
) 1 << i
) - 1;
3610 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3611 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3613 /* For some strict-alignment targets, the offset must be naturally
3614 aligned. Try an aligned offset if mem_mode is not QImode. */
3615 off
= mem_mode
!= QImode
3616 ? ((unsigned HOST_WIDE_INT
) 1 << i
)
3617 - GET_MODE_SIZE (mem_mode
)
3621 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3622 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3628 data
->max_offset
= off
;
3630 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3632 fprintf (dump_file
, "get_address_cost:\n");
3633 fprintf (dump_file
, " min offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
3634 GET_MODE_NAME (mem_mode
),
3636 fprintf (dump_file
, " max offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
3637 GET_MODE_NAME (mem_mode
),
3642 for (i
= 2; i
<= MAX_RATIO
; i
++)
3643 if (multiplier_allowed_in_address_p (i
, mem_mode
, as
))
3649 /* Compute the cost of various addressing modes. */
3651 reg0
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3652 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
3654 if (USE_LOAD_PRE_DECREMENT (mem_mode
)
3655 || USE_STORE_PRE_DECREMENT (mem_mode
))
3657 addr
= gen_rtx_PRE_DEC (address_mode
, reg0
);
3658 has_predec
[mem_mode
]
3659 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3661 if (has_predec
[mem_mode
])
3662 data
->ainc_costs
[AINC_PRE_DEC
]
3663 = address_cost (addr
, mem_mode
, as
, speed
);
3665 if (USE_LOAD_POST_DECREMENT (mem_mode
)
3666 || USE_STORE_POST_DECREMENT (mem_mode
))
3668 addr
= gen_rtx_POST_DEC (address_mode
, reg0
);
3669 has_postdec
[mem_mode
]
3670 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3672 if (has_postdec
[mem_mode
])
3673 data
->ainc_costs
[AINC_POST_DEC
]
3674 = address_cost (addr
, mem_mode
, as
, speed
);
3676 if (USE_LOAD_PRE_INCREMENT (mem_mode
)
3677 || USE_STORE_PRE_DECREMENT (mem_mode
))
3679 addr
= gen_rtx_PRE_INC (address_mode
, reg0
);
3680 has_preinc
[mem_mode
]
3681 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3683 if (has_preinc
[mem_mode
])
3684 data
->ainc_costs
[AINC_PRE_INC
]
3685 = address_cost (addr
, mem_mode
, as
, speed
);
3687 if (USE_LOAD_POST_INCREMENT (mem_mode
)
3688 || USE_STORE_POST_INCREMENT (mem_mode
))
3690 addr
= gen_rtx_POST_INC (address_mode
, reg0
);
3691 has_postinc
[mem_mode
]
3692 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3694 if (has_postinc
[mem_mode
])
3695 data
->ainc_costs
[AINC_POST_INC
]
3696 = address_cost (addr
, mem_mode
, as
, speed
);
3698 for (i
= 0; i
< 16; i
++)
3701 var_p
= (i
>> 1) & 1;
3702 off_p
= (i
>> 2) & 1;
3703 rat_p
= (i
>> 3) & 1;
3707 addr
= gen_rtx_fmt_ee (MULT
, address_mode
, addr
,
3708 gen_int_mode (rat
, address_mode
));
3711 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, reg1
);
3715 base
= gen_rtx_SYMBOL_REF (address_mode
, ggc_strdup (""));
3716 /* ??? We can run into trouble with some backends by presenting
3717 it with symbols which haven't been properly passed through
3718 targetm.encode_section_info. By setting the local bit, we
3719 enhance the probability of things working. */
3720 SYMBOL_REF_FLAGS (base
) = SYMBOL_FLAG_LOCAL
;
3723 base
= gen_rtx_fmt_e (CONST
, address_mode
,
3725 (PLUS
, address_mode
, base
,
3726 gen_int_mode (off
, address_mode
)));
3729 base
= gen_int_mode (off
, address_mode
);
3734 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, base
);
3737 /* To avoid splitting addressing modes, pretend that no cse will
3739 old_cse_not_expected
= cse_not_expected
;
3740 cse_not_expected
= true;
3741 addr
= memory_address_addr_space (mem_mode
, addr
, as
);
3742 cse_not_expected
= old_cse_not_expected
;
3746 acost
= seq_cost (seq
, speed
);
3747 acost
+= address_cost (addr
, mem_mode
, as
, speed
);
3751 data
->costs
[sym_p
][var_p
][off_p
][rat_p
] = acost
;
3754 /* On some targets, it is quite expensive to load symbol to a register,
3755 which makes addresses that contain symbols look much more expensive.
3756 However, the symbol will have to be loaded in any case before the
3757 loop (and quite likely we have it in register already), so it does not
3758 make much sense to penalize them too heavily. So make some final
3759 tweaks for the SYMBOL_PRESENT modes:
3761 If VAR_PRESENT is false, and the mode obtained by changing symbol to
3762 var is cheaper, use this mode with small penalty.
3763 If VAR_PRESENT is true, try whether the mode with
3764 SYMBOL_PRESENT = false is cheaper even with cost of addition, and
3765 if this is the case, use it. */
3766 add_c
= add_cost (speed
, address_mode
);
3767 for (i
= 0; i
< 8; i
++)
3770 off_p
= (i
>> 1) & 1;
3771 rat_p
= (i
>> 2) & 1;
3773 acost
= data
->costs
[0][1][off_p
][rat_p
] + 1;
3777 if (acost
< data
->costs
[1][var_p
][off_p
][rat_p
])
3778 data
->costs
[1][var_p
][off_p
][rat_p
] = acost
;
3781 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3783 fprintf (dump_file
, "Address costs:\n");
3785 for (i
= 0; i
< 16; i
++)
3788 var_p
= (i
>> 1) & 1;
3789 off_p
= (i
>> 2) & 1;
3790 rat_p
= (i
>> 3) & 1;
3792 fprintf (dump_file
, " ");
3794 fprintf (dump_file
, "sym + ");
3796 fprintf (dump_file
, "var + ");
3798 fprintf (dump_file
, "cst + ");
3800 fprintf (dump_file
, "rat * ");
3802 acost
= data
->costs
[sym_p
][var_p
][off_p
][rat_p
];
3803 fprintf (dump_file
, "index costs %d\n", acost
);
3805 if (has_predec
[mem_mode
] || has_postdec
[mem_mode
]
3806 || has_preinc
[mem_mode
] || has_postinc
[mem_mode
])
3807 fprintf (dump_file
, " May include autoinc/dec\n");
3808 fprintf (dump_file
, "\n");
3811 address_cost_data_list
[data_index
] = data
;
3814 bits
= GET_MODE_BITSIZE (address_mode
);
3815 mask
= ~(~(unsigned HOST_WIDE_INT
) 0 << (bits
- 1) << 1);
3817 if ((offset
>> (bits
- 1) & 1))
3822 autoinc_type
= AINC_NONE
;
3823 msize
= GET_MODE_SIZE (mem_mode
);
3824 autoinc_offset
= offset
;
3826 autoinc_offset
+= ratio
* cstep
;
3827 if (symbol_present
|| var_present
|| ratio
!= 1)
3831 if (has_postinc
[mem_mode
] && autoinc_offset
== 0
3833 autoinc_type
= AINC_POST_INC
;
3834 else if (has_postdec
[mem_mode
] && autoinc_offset
== 0
3836 autoinc_type
= AINC_POST_DEC
;
3837 else if (has_preinc
[mem_mode
] && autoinc_offset
== msize
3839 autoinc_type
= AINC_PRE_INC
;
3840 else if (has_predec
[mem_mode
] && autoinc_offset
== -msize
3842 autoinc_type
= AINC_PRE_DEC
;
3844 if (autoinc_type
!= AINC_NONE
)
3849 offset_p
= (s_offset
!= 0
3850 && data
->min_offset
<= s_offset
3851 && s_offset
<= data
->max_offset
);
3852 ratio_p
= (ratio
!= 1
3853 && multiplier_allowed_in_address_p (ratio
, mem_mode
, as
));
3855 if (ratio
!= 1 && !ratio_p
)
3856 cost
+= mult_by_coeff_cost (ratio
, address_mode
, speed
);
3858 if (s_offset
&& !offset_p
&& !symbol_present
)
3859 cost
+= add_cost (speed
, address_mode
);
3862 *may_autoinc
= autoinc
;
3864 acost
= data
->ainc_costs
[autoinc_type
];
3866 acost
= data
->costs
[symbol_present
][var_present
][offset_p
][ratio_p
];
3867 complexity
= (symbol_present
!= 0) + (var_present
!= 0) + offset_p
+ ratio_p
;
3868 return new_cost (cost
+ acost
, complexity
);
3871 /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
3872 the EXPR operand holding the shift. COST0 and COST1 are the costs for
3873 calculating the operands of EXPR. Returns true if successful, and returns
3874 the cost in COST. */
3877 get_shiftadd_cost (tree expr
, machine_mode mode
, comp_cost cost0
,
3878 comp_cost cost1
, tree mult
, bool speed
, comp_cost
*cost
)
3881 tree op1
= TREE_OPERAND (expr
, 1);
3882 tree cst
= TREE_OPERAND (mult
, 1);
3883 tree multop
= TREE_OPERAND (mult
, 0);
3884 int m
= exact_log2 (int_cst_value (cst
));
3885 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
3886 int as_cost
, sa_cost
;
3889 if (!(m
>= 0 && m
< maxm
))
3892 mult_in_op1
= operand_equal_p (op1
, mult
, 0);
3894 as_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
3896 /* If the target has a cheap shift-and-add or shift-and-sub instruction,
3897 use that in preference to a shift insn followed by an add insn. */
3898 sa_cost
= (TREE_CODE (expr
) != MINUS_EXPR
3899 ? shiftadd_cost (speed
, mode
, m
)
3901 ? shiftsub1_cost (speed
, mode
, m
)
3902 : shiftsub0_cost (speed
, mode
, m
)));
3904 res
= new_cost (MIN (as_cost
, sa_cost
), 0);
3905 res
= add_costs (res
, mult_in_op1
? cost0
: cost1
);
3907 STRIP_NOPS (multop
);
3908 if (!is_gimple_val (multop
))
3909 res
= add_costs (res
, force_expr_to_var_cost (multop
, speed
));
3915 /* Estimates cost of forcing expression EXPR into a variable. */
3918 force_expr_to_var_cost (tree expr
, bool speed
)
3920 static bool costs_initialized
= false;
3921 static unsigned integer_cost
[2];
3922 static unsigned symbol_cost
[2];
3923 static unsigned address_cost
[2];
3925 comp_cost cost0
, cost1
, cost
;
3928 if (!costs_initialized
)
3930 tree type
= build_pointer_type (integer_type_node
);
3935 var
= create_tmp_var_raw (integer_type_node
, "test_var");
3936 TREE_STATIC (var
) = 1;
3937 x
= produce_memory_decl_rtl (var
, NULL
);
3938 SET_DECL_RTL (var
, x
);
3940 addr
= build1 (ADDR_EXPR
, type
, var
);
3943 for (i
= 0; i
< 2; i
++)
3945 integer_cost
[i
] = computation_cost (build_int_cst (integer_type_node
,
3948 symbol_cost
[i
] = computation_cost (addr
, i
) + 1;
3951 = computation_cost (fold_build_pointer_plus_hwi (addr
, 2000), i
) + 1;
3952 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3954 fprintf (dump_file
, "force_expr_to_var_cost %s costs:\n", i
? "speed" : "size");
3955 fprintf (dump_file
, " integer %d\n", (int) integer_cost
[i
]);
3956 fprintf (dump_file
, " symbol %d\n", (int) symbol_cost
[i
]);
3957 fprintf (dump_file
, " address %d\n", (int) address_cost
[i
]);
3958 fprintf (dump_file
, " other %d\n", (int) target_spill_cost
[i
]);
3959 fprintf (dump_file
, "\n");
3963 costs_initialized
= true;
3968 if (SSA_VAR_P (expr
))
3971 if (is_gimple_min_invariant (expr
))
3973 if (TREE_CODE (expr
) == INTEGER_CST
)
3974 return new_cost (integer_cost
[speed
], 0);
3976 if (TREE_CODE (expr
) == ADDR_EXPR
)
3978 tree obj
= TREE_OPERAND (expr
, 0);
3980 if (TREE_CODE (obj
) == VAR_DECL
3981 || TREE_CODE (obj
) == PARM_DECL
3982 || TREE_CODE (obj
) == RESULT_DECL
)
3983 return new_cost (symbol_cost
[speed
], 0);
3986 return new_cost (address_cost
[speed
], 0);
3989 switch (TREE_CODE (expr
))
3991 case POINTER_PLUS_EXPR
:
3995 op0
= TREE_OPERAND (expr
, 0);
3996 op1
= TREE_OPERAND (expr
, 1);
4003 op0
= TREE_OPERAND (expr
, 0);
4009 /* Just an arbitrary value, FIXME. */
4010 return new_cost (target_spill_cost
[speed
], 0);
4013 if (op0
== NULL_TREE
4014 || TREE_CODE (op0
) == SSA_NAME
|| CONSTANT_CLASS_P (op0
))
4017 cost0
= force_expr_to_var_cost (op0
, speed
);
4019 if (op1
== NULL_TREE
4020 || TREE_CODE (op1
) == SSA_NAME
|| CONSTANT_CLASS_P (op1
))
4023 cost1
= force_expr_to_var_cost (op1
, speed
);
4025 mode
= TYPE_MODE (TREE_TYPE (expr
));
4026 switch (TREE_CODE (expr
))
4028 case POINTER_PLUS_EXPR
:
4032 cost
= new_cost (add_cost (speed
