* javax/swing/JToggleButton.java (ToggleButtonModel):
[official-gcc.git] / gcc / final.c
blob9aa4657b068c2a61b7804d093945255276a1a6a0
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_BB 1
116 #define SEEN_NOTE 2
117 #define SEEN_EMITTED 4
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn;
121 rtx current_output_insn;
123 /* Line number of last NOTE. */
124 static int last_linenum;
126 /* Highest line number in current block. */
127 static int high_block_linenum;
129 /* Likewise for function. */
130 static int high_function_linenum;
132 /* Filename of last NOTE. */
133 static const char *last_filename;
135 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands;
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands;
145 /* Compare optimization flag. */
147 static rtx last_ignored_compare = 0;
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
152 static int insn_counter = 0;
154 #ifdef HAVE_cc0
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
159 CC_STATUS cc_status;
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
164 CC_STATUS cc_prev_status;
165 #endif
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
176 char regs_ever_live[FIRST_PSEUDO_REGISTER];
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
182 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
188 int frame_pointer_needed;
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
192 static int block_depth;
194 /* Nonzero if have enabled APP processing of our assembler output. */
196 static int app_on;
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
201 rtx final_sequence;
203 #ifdef ASSEMBLER_DIALECT
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number;
207 #endif
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate;
212 #endif
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx);
216 #endif
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx);
220 static rtx walk_alter_subreg (rtx *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 static void output_operand (rtx, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx);
228 #endif
229 #ifdef HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx);
234 #endif
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx, rtx, int, unsigned);
237 #endif
239 /* Initialize data in final at the beginning of a compilation. */
241 void
242 init_final (const char *filename ATTRIBUTE_UNUSED)
244 app_on = 0;
245 final_sequence = 0;
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249 #endif
252 /* Default target function prologue and epilogue assembler output.
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256 void
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
262 /* Default target hook that outputs nothing to a stream. */
263 void
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
271 void
272 app_enable (void)
274 if (! app_on)
276 fputs (ASM_APP_ON, asm_out_file);
277 app_on = 1;
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
284 void
285 app_disable (void)
287 if (app_on)
289 fputs (ASM_APP_OFF, asm_out_file);
290 app_on = 0;
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
298 #ifdef DELAY_SLOTS
300 dbr_sequence_length (void)
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
307 #endif
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
315 static int *insn_lengths;
317 varray_type insn_addresses_;
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
340 struct label_alignment
342 short alignment;
343 short max_skip;
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
350 /* Indicate that branch shortening hasn't yet been done. */
352 void
353 init_insn_lengths (void)
355 if (uid_shuid)
357 free (uid_shuid);
358 uid_shuid = 0;
360 if (insn_lengths)
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368 #endif
369 if (uid_align)
371 free (uid_align);
372 uid_align = 0;
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
382 #ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
408 else
409 length = insn_default_length (insn);
410 break;
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
424 break;
426 default:
427 break;
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432 #endif
433 return length;
434 #else /* not HAVE_ATTR_length */
435 return 0;
436 #endif /* not HAVE_ATTR_length */
439 /* Code to handle alignment inside shorten_branches. */
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
459 The estimated padding is then OX - IX.
461 OX can be safely estimated as
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
486 #endif
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
494 #endif
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
498 #endif
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502 #endif
504 #ifndef JUMP_ALIGN
505 #define JUMP_ALIGN(LABEL) align_jumps_log
506 #endif
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
510 #endif
512 #ifndef ADDR_VEC_ALIGN
513 static int
514 final_addr_vec_align (rtx addr_vec)
516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
520 return exact_log2 (align);
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525 #endif
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529 #endif
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
533 static int min_labelno, max_labelno;
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
541 /* For the benefit of port specific code do this also as a function. */
544 label_to_alignment (rtx label)
546 return LABEL_TO_ALIGNMENT (label);
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
578 static int
579 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
589 int align_addr, new_align;
591 uid = INSN_UID (align_label);
592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
602 return fuzz;
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
618 insn_current_reference_address (rtx branch)
620 rtx dest, seq;
621 int seq_uid;
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
628 if (GET_CODE (branch) != JUMP_INSN)
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
641 /* Forward branch. */
642 return (insn_last_address + insn_lengths[seq_uid]
643 - align_fuzz (seq, dest, length_unit_log, ~0));
645 else
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
652 #endif /* HAVE_ATTR_length */
654 void
655 compute_alignments (void)
657 int log, max_skip, max_log;
658 basic_block bb;
660 if (label_align)
662 free (label_align);
663 label_align = 0;
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
673 return;
675 FOR_EACH_BB (bb)
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
681 if (GET_CODE (label) != CODE_LABEL
682 || probably_never_executed_bb_p (bb))
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
687 for (e = bb->pred; e; e = e->pred_next)
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
695 /* There are two purposes to align block with no fallthru incoming edge:
696 1) to avoid fetch stalls when branch destination is near cache boundary
697 2) to improve cache efficiency in case the previous block is not executed
698 (so it does not need to be in the cache).
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
702 than the predecessor and the predecessor is likely to not be executed
703 when function is called. */
705 if (!has_fallthru
706 && (branch_frequency > BB_FREQ_MAX / 10
707 || (bb->frequency > bb->prev_bb->frequency * 10
708 && (bb->prev_bb->frequency
709 <= ENTRY_BLOCK_PTR->frequency / 2))))
711 log = JUMP_ALIGN (label);
712 if (max_log < log)
714 max_log = log;
715 max_skip = JUMP_ALIGN_MAX_SKIP;
718 /* In case block is frequent and reached mostly by non-fallthru edge,
719 align it. It is most likely a first block of loop. */
720 if (has_fallthru
721 && maybe_hot_bb_p (bb)
722 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
723 && branch_frequency > fallthru_frequency * 2)
725 log = LOOP_ALIGN (label);
726 if (max_log < log)
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
737 /* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
740 /* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
744 shorten_branches itself into a single pass unless we also want to integrate
745 reorg.c, since the branch splitting exposes new instructions with delay
746 slots. */
748 void
749 shorten_branches (rtx first ATTRIBUTE_UNUSED)
751 rtx insn;
752 int max_uid;
753 int i;
754 int max_log;
755 int max_skip;
756 #ifdef HAVE_ATTR_length
757 #define MAX_CODE_ALIGN 16
758 rtx seq;
759 int something_changed = 1;
760 char *varying_length;
761 rtx body;
762 int uid;
763 rtx align_tab[MAX_CODE_ALIGN];
765 #endif
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
770 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
772 if (max_labelno != max_label_num ())
774 int old = max_labelno;
775 int n_labels;
776 int n_old_labels;
778 max_labelno = max_label_num ();
780 n_labels = max_labelno - min_labelno + 1;
781 n_old_labels = old - min_labelno + 1;
783 label_align = xrealloc (label_align,
784 n_labels * sizeof (struct label_alignment));
786 /* Range of labels grows monotonically in the function. Abort here
787 means that the initialization of array got lost. */
788 if (n_old_labels > n_labels)
789 abort ();
791 memset (label_align + n_old_labels, 0,
792 (n_labels - n_old_labels) * sizeof (struct label_alignment));
795 /* Initialize label_align and set up uid_shuid to be strictly
796 monotonically rising with insn order. */
797 /* We use max_log here to keep track of the maximum alignment we want to
798 impose on the next CODE_LABEL (or the current one if we are processing
799 the CODE_LABEL itself). */
801 max_log = 0;
802 max_skip = 0;
804 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
806 int log;
808 INSN_SHUID (insn) = i++;
809 if (INSN_P (insn))
811 /* reorg might make the first insn of a loop being run once only,
812 and delete the label in front of it. Then we want to apply
813 the loop alignment to the new label created by reorg, which
814 is separated by the former loop start insn from the
815 NOTE_INSN_LOOP_BEG. */
817 else if (GET_CODE (insn) == CODE_LABEL)
819 rtx next;
821 /* Merge in alignments computed by compute_alignments. */
822 log = LABEL_TO_ALIGNMENT (insn);
823 if (max_log < log)
825 max_log = log;
826 max_skip = LABEL_TO_MAX_SKIP (insn);
829 log = LABEL_ALIGN (insn);
830 if (max_log < log)
832 max_log = log;
833 max_skip = LABEL_ALIGN_MAX_SKIP;
835 next = NEXT_INSN (insn);
836 /* ADDR_VECs only take room if read-only data goes into the text
837 section. */
838 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
839 if (next && GET_CODE (next) == JUMP_INSN)
841 rtx nextbody = PATTERN (next);
842 if (GET_CODE (nextbody) == ADDR_VEC
843 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
845 log = ADDR_VEC_ALIGN (next);
846 if (max_log < log)
848 max_log = log;
849 max_skip = LABEL_ALIGN_MAX_SKIP;
853 LABEL_TO_ALIGNMENT (insn) = max_log;
854 LABEL_TO_MAX_SKIP (insn) = max_skip;
855 max_log = 0;
856 max_skip = 0;
858 else if (GET_CODE (insn) == BARRIER)
860 rtx label;
862 for (label = insn; label && ! INSN_P (label);
863 label = NEXT_INSN (label))
864 if (GET_CODE (label) == CODE_LABEL)
866 log = LABEL_ALIGN_AFTER_BARRIER (insn);
867 if (max_log < log)
869 max_log = log;
870 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
872 break;
876 #ifdef HAVE_ATTR_length
878 /* Allocate the rest of the arrays. */
879 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
880 insn_lengths_max_uid = max_uid;
881 /* Syntax errors can lead to labels being outside of the main insn stream.
