2006-01-30 Marcin Dalecki <martin@dalecki.de>
[official-gcc.git] / gcc / config / i386 / i386.h
blob628a5dd65a399d7e281e95ca948fcf839849026c
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
37 /* Define the specific costs for a given cpu */
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
89 extern const struct processor_costs *ix86_cost;
91 /* Macros used in the machine description to test the flags. */
93 /* configure can arrange to make this 2, to force a 486. */
95 #ifndef TARGET_CPU_DEFAULT
96 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
97 #endif
99 #ifndef TARGET_FPMATH_DEFAULT
100 #define TARGET_FPMATH_DEFAULT \
101 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
102 #endif
104 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
106 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
107 compile-time constant. */
108 #ifdef IN_LIBGCC2
109 #undef TARGET_64BIT
110 #ifdef __x86_64__
111 #define TARGET_64BIT 1
112 #else
113 #define TARGET_64BIT 0
114 #endif
115 #else
116 #ifndef TARGET_BI_ARCH
117 #undef TARGET_64BIT
118 #if TARGET_64BIT_DEFAULT
119 #define TARGET_64BIT 1
120 #else
121 #define TARGET_64BIT 0
122 #endif
123 #endif
124 #endif
126 #define HAS_LONG_COND_BRANCH 1
127 #define HAS_LONG_UNCOND_BRANCH 1
129 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
130 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
131 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
132 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
133 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
134 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
135 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
136 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
137 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
138 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
139 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
140 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
141 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
143 #define TUNEMASK (1 << ix86_tune)
144 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
145 extern const int x86_use_bit_test, x86_cmove, x86_fisttp, x86_deep_branch;
146 extern const int x86_branch_hints, x86_unroll_strlen;
147 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
148 extern const int x86_use_himode_fiop, x86_use_simode_fiop;
149 extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
150 extern const int x86_read_modify, x86_split_long_moves;
151 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
152 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
153 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
154 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
155 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
156 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
157 extern const int x86_epilogue_using_move, x86_decompose_lea;
158 extern const int x86_arch_always_fancy_math_387, x86_shift1;
159 extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
160 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
161 extern const int x86_use_ffreep;
162 extern const int x86_inter_unit_moves, x86_schedule;
163 extern const int x86_use_bt;
164 extern const int x86_cmpxchg, x86_cmpxchg8b, x86_cmpxchg16b, x86_xadd;
165 extern const int x86_use_incdec;
166 extern const int x86_pad_returns;
167 extern int x86_prefetch_sse;
169 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
170 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
171 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
172 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
173 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
174 /* For sane SSE instruction set generation we need fcomi instruction. It is
175 safe to enable all CMOVE instructions. */
176 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
177 #define TARGET_FISTTP (((x86_fisttp & (1 << ix86_arch)) || TARGET_SSE3) \
178 && TARGET_80387)
179 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
180 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
181 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
182 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
183 #define TARGET_MOVX (x86_movx & TUNEMASK)
184 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
185 #define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
186 #define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
187 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
188 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
189 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
190 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
191 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
192 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
193 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
194 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
195 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
196 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
197 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
198 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
199 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
200 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
201 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
202 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
203 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
204 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
205 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
206 (x86_sse_partial_reg_dependency & TUNEMASK)
207 #define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
208 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
209 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
210 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
211 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
212 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
213 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
214 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
215 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
216 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
217 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
218 #define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
219 #define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
220 #define TARGET_USE_BT (x86_use_bt & TUNEMASK)
221 #define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
222 #define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
224 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
226 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
227 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
228 && (ix86_fpmath & FPMATH_387))
230 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
231 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
232 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
233 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
235 #define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
236 #define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
237 #define TARGET_CMPXCHG16B (x86_cmpxchg16b & (1 << ix86_arch))
238 #define TARGET_XADD (x86_xadd & (1 << ix86_arch))
240 #ifndef TARGET_64BIT_DEFAULT
241 #define TARGET_64BIT_DEFAULT 0
242 #endif
243 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
244 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
245 #endif
247 /* Once GDB has been enhanced to deal with functions without frame
248 pointers, we can change this to allow for elimination of
249 the frame pointer in leaf functions. */
250 #define TARGET_DEFAULT 0
252 /* This is not really a target flag, but is done this way so that
253 it's analogous to similar code for Mach-O on PowerPC. darwin.h
254 redefines this to 1. */
255 #define TARGET_MACHO 0
257 /* Subtargets may reset this to 1 in order to enable 96-bit long double
258 with the rounding mode forced to 53 bits. */
259 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
261 /* Sometimes certain combinations of command options do not make
262 sense on a particular target machine. You can define a macro
263 `OVERRIDE_OPTIONS' to take account of this. This macro, if
264 defined, is executed once just after all the command options have
265 been parsed.
267 Don't use this macro to turn on various extra optimizations for
268 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
270 #define OVERRIDE_OPTIONS override_options ()
272 /* Define this to change the optimizations performed by default. */
273 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
274 optimization_options ((LEVEL), (SIZE))
276 /* Support for configure-time defaults of some command line options. */
277 #define OPTION_DEFAULT_SPECS \
278 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
279 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
280 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
282 /* Specs for the compiler proper */
284 #ifndef CC1_CPU_SPEC
285 #define CC1_CPU_SPEC "\
286 %{!mtune*: \
287 %{m386:mtune=i386 \
288 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
289 %{m486:-mtune=i486 \
290 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
291 %{mpentium:-mtune=pentium \
292 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
293 %{mpentiumpro:-mtune=pentiumpro \
294 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
295 %{mcpu=*:-mtune=%* \
296 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
297 %<mcpu=* \
298 %{mintel-syntax:-masm=intel \
299 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
300 %{mno-intel-syntax:-masm=att \
301 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
302 #endif
304 /* Target CPU builtins. */
305 #define TARGET_CPU_CPP_BUILTINS() \
306 do \
308 size_t arch_len = strlen (ix86_arch_string); \
309 size_t tune_len = strlen (ix86_tune_string); \
310 int last_arch_char = ix86_arch_string[arch_len - 1]; \
311 int last_tune_char = ix86_tune_string[tune_len - 1]; \
313 if (TARGET_64BIT) \
315 builtin_assert ("cpu=x86_64"); \
316 builtin_assert ("machine=x86_64"); \
317 builtin_define ("__amd64"); \
318 builtin_define ("__amd64__"); \
319 builtin_define ("__x86_64"); \
320 builtin_define ("__x86_64__"); \
322 else \
324 builtin_assert ("cpu=i386"); \