, mode
), 0);
4033 if (TREE_CODE (expr
) != NEGATE_EXPR
)
4035 tree mult
= NULL_TREE
;
4037 if (TREE_CODE (op1
) == MULT_EXPR
)
4039 else if (TREE_CODE (op0
) == MULT_EXPR
)
4042 if (mult
!= NULL_TREE
4043 && cst_and_fits_in_hwi (TREE_OPERAND (mult
, 1))
4044 && get_shiftadd_cost (expr
, mode
, cost0
, cost1
, mult
,
4052 tree inner_mode
, outer_mode
;
4053 outer_mode
= TREE_TYPE (expr
);
4054 inner_mode
= TREE_TYPE (op0
);
4055 cost
= new_cost (convert_cost (TYPE_MODE (outer_mode
),
4056 TYPE_MODE (inner_mode
), speed
), 0);
4061 if (cst_and_fits_in_hwi (op0
))
4062 cost
= new_cost (mult_by_coeff_cost (int_cst_value (op0
),
4064 else if (cst_and_fits_in_hwi (op1
))
4065 cost
= new_cost (mult_by_coeff_cost (int_cst_value (op1
),
4068 return new_cost (target_spill_cost
[speed
], 0);
4075 cost
= add_costs (cost
, cost0
);
4076 cost
= add_costs (cost
, cost1
);
4078 /* Bound the cost by target_spill_cost. The parts of complicated
4079 computations often are either loop invariant or at least can
4080 be shared between several iv uses, so letting this grow without
4081 limits would not give reasonable results. */
4082 if (cost
.cost
> (int) target_spill_cost
[speed
])
4083 cost
.cost
= target_spill_cost
[speed
];
4088 /* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
4089 invariants the computation depends on. */
4092 force_var_cost (struct ivopts_data
*data
,
4093 tree expr
, bitmap
*depends_on
)
4097 fd_ivopts_data
= data
;
4098 walk_tree (&expr
, find_depends
, depends_on
, NULL
);
4101 return force_expr_to_var_cost (expr
, data
->speed
);
4104 /* Estimates cost of expressing address ADDR as var + symbol + offset. The
4105 value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
4106 to false if the corresponding part is missing. DEPENDS_ON is a set of the
4107 invariants the computation depends on. */
4110 split_address_cost (struct ivopts_data
*data
,
4111 tree addr
, bool *symbol_present
, bool *var_present
,
4112 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
4115 HOST_WIDE_INT bitsize
;
4116 HOST_WIDE_INT bitpos
;
4119 int unsignedp
, volatilep
;
4121 core
= get_inner_reference (addr
, &bitsize
, &bitpos
, &toffset
, &mode
,
4122 &unsignedp
, &volatilep
, false);
4125 || bitpos
% BITS_PER_UNIT
!= 0
4126 || TREE_CODE (core
) != VAR_DECL
)
4128 *symbol_present
= false;
4129 *var_present
= true;
4130 fd_ivopts_data
= data
;
4131 walk_tree (&addr
, find_depends
, depends_on
, NULL
);
4132 return new_cost (target_spill_cost
[data
->speed
], 0);
4135 *offset
+= bitpos
/ BITS_PER_UNIT
;
4136 if (TREE_STATIC (core
)
4137 || DECL_EXTERNAL (core
))
4139 *symbol_present
= true;
4140 *var_present
= false;
4144 *symbol_present
= false;
4145 *var_present
= true;
4149 /* Estimates cost of expressing difference of addresses E1 - E2 as
4150 var + symbol + offset. The value of offset is added to OFFSET,
4151 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4152 part is missing. DEPENDS_ON is a set of the invariants the computation
4156 ptr_difference_cost (struct ivopts_data
*data
,
4157 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
4158 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
4160 HOST_WIDE_INT diff
= 0;
4161 aff_tree aff_e1
, aff_e2
;
4164 gcc_assert (TREE_CODE (e1
) == ADDR_EXPR
);
4166 if (ptr_difference_const (e1
, e2
, &diff
))
4169 *symbol_present
= false;
4170 *var_present
= false;
4174 if (integer_zerop (e2
))
4175 return split_address_cost (data
, TREE_OPERAND (e1
, 0),
4176 symbol_present
, var_present
, offset
, depends_on
);
4178 *symbol_present
= false;
4179 *var_present
= true;
4181 type
= signed_type_for (TREE_TYPE (e1
));
4182 tree_to_aff_combination (e1
, type
, &aff_e1
);
4183 tree_to_aff_combination (e2
, type
, &aff_e2
);
4184 aff_combination_scale (&aff_e2
, -1);
4185 aff_combination_add (&aff_e1
, &aff_e2
);
4187 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
4190 /* Estimates cost of expressing difference E1 - E2 as
4191 var + symbol + offset. The value of offset is added to OFFSET,
4192 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4193 part is missing. DEPENDS_ON is a set of the invariants the computation
4197 difference_cost (struct ivopts_data
*data
,
4198 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
4199 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
4201 machine_mode mode
= TYPE_MODE (TREE_TYPE (e1
));
4202 unsigned HOST_WIDE_INT off1
, off2
;
4203 aff_tree aff_e1
, aff_e2
;
4206 e1
= strip_offset (e1
, &off1
);
4207 e2
= strip_offset (e2
, &off2
);
4208 *offset
+= off1
- off2
;
4213 if (TREE_CODE (e1
) == ADDR_EXPR
)
4214 return ptr_difference_cost (data
, e1
, e2
, symbol_present
, var_present
,
4215 offset
, depends_on
);
4216 *symbol_present
= false;
4218 if (operand_equal_p (e1
, e2
, 0))
4220 *var_present
= false;
4224 *var_present
= true;
4226 if (integer_zerop (e2
))
4227 return force_var_cost (data
, e1
, depends_on
);
4229 if (integer_zerop (e1
))
4231 comp_cost cost
= force_var_cost (data
, e2
, depends_on
);
4232 cost
.cost
+= mult_by_coeff_cost (-1, mode
, data
->speed
);
4236 type
= signed_type_for (TREE_TYPE (e1
));
4237 tree_to_aff_combination (e1
, type
, &aff_e1
);
4238 tree_to_aff_combination (e2
, type
, &aff_e2
);
4239 aff_combination_scale (&aff_e2
, -1);
4240 aff_combination_add (&aff_e1
, &aff_e2
);
4242 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
4245 /* Returns true if AFF1 and AFF2 are identical. */
4248 compare_aff_trees (aff_tree
*aff1
, aff_tree
*aff2
)
4252 if (aff1
->n
!= aff2
->n
)
4255 for (i
= 0; i
< aff1
->n
; i
++)
4257 if (aff1
->elts
[i
].coef
!= aff2
->elts
[i
].coef
)
4260 if (!operand_equal_p (aff1
->elts
[i
].val
, aff2
->elts
[i
].val
, 0))
4266 /* Stores EXPR in DATA->inv_expr_tab, and assigns it an inv_expr_id. */
4269 get_expr_id (struct ivopts_data
*data
, tree expr
)
4271 struct iv_inv_expr_ent ent
;
4272 struct iv_inv_expr_ent
**slot
;
4275 ent
.hash
= iterative_hash_expr (expr
, 0);
4276 slot
= data
->inv_expr_tab
->find_slot (&ent
, INSERT
);
4280 *slot
= XNEW (struct iv_inv_expr_ent
);
4281 (*slot
)->expr
= expr
;
4282 (*slot
)->hash
= ent
.hash
;
4283 (*slot
)->id
= data
->inv_expr_id
++;
4287 /* Returns the pseudo expr id if expression UBASE - RATIO * CBASE
4288 requires a new compiler generated temporary. Returns -1 otherwise.
4289 ADDRESS_P is a flag indicating if the expression is for address
4293 get_loop_invariant_expr_id (struct ivopts_data
*data
, tree ubase
,
4294 tree cbase
, HOST_WIDE_INT ratio
,
4297 aff_tree ubase_aff
, cbase_aff
;
4305 if ((TREE_CODE (ubase
) == INTEGER_CST
)
4306 && (TREE_CODE (cbase
) == INTEGER_CST
))
4309 /* Strips the constant part. */
4310 if (TREE_CODE (ubase
) == PLUS_EXPR
4311 || TREE_CODE (ubase
) == MINUS_EXPR
4312 || TREE_CODE (ubase
) == POINTER_PLUS_EXPR
)
4314 if (TREE_CODE (TREE_OPERAND (ubase
, 1)) == INTEGER_CST
)
4315 ubase
= TREE_OPERAND (ubase
, 0);
4318 /* Strips the constant part. */
4319 if (TREE_CODE (cbase
) == PLUS_EXPR
4320 || TREE_CODE (cbase
) == MINUS_EXPR
4321 || TREE_CODE (cbase
) == POINTER_PLUS_EXPR
)
4323 if (TREE_CODE (TREE_OPERAND (cbase
, 1)) == INTEGER_CST
)
4324 cbase
= TREE_OPERAND (cbase
, 0);
4329 if (((TREE_CODE (ubase
) == SSA_NAME
)
4330 || (TREE_CODE (ubase
) == ADDR_EXPR
4331 && is_gimple_min_invariant (ubase
)))
4332 && (TREE_CODE (cbase
) == INTEGER_CST
))
4335 if (((TREE_CODE (cbase
) == SSA_NAME
)
4336 || (TREE_CODE (cbase
) == ADDR_EXPR
4337 && is_gimple_min_invariant (cbase
)))
4338 && (TREE_CODE (ubase
) == INTEGER_CST
))
4344 if (operand_equal_p (ubase
, cbase
, 0))
4347 if (TREE_CODE (ubase
) == ADDR_EXPR
4348 && TREE_CODE (cbase
) == ADDR_EXPR
)
4352 usym
= TREE_OPERAND (ubase
, 0);
4353 csym
= TREE_OPERAND (cbase
, 0);
4354 if (TREE_CODE (usym
) == ARRAY_REF
)
4356 tree ind
= TREE_OPERAND (usym
, 1);
4357 if (TREE_CODE (ind
) == INTEGER_CST
4358 && tree_fits_shwi_p (ind
)
4359 && tree_to_shwi (ind
) == 0)
4360 usym
= TREE_OPERAND (usym
, 0);
4362 if (TREE_CODE (csym
) == ARRAY_REF
)
4364 tree ind
= TREE_OPERAND (csym
, 1);
4365 if (TREE_CODE (ind
) == INTEGER_CST
4366 && tree_fits_shwi_p (ind
)
4367 && tree_to_shwi (ind
) == 0)
4368 csym
= TREE_OPERAND (csym
, 0);
4370 if (operand_equal_p (usym
, csym
, 0))
4373 /* Now do more complex comparison */
4374 tree_to_aff_combination (ubase
, TREE_TYPE (ubase
), &ubase_aff
);
4375 tree_to_aff_combination (cbase
, TREE_TYPE (cbase
), &cbase_aff
);
4376 if (compare_aff_trees (&ubase_aff
, &cbase_aff
))
4380 tree_to_aff_combination (ub
, TREE_TYPE (ub
), &ubase_aff
);
4381 tree_to_aff_combination (cb
, TREE_TYPE (cb
), &cbase_aff
);
4383 aff_combination_scale (&cbase_aff
, -1 * ratio
);
4384 aff_combination_add (&ubase_aff
, &cbase_aff
);
4385 expr
= aff_combination_to_tree (&ubase_aff
);
4386 return get_expr_id (data
, expr
);
4391 /* Determines the cost of the computation by that USE is expressed
4392 from induction variable CAND. If ADDRESS_P is true, we just need
4393 to create an address from it, otherwise we want to get it into
4394 register. A set of invariants we depend on is stored in
4395 DEPENDS_ON. AT is the statement at that the value is computed.
4396 If CAN_AUTOINC is nonnull, use it to record whether autoinc
4397 addressing is likely. */
4400 get_computation_cost_at (struct ivopts_data
*data
,
4401 struct iv_use
*use
, struct iv_cand
*cand
,
4402 bool address_p
, bitmap
*depends_on
, gimple at
,
4406 tree ubase
= use
->iv
->base
, ustep
= use
->iv
->step
;
4408 tree utype
= TREE_TYPE (ubase
), ctype
;
4409 unsigned HOST_WIDE_INT cstepi
, offset
= 0;
4410 HOST_WIDE_INT ratio
, aratio
;
4411 bool var_present
, symbol_present
, stmt_is_after_inc
;
4414 bool speed
= optimize_bb_for_speed_p (gimple_bb (at
));
4415 machine_mode mem_mode
= (address_p
4416 ? TYPE_MODE (TREE_TYPE (*use
->op_p
))
4421 /* Only consider real candidates. */
4423 return infinite_cost
;
4425 cbase
= cand
->iv
->base
;
4426 cstep
= cand
->iv
->step
;
4427 ctype
= TREE_TYPE (cbase
);
4429 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
4431 /* We do not have a precision to express the values of use. */
4432 return infinite_cost
;
4436 || (use
->iv
->base_object
4437 && cand
->iv
->base_object
4438 && POINTER_TYPE_P (TREE_TYPE (use
->iv
->base_object
))
4439 && POINTER_TYPE_P (TREE_TYPE (cand
->iv
->base_object
))))
4441 /* Do not try to express address of an object with computation based
4442 on address of a different object. This may cause problems in rtl
4443 level alias analysis (that does not expect this to be happening,
4444 as this is illegal in C), and would be unlikely to be useful
4446 if (use
->iv
->base_object
4447 && cand
->iv
->base_object
4448 && !operand_equal_p (use
->iv
->base_object
, cand
->iv
->base_object
, 0))
4449 return infinite_cost
;
4452 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
4454 /* TODO -- add direct handling of this case. */
4458 /* CSTEPI is removed from the offset in case statement is after the
4459 increment. If the step is not constant, we use zero instead.