882 Initialize insn_addresses, so that we get reproducible results. */
883 INSN_ADDRESSES_ALLOC (max_uid);
885 varying_length = xcalloc (max_uid, sizeof (char));
887 /* Initialize uid_align. We scan instructions
888 from end to start, and keep in align_tab[n] the last seen insn
889 that does an alignment of at least n+1, i.e. the successor
890 in the alignment chain for an insn that does / has a known
891 alignment of n. */
892 uid_align = xcalloc (max_uid, sizeof *uid_align);
894 for (i = MAX_CODE_ALIGN; --i >= 0;)
895 align_tab[i] = NULL_RTX;
896 seq = get_last_insn ();
897 for (; seq; seq = PREV_INSN (seq))
899 int uid = INSN_UID (seq);
900 int log;
901 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
902 uid_align[uid] = align_tab[0];
903 if (log)
905 /* Found an alignment label. */
906 uid_align[uid] = align_tab[log];
907 for (i = log - 1; i >= 0; i--)
908 align_tab[i] = seq;
911 #ifdef CASE_VECTOR_SHORTEN_MODE
912 if (optimize)
914 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
915 label fields. */
917 int min_shuid = INSN_SHUID (get_insns ()) - 1;
918 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
919 int rel;
921 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
923 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
924 int len, i, min, max, insn_shuid;
925 int min_align;
926 addr_diff_vec_flags flags;
928 if (GET_CODE (insn) != JUMP_INSN
929 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
930 continue;
931 pat = PATTERN (insn);
932 len = XVECLEN (pat, 1);
933 if (len <= 0)
934 abort ();
935 min_align = MAX_CODE_ALIGN;
936 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
938 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
939 int shuid = INSN_SHUID (lab);
940 if (shuid < min)
942 min = shuid;
943 min_lab = lab;
945 if (shuid > max)
947 max = shuid;
948 max_lab = lab;
950 if (min_align > LABEL_TO_ALIGNMENT (lab))
951 min_align = LABEL_TO_ALIGNMENT (lab);
953 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
954 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
955 insn_shuid = INSN_SHUID (insn);
956 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
957 flags.min_align = min_align;
958 flags.base_after_vec = rel > insn_shuid;
959 flags.min_after_vec = min > insn_shuid;
960 flags.max_after_vec = max > insn_shuid;
961 flags.min_after_base = min > rel;
962 flags.max_after_base = max > rel;
963 ADDR_DIFF_VEC_FLAGS (pat) = flags;
966 #endif /* CASE_VECTOR_SHORTEN_MODE */
968 /* Compute initial lengths, addresses, and varying flags for each insn. */
969 for (insn_current_address = 0, insn = first;
970 insn != 0;
971 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
973 uid = INSN_UID (insn);
975 insn_lengths[uid] = 0;
977 if (GET_CODE (insn) == CODE_LABEL)
979 int log = LABEL_TO_ALIGNMENT (insn);
980 if (log)
982 int align = 1 << log;
983 int new_address = (insn_current_address + align - 1) & -align;
984 insn_lengths[uid] = new_address - insn_current_address;
988 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
990 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
991 || GET_CODE (insn) == CODE_LABEL)
992 continue;
993 if (INSN_DELETED_P (insn))
994 continue;
996 body = PATTERN (insn);
997 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
999 /* This only takes room if read-only data goes into the text
1000 section. */
1001 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1002 insn_lengths[uid] = (XVECLEN (body,
1003 GET_CODE (body) == ADDR_DIFF_VEC)
1004 * GET_MODE_SIZE (GET_MODE (body)));
1005 /* Alignment is handled by ADDR_VEC_ALIGN. */
1007 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1008 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1009 else if (GET_CODE (body) == SEQUENCE)
1011 int i;
1012 int const_delay_slots;
1013 #ifdef DELAY_SLOTS
1014 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1015 #else
1016 const_delay_slots = 0;
1017 #endif
1018 /* Inside a delay slot sequence, we do not do any branch shortening
1019 if the shortening could change the number of delay slots
1020 of the branch. */
1021 for (i = 0; i < XVECLEN (body, 0); i++)
1023 rtx inner_insn = XVECEXP (body, 0, i);
1024 int inner_uid = INSN_UID (inner_insn);
1025 int inner_length;
1027 if (GET_CODE (body) == ASM_INPUT
1028 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1029 inner_length = (asm_insn_count (PATTERN (inner_insn))
1030 * insn_default_length (inner_insn));
1031 else
1032 inner_length = insn_default_length (inner_insn);
1034 insn_lengths[inner_uid] = inner_length;
1035 if (const_delay_slots)
1037 if ((varying_length[inner_uid]
1038 = insn_variable_length_p (inner_insn)) != 0)
1039 varying_length[uid] = 1;
1040 INSN_ADDRESSES (inner_uid) = (insn_current_address
1041 + insn_lengths[uid]);
1043 else
1044 varying_length[inner_uid] = 0;
1045 insn_lengths[uid] += inner_length;
1048 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1050 insn_lengths[uid] = insn_default_length (insn);
1051 varying_length[uid] = insn_variable_length_p (insn);
1054 /* If needed, do any adjustment. */
1055 #ifdef ADJUST_INSN_LENGTH
1056 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1057 if (insn_lengths[uid] < 0)
1058 fatal_insn ("negative insn length", insn);
1059 #endif
1062 /* Now loop over all the insns finding varying length insns. For each,
1063 get the current insn length. If it has changed, reflect the change.
1064 When nothing changes for a full pass, we are done. */
1066 while (something_changed)
1068 something_changed = 0;
1069 insn_current_align = MAX_CODE_ALIGN - 1;
1070 for (insn_current_address = 0, insn = first;
1071 insn != 0;
1072 insn = NEXT_INSN (insn))
1074 int new_length;
1075 #ifdef ADJUST_INSN_LENGTH
1076 int tmp_length;
1077 #endif
1078 int length_align;
1080 uid = INSN_UID (insn);
1082 if (GET_CODE (insn) == CODE_LABEL)
1084 int log = LABEL_TO_ALIGNMENT (insn);
1085 if (log > insn_current_align)
1087 int align = 1 << log;
1088 int new_address= (insn_current_address + align - 1) & -align;
1089 insn_lengths[uid] = new_address - insn_current_address;
1090 insn_current_align = log;
1091 insn_current_address = new_address;
1093 else
1094 insn_lengths[uid] = 0;
1095 INSN_ADDRESSES (uid) = insn_current_address;
1096 continue;
1099 length_align = INSN_LENGTH_ALIGNMENT (insn);
1100 if (length_align < insn_current_align)
1101 insn_current_align = length_align;
1103 insn_last_address = INSN_ADDRESSES (uid);
1104 INSN_ADDRESSES (uid) = insn_current_address;
1106 #ifdef CASE_VECTOR_SHORTEN_MODE
1107 if (optimize && GET_CODE (insn) == JUMP_INSN
1108 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1110 rtx body = PATTERN (insn);
1111 int old_length = insn_lengths[uid];
1112 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1113 rtx min_lab = XEXP (XEXP (body, 2), 0);
1114 rtx max_lab = XEXP (XEXP (body, 3), 0);
1115 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1116 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1117 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1118 rtx prev;
1119 int rel_align = 0;
1120 addr_diff_vec_flags flags;
1122 /* Avoid automatic aggregate initialization. */
1123 flags = ADDR_DIFF_VEC_FLAGS (body);
1125 /* Try to find a known alignment for rel_lab. */
1126 for (prev = rel_lab;
1127 prev
1128 && ! insn_lengths[INSN_UID (prev)]
1129 && ! (varying_length[INSN_UID (prev)] & 1);
1130 prev = PREV_INSN (prev))
1131 if (varying_length[INSN_UID (prev)] & 2)
1133 rel_align = LABEL_TO_ALIGNMENT (prev);
1134 break;
1137 /* See the comment on addr_diff_vec_flags in rtl.h for the
1138 meaning of the flags values. base: REL_LAB vec: INSN */
1139 /* Anything after INSN has still addresses from the last
1140 pass; adjust these so that they reflect our current
1141 estimate for this pass. */
1142 if (flags.base_after_vec)
1143 rel_addr += insn_current_address - insn_last_address;
1144 if (flags.min_after_vec)
1145 min_addr += insn_current_address - insn_last_address;
1146 if (flags.max_after_vec)
1147 max_addr += insn_current_address - insn_last_address;
1148 /* We want to know the worst case, i.e. lowest possible value
1149 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1150 its offset is positive, and we have to be wary of code shrink;
1151 otherwise, it is negative, and we have to be vary of code
1152 size increase. */
1153 if (flags.min_after_base)
1155 /* If INSN is between REL_LAB and MIN_LAB, the size
1156 changes we are about to make can change the alignment
1157 within the observed offset, therefore we have to break
1158 it up into two parts that are independent. */
1159 if (! flags.base_after_vec && flags.min_after_vec)
1161 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1162 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1164 else
1165 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1167 else
1169 if (flags.base_after_vec && ! flags.min_after_vec)
1171 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1172 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1174 else
1175 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1177 /* Likewise, determine the highest lowest possible value
1178 for the offset of MAX_LAB. */
1179 if (flags.max_after_base)
1181 if (! flags.base_after_vec && flags.max_after_vec)
1183 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1184 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1186 else
1187 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1189 else
1191 if (flags.base_after_vec && ! flags.max_after_vec)
1193 max_addr += align_fuzz (max_lab, insn, 0, 0);
1194 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1196 else
1197 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1199 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1200 max_addr - rel_addr,
1201 body));
1202 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1204 insn_lengths[uid]
1205 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1206 insn_current_address += insn_lengths[uid];
1207 if (insn_lengths[uid] != old_length)
1208 something_changed = 1;
1211 continue;
1213 #endif /* CASE_VECTOR_SHORTEN_MODE */
1215 if (! (varying_length[uid]))
1217 if (GET_CODE (insn) == INSN
1218 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1220 int i;
1222 body = PATTERN (insn);
1223 for (i = 0; i < XVECLEN (body, 0); i++)
1225 rtx inner_insn = XVECEXP (body, 0, i);
1226 int inner_uid = INSN_UID (inner_insn);
1228 INSN_ADDRESSES (inner_uid) = insn_current_address;
1230 insn_current_address += insn_lengths[inner_uid];
1233 else
1234 insn_current_address += insn_lengths[uid];
1236 continue;
1239 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1241 int i;
1243 body = PATTERN (insn);
1244 new_length = 0;
1245 for (i = 0; i < XVECLEN (body, 0); i++)
1247 rtx inner_insn = XVECEXP (body, 0, i);
1248 int inner_uid = INSN_UID (inner_insn);
1249 int inner_length;
1251 INSN_ADDRESSES (inner_uid) = insn_current_address;
1253 /* insn_current_length returns 0 for insns with a
1254 non-varying length. */
1255 if (! varying_length[inner_uid])
1256 inner_length = insn_lengths[inner_uid];
1257 else
1258 inner_length = insn_current_length (inner_insn);
1260 if (inner_length != insn_lengths[inner_uid])
1262 insn_lengths[inner_uid] = inner_length;
1263 something_changed = 1;
1265 insn_current_address += insn_lengths[inner_uid];
1266 new_length += inner_length;
1269 else
1271 new_length = insn_current_length (insn);
1272 insn_current_address += new_length;
1275 #ifdef ADJUST_INSN_LENGTH
1276 /* If needed, do any adjustment. */
1277 tmp_length = new_length;
1278 ADJUST_INSN_LENGTH (insn, new_length);
1279 insn_current_address += (new_length - tmp_length);
1280 #endif
1282 if (new_length != insn_lengths[uid])
1284 insn_lengths[uid] = new_length;
1285 something_changed = 1;
1288 /* For a non-optimizing compile, do only a single pass. */
1289 if (!optimize)
1290 break;
1293 free (varying_length);
1295 #endif /* HAVE_ATTR_length */
1298 #ifdef HAVE_ATTR_length
1299 /* Given the body of an INSN known to be generated by an ASM statement, return
1300 the number of machine instructions likely to be generated for this insn.
1301 This is used to compute its length. */
1303 static int
1304 asm_insn_count (rtx body)
1306 const char *template;
1307 int count = 1;
1309 if (GET_CODE (body) == ASM_INPUT)
1310 template = XSTR (body, 0);
1311 else
1312 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1314 for (; *template; template++)
1315 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1316 count++;
1318 return count;
1320 #endif
1322 /* Output assembler code for the start of a function,
1323 and initialize some of the variables in this file
1324 for the new function. The label for the function and associated
1325 assembler pseudo-ops have already been output in `assemble_start_function'.