325 builtin_assert ("machine=i386"); \
326 builtin_define_std ("i386"); \
329 /* Built-ins based on -mtune= (or -march= if no \
330 -mtune= given). */ \
331 if (TARGET_386) \
332 builtin_define ("__tune_i386__"); \
333 else if (TARGET_486) \
334 builtin_define ("__tune_i486__"); \
335 else if (TARGET_PENTIUM) \
337 builtin_define ("__tune_i586__"); \
338 builtin_define ("__tune_pentium__"); \
339 if (last_tune_char == 'x') \
340 builtin_define ("__tune_pentium_mmx__"); \
342 else if (TARGET_PENTIUMPRO) \
344 builtin_define ("__tune_i686__"); \
345 builtin_define ("__tune_pentiumpro__"); \
346 switch (last_tune_char) \
348 case '3': \
349 builtin_define ("__tune_pentium3__"); \
350 /* FALLTHRU */ \
351 case '2': \
352 builtin_define ("__tune_pentium2__"); \
353 break; \
356 else if (TARGET_K6) \
358 builtin_define ("__tune_k6__"); \
359 if (last_tune_char == '2') \
360 builtin_define ("__tune_k6_2__"); \
361 else if (last_tune_char == '3') \
362 builtin_define ("__tune_k6_3__"); \
364 else if (TARGET_ATHLON) \
366 builtin_define ("__tune_athlon__"); \
367 /* Only plain "athlon" lacks SSE. */ \
368 if (last_tune_char != 'n') \
369 builtin_define ("__tune_athlon_sse__"); \
371 else if (TARGET_K8) \
372 builtin_define ("__tune_k8__"); \
373 else if (TARGET_PENTIUM4) \
374 builtin_define ("__tune_pentium4__"); \
375 else if (TARGET_NOCONA) \
376 builtin_define ("__tune_nocona__"); \
378 if (TARGET_MMX) \
379 builtin_define ("__MMX__"); \
380 if (TARGET_3DNOW) \
381 builtin_define ("__3dNOW__"); \
382 if (TARGET_3DNOW_A) \
383 builtin_define ("__3dNOW_A__"); \
384 if (TARGET_SSE) \
385 builtin_define ("__SSE__"); \
386 if (TARGET_SSE2) \
387 builtin_define ("__SSE2__"); \
388 if (TARGET_SSE3) \
389 builtin_define ("__SSE3__"); \
390 if (TARGET_SSE_MATH && TARGET_SSE) \
391 builtin_define ("__SSE_MATH__"); \
392 if (TARGET_SSE_MATH && TARGET_SSE2) \
393 builtin_define ("__SSE2_MATH__"); \
395 /* Built-ins based on -march=. */ \
396 if (ix86_arch == PROCESSOR_I486) \
398 builtin_define ("__i486"); \
399 builtin_define ("__i486__"); \
401 else if (ix86_arch == PROCESSOR_PENTIUM) \
403 builtin_define ("__i586"); \
404 builtin_define ("__i586__"); \
405 builtin_define ("__pentium"); \
406 builtin_define ("__pentium__"); \
407 if (last_arch_char == 'x') \
408 builtin_define ("__pentium_mmx__"); \
410 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
412 builtin_define ("__i686"); \
413 builtin_define ("__i686__"); \
414 builtin_define ("__pentiumpro"); \
415 builtin_define ("__pentiumpro__"); \
417 else if (ix86_arch == PROCESSOR_K6) \
420 builtin_define ("__k6"); \
421 builtin_define ("__k6__"); \
422 if (last_arch_char == '2') \
423 builtin_define ("__k6_2__"); \
424 else if (last_arch_char == '3') \
425 builtin_define ("__k6_3__"); \
427 else if (ix86_arch == PROCESSOR_ATHLON) \
429 builtin_define ("__athlon"); \
430 builtin_define ("__athlon__"); \
431 /* Only plain "athlon" lacks SSE. */ \
432 if (last_arch_char != 'n') \
433 builtin_define ("__athlon_sse__"); \
435 else if (ix86_arch == PROCESSOR_K8) \
437 builtin_define ("__k8"); \
438 builtin_define ("__k8__"); \
440 else if (ix86_arch == PROCESSOR_PENTIUM4) \
442 builtin_define ("__pentium4"); \
443 builtin_define ("__pentium4__"); \
445 else if (ix86_arch == PROCESSOR_NOCONA) \
447 builtin_define ("__nocona"); \
448 builtin_define ("__nocona__"); \
451 while (0)
453 #define TARGET_CPU_DEFAULT_i386 0
454 #define TARGET_CPU_DEFAULT_i486 1
455 #define TARGET_CPU_DEFAULT_pentium 2
456 #define TARGET_CPU_DEFAULT_pentium_mmx 3
457 #define TARGET_CPU_DEFAULT_pentiumpro 4
458 #define TARGET_CPU_DEFAULT_pentium2 5
459 #define TARGET_CPU_DEFAULT_pentium3 6
460 #define TARGET_CPU_DEFAULT_pentium4 7
461 #define TARGET_CPU_DEFAULT_k6 8
462 #define TARGET_CPU_DEFAULT_k6_2 9
463 #define TARGET_CPU_DEFAULT_k6_3 10
464 #define TARGET_CPU_DEFAULT_athlon 11
465 #define TARGET_CPU_DEFAULT_athlon_sse 12
466 #define TARGET_CPU_DEFAULT_k8 13
467 #define TARGET_CPU_DEFAULT_pentium_m 14
468 #define TARGET_CPU_DEFAULT_prescott 15
469 #define TARGET_CPU_DEFAULT_nocona 16
470 #define TARGET_CPU_DEFAULT_generic 17
472 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
473 "pentiumpro", "pentium2", "pentium3", \
474 "pentium4", "k6", "k6-2", "k6-3",\
475 "athlon", "athlon-4", "k8", \
476 "pentium-m", "prescott", "nocona", \
477 "generic"}
479 #ifndef CC1_SPEC
480 #define CC1_SPEC "%(cc1_cpu) "
481 #endif
483 /* This macro defines names of additional specifications to put in the
484 specs that can be used in various specifications like CC1_SPEC. Its
485 definition is an initializer with a subgrouping for each command option.
487 Each subgrouping contains a string constant, that defines the
488 specification name, and a string constant that used by the GCC driver
489 program.
491 Do not define this macro if it does not need to do anything. */
493 #ifndef SUBTARGET_EXTRA_SPECS
494 #define SUBTARGET_EXTRA_SPECS
495 #endif
497 #define EXTRA_SPECS \
498 { "cc1_cpu", CC1_CPU_SPEC }, \
499 SUBTARGET_EXTRA_SPECS
501 /* target machine storage layout */
503 #define LONG_DOUBLE_TYPE_SIZE 80
505 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
506 FPU, assume that the fpcw is set to extended precision; when using
507 only SSE, rounding is correct; when using both SSE and the FPU,
508 the rounding precision is indeterminate, since either may be chosen
509 apparently at random. */
510 #define TARGET_FLT_EVAL_METHOD \
511 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
513 #define SHORT_TYPE_SIZE 16
514 #define INT_TYPE_SIZE 32
515 #define FLOAT_TYPE_SIZE 32
516 #define LONG_TYPE_SIZE BITS_PER_WORD
517 #define DOUBLE_TYPE_SIZE 64
518 #define LONG_LONG_TYPE_SIZE 64
520 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
521 #define MAX_BITS_PER_WORD 64
522 #else
523 #define MAX_BITS_PER_WORD 32
524 #endif
526 /* Define this if most significant byte of a word is the lowest numbered. */
527 /* That is true on the 80386. */
529 #define BITS_BIG_ENDIAN 0
531 /* Define this if most significant byte of a word is the lowest numbered. */
532 /* That is not true on the 80386. */
533 #define BYTES_BIG_ENDIAN 0
535 /* Define this if most significant word of a multiword number is the lowest
536 numbered. */
537 /* Not true for 80386 */
538 #define WORDS_BIG_ENDIAN 0
540 /* Width of a word, in units (bytes). */
541 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
542 #ifdef IN_LIBGCC2
543 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
544 #else
545 #define MIN_UNITS_PER_WORD 4
546 #endif
548 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
549 #define PARM_BOUNDARY BITS_PER_WORD
551 /* Boundary (in *bits*) on which stack pointer should be aligned. */
552 #define STACK_BOUNDARY BITS_PER_WORD
554 /* Boundary (in *bits*) on which the stack pointer prefers to be
555 aligned; the compiler cannot rely on having this alignment. */
556 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
558 /* As of July 2001, many runtimes do not align the stack properly when
559 entering main. This causes expand_main_function to forcibly align
560 the stack, which results in aligned frames for functions called from
561 main, though it does nothing for the alignment of main itself. */
562 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
563 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
565 /* Minimum allocation boundary for the code of a function. */
566 #define FUNCTION_BOUNDARY 8
568 /* C++ stores the virtual bit in the lowest bit of function pointers. */
569 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
571 /* Alignment of field after `int : 0' in a structure. */
573 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
575 /* Minimum size in bits of the largest boundary to which any
576 and all fundamental data types supported by the hardware
577 might need to be aligned. No data type wants to be aligned
578 rounder than this.
580 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
581 and Pentium Pro XFmode values at 128 bit boundaries. */
583 #define BIGGEST_ALIGNMENT 128
585 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
586 #define ALIGN_MODE_128(MODE) \
587 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
589 /* The published ABIs say that doubles should be aligned on word
590 boundaries, so lower the alignment for structure fields unless
591 -malign-double is set. */
593 /* ??? Blah -- this macro is used directly by libobjc. Since it
594 supports no vector modes, cut out the complexity and fall back
595 on BIGGEST_FIELD_ALIGNMENT. */
596 #ifdef IN_TARGET_LIBS
597 #ifdef __x86_64__
598 #define BIGGEST_FIELD_ALIGNMENT 128
599 #else
600 #define BIGGEST_FIELD_ALIGNMENT 32
601 #endif
602 #else
603 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
604 x86_field_alignment (FIELD, COMPUTED)
605 #endif
607 /* If defined, a C expression to compute the alignment given to a
608 constant that is being placed in memory. EXP is the constant
609 and ALIGN is the alignment that the object would ordinarily have.
610 The value of this macro is used instead of that alignment to align
611 the object.
613 If this macro is not defined, then ALIGN is used.
615 The typical use of this macro is to increase alignment for string
616 constants to be word aligned so that `strcpy' calls that copy
617 constants can be done inline. */
619 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
621 /* If defined, a C expression to compute the alignment for a static
622 variable. TYPE is the data type, and ALIGN is the alignment that
623 the object would ordinarily have. The value of this macro is used
624 instead of that alignment to align the object.
626 If this macro is not defined, then ALIGN is used.
628 One use of this macro is to increase alignment of medium-size
629 data to make it all fit in fewer cache lines. Another is to
630 cause character arrays to be word-aligned so that `strcpy' calls
631 that copy constants to character arrays can be done inline. */
633 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
635 /* If defined, a C expression to compute the alignment for a local
636 variable. TYPE is the data type, and ALIGN is the alignment that
637 the object would ordinarily have. The value of this macro is used
638 instead of that alignment to align the object.