4460 This is a bit imprecise (there is the extra addition), but
4461 redundancy elimination is likely to transform the code so that
4462 it uses value of the variable before increment anyway,
4463 so it is not that much unrealistic. */
4464 if (cst_and_fits_in_hwi (cstep
))
4465 cstepi
= int_cst_value (cstep
);
4469 if (!constant_multiple_of (ustep
, cstep
, &rat
))
4470 return infinite_cost
;
4472 if (wi::fits_shwi_p (rat
))
4473 ratio
= rat
.to_shwi ();
4475 return infinite_cost
;
4478 ctype
= TREE_TYPE (cbase
);
4480 stmt_is_after_inc
= stmt_after_increment (data
->current_loop
, cand
, at
);
4482 /* use = ubase + ratio * (var - cbase). If either cbase is a constant
4483 or ratio == 1, it is better to handle this like
4485 ubase - ratio * cbase + ratio * var
4487 (also holds in the case ratio == -1, TODO. */
4489 if (cst_and_fits_in_hwi (cbase
))
4491 offset
= - ratio
* (unsigned HOST_WIDE_INT
) int_cst_value (cbase
);
4492 cost
= difference_cost (data
,
4493 ubase
, build_int_cst (utype
, 0),
4494 &symbol_present
, &var_present
, &offset
,
4496 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4498 else if (ratio
== 1)
4500 tree real_cbase
= cbase
;
4502 /* Check to see if any adjustment is needed. */
4503 if (cstepi
== 0 && stmt_is_after_inc
)
4505 aff_tree real_cbase_aff
;
4508 tree_to_aff_combination (cbase
, TREE_TYPE (real_cbase
),
4510 tree_to_aff_combination (cstep
, TREE_TYPE (cstep
), &cstep_aff
);
4512 aff_combination_add (&real_cbase_aff
, &cstep_aff
);
4513 real_cbase
= aff_combination_to_tree (&real_cbase_aff
);
4516 cost
= difference_cost (data
,
4518 &symbol_present
, &var_present
, &offset
,
4520 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4523 && !POINTER_TYPE_P (ctype
)
4524 && multiplier_allowed_in_address_p
4526 TYPE_ADDR_SPACE (TREE_TYPE (utype
))))
4529 = fold_build2 (MULT_EXPR
, ctype
, cbase
, build_int_cst (ctype
, ratio
));
4530 cost
= difference_cost (data
,
4532 &symbol_present
, &var_present
, &offset
,
4534 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4538 cost
= force_var_cost (data
, cbase
, depends_on
);
4539 cost
= add_costs (cost
,
4540 difference_cost (data
,
4541 ubase
, build_int_cst (utype
, 0),
4542 &symbol_present
, &var_present
,
4543 &offset
, depends_on
));
4544 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4545 cost
.cost
+= add_cost (data
->speed
, TYPE_MODE (ctype
));
4548 /* Set of invariants depended on by sub use has already been computed
4549 for the first use in the group. */
4553 if (depends_on
&& *depends_on
)
4554 bitmap_clear (*depends_on
);
4556 else if (inv_expr_id
)
4559 get_loop_invariant_expr_id (data
, ubase
, cbase
, ratio
, address_p
);
4560 /* Clear depends on. */
4561 if (*inv_expr_id
!= -1 && depends_on
&& *depends_on
)
4562 bitmap_clear (*depends_on
);
4565 /* If we are after the increment, the value of the candidate is higher by
4567 if (stmt_is_after_inc
)
4568 offset
-= ratio
* cstepi
;
4570 /* Now the computation is in shape symbol + var1 + const + ratio * var2.
4571 (symbol/var1/const parts may be omitted). If we are looking for an
4572 address, find the cost of addressing this. */
4574 return add_costs (cost
,
4575 get_address_cost (symbol_present
, var_present
,
4576 offset
, ratio
, cstepi
,
4578 TYPE_ADDR_SPACE (TREE_TYPE (utype
)),
4579 speed
, stmt_is_after_inc
,
4582 /* Otherwise estimate the costs for computing the expression. */
4583 if (!symbol_present
&& !var_present
&& !offset
)
4586 cost
.cost
+= mult_by_coeff_cost (ratio
, TYPE_MODE (ctype
), speed
);
4590 /* Symbol + offset should be compile-time computable so consider that they
4591 are added once to the variable, if present. */
4592 if (var_present
&& (symbol_present
|| offset
))
4593 cost
.cost
+= adjust_setup_cost (data
,
4594 add_cost (speed
, TYPE_MODE (ctype
)));
4596 /* Having offset does not affect runtime cost in case it is added to
4597 symbol, but it increases complexity. */
4601 cost
.cost
+= add_cost (speed
, TYPE_MODE (ctype
));
4603 aratio
= ratio
> 0 ? ratio
: -ratio
;
4605 cost
.cost
+= mult_by_coeff_cost (aratio
, TYPE_MODE (ctype
), speed
);
4610 *can_autoinc
= false;
4613 /* Just get the expression, expand it and measure the cost. */
4614 tree comp
= get_computation_at (data
->current_loop
, use
, cand
, at
);
4617 return infinite_cost
;
4620 comp
= build_simple_mem_ref (comp
);
4622 return new_cost (computation_cost (comp
, speed
), 0);
4626 /* Determines the cost of the computation by that USE is expressed
4627 from induction variable CAND. If ADDRESS_P is true, we just need
4628 to create an address from it, otherwise we want to get it into
4629 register. A set of invariants we depend on is stored in
4630 DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
4631 autoinc addressing is likely. */
4634 get_computation_cost (struct ivopts_data
*data
,
4635 struct iv_use
*use
, struct iv_cand
*cand
,
4636 bool address_p
, bitmap
*depends_on
,
4637 bool *can_autoinc
, int *inv_expr_id
)
4639 return get_computation_cost_at (data
,
4640 use
, cand
, address_p
, depends_on
, use
->stmt
,
4641 can_autoinc
, inv_expr_id
);
4644 /* Determines cost of basing replacement of USE on CAND in a generic
4648 determine_use_iv_cost_generic (struct ivopts_data
*data
,
4649 struct iv_use
*use
, struct iv_cand
*cand
)
4653 int inv_expr_id
= -1;
4655 /* The simple case first -- if we need to express value of the preserved
4656 original biv, the cost is 0. This also prevents us from counting the
4657 cost of increment twice -- once at this use and once in the cost of
4659 if (cand
->pos
== IP_ORIGINAL
4660 && cand
->incremented_at
== use
->stmt
)
4662 set_use_iv_cost (data
, use
, cand
, no_cost
, NULL
, NULL_TREE
,
4667 cost
= get_computation_cost (data
, use
, cand
, false, &depends_on
,
4668 NULL
, &inv_expr_id
);
4670 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, NULL_TREE
, ERROR_MARK
,
4673 return !infinite_cost_p (cost
);
4676 /* Determines cost of basing replacement of USE on CAND in an address. */
4679 determine_use_iv_cost_address (struct ivopts_data
*data
,
4680 struct iv_use
*use
, struct iv_cand
*cand
)
4684 int inv_expr_id
= -1;
4685 struct iv_use
*sub_use
;
4687 comp_cost cost
= get_computation_cost (data
, use
, cand
, true, &depends_on
,
4688 &can_autoinc
, &inv_expr_id
);
4690 if (cand
->ainc_use
== use
)
4693 cost
.cost
-= cand
->cost_step
;
4694 /* If we generated the candidate solely for exploiting autoincrement
4695 opportunities, and it turns out it can't be used, set the cost to
4696 infinity to make sure we ignore it. */
4697 else if (cand
->pos
== IP_AFTER_USE
|| cand
->pos
== IP_BEFORE_USE
)
4698 cost
= infinite_cost
;
4700 for (sub_use
= use
->next
;
4701 sub_use
&& !infinite_cost_p (cost
);
4702 sub_use
= sub_use
->next
)
4704 sub_cost
= get_computation_cost (data
, sub_use
, cand
, true, &depends_on
,
4705 &can_autoinc
, &inv_expr_id
);
4706 cost
= add_costs (cost
, sub_cost
);
4709 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, NULL_TREE
, ERROR_MARK
,
4712 return !infinite_cost_p (cost
);
4715 /* Computes value of candidate CAND at position AT in iteration NITER, and
4716 stores it to VAL. */
4719 cand_value_at (struct loop
*loop
, struct iv_cand
*cand
, gimple at
, tree niter
,
4722 aff_tree step
, delta
, nit
;
4723 struct iv
*iv
= cand
->iv
;
4724 tree type
= TREE_TYPE (iv
->base
);
4725 tree steptype
= type
;
4726 if (POINTER_TYPE_P (type
))
4727 steptype
= sizetype
;
4728 steptype
= unsigned_type_for (type
);
4730 tree_to_aff_combination (iv
->step
, TREE_TYPE (iv
->step
), &step
);
4731 aff_combination_convert (&step
, steptype
);
4732 tree_to_aff_combination (niter
, TREE_TYPE (niter
), &nit
);
4733 aff_combination_convert (&nit
, steptype
);
4734 aff_combination_mult (&nit
, &step
, &delta
);
4735 if (stmt_after_increment (loop
, cand
, at
))
4736 aff_combination_add (&delta
, &step
);
4738 tree_to_aff_combination (iv
->base
, type
, val
);
4739 if (!POINTER_TYPE_P (type
))
4740 aff_combination_convert (val
, steptype
);
4741 aff_combination_add (val
, &delta
);
4744 /* Returns period of induction variable iv. */
4747 iv_period (struct iv
*iv
)
4749 tree step
= iv
->step
, period
, type
;
4752 gcc_assert (step
&& TREE_CODE (step
) == INTEGER_CST
);
4754 type
= unsigned_type_for (TREE_TYPE (step
));
4755 /* Period of the iv is lcm (step, type_range)/step -1,
4756 i.e., N*type_range/step - 1. Since type range is power
4757 of two, N == (step >> num_of_ending_zeros_binary (step),
4758 so the final result is
4760 (type_range >> num_of_ending_zeros_binary (step)) - 1
4763 pow2div
= num_ending_zeros (step
);
4765 period
= build_low_bits_mask (type
,
4766 (TYPE_PRECISION (type
)
4767 - tree_to_uhwi (pow2div
)));
4772 /* Returns the comparison operator used when eliminating the iv USE. */
4774 static enum tree_code
4775 iv_elimination_compare (struct ivopts_data
*data
, struct iv_use
*use
)
4777 struct loop
*loop
= data
->current_loop
;
4781 ex_bb
= gimple_bb (use
->stmt
);
4782 exit
= EDGE_SUCC (ex_bb
, 0);
4783 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
4784 exit
= EDGE_SUCC (ex_bb
, 1);
4786 return (exit
->flags
& EDGE_TRUE_VALUE
? EQ_EXPR
: NE_EXPR
);
4789 /* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
4790 we only detect the situation that BASE = SOMETHING + OFFSET, where the
4791 calculation is performed in non-wrapping type.
4793 TODO: More generally, we could test for the situation that
4794 BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
4795 This would require knowing the sign of OFFSET. */
4798 difference_cannot_overflow_p (struct ivopts_data
*data
, tree base
, tree offset
)
4800 enum tree_code code
;
4802 aff_tree aff_e1
, aff_e2
, aff_offset
;
4804 if (!nowrap_type_p (TREE_TYPE (base
)))
4807 base
= expand_simple_operations (base
);
4809 if (TREE_CODE (base
) == SSA_NAME
)
4811 gimple stmt
= SSA_NAME_DEF_STMT (base
);
4813 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
4816 code
= gimple_assign_rhs_code (stmt
);
4817 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
4820 e1
= gimple_assign_rhs1 (stmt
);
4821 e2
= gimple_assign_rhs2 (stmt
);
4825 code
= TREE_CODE (base
);
4826 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
4828 e1
= TREE_OPERAND (base
, 0);
4829 e2
= TREE_OPERAND (base
, 1);
4832 /* Use affine expansion as deeper inspection to prove the equality. */
4833 tree_to_aff_combination_expand (e2
, TREE_TYPE (e2
),
4834 &aff_e2
, &data
->name_expansion_cache
);
4835 tree_to_aff_combination_expand (offset
, TREE_TYPE (offset
),
4836 &aff_offset
, &data
->name_expansion_cache
);
4837 aff_combination_scale (&aff_offset
, -1);
4841 aff_combination_add (&aff_e2
, &aff_offset
);
4842 if (aff_combination_zero_p (&aff_e2
))
4845 tree_to_aff_combination_expand (e1
, TREE_TYPE (e1
),
4846 &aff_e1
, &data
->name_expansion_cache
);
4847 aff_combination_add (&aff_e1
, &aff_offset
);
4848 return aff_combination_zero_p (&aff_e1
);
4850 case POINTER_PLUS_EXPR
:
4851 aff_combination_add (&aff_e2
, &aff_offset
);
4852 return aff_combination_zero_p (&aff_e2
);
4859 /* Tries to replace loop exit by one formulated in terms of a LT_EXPR
4860 comparison with CAND. NITER describes the number of iterations of
4861 the loops. If successful, the comparison in COMP_P is altered accordingly.
4863 We aim to handle the following situation:
4879 Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
4880 We aim to optimize this to
4888 while (p < p_0 - a + b);
4890 This preserves the correctness, since the pointer arithmetics does not
4891 overflow. More precisely:
4893 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
4894 overflow in computing it or the values of p.
4895 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
4896 overflow. To prove this, we use the fact that p_0 = base + a. */
4899 iv_elimination_compare_lt (struct ivopts_data
*data
,
4900 struct iv_cand
*cand
, enum tree_code
*comp_p
,
4901 struct tree_niter_desc
*niter
)
4903 tree cand_type
, a
, b
, mbz
, nit_type
= TREE_TYPE (niter
->niter
), offset
;
4904 struct aff_tree nit
, tmpa
, tmpb
;
4905 enum tree_code comp
;
4908 /* We need to know that the candidate induction variable does not overflow.