1327 FIRST is the first insn of the rtl for the function being compiled.
1328 FILE is the file to write assembler code to.
1329 OPTIMIZE is nonzero if we should eliminate redundant
1330 test and compare insns. */
1332 void
1333 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1334 int optimize ATTRIBUTE_UNUSED)
1336 block_depth = 0;
1338 this_is_asm_operands = 0;
1340 last_filename = locator_file (prologue_locator);
1341 last_linenum = locator_line (prologue_locator);
1343 high_block_linenum = high_function_linenum = last_linenum;
1345 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1347 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1348 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1349 dwarf2out_begin_prologue (0, NULL);
1350 #endif
1352 #ifdef LEAF_REG_REMAP
1353 if (current_function_uses_only_leaf_regs)
1354 leaf_renumber_regs (first);
1355 #endif
1357 /* The Sun386i and perhaps other machines don't work right
1358 if the profiling code comes after the prologue. */
1359 #ifdef PROFILE_BEFORE_PROLOGUE
1360 if (current_function_profile)
1361 profile_function (file);
1362 #endif /* PROFILE_BEFORE_PROLOGUE */
1364 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1365 if (dwarf2out_do_frame ())
1366 dwarf2out_frame_debug (NULL_RTX);
1367 #endif
1369 /* If debugging, assign block numbers to all of the blocks in this
1370 function. */
1371 if (write_symbols)
1373 remove_unnecessary_notes ();
1374 reemit_insn_block_notes ();
1375 number_blocks (current_function_decl);
1376 /* We never actually put out begin/end notes for the top-level
1377 block in the function. But, conceptually, that block is
1378 always needed. */
1379 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1382 /* First output the function prologue: code to set up the stack frame. */
1383 targetm.asm_out.function_prologue (file, get_frame_size ());
1385 /* If the machine represents the prologue as RTL, the profiling code must
1386 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1387 #ifdef HAVE_prologue
1388 if (! HAVE_prologue)
1389 #endif
1390 profile_after_prologue (file);
1393 static void
1394 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1396 #ifndef PROFILE_BEFORE_PROLOGUE
1397 if (current_function_profile)
1398 profile_function (file);
1399 #endif /* not PROFILE_BEFORE_PROLOGUE */
1402 static void
1403 profile_function (FILE *file ATTRIBUTE_UNUSED)
1405 #ifndef NO_PROFILE_COUNTERS
1406 # define NO_PROFILE_COUNTERS 0
1407 #endif
1408 #if defined(ASM_OUTPUT_REG_PUSH)
1409 int sval = current_function_returns_struct;
1410 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1411 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1412 int cxt = current_function_needs_context;
1413 #endif
1414 #endif /* ASM_OUTPUT_REG_PUSH */
1416 if (! NO_PROFILE_COUNTERS)
1418 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1419 data_section ();
1420 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1421 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1422 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1425 function_section (current_function_decl);
1427 #if defined(ASM_OUTPUT_REG_PUSH)
1428 if (sval && svrtx != NULL_RTX && GET_CODE (svrtx) == REG)
1429 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1430 #endif
1432 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1433 if (cxt)
1434 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1435 #else
1436 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1437 if (cxt)
1439 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1441 #endif
1442 #endif
1444 FUNCTION_PROFILER (file, current_function_funcdef_no);
1446 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1447 if (cxt)
1448 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1449 #else
1450 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1451 if (cxt)
1453 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1455 #endif
1456 #endif
1458 #if defined(ASM_OUTPUT_REG_PUSH)
1459 if (sval && svrtx != NULL_RTX && GET_CODE (svrtx) == REG)
1460 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1461 #endif
1464 /* Output assembler code for the end of a function.
1465 For clarity, args are same as those of `final_start_function'
1466 even though not all of them are needed. */
1468 void
1469 final_end_function (void)
1471 app_disable ();
1473 (*debug_hooks->end_function) (high_function_linenum);
1475 /* Finally, output the function epilogue:
1476 code to restore the stack frame and return to the caller. */
1477 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1479 /* And debug output. */
1480 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1482 #if defined (DWARF2_UNWIND_INFO)
1483 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1484 && dwarf2out_do_frame ())
1485 dwarf2out_end_epilogue (last_linenum, last_filename);
1486 #endif
1489 /* Output assembler code for some insns: all or part of a function.
1490 For description of args, see `final_start_function', above.
1492 PRESCAN is 1 if we are not really outputting,
1493 just scanning as if we were outputting.
1494 Prescanning deletes and rearranges insns just like ordinary output.
1495 PRESCAN is -2 if we are outputting after having prescanned.
1496 In this case, don't try to delete or rearrange insns
1497 because that has already been done.
1498 Prescanning is done only on certain machines. */
1500 void
1501 final (rtx first, FILE *file, int optimize, int prescan)
1503 rtx insn;
1504 int max_uid = 0;
1505 int seen = 0;
1507 last_ignored_compare = 0;
1509 #ifdef SDB_DEBUGGING_INFO
1510 /* When producing SDB debugging info, delete troublesome line number
1511 notes from inlined functions in other files as well as duplicate
1512 line number notes. */
1513 if (write_symbols == SDB_DEBUG)
1515 rtx last = 0;
1516 for (insn = first; insn; insn = NEXT_INSN (insn))
1517 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1519 if ((RTX_INTEGRATED_P (insn)
1520 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1521 || (last != 0
1522 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1523 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1525 delete_insn (insn); /* Use delete_note. */
1526 continue;
1528 last = insn;
1531 #endif
1533 for (insn = first; insn; insn = NEXT_INSN (insn))
1535 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1536 max_uid = INSN_UID (insn);
1537 #ifdef HAVE_cc0
1538 /* If CC tracking across branches is enabled, record the insn which
1539 jumps to each branch only reached from one place. */
1540 if (optimize && GET_CODE (insn) == JUMP_INSN)
1542 rtx lab = JUMP_LABEL (insn);
1543 if (lab && LABEL_NUSES (lab) == 1)
1545 LABEL_REFS (lab) = insn;
1548 #endif
1551 init_recog ();
1553 CC_STATUS_INIT;
1555 /* Output the insns. */
1556 for (insn = NEXT_INSN (first); insn;)
1558 #ifdef HAVE_ATTR_length
1559 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1561 /* This can be triggered by bugs elsewhere in the compiler if
1562 new insns are created after init_insn_lengths is called. */
1563 if (GET_CODE (insn) == NOTE)
1564 insn_current_address = -1;
1565 else
1566 abort ();
1568 else
1569 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1570 #endif /* HAVE_ATTR_length */
1572 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1576 const char *
1577 get_insn_template (int code, rtx insn)
1579 switch (insn_data[code].output_format)
1581 case INSN_OUTPUT_FORMAT_SINGLE:
1582 return insn_data[code].output.single;
1583 case INSN_OUTPUT_FORMAT_MULTI:
1584 return insn_data[code].output.multi[which_alternative];
1585 case INSN_OUTPUT_FORMAT_FUNCTION:
1586 if (insn == NULL)
1587 abort ();
1588 return (*insn_data[code].output.function) (recog_data.operand, insn);
1590 default:
1591 abort ();
1595 /* Emit the appropriate declaration for an alternate-entry-point
1596 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1597 LABEL_KIND != LABEL_NORMAL.
1599 The case fall-through in this function is intentional. */
1600 static void
1601 output_alternate_entry_point (FILE *file, rtx insn)
1603 const char *name = LABEL_NAME (insn);
1605 switch (LABEL_KIND (insn))
1607 case LABEL_WEAK_ENTRY:
1608 #ifdef ASM_WEAKEN_LABEL
1609 ASM_WEAKEN_LABEL (file, name);
1610 #endif
1611 case LABEL_GLOBAL_ENTRY:
1612 targetm.asm_out.globalize_label (file, name);
1613 case LABEL_STATIC_ENTRY:
1614 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1615 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1616 #endif
1617 ASM_OUTPUT_LABEL (file, name);
1618 break;
1620 case LABEL_NORMAL:
1621 default:
1622 abort ();
1626 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1627 note in the instruction chain (going forward) between the current
1628 instruction, and the next 'executable' instruction. */
1630 bool
1631 scan_ahead_for_unlikely_executed_note (rtx insn)
1633 rtx temp;
1634 int bb_note_count = 0;
1636 for (temp = insn; temp; temp = NEXT_INSN (temp))
1638 if (GET_CODE (temp) == NOTE
1639 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1640 return true;
1641 if (GET_CODE (temp) == NOTE
1642 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1644 bb_note_count++;
1645 if (bb_note_count > 1)
1646 return false;
1648 if (INSN_P (temp))
1649 return false;
1652 return false;
1655 /* The final scan for one insn, INSN.
1656 Args are same as in `final', except that INSN
1657 is the insn being scanned.
1658 Value returned is the next insn to be scanned.
1660 NOPEEPHOLES is the flag to disallow peephole processing (currently
1661 used for within delayed branch sequence output).