640 If this macro is not defined, then ALIGN is used.
642 One use of this macro is to increase alignment of medium-size
643 data to make it all fit in fewer cache lines. */
645 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
647 /* If defined, a C expression that gives the alignment boundary, in
648 bits, of an argument with the specified mode and type. If it is
649 not defined, `PARM_BOUNDARY' is used for all arguments. */
651 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
652 ix86_function_arg_boundary ((MODE), (TYPE))
654 /* Set this nonzero if move instructions will actually fail to work
655 when given unaligned data. */
656 #define STRICT_ALIGNMENT 0
658 /* If bit field type is int, don't let it cross an int,
659 and give entire struct the alignment of an int. */
660 /* Required on the 386 since it doesn't have bit-field insns. */
661 #define PCC_BITFIELD_TYPE_MATTERS 1
663 /* Standard register usage. */
665 /* This processor has special stack-like registers. See reg-stack.c
666 for details. */
668 #define STACK_REGS
669 #define IS_STACK_MODE(MODE) \
670 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode) \
672 /* Number of actual hardware registers.
673 The hardware registers are assigned numbers for the compiler
674 from 0 to just below FIRST_PSEUDO_REGISTER.
675 All registers that the compiler knows about must be given numbers,
676 even those that are not normally considered general registers.
678 In the 80386 we give the 8 general purpose registers the numbers 0-7.
679 We number the floating point registers 8-15.
680 Note that registers 0-7 can be accessed as a short or int,
681 while only 0-3 may be used with byte `mov' instructions.
683 Reg 16 does not correspond to any hardware register, but instead
684 appears in the RTL as an argument pointer prior to reload, and is
685 eliminated during reloading in favor of either the stack or frame
686 pointer. */
688 #define FIRST_PSEUDO_REGISTER 53
690 /* Number of hardware registers that go into the DWARF-2 unwind info.
691 If not defined, equals FIRST_PSEUDO_REGISTER. */
693 #define DWARF_FRAME_REGISTERS 17
695 /* 1 for registers that have pervasive standard uses
696 and are not available for the register allocator.
697 On the 80386, the stack pointer is such, as is the arg pointer.
699 The value is zero if the register is not fixed on either 32 or
700 64 bit targets, one if the register if fixed on both 32 and 64
701 bit targets, two if it is only fixed on 32bit targets and three
702 if its only fixed on 64bit targets.
703 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
705 #define FIXED_REGISTERS \
706 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
707 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
708 /*arg,flags,fpsr,dir,frame*/ \
709 1, 1, 1, 1, 1, \
710 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
711 0, 0, 0, 0, 0, 0, 0, 0, \
712 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
713 0, 0, 0, 0, 0, 0, 0, 0, \
714 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
715 2, 2, 2, 2, 2, 2, 2, 2, \
716 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
717 2, 2, 2, 2, 2, 2, 2, 2}
720 /* 1 for registers not available across function calls.
721 These must include the FIXED_REGISTERS and also any
722 registers that can be used without being saved.
723 The latter must include the registers where values are returned
724 and the register where structure-value addresses are passed.
725 Aside from that, you can include as many other registers as you like.
727 The value is zero if the register is not call used on either 32 or
728 64 bit targets, one if the register if call used on both 32 and 64
729 bit targets, two if it is only call used on 32bit targets and three
730 if its only call used on 64bit targets.
731 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
733 #define CALL_USED_REGISTERS \
734 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
735 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
736 /*arg,flags,fpsr,dir,frame*/ \
737 1, 1, 1, 1, 1, \
738 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
739 1, 1, 1, 1, 1, 1, 1, 1, \
740 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
741 1, 1, 1, 1, 1, 1, 1, 1, \
742 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
743 1, 1, 1, 1, 2, 2, 2, 2, \
744 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
745 1, 1, 1, 1, 1, 1, 1, 1} \
747 /* Order in which to allocate registers. Each register must be
748 listed once, even those in FIXED_REGISTERS. List frame pointer
749 late and fixed registers last. Note that, in general, we prefer
750 registers listed in CALL_USED_REGISTERS, keeping the others
751 available for storage of persistent values.
753 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
754 so this is just empty initializer for array. */
756 #define REG_ALLOC_ORDER \
757 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
758 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
759 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
760 48, 49, 50, 51, 52 }
762 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
763 to be rearranged based on a particular function. When using sse math,
764 we want to allocate SSE before x87 registers and vice vera. */
766 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
769 /* Macro to conditionally modify fixed_regs/call_used_regs. */
770 #define CONDITIONAL_REGISTER_USAGE \
771 do { \
772 int i; \
773 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
775 if (fixed_regs[i] > 1) \
776 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
777 if (call_used_regs[i] > 1) \
778 call_used_regs[i] = (call_used_regs[i] \
779 == (TARGET_64BIT ? 3 : 2)); \
781 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
783 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
784 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
786 if (! TARGET_MMX) \
788 int i; \
789 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
790 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
791 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
793 if (! TARGET_SSE) \
795 int i; \
796 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
797 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
798 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
800 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
802 int i; \
803 HARD_REG_SET x; \
804 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
805 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
806 if (TEST_HARD_REG_BIT (x, i)) \
807 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
809 if (! TARGET_64BIT) \
811 int i; \
812 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
813 reg_names[i] = ""; \
814 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
815 reg_names[i] = ""; \
817 } while (0)
819 /* Return number of consecutive hard regs needed starting at reg REGNO
820 to hold something of mode MODE.
821 This is ordinarily the length in words of a value of mode MODE
822 but can be less for certain modes in special long registers.
824 Actually there are no two word move instructions for consecutive
825 registers. And only registers 0-3 may have mov byte instructions
826 applied to them.
829 #define HARD_REGNO_NREGS(REGNO, MODE) \
830 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
831 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
832 : ((MODE) == XFmode \
833 ? (TARGET_64BIT ? 2 : 3) \
834 : (MODE) == XCmode \
835 ? (TARGET_64BIT ? 4 : 6) \
836 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
838 #define VALID_SSE2_REG_MODE(MODE) \
839 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
840 || (MODE) == V2DImode || (MODE) == DFmode)
842 #define VALID_SSE_REG_MODE(MODE) \
843 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
844 || (MODE) == SFmode || (MODE) == TFmode)
846 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
847 ((MODE) == V2SFmode || (MODE) == SFmode)
849 #define VALID_MMX_REG_MODE(MODE) \
850 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
851 || (MODE) == V2SImode || (MODE) == SImode)
853 /* ??? No autovectorization into MMX or 3DNOW until we can reliably
854 place emms and femms instructions. */
855 #define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
857 #define VALID_FP_MODE_P(MODE) \
858 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
859 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
861 #define VALID_INT_MODE_P(MODE) \
862 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
863 || (MODE) == DImode \
864 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
865 || (MODE) == CDImode \
866 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
867 || (MODE) == TFmode || (MODE) == TCmode)))
869 /* Return true for modes passed in SSE registers. */
870 #define SSE_REG_MODE_P(MODE) \
871 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
872 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
873 || (MODE) == V4SFmode || (MODE) == V4SImode)
875 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
877 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
878 ix86_hard_regno_mode_ok ((REGNO), (MODE))
880 /* Value is 1 if it is a good idea to tie two pseudo registers
881 when one has mode MODE1 and one has mode MODE2.
882 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
883 for any hard reg, then this must be 0 for correct output. */
885 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
887 /* It is possible to write patterns to move flags; but until someone
888 does it, */
889 #define AVOID_CCMODE_COPIES
891 /* Specify the modes required to caller save a given hard regno.
892 We do this on i386 to prevent flags from being saved at all.
894 Kill any attempts to combine saving of modes. */
896 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
897 (CC_REGNO_P (REGNO) ? VOIDmode \
898 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
899 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
900 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
901 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
902 : (MODE))
903 /* Specify the registers used for certain standard purposes.
904 The values of these macros are register numbers. */
906 /* on the 386 the pc register is %eip, and is not usable as a general
907 register. The ordinary mov instructions won't work */
908 /* #define PC_REGNUM */
910 /* Register to use for pushing function arguments. */
911 #define STACK_POINTER_REGNUM 7
913 /* Base register for access to local variables of the function. */
914 #define HARD_FRAME_POINTER_REGNUM 6
916 /* Base register for access to local variables of the function. */
917 #define FRAME_POINTER_REGNUM 20
919 /* First floating point reg */
920 #define FIRST_FLOAT_REG 8
922 /* First & last stack-like regs */
923 #define FIRST_STACK_REG FIRST_FLOAT_REG
924 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
926 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
927 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
929 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
930 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
932 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
933 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
935 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
936 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
938 /* Value should be nonzero if functions must have frame pointers.