4909 While more complex analysis may be used to prove this, for now just
4910 check that the variable appears in the original program and that it
4911 is computed in a type that guarantees no overflows. */
4912 cand_type
= TREE_TYPE (cand
->iv
->base
);
4913 if (cand
->pos
!= IP_ORIGINAL
|| !nowrap_type_p (cand_type
))
4916 /* Make sure that the loop iterates till the loop bound is hit, as otherwise
4917 the calculation of the BOUND could overflow, making the comparison
4919 if (!data
->loop_single_exit_p
)
4922 /* We need to be able to decide whether candidate is increasing or decreasing
4923 in order to choose the right comparison operator. */
4924 if (!cst_and_fits_in_hwi (cand
->iv
->step
))
4926 step
= int_cst_value (cand
->iv
->step
);
4928 /* Check that the number of iterations matches the expected pattern:
4929 a + 1 > b ? 0 : b - a - 1. */
4930 mbz
= niter
->may_be_zero
;
4931 if (TREE_CODE (mbz
) == GT_EXPR
)
4933 /* Handle a + 1 > b. */
4934 tree op0
= TREE_OPERAND (mbz
, 0);
4935 if (TREE_CODE (op0
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op0
, 1)))
4937 a
= TREE_OPERAND (op0
, 0);
4938 b
= TREE_OPERAND (mbz
, 1);
4943 else if (TREE_CODE (mbz
) == LT_EXPR
)
4945 tree op1
= TREE_OPERAND (mbz
, 1);
4947 /* Handle b < a + 1. */
4948 if (TREE_CODE (op1
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op1
, 1)))
4950 a
= TREE_OPERAND (op1
, 0);
4951 b
= TREE_OPERAND (mbz
, 0);
4959 /* Expected number of iterations is B - A - 1. Check that it matches
4960 the actual number, i.e., that B - A - NITER = 1. */
4961 tree_to_aff_combination (niter
->niter
, nit_type
, &nit
);
4962 tree_to_aff_combination (fold_convert (nit_type
, a
), nit_type
, &tmpa
);
4963 tree_to_aff_combination (fold_convert (nit_type
, b
), nit_type
, &tmpb
);
4964 aff_combination_scale (&nit
, -1);
4965 aff_combination_scale (&tmpa
, -1);
4966 aff_combination_add (&tmpb
, &tmpa
);
4967 aff_combination_add (&tmpb
, &nit
);
4968 if (tmpb
.n
!= 0 || tmpb
.offset
!= 1)
4971 /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
4973 offset
= fold_build2 (MULT_EXPR
, TREE_TYPE (cand
->iv
->step
),
4975 fold_convert (TREE_TYPE (cand
->iv
->step
), a
));
4976 if (!difference_cannot_overflow_p (data
, cand
->iv
->base
, offset
))
4979 /* Determine the new comparison operator. */
4980 comp
= step
< 0 ? GT_EXPR
: LT_EXPR
;
4981 if (*comp_p
== NE_EXPR
)
4983 else if (*comp_p
== EQ_EXPR
)
4984 *comp_p
= invert_tree_comparison (comp
, false);
4991 /* Check whether it is possible to express the condition in USE by comparison
4992 of candidate CAND. If so, store the value compared with to BOUND, and the
4993 comparison operator to COMP. */
4996 may_eliminate_iv (struct ivopts_data
*data
,
4997 struct iv_use
*use
, struct iv_cand
*cand
, tree
*bound
,
4998 enum tree_code
*comp
)
5003 struct loop
*loop
= data
->current_loop
;
5005 struct tree_niter_desc
*desc
= NULL
;
5007 if (TREE_CODE (cand
->iv
->step
) != INTEGER_CST
)
5010 /* For now works only for exits that dominate the loop latch.
5011 TODO: extend to other conditions inside loop body. */
5012 ex_bb
= gimple_bb (use
->stmt
);
5013 if (use
->stmt
!= last_stmt (ex_bb
)
5014 || gimple_code (use
->stmt
) != GIMPLE_COND
5015 || !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, ex_bb
))
5018 exit
= EDGE_SUCC (ex_bb
, 0);
5019 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
5020 exit
= EDGE_SUCC (ex_bb
, 1);
5021 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
5024 desc
= niter_for_exit (data
, exit
);
5028 /* Determine whether we can use the variable to test the exit condition.
5029 This is the case iff the period of the induction variable is greater
5030 than the number of iterations for which the exit condition is true. */
5031 period
= iv_period (cand
->iv
);
5033 /* If the number of iterations is constant, compare against it directly. */
5034 if (TREE_CODE (desc
->niter
) == INTEGER_CST
)
5036 /* See cand_value_at. */
5037 if (stmt_after_increment (loop
, cand
, use
->stmt
))
5039 if (!tree_int_cst_lt (desc
->niter
, period
))
5044 if (tree_int_cst_lt (period
, desc
->niter
))
5049 /* If not, and if this is the only possible exit of the loop, see whether
5050 we can get a conservative estimate on the number of iterations of the
5051 entire loop and compare against that instead. */
5054 widest_int period_value
, max_niter
;
5056 max_niter
= desc
->max
;
5057 if (stmt_after_increment (loop
, cand
, use
->stmt
))
5059 period_value
= wi::to_widest (period
);
5060 if (wi::gtu_p (max_niter
, period_value
))
5062 /* See if we can take advantage of inferred loop bound information. */
5063 if (data
->loop_single_exit_p
)
5065 if (!max_loop_iterations (loop
, &max_niter
))
5067 /* The loop bound is already adjusted by adding 1. */
5068 if (wi::gtu_p (max_niter
, period_value
))
5076 cand_value_at (loop
, cand
, use
->stmt
, desc
->niter
, &bnd
);
5078 *bound
= fold_convert (TREE_TYPE (cand
->iv
->base
),
5079 aff_combination_to_tree (&bnd
));
5080 *comp
= iv_elimination_compare (data
, use
);
5082 /* It is unlikely that computing the number of iterations using division
5083 would be more profitable than keeping the original induction variable. */
5084 if (expression_expensive_p (*bound
))
5087 /* Sometimes, it is possible to handle the situation that the number of
5088 iterations may be zero unless additional assumtions by using <
5089 instead of != in the exit condition.
5091 TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
5092 base the exit condition on it. However, that is often too
5094 if (!integer_zerop (desc
->may_be_zero
))
5095 return iv_elimination_compare_lt (data
, cand
, comp
, desc
);
5100 /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
5101 be copied, if it is used in the loop body and DATA->body_includes_call. */
5104 parm_decl_cost (struct ivopts_data
*data
, tree bound
)
5106 tree sbound
= bound
;
5107 STRIP_NOPS (sbound
);
5109 if (TREE_CODE (sbound
) == SSA_NAME
5110 && SSA_NAME_IS_DEFAULT_DEF (sbound
)
5111 && TREE_CODE (SSA_NAME_VAR (sbound
)) == PARM_DECL
5112 && data
->body_includes_call
)
5113 return COSTS_N_INSNS (1);
5118 /* Determines cost of basing replacement of USE on CAND in a condition. */
5121 determine_use_iv_cost_condition (struct ivopts_data
*data
,
5122 struct iv_use
*use
, struct iv_cand
*cand
)
5124 tree bound
= NULL_TREE
;
5126 bitmap depends_on_elim
= NULL
, depends_on_express
= NULL
, depends_on
;
5127 comp_cost elim_cost
, express_cost
, cost
, bound_cost
;
5129 int elim_inv_expr_id
= -1, express_inv_expr_id
= -1, inv_expr_id
;
5130 tree
*control_var
, *bound_cst
;
5131 enum tree_code comp
= ERROR_MARK
;
5133 /* Only consider real candidates. */
5136 set_use_iv_cost (data
, use
, cand
, infinite_cost
, NULL
, NULL_TREE
,
5141 /* Try iv elimination. */
5142 if (may_eliminate_iv (data
, use
, cand
, &bound
, &comp
))
5144 elim_cost
= force_var_cost (data
, bound
, &depends_on_elim
);
5145 if (elim_cost
.cost
== 0)
5146 elim_cost
.cost
= parm_decl_cost (data
, bound
);
5147 else if (TREE_CODE (bound
) == INTEGER_CST
)
5149 /* If we replace a loop condition 'i < n' with 'p < base + n',
5150 depends_on_elim will have 'base' and 'n' set, which implies
5151 that both 'base' and 'n' will be live during the loop. More likely,
5152 'base + n' will be loop invariant, resulting in only one live value
5153 during the loop. So in that case we clear depends_on_elim and set
5154 elim_inv_expr_id instead. */
5155 if (depends_on_elim
&& bitmap_count_bits (depends_on_elim
) > 1)
5157 elim_inv_expr_id
= get_expr_id (data
, bound
);
5158 bitmap_clear (depends_on_elim
);
5160 /* The bound is a loop invariant, so it will be only computed
5162 elim_cost
.cost
= adjust_setup_cost (data
, elim_cost
.cost
);
5165 elim_cost
= infinite_cost
;
5167 /* Try expressing the original giv. If it is compared with an invariant,
5168 note that we cannot get rid of it. */
5169 ok
= extract_cond_operands (data
, use
->stmt
, &control_var
, &bound_cst
,
5173 /* When the condition is a comparison of the candidate IV against
5174 zero, prefer this IV.
5176 TODO: The constant that we're subtracting from the cost should
5177 be target-dependent. This information should be added to the
5178 target costs for each backend. */
5179 if (!infinite_cost_p (elim_cost
) /* Do not try to decrease infinite! */
5180 && integer_zerop (*bound_cst
)
5181 && (operand_equal_p (*control_var
, cand
->var_after
, 0)
5182 || operand_equal_p (*control_var
, cand
->var_before
, 0)))
5183 elim_cost
.cost
-= 1;
5185 express_cost
= get_computation_cost (data
, use
, cand
, false,
5186 &depends_on_express
, NULL
,
5187 &express_inv_expr_id
);
5188 fd_ivopts_data
= data
;
5189 walk_tree (&cmp_iv
->base
, find_depends
, &depends_on_express
, NULL
);
5191 /* Count the cost of the original bound as well. */
5192 bound_cost
= force_var_cost (data
, *bound_cst
, NULL
);
5193 if (bound_cost
.cost
== 0)
5194 bound_cost
.cost
= parm_decl_cost (data
, *bound_cst
);
5195 else if (TREE_CODE (*bound_cst
) == INTEGER_CST
)
5196 bound_cost
.cost
= 0;
5197 express_cost
.cost
+= bound_cost
.cost
;
5199 /* Choose the better approach, preferring the eliminated IV. */
5200 if (compare_costs (elim_cost
, express_cost
) <= 0)
5203 depends_on
= depends_on_elim
;
5204 depends_on_elim
= NULL
;
5205 inv_expr_id
= elim_inv_expr_id
;
5209 cost
= express_cost
;
5210 depends_on
= depends_on_express
;
5211 depends_on_express
= NULL
;
5214 inv_expr_id
= express_inv_expr_id
;
5217 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, bound
, comp
, inv_expr_id
);
5219 if (depends_on_elim
)
5220 BITMAP_FREE (depends_on_elim
);
5221 if (depends_on_express
)
5222 BITMAP_FREE (depends_on_express
);
5224 return !infinite_cost_p (cost
);
5227 /* Determines cost of basing replacement of USE on CAND. Returns false
5228 if USE cannot be based on CAND. */
5231 determine_use_iv_cost (struct ivopts_data
*data
,
5232 struct iv_use
*use
, struct iv_cand
*cand
)
5236 case USE_NONLINEAR_EXPR
:
5237 return determine_use_iv_cost_generic (data
, use
, cand
);
5240 return determine_use_iv_cost_address (data
, use
, cand
);
5243 return determine_use_iv_cost_condition (data
, use
, cand
);
5250 /* Return true if get_computation_cost indicates that autoincrement is
5251 a possibility for the pair of USE and CAND, false otherwise. */
5254 autoinc_possible_for_pair (struct ivopts_data
*data
, struct iv_use
*use
,
5255 struct iv_cand
*cand
)
5261 if (use
->type
!= USE_ADDRESS
)
5264 cost
= get_computation_cost (data
, use
, cand
, true, &depends_on
,
5265 &can_autoinc
, NULL
);
5267 BITMAP_FREE (depends_on
);
5269 return !infinite_cost_p (cost
) && can_autoinc
;
5272 /* Examine IP_ORIGINAL candidates to see if they are incremented next to a
5273 use that allows autoincrement, and set their AINC_USE if possible. */
5276 set_autoinc_for_original_candidates (struct ivopts_data
*data
)
5280 for (i
= 0; i
< n_iv_cands (data
); i
++)
5282 struct iv_cand
*cand
= iv_cand (data
, i
);
5283 struct iv_use
*closest_before
= NULL
;
5284 struct iv_use
*closest_after
= NULL
;
5285 if (cand
->pos
!= IP_ORIGINAL
)
5288 for (j
= 0; j
< n_iv_uses (data
); j
++)
5290 struct iv_use
*use
= iv_use (data
, j
);
5291 unsigned uid
= gimple_uid (use
->stmt
);
5293 if (gimple_bb (use
->stmt
) != gimple_bb (cand
->incremented_at
))
5296 if (uid
< gimple_uid (cand
->incremented_at
)
5297 && (closest_before
== NULL
5298 || uid
> gimple_uid (closest_before
->stmt
)))
5299 closest_before
= use
;
5301 if (uid
> gimple_uid (cand
->incremented_at
)
5302 && (closest_after
== NULL
5303 || uid
< gimple_uid (closest_after
->stmt
)))
5304 closest_after
= use
;
5307 if (closest_before
!= NULL
5308 && autoinc_possible_for_pair (data
, closest_before
, cand
))
5309 cand
->ainc_use
= closest_before
;
5310 else if (closest_after
!= NULL
5311 && autoinc_possible_for_pair (data
, closest_after
, cand
))
5312 cand
->ainc_use
= closest_after
;
5316 /* Finds the candidates for the induction variables. */
5319 find_iv_candidates (struct ivopts_data
*data
)
5321 /* Add commonly used ivs. */
5322 add_standard_iv_candidates (data
);
5324 /* Add old induction variables. */
5325 add_iv_candidate_for_bivs (data
);
5327 /* Add induction variables derived from uses. */
5328 add_iv_candidate_for_uses (data
);
5330 set_autoinc_for_original_candidates (data
);
5332 /* Record the important candidates. */
5333 record_important_candidates (data
);
5336 /* Determines costs of basing the use of the iv on an iv candidate. */
5339 determine_use_iv_costs (struct ivopts_data
*data
)
5343 struct iv_cand
*cand
;
5344 bitmap to_clear
= BITMAP_ALLOC (NULL
);
5346 alloc_use_cost_map (data
);
5348 for (i
= 0; i
< n_iv_uses (data
); i
++)
5350 use
= iv_use (data
, i
);
5352 if (data
->consider_all_candidates
)
5354 for (j
= 0; j
< n_iv_cands (data
); j
++)
5356 cand
= iv_cand (data
, j
);
5357 determine_use_iv_cost (data
, use
, cand
);
5364 EXECUTE_IF_SET_IN_BITMAP (use
->related_cands
, 0, j
, bi
)
5366 cand
= iv_cand (data
, j
);
5367 if (!determine_use_iv_cost (data
, use
, cand
))
5368 bitmap_set_bit (to_clear
, j
);
5371 /* Remove the candidates for that the cost is infinite from
5372 the list of related candidates. */
5373 bitmap_and_compl_into (use
->related_cands
, to_clear
);
5374 bitmap_clear (to_clear
);
5378 BITMAP_FREE (to_clear
);
5380 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5382 fprintf (dump_file
, "Use-candidate costs:\n");
5384 for (i
= 0; i
< n_iv_uses (data
); i
++)
5386 use
= iv_use (data
, i
);
5388 fprintf (dump_file
, "Use %d:\n", i
);
5389 fprintf (dump_file
, " cand\tcost\tcompl.\tdepends on\n");
5390 for (j
= 0; j
< use
->n_map_members
; j
++)
5392 if (!use
->cost_map
[j
].cand
5393 || infinite_cost_p (use
->cost_map
[j
].cost
))
5396 fprintf (dump_file
, " %d\t%d\t%d\t",
5397 use
->cost_map
[j
].cand
->id
,
5398 use
->cost_map
[j
].cost
.cost
,
5399 use
->cost_map
[j
].cost
.complexity
);
5400 if (use
->cost_map
[j
].depends_on
)
5401 bitmap_print (dump_file
,
5402 use
->cost_map
[j
].depends_on
, "","");
5403 if (use
->cost_map
[j
].inv_expr_id
!= -1)
5404 fprintf (dump_file
, " inv_expr:%d", use
->cost_map
[j
].inv_expr_id
);
5405 fprintf (dump_file
, "\n");
5408 fprintf (dump_file
, "\n");
5410 fprintf (dump_file
, "\n");
5414 /* Determines cost of the candidate CAND. */
5417 determine_iv_cost (struct ivopts_data
*data
, struct iv_cand
*cand
)
5419 comp_cost cost_base
;
5420 unsigned cost
, cost_step
;
5429 /* There are two costs associated with the candidate -- its increment
5430 and its initialization. The second is almost negligible for any loop
5431 that rolls enough, so we take it just very little into account. */
5433 base
= cand
->iv
->base
;
5434 cost_base
= force_var_cost (data
, base
, NULL
);
5435 /* It will be exceptional that the iv register happens to be initialized with
5436 the proper value at no cost. In general, there will at least be a regcopy
5438 if (cost_base
.cost
== 0)
5439 cost_base
.cost
= COSTS_N_INSNS (1);
5440 cost_step
= add_cost (data
->speed
, TYPE_MODE (TREE_TYPE (base
)));
5442 cost
= cost_step
+ adjust_setup_cost (data
, cost_base
.cost
);
5444 /* Prefer the original ivs unless we may gain something by replacing it.