1663 SEEN is used to track the end of the prologue, for emitting
1664 debug information. We force the emission of a line note after
1665 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1666 at the beginning of the second basic block, whichever comes
1667 first. */
1670 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1671 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1672 int *seen)
1674 #ifdef HAVE_cc0
1675 rtx set;
1676 #endif
1678 insn_counter++;
1680 /* Ignore deleted insns. These can occur when we split insns (due to a
1681 template of "#") while not optimizing. */
1682 if (INSN_DELETED_P (insn))
1683 return NEXT_INSN (insn);
1685 switch (GET_CODE (insn))
1687 case NOTE:
1688 if (prescan > 0)
1689 break;
1691 switch (NOTE_LINE_NUMBER (insn))
1693 case NOTE_INSN_DELETED:
1694 case NOTE_INSN_LOOP_BEG:
1695 case NOTE_INSN_LOOP_END:
1696 case NOTE_INSN_LOOP_END_TOP_COND:
1697 case NOTE_INSN_LOOP_CONT:
1698 case NOTE_INSN_LOOP_VTOP:
1699 case NOTE_INSN_FUNCTION_END:
1700 case NOTE_INSN_REPEATED_LINE_NUMBER:
1701 case NOTE_INSN_EXPECTED_VALUE:
1702 break;
1704 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1706 /* The presence of this note indicates that this basic block
1707 belongs in the "cold" section of the .o file. If we are
1708 not already writing to the cold section we need to change
1709 to it. */
1711 unlikely_text_section ();
1712 break;
1714 case NOTE_INSN_BASIC_BLOCK:
1716 /* If we are performing the optimization that paritions
1717 basic blocks into hot & cold sections of the .o file,
1718 then at the start of each new basic block, before
1719 beginning to write code for the basic block, we need to
1720 check to see whether the basic block belongs in the hot
1721 or cold section of the .o file, and change the section we
1722 are writing to appropriately. */
1724 if (flag_reorder_blocks_and_partition
1725 && in_unlikely_text_section()
1726 && !scan_ahead_for_unlikely_executed_note (insn))
1727 text_section ();
1729 #ifdef IA64_UNWIND_INFO
1730 IA64_UNWIND_EMIT (asm_out_file, insn);
1731 #endif
1732 if (flag_debug_asm)
1733 fprintf (asm_out_file, "\t%s basic block %d\n",
1734 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1736 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1738 *seen |= SEEN_EMITTED;
1739 last_filename = NULL;
1741 else
1742 *seen |= SEEN_BB;
1744 break;
1746 case NOTE_INSN_EH_REGION_BEG:
1747 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1748 NOTE_EH_HANDLER (insn));
1749 break;
1751 case NOTE_INSN_EH_REGION_END:
1752 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1753 NOTE_EH_HANDLER (insn));
1754 break;
1756 case NOTE_INSN_PROLOGUE_END:
1757 targetm.asm_out.function_end_prologue (file);
1758 profile_after_prologue (file);
1760 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1762 *seen |= SEEN_EMITTED;
1763 last_filename = NULL;
1765 else
1766 *seen |= SEEN_NOTE;
1768 break;
1770 case NOTE_INSN_EPILOGUE_BEG:
1771 targetm.asm_out.function_begin_epilogue (file);
1772 break;
1774 case NOTE_INSN_FUNCTION_BEG:
1775 app_disable ();
1776 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1778 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1780 *seen |= SEEN_EMITTED;
1781 last_filename = NULL;
1783 else
1784 *seen |= SEEN_NOTE;
1786 break;
1788 case NOTE_INSN_BLOCK_BEG:
1789 if (debug_info_level == DINFO_LEVEL_NORMAL
1790 || debug_info_level == DINFO_LEVEL_VERBOSE
1791 || write_symbols == DWARF_DEBUG
1792 || write_symbols == DWARF2_DEBUG
1793 || write_symbols == VMS_AND_DWARF2_DEBUG
1794 || write_symbols == VMS_DEBUG)
1796 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1798 app_disable ();
1799 ++block_depth;
1800 high_block_linenum = last_linenum;
1802 /* Output debugging info about the symbol-block beginning. */
1803 (*debug_hooks->begin_block) (last_linenum, n);
1805 /* Mark this block as output. */
1806 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1808 break;
1810 case NOTE_INSN_BLOCK_END:
1811 if (debug_info_level == DINFO_LEVEL_NORMAL
1812 || debug_info_level == DINFO_LEVEL_VERBOSE
1813 || write_symbols == DWARF_DEBUG
1814 || write_symbols == DWARF2_DEBUG
1815 || write_symbols == VMS_AND_DWARF2_DEBUG
1816 || write_symbols == VMS_DEBUG)
1818 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1820 app_disable ();
1822 /* End of a symbol-block. */
1823 --block_depth;
1824 if (block_depth < 0)
1825 abort ();
1827 (*debug_hooks->end_block) (high_block_linenum, n);
1829 break;
1831 case NOTE_INSN_DELETED_LABEL:
1832 /* Emit the label. We may have deleted the CODE_LABEL because
1833 the label could be proved to be unreachable, though still
1834 referenced (in the form of having its address taken. */
1835 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1836 break;
1838 case NOTE_INSN_VAR_LOCATION:
1839 (*debug_hooks->var_location) (insn);
1840 break;
1842 case 0:
1843 break;
1845 default:
1846 if (NOTE_LINE_NUMBER (insn) <= 0)
1847 abort ();
1848 break;
1850 break;
1852 case BARRIER:
1853 #if defined (DWARF2_UNWIND_INFO)
1854 if (dwarf2out_do_frame ())
1855 dwarf2out_frame_debug (insn);
1856 #endif
1857 break;
1859 case CODE_LABEL:
1860 /* The target port might emit labels in the output function for
1861 some insn, e.g. sh.c output_branchy_insn. */
1862 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1864 int align = LABEL_TO_ALIGNMENT (insn);
1865 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1866 int max_skip = LABEL_TO_MAX_SKIP (insn);
1867 #endif
1869 if (align && NEXT_INSN (insn))
1871 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1872 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1873 #else
1874 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1875 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1876 #else
1877 ASM_OUTPUT_ALIGN (file, align);
1878 #endif
1879 #endif
1882 #ifdef HAVE_cc0
1883 CC_STATUS_INIT;
1884 /* If this label is reached from only one place, set the condition
1885 codes from the instruction just before the branch. */
1887 /* Disabled because some insns set cc_status in the C output code
1888 and NOTICE_UPDATE_CC alone can set incorrect status. */
1889 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1891 rtx jump = LABEL_REFS (insn);
1892 rtx barrier = prev_nonnote_insn (insn);
1893 rtx prev;
1894 /* If the LABEL_REFS field of this label has been set to point
1895 at a branch, the predecessor of the branch is a regular
1896 insn, and that branch is the only way to reach this label,
1897 set the condition codes based on the branch and its
1898 predecessor. */
1899 if (barrier && GET_CODE (barrier) == BARRIER
1900 && jump && GET_CODE (jump) == JUMP_INSN
1901 && (prev = prev_nonnote_insn (jump))
1902 && GET_CODE (prev) == INSN)
1904 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1905 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1908 #endif
1909 if (prescan > 0)
1910 break;
1912 if (LABEL_NAME (insn))
1913 (*debug_hooks->label) (insn);
1915 /* If we are doing the optimization that partitions hot & cold
1916 basic blocks into separate sections of the .o file, we need
1917 to ensure the jump table ends up in the correct section... */
1919 if (flag_reorder_blocks_and_partition)
1921 rtx tmp_table, tmp_label;
1922 if (GET_CODE (insn) == CODE_LABEL
1923 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1925 /* Do nothing; Do NOT change the current section. */
1927 else if (scan_ahead_for_unlikely_executed_note (insn))
1928 unlikely_text_section ();
1929 else
1931 if (in_unlikely_text_section ())
1932 text_section ();
1936 if (app_on)
1938 fputs (ASM_APP_OFF, file);
1939 app_on = 0;
1941 if (NEXT_INSN (insn) != 0
1942 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1944 rtx nextbody = PATTERN (NEXT_INSN (insn));
1946 /* If this label is followed by a jump-table,
1947 make sure we put the label in the read-only section. Also
1948 possibly write the label and jump table together. */
1950 if (GET_CODE (nextbody) == ADDR_VEC
1951 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1953 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1954 /* In this case, the case vector is being moved by the
1955 target, so don't output the label at all. Leave that
1956 to the back end macros. */
1957 #else
1958 if (! JUMP_TABLES_IN_TEXT_SECTION)
1960 int log_align;
1962 readonly_data_section ();
1964 #ifdef ADDR_VEC_ALIGN
1965 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1966 #else
1967 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1968 #endif
1969 ASM_OUTPUT_ALIGN (file, log_align);
1971 else
1972 function_section (current_function_decl);
1974 #ifdef ASM_OUTPUT_CASE_LABEL
1975 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1976 NEXT_INSN (insn));
1977 #else
1978 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1979 #endif
1980 #endif
1981 break;
1984 if (LABEL_ALT_ENTRY_P (insn))
1985 output_alternate_entry_point (file, insn);
1986 else
1987 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1988 break;
1990 default:
1992 rtx body = PATTERN (insn);
1993 int insn_code_number;
1994 const char *template;
1995 rtx note;
1997 /* An INSN, JUMP_INSN or CALL_INSN.
1998 First check for special kinds that recog doesn't recognize. */
2000 if (GET_CODE (body) == USE /* These are just declarations. */
2001 || GET_CODE (body) == CLOBBER)
2002 break;
2004 #ifdef HAVE_cc0
2005 /* If there is a REG_CC_SETTER note on this insn, it means that
2006 the setting of the condition code was done in the delay slot
2007 of the insn that branched here. So recover the cc status
2008 from the insn that set it. */
2010 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2011 if (note)
2013 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2014 cc_prev_status = cc_status;
2016 #endif
2018 /* Detect insns that are really jump-tables
2019 and output them as such. */
2021 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2023 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2024 int vlen, idx;
2025 #endif
2027 if (prescan > 0)
2028 break;
2030 if (app_on)
2032 fputs (ASM_APP_OFF, file);
2033 app_on = 0;
2036 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2037 if (GET_CODE (body) == ADDR_VEC)
2039 #ifdef ASM_OUTPUT_ADDR_VEC
2040 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2041 #else
2042 abort ();
2043 #endif
2045 else
2047 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2048 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2049 #else
2050 abort ();
2051 #endif
2053 #else
2054 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2055 for (idx = 0; idx < vlen; idx++)
2057 if (GET_CODE (body) == ADDR_VEC)
2059 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2060 ASM_OUTPUT_ADDR_VEC_ELT
2061 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2062 #else
2063 abort ();
2064 #endif
2066 else
2068 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2069 ASM_OUTPUT_ADDR_DIFF_ELT
2070 (file,
2071 body,
2072 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2073 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2074 #else
2075 abort ();
2076 #endif
2079 #ifdef ASM_OUTPUT_CASE_END
2080 ASM_OUTPUT_CASE_END (file,
2081 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2082 insn);
2083 #endif
2084 #endif
2086 function_section (current_function_decl);
2088 break;
2090 /* Output this line note if it is the first or the last line
2091 note in a row. */
2092 if (notice_source_line (insn))
2094 (*debug_hooks->source_line) (last_linenum, last_filename);
2097 if (GET_CODE (body) == ASM_INPUT)
2099 const char *string = XSTR (body, 0);
2101 /* There's no telling what that did to the condition codes. */
2102 CC_STATUS_INIT;
2103 if (prescan > 0)
2104 break;
2106 if (string[0])
2108 if (! app_on)
2110 fputs (ASM_APP_ON, file);
2111 app_on = 1;
2113 fprintf (asm_out_file, "\t%s\n", string);
2115 break;
2118 /* Detect `asm' construct with operands. */
2119 if (asm_noperands (body) >= 0)
2121 unsigned int noperands = asm_noperands (body);
2122 rtx *ops = alloca (noperands * sizeof (rtx));
2123 const char *string;
2125 /* There's no telling what that did to the condition codes. */
2126 CC_STATUS_INIT;
2127 if (prescan > 0)
2128 break;
2130 /* Get out the operand values. */
2131 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2132 /* Inhibit aborts on what would otherwise be compiler bugs. */
2133 insn_noperands = noperands;
2134 this_is_asm_operands = insn;
2136 #ifdef FINAL_PRESCAN_INSN
2137 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2138 #endif
2140 /* Output the insn using them. */
2141 if (string[0])
2143 if (! app_on)
2145 fputs (ASM_APP_ON, file);
2146 app_on = 1;
2148 output_asm_insn (string, ops);
2151 this_is_asm_operands = 0;
2152 break;
2155 if (prescan <= 0 && app_on)
2157 fputs (ASM_APP_OFF, file);
2158 app_on = 0;
2161 if (GET_CODE (body) == SEQUENCE)
2163 /* A delayed-branch sequence */
2164 int i;
2165 rtx next;
2167 if (prescan > 0)
2168 break;
2169 final_sequence = body;
2171 /* Record the delay slots' frame information before the branch.
2172 This is needed for delayed calls: see execute_cfa_program(). */
2173 #if defined (DWARF2_UNWIND_INFO)
2174 if (dwarf2out_do_frame ())
2175 for (i = 1; i < XVECLEN (body, 0); i++)
2176 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2177 #endif
2179 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2180 force the restoration of a comparison that was previously
2181 thought unnecessary. If that happens, cancel this sequence
2182 and cause that insn to be restored. */
2184 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2185 if (next != XVECEXP (body, 0, 1))
2187 final_sequence = 0;
2188 return next;
2191 for (i = 1; i < XVECLEN (body, 0); i++)
2193 rtx insn = XVECEXP (body, 0, i);
2194 rtx next = NEXT_INSN (insn);
2195 /* We loop in case any instruction in a delay slot gets
2196 split. */
2198 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2199 while (insn != next);
2201 #ifdef DBR_OUTPUT_SEQEND
2202 DBR_OUTPUT_SEQEND (file);
2203 #endif
2204 final_sequence = 0;
2206 /* If the insn requiring the delay slot was a CALL_INSN, the
2207 insns in the delay slot are actually executed before the
2208 called function. Hence we don't preserve any CC-setting
2209 actions in these insns and the CC must be marked as being
2210 clobbered by the function. */
2211 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2213 CC_STATUS_INIT;
2215 break;
2218 /* We have a real machine instruction as rtl. */
2220 body = PATTERN (insn);
2222 #ifdef HAVE_cc0
2223 set = single_set (insn);
2225 /* Check for redundant test and compare instructions
2226 (when the condition codes are already set up as desired).