939 Zero means the frame pointer need not be set up (and parms
940 may be accessed via the stack pointer) in functions that seem suitable.
941 This is computed in `reload', in reload1.c. */
942 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
944 /* Override this in other tm.h files to cope with various OS lossage
945 requiring a frame pointer. */
946 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
947 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
948 #endif
950 /* Make sure we can access arbitrary call frames. */
951 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
953 /* Base register for access to arguments of the function. */
954 #define ARG_POINTER_REGNUM 16
956 /* Register in which static-chain is passed to a function.
957 We do use ECX as static chain register for 32 bit ABI. On the
958 64bit ABI, ECX is an argument register, so we use R10 instead. */
959 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
961 /* Register to hold the addressing base for position independent
962 code access to data items. We don't use PIC pointer for 64bit
963 mode. Define the regnum to dummy value to prevent gcc from
964 pessimizing code dealing with EBX.
966 To avoid clobbering a call-saved register unnecessarily, we renumber
967 the pic register when possible. The change is visible after the
968 prologue has been emitted. */
970 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
972 #define PIC_OFFSET_TABLE_REGNUM \
973 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
974 || !flag_pic ? INVALID_REGNUM \
975 : reload_completed ? REGNO (pic_offset_table_rtx) \
976 : REAL_PIC_OFFSET_TABLE_REGNUM)
978 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
980 /* A C expression which can inhibit the returning of certain function
981 values in registers, based on the type of value. A nonzero value
982 says to return the function value in memory, just as large
983 structures are always returned. Here TYPE will be a C expression
984 of type `tree', representing the data type of the value.
986 Note that values of mode `BLKmode' must be explicitly handled by
987 this macro. Also, the option `-fpcc-struct-return' takes effect
988 regardless of this macro. On most systems, it is possible to
989 leave the macro undefined; this causes a default definition to be
990 used, whose value is the constant 1 for `BLKmode' values, and 0
991 otherwise.
993 Do not use this macro to indicate that structures and unions
994 should always be returned in memory. You should instead use
995 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
997 #define RETURN_IN_MEMORY(TYPE) \
998 ix86_return_in_memory (TYPE)
1000 /* This is overridden by <cygwin.h>. */
1001 #define MS_AGGREGATE_RETURN 0
1003 /* This is overridden by <netware.h>. */
1004 #define KEEP_AGGREGATE_RETURN_POINTER 0
1006 /* Define the classes of registers for register constraints in the
1007 machine description. Also define ranges of constants.
1009 One of the classes must always be named ALL_REGS and include all hard regs.
1010 If there is more than one class, another class must be named NO_REGS
1011 and contain no registers.
1013 The name GENERAL_REGS must be the name of a class (or an alias for
1014 another name such as ALL_REGS). This is the class of registers
1015 that is allowed by "g" or "r" in a register constraint.
1016 Also, registers outside this class are allocated only when
1017 instructions express preferences for them.
1019 The classes must be numbered in nondecreasing order; that is,
1020 a larger-numbered class must never be contained completely
1021 in a smaller-numbered class.
1023 For any two classes, it is very desirable that there be another
1024 class that represents their union.
1026 It might seem that class BREG is unnecessary, since no useful 386
1027 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1028 and the "b" register constraint is useful in asms for syscalls.
1030 The flags and fpsr registers are in no class. */
1032 enum reg_class
1034 NO_REGS,
1035 AREG, DREG, CREG, BREG, SIREG, DIREG,
1036 AD_REGS, /* %eax/%edx for DImode */
1037 Q_REGS, /* %eax %ebx %ecx %edx */
1038 NON_Q_REGS, /* %esi %edi %ebp %esp */
1039 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1040 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1041 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1042 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1043 FLOAT_REGS,
1044 SSE_REGS,
1045 MMX_REGS,
1046 FP_TOP_SSE_REGS,
1047 FP_SECOND_SSE_REGS,
1048 FLOAT_SSE_REGS,
1049 FLOAT_INT_REGS,
1050 INT_SSE_REGS,
1051 FLOAT_INT_SSE_REGS,
1052 ALL_REGS, LIM_REG_CLASSES
1055 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1057 #define INTEGER_CLASS_P(CLASS) \
1058 reg_class_subset_p ((CLASS), GENERAL_REGS)
1059 #define FLOAT_CLASS_P(CLASS) \
1060 reg_class_subset_p ((CLASS), FLOAT_REGS)
1061 #define SSE_CLASS_P(CLASS) \
1062 ((CLASS) == SSE_REGS)
1063 #define MMX_CLASS_P(CLASS) \
1064 ((CLASS) == MMX_REGS)
1065 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1066 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1067 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1068 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1069 #define MAYBE_SSE_CLASS_P(CLASS) \
1070 reg_classes_intersect_p (SSE_REGS, (CLASS))
1071 #define MAYBE_MMX_CLASS_P(CLASS) \
1072 reg_classes_intersect_p (MMX_REGS, (CLASS))
1074 #define Q_CLASS_P(CLASS) \
1075 reg_class_subset_p ((CLASS), Q_REGS)
1077 /* Give names of register classes as strings for dump file. */
1079 #define REG_CLASS_NAMES \
1080 { "NO_REGS", \
1081 "AREG", "DREG", "CREG", "BREG", \
1082 "SIREG", "DIREG", \
1083 "AD_REGS", \
1084 "Q_REGS", "NON_Q_REGS", \
1085 "INDEX_REGS", \
1086 "LEGACY_REGS", \
1087 "GENERAL_REGS", \
1088 "FP_TOP_REG", "FP_SECOND_REG", \
1089 "FLOAT_REGS", \
1090 "SSE_REGS", \
1091 "MMX_REGS", \
1092 "FP_TOP_SSE_REGS", \
1093 "FP_SECOND_SSE_REGS", \
1094 "FLOAT_SSE_REGS", \
1095 "FLOAT_INT_REGS", \
1096 "INT_SSE_REGS", \
1097 "FLOAT_INT_SSE_REGS", \
1098 "ALL_REGS" }
1100 /* Define which registers fit in which classes.
1101 This is an initializer for a vector of HARD_REG_SET
1102 of length N_REG_CLASSES. */
1104 #define REG_CLASS_CONTENTS \
1105 { { 0x00, 0x0 }, \
1106 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1107 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1108 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1109 { 0x03, 0x0 }, /* AD_REGS */ \
1110 { 0x0f, 0x0 }, /* Q_REGS */ \
1111 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1112 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1113 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1114 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1115 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1116 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1117 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1118 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1119 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1120 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1121 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1122 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1123 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1124 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1125 { 0xffffffff,0x1fffff } \
1128 /* The same information, inverted:
1129 Return the class number of the smallest class containing
1130 reg number REGNO. This could be a conditional expression
1131 or could index an array. */
1133 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1135 /* When defined, the compiler allows registers explicitly used in the
1136 rtl to be used as spill registers but prevents the compiler from
1137 extending the lifetime of these registers. */
1139 #define SMALL_REGISTER_CLASSES 1
1141 #define QI_REG_P(X) \
1142 (REG_P (X) && REGNO (X) < 4)
1144 #define GENERAL_REGNO_P(N) \
1145 ((N) < 8 || REX_INT_REGNO_P (N))
1147 #define GENERAL_REG_P(X) \
1148 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1150 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1152 #define NON_QI_REG_P(X) \
1153 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1155 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1156 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1158 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1159 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1160 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1161 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1163 #define SSE_REGNO_P(N) \
1164 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1165 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1167 #define REX_SSE_REGNO_P(N) \
1168 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1170 #define SSE_REGNO(N) \
1171 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1172 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1174 #define SSE_FLOAT_MODE_P(MODE) \
1175 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1177 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1178 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1180 #define STACK_REG_P(XOP) \
1181 (REG_P (XOP) && \
1182 REGNO (XOP) >= FIRST_STACK_REG && \
1183 REGNO (XOP) <= LAST_STACK_REG)
1185 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1187 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1189 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1190 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1192 /* The class value for index registers, and the one for base regs. */
1194 #define INDEX_REG_CLASS INDEX_REGS
1195 #define BASE_REG_CLASS GENERAL_REGS
1197 /* Unused letters:
1198 B TU W
1199 h jk vw z
1202 /* Get reg_class from a letter such as appears in the machine description. */
1204 #define REG_CLASS_FROM_LETTER(C) \
1205 ((C) == 'r' ? GENERAL_REGS : \
1206 (C) == 'R' ? LEGACY_REGS : \
1207 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1208 (C) == 'Q' ? Q_REGS : \
1209 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1210 ? FLOAT_REGS \
1211 : NO_REGS) : \
1212 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1213 ? FP_TOP_REG \
1214 : NO_REGS) : \
1215 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1216 ? FP_SECOND_REG \
1217 : NO_REGS) : \
1218 (C) == 'a' ? AREG : \
1219 (C) == 'b' ? BREG : \
1220 (C) == 'c' ? CREG : \
1221 (C) == 'd' ? DREG : \
1222 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1223 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1224 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1225 (C) == 'A' ? AD_REGS : \
1226 (C) == 'D' ? DIREG : \
1227 (C) == 'S' ? SIREG : \
1228 (C) == 'l' ? INDEX_REGS : \
1229 NO_REGS)
1231 /* The letters I, J, K, L, M, N, and O in a register constraint string
1232 can be used to stand for particular ranges of immediate operands.