5445 The reason is to make debugging simpler; so this is not relevant for
5446 artificial ivs created by other optimization passes. */
5447 if (cand
->pos
!= IP_ORIGINAL
5448 || !SSA_NAME_VAR (cand
->var_before
)
5449 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand
->var_before
)))
5452 /* Prefer not to insert statements into latch unless there are some
5453 already (so that we do not create unnecessary jumps). */
5454 if (cand
->pos
== IP_END
5455 && empty_block_p (ip_end_pos (data
->current_loop
)))
5459 cand
->cost_step
= cost_step
;
5462 /* Determines costs of computation of the candidates. */
5465 determine_iv_costs (struct ivopts_data
*data
)
5469 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5471 fprintf (dump_file
, "Candidate costs:\n");
5472 fprintf (dump_file
, " cand\tcost\n");
5475 for (i
= 0; i
< n_iv_cands (data
); i
++)
5477 struct iv_cand
*cand
= iv_cand (data
, i
);
5479 determine_iv_cost (data
, cand
);
5481 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5482 fprintf (dump_file
, " %d\t%d\n", i
, cand
->cost
);
5485 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5486 fprintf (dump_file
, "\n");
5489 /* Calculates cost for having SIZE induction variables. */
5492 ivopts_global_cost_for_size (struct ivopts_data
*data
, unsigned size
)
5494 /* We add size to the cost, so that we prefer eliminating ivs
5496 return size
+ estimate_reg_pressure_cost (size
, data
->regs_used
, data
->speed
,
5497 data
->body_includes_call
);
5500 /* For each size of the induction variable set determine the penalty. */
5503 determine_set_costs (struct ivopts_data
*data
)
5509 struct loop
*loop
= data
->current_loop
;
5512 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5514 fprintf (dump_file
, "Global costs:\n");
5515 fprintf (dump_file
, " target_avail_regs %d\n", target_avail_regs
);
5516 fprintf (dump_file
, " target_clobbered_regs %d\n", target_clobbered_regs
);
5517 fprintf (dump_file
, " target_reg_cost %d\n", target_reg_cost
[data
->speed
]);
5518 fprintf (dump_file
, " target_spill_cost %d\n", target_spill_cost
[data
->speed
]);
5522 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
5525 op
= PHI_RESULT (phi
);
5527 if (virtual_operand_p (op
))
5530 if (get_iv (data
, op
))
5536 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
5538 struct version_info
*info
= ver_info (data
, j
);
5540 if (info
->inv_id
&& info
->has_nonlin_use
)
5544 data
->regs_used
= n
;
5545 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5546 fprintf (dump_file
, " regs_used %d\n", n
);
5548 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5550 fprintf (dump_file
, " cost for size:\n");
5551 fprintf (dump_file
, " ivs\tcost\n");
5552 for (j
= 0; j
<= 2 * target_avail_regs
; j
++)
5553 fprintf (dump_file
, " %d\t%d\n", j
,
5554 ivopts_global_cost_for_size (data
, j
));
5555 fprintf (dump_file
, "\n");
5559 /* Returns true if A is a cheaper cost pair than B. */
5562 cheaper_cost_pair (struct cost_pair
*a
, struct cost_pair
*b
)
5572 cmp
= compare_costs (a
->cost
, b
->cost
);
5579 /* In case the costs are the same, prefer the cheaper candidate. */
5580 if (a
->cand
->cost
< b
->cand
->cost
)
5587 /* Returns candidate by that USE is expressed in IVS. */
5589 static struct cost_pair
*
5590 iv_ca_cand_for_use (struct iv_ca
*ivs
, struct iv_use
*use
)
5592 return ivs
->cand_for_use
[use
->id
];
5595 /* Computes the cost field of IVS structure. */
5598 iv_ca_recount_cost (struct ivopts_data
*data
, struct iv_ca
*ivs
)
5600 comp_cost cost
= ivs
->cand_use_cost
;
5602 cost
.cost
+= ivs
->cand_cost
;
5604 cost
.cost
+= ivopts_global_cost_for_size (data
,
5605 ivs
->n_regs
+ ivs
->num_used_inv_expr
);
5610 /* Remove invariants in set INVS to set IVS. */
5613 iv_ca_set_remove_invariants (struct iv_ca
*ivs
, bitmap invs
)
5621 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
5623 ivs
->n_invariant_uses
[iid
]--;
5624 if (ivs
->n_invariant_uses
[iid
] == 0)
5629 /* Set USE not to be expressed by any candidate in IVS. */
5632 iv_ca_set_no_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5635 unsigned uid
= use
->id
, cid
;
5636 struct cost_pair
*cp
;
5638 cp
= ivs
->cand_for_use
[uid
];
5644 ivs
->cand_for_use
[uid
] = NULL
;
5645 ivs
->n_cand_uses
[cid
]--;
5647 if (ivs
->n_cand_uses
[cid
] == 0)
5649 bitmap_clear_bit (ivs
->cands
, cid
);
5650 /* Do not count the pseudocandidates. */
5654 ivs
->cand_cost
-= cp
->cand
->cost
;
5656 iv_ca_set_remove_invariants (ivs
, cp
->cand
->depends_on
);
5659 ivs
->cand_use_cost
= sub_costs (ivs
->cand_use_cost
, cp
->cost
);
5661 iv_ca_set_remove_invariants (ivs
, cp
->depends_on
);
5663 if (cp
->inv_expr_id
!= -1)
5665 ivs
->used_inv_expr
[cp
->inv_expr_id
]--;
5666 if (ivs
->used_inv_expr
[cp
->inv_expr_id
] == 0)
5667 ivs
->num_used_inv_expr
--;
5669 iv_ca_recount_cost (data
, ivs
);
5672 /* Add invariants in set INVS to set IVS. */
5675 iv_ca_set_add_invariants (struct iv_ca
*ivs
, bitmap invs
)
5683 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
5685 ivs
->n_invariant_uses
[iid
]++;
5686 if (ivs
->n_invariant_uses
[iid
] == 1)
5691 /* Set cost pair for USE in set IVS to CP. */
5694 iv_ca_set_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5695 struct iv_use
*use
, struct cost_pair
*cp
)
5697 unsigned uid
= use
->id
, cid
;
5699 if (ivs
->cand_for_use
[uid
] == cp
)
5702 if (ivs
->cand_for_use
[uid
])
5703 iv_ca_set_no_cp (data
, ivs
, use
);
5710 ivs
->cand_for_use
[uid
] = cp
;
5711 ivs
->n_cand_uses
[cid
]++;
5712 if (ivs
->n_cand_uses
[cid
] == 1)
5714 bitmap_set_bit (ivs
->cands
, cid
);
5715 /* Do not count the pseudocandidates. */
5719 ivs
->cand_cost
+= cp
->cand
->cost
;
5721 iv_ca_set_add_invariants (ivs
, cp
->cand
->depends_on
);
5724 ivs
->cand_use_cost
= add_costs (ivs
->cand_use_cost
, cp
->cost
);
5725 iv_ca_set_add_invariants (ivs
, cp
->depends_on
);
5727 if (cp
->inv_expr_id
!= -1)
5729 ivs
->used_inv_expr
[cp
->inv_expr_id
]++;
5730 if (ivs
->used_inv_expr
[cp
->inv_expr_id
] == 1)
5731 ivs
->num_used_inv_expr
++;
5733 iv_ca_recount_cost (data
, ivs
);
5737 /* Extend set IVS by expressing USE by some of the candidates in it
5738 if possible. Consider all important candidates if candidates in
5739 set IVS don't give any result. */
5742 iv_ca_add_use (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5745 struct cost_pair
*best_cp
= NULL
, *cp
;
5748 struct iv_cand
*cand
;
5750 gcc_assert (ivs
->upto
>= use
->id
);
5754 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
5756 cand
= iv_cand (data
, i
);
5757 cp
= get_use_iv_cost (data
, use
, cand
);
5758 if (cheaper_cost_pair (cp
, best_cp
))
5762 if (best_cp
== NULL
)
5764 EXECUTE_IF_SET_IN_BITMAP (data
->important_candidates
, 0, i
, bi
)
5766 cand
= iv_cand (data
, i
);
5767 cp
= get_use_iv_cost (data
, use
, cand
);
5768 if (cheaper_cost_pair (cp
, best_cp
))
5773 iv_ca_set_cp (data
, ivs
, use
, best_cp
);
5776 /* Get cost for assignment IVS. */
5779 iv_ca_cost (struct iv_ca
*ivs
)
5781 /* This was a conditional expression but it triggered a bug in
5784 return infinite_cost
;
5789 /* Returns true if all dependences of CP are among invariants in IVS. */
5792 iv_ca_has_deps (struct iv_ca
*ivs
, struct cost_pair
*cp
)
5797 if (!cp
->depends_on
)
5800 EXECUTE_IF_SET_IN_BITMAP (cp
->depends_on
, 0, i
, bi
)
5802 if (ivs
->n_invariant_uses
[i
] == 0)
5809 /* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
5810 it before NEXT_CHANGE. */
5812 static struct iv_ca_delta
*
5813 iv_ca_delta_add (struct iv_use
*use
, struct cost_pair
*old_cp
,
5814 struct cost_pair
*new_cp
, struct iv_ca_delta
*next_change
)
5816 struct iv_ca_delta
*change
= XNEW (struct iv_ca_delta
);
5819 change
->old_cp
= old_cp
;
5820 change
->new_cp
= new_cp
;
5821 change
->next_change
= next_change
;
5826 /* Joins two lists of changes L1 and L2. Destructive -- old lists
5829 static struct iv_ca_delta
*
5830 iv_ca_delta_join (struct iv_ca_delta
*l1
, struct iv_ca_delta
*l2
)
5832 struct iv_ca_delta
*last
;
5840 for (last
= l1
; last
->next_change
; last
= last
->next_change
)
5842 last
->next_change
= l2
;
5847 /* Reverse the list of changes DELTA, forming the inverse to it. */
5849 static struct iv_ca_delta
*
5850 iv_ca_delta_reverse (struct iv_ca_delta
*delta
)
5852 struct iv_ca_delta
*act
, *next
, *prev
= NULL
;
5854 for (act
= delta
; act
; act
= next
)
5856 next
= act
->next_change
;
5857 act
->next_change
= prev
;
5860 std::swap (act
->old_cp
, act
->new_cp
);
5866 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
5867 reverted instead. */
5870 iv_ca_delta_commit (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5871 struct iv_ca_delta
*delta
, bool forward
)
5873 struct cost_pair
*from
, *to
;
5874 struct iv_ca_delta
*act
;
5877 delta
= iv_ca_delta_reverse (delta
);
5879 for (act
= delta
; act
; act
= act
->next_change
)
5883 gcc_assert (iv_ca_cand_for_use (ivs
, act
->use
) == from
);
5884 iv_ca_set_cp (data
, ivs
, act
->use
, to
);
5888 iv_ca_delta_reverse (delta
);
5891 /* Returns true if CAND is used in IVS. */
5894 iv_ca_cand_used_p (struct iv_ca
*ivs
, struct iv_cand
*cand
)
5896 return ivs
->n_cand_uses
[cand
->id
] > 0;
5899 /* Returns number of induction variable candidates in the set IVS. */
5902 iv_ca_n_cands (struct iv_ca
*ivs
)
5904 return ivs
->n_cands
;
5907 /* Free the list of changes DELTA. */
5910 iv_ca_delta_free (struct iv_ca_delta
**delta
)
5912 struct iv_ca_delta
*act
, *next
;
5914 for (act
= *delta
; act
; act
= next
)
5916 next
= act
->next_change
;
5923 /* Allocates new iv candidates assignment. */
5925 static struct iv_ca
*
5926 iv_ca_new (struct ivopts_data
*data
)
5928 struct iv_ca
*nw
= XNEW (struct iv_ca
);
5932 nw
->cand_for_use
= XCNEWVEC (struct cost_pair
*, n_iv_uses (data
));
5933 nw
->n_cand_uses
= XCNEWVEC (unsigned, n_iv_cands (data
));
5934 nw
->cands
= BITMAP_ALLOC (NULL
);
5937 nw
->cand_use_cost
= no_cost
;
5939 nw
->n_invariant_uses
= XCNEWVEC (unsigned, data
->max_inv_id
+ 1);
5941 nw
->used_inv_expr
= XCNEWVEC (unsigned, data
->inv_expr_id
+ 1);
5942 nw
->num_used_inv_expr
= 0;
5947 /* Free memory occupied by the set IVS. */
5950 iv_ca_free (struct iv_ca
**ivs
)
5952 free ((*ivs
)->cand_for_use
);
5953 free ((*ivs
)->n_cand_uses
);
5954 BITMAP_FREE ((*ivs
)->cands
);
5955 free ((*ivs
)->n_invariant_uses
);
5956 free ((*ivs
)->used_inv_expr
);
5961 /* Dumps IVS to FILE. */
5964 iv_ca_dump (struct ivopts_data
*data
, FILE *file
, struct iv_ca
*ivs
)
5966 const char *pref
= " invariants ";
5968 comp_cost cost
= iv_ca_cost (ivs
);
5970 fprintf (file
, " cost: %d (complexity %d)\n", cost
.cost
, cost
.complexity
);
5971 fprintf (file
, " cand_cost: %d\n cand_use_cost: %d (complexity %d)\n",
5972 ivs
->cand_cost
, ivs
->cand_use_cost
.cost
, ivs
->cand_use_cost
.complexity
);
5973 bitmap_print (file
, ivs
->cands
, " candidates: ","\n");
5975 for (i
= 0; i
< ivs
->upto
; i
++)
5977 struct iv_use
*use
= iv_use (data
, i
);