2227 This is done only when optimizing; if not optimizing,
2228 it should be possible for the user to alter a variable
2229 with the debugger in between statements
2230 and the next statement should reexamine the variable
2231 to compute the condition codes. */
2233 if (optimize)
2235 if (set
2236 && GET_CODE (SET_DEST (set)) == CC0
2237 && insn != last_ignored_compare)
2239 if (GET_CODE (SET_SRC (set)) == SUBREG)
2240 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2241 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2243 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2244 XEXP (SET_SRC (set), 0)
2245 = alter_subreg (&XEXP (SET_SRC (set), 0));
2246 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2247 XEXP (SET_SRC (set), 1)
2248 = alter_subreg (&XEXP (SET_SRC (set), 1));
2250 if ((cc_status.value1 != 0
2251 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2252 || (cc_status.value2 != 0
2253 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2255 /* Don't delete insn if it has an addressing side-effect. */
2256 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2257 /* or if anything in it is volatile. */
2258 && ! volatile_refs_p (PATTERN (insn)))
2260 /* We don't really delete the insn; just ignore it. */
2261 last_ignored_compare = insn;
2262 break;
2267 #endif
2269 #ifndef STACK_REGS
2270 /* Don't bother outputting obvious no-ops, even without -O.
2271 This optimization is fast and doesn't interfere with debugging.
2272 Don't do this if the insn is in a delay slot, since this
2273 will cause an improper number of delay insns to be written. */
2274 if (final_sequence == 0
2275 && prescan >= 0
2276 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2277 && GET_CODE (SET_SRC (body)) == REG
2278 && GET_CODE (SET_DEST (body)) == REG
2279 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2280 break;
2281 #endif
2283 #ifdef HAVE_cc0
2284 /* If this is a conditional branch, maybe modify it
2285 if the cc's are in a nonstandard state
2286 so that it accomplishes the same thing that it would
2287 do straightforwardly if the cc's were set up normally. */
2289 if (cc_status.flags != 0
2290 && GET_CODE (insn) == JUMP_INSN
2291 && GET_CODE (body) == SET
2292 && SET_DEST (body) == pc_rtx
2293 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2294 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2295 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2296 /* This is done during prescan; it is not done again
2297 in final scan when prescan has been done. */
2298 && prescan >= 0)
2300 /* This function may alter the contents of its argument
2301 and clear some of the cc_status.flags bits.
2302 It may also return 1 meaning condition now always true
2303 or -1 meaning condition now always false
2304 or 2 meaning condition nontrivial but altered. */
2305 int result = alter_cond (XEXP (SET_SRC (body), 0));
2306 /* If condition now has fixed value, replace the IF_THEN_ELSE
2307 with its then-operand or its else-operand. */
2308 if (result == 1)
2309 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2310 if (result == -1)
2311 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2313 /* The jump is now either unconditional or a no-op.
2314 If it has become a no-op, don't try to output it.
2315 (It would not be recognized.) */
2316 if (SET_SRC (body) == pc_rtx)
2318 delete_insn (insn);
2319 break;
2321 else if (GET_CODE (SET_SRC (body)) == RETURN)
2322 /* Replace (set (pc) (return)) with (return). */
2323 PATTERN (insn) = body = SET_SRC (body);
2325 /* Rerecognize the instruction if it has changed. */
2326 if (result != 0)
2327 INSN_CODE (insn) = -1;
2330 /* Make same adjustments to instructions that examine the
2331 condition codes without jumping and instructions that
2332 handle conditional moves (if this machine has either one). */
2334 if (cc_status.flags != 0
2335 && set != 0)
2337 rtx cond_rtx, then_rtx, else_rtx;
2339 if (GET_CODE (insn) != JUMP_INSN
2340 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2342 cond_rtx = XEXP (SET_SRC (set), 0);
2343 then_rtx = XEXP (SET_SRC (set), 1);
2344 else_rtx = XEXP (SET_SRC (set), 2);
2346 else
2348 cond_rtx = SET_SRC (set);
2349 then_rtx = const_true_rtx;
2350 else_rtx = const0_rtx;
2353 switch (GET_CODE (cond_rtx))
2355 case GTU:
2356 case GT:
2357 case LTU:
2358 case LT:
2359 case GEU:
2360 case GE:
2361 case LEU:
2362 case LE:
2363 case EQ:
2364 case NE:
2366 int result;
2367 if (XEXP (cond_rtx, 0) != cc0_rtx)
2368 break;
2369 result = alter_cond (cond_rtx);
2370 if (result == 1)
2371 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2372 else if (result == -1)
2373 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2374 else if (result == 2)
2375 INSN_CODE (insn) = -1;
2376 if (SET_DEST (set) == SET_SRC (set))
2377 delete_insn (insn);
2379 break;
2381 default:
2382 break;
2386 #endif
2388 #ifdef HAVE_peephole
2389 /* Do machine-specific peephole optimizations if desired. */
2391 if (optimize && !flag_no_peephole && !nopeepholes)
2393 rtx next = peephole (insn);
2394 /* When peepholing, if there were notes within the peephole,
2395 emit them before the peephole. */
2396 if (next != 0 && next != NEXT_INSN (insn))
2398 rtx prev = PREV_INSN (insn);
2400 for (note = NEXT_INSN (insn); note != next;
2401 note = NEXT_INSN (note))
2402 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2404 /* In case this is prescan, put the notes
2405 in proper position for later rescan. */
2406 note = NEXT_INSN (insn);
2407 PREV_INSN (note) = prev;
2408 NEXT_INSN (prev) = note;
2409 NEXT_INSN (PREV_INSN (next)) = insn;
2410 PREV_INSN (insn) = PREV_INSN (next);
2411 NEXT_INSN (insn) = next;
2412 PREV_INSN (next) = insn;
2415 /* PEEPHOLE might have changed this. */
2416 body = PATTERN (insn);
2418 #endif
2420 /* Try to recognize the instruction.
2421 If successful, verify that the operands satisfy the
2422 constraints for the instruction. Crash if they don't,
2423 since `reload' should have changed them so that they do. */
2425 insn_code_number = recog_memoized (insn);
2426 cleanup_subreg_operands (insn);
2428 /* Dump the insn in the assembly for debugging. */
2429 if (flag_dump_rtl_in_asm)
2431 print_rtx_head = ASM_COMMENT_START;
2432 print_rtl_single (asm_out_file, insn);
2433 print_rtx_head = "";
2436 if (! constrain_operands_cached (1))
2437 fatal_insn_not_found (insn);
2439 /* Some target machines need to prescan each insn before
2440 it is output. */
2442 #ifdef FINAL_PRESCAN_INSN
2443 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2444 #endif
2446 #ifdef HAVE_conditional_execution
2447 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2448 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2449 else
2450 current_insn_predicate = NULL_RTX;
2451 #endif
2453 #ifdef HAVE_cc0
2454 cc_prev_status = cc_status;
2456 /* Update `cc_status' for this instruction.
2457 The instruction's output routine may change it further.
2458 If the output routine for a jump insn needs to depend
2459 on the cc status, it should look at cc_prev_status. */
2461 NOTICE_UPDATE_CC (body, insn);
2462 #endif
2464 current_output_insn = debug_insn = insn;
2466 #if defined (DWARF2_UNWIND_INFO)
2467 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2468 dwarf2out_frame_debug (insn);
2469 #endif
2471 /* Find the proper template for this insn. */
2472 template = get_insn_template (insn_code_number, insn);
2474 /* If the C code returns 0, it means that it is a jump insn
2475 which follows a deleted test insn, and that test insn
2476 needs to be reinserted. */
2477 if (template == 0)
2479 rtx prev;
2481 if (prev_nonnote_insn (insn) != last_ignored_compare)
2482 abort ();
2484 /* We have already processed the notes between the setter and
2485 the user. Make sure we don't process them again, this is
2486 particularly important if one of the notes is a block
2487 scope note or an EH note. */
2488 for (prev = insn;
2489 prev != last_ignored_compare;
2490 prev = PREV_INSN (prev))
2492 if (GET_CODE (prev) == NOTE)
2493 delete_insn (prev); /* Use delete_note. */
2496 return prev;
2499 /* If the template is the string "#", it means that this insn must
2500 be split. */
2501 if (template[0] == '#' && template[1] == '\0')
2503 rtx new = try_split (body, insn, 0);
2505 /* If we didn't split the insn, go away. */
2506 if (new == insn && PATTERN (new) == body)
2507 fatal_insn ("could not split insn", insn);
2509 #ifdef HAVE_ATTR_length
2510 /* This instruction should have been split in shorten_branches,
2511 to ensure that we would have valid length info for the
2512 splitees. */
2513 abort ();
2514 #endif
2516 return new;
2519 if (prescan > 0)
2520 break;
2522 #ifdef IA64_UNWIND_INFO
2523 IA64_UNWIND_EMIT (asm_out_file, insn);
2524 #endif
2525 /* Output assembler code from the template. */
2527 output_asm_insn (template, recog_data.operand);
2529 /* If necessary, report the effect that the instruction has on
2530 the unwind info. We've already done this for delay slots
2531 and call instructions. */
2532 #if defined (DWARF2_UNWIND_INFO)
2533 if (GET_CODE (insn) == INSN
2534 #if !defined (HAVE_prologue)
2535 && !ACCUMULATE_OUTGOING_ARGS
2536 #endif
2537 && final_sequence == 0
2538 && dwarf2out_do_frame ())
2539 dwarf2out_frame_debug (insn);
2540 #endif
2542 #if 0
2543 /* It's not at all clear why we did this and doing so used to
2544 interfere with tests that used REG_WAS_0 notes, which are
2545 now gone, so let's try with this out. */
2547 /* Mark this insn as having been output. */
2548 INSN_DELETED_P (insn) = 1;
2549 #endif
2551 /* Emit information for vtable gc. */
2552 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2554 current_output_insn = debug_insn = 0;
2557 return NEXT_INSN (insn);
2560 /* Output debugging info to the assembler file FILE
2561 based on the NOTE-insn INSN, assumed to be a line number. */
2563 static bool
2564 notice_source_line (rtx insn)
2566 const char *filename = insn_file (insn);
2567 int linenum = insn_line (insn);
2569 if (filename && (filename != last_filename || last_linenum != linenum))
2571 last_filename = filename;
2572 last_linenum = linenum;
2573 high_block_linenum = MAX (last_linenum, high_block_linenum);
2574 high_function_linenum = MAX (last_linenum, high_function_linenum);
2575 return true;
2577 return false;
2580 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2581 directly to the desired hard register. */
2583 void
2584 cleanup_subreg_operands (rtx insn)
2586 int i;
2587 extract_insn_cached (insn);
2588 for (i = 0; i < recog_data.n_operands; i++)
2590 /* The following test cannot use recog_data.operand when testing
2591 for a SUBREG: the underlying object might have been changed
2592 already if we are inside a match_operator expression that
2593 matches the else clause. Instead we test the underlying
2594 expression directly. */
2595 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2596 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2597 else if (GET_CODE (recog_data.operand[i]) == PLUS
2598 || GET_CODE (recog_data.operand[i]) == MULT
2599 || GET_CODE (recog_data.operand[i]) == MEM)
2600 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2603 for (i = 0; i < recog_data.n_dups; i++)
2605 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2606 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2607 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2608 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2609 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2610 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2614 /* If X is a SUBREG, replace it with a REG or a MEM,
2615 based on the thing it is a subreg of. */
2618 alter_subreg (rtx *xp)
2620 rtx x = *xp;
2621 rtx y = SUBREG_REG (x);
2623 /* simplify_subreg does not remove subreg from volatile references.
