1 /* Definitions for the Blackfin port.
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Contributed by Analog Devices.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 2, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
25 #define OBJECT_FORMAT_ELF
30 /* Print subsidiary information on the compiler version in use. */
31 #define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
33 /* Run-time compilation parameters selecting different hardware subsets. */
35 extern int target_flags
;
37 /* Predefinition in the preprocessor for this target machine */
38 #ifndef TARGET_CPU_CPP_BUILTINS
39 #define TARGET_CPU_CPP_BUILTINS() \
42 builtin_define ("bfin"); \
43 builtin_define ("BFIN"); \
48 /* Generate DSP instructions, like DSP halfword loads */
49 #define TARGET_DSP (1)
51 #define TARGET_DEFAULT (MASK_SPECLD_ANOMALY | MASK_CSYNC_ANOMALY)
53 /* Maximum number of library ids we permit */
54 #define MAX_LIBRARY_ID 255
56 extern const char *bfin_library_id_string
;
58 /* Sometimes certain combinations of command options do not make
59 sense on a particular target machine. You can define a macro
60 `OVERRIDE_OPTIONS' to take account of this. This macro, if
61 defined, is executed once just after all the command options have
64 Don't use this macro to turn on various extra optimizations for
65 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
67 #define OVERRIDE_OPTIONS override_options ()
69 #define FUNCTION_MODE SImode
72 /* store-condition-codes instructions store 0 for false
73 This is the value stored for true. */
74 #define STORE_FLAG_VALUE 1
76 /* Define this if pushing a word on the stack
77 makes the stack pointer a smaller address. */
78 #define STACK_GROWS_DOWNWARD
80 #define STACK_PUSH_CODE PRE_DEC
82 /* Define this to nonzero if the nominal address of the stack frame
83 is at the high-address end of the local variables;
84 that is, each additional local variable allocated
85 goes at a more negative offset in the frame. */
86 #define FRAME_GROWS_DOWNWARD 1
88 /* We define a dummy ARGP register; the parameters start at offset 0 from
90 #define FIRST_PARM_OFFSET(DECL) 0
92 /* Offset within stack frame to start allocating local variables at.
93 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
94 first local allocated. Otherwise, it is the offset to the BEGINNING
95 of the first local allocated. */
96 #define STARTING_FRAME_OFFSET 0
98 /* Register to use for pushing function arguments. */
99 #define STACK_POINTER_REGNUM REG_P6
101 /* Base register for access to local variables of the function. */
102 #define FRAME_POINTER_REGNUM REG_P7
104 /* A dummy register that will be eliminated to either FP or SP. */
105 #define ARG_POINTER_REGNUM REG_ARGP
107 /* `PIC_OFFSET_TABLE_REGNUM'
108 The register number of the register used to address a table of
109 static data addresses in memory. In some cases this register is
110 defined by a processor's "application binary interface" (ABI).
111 When this macro is defined, RTL is generated for this register
112 once, as with the stack pointer and frame pointer registers. If
113 this macro is not defined, it is up to the machine-dependent files
114 to allocate such a register (if necessary). */
115 #define PIC_OFFSET_TABLE_REGNUM (REG_P5)
117 /* A static chain register for nested functions. We need to use a
118 call-clobbered register for this. */
119 #define STATIC_CHAIN_REGNUM REG_P2
121 /* Define this if functions should assume that stack space has been
122 allocated for arguments even when their values are passed in
125 The value of this macro is the size, in bytes, of the area reserved for
126 arguments passed in registers.
128 This space can either be allocated by the caller or be a part of the
129 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
131 #define FIXED_STACK_AREA 12
132 #define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
134 /* Define this if the above stack space is to be considered part of the
135 * space allocated by the caller. */
136 #define OUTGOING_REG_PARM_STACK_SPACE
138 /* Define this if the maximum size of all the outgoing args is to be
139 accumulated and pushed during the prologue. The amount can be
140 found in the variable current_function_outgoing_args_size. */
141 #define ACCUMULATE_OUTGOING_ARGS 1
143 /* Value should be nonzero if functions must have frame pointers.
144 Zero means the frame pointer need not be set up (and parms
145 may be accessed via the stack pointer) in functions that seem suitable.