1233 This macro defines what the ranges are.
1234 C is the letter, and VALUE is a constant value.
1235 Return 1 if VALUE is in the range specified by C.
1237 I is for non-DImode shifts.
1238 J is for DImode shifts.
1239 K is for signed imm8 operands.
1240 L is for andsi as zero-extending move.
1241 M is for shifts that can be executed by the "lea" opcode.
1242 N is for immediate operands for out/in instructions (0-255)
1243 O is for TImode shifts.
1246 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1247 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1248 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1249 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1250 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1251 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1252 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1253 : (C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 127 \
1254 : 0)
1256 /* Similar, but for floating constants, and defining letters G and H.
1257 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1258 TARGET_387 isn't set, because the stack register converter may need to
1259 load 0.0 into the function value register. */
1261 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1262 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1263 : 0)
1265 /* A C expression that defines the optional machine-dependent
1266 constraint letters that can be used to segregate specific types of
1267 operands, usually memory references, for the target machine. Any
1268 letter that is not elsewhere defined and not matched by
1269 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1270 be defined.
1272 If it is required for a particular target machine, it should
1273 return 1 if VALUE corresponds to the operand type represented by
1274 the constraint letter C. If C is not defined as an extra
1275 constraint, the value returned should be 0 regardless of VALUE. */
1277 #define EXTRA_CONSTRAINT(VALUE, D) \
1278 ((D) == 'e' ? x86_64_immediate_operand (VALUE, VOIDmode) \
1279 : (D) == 'Z' ? x86_64_zext_immediate_operand (VALUE, VOIDmode) \
1280 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1281 : 0)
1283 /* Place additional restrictions on the register class to use when it
1284 is necessary to be able to hold a value of mode MODE in a reload
1285 register for which class CLASS would ordinarily be used. */
1287 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1288 ((MODE) == QImode && !TARGET_64BIT \
1289 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1290 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1291 ? Q_REGS : (CLASS))
1293 /* Given an rtx X being reloaded into a reg required to be
1294 in class CLASS, return the class of reg to actually use.
1295 In general this is just CLASS; but on some machines
1296 in some cases it is preferable to use a more restrictive class.
1297 On the 80386 series, we prevent floating constants from being
1298 reloaded into floating registers (since no move-insn can do that)
1299 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1301 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1302 QImode must go into class Q_REGS.
1303 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1304 movdf to do mem-to-mem moves through integer regs. */
1306 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1307 ix86_preferred_reload_class ((X), (CLASS))
1309 /* If we are copying between general and FP registers, we need a memory
1310 location. The same is true for SSE and MMX registers. */
1311 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1312 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1314 /* QImode spills from non-QI registers need a scratch. This does not
1315 happen often -- the only example so far requires an uninitialized
1316 pseudo. */
1318 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1319 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1320 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1321 ? Q_REGS : NO_REGS)
1323 /* Return the maximum number of consecutive registers
1324 needed to represent mode MODE in a register of class CLASS. */
1325 /* On the 80386, this is the size of MODE in words,
1326 except in the FP regs, where a single reg is always enough. */
1327 #define CLASS_MAX_NREGS(CLASS, MODE) \
1328 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1329 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1330 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1331 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1333 /* A C expression whose value is nonzero if pseudos that have been
1334 assigned to registers of class CLASS would likely be spilled
1335 because registers of CLASS are needed for spill registers.
1337 The default value of this macro returns 1 if CLASS has exactly one
1338 register and zero otherwise. On most machines, this default
1339 should be used. Only define this macro to some other expression
1340 if pseudo allocated by `local-alloc.c' end up in memory because
1341 their hard registers were needed for spill registers. If this
1342 macro returns nonzero for those classes, those pseudos will only
1343 be allocated by `global.c', which knows how to reallocate the
1344 pseudo to another register. If there would not be another
1345 register available for reallocation, you should not change the
1346 definition of this macro since the only effect of such a
1347 definition would be to slow down register allocation. */
1349 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1350 (((CLASS) == AREG) \
1351 || ((CLASS) == DREG) \
1352 || ((CLASS) == CREG) \
1353 || ((CLASS) == BREG) \
1354 || ((CLASS) == AD_REGS) \
1355 || ((CLASS) == SIREG) \
1356 || ((CLASS) == DIREG) \
1357 || ((CLASS) == FP_TOP_REG) \
1358 || ((CLASS) == FP_SECOND_REG))
1360 /* Return a class of registers that cannot change FROM mode to TO mode. */
1362 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1363 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1365 /* Stack layout; function entry, exit and calling. */
1367 /* Define this if pushing a word on the stack
1368 makes the stack pointer a smaller address. */
1369 #define STACK_GROWS_DOWNWARD
1371 /* Define this to nonzero if the nominal address of the stack frame
1372 is at the high-address end of the local variables;
1373 that is, each additional local variable allocated
1374 goes at a more negative offset in the frame. */
1375 #define FRAME_GROWS_DOWNWARD 1
1377 /* Offset within stack frame to start allocating local variables at.
1378 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1379 first local allocated. Otherwise, it is the offset to the BEGINNING
1380 of the first local allocated. */
1381 #define STARTING_FRAME_OFFSET 0
1383 /* If we generate an insn to push BYTES bytes,
1384 this says how many the stack pointer really advances by.
1385 On 386, we have pushw instruction that decrements by exactly 2 no
1386 matter what the position was, there is no pushb.
1387 But as CIE data alignment factor on this arch is -4, we need to make
1388 sure all stack pointer adjustments are in multiple of 4.
1390 For 64bit ABI we round up to 8 bytes.
1393 #define PUSH_ROUNDING(BYTES) \
1394 (TARGET_64BIT \
1395 ? (((BYTES) + 7) & (-8)) \
1396 : (((BYTES) + 3) & (-4)))
1398 /* If defined, the maximum amount of space required for outgoing arguments will
1399 be computed and placed into the variable
1400 `current_function_outgoing_args_size'. No space will be pushed onto the
1401 stack for each call; instead, the function prologue should increase the stack
1402 frame size by this amount. */
1404 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1406 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1407 instructions to pass outgoing arguments. */
1409 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1411 /* We want the stack and args grow in opposite directions, even if
1412 PUSH_ARGS is 0. */
1413 #define PUSH_ARGS_REVERSED 1
1415 /* Offset of first parameter from the argument pointer register value. */
1416 #define FIRST_PARM_OFFSET(FNDECL) 0
1418 /* Define this macro if functions should assume that stack space has been
1419 allocated for arguments even when their values are passed in registers.
1421 The value of this macro is the size, in bytes, of the area reserved for
1422 arguments passed in registers for the function represented by FNDECL.
1424 This space can be allocated by the caller, or be a part of the
1425 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1426 which. */
1427 #define REG_PARM_STACK_SPACE(FNDECL) 0
1429 /* Value is the number of bytes of arguments automatically
1430 popped when returning from a subroutine call.
1431 FUNDECL is the declaration node of the function (as a tree),
1432 FUNTYPE is the data type of the function (as a tree),
1433 or for a library call it is an identifier node for the subroutine name.
1434 SIZE is the number of bytes of arguments passed on the stack.
1436 On the 80386, the RTD insn may be used to pop them if the number
1437 of args is fixed, but if the number is variable then the caller
1438 must pop them all. RTD can't be used for library calls now
1439 because the library is compiled with the Unix compiler.
1440 Use of RTD is a selectable option, since it is incompatible with
1441 standard Unix calling sequences. If the option is not selected,
1442 the caller must always pop the args.