2624 We are required to. */
2625 if (GET_CODE (y) == MEM)
2626 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2627 else
2629 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2630 SUBREG_BYTE (x));
2632 if (new != 0)
2633 *xp = new;
2634 /* Simplify_subreg can't handle some REG cases, but we have to. */
2635 else if (GET_CODE (y) == REG)
2637 unsigned int regno = subreg_hard_regno (x, 1);
2638 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2640 else
2641 abort ();
2644 return *xp;
2647 /* Do alter_subreg on all the SUBREGs contained in X. */
2649 static rtx
2650 walk_alter_subreg (rtx *xp)
2652 rtx x = *xp;
2653 switch (GET_CODE (x))
2655 case PLUS:
2656 case MULT:
2657 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2658 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2659 break;
2661 case MEM:
2662 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2663 break;
2665 case SUBREG:
2666 return alter_subreg (xp);
2668 default:
2669 break;
2672 return *xp;
2675 #ifdef HAVE_cc0
2677 /* Given BODY, the body of a jump instruction, alter the jump condition
2678 as required by the bits that are set in cc_status.flags.
2679 Not all of the bits there can be handled at this level in all cases.
2681 The value is normally 0.
2682 1 means that the condition has become always true.
2683 -1 means that the condition has become always false.
2684 2 means that COND has been altered. */
2686 static int
2687 alter_cond (rtx cond)
2689 int value = 0;
2691 if (cc_status.flags & CC_REVERSED)
2693 value = 2;
2694 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2697 if (cc_status.flags & CC_INVERTED)
2699 value = 2;
2700 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2703 if (cc_status.flags & CC_NOT_POSITIVE)
2704 switch (GET_CODE (cond))
2706 case LE:
2707 case LEU:
2708 case GEU:
2709 /* Jump becomes unconditional. */
2710 return 1;
2712 case GT:
2713 case GTU:
2714 case LTU:
2715 /* Jump becomes no-op. */
2716 return -1;
2718 case GE:
2719 PUT_CODE (cond, EQ);
2720 value = 2;
2721 break;
2723 case LT:
2724 PUT_CODE (cond, NE);
2725 value = 2;
2726 break;
2728 default:
2729 break;
2732 if (cc_status.flags & CC_NOT_NEGATIVE)
2733 switch (GET_CODE (cond))
2735 case GE:
2736 case GEU:
2737 /* Jump becomes unconditional. */
2738 return 1;
2740 case LT:
2741 case LTU:
2742 /* Jump becomes no-op. */
2743 return -1;
2745 case LE:
2746 case LEU:
2747 PUT_CODE (cond, EQ);
2748 value = 2;
2749 break;
2751 case GT:
2752 case GTU:
2753 PUT_CODE (cond, NE);
2754 value = 2;
2755 break;
2757 default:
2758 break;
2761 if (cc_status.flags & CC_NO_OVERFLOW)
2762 switch (GET_CODE (cond))
2764 case GEU:
2765 /* Jump becomes unconditional. */
2766 return 1;
2768 case LEU:
2769 PUT_CODE (cond, EQ);
2770 value = 2;
2771 break;
2773 case GTU:
2774 PUT_CODE (cond, NE);
2775 value = 2;
2776 break;
2778 case LTU:
2779 /* Jump becomes no-op. */
2780 return -1;
2782 default:
2783 break;
2786 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2787 switch (GET_CODE (cond))
2789 default:
2790 abort ();
2792 case NE:
2793 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2794 value = 2;
2795 break;
2797 case EQ:
2798 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2799 value = 2;
2800 break;
2803 if (cc_status.flags & CC_NOT_SIGNED)
2804 /* The flags are valid if signed condition operators are converted
2805 to unsigned. */
2806 switch (GET_CODE (cond))
2808 case LE:
2809 PUT_CODE (cond, LEU);
2810 value = 2;
2811 break;
2813 case LT:
2814 PUT_CODE (cond, LTU);
2815 value = 2;
2816 break;
2818 case GT:
2819 PUT_CODE (cond, GTU);
2820 value = 2;
2821 break;
2823 case GE:
2824 PUT_CODE (cond, GEU);
2825 value = 2;
2826 break;
2828 default:
2829 break;
2832 return value;
2834 #endif
2836 /* Report inconsistency between the assembler template and the operands.
2837 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2839 void
2840 output_operand_lossage (const char *msgid, ...)
2842 char *fmt_string;
2843 char *new_message;
2844 const char *pfx_str;
2845 va_list ap;
2847 va_start (ap, msgid);
2849 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2850 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2851 vasprintf (&new_message, fmt_string, ap);
2853 if (this_is_asm_operands)
2854 error_for_asm (this_is_asm_operands, "%s", new_message);
2855 else
2856 internal_error ("%s", new_message);
2858 free (fmt_string);
2859 free (new_message);
2860 va_end (ap);
2863 /* Output of assembler code from a template, and its subroutines. */
2865 /* Annotate the assembly with a comment describing the pattern and
2866 alternative used. */
2868 static void
2869 output_asm_name (void)
2871 if (debug_insn)
2873 int num = INSN_CODE (debug_insn);
2874 fprintf (asm_out_file, "\t%s %d\t%s",
2875 ASM_COMMENT_START, INSN_UID (debug_insn),
2876 insn_data[num].name);
2877 if (insn_data[num].n_alternatives > 1)
2878 fprintf (asm_out_file, "/%d", which_alternative + 1);
2879 #ifdef HAVE_ATTR_length
2880 fprintf (asm_out_file, "\t[length = %d]",
2881 get_attr_length (debug_insn));
2882 #endif
2883 /* Clear this so only the first assembler insn
2884 of any rtl insn will get the special comment for -dp. */
2885 debug_insn = 0;
2889 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2890 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2891 corresponds to the address of the object and 0 if to the object. */
2893 static tree
2894 get_mem_expr_from_op (rtx op, int *paddressp)
2896 tree expr;
2897 int inner_addressp;
2899 *paddressp = 0;
2901 if (GET_CODE (op) == REG)
2902 return REG_EXPR (op);
2903 else if (GET_CODE (op) != MEM)
2904 return 0;
2906 if (MEM_EXPR (op) != 0)
2907 return MEM_EXPR (op);
2909 /* Otherwise we have an address, so indicate it and look at the address. */
2910 *paddressp = 1;
2911 op = XEXP (op, 0);
2913 /* First check if we have a decl for the address, then look at the right side
2914 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2915 But don't allow the address to itself be indirect. */
2916 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2917 return expr;
2918 else if (GET_CODE (op) == PLUS
2919 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2920 return expr;
2922 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2923 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2924 op = XEXP (op, 0);
2926 expr = get_mem_expr_from_op (op, &inner_addressp);
2927 return inner_addressp ? 0 : expr;
2930 /* Output operand names for assembler instructions. OPERANDS is the
2931 operand vector, OPORDER is the order to write the operands, and NOPS
2932 is the number of operands to write. */
2934 static void
2935 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2937 int wrote = 0;
2938 int i;
2940 for (i = 0; i < nops; i++)
2942 int addressp;
2943 rtx op = operands[oporder[i]];
2944 tree expr = get_mem_expr_from_op (op, &addressp);
2946 fprintf (asm_out_file, "%c%s",
2947 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2948 wrote = 1;
2949 if (expr)
2951 fprintf (asm_out_file, "%s",
2952 addressp ? "*" : "");
2953 print_mem_expr (asm_out_file, expr);
2954 wrote = 1;
2956 else if (REG_P (op) && ORIGINAL_REGNO (op)
2957 && ORIGINAL_REGNO (op) != REGNO (op))
2958 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2962 /* Output text from TEMPLATE to the assembler output file,
2963 obeying %-directions to substitute operands taken from
2964 the vector OPERANDS.
2966 %N (for N a digit) means print operand N in usual manner.
2967 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2968 and print the label name with no punctuation.
2969 %cN means require operand N to be a constant
2970 and print the constant expression with no punctuation.
2971 %aN means expect operand N to be a memory address
2972 (not a memory reference!) and print a reference
2973 to that address.
2974 %nN means expect operand N to be a constant
2975 and print a constant expression for minus the value
2976 of the operand, with no other punctuation. */
2978 void
2979 output_asm_insn (const char *template, rtx *operands)
2981 const char *p;
2982 int c;
2983 #ifdef ASSEMBLER_DIALECT
2984 int dialect = 0;
2985 #endif
2986 int oporder[MAX_RECOG_OPERANDS];
2987 char opoutput[MAX_RECOG_OPERANDS];
2988 int ops = 0;
2990 /* An insn may return a null string template
2991 in a case where no assembler code is needed. */
2992 if (*template == 0)
2993 return;
2995 memset (opoutput, 0, sizeof opoutput);
2996 p = template;
2997 putc ('\t', asm_out_file);
2999 #ifdef ASM_OUTPUT_OPCODE
3000 ASM_OUTPUT_OPCODE (asm_out_file, p);
3001 #endif
3003 while ((c = *p++))
3004 switch (c)
3006 case '\n':
3007 if (flag_verbose_asm)
3008 output_asm_operand_names (operands, oporder, ops);
3009 if (flag_print_asm_name)
3010 output_asm_name ();
3012 ops = 0;
3013 memset (opoutput, 0, sizeof opoutput);
3015 putc (c, asm_out_file);
3016 #ifdef ASM_OUTPUT_OPCODE
3017 while ((c = *p) == '\t')
3019 putc (c, asm_out_file);
3020 p++;
3022 ASM_OUTPUT_OPCODE (asm_out_file, p);
3023 #endif
3024 break;
3026 #ifdef ASSEMBLER_DIALECT
3027 case '{':
3029 int i;
3031 if (dialect)
3032 output_operand_lossage ("nested assembly dialect alternatives");
3033 else
3034 dialect = 1;
3036 /* If we want the first dialect, do nothing. Otherwise, skip
3037 DIALECT_NUMBER of strings ending with '|'. */
3038 for (i = 0; i < dialect_number; i++)
3040 while (*p && *p != '}' && *p++ != '|')
3042 if (*p == '}')
3043 break;
3044 if (*p == '|')
3045 p++;
3048 if (*p == '\0')
3049 output_operand_lossage ("unterminated assembly dialect alternative");
3051 break;
3053 case '|':
3054 if (dialect)
3056 /* Skip to close brace. */
3059 if (*p == '\0')
3061 output_operand_lossage ("unterminated assembly dialect alternative");
3062 break;
3065 while (*p++ != '}');
3066 dialect = 0;
3068 else
3069 putc (c, asm_out_file);
3070 break;
3072 case '}':
3073 if (! dialect)
3074 putc (c, asm_out_file);
3075 dialect = 0;
3076 break;
3077 #endif
3079 case '%':
3080 /* %% outputs a single %. */
3081 if (*p == '%')
3083 p++;
3084 putc (c, asm_out_file);
3086 /* %= outputs a number which is unique to each insn in the entire
3087 compilation. This is useful for making local labels that are
3088 referred to more than once in a given insn. */
3089 else if (*p == '=')
3091 p++;
3092 fprintf (asm_out_file, "%d", insn_counter);
3094 /* % followed by a letter and some digits
3095 outputs an operand in a special way depending on the letter.
3096 Letters `acln' are implemented directly.
3097 Other letters are passed to `output_operand' so that
3098 the PRINT_OPERAND macro can define them. */
3099 else if (ISALPHA (*p))
3101 int letter = *p++;
3102 c = atoi (p);
3104 if (! ISDIGIT (*p))
3105 output_operand_lossage ("operand number missing after %%-letter");
3106 else if (this_is_asm_operands
3107 && (c < 0 || (unsigned int) c >= insn_noperands))
3108 output_operand_lossage ("operand number out of range");
3109 else if (letter == 'l')
3110 output_asm_label (operands[c]);
3111 else if (letter == 'a')
3112 output_address (operands[c]);
3113 else if (letter == 'c')
3115 if (CONSTANT_ADDRESS_P (operands[c]))
3116 output_addr_const (asm_out_file, operands[c]);
3117 else
3118 output_operand (operands[c], 'c');
3120 else if (letter == 'n')
3122 if (GET_CODE (operands[c]) == CONST_INT)
3123 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3124 - INTVAL (operands[c]));
3125 else
3127 putc ('-', asm_out_file);
3128 output_addr_const (asm_out_file, operands[c]);
3131 else
3132 output_operand (operands[c], letter);
3134 if (!opoutput[c])
3135 oporder[ops++] = c;
3136 opoutput[c] = 1;
3138 while (ISDIGIT (c = *p))
3139 p++;
3141 /* % followed by a digit outputs an operand the default way. */
3142 else if (ISDIGIT (*p))
3144 c = atoi (p);
3145 if (this_is_asm_operands
3146 && (c < 0 || (unsigned int) c >= insn_noperands))
3147 output_operand_lossage ("operand number out of range");
3148 else
3149 output_operand (operands[c], 0);
3151 if (!opoutput[c])
3152 oporder[ops++] = c;
3153 opoutput[c] = 1;
3155 while (ISDIGIT (c = *p))
3156 p++;
3158 /* % followed by punctuation: output something for that
3159 punctuation character alone, with no operand.
3160 The PRINT_OPERAND macro decides what is actually done. */
3161 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3162 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3163 output_operand (NULL_RTX, *p++);
3164 #endif
3165 else
3166 output_operand_lossage ("invalid %%-code");
3167 break;
3169 default:
3170 putc (c, asm_out_file);
3173 /* Write out the variable names for operands, if we know them. */
3174 if (flag_verbose_asm)
3175 output_asm_operand_names (operands, oporder, ops);
3176 if (flag_print_asm_name)
3177 output_asm_name ();
3179 putc ('\n', asm_out_file);
3182 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3184 void
3185 output_asm_label (rtx x)
3187 char buf[256];
3189 if (GET_CODE (x) == LABEL_REF)
3190 x = XEXP (x, 0);
3191 if (GET_CODE (x) == CODE_LABEL
3192 || (GET_CODE (x) == NOTE
3193 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3194 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3195 else
3196 output_operand_lossage ("`%%l' operand isn't a label");
3198 assemble_name (asm_out_file, buf);
3201 /* Print operand X using machine-dependent assembler syntax.
3202 The macro PRINT_OPERAND is defined just to control this function.
3203 CODE is a non-digit that preceded the operand-number in the % spec,
3204 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3205 between the % and the digits.
3206 When CODE is a non-letter, X is 0.
3208 The meanings of the letters are machine-dependent and controlled
3209 by PRINT_OPERAND. */
3211 static void
3212 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3214 if (x && GET_CODE (x) == SUBREG)
3215 x = alter_subreg (&x);
3217 /* If X is a pseudo-register, abort now rather than writing trash to the
3218 assembler file. */
3220 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3221 abort ();
3223 PRINT_OPERAND (asm_out_file, x, code);
3226 /* Print a memory reference operand for address X
3227 using machine-dependent assembler syntax.
3228 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3230 void
3231 output_address (rtx x)
3233 walk_alter_subreg (&x);
3234 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3237 /* Print an integer constant expression in assembler syntax.
3238 Addition and subtraction are the only arithmetic
3239 that may appear in these expressions. */
3241 void
3242 output_addr_const (FILE *file, rtx x)
3244 char buf[256];
3246 restart:
3247 switch (GET_CODE (x))
3249 case PC:
3250 putc ('.', file);
3251 break;
3253 case SYMBOL_REF:
3254 #ifdef ASM_OUTPUT_SYMBOL_REF
3255 ASM_OUTPUT_SYMBOL_REF (file, x);
3256 #else
3257 assemble_name (file, XSTR (x, 0));
3258 #endif
3259 break;
3261 case LABEL_REF:
3262 x = XEXP (x, 0);
3263 /* Fall through. */
3264 case CODE_LABEL:
3265 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3266 #ifdef ASM_OUTPUT_LABEL_REF
3267 ASM_OUTPUT_LABEL_REF (file, buf);
3268 #else
3269 assemble_name (file, buf);
3270 #endif
3271 break;
3273 case CONST_INT:
3274 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3275 break;
3277 case CONST:
3278 /* This used to output parentheses around the expression,
3279 but that does not work on the 386 (either ATT or BSD assembler). */
3280 output_addr_const (file, XEXP (x, 0));
3281 break;
3283 case CONST_DOUBLE:
3284 if (GET_MODE (x) == VOIDmode)
3286 /* We can use %d if the number is one word and positive. */
3287 if (CONST_DOUBLE_HIGH (x))
3288 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3289 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3290 else if (CONST_DOUBLE_LOW (x) < 0)
3291 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3292 else
3293 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3295 else
3296 /* We can't handle floating point constants;
3297 PRINT_OPERAND must handle them. */
3298 output_operand_lossage ("floating constant misused");
3299 break;
3301 case PLUS:
3302 /* Some assemblers need integer constants to appear last (eg masm). */
3303 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3305 output_addr_const (file, XEXP (x, 1));
3306 if (INTVAL (XEXP (x, 0)) >= 0)
3307 fprintf (file, "+");
3308 output_addr_const (file, XEXP (x, 0));
3310 else
3312 output_addr_const (file, XEXP (x, 0));
3313 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3314 || INTVAL (XEXP (x, 1)) >= 0)
3315 fprintf (file, "+");
3316 output_addr_const (file, XEXP (x, 1));
3318 break;
3320 case MINUS:
3321 /* Avoid outputting things like x-x or x+5-x,
3322 since some assemblers can't handle that. */
3323 x = simplify_subtraction (x);
3324 if (GET_CODE (x) != MINUS)
3325 goto restart;
3327 output_addr_const (file, XEXP (x, 0));
3328 fprintf (file, "-");
3329 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3330 || GET_CODE (XEXP (x, 1)) == PC
3331 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3332 output_addr_const (file, XEXP (x, 1));
3333 else
3335 fputs (targetm.asm_out.open_paren, file);
3336 output_addr_const (file, XEXP (x, 1));
3337 fputs (targetm.asm_out.close_paren, file);
3339 break;
3341 case ZERO_EXTEND:
3342 case SIGN_EXTEND:
3343 case SUBREG:
3344 output_addr_const (file, XEXP (x, 0));
3345 break;
3347 default:
3348 #ifdef OUTPUT_ADDR_CONST_EXTRA
3349 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3350 break;
3352 fail:
3353 #endif
3354 output_operand_lossage ("invalid expression as operand");
3358 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3359 %R prints the value of REGISTER_PREFIX.
3360 %L prints the value of LOCAL_LABEL_PREFIX.
3361 %U prints the value of USER_LABEL_PREFIX.
3362 %I prints the value of IMMEDIATE_PREFIX.
3363 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3364 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3366 We handle alternate assembler dialects here, just like output_asm_insn. */
3368 void
3369 asm_fprintf (FILE *file, const char *p, ...)
3371 char buf[10];
3372 char *q, c;
3373 va_list argptr;
3375 va_start (argptr, p);
3377 buf[0] = '%';
3379 while ((c = *p++))
3380 switch (c)
3382 #ifdef ASSEMBLER_DIALECT
3383 case '{':
3385 int i;
3387 /* If we want the first dialect, do nothing. Otherwise, skip
3388 DIALECT_NUMBER of strings ending with '|'. */
3389 for (i = 0; i < dialect_number; i++)
3391 while (*p && *p++ != '|')
3394 if (*p == '|')
3395 p++;
3398 break;
3400 case '|':
3401 /* Skip to close brace. */
3402 while (*p && *p++ != '}')
3404 break;
3406 case '}':
3407 break;
3408 #endif
3410 case '%':
3411 c = *p++;
3412 q = &buf[1];
3413 while (strchr ("-+ #0", c))
3415 *q++ = c;
3416 c = *p++;
3418 while (ISDIGIT (c) || c == '.')
3420 *q++ = c;
3421 c = *p++;
3423 switch (c)
3425 case '%':
3426 putc ('%', file);
3427 break;
3429 case 'd': case 'i': case 'u':
3430 case 'x': case 'X': case 'o':
3431 case 'c':
3432 *q++ = c;
3433 *q = 0;
3434 fprintf (file, buf, va_arg (argptr, int));
3435 break;
3437 case 'w':
3438 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3439 'o' cases, but we do not check for those cases. It
3440 means that the value is a HOST_WIDE_INT, which may be
3441 either `long' or `long long'. */
3442 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3443 q += strlen (HOST_WIDE_INT_PRINT);
3444 *q++ = *p++;
3445 *q = 0;
3446 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3447 break;
3449 case 'l':
3450 *q++ = c;
3451 #ifdef HAVE_LONG_LONG
3452 if (*p == 'l')
3454 *q++ = *p++;
3455 *q++ = *p++;
3456 *q = 0;
3457 fprintf (file, buf, va_arg (argptr, long long));
3459 else
3460 #endif
3462 *q++ = *p++;
3463 *q = 0;
3464 fprintf (file, buf, va_arg (argptr, long));
3467 break;
3469 case 's':
3470 *q++ = c;
3471 *q = 0;
3472 fprintf (file, buf, va_arg (argptr, char *));
3473 break;
3475 case 'O':
3476 #ifdef ASM_OUTPUT_OPCODE
3477 ASM_OUTPUT_OPCODE (asm_out_file, p);
3478 #endif
3479 break;
3481 case 'R':
3482 #ifdef REGISTER_PREFIX
3483 fprintf (file, "%s", REGISTER_PREFIX);
3484 #endif
3485 break;
3487 case 'I':
3488 #ifdef IMMEDIATE_PREFIX
3489 fprintf (file, "%s", IMMEDIATE_PREFIX);
3490 #endif
3491 break;
3493 case 'L':
3494 #ifdef LOCAL_LABEL_PREFIX
3495 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3496 #endif
3497 break;
3499 case 'U':
3500 fputs (user_label_prefix, file);
3501 break;
3503 #ifdef ASM_FPRINTF_EXTENSIONS
3504 /* Uppercase letters are reserved for general use by asm_fprintf
3505 and so are not available to target specific code. In order to
3506 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3507 they are defined here. As they get turned into real extensions
3508 to asm_fprintf they should be removed from this list. */
3509 case 'A': case 'B': case 'C': case 'D': case 'E':
3510 case 'F': case 'G': case 'H': case 'J': case 'K':
3511 case 'M': case 'N': case 'P': case 'Q': case 'S':
3512 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3513 break;
3515 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3516 #endif
3517 default:
3518 abort ();
3520 break;
3522 default:
3523 putc (c, file);
3525 va_end (argptr);
3528 /* Split up a CONST_DOUBLE or integer constant rtx
3529 into two rtx's for single words,
3530 storing in *FIRST the word that comes first in memory in the target
3531 and in *SECOND the other. */
3533 void
3534 split_double (rtx value, rtx *first, rtx *second)
3536 if (GET_CODE (value) == CONST_INT)
3538 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3540 /* In this case the CONST_INT holds both target words.