5978 struct cost_pair
*cp
= iv_ca_cand_for_use (ivs
, use
);
5980 fprintf (file
, " use:%d --> iv_cand:%d, cost=(%d,%d)\n",
5981 use
->id
, cp
->cand
->id
, cp
->cost
.cost
, cp
->cost
.complexity
);
5983 fprintf (file
, " use:%d --> ??\n", use
->id
);
5986 for (i
= 1; i
<= data
->max_inv_id
; i
++)
5987 if (ivs
->n_invariant_uses
[i
])
5989 fprintf (file
, "%s%d", pref
, i
);
5992 fprintf (file
, "\n\n");
5995 /* Try changing candidate in IVS to CAND for each use. Return cost of the
5996 new set, and store differences in DELTA. Number of induction variables
5997 in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
5998 the function will try to find a solution with mimimal iv candidates. */
6001 iv_ca_extend (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6002 struct iv_cand
*cand
, struct iv_ca_delta
**delta
,
6003 unsigned *n_ivs
, bool min_ncand
)
6008 struct cost_pair
*old_cp
, *new_cp
;
6011 for (i
= 0; i
< ivs
->upto
; i
++)
6013 use
= iv_use (data
, i
);
6014 old_cp
= iv_ca_cand_for_use (ivs
, use
);
6017 && old_cp
->cand
== cand
)
6020 new_cp
= get_use_iv_cost (data
, use
, cand
);
6024 if (!min_ncand
&& !iv_ca_has_deps (ivs
, new_cp
))
6027 if (!min_ncand
&& !cheaper_cost_pair (new_cp
, old_cp
))
6030 *delta
= iv_ca_delta_add (use
, old_cp
, new_cp
, *delta
);
6033 iv_ca_delta_commit (data
, ivs
, *delta
, true);
6034 cost
= iv_ca_cost (ivs
);
6036 *n_ivs
= iv_ca_n_cands (ivs
);
6037 iv_ca_delta_commit (data
, ivs
, *delta
, false);
6042 /* Try narrowing set IVS by removing CAND. Return the cost of
6043 the new set and store the differences in DELTA. START is
6044 the candidate with which we start narrowing. */
6047 iv_ca_narrow (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6048 struct iv_cand
*cand
, struct iv_cand
*start
,
6049 struct iv_ca_delta
**delta
)
6053 struct cost_pair
*old_cp
, *new_cp
, *cp
;
6055 struct iv_cand
*cnd
;
6056 comp_cost cost
, best_cost
, acost
;
6059 for (i
= 0; i
< n_iv_uses (data
); i
++)
6061 use
= iv_use (data
, i
);
6063 old_cp
= iv_ca_cand_for_use (ivs
, use
);
6064 if (old_cp
->cand
!= cand
)
6067 best_cost
= iv_ca_cost (ivs
);
6068 /* Start narrowing with START. */
6069 new_cp
= get_use_iv_cost (data
, use
, start
);
6071 if (data
->consider_all_candidates
)
6073 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, ci
, bi
)
6075 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
6078 cnd
= iv_cand (data
, ci
);
6080 cp
= get_use_iv_cost (data
, use
, cnd
);
6084 iv_ca_set_cp (data
, ivs
, use
, cp
);
6085 acost
= iv_ca_cost (ivs
);
6087 if (compare_costs (acost
, best_cost
) < 0)
6096 EXECUTE_IF_AND_IN_BITMAP (use
->related_cands
, ivs
->cands
, 0, ci
, bi
)
6098 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
6101 cnd
= iv_cand (data
, ci
);
6103 cp
= get_use_iv_cost (data
, use
, cnd
);
6107 iv_ca_set_cp (data
, ivs
, use
, cp
);
6108 acost
= iv_ca_cost (ivs
);
6110 if (compare_costs (acost
, best_cost
) < 0)
6117 /* Restore to old cp for use. */
6118 iv_ca_set_cp (data
, ivs
, use
, old_cp
);
6122 iv_ca_delta_free (delta
);
6123 return infinite_cost
;
6126 *delta
= iv_ca_delta_add (use
, old_cp
, new_cp
, *delta
);
6129 iv_ca_delta_commit (data
, ivs
, *delta
, true);
6130 cost
= iv_ca_cost (ivs
);
6131 iv_ca_delta_commit (data
, ivs
, *delta
, false);
6136 /* Try optimizing the set of candidates IVS by removing candidates different
6137 from to EXCEPT_CAND from it. Return cost of the new set, and store
6138 differences in DELTA. */
6141 iv_ca_prune (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6142 struct iv_cand
*except_cand
, struct iv_ca_delta
**delta
)
6145 struct iv_ca_delta
*act_delta
, *best_delta
;
6147 comp_cost best_cost
, acost
;
6148 struct iv_cand
*cand
;
6151 best_cost
= iv_ca_cost (ivs
);
6153 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
6155 cand
= iv_cand (data
, i
);
6157 if (cand
== except_cand
)
6160 acost
= iv_ca_narrow (data
, ivs
, cand
, except_cand
, &act_delta
);
6162 if (compare_costs (acost
, best_cost
) < 0)
6165 iv_ca_delta_free (&best_delta
);
6166 best_delta
= act_delta
;
6169 iv_ca_delta_free (&act_delta
);
6178 /* Recurse to possibly remove other unnecessary ivs. */
6179 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6180 best_cost
= iv_ca_prune (data
, ivs
, except_cand
, delta
);
6181 iv_ca_delta_commit (data
, ivs
, best_delta
, false);
6182 *delta
= iv_ca_delta_join (best_delta
, *delta
);
6186 /* Check if CAND_IDX is a candidate other than OLD_CAND and has
6187 cheaper local cost for USE than BEST_CP. Return pointer to
6188 the corresponding cost_pair, otherwise just return BEST_CP. */
6190 static struct cost_pair
*
6191 cheaper_cost_with_cand (struct ivopts_data
*data
, struct iv_use
*use
,
6192 unsigned int cand_idx
, struct iv_cand
*old_cand
,
6193 struct cost_pair
*best_cp
)
6195 struct iv_cand
*cand
;
6196 struct cost_pair
*cp
;
6198 gcc_assert (old_cand
!= NULL
&& best_cp
!= NULL
);
6199 if (cand_idx
== old_cand
->id
)
6202 cand
= iv_cand (data
, cand_idx
);
6203 cp
= get_use_iv_cost (data
, use
, cand
);
6204 if (cp
!= NULL
&& cheaper_cost_pair (cp
, best_cp
))
6210 /* Try breaking local optimal fixed-point for IVS by replacing candidates
6211 which are used by more than one iv uses. For each of those candidates,
6212 this function tries to represent iv uses under that candidate using
6213 other ones with lower local cost, then tries to prune the new set.
6214 If the new set has lower cost, It returns the new cost after recording
6215 candidate replacement in list DELTA. */
6218 iv_ca_replace (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6219 struct iv_ca_delta
**delta
)
6221 bitmap_iterator bi
, bj
;
6222 unsigned int i
, j
, k
;
6224 struct iv_cand
*cand
;
6225 comp_cost orig_cost
, acost
;
6226 struct iv_ca_delta
*act_delta
, *tmp_delta
;
6227 struct cost_pair
*old_cp
, *best_cp
= NULL
;
6230 orig_cost
= iv_ca_cost (ivs
);
6232 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
6234 if (ivs
->n_cand_uses
[i
] == 1
6235 || ivs
->n_cand_uses
[i
] > ALWAYS_PRUNE_CAND_SET_BOUND
)
6238 cand
= iv_cand (data
, i
);
6241 /* Represent uses under current candidate using other ones with
6242 lower local cost. */
6243 for (j
= 0; j
< ivs
->upto
; j
++)
6245 use
= iv_use (data
, j
);
6246 old_cp
= iv_ca_cand_for_use (ivs
, use
);
6248 if (old_cp
->cand
!= cand
)
6252 if (data
->consider_all_candidates
)
6253 for (k
= 0; k
< n_iv_cands (data
); k
++)
6254 best_cp
= cheaper_cost_with_cand (data
, use
, k
,
6255 old_cp
->cand
, best_cp
);
6257 EXECUTE_IF_SET_IN_BITMAP (use
->related_cands
, 0, k
, bj
)
6258 best_cp
= cheaper_cost_with_cand (data
, use
, k
,
6259 old_cp
->cand
, best_cp
);
6261 if (best_cp
== old_cp
)
6264 act_delta
= iv_ca_delta_add (use
, old_cp
, best_cp
, act_delta
);
6266 /* No need for further prune. */
6270 /* Prune the new candidate set. */
6271 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
6272 acost
= iv_ca_prune (data
, ivs
, NULL
, &tmp_delta
);
6273 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
6274 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
6276 if (compare_costs (acost
, orig_cost
) < 0)
6282 iv_ca_delta_free (&act_delta
);
6288 /* Tries to extend the sets IVS in the best possible way in order
6289 to express the USE. If ORIGINALP is true, prefer candidates from
6290 the original set of IVs, otherwise favor important candidates not
6291 based on any memory object. */
6294 try_add_cand_for (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6295 struct iv_use
*use
, bool originalp
)
6297 comp_cost best_cost
, act_cost
;
6300 struct iv_cand
*cand
;
6301 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
;
6302 struct cost_pair
*cp
;
6304 iv_ca_add_use (data
, ivs
, use
);
6305 best_cost
= iv_ca_cost (ivs
);
6306 cp
= iv_ca_cand_for_use (ivs
, use
);
6309 best_delta
= iv_ca_delta_add (use
, NULL
, cp
, NULL
);
6310 iv_ca_set_no_cp (data
, ivs
, use
);
6313 /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
6314 first try important candidates not based on any memory object. Only if
6315 this fails, try the specific ones. Rationale -- in loops with many
6316 variables the best choice often is to use just one generic biv. If we
6317 added here many ivs specific to the uses, the optimization algorithm later
6318 would be likely to get stuck in a local minimum, thus causing us to create
6319 too many ivs. The approach from few ivs to more seems more likely to be
6320 successful -- starting from few ivs, replacing an expensive use by a
6321 specific iv should always be a win. */
6322 EXECUTE_IF_SET_IN_BITMAP (data
->important_candidates
, 0, i
, bi
)
6324 cand
= iv_cand (data
, i
);
6326 if (originalp
&& cand
->pos
!=IP_ORIGINAL
)
6329 if (!originalp
&& cand
->iv
->base_object
!= NULL_TREE
)
6332 if (iv_ca_cand_used_p (ivs
, cand
))
6335 cp
= get_use_iv_cost (data
, use
, cand
);
6339 iv_ca_set_cp (data
, ivs
, use
, cp
);
6340 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
,
6342 iv_ca_set_no_cp (data
, ivs
, use
);
6343 act_delta
= iv_ca_delta_add (use
, NULL
, cp
, act_delta
);
6345 if (compare_costs (act_cost
, best_cost
) < 0)
6347 best_cost
= act_cost
;
6349 iv_ca_delta_free (&best_delta
);
6350 best_delta
= act_delta
;
6353 iv_ca_delta_free (&act_delta
);
6356 if (infinite_cost_p (best_cost
))
6358 for (i
= 0; i
< use
->n_map_members
; i
++)
6360 cp
= use
->cost_map
+ i
;
6365 /* Already tried this. */
6366 if (cand
->important
)
6368 if (originalp
&& cand
->pos
== IP_ORIGINAL
)
6370 if (!originalp
&& cand
->iv
->base_object
== NULL_TREE
)
6374 if (iv_ca_cand_used_p (ivs
, cand
))
6378 iv_ca_set_cp (data
, ivs
, use
, cp
);
6379 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
, true);
6380 iv_ca_set_no_cp (data
, ivs
, use
);
6381 act_delta
= iv_ca_delta_add (use
, iv_ca_cand_for_use (ivs
, use
),
6384 if (compare_costs (act_cost
, best_cost
) < 0)
6386 best_cost
= act_cost
;
6389 iv_ca_delta_free (&best_delta
);
6390 best_delta
= act_delta
;
6393 iv_ca_delta_free (&act_delta
);
6397 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6398 iv_ca_delta_free (&best_delta
);
6400 return !infinite_cost_p (best_cost
);
6403 /* Finds an initial assignment of candidates to uses. */
6405 static struct iv_ca
*
6406 get_initial_solution (struct ivopts_data
*data
, bool originalp
)
6408 struct iv_ca
*ivs
= iv_ca_new (data
);
6411 for (i
= 0; i
< n_iv_uses (data
); i
++)
6412 if (!try_add_cand_for (data
, ivs
, iv_use (data
, i
), originalp
))
6421 /* Tries to improve set of induction variables IVS. TRY_REPLACE_P
6422 points to a bool variable, this function tries to break local
6423 optimal fixed-point by replacing candidates in IVS if it's true. */
6426 try_improve_iv_set (struct ivopts_data
*data
,
6427 struct iv_ca
*ivs
, bool *try_replace_p
)
6430 comp_cost acost
, best_cost
= iv_ca_cost (ivs
);
6431 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
, *tmp_delta
;
6432 struct iv_cand