146 This is computed in `reload', in reload1.c.
148 #define FRAME_POINTER_REQUIRED (bfin_frame_pointer_required ())
150 #define PARM_BOUNDRY 32
152 #define STACK_BOUNDRY 32
154 /*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
156 /* Make strings word-aligned so strcpy from constants will be faster. */
157 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
158 (TREE_CODE (EXP) == STRING_CST \
159 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
161 #define TRAMPOLINE_SIZE 18
162 #define TRAMPOLINE_TEMPLATE(FILE) \
163 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
164 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */; \
165 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */; \
166 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */; \
167 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/
169 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
170 initialize_trampoline (TRAMP, FNADDR, CXT)
172 /* Definitions for register eliminations.
174 This is an array of structures. Each structure initializes one pair
175 of eliminable registers. The "from" register number is given first,
176 followed by "to". Eliminations of the same "from" register are listed
177 in order of preference.
179 There are two registers that can always be eliminated on the i386.
180 The frame pointer and the arg pointer can be replaced by either the
181 hard frame pointer or to the stack pointer, depending upon the
182 circumstances. The hard frame pointer is not used before reload and
183 so it is not eligible for elimination. */
185 #define ELIMINABLE_REGS \
186 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
187 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
188 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
190 /* Given FROM and TO register numbers, say whether this elimination is
191 allowed. Frame pointer elimination is automatically handled.
193 All other eliminations are valid. */
195 #define CAN_ELIMINATE(FROM, TO) \
196 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
198 /* Define the offset between two registers, one to be eliminated, and the other
199 its replacement, at the start of a routine. */
201 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
202 ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
204 /* This processor has
205 8 data register for doing arithmetic
206 8 pointer register for doing addressing, including
209 4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
210 1 condition code flag register CC
211 5 return address registers RETS/I/X/N/E
212 1 arithmetic status register (ASTAT). */
214 #define FIRST_PSEUDO_REGISTER 44
216 #define PREG_P(X) (REG_P (X) && REGNO (X) >= REG_P0 && REGNO (X) <= REG_P7)
217 #define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
218 #define D_REGNO_P(X) ((X) <= REG_R7)
220 #define REGISTER_NAMES { \
221 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
222 "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
223 "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
224 "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
227 "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
231 #define SHORT_REGISTER_NAMES { \
232 "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
233 "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
234 "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
235 "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
237 #define HIGH_REGISTER_NAMES { \
238 "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
239 "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
240 "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
241 "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
243 #define DREGS_PAIR_NAMES { \
244 "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
246 #define BYTE_REGISTER_NAMES { \
247 "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
250 /* 1 for registers that have pervasive standard uses
251 and are not available for the register allocator. */
253 #define FIXED_REGISTERS \
254 /*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
255 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
256 /*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
257 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
258 /*a0 a1 cc rets/i/x/n/e astat seqstat usp argp */ \
259 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
262 /* 1 for registers not available across function calls.
263 These must include the FIXED_REGISTERS and also any
264 registers that can be used without being saved.
265 The latter must include the registers where values are returned
266 and the register where structure-value addresses are passed.
267 Aside from that, you can include as many other registers as you like. */
269 #define CALL_USED_REGISTERS \
270 /*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
271 { 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
272 /*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
273 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
274 /*a0 a1 cc rets/i/x/n/e astat seqstat usp argp */ \
275 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
278 /* Order in which to allocate registers. Each register must be
279 listed once, even those in FIXED_REGISTERS. List frame pointer
280 late and fixed registers last. Note that, in general, we prefer
281 registers listed in CALL_USED_REGISTERS, keeping the others
282 available for storage of persistent values. */
284 #define REG_ALLOC_ORDER \
285 { REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
286 REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
288 REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
289 REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
290 REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
291 REG_ASTAT, REG_SEQSTAT, REG_USP, \
295 /* Macro to conditionally modify fixed_regs/call_used_regs. */
296 #define CONDITIONAL_REGISTER_USAGE \
298 conditional_register_usage(); \
301 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
302 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
306 /* Define the classes of registers for register constraints in the
307 machine description. Also define ranges of constants.
309 One of the classes must always be named ALL_REGS and include all hard regs.
310 If there is more than one class, another class must be named NO_REGS
311 and contain no registers.
313 The name GENERAL_REGS must be the name of a class (or an alias for
314 another name such as ALL_REGS). This is the class of registers
315 that is allowed by "g" or "r" in a register constraint.
316 Also, registers outside this class are allocated only when
317 instructions express preferences for them.