1444 The attribute stdcall is equivalent to RTD on a per module basis. */
1446 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1447 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1449 #define FUNCTION_VALUE_REGNO_P(N) \
1450 ix86_function_value_regno_p (N)
1452 /* Define how to find the value returned by a library function
1453 assuming the value has mode MODE. */
1455 #define LIBCALL_VALUE(MODE) \
1456 ix86_libcall_value (MODE)
1458 /* Define the size of the result block used for communication between
1459 untyped_call and untyped_return. The block contains a DImode value
1460 followed by the block used by fnsave and frstor. */
1462 #define APPLY_RESULT_SIZE (8+108)
1464 /* 1 if N is a possible register number for function argument passing. */
1465 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1467 /* Define a data type for recording info about an argument list
1468 during the scan of that argument list. This data type should
1469 hold all necessary information about the function itself
1470 and about the args processed so far, enough to enable macros
1471 such as FUNCTION_ARG to determine where the next arg should go. */
1473 typedef struct ix86_args {
1474 int words; /* # words passed so far */
1475 int nregs; /* # registers available for passing */
1476 int regno; /* next available register number */
1477 int fastcall; /* fastcall calling convention is used */
1478 int sse_words; /* # sse words passed so far */
1479 int sse_nregs; /* # sse registers available for passing */
1480 int warn_sse; /* True when we want to warn about SSE ABI. */
1481 int warn_mmx; /* True when we want to warn about MMX ABI. */
1482 int sse_regno; /* next available sse register number */
1483 int mmx_words; /* # mmx words passed so far */
1484 int mmx_nregs; /* # mmx registers available for passing */
1485 int mmx_regno; /* next available mmx register number */
1486 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1487 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1488 be passed in SSE registers. Otherwise 0. */
1489 } CUMULATIVE_ARGS;
1491 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1492 for a call to a function whose data type is FNTYPE.
1493 For a library call, FNTYPE is 0. */
1495 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1496 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1498 /* Update the data in CUM to advance over an argument
1499 of mode MODE and data type TYPE.
1500 (TYPE is null for libcalls where that information may not be available.) */
1502 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1503 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1505 /* Define where to put the arguments to a function.
1506 Value is zero to push the argument on the stack,
1507 or a hard register in which to store the argument.
1509 MODE is the argument's machine mode.
1510 TYPE is the data type of the argument (as a tree).
1511 This is null for libcalls where that information may
1512 not be available.
1513 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1514 the preceding args and about the function being called.
1515 NAMED is nonzero if this argument is a named parameter
1516 (otherwise it is an extra parameter matching an ellipsis). */
1518 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1519 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1521 /* Implement `va_start' for varargs and stdarg. */
1522 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1523 ix86_va_start (VALIST, NEXTARG)
1525 #define TARGET_ASM_FILE_END ix86_file_end
1526 #define NEED_INDICATE_EXEC_STACK 0
1528 /* Output assembler code to FILE to increment profiler label # LABELNO
1529 for profiling a function entry. */
1531 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1533 #define MCOUNT_NAME "_mcount"
1535 #define PROFILE_COUNT_REGISTER "edx"
1537 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1538 the stack pointer does not matter. The value is tested only in
1539 functions that have frame pointers.
1540 No definition is equivalent to always zero. */
1541 /* Note on the 386 it might be more efficient not to define this since
1542 we have to restore it ourselves from the frame pointer, in order to
1543 use pop */
1545 #define EXIT_IGNORE_STACK 1
1547 /* Output assembler code for a block containing the constant parts
1548 of a trampoline, leaving space for the variable parts. */
1550 /* On the 386, the trampoline contains two instructions:
1551 mov #STATIC,ecx
1552 jmp FUNCTION
1553 The trampoline is generated entirely at runtime. The operand of JMP
1554 is the address of FUNCTION relative to the instruction following the
1555 JMP (which is 5 bytes long). */
1557 /* Length in units of the trampoline for entering a nested function. */
1559 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1561 /* Emit RTL insns to initialize the variable parts of a trampoline.
1562 FNADDR is an RTX for the address of the function's pure code.
1563 CXT is an RTX for the static chain value for the function. */
1565 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1566 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1568 /* Definitions for register eliminations.
1570 This is an array of structures. Each structure initializes one pair
1571 of eliminable registers. The "from" register number is given first,
1572 followed by "to". Eliminations of the same "from" register are listed
1573 in order of preference.
1575 There are two registers that can always be eliminated on the i386.
1576 The frame pointer and the arg pointer can be replaced by either the
1577 hard frame pointer or to the stack pointer, depending upon the
1578 circumstances. The hard frame pointer is not used before reload and
1579 so it is not eligible for elimination. */
1581 #define ELIMINABLE_REGS \
1582 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1583 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1584 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1585 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1587 /* Given FROM and TO register numbers, say whether this elimination is
1588 allowed. Frame pointer elimination is automatically handled.
1590 All other eliminations are valid. */
1592 #define CAN_ELIMINATE(FROM, TO) \
1593 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1595 /* Define the offset between two registers, one to be eliminated, and the other
1596 its replacement, at the start of a routine. */
1598 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1599 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1601 /* Addressing modes, and classification of registers for them. */
1603 /* Macros to check register numbers against specific register classes. */
1605 /* These assume that REGNO is a hard or pseudo reg number.
1606 They give nonzero only if REGNO is a hard reg of the suitable class
1607 or a pseudo reg currently allocated to a suitable hard reg.
1608 Since they use reg_renumber, they are safe only once reg_renumber
1609 has been allocated, which happens in local-alloc.c. */
1611 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1612 ((REGNO) < STACK_POINTER_REGNUM \
1613 || (REGNO >= FIRST_REX_INT_REG \
1614 && (REGNO) <= LAST_REX_INT_REG) \
1615 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1616 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1617 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1619 #define REGNO_OK_FOR_BASE_P(REGNO) \
1620 ((REGNO) <= STACK_POINTER_REGNUM \
1621 || (REGNO) == ARG_POINTER_REGNUM \
1622 || (REGNO) == FRAME_POINTER_REGNUM \
1623 || (REGNO >= FIRST_REX_INT_REG \
1624 && (REGNO) <= LAST_REX_INT_REG) \
1625 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1626 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1627 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1629 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1630 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1631 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1632 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1634 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1635 and check its validity for a certain class.
1636 We have two alternate definitions for each of them.
1637 The usual definition accepts all pseudo regs; the other rejects
1638 them unless they have been allocated suitable hard regs.
1639 The symbol REG_OK_STRICT causes the latter definition to be used.
1641 Most source files want to accept pseudo regs in the hope that
1642 they will get allocated to the class that the insn wants them to be in.
1643 Source files for reload pass need to be strict.
1644 After reload, it makes no difference, since pseudo regs have
1645 been eliminated by then. */
1648 /* Non strict versions, pseudos are ok. */
1649 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1650 (REGNO (X) < STACK_POINTER_REGNUM \
1651 || (REGNO (X) >= FIRST_REX_INT_REG \
1652 && REGNO (X) <= LAST_REX_INT_REG) \
1653 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1655 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1656 (REGNO (X) <= STACK_POINTER_REGNUM \
1657 || REGNO (X) == ARG_POINTER_REGNUM \
1658 || REGNO (X) == FRAME_POINTER_REGNUM \
1659 || (REGNO (X) >= FIRST_REX_INT_REG \
1660 && REGNO (X) <= LAST_REX_INT_REG) \
1661 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1663 /* Strict versions, hard registers only */
1664 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1665 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1667 #ifndef REG_OK_STRICT
1668 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1669 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1671 #else
1672 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1673 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1674 #endif
1676 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1677 that is a valid memory address for an instruction.
1678 The MODE argument is the machine mode for the MEM expression
1679 that wants to use this address.
1681 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1682 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1684 See legitimize_pic_address in i386.c for details as to what
1685 constitutes a legitimate address when -fpic is used. */
1687 #define MAX_REGS_PER_ADDRESS 2
1689 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1691 /* Nonzero if the constant value X is a legitimate general operand.
1692 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1694 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1696 #ifdef REG_OK_STRICT
1697 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1698 do { \
1699 if (legitimate_address_p ((MODE), (X), 1)) \
1700 goto ADDR; \
1701 } while (0)
1703 #else
1704 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1705 do { \
1706 if (legitimate_address_p ((MODE), (X), 0)) \
1707 goto ADDR; \
1708 } while (0)
1710 #endif
1712 /* If defined, a C expression to determine the base term of address X.
1713 This macro is used in only one place: `find_base_term' in alias.c.
1715 It is always safe for this macro to not be defined. It exists so
1716 that alias analysis can understand machine-dependent addresses.
1718 The typical use of this macro is to handle addresses containing
1719 a label_ref or symbol_ref within an UNSPEC. */
1721 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1723 /* Try machine-dependent ways of modifying an illegitimate address
1724 to be legitimate. If we find one, return the new, valid address.
1725 This macro is used in only one place: `memory_address' in explow.c.
1727 OLDX is the address as it was before break_out_memory_refs was called.
1728 In some cases it is useful to look at this to decide what needs to be done.
1730 MODE and WIN are passed so that this macro can use
1731 GO_IF_LEGITIMATE_ADDRESS.
1733 It is always safe for this macro to do nothing. It exists to recognize
1734 opportunities to optimize the output.
1736 For the 80386, we handle X+REG by loading X into a register R and
1737 using R+REG. R will go in a general reg and indexing will be used.