*cand
;
6434 /* Try extending the set of induction variables by one. */
6435 for (i
= 0; i
< n_iv_cands (data
); i
++)
6437 cand
= iv_cand (data
, i
);
6439 if (iv_ca_cand_used_p (ivs
, cand
))
6442 acost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, &n_ivs
, false);
6446 /* If we successfully added the candidate and the set is small enough,
6447 try optimizing it by removing other candidates. */
6448 if (n_ivs
<= ALWAYS_PRUNE_CAND_SET_BOUND
)
6450 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
6451 acost
= iv_ca_prune (data
, ivs
, cand
, &tmp_delta
);
6452 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
6453 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
6456 if (compare_costs (acost
, best_cost
) < 0)
6459 iv_ca_delta_free (&best_delta
);
6460 best_delta
= act_delta
;
6463 iv_ca_delta_free (&act_delta
);
6468 /* Try removing the candidates from the set instead. */
6469 best_cost
= iv_ca_prune (data
, ivs
, NULL
, &best_delta
);
6471 if (!best_delta
&& *try_replace_p
)
6473 *try_replace_p
= false;
6474 /* So far candidate selecting algorithm tends to choose fewer IVs
6475 so that it can handle cases in which loops have many variables
6476 but the best choice is often to use only one general biv. One
6477 weakness is it can't handle opposite cases, in which different
6478 candidates should be chosen with respect to each use. To solve
6479 the problem, we replace candidates in a manner described by the
6480 comments of iv_ca_replace, thus give general algorithm a chance
6481 to break local optimal fixed-point in these cases. */
6482 best_cost
= iv_ca_replace (data
, ivs
, &best_delta
);
6489 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6490 gcc_assert (compare_costs (best_cost
, iv_ca_cost (ivs
)) == 0);
6491 iv_ca_delta_free (&best_delta
);
6495 /* Attempts to find the optimal set of induction variables. We do simple
6496 greedy heuristic -- we try to replace at most one candidate in the selected
6497 solution and remove the unused ivs while this improves the cost. */
6499 static struct iv_ca
*
6500 find_optimal_iv_set_1 (struct ivopts_data
*data
, bool originalp
)
6503 bool try_replace_p
= true;
6505 /* Get the initial solution. */
6506 set
= get_initial_solution (data
, originalp
);
6509 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6510 fprintf (dump_file
, "Unable to substitute for ivs, failed.\n");
6514 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6516 fprintf (dump_file
, "Initial set of candidates:\n");
6517 iv_ca_dump (data
, dump_file
, set
);
6520 while (try_improve_iv_set (data
, set
, &try_replace_p
))
6522 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6524 fprintf (dump_file
, "Improved to:\n");
6525 iv_ca_dump (data
, dump_file
, set
);
6532 static struct iv_ca
*
6533 find_optimal_iv_set (struct ivopts_data
*data
)
6536 struct iv_ca
*set
, *origset
;
6538 comp_cost cost
, origcost
;
6540 /* Determine the cost based on a strategy that starts with original IVs,
6541 and try again using a strategy that prefers candidates not based
6543 origset
= find_optimal_iv_set_1 (data
, true);
6544 set
= find_optimal_iv_set_1 (data
, false);
6546 if (!origset
&& !set
)
6549 origcost
= origset
? iv_ca_cost (origset
) : infinite_cost
;
6550 cost
= set
? iv_ca_cost (set
) : infinite_cost
;
6552 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6554 fprintf (dump_file
, "Original cost %d (complexity %d)\n\n",
6555 origcost
.cost
, origcost
.complexity
);
6556 fprintf (dump_file
, "Final cost %d (complexity %d)\n\n",
6557 cost
.cost
, cost
.complexity
);
6560 /* Choose the one with the best cost. */
6561 if (compare_costs (origcost
, cost
) <= 0)
6568 iv_ca_free (&origset
);
6570 for (i
= 0; i
< n_iv_uses (data
); i
++)
6572 use
= iv_use (data
, i
);
6573 use
->selected
= iv_ca_cand_for_use (set
, use
)->cand
;
6579 /* Creates a new induction variable corresponding to CAND. */
6582 create_new_iv (struct ivopts_data
*data
, struct iv_cand
*cand
)
6584 gimple_stmt_iterator incr_pos
;
6594 incr_pos
= gsi_last_bb (ip_normal_pos (data
->current_loop
));
6598 incr_pos
= gsi_last_bb (ip_end_pos (data
->current_loop
));
6606 incr_pos
= gsi_for_stmt (cand
->incremented_at
);
6610 /* Mark that the iv is preserved. */
6611 name_info (data
, cand
->var_before
)->preserve_biv
= true;
6612 name_info (data
, cand
->var_after
)->preserve_biv
= true;
6614 /* Rewrite the increment so that it uses var_before directly. */
6615 find_interesting_uses_op (data
, cand
->var_after
)->selected
= cand
;
6619 gimple_add_tmp_var (cand
->var_before
);
6621 base
= unshare_expr (cand
->iv
->base
);
6623 create_iv (base
, unshare_expr (cand
->iv
->step
),
6624 cand
->var_before
, data
->current_loop
,
6625 &incr_pos
, after
, &cand
->var_before
, &cand
->var_after
);
6628 /* Creates new induction variables described in SET. */
6631 create_new_ivs (struct ivopts_data
*data
, struct iv_ca
*set
)
6634 struct iv_cand
*cand
;
6637 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
6639 cand
= iv_cand (data
, i
);
6640 create_new_iv (data
, cand
);
6643 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6645 fprintf (dump_file
, "Selected IV set for loop %d",
6646 data
->current_loop
->num
);
6647 if (data
->loop_loc
!= UNKNOWN_LOCATION
)
6648 fprintf (dump_file
, " at %s:%d", LOCATION_FILE (data
->loop_loc
),
6649 LOCATION_LINE (data
->loop_loc
));
6650 fprintf (dump_file
, ", %lu IVs:\n", bitmap_count_bits (set
->cands
));
6651 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
6653 cand
= iv_cand (data
, i
);
6654 dump_cand (dump_file
, cand
);
6656 fprintf (dump_file
, "\n");
6660 /* Rewrites USE (definition of iv used in a nonlinear expression)
6661 using candidate CAND. */
6664 rewrite_use_nonlinear_expr (struct ivopts_data
*data
,
6665 struct iv_use
*use
, struct iv_cand
*cand
)
6670 gimple_stmt_iterator bsi
;
6672 /* An important special case -- if we are asked to express value of
6673 the original iv by itself, just exit; there is no need to
6674 introduce a new computation (that might also need casting the
6675 variable to unsigned and back). */
6676 if (cand
->pos
== IP_ORIGINAL
6677 && cand
->incremented_at
== use
->stmt
)
6679 enum tree_code stmt_code
;
6681 gcc_assert (is_gimple_assign (use
->stmt
));
6682 gcc_assert (gimple_assign_lhs (use
->stmt
) == cand
->var_after
);
6684 /* Check whether we may leave the computation unchanged.
6685 This is the case only if it does not rely on other
6686 computations in the loop -- otherwise, the computation
6687 we rely upon may be removed in remove_unused_ivs,
6688 thus leading to ICE. */
6689 stmt_code
= gimple_assign_rhs_code (use
->stmt
);
6690 if (stmt_code
== PLUS_EXPR
6691 || stmt_code
== MINUS_EXPR
6692 || stmt_code
== POINTER_PLUS_EXPR
)
6694 if (gimple_assign_rhs1 (use
->stmt
) == cand
->var_before
)
6695 op
= gimple_assign_rhs2 (use
->stmt
);
6696 else if (gimple_assign_rhs2 (use
->stmt
) == cand
->var_before
)
6697 op
= gimple_assign_rhs1 (use
->stmt
);
6704 if (op
&& expr_invariant_in_loop_p (data
->current_loop
, op
))
6708 comp
= get_computation (data
->current_loop
, use
, cand
);
6709 gcc_assert (comp
!= NULL_TREE
);
6711 switch (gimple_code (use
->stmt
))
6714 tgt
= PHI_RESULT (use
->stmt
);
6716 /* If we should keep the biv, do not replace it. */
6717 if (name_info (data
, tgt
)->preserve_biv
)
6720 bsi
= gsi_after_labels (gimple_bb (use
->stmt
));
6724 tgt
= gimple_assign_lhs (use
->stmt
);
6725 bsi
= gsi_for_stmt (use
->stmt
);
6732 if (!valid_gimple_rhs_p (comp
)
6733 || (gimple_code (use
->stmt
) != GIMPLE_PHI
6734 /* We can't allow re-allocating the stmt as it might be pointed
6736 && (get_gimple_rhs_num_ops (TREE_CODE (comp
))
6737 >= gimple_num_ops (gsi_stmt (bsi
)))))
6739 comp
= force_gimple_operand_gsi (&bsi
, comp
, true, NULL_TREE
,
6740 true, GSI_SAME_STMT
);
6741 if (POINTER_TYPE_P (TREE_TYPE (tgt
)))
6743 duplicate_ssa_name_ptr_info (comp
, SSA_NAME_PTR_INFO (tgt
));
6744 /* As this isn't a plain copy we have to reset alignment
6746 if (SSA_NAME_PTR_INFO (comp
))
6747 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp
));
6751 if (gimple_code (use
->stmt
) == GIMPLE_PHI
)
6753 ass
= gimple_build_assign (tgt
, comp
);
6754 gsi_insert_before (&bsi
, ass
, GSI_SAME_STMT
);
6756 bsi
= gsi_for_stmt (use
->stmt
);
6757 remove_phi_node (&bsi
, false);
6761 gimple_assign_set_rhs_from_tree (&bsi
, comp
);
6762 use
->stmt
= gsi_stmt (bsi
);
6766 /* Performs a peephole optimization to reorder the iv update statement with
6767 a mem ref to enable instruction combining in later phases. The mem ref uses
6768 the iv value before the update, so the reordering transformation requires
6769 adjustment of the offset. CAND is the selected IV_CAND.
6773 t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
6781 directly propagating t over to (1) will introduce overlapping live range
6782 thus increase register pressure. This peephole transform it into:
6786 t = MEM_REF (base, iv2, 8, 8);
6793 adjust_iv_update_pos (struct iv_cand
*cand
, struct iv_use
*use
)
6796 gimple iv_update
, stmt
;
6798 gimple_stmt_iterator gsi
, gsi_iv
;
6800 if (cand
->pos
!= IP_NORMAL
)
6803 var_after
= cand
->var_after
;
6804 iv_update
= SSA_NAME_DEF_STMT (var_after
);
6806 bb
= gimple_bb (iv_update
);
6807 gsi
= gsi_last_nondebug_bb (bb
);
6808 stmt
= gsi_stmt (gsi
);
6810 /* Only handle conditional statement for now. */
6811 if (gimple_code (stmt
) != GIMPLE_COND
)
6814 gsi_prev_nondebug (&gsi
);
6815 stmt
= gsi_stmt (gsi
);
6816 if (stmt
!= iv_update
)
6819 gsi_prev_nondebug (&gsi
);
6820 if (gsi_end_p (gsi
))
6823 stmt
= gsi_stmt (gsi
);
6824 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
6827 if (stmt
!= use
->stmt
)
6830 if (TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
6833 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6835 fprintf (dump_file
, "Reordering \n");
6836 print_gimple_stmt (dump_file
, iv_update
, 0, 0);
6837 print_gimple_stmt (dump_file
, use
->stmt
, 0, 0);
6838 fprintf (dump_file
, "\n");
6841 gsi
= gsi_for_stmt (use
->stmt
);
6842 gsi_iv
= gsi_for_stmt (iv_update
);
6843 gsi_move_before (&gsi_iv
, &gsi
);
6845 cand
->pos
= IP_BEFORE_USE
;
6846 cand
->incremented_at
= use
->stmt
;
6849 /* Rewrites USE (address that is an iv) using candidate CAND. */
6852 rewrite_use_address_1 (struct ivopts_data
*data
,
6853 struct iv_use
*use
, struct iv_cand
*cand
)
6856 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
6857 tree base_hint
= NULL_TREE
;
6861 adjust_iv_update_pos (cand
, use
);
6862 ok
= get_computation_aff (data
->current_loop
, use
, cand
, use
->stmt
, &aff
);
6864 unshare_aff_combination (&aff
);
6866 /* To avoid undefined overflow problems, all IV candidates use unsigned
6867 integer types. The drawback is that this makes it impossible for
6868 create_mem_ref to distinguish an IV that is based on a memory object
6869 from one that represents simply an offset.
6871 To work around this problem, we pass a hint to create_mem_ref that
6872 indicates which variable (if any) in aff is an IV based on a memory
6873 object. Note that we only consider the candidate. If this is not
6874 based on an object, the base of the reference is in some subexpression
6875 of the use -- but these will use pointer types, so they are recognized
6876 by the create_mem_ref heuristics anyway. */
6877 if (cand
->iv
->base_object
)
6878 base_hint
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6880 iv
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6881 ref
= create_mem_ref (&bsi
, TREE_TYPE (*use
->op_p
), &aff
,
6882 reference_alias_ptr_type (*use
->op_p
),
6883 iv
, base_hint
, data
->speed
);
6884 copy_ref_info (ref
, *use
->op_p
);
6888 /* Rewrites USE (address that is an iv) using candidate CAND. If it's the
6889 first use of a group, rewrites sub uses in the group too. */
6892 rewrite_use_address (struct ivopts_data
*data
,
6893 struct iv_use
*use
, struct iv_cand
*cand
)
6895 struct iv_use
*next
;
6897 gcc_assert (use
->sub_id
== 0);
6898 rewrite_use_address_1 (data
, use
, cand
);
6899 update_stmt (use
->stmt
);
6901 for (next
= use
->next
; next
!= NULL
; next
= next
->next
)
6903 rewrite_use_address_1 (data
, next
, cand
);
6904 update_stmt (next
->stmt
);
6910 /* Rewrites USE (the condition such that one of the arguments is an iv) using
6914 rewrite_use_compare (struct ivopts_data
*data
,
6915 struct iv_use
*use
, struct iv_cand
*cand
)
6917 tree comp
, *var_p
, op
, bound
;
6918 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
6919 enum tree_code compare
;
6920 struct cost_pair
*cp
= get_use_iv_cost (data
, use
, cand
);
6926 tree var
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6927 tree var_type
= TREE_TYPE (var
);
6930 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6932 fprintf (dump_file
, "Replacing exit test: ");
6933 print_gimple_stmt (dump_file
, use
->stmt
, 0, TDF_SLIM
);
6936 bound
= unshare_expr (fold_convert (var_type
, bound
));
6937 op
= force_gimple_operand (bound
, &stmts
, true, NULL_TREE
);
6939 gsi_insert_seq_on_edge_immediate (
6940 loop_preheader_edge (data
->current_loop
),
6943 gcond
*cond_stmt
= as_a
<gcond
*> (use
->stmt
);
6944 gimple_cond_set_lhs (cond_stmt
, var
);
6945 gimple_cond_set_code (cond_stmt
, compare
);
6946 gimple_cond_set_rhs (cond_stmt
, op
);
6950 /* The induction variable elimination failed; just express the original
6952 comp
= get_computation (data
->current_loop
, use
, cand
);
6953 gcc_assert (comp
!= NULL_TREE
);
6955 ok
= extract_cond_operands (data
, use
->stmt
, &var_p
, NULL
, NULL
, NULL
);
6958 *var_p
= force_gimple_operand_gsi (&bsi
, comp
, true, SSA_NAME_VAR (*var_p
),
6959 true, GSI_SAME_STMT
);
6962 /* Rewrites USE using candidate CAND. */
6965 rewrite_use (struct ivopts_data
*data
, struct iv_use
*use
, struct iv_cand
*cand
)
6969 case USE_NONLINEAR_EXPR
:
6970 rewrite_use_nonlinear_expr (data
, use
, cand
);
6974 rewrite_use_address (data
, use
, cand
);
6978 rewrite_use_compare (data
, use
, cand
);
6985 update_stmt (use
->stmt
);
6988 /* Rewrite the uses using the selected induction variables. */
6991 rewrite_uses (struct ivopts_data
*data
)
6994 struct iv_cand
*cand
;
6997 for (i
= 0; i
< n_iv_uses (data
); i
++)
6999 use
= iv_use (data
, i
);
7000 cand
= use
->selected
;
7003 rewrite_use (data
, use
, cand
);
7007 /* Removes the ivs that are not used after rewriting. */
7010 remove_unused_ivs (struct ivopts_data
*data
)
7014 bitmap toremove
= BITMAP_ALLOC (NULL
);
7016 /* Figure out an order in which to release SSA DEFs so that we don't
7017 release something that we'd have to propagate into a debug stmt
7019 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
7021 struct version_info
*info
;
7023 info
= ver_info (data
, j
);
7025 && !integer_zerop (info
->iv
->step
)
7027 && !info
->iv
->have_use_for
7028 && !info
->preserve_biv
)
7030 bitmap_set_bit (toremove
, SSA_NAME_VERSION (info
->iv
->ssa_name
));
7032 tree def
= info
->iv
->ssa_name
;
7034 if (MAY_HAVE_DEBUG_STMTS
&& SSA_NAME_DEF_STMT (def
))
7036 imm_use_iterator imm_iter
;
7037 use_operand_p use_p
;
7041 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
7043 if (!gimple_debug_bind_p (stmt
))
7046 /* We just want to determine whether to do nothing
7047 (count == 0), to substitute the computed
7048 expression into a single use of the SSA DEF by
7049 itself (count == 1), or to use a debug temp
7050 because the SSA DEF is used multiple times or as
7051 part of a larger expression (count > 1). */
7053 if (gimple_debug_bind_get_value (stmt
) != def
)
7057 BREAK_FROM_IMM_USE_STMT (imm_iter
);
7063 struct iv_use dummy_use
;
7064 struct iv_cand
*best_cand
= NULL
, *cand
;
7065 unsigned i
, best_pref
= 0, cand_pref
;
7067 memset (&dummy_use
, 0, sizeof (dummy_use
));
7068 dummy_use
.iv
= info
->iv
;
7069 for (i
= 0; i
< n_iv_uses (data
) && i
< 64; i
++)
7071 cand
= iv_use (data
, i
)->selected
;
7072 if (cand
== best_cand
)
7074 cand_pref
= operand_equal_p (cand
->iv
->step
,
7078 += TYPE_MODE (TREE_TYPE (cand
->iv
->base
))
7079 == TYPE_MODE (TREE_TYPE (info
->iv
->base
))
7082 += TREE_CODE (cand
->iv
->base
) == INTEGER_CST
7084 if (best_cand
== NULL
|| best_pref
< cand_pref
)
7087 best_pref
= cand_pref
;
7094 tree comp
= get_computation_at (data
->current_loop
,
7095 &dummy_use
, best_cand
,
7096 SSA_NAME_DEF_STMT (def
));
7102 tree vexpr
= make_node (DEBUG_EXPR_DECL
);
7103 DECL_ARTIFICIAL (vexpr
) = 1;
7104 TREE_TYPE (vexpr
) = TREE_TYPE (comp
);
7105 if (SSA_NAME_VAR (def
))
7106 DECL_MODE (vexpr
) = DECL_MODE (SSA_NAME_VAR (def
));
7108 DECL_MODE (vexpr
) = TYPE_MODE (TREE_TYPE (vexpr
));
7110 = gimple_build_debug_bind (vexpr
, comp
, NULL
);
7111 gimple_stmt_iterator gsi
;
7113 if (gimple_code (SSA_NAME_DEF_STMT (def
)) == GIMPLE_PHI
)
7114 gsi
= gsi_after_labels (gimple_bb
7115 (SSA_NAME_DEF_STMT (def
)));
7117 gsi
= gsi_for_stmt (SSA_NAME_DEF_STMT (def
));
7119 gsi_insert_before (&gsi
, def_temp
, GSI_SAME_STMT
);
7123 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
7125 if (!gimple_debug_bind_p (stmt
))
7128 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
7129 SET_USE (use_p
, comp
);
7137 release_defs_bitset (toremove
);
7139 BITMAP_FREE (toremove
);
7142 /* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
7143 for hash_map::traverse. */
7146 free_tree_niter_desc (edge
const &, tree_niter_desc
*const &value
, void *)
7152 /* Frees data allocated by the optimization of a single loop. */
7155 free_loop_data (struct ivopts_data
*data
)
7163 data
->niters
->traverse
<void *, free_tree_niter_desc
> (NULL
);
7164 delete data
->niters
;
7165 data
->niters
= NULL
;
7168 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
7170 struct version_info
*info
;
7172 info
= ver_info (data
, i
);
7174 info
->has_nonlin_use
= false;
7175 info
->preserve_biv
= false;
7178 bitmap_clear (data
->relevant
);
7179 bitmap_clear (data
->important_candidates
);
7181 for (i
= 0; i
< n_iv_uses (data
); i
++)
7183 struct iv_use
*use
= iv_use (data
, i
);
7184 struct iv_use
*pre
= use
, *sub
= use
->next
;
7188 gcc_assert (sub
->related_cands
== NULL
);
7189 gcc_assert (sub
->n_map_members
== 0 && sub
->cost_map
== NULL
);
7196 BITMAP_FREE (use
->related_cands
);
7197 for (j
= 0; j
< use
->n_map_members
; j
++)
7198 if (use
->cost_map
[j
].depends_on
)
7199 BITMAP_FREE (use
->cost_map
[j
].depends_on
);
7200 free (use
->cost_map
);
7203 data
->iv_uses
.truncate (0);
7205 for (i
= 0; i
< n_iv_cands (data
); i
++)
7207 struct iv_cand
*cand
= iv_cand (data
, i
);
7209 if (cand
->depends_on
)
7210 BITMAP_FREE (cand
->depends_on
);
7213 data
->iv_candidates
.truncate (0);
7215 if (data
->version_info_size
< num_ssa_names
)
7217 data
->version_info_size
= 2 * num_ssa_names
;
7218 free (data
->version_info
);
7219 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
7222 data
->max_inv_id
= 0;
7224 FOR_EACH_VEC_ELT (decl_rtl_to_reset
, i
, obj
)
7225 SET_DECL_RTL (obj
, NULL_RTX
);
7227 decl_rtl_to_reset
.truncate (0);
7229 data
->inv_expr_tab
->empty ();
7230 data
->inv_expr_id
= 0;
7233 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
7237 tree_ssa_iv_optimize_finalize (struct ivopts_data
*data
)
7239 free_loop_data (data
);
7240 free (data
->version_info
);
7241 BITMAP_FREE (data
->relevant
);
7242 BITMAP_FREE (data
->important_candidates
);
7244 decl_rtl_to_reset
.release ();
7245 data
->iv_uses
.release ();
7246 data
->iv_candidates
.release ();
7247 delete data
->inv_expr_tab
;
7248 data
->inv_expr_tab
= NULL
;
7249 free_affine_expand_cache (&data
->name_expansion_cache
);
7250 obstack_free (&data
->iv_obstack
, NULL
);
7253 /* Returns true if the loop body BODY includes any function calls. */
7256 loop_body_includes_call (basic_block
*body
, unsigned num_nodes
)
7258 gimple_stmt_iterator gsi
;
7261 for (i
= 0; i
< num_nodes
; i
++)
7262 for (gsi
= gsi_start_bb (body
[i
]); !gsi_end_p (gsi
); gsi_next (&gsi
))
7264 gimple stmt
= gsi_stmt (gsi
);
7265 if (is_gimple_call (stmt
)
7266 && !is_inexpensive_builtin (gimple_call_fndecl (stmt
)))
7272 /* Optimizes the LOOP. Returns true if anything changed. */
7275 tree_ssa_iv_optimize_loop (struct ivopts_data
*data
, struct loop
*loop
)
7277 bool changed
= false;
7278 struct iv_ca
*iv_ca
;
7279 edge exit
= single_dom_exit (loop
);
7282 gcc_assert (!data
->niters
);
7283 data
->current_loop
= loop
;
7284 data
->loop_loc
= find_loop_location (loop
);
7285 data
->speed
= optimize_loop_for_speed_p (loop
);
7287 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7289 fprintf (dump_file
, "Processing loop %d", loop
->num
);
7290 if (data
->loop_loc
!= UNKNOWN_LOCATION
)
7291 fprintf (dump_file
, " at %s:%d", LOCATION_FILE (data
->loop_loc
),
7292 LOCATION_LINE (data
->loop_loc
));
7293 fprintf (dump_file
, "\n");
7297 fprintf (dump_file
, " single exit %d -> %d, exit condition ",
7298 exit
->src
->index
, exit
->dest
->index
);
7299 print_gimple_stmt (dump_file
, last_stmt (exit
->src
), 0, TDF_SLIM
);
7300 fprintf (dump_file
, "\n");
7303 fprintf (dump_file
, "\n");
7306 body
= get_loop_body (loop
);
7307 data
->body_includes_call
= loop_body_includes_call (body
, loop
->num_nodes
);
7308 renumber_gimple_stmt_uids_in_blocks (body
, loop
->num_nodes
);
7311 data
->loop_single_exit_p
= exit
!= NULL
&& loop_only_exit_p (loop
, exit
);
7313 /* For each ssa name determines whether it behaves as an induction variable
7315 if (!find_induction_variables (data
))
7318 /* Finds interesting uses (item 1). */
7319 find_interesting_uses (data
);
7320 group_address_uses (data
);
7321 if (n_iv_uses (data
) > MAX_CONSIDERED_USES
)
7324 /* Finds candidates for the induction variables (item 2). */
7325 find_iv_candidates (data
);
7327 /* Calculates the costs (item 3, part 1). */
7328 determine_iv_costs (data
);
7329 determine_use_iv_costs (data
);
7330 determine_set_costs (data
);
7332 /* Find the optimal set of induction variables (item 3, part 2). */
7333 iv_ca
= find_optimal_iv_set (data
);
7338 /* Create the new induction variables (item 4, part 1). */
7339 create_new_ivs (data
, iv_ca
);
7340 iv_ca_free (&iv_ca
);
7342 /* Rewrite the uses (item 4, part 2). */
7343 rewrite_uses (data
);
7345 /* Remove the ivs that are unused after rewriting. */
7346 remove_unused_ivs (data
);
7348 /* We have changed the structure of induction variables; it might happen
7349 that definitions in the scev database refer to some of them that were
7354 free_loop_data (data
);
7359 /* Main entry point. Optimizes induction variables in loops. */
7362 tree_ssa_iv_optimize (void)
7365 struct ivopts_data data
;
7367 tree_ssa_iv_optimize_init (&data
);
7369 /* Optimize the loops starting with the innermost ones. */
7370 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
7372 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7373 flow_loop_dump (loop
, dump_file
, NULL
, 1);
7375 tree_ssa_iv_optimize_loop (&data
, loop
);
7378 tree_ssa_iv_optimize_finalize (&data
);