3541 Extract the bits from it into two word-sized pieces.
3542 Sign extend each half to HOST_WIDE_INT. */
3543 unsigned HOST_WIDE_INT low, high;
3544 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3546 /* Set sign_bit to the most significant bit of a word. */
3547 sign_bit = 1;
3548 sign_bit <<= BITS_PER_WORD - 1;
3550 /* Set mask so that all bits of the word are set. We could
3551 have used 1 << BITS_PER_WORD instead of basing the
3552 calculation on sign_bit. However, on machines where
3553 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3554 compiler warning, even though the code would never be
3555 executed. */
3556 mask = sign_bit << 1;
3557 mask--;
3559 /* Set sign_extend as any remaining bits. */
3560 sign_extend = ~mask;
3562 /* Pick the lower word and sign-extend it. */
3563 low = INTVAL (value);
3564 low &= mask;
3565 if (low & sign_bit)
3566 low |= sign_extend;
3568 /* Pick the higher word, shifted to the least significant
3569 bits, and sign-extend it. */
3570 high = INTVAL (value);
3571 high >>= BITS_PER_WORD - 1;
3572 high >>= 1;
3573 high &= mask;
3574 if (high & sign_bit)
3575 high |= sign_extend;
3577 /* Store the words in the target machine order. */
3578 if (WORDS_BIG_ENDIAN)
3580 *first = GEN_INT (high);
3581 *second = GEN_INT (low);
3583 else
3585 *first = GEN_INT (low);
3586 *second = GEN_INT (high);
3589 else
3591 /* The rule for using CONST_INT for a wider mode
3592 is that we regard the value as signed.
3593 So sign-extend it. */
3594 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3595 if (WORDS_BIG_ENDIAN)
3597 *first = high;
3598 *second = value;
3600 else
3602 *first = value;
3603 *second = high;
3607 else if (GET_CODE (value) != CONST_DOUBLE)
3609 if (WORDS_BIG_ENDIAN)
3611 *first = const0_rtx;
3612 *second = value;
3614 else
3616 *first = value;
3617 *second = const0_rtx;
3620 else if (GET_MODE (value) == VOIDmode
3621 /* This is the old way we did CONST_DOUBLE integers. */
3622 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3624 /* In an integer, the words are defined as most and least significant.
3625 So order them by the target's convention. */
3626 if (WORDS_BIG_ENDIAN)
3628 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3629 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3631 else
3633 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3634 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3637 else
3639 REAL_VALUE_TYPE r;
3640 long l[2];
3641 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3643 /* Note, this converts the REAL_VALUE_TYPE to the target's
3644 format, splits up the floating point double and outputs
3645 exactly 32 bits of it into each of l[0] and l[1] --
3646 not necessarily BITS_PER_WORD bits. */
3647 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3649 /* If 32 bits is an entire word for the target, but not for the host,
3650 then sign-extend on the host so that the number will look the same
3651 way on the host that it would on the target. See for instance
3652 simplify_unary_operation. The #if is needed to avoid compiler
3653 warnings. */
3655 #if HOST_BITS_PER_LONG > 32
3656 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3658 if (l[0] & ((long) 1 << 31))
3659 l[0] |= ((long) (-1) << 32);
3660 if (l[1] & ((long) 1 << 31))
3661 l[1] |= ((long) (-1) << 32);
3663 #endif
3665 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3666 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3670 /* Return nonzero if this function has no function calls. */
3673 leaf_function_p (void)
3675 rtx insn;
3676 rtx link;
3678 if (current_function_profile || profile_arc_flag)
3679 return 0;
3681 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3683 if (GET_CODE (insn) == CALL_INSN
3684 && ! SIBLING_CALL_P (insn))
3685 return 0;
3686 if (GET_CODE (insn) == INSN
3687 && GET_CODE (PATTERN (insn)) == SEQUENCE
3688 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3689 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3690 return 0;
3692 for (link = current_function_epilogue_delay_list;
3693 link;
3694 link = XEXP (link, 1))
3696 insn = XEXP (link, 0);
3698 if (GET_CODE (insn) == CALL_INSN
3699 && ! SIBLING_CALL_P (insn))
3700 return 0;
3701 if (GET_CODE (insn) == INSN
3702 && GET_CODE (PATTERN (insn)) == SEQUENCE
3703 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3704 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3705 return 0;
3708 return 1;
3711 /* Return 1 if branch is a forward branch.
3712 Uses insn_shuid array, so it works only in the final pass. May be used by
3713 output templates to customary add branch prediction hints.
3716 final_forward_branch_p (rtx insn)
3718 int insn_id, label_id;
3719 if (!uid_shuid)
3720 abort ();
3721 insn_id = INSN_SHUID (insn);
3722 label_id = INSN_SHUID (JUMP_LABEL (insn));
3723 /* We've hit some insns that does not have id information available. */
3724 if (!insn_id || !label_id)
3725 abort ();
3726 return insn_id < label_id;
3729 /* On some machines, a function with no call insns
3730 can run faster if it doesn't create its own register window.
3731 When output, the leaf function should use only the "output"
3732 registers. Ordinarily, the function would be compiled to use
3733 the "input" registers to find its arguments; it is a candidate
3734 for leaf treatment if it uses only the "input" registers.
3735 Leaf function treatment means renumbering so the function
3736 uses the "output" registers instead. */
3738 #ifdef LEAF_REGISTERS
3740 /* Return 1 if this function uses only the registers that can be
3741 safely renumbered. */
3744 only_leaf_regs_used (void)
3746 int i;
3747 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3749 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3750 if ((regs_ever_live[i] || global_regs[i])
3751 && ! permitted_reg_in_leaf_functions[i])
3752 return 0;
3754 if (current_function_uses_pic_offset_table
3755 && pic_offset_table_rtx != 0
3756 && GET_CODE (pic_offset_table_rtx) == REG
3757 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3758 return 0;
3760 return 1;
3763 /* Scan all instructions and renumber all registers into those
3764 available in leaf functions. */
3766 static void
3767 leaf_renumber_regs (rtx first)
3769 rtx insn;
3771 /* Renumber only the actual patterns.
3772 The reg-notes can contain frame pointer refs,
3773 and renumbering them could crash, and should not be needed. */
3774 for (insn = first; insn; insn = NEXT_INSN (insn))
3775 if (INSN_P (insn))
3776 leaf_renumber_regs_insn (PATTERN (insn));
3777 for (insn = current_function_epilogue_delay_list;
3778 insn;
3779 insn = XEXP (insn, 1))
3780 if (INSN_P (XEXP (insn, 0)))
3781 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3784 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3785 available in leaf functions. */
3787 void
3788 leaf_renumber_regs_insn (rtx in_rtx)
3790 int i, j;
3791 const char *format_ptr;
3793 if (in_rtx == 0)
3794 return;
3796 /* Renumber all input-registers into output-registers.
3797 renumbered_regs would be 1 for an output-register;
3798 they */
3800 if (GET_CODE (in_rtx) == REG)
3802 int newreg;
3804 /* Don't renumber the same reg twice. */
3805 if (in_rtx->used)
3806 return;
3808 newreg = REGNO (in_rtx);
3809 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3810 to reach here as part of a REG_NOTE. */
3811 if (newreg >= FIRST_PSEUDO_REGISTER)
3813 in_rtx->used = 1;
3814 return;
3816 newreg = LEAF_REG_REMAP (newreg);
3817 if (newreg < 0)
3818 abort ();
3819 regs_ever_live[REGNO (in_rtx)] = 0;
3820 regs_ever_live[newreg] = 1;
3821 REGNO (in_rtx) = newreg;
3822 in_rtx->used = 1;
3825 if (INSN_P (in_rtx))
3827 /* Inside a SEQUENCE, we find insns.
3828 Renumber just the patterns of these insns,
3829 just as we do for the top-level insns. */
3830 leaf_renumber_regs_insn (PATTERN (in_rtx));
3831 return;
3834 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3836 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3837 switch (*format_ptr++)
3839 case 'e':
3840 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3841 break;
3843 case 'E':
3844 if (NULL != XVEC (in_rtx, i))
3846 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3847 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3849 break;
3851 case 'S':
3852 case 's':
3853 case '0':
3854 case 'i':
3855 case 'w':
3856 case 'n':
3857 case 'u':
3858 break;
3860 default:
3861 abort ();
3864 #endif
3867 /* When -gused is used, emit debug info for only used symbols. But in
3868 addition to the standard intercepted debug_hooks there are some direct
3869 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3870 Those routines may also be called from a higher level intercepted routine. So
3871 to prevent recording data for an inner call to one of these for an intercept,
3872 we maintain an intercept nesting counter (debug_nesting). We only save the
3873 intercepted arguments if the nesting is 1. */
3874 int debug_nesting = 0;
3876 static tree *symbol_queue;
3877 int symbol_queue_index = 0;
3878 static int symbol_queue_size = 0;
3880 /* Generate the symbols for any queued up type symbols we encountered
3881 while generating the type info for some originally used symbol.
3882 This might generate additional entries in the queue. Only when
3883 the nesting depth goes to 0 is this routine called. */
3885 void
3886 debug_flush_symbol_queue (void)
3888 int i;
3890 /* Make sure that additionally queued items are not flushed
3891 prematurely. */
3893 ++debug_nesting;
3895 for (i = 0; i < symbol_queue_index; ++i)
3897 /* If we pushed queued symbols then such symbols are must be
3898 output no matter what anyone else says. Specifically,
3899 we need to make sure dbxout_symbol() thinks the symbol was
3900 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3901 which may be set for outside reasons. */
3902 int saved_tree_used = TREE_USED (symbol_queue[i]);
3903 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3904 TREE_USED (symbol_queue[i]) = 1;
3905 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3907 #ifdef DBX_DEBUGGING_INFO
3908 dbxout_symbol (symbol_queue[i], 0);
3909 #endif
3911 TREE_USED (symbol_queue[i]) = saved_tree_used;
3912 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3915 symbol_queue_index = 0;
3916 --debug_nesting;
3919 /* Queue a type symbol needed as part of the definition of a decl
3920 symbol. These symbols are generated when debug_flush_symbol_queue()
3921 is called. */
3923 void
3924 debug_queue_symbol (tree decl)
3926 if (symbol_queue_index >= symbol_queue_size)
3928 symbol_queue_size += 10;
3929 symbol_queue = xrealloc (symbol_queue,
3930 symbol_queue_size * sizeof (tree));
3933 symbol_queue[symbol_queue_index++] = decl;
3936 /* Free symbol queue. */
3937 void
3938 debug_free_queue (void)
3940 if (symbol_queue)
3942 free (symbol_queue);
3943 symbol_queue = NULL;
3944 symbol_queue_size = 0;