1738 However, if REG is a broken-out memory address or multiplication,
1739 nothing needs to be done because REG can certainly go in a general reg.
1741 When -fpic is used, special handling is needed for symbolic references.
1742 See comments by legitimize_pic_address in i386.c for details. */
1744 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1745 do { \
1746 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1747 if (memory_address_p ((MODE), (X))) \
1748 goto WIN; \
1749 } while (0)
1751 #define REWRITE_ADDRESS(X) rewrite_address (X)
1753 /* Nonzero if the constant value X is a legitimate general operand
1754 when generating PIC code. It is given that flag_pic is on and
1755 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1757 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1759 #define SYMBOLIC_CONST(X) \
1760 (GET_CODE (X) == SYMBOL_REF \
1761 || GET_CODE (X) == LABEL_REF \
1762 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1764 /* Go to LABEL if ADDR (a legitimate address expression)
1765 has an effect that depends on the machine mode it is used for.
1766 On the 80386, only postdecrement and postincrement address depend thus
1767 (the amount of decrement or increment being the length of the operand). */
1768 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1769 do { \
1770 if (GET_CODE (ADDR) == POST_INC \
1771 || GET_CODE (ADDR) == POST_DEC) \
1772 goto LABEL; \
1773 } while (0)
1775 /* Max number of args passed in registers. If this is more than 3, we will
1776 have problems with ebx (register #4), since it is a caller save register and
1777 is also used as the pic register in ELF. So for now, don't allow more than
1778 3 registers to be passed in registers. */
1780 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1782 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1784 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1787 /* Specify the machine mode that this machine uses
1788 for the index in the tablejump instruction. */
1789 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
1791 /* Define this as 1 if `char' should by default be signed; else as 0. */
1792 #define DEFAULT_SIGNED_CHAR 1
1794 /* Number of bytes moved into a data cache for a single prefetch operation. */
1795 #define PREFETCH_BLOCK ix86_cost->prefetch_block
1797 /* Number of prefetch operations that can be done in parallel. */
1798 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1800 /* Max number of bytes we can move from memory to memory
1801 in one reasonably fast instruction. */
1802 #define MOVE_MAX 16
1804 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1805 move efficiently, as opposed to MOVE_MAX which is the maximum
1806 number of bytes we can move with a single instruction. */
1807 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1809 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1810 move-instruction pairs, we will do a movmem or libcall instead.
1811 Increasing the value will always make code faster, but eventually
1812 incurs high cost in increased code size.
1814 If you don't define this, a reasonable default is used. */
1816 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1818 /* If a clear memory operation would take CLEAR_RATIO or more simple
1819 move-instruction sequences, we will do a clrmem or libcall instead. */
1821 #define CLEAR_RATIO (optimize_size ? 2 \
1822 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1824 /* Define if shifts truncate the shift count
1825 which implies one can omit a sign-extension or zero-extension
1826 of a shift count. */
1827 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1829 /* #define SHIFT_COUNT_TRUNCATED */
1831 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1832 is done just by pretending it is already truncated. */
1833 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1835 /* A macro to update M and UNSIGNEDP when an object whose type is
1836 TYPE and which has the specified mode and signedness is to be
1837 stored in a register. This macro is only called when TYPE is a
1838 scalar type.
1840 On i386 it is sometimes useful to promote HImode and QImode
1841 quantities to SImode. The choice depends on target type. */
1843 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1844 do { \
1845 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1846 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1847 (MODE) = SImode; \
1848 } while (0)
1850 /* Specify the machine mode that pointers have.
1851 After generation of rtl, the compiler makes no further distinction
1852 between pointers and any other objects of this machine mode. */
1853 #define Pmode (TARGET_64BIT ? DImode : SImode)
1855 /* A function address in a call instruction
1856 is a byte address (for indexing purposes)
1857 so give the MEM rtx a byte's mode. */
1858 #define FUNCTION_MODE QImode
1860 /* A C expression for the cost of moving data from a register in class FROM to
1861 one in class TO. The classes are expressed using the enumeration values
1862 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1863 interpreted relative to that.
1865 It is not required that the cost always equal 2 when FROM is the same as TO;
1866 on some machines it is expensive to move between registers if they are not
1867 general registers. */
1869 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1870 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1872 /* A C expression for the cost of moving data of mode M between a
1873 register and memory. A value of 2 is the default; this cost is
1874 relative to those in `REGISTER_MOVE_COST'.
1876 If moving between registers and memory is more expensive than
1877 between two registers, you should define this macro to express the
1878 relative cost. */
1880 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1881 ix86_memory_move_cost ((MODE), (CLASS), (IN))
1883 /* A C expression for the cost of a branch instruction. A value of 1
1884 is the default; other values are interpreted relative to that. */
1886 #define BRANCH_COST ix86_branch_cost
1888 /* Define this macro as a C expression which is nonzero if accessing
1889 less than a word of memory (i.e. a `char' or a `short') is no
1890 faster than accessing a word of memory, i.e., if such access
1891 require more than one instruction or if there is no difference in
1892 cost between byte and (aligned) word loads.
1894 When this macro is not defined, the compiler will access a field by
1895 finding the smallest containing object; when it is defined, a
1896 fullword load will be used if alignment permits. Unless bytes
1897 accesses are faster than word accesses, using word accesses is
1898 preferable since it may eliminate subsequent memory access if
1899 subsequent accesses occur to other fields in the same word of the
1900 structure, but to different bytes. */
1902 #define SLOW_BYTE_ACCESS 0
1904 /* Nonzero if access to memory by shorts is slow and undesirable. */
1905 #define SLOW_SHORT_ACCESS 0
1907 /* Define this macro to be the value 1 if unaligned accesses have a
1908 cost many times greater than aligned accesses, for example if they
1909 are emulated in a trap handler.
1911 When this macro is nonzero, the compiler will act as if
1912 `STRICT_ALIGNMENT' were nonzero when generating code for block
1913 moves. This can cause significantly more instructions to be
1914 produced. Therefore, do not set this macro nonzero if unaligned
1915 accesses only add a cycle or two to the time for a memory access.
1917 If the value of this macro is always zero, it need not be defined. */
1919 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1921 /* Define this macro if it is as good or better to call a constant
1922 function address than to call an address kept in a register.
1924 Desirable on the 386 because a CALL with a constant address is
1925 faster than one with a register address. */
1927 #define NO_FUNCTION_CSE
1929 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1930 return the mode to be used for the comparison.
1932 For floating-point equality comparisons, CCFPEQmode should be used.
1933 VOIDmode should be used in all other cases.
1935 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1936 possible, to allow for more combinations. */
1938 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1940 /* Return nonzero if MODE implies a floating point inequality can be
1941 reversed. */
1943 #define REVERSIBLE_CC_MODE(MODE) 1
1945 /* A C expression whose value is reversed condition code of the CODE for
1946 comparison done in CC_MODE mode. */
1947 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1950 /* Control the assembler format that we output, to the extent
1951 this does not vary between assemblers. */
1953 /* How to refer to registers in assembler output.
1954 This sequence is indexed by compiler's hard-register-number (see above). */
1956 /* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
1957 For non floating point regs, the following are the HImode names.
1959 For float regs, the stack top is sometimes referred to as "%st(0)"
1960 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
1962 #define HI_REGISTER_NAMES \
1963 {"ax","dx","cx","bx","si","di","bp","sp", \
1964 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1965 "argp", "flags", "fpsr", "dirflag", "frame", \
1966 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1967 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
1968 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1969 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1971 #define REGISTER_NAMES HI_REGISTER_NAMES
1973 /* Table of additional register names to use in user input. */
1975 #define ADDITIONAL_REGISTER_NAMES \
1976 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1977 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
1978 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1979 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
1980 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
1981 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1983 /* Note we are omitting these since currently I don't know how
1984 to get gcc to use these, since they want the same but different
1985 number as al, and ax.
1988 #define QI_REGISTER_NAMES \
1989 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1991 /* These parallel the array above, and can be used to access bits 8:15
1992 of regs 0 through 3. */
1994 #define QI_HIGH_REGISTER_NAMES \
1995 {"ah", "dh", "ch", "bh", }
1997 /* How to renumber registers for dbx and gdb. */
1999 #define DBX_REGISTER_NUMBER(N) \
2000 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2002 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2003 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2004 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2006 /* Before the prologue, RA is at 0(%esp). */
2007 #define INCOMING_RETURN_ADDR_RTX \
2008 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2010 /* After the prologue, RA is at -4(AP) in the current frame. */
2011 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2012 ((COUNT) == 0 \
2013 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2014 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2016 /* PC is dbx register 8; let's use that column for RA. */
2017 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2019 /* Before the prologue, the top of the frame is at 4(%esp). */
2020 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2022 /* Describe how we implement __builtin_eh_return. */
2023 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2024 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2027 /* Select a format to encode pointers in exception handling data. CODE
2028 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2029 true if the symbol may be affected by dynamic relocations.