319 The classes must be numbered in nondecreasing order; that is,
320 a larger-numbered class must never be contained completely
321 in a smaller-numbered class.
323 For any two classes, it is very desirable that there be another
324 class that represents their union. */
334 CIRCREGS
, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
349 ALL_REGS
, LIM_REG_CLASSES
352 #define N_REG_CLASSES ((int)LIM_REG_CLASSES)
354 #define GENERAL_REGS DPREGS
356 /* Give names of register classes as strings for dump file. */
358 #define REG_CLASS_NAMES \
381 /* An initializer containing the contents of the register classes, as integers
382 which are bit masks. The Nth integer specifies the contents of class N.
383 The way the integer MASK is interpreted is that register R is in the class
384 if `MASK & (1 << R)' is 1.
386 When the machine has more than 32 registers, an integer does not suffice.
387 Then the integers are replaced by sub-initializers, braced groupings
388 containing several integers. Each sub-initializer must be suitable as an
389 initializer for the type `HARD_REG_SET' which is defined in
392 /* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
393 MOST_REGS as the union of DPREGS and DAGREGS. */
395 #define REG_CLASS_CONTENTS \
397 { { 0x00000000, 0 }, /* NO_REGS */ \
398 { 0x000f0000, 0 }, /* IREGS */ \
399 { 0x00f00000, 0 }, /* BREGS */ \
400 { 0x0f000000, 0 }, /* LREGS */ \
401 { 0xf0000000, 0 }, /* MREGS */ \
402 { 0x0fff0000, 0 }, /* CIRCREGS */ \
403 { 0xffff0000, 0 }, /* DAGREGS */ \
404 { 0x00000000, 0x1 }, /* EVEN_AREGS */ \
405 { 0x00000000, 0x2 }, /* ODD_AREGS */ \
406 { 0x00000000, 0x3 }, /* AREGS */ \
407 { 0x00000000, 0x4 }, /* CCREGS */ \
408 { 0x00000055, 0 }, /* EVEN_DREGS */ \
409 { 0x000000aa, 0 }, /* ODD_DREGS */ \
410 { 0x000000ff, 0 }, /* DREGS */ \
411 { 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
412 { 0x0000ff00, 0x800 }, /* PREGS */ \
413 { 0x0000ffff, 0x800 }, /* DPREGS */ \
414 { 0xffffffff, 0x800 }, /* MOST_REGS */\
415 { 0x00000000, 0x7f8 }, /* PROLOGUE_REGS */\
416 { 0xffffffff, 0xff8 }, /* NON_A_CC_REGS */\
417 { 0xffffffff, 0xfff }} /* ALL_REGS */
419 #define BASE_REG_CLASS PREGS
420 #define INDEX_REG_CLASS PREGS
422 #define REGNO_OK_FOR_BASE_STRICT_P(X) (REGNO_REG_CLASS (X) == BASE_REG_CLASS)
423 #define REGNO_OK_FOR_BASE_NONSTRICT_P(X) \
424 (((X) >= FIRST_PSEUDO_REGISTER) || REGNO_REG_CLASS (X) == BASE_REG_CLASS)
427 #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_STRICT_P (X)
429 #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_NONSTRICT_P (X)
432 #define REG_OK_FOR_BASE_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
433 #define REG_OK_FOR_INDEX_P(X) 0
434 #define REGNO_OK_FOR_INDEX_P(X) 0
436 /* Get reg_class from a letter such as appears in the machine description. */
438 #define REG_CLASS_FROM_LETTER(LETTER) \
439 ((LETTER) == 'a' ? PREGS : \
440 (LETTER) == 'd' ? DREGS : \
441 (LETTER) == 'z' ? PREGS_CLOBBERED : \
442 (LETTER) == 'D' ? EVEN_DREGS : \
443 (LETTER) == 'W' ? ODD_DREGS : \
444 (LETTER) == 'e' ? AREGS : \
445 (LETTER) == 'A' ? EVEN_AREGS : \
446 (LETTER) == 'B' ? ODD_AREGS : \
447 (LETTER) == 'b' ? IREGS : \
448 (LETTER) == 'B' ? BREGS : \
449 (LETTER) == 'f' ? MREGS : \
450 (LETTER) == 'c' ? CIRCREGS : \
451 (LETTER) == 'C' ? CCREGS : \
452 (LETTER) == 'x' ? MOST_REGS : \
453 (LETTER) == 'y' ? PROLOGUE_REGS : \
454 (LETTER) == 'w' ? NON_A_CC_REGS : \
457 /* The same information, inverted:
458 Return the class number of the smallest class containing
459 reg number REGNO. This could be a conditional expression
460 or could index an array. */
462 #define REGNO_REG_CLASS(REGNO) \
463 ((REGNO) < REG_P0 ? DREGS \
464 : (REGNO) < REG_I0 ? PREGS \
465 : (REGNO) == REG_ARGP ? BASE_REG_CLASS \
466 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
467 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
468 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
469 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
470 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
471 : (REGNO) == REG_CC ? CCREGS \
472 : (REGNO) >= REG_RETS ? PROLOGUE_REGS \
475 /* When defined, the compiler allows registers explicitly used in the
476 rtl to be used as spill registers but prevents the compiler from
477 extending the lifetime of these registers. */
478 #define SMALL_REGISTER_CLASSES 1
480 #define CLASS_LIKELY_SPILLED_P(CLASS) \
481 ((CLASS) == PREGS_CLOBBERED \
482 || (CLASS) == PROLOGUE_REGS \
483 || (CLASS) == CCREGS)
485 /* Do not allow to store a value in REG_CC for any mode */
486 /* Do not allow to store value in pregs if mode is not SI*/
487 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
489 /* Return the maximum number of consecutive registers
490 needed to represent mode MODE in a register of class CLASS. */
491 #define CLASS_MAX_NREGS(CLASS, MODE) \
492 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
494 #define HARD_REGNO_NREGS(REGNO, MODE) \
495 ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) \
496 ? 1 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
498 /* A C expression that is nonzero if hard register TO can be
499 considered for use as a rename register for FROM register */
500 #define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
502 /* A C expression that is nonzero if it is desirable to choose
503 register allocation so as to avoid move instructions between a
504 value of mode MODE1 and a value of mode MODE2.
506 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
507 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
508 MODE2)' must be zero. */
509 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
511 /* `PREFERRED_RELOAD_CLASS (X, CLASS)'
512 A C expression that places additional restrictions on the register
513 class to use when it is necessary to copy value X into a register
514 in class CLASS. The value is a register class; perhaps CLASS, or
515 perhaps another, smaller class. */
516 #define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
518 /* Function Calling Conventions. */
520 /* The type of the current function; normal functions are of type
523 SUBROUTINE
, INTERRUPT_HANDLER
, EXCPT_HANDLER
, NMI_HANDLER
526 #define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
528 /* Flags for the call/call_value rtl operations set up by function_arg */
529 #define CALL_NORMAL 0x00000000 /* no special processing */
530 #define CALL_LONG 0x00000001 /* always call indirect */
531 #define CALL_SHORT 0x00000002 /* always call by symbol */
534 int words
; /* # words passed so far */
535 int nregs
; /* # registers available for passing */
536 int *arg_regs
; /* array of register -1 terminated */
537 int call_cookie
; /* Do special things for this call */
540 /* Define where to put the arguments to a function.
541 Value is zero to push the argument on the stack,
542 or a hard register in which to store the argument.
544 MODE is the argument's machine mode.
545 TYPE is the data type of the argument (as a tree).
546 This is null for libcalls where that information may
548 CUM is a variable of type CUMULATIVE_ARGS which gives info about
549 the preceding args and about the function being called.
550 NAMED is nonzero if this argument is a named parameter
551 (otherwise it is an extra parameter matching an ellipsis). */
553 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
554 (function_arg (&CUM, MODE, TYPE, NAMED))
556 #define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
559 /* Initialize a variable CUM of type CUMULATIVE_ARGS
560 for a call to a function whose data type is FNTYPE.
561 For a library call, FNTYPE is 0. */
562 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
563 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
565 /* Update the data in CUM to advance over an argument
566 of mode MODE and data type TYPE.
567 (TYPE is null for libcalls where that information may not be available.) */
568 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
569 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
571 #define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
573 /* Define how to find the value returned by a function.
574 VALTYPE is the data type of the value (as a tree).
575 If the precise function being called is known, FUNC is its FUNCTION_DECL;
576 otherwise, FUNC is 0.
579 #define VALUE_REGNO(MODE) (REG_R0)
581 #define FUNCTION_VALUE(VALTYPE, FUNC) \
582 gen_rtx_REG (TYPE_MODE (VALTYPE), \
583 VALUE_REGNO(TYPE_MODE(VALTYPE)))
585 /* Define how to find the value returned by a library function
586 assuming the value has mode MODE. */
588 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
590 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
592 #define DEFAULT_PCC_STRUCT_RETURN 0
593 #define RETURN_IN_MEMORY(TYPE) bfin_return_in_memory(TYPE)
595 /* Before the prologue, the return address is in the RETS register. */
596 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
598 #define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
600 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
602 /* Call instructions don't modify the stack pointer on the Blackfin. */
603 #define INCOMING_FRAME_SP_OFFSET 0
605 /* Describe how we implement __builtin_eh_return. */
606 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
607 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
608 #define EH_RETURN_HANDLER_RTX \
609 gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
611 /* Addressing Modes */
613 /* Recognize any constant value that is a valid address. */
614 #define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
616 /* Nonzero if the constant value X is a legitimate general operand.
617 symbol_ref are not legitimate and will be put into constant pool.
618 See force_const_mem().
619 If -mno-pool, all constants are legitimate.
621 #define LEGITIMATE_CONSTANT_P(x) 1
623 /* A number, the maximum number of registers that can appear in a
624 valid memory address. Note that it is up to you to specify a
625 value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
626 would ever accept. */
627 #define MAX_REGS_PER_ADDRESS 1
629 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
630 that is a valid memory address for an instruction.
631 The MODE argument is the machine mode for the MEM expression
632 that wants to use this address.
634 Blackfin addressing modes are as follows:
640 W [ Preg + uimm16m2 ]
648 #define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
649 (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
652 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
654 if (bfin_legitimate_address_p (MODE, X, 1)) \
658 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
660 if (bfin_legitimate_address_p (MODE, X, 0)) \
665 /* Try machine-dependent ways of modifying an illegitimate address
666 to be legitimate. If we find one, return the new, valid address.
667 This macro is used in only one place: `memory_address' in explow.c.
669 OLDX is the address as it was before break_out_memory_refs was called.
670 In some cases it is useful to look at this to decide what needs to be done.
672 MODE and WIN are passed so that this macro can use
673 GO_IF_LEGITIMATE_ADDRESS.
675 It is always safe for this macro to do nothing. It exists to recognize
676 opportunities to optimize the output.
678 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
680 rtx _q = legitimize_address(X, OLDX, MODE); \
681 if (_q) { X = _q; goto WIN; } \
684 #define HAVE_POST_INCREMENT 1
685 #define HAVE_POST_DECREMENT 1
686 #define HAVE_PRE_DECREMENT 1
688 /* `LEGITIMATE_PIC_OPERAND_P (X)'
689 A C expression that is nonzero if X is a legitimate immediate
690 operand on the target machine when generating position independent
691 code. You can assume that X satisfies `CONSTANT_P', so you need
692 not check this. You can also assume FLAG_PIC is true, so you need
693 not check it either. You need not define this macro if all
694 constants (including `SYMBOL_REF') can be immediate operands when
695 generating position independent code. */
696 #define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
698 #define SYMBOLIC_CONST(X) \
699 (GET_CODE (X) == SYMBOL_REF \
700 || GET_CODE (X) == LABEL_REF \
701 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
704 A C statement or compound statement with a conditional `goto
705 LABEL;' executed if memory address X (an RTX) can have different
706 meanings depending on the machine mode of the memory reference it
707 is used for or if the address is valid for some modes but not
710 Autoincrement and autodecrement addresses typically have
711 mode-dependent effects because the amount of the increment or
712 decrement is the size of the operand being addressed. Some
713 machines have other mode-dependent addresses. Many RISC machines
714 have no mode-dependent addresses.
716 You may assume that ADDR is a valid address for the machine.
718 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
720 if (GET_CODE (ADDR) == POST_INC \
721 || GET_CODE (ADDR) == POST_DEC \
722 || GET_CODE (ADDR) == PRE_DEC) \
726 #define NOTICE_UPDATE_CC(EXPR, INSN) 0
728 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
729 is done just by pretending it is already truncated. */
730 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
732 /* Max number of bytes we can move from memory to memory
733 in one reasonably fast instruction. */
734 #define MOVE_MAX UNITS_PER_WORD
737 /* STORAGE LAYOUT: target machine storage layout
738 Define this macro as a C expression which is nonzero if accessing
739 less than a word of memory (i.e. a `char' or a `short') is no
740 faster than accessing a word of memory, i.e., if such access
741 require more than one instruction or if there is no difference in
742 cost between byte and (aligned) word loads.
744 When this macro is not defined, the compiler will access a field by
745 finding the smallest containing object; when it is defined, a
746 fullword load will be used if alignment permits. Unless bytes
747 accesses are faster than word accesses, using word accesses is
748 preferable since it may eliminate subsequent memory access if
749 subsequent accesses occur to other fields in the same word of the
750 structure, but to different bytes. */
751 #define SLOW_BYTE_ACCESS 0
752 #define SLOW_SHORT_ACCESS 0
754 /* Define this if most significant bit is lowest numbered
755 in instructions that operate on numbered bit-fields. */
756 #define BITS_BIG_ENDIAN 0
758 /* Define this if most significant byte of a word is the lowest numbered.
759 We can't access bytes but if we could we would in the Big Endian order. */
760 #define BYTES_BIG_ENDIAN 0
762 /* Define this if most significant word of a multiword number is numbered. */
763 #define WORDS_BIG_ENDIAN 0
765 /* number of bits in an addressable storage unit */
766 #define BITS_PER_UNIT 8
768 /* Width in bits of a "word", which is the contents of a machine register.
769 Note that this is not necessarily the width of data type `int';
770 if using 16-bit ints on a 68000, this would still be 32.
771 But on a machine with 16-bit registers, this would be 16. */
772 #define BITS_PER_WORD 32
774 /* Width of a word, in units (bytes). */
775 #define UNITS_PER_WORD 4
777 /* Width in bits of a pointer.
778 See also the macro `Pmode1' defined below. */
779 #define POINTER_SIZE 32
781 /* Allocation boundary (in *bits*) for storing pointers in memory. */
782 #define POINTER_BOUNDARY 32
784 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
785 #define PARM_BOUNDARY 32
787 /* Boundary (in *bits*) on which stack pointer should be aligned. */
788 #define STACK_BOUNDARY 32
790 /* Allocation boundary (in *bits*) for the code of a function. */
791 #define FUNCTION_BOUNDARY 32
793 /* Alignment of field after `int : 0' in a structure. */
794 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
796 /* No data type wants to be aligned rounder than this. */
797 #define BIGGEST_ALIGNMENT 32
799 /* Define this if move instructions will actually fail to work
800 when given unaligned data. */
801 #define STRICT_ALIGNMENT 1
803 /* (shell-command "rm c-decl.o stor-layout.o")
804 * never define PCC_BITFIELD_TYPE_MATTERS
805 * really cause some alignment problem
808 #define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
811 #define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
815 /* what is the 'type' of size_t */
816 #define SIZE_TYPE "long unsigned int"
818 /* Define this as 1 if `char' should by default be signed; else as 0. */
819 #define DEFAULT_SIGNED_CHAR 1
820 #define FLOAT_TYPE_SIZE BITS_PER_WORD
821 #define SHORT_TYPE_SIZE 16
822 #define CHAR_TYPE_SIZE 8
823 #define INT_TYPE_SIZE 32
824 #define LONG_TYPE_SIZE 32
825 #define LONG_LONG_TYPE_SIZE 64
827 /* Note: Fix this to depend on target switch. -- lev */
829 /* Note: Try to implement double and force long double. -- tonyko
830 * #define __DOUBLES_ARE_FLOATS__
831 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
832 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
833 * #define DOUBLES_ARE_FLOATS 1
836 #define DOUBLE_TYPE_SIZE 64
837 #define LONG_DOUBLE_TYPE_SIZE 64
839 /* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
840 A macro to update M and UNSIGNEDP when an object whose type is
841 TYPE and which has the specified mode and signedness is to be
842 stored in a register. This macro is only called when TYPE is a
845 On most RISC machines, which only have operations that operate on
846 a full register, define this macro to set M to `word_mode' if M is
847 an integer mode narrower than `BITS_PER_WORD'. In most cases,
848 only integer modes should be widened because wider-precision
849 floating-point operations are usually more expensive than their
850 narrower counterparts.
852 For most machines, the macro definition does not change UNSIGNEDP.
853 However, some machines, have instructions that preferentially
854 handle either signed or unsigned quantities of certain modes. For
855 example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
856 instructions sign-extend the result to 64 bits. On such machines,
857 set UNSIGNEDP according to which kind of extension is more
860 Do not define this macro if it would never modify M.*/
862 #define BFIN_PROMOTE_MODE_P(MODE) \
863 (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
864 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
866 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
867 if (BFIN_PROMOTE_MODE_P(MODE)) \
869 if (MODE == QImode) \
871 else if (MODE == HImode) \
876 /* Describing Relative Costs of Operations */
878 /* Do not put function addr into constant pool */
879 #define NO_FUNCTION_CSE 1
881 /* A C expression for the cost of moving data from a register in class FROM to
882 one in class TO. The classes are expressed using the enumeration values
883 such as `GENERAL_REGS'. A value of 2 is the default; other values are
884 interpreted relative to that.
886 It is not required that the cost always equal 2 when FROM is the same as TO;
887 on some machines it is expensive to move between registers if they are not
888 general registers. */
890 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
891 bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
893 /* A C expression for the cost of moving data of mode M between a
894 register and memory. A value of 2 is the default; this cost is
895 relative to those in `REGISTER_MOVE_COST'.
897 If moving between registers and memory is more expensive than
898 between two registers, you should define this macro to express the
901 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
902 bfin_memory_move_cost ((MODE), (CLASS), (IN))
904 /* Specify the machine mode that this machine uses
905 for the index in the tablejump instruction. */
906 #define CASE_VECTOR_MODE SImode
908 #define JUMP_TABLES_IN_TEXT_SECTION flag_pic
910 /* Define if operations between registers always perform the operation
911 on the full register even if a narrower mode is specified.
912 #define WORD_REGISTER_OPERATIONS
915 #define CONST_18UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 262140)
916 #define CONST_16BIT_IMM_P(VALUE) ((VALUE) >= -32768 && (VALUE) <= 32767)
917 #define CONST_16UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 65535)
918 #define CONST_7BIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 63)
919 #define CONST_7NBIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 0)
920 #define CONST_5UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 31)
921 #define CONST_4BIT_IMM_P(VALUE) ((VALUE) >= -8 && (VALUE) <= 7)
922 #define CONST_4UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 15)
923 #define CONST_3BIT_IMM_P(VALUE) ((VALUE) >= -4 && (VALUE) <= 3)
924 #define CONST_3UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 7)
926 #define CONSTRAINT_LEN(C, STR) \
927 ((C) == 'P' || (C) == 'M' || (C) == 'N' ? 2 \
929 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
931 #define CONST_OK_FOR_P(VALUE, STR) \
932 ((STR)[1] == '0' ? (VALUE) == 0 \
933 : (STR)[1] == '1' ? (VALUE) == 1 \
934 : (STR)[1] == '2' ? (VALUE) == 2 \
935 : (STR)[1] == '3' ? (VALUE) == 3 \
936 : (STR)[1] == '4' ? (VALUE) == 4 \
939 #define CONST_OK_FOR_K(VALUE, STR) \
941 ? ((STR)[2] == '3' ? CONST_3UBIT_IMM_P (VALUE) \
942 : (STR)[2] == '4' ? CONST_4UBIT_IMM_P (VALUE) \
943 : (STR)[2] == '5' ? CONST_5UBIT_IMM_P (VALUE) \
944 : (STR)[2] == 'h' ? CONST_16UBIT_IMM_P (VALUE) \
947 ? ((STR)[2] == '3' ? CONST_3BIT_IMM_P (VALUE) \
948 : (STR)[2] == '4' ? CONST_4BIT_IMM_P (VALUE) \
949 : (STR)[2] == '7' ? CONST_7BIT_IMM_P (VALUE) \
950 : (STR)[2] == 'h' ? CONST_16BIT_IMM_P (VALUE) \
953 ? ((STR)[2] == '7' ? CONST_7NBIT_IMM_P (VALUE) \
957 #define CONST_OK_FOR_M(VALUE, STR) \
958 ((STR)[1] == '1' ? (VALUE) == 255 \
959 : (STR)[1] == '2' ? (VALUE) == 65535 \
962 /* The letters I, J, K, L and M in a register constraint string
963 can be used to stand for particular ranges of immediate operands.
964 This macro defines what the ranges are.
965 C is the letter, and VALUE is a constant value.
966 Return 1 if VALUE is in the range specified by C.
968 bfin constant operands are as follows
970 J 2**N 5bit imm scaled
971 Ks7 -64 .. 63 signed 7bit imm
972 Ku5 0..31 unsigned 5bit imm
973 Ks4 -8 .. 7 signed 4bit imm
974 Ks3 -4 .. 3 signed 3bit imm
975 Ku3 0 .. 7 unsigned 3bit imm
976 Pn 0, 1, 2 constants 0, 1 or 2, corresponding to n
978 #define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
979 ((C) == 'J' ? (log2constp (VALUE)) \
980 : (C) == 'K' ? CONST_OK_FOR_K (VALUE, STR) \
981 : (C) == 'L' ? log2constp (~(VALUE)) \
982 : (C) == 'M' ? CONST_OK_FOR_M (VALUE, STR) \
983 : (C) == 'P' ? CONST_OK_FOR_P (VALUE, STR) \
986 /*Constant Output Formats */
987 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
990 #define EXTRA_CONSTRAINT(VALUE, D) \
991 ((D) == 'Q' ? GET_CODE (VALUE) == SYMBOL_REF : 0)
993 /* Switch into a generic section. */
994 #define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
996 #define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
997 #define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
999 typedef enum sections
{
1005 typedef enum directives
{
1014 #define TEXT_SECTION_ASM_OP ".text;"
1015 #define DATA_SECTION_ASM_OP ".data;"
1017 #define ASM_APP_ON ""
1018 #define ASM_APP_OFF ""
1020 #define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1021 do { fputs (".global ", FILE); \
1022 assemble_name (FILE, NAME); \
1024 fputc ('\n',FILE); \
1027 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1029 fputs (".type ", FILE); \
1030 assemble_name (FILE, NAME); \
1031 fputs (", STT_FUNC", FILE); \
1033 fputc ('\n',FILE); \
1034 ASM_OUTPUT_LABEL(FILE, NAME); \
1037 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1038 do { assemble_name (FILE, NAME); \
1039 fputs (":\n",FILE); \
1042 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1043 do { fprintf (FILE, "_%s", NAME); \
1046 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1048 int len = strlen (NAME); \
1049 char *temp = (char *) alloca (len + 4); \
1052 strcpy (&temp[2], (NAME)); \
1053 temp[len + 2] = '_'; \
1054 temp[len + 3] = 0; \
1055 (OUTPUT) = (char *) alloca (strlen (NAME) + 13); \
1056 sprintf (OUTPUT, "_%s$%d", temp, LABELNO); \
1059 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1060 do { char __buf[256]; \
1061 fprintf (FILE, "\t.dd\t"); \
1062 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1063 assemble_name (FILE, __buf); \
1064 fputc (';', FILE); \
1065 fputc ('\n', FILE); \
1068 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1069 MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1071 #define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1074 fprintf (FILE, "\t.dd\t"); \
1075 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1076 assemble_name (FILE, __buf); \
1077 fputs (" - ", FILE); \
1078 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
1079 assemble_name (FILE, __buf); \
1080 fputc (';', FILE); \
1081 fputc ('\n', FILE); \
1084 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1087 fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
1090 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1092 asm_output_skip (FILE, SIZE); \
1095 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1097 switch_to_section (data_section); \
1098 if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
1099 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
1100 ASM_OUTPUT_LABEL (FILE, NAME); \
1101 fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
1102 (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
1105 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1107 ASM_GLOBALIZE_LABEL1(FILE,NAME); \
1108 ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1110 #define ASM_COMMENT_START "//"
1112 #define FUNCTION_PROFILER(FILE, LABELNO) \
1114 fprintf (FILE, "\tP1.l =LP$%d; P1.h =LP$%d; call mcount;\n", \
1118 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1119 #define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1121 extern struct rtx_def
*bfin_compare_op0
, *bfin_compare_op1
;
1122 extern struct rtx_def
*bfin_cc_rtx
, *bfin_rets_rtx
;
1124 /* This works for GAS and some other assemblers. */
1125 #define SET_ASM_OP ".set "
1127 /* Don't know how to order these. UNALIGNED_WORD_ASM_OP is in
1129 #define UNALIGNED_WORD_ASM_OP ".4byte"
1131 /* DBX register number for a given compiler register number */
1132 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1134 #define SIZE_ASM_OP "\t.size\t"
1136 #endif /* _BFIN_CONFIG */