2031 ??? All x86 object file formats are capable of representing this.
2032 After all, the relocation needed is the same as for the call insn.
2033 Whether or not a particular assembler allows us to enter such, I
2034 guess we'll have to see. */
2035 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2036 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2038 /* This is how to output an insn to push a register on the stack.
2039 It need not be very fast code. */
2041 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2042 do { \
2043 if (TARGET_64BIT) \
2044 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2045 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2046 else \
2047 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2048 } while (0)
2050 /* This is how to output an insn to pop a register from the stack.
2051 It need not be very fast code. */
2053 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2054 do { \
2055 if (TARGET_64BIT) \
2056 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2057 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2058 else \
2059 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2060 } while (0)
2062 /* This is how to output an element of a case-vector that is absolute. */
2064 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2065 ix86_output_addr_vec_elt ((FILE), (VALUE))
2067 /* This is how to output an element of a case-vector that is relative. */
2069 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2070 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2072 /* Under some conditions we need jump tables in the text section, because
2073 the assembler cannot handle label differences between sections. */
2075 #define JUMP_TABLES_IN_TEXT_SECTION \
2076 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2078 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2079 and switch back. For x86 we do this only to save a few bytes that
2080 would otherwise be unused in the text section. */
2081 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2082 asm (SECTION_OP "\n\t" \
2083 "call " USER_LABEL_PREFIX #FUNC "\n" \
2084 TEXT_SECTION_ASM_OP);
2086 /* Print operand X (an rtx) in assembler syntax to file FILE.
2087 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2088 Effect of various CODE letters is described in i386.c near
2089 print_operand function. */
2091 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2092 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2094 #define PRINT_OPERAND(FILE, X, CODE) \
2095 print_operand ((FILE), (X), (CODE))
2097 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2098 print_operand_address ((FILE), (ADDR))
2100 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2101 do { \
2102 if (! output_addr_const_extra (FILE, (X))) \
2103 goto FAIL; \
2104 } while (0);
2106 /* a letter which is not needed by the normal asm syntax, which
2107 we can use for operand syntax in the extended asm */
2109 #define ASM_OPERAND_LETTER '#'
2110 #define RET return ""
2111 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2113 /* Which processor to schedule for. The cpu attribute defines a list that
2114 mirrors this list, so changes to i386.md must be made at the same time. */
2116 enum processor_type
2118 PROCESSOR_I386, /* 80386 */
2119 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2120 PROCESSOR_PENTIUM,
2121 PROCESSOR_PENTIUMPRO,
2122 PROCESSOR_K6,
2123 PROCESSOR_ATHLON,
2124 PROCESSOR_PENTIUM4,
2125 PROCESSOR_K8,
2126 PROCESSOR_NOCONA,
2127 PROCESSOR_GENERIC32,
2128 PROCESSOR_GENERIC64,
2129 PROCESSOR_max
2132 extern enum processor_type ix86_tune;
2133 extern enum processor_type ix86_arch;
2135 enum fpmath_unit
2137 FPMATH_387 = 1,
2138 FPMATH_SSE = 2
2141 extern enum fpmath_unit ix86_fpmath;
2143 enum tls_dialect
2145 TLS_DIALECT_GNU,
2146 TLS_DIALECT_GNU2,
2147 TLS_DIALECT_SUN
2150 extern enum tls_dialect ix86_tls_dialect;
2152 enum cmodel {
2153 CM_32, /* The traditional 32-bit ABI. */
2154 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2155 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2156 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2157 CM_LARGE, /* No assumptions. */
2158 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2159 CM_MEDIUM_PIC /* Assumes code+got/plt fits in a 31 bit region. */
2162 extern enum cmodel ix86_cmodel;
2164 /* Size of the RED_ZONE area. */
2165 #define RED_ZONE_SIZE 128
2166 /* Reserved area of the red zone for temporaries. */
2167 #define RED_ZONE_RESERVE 8
2169 enum asm_dialect {
2170 ASM_ATT,
2171 ASM_INTEL
2174 extern enum asm_dialect ix86_asm_dialect;
2175 extern unsigned int ix86_preferred_stack_boundary;
2176 extern int ix86_branch_cost, ix86_section_threshold;
2178 /* Smallest class containing REGNO. */
2179 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2181 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2182 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
2183 extern rtx ix86_compare_emitted;
2185 /* To properly truncate FP values into integers, we need to set i387 control
2186 word. We can't emit proper mode switching code before reload, as spills
2187 generated by reload may truncate values incorrectly, but we still can avoid
2188 redundant computation of new control word by the mode switching pass.
2189 The fldcw instructions are still emitted redundantly, but this is probably
2190 not going to be noticeable problem, as most CPUs do have fast path for
2191 the sequence.
2193 The machinery is to emit simple truncation instructions and split them
2194 before reload to instructions having USEs of two memory locations that
2195 are filled by this code to old and new control word.
2197 Post-reload pass may be later used to eliminate the redundant fildcw if
2198 needed. */
2200 enum ix86_entity
2202 I387_TRUNC = 0,
2203 I387_FLOOR,
2204 I387_CEIL,
2205 I387_MASK_PM,
2206 MAX_386_ENTITIES
2209 enum ix86_stack_slot
2211 SLOT_TEMP = 0,
2212 SLOT_CW_STORED,
2213 SLOT_CW_TRUNC,
2214 SLOT_CW_FLOOR,
2215 SLOT_CW_CEIL,
2216 SLOT_CW_MASK_PM,
2217 MAX_386_STACK_LOCALS
2220 /* Define this macro if the port needs extra instructions inserted
2221 for mode switching in an optimizing compilation. */
2223 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2224 ix86_optimize_mode_switching[(ENTITY)]
2226 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2227 initializer for an array of integers. Each initializer element N
2228 refers to an entity that needs mode switching, and specifies the
2229 number of different modes that might need to be set for this
2230 entity. The position of the initializer in the initializer -
2231 starting counting at zero - determines the integer that is used to
2232 refer to the mode-switched entity in question. */
2234 #define NUM_MODES_FOR_MODE_SWITCHING \
2235 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2237 /* ENTITY is an integer specifying a mode-switched entity. If
2238 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2239 return an integer value not larger than the corresponding element
2240 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2241 must be switched into prior to the execution of INSN. */
2243 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2245 /* This macro specifies the order in which modes for ENTITY are
2246 processed. 0 is the highest priority. */
2248 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2250 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2251 is the set of hard registers live at the point where the insn(s)
2252 are to be inserted. */
2254 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2255 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2256 ? emit_i387_cw_initialization (MODE), 0 \
2257 : 0)
2260 /* Avoid renaming of stack registers, as doing so in combination with
2261 scheduling just increases amount of live registers at time and in
2262 the turn amount of fxch instructions needed.
2264 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2266 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2267 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
2270 #define DLL_IMPORT_EXPORT_PREFIX '#'
2272 #define FASTCALL_PREFIX '@'
2274 struct machine_function GTY(())
2276 struct stack_local_entry *stack_locals;
2277 const char *some_ld_name;
2278 rtx force_align_arg_pointer;
2279 int save_varrargs_registers;
2280 int accesses_prev_frame;
2281 int optimize_mode_switching[MAX_386_ENTITIES];
2282 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2283 determine the style used. */
2284 int use_fast_prologue_epilogue;
2285 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2286 for. */
2287 int use_fast_prologue_epilogue_nregs;
2288 /* If true, the current function needs the default PIC register, not
2289 an alternate register (on x86) and must not use the red zone (on
2290 x86_64), even if it's a leaf function. We don't want the
2291 function to be regarded as non-leaf because TLS calls need not
2292 affect register allocation. This flag is set when a TLS call
2293 instruction is expanded within a function, and never reset, even
2294 if all such instructions are optimized away. Use the
2295 ix86_current_function_calls_tls_descriptor macro for a better
2296 approximation. */
2297 int tls_descriptor_call_expanded_p;
2300 #define ix86_stack_locals (cfun->machine->stack_locals)
2301 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2302 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2303 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2304 (cfun->machine->tls_descriptor_call_expanded_p)
2305 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2306 calls are optimized away, we try to detect cases in which it was
2307 optimized away. Since such instructions (use (reg REG_SP)), we can
2308 verify whether there's any such instruction live by testing that
2309 REG_SP is live. */
2310 #define ix86_current_function_calls_tls_descriptor \
2311 (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
2313 /* Control behavior of x86_file_start. */
2314 #define X86_FILE_START_VERSION_DIRECTIVE false
2315 #define X86_FILE_START_FLTUSED false
2317 /* Flag to mark data that is in the large address area. */
2318 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2319 #define SYMBOL_REF_FAR_ADDR_P(X) \
2320 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2322 Local variables:
2323 version-control: t
2324 End: