Makefile.am (noinst_LIBRARIES): New target.
[official-gcc.git] / gcc / reload.c
blob6560fb3b72a5221ca5fad93af2279fe3bf3951fa
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
73 Using a reload register for several reloads in one insn:
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
87 #define REG_OK_STRICT
89 #include "config.h"
90 #include "system.h"
91 #include "rtl.h"
92 #include "tm_p.h"
93 #include "insn-config.h"
94 #include "expr.h"
95 #include "optabs.h"
96 #include "recog.h"
97 #include "reload.h"
98 #include "regs.h"
99 #include "hard-reg-set.h"
100 #include "flags.h"
101 #include "real.h"
102 #include "output.h"
103 #include "function.h"
104 #include "toplev.h"
106 #ifndef REGISTER_MOVE_COST
107 #define REGISTER_MOVE_COST(m, x, y) 2
108 #endif
110 #ifndef REGNO_MODE_OK_FOR_BASE_P
111 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
112 #endif
114 #ifndef REG_MODE_OK_FOR_BASE_P
115 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
116 #endif
118 /* All reloads of the current insn are recorded here. See reload.h for
119 comments. */
120 int n_reloads;
121 struct reload rld[MAX_RELOADS];
123 /* All the "earlyclobber" operands of the current insn
124 are recorded here. */
125 int n_earlyclobbers;
126 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
128 int reload_n_operands;
130 /* Replacing reloads.
132 If `replace_reloads' is nonzero, then as each reload is recorded
133 an entry is made for it in the table `replacements'.
134 Then later `subst_reloads' can look through that table and
135 perform all the replacements needed. */
137 /* Nonzero means record the places to replace. */
138 static int replace_reloads;
140 /* Each replacement is recorded with a structure like this. */
141 struct replacement
143 rtx *where; /* Location to store in */
144 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
145 a SUBREG; 0 otherwise. */
146 int what; /* which reload this is for */
147 enum machine_mode mode; /* mode it must have */
150 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
152 /* Number of replacements currently recorded. */
153 static int n_replacements;
155 /* Used to track what is modified by an operand. */
156 struct decomposition
158 int reg_flag; /* Nonzero if referencing a register. */
159 int safe; /* Nonzero if this can't conflict with anything. */
160 rtx base; /* Base address for MEM. */
161 HOST_WIDE_INT start; /* Starting offset or register number. */
162 HOST_WIDE_INT end; /* Ending offset or register number. */
165 #ifdef SECONDARY_MEMORY_NEEDED
167 /* Save MEMs needed to copy from one class of registers to another. One MEM
168 is used per mode, but normally only one or two modes are ever used.
170 We keep two versions, before and after register elimination. The one
171 after register elimination is record separately for each operand. This
172 is done in case the address is not valid to be sure that we separately
173 reload each. */
175 static rtx secondary_memlocs[NUM_MACHINE_MODES];
176 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
177 #endif
179 /* The instruction we are doing reloads for;
180 so we can test whether a register dies in it. */
181 static rtx this_insn;
183 /* Nonzero if this instruction is a user-specified asm with operands. */
184 static int this_insn_is_asm;
186 /* If hard_regs_live_known is nonzero,
187 we can tell which hard regs are currently live,
188 at least enough to succeed in choosing dummy reloads. */
189 static int hard_regs_live_known;
191 /* Indexed by hard reg number,
192 element is nonnegative if hard reg has been spilled.
193 This vector is passed to `find_reloads' as an argument
194 and is not changed here. */
195 static short *static_reload_reg_p;
197 /* Set to 1 in subst_reg_equivs if it changes anything. */
198 static int subst_reg_equivs_changed;
200 /* On return from push_reload, holds the reload-number for the OUT
201 operand, which can be different for that from the input operand. */
202 static int output_reloadnum;
204 /* Compare two RTX's. */
205 #define MATCHES(x, y) \
206 (x == y || (x != 0 && (GET_CODE (x) == REG \
207 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
208 : rtx_equal_p (x, y) && ! side_effects_p (x))))
210 /* Indicates if two reloads purposes are for similar enough things that we
211 can merge their reloads. */
212 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
213 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
214 || ((when1) == (when2) && (op1) == (op2)) \
215 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
216 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
217 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
218 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
219 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
221 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
222 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
223 ((when1) != (when2) \
224 || ! ((op1) == (op2) \
225 || (when1) == RELOAD_FOR_INPUT \
226 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
227 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
229 /* If we are going to reload an address, compute the reload type to
230 use. */
231 #define ADDR_TYPE(type) \
232 ((type) == RELOAD_FOR_INPUT_ADDRESS \
233 ? RELOAD_FOR_INPADDR_ADDRESS \
234 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
235 ? RELOAD_FOR_OUTADDR_ADDRESS \
236 : (type)))
238 #ifdef HAVE_SECONDARY_RELOADS
239 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
240 enum machine_mode, enum reload_type,
241 enum insn_code *));
242 #endif
243 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int,
244 unsigned int));
245 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode));
246 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
247 static void combine_reloads PARAMS ((void));
248 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
249 enum reload_type, int, int));
250 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
251 enum machine_mode, enum machine_mode,
252 enum reg_class, int, int));
253 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
254 static struct decomposition decompose PARAMS ((rtx));
255 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
256 static int alternative_allows_memconst PARAMS ((const char *, int));
257 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
258 int, rtx, int *));
259 static rtx make_memloc PARAMS ((rtx, int));
260 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
261 int, enum reload_type, int, rtx));
262 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
263 static rtx subst_indexed_address PARAMS ((rtx));
264 static void update_auto_inc_notes PARAMS ((rtx, int, int));
265 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
266 int, enum reload_type,int, rtx));
267 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
268 enum machine_mode, int,
269 enum reload_type, int));
270 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int,
271 enum reload_type, int, rtx));
272 static void copy_replacements_1 PARAMS ((rtx *, rtx *, int));
273 static int find_inc_amount PARAMS ((rtx, rtx));
275 #ifdef HAVE_SECONDARY_RELOADS
277 /* Determine if any secondary reloads are needed for loading (if IN_P is
278 non-zero) or storing (if IN_P is zero) X to or from a reload register of
279 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
280 are needed, push them.
282 Return the reload number of the secondary reload we made, or -1 if
283 we didn't need one. *PICODE is set to the insn_code to use if we do
284 need a secondary reload. */
286 static int
287 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
288 type, picode)
289 int in_p;
290 rtx x;
291 int opnum;
292 int optional;
293 enum reg_class reload_class;
294 enum machine_mode reload_mode;
295 enum reload_type type;
296 enum insn_code *picode;
298 enum reg_class class = NO_REGS;
299 enum machine_mode mode = reload_mode;
300 enum insn_code icode = CODE_FOR_nothing;
301 enum reg_class t_class = NO_REGS;
302 enum machine_mode t_mode = VOIDmode;
303 enum insn_code t_icode = CODE_FOR_nothing;
304 enum reload_type secondary_type;
305 int s_reload, t_reload = -1;
307 if (type == RELOAD_FOR_INPUT_ADDRESS
308 || type == RELOAD_FOR_OUTPUT_ADDRESS
309 || type == RELOAD_FOR_INPADDR_ADDRESS
310 || type == RELOAD_FOR_OUTADDR_ADDRESS)
311 secondary_type = type;
312 else
313 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
315 *picode = CODE_FOR_nothing;
317 /* If X is a paradoxical SUBREG, use the inner value to determine both the
318 mode and object being reloaded. */
319 if (GET_CODE (x) == SUBREG
320 && (GET_MODE_SIZE (GET_MODE (x))
321 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
323 x = SUBREG_REG (x);
324 reload_mode = GET_MODE (x);
327 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
328 is still a pseudo-register by now, it *must* have an equivalent MEM
329 but we don't want to assume that), use that equivalent when seeing if
330 a secondary reload is needed since whether or not a reload is needed
331 might be sensitive to the form of the MEM. */
333 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
334 && reg_equiv_mem[REGNO (x)] != 0)
335 x = reg_equiv_mem[REGNO (x)];
337 #ifdef SECONDARY_INPUT_RELOAD_CLASS
338 if (in_p)
339 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
340 #endif
342 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
343 if (! in_p)
344 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
345 #endif
347 /* If we don't need any secondary registers, done. */
348 if (class == NO_REGS)
349 return -1;
351 /* Get a possible insn to use. If the predicate doesn't accept X, don't
352 use the insn. */
354 icode = (in_p ? reload_in_optab[(int) reload_mode]
355 : reload_out_optab[(int) reload_mode]);
357 if (icode != CODE_FOR_nothing
358 && insn_data[(int) icode].operand[in_p].predicate
359 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
360 icode = CODE_FOR_nothing;
362 /* If we will be using an insn, see if it can directly handle the reload
363 register we will be using. If it can, the secondary reload is for a
364 scratch register. If it can't, we will use the secondary reload for
365 an intermediate register and require a tertiary reload for the scratch
366 register. */
368 if (icode != CODE_FOR_nothing)
370 /* If IN_P is non-zero, the reload register will be the output in
371 operand 0. If IN_P is zero, the reload register will be the input
372 in operand 1. Outputs should have an initial "=", which we must
373 skip. */
375 enum reg_class insn_class;
377 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
378 insn_class = ALL_REGS;
379 else
381 char insn_letter
382 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
383 insn_class
384 = (insn_letter == 'r' ? GENERAL_REGS
385 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
387 if (insn_class == NO_REGS)
388 abort ();
389 if (in_p
390 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
391 abort ();
394 /* The scratch register's constraint must start with "=&". */
395 if (insn_data[(int) icode].operand[2].constraint[0] != '='
396 || insn_data[(int) icode].operand[2].constraint[1] != '&')
397 abort ();
399 if (reg_class_subset_p (reload_class, insn_class))
400 mode = insn_data[(int) icode].operand[2].mode;
401 else
403 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
404 class = insn_class;
405 t_mode = insn_data[(int) icode].operand[2].mode;
406 t_class = (t_letter == 'r' ? GENERAL_REGS
407 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
408 t_icode = icode;
409 icode = CODE_FOR_nothing;
413 /* This case isn't valid, so fail. Reload is allowed to use the same
414 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
415 in the case of a secondary register, we actually need two different
416 registers for correct code. We fail here to prevent the possibility of
417 silently generating incorrect code later.
419 The convention is that secondary input reloads are valid only if the
420 secondary_class is different from class. If you have such a case, you
421 can not use secondary reloads, you must work around the problem some
422 other way.
424 Allow this when a reload_in/out pattern is being used. I.e. assume
425 that the generated code handles this case. */
427 if (in_p && class == reload_class && icode == CODE_FOR_nothing
428 && t_icode == CODE_FOR_nothing)
429 abort ();
431 /* If we need a tertiary reload, see if we have one we can reuse or else
432 make a new one. */
434 if (t_class != NO_REGS)
436 for (t_reload = 0; t_reload < n_reloads; t_reload++)
437 if (rld[t_reload].secondary_p
438 && (reg_class_subset_p (t_class, rld[t_reload].class)
439 || reg_class_subset_p (rld[t_reload].class, t_class))
440 && ((in_p && rld[t_reload].inmode == t_mode)
441 || (! in_p && rld[t_reload].outmode == t_mode))
442 && ((in_p && (rld[t_reload].secondary_in_icode
443 == CODE_FOR_nothing))
444 || (! in_p &&(rld[t_reload].secondary_out_icode
445 == CODE_FOR_nothing)))
446 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
447 && MERGABLE_RELOADS (secondary_type,
448 rld[t_reload].when_needed,
449 opnum, rld[t_reload].opnum))
451 if (in_p)
452 rld[t_reload].inmode = t_mode;
453 if (! in_p)
454 rld[t_reload].outmode = t_mode;
456 if (reg_class_subset_p (t_class, rld[t_reload].class))
457 rld[t_reload].class = t_class;
459 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
460 rld[t_reload].optional &= optional;
461 rld[t_reload].secondary_p = 1;
462 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
463 opnum, rld[t_reload].opnum))
464 rld[t_reload].when_needed = RELOAD_OTHER;
467 if (t_reload == n_reloads)
469 /* We need to make a new tertiary reload for this register class. */
470 rld[t_reload].in = rld[t_reload].out = 0;
471 rld[t_reload].class = t_class;
472 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
473 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
474 rld[t_reload].reg_rtx = 0;
475 rld[t_reload].optional = optional;
476 rld[t_reload].inc = 0;
477 /* Maybe we could combine these, but it seems too tricky. */
478 rld[t_reload].nocombine = 1;
479 rld[t_reload].in_reg = 0;
480 rld[t_reload].out_reg = 0;
481 rld[t_reload].opnum = opnum;
482 rld[t_reload].when_needed = secondary_type;
483 rld[t_reload].secondary_in_reload = -1;
484 rld[t_reload].secondary_out_reload = -1;
485 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
486 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
487 rld[t_reload].secondary_p = 1;
489 n_reloads++;
493 /* See if we can reuse an existing secondary reload. */
494 for (s_reload = 0; s_reload < n_reloads; s_reload++)
495 if (rld[s_reload].secondary_p
496 && (reg_class_subset_p (class, rld[s_reload].class)
497 || reg_class_subset_p (rld[s_reload].class, class))
498 && ((in_p && rld[s_reload].inmode == mode)
499 || (! in_p && rld[s_reload].outmode == mode))
500 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
501 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
502 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
503 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
504 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
505 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
506 opnum, rld[s_reload].opnum))
508 if (in_p)
509 rld[s_reload].inmode = mode;
510 if (! in_p)
511 rld[s_reload].outmode = mode;
513 if (reg_class_subset_p (class, rld[s_reload].class))
514 rld[s_reload].class = class;
516 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
517 rld[s_reload].optional &= optional;
518 rld[s_reload].secondary_p = 1;
519 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
520 opnum, rld[s_reload].opnum))
521 rld[s_reload].when_needed = RELOAD_OTHER;
524 if (s_reload == n_reloads)
526 #ifdef SECONDARY_MEMORY_NEEDED
527 /* If we need a memory location to copy between the two reload regs,
528 set it up now. Note that we do the input case before making
529 the reload and the output case after. This is due to the
530 way reloads are output. */
532 if (in_p && icode == CODE_FOR_nothing
533 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
535 get_secondary_mem (x, reload_mode, opnum, type);
537 /* We may have just added new reloads. Make sure we add
538 the new reload at the end. */
539 s_reload = n_reloads;
541 #endif
543 /* We need to make a new secondary reload for this register class. */
544 rld[s_reload].in = rld[s_reload].out = 0;
545 rld[s_reload].class = class;
547 rld[s_reload].inmode = in_p ? mode : VOIDmode;
548 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
549 rld[s_reload].reg_rtx = 0;
550 rld[s_reload].optional = optional;
551 rld[s_reload].inc = 0;
552 /* Maybe we could combine these, but it seems too tricky. */
553 rld[s_reload].nocombine = 1;
554 rld[s_reload].in_reg = 0;
555 rld[s_reload].out_reg = 0;
556 rld[s_reload].opnum = opnum;
557 rld[s_reload].when_needed = secondary_type;
558 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
559 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
560 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
561 rld[s_reload].secondary_out_icode
562 = ! in_p ? t_icode : CODE_FOR_nothing;
563 rld[s_reload].secondary_p = 1;
565 n_reloads++;
567 #ifdef SECONDARY_MEMORY_NEEDED
568 if (! in_p && icode == CODE_FOR_nothing
569 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
570 get_secondary_mem (x, mode, opnum, type);
571 #endif
574 *picode = icode;
575 return s_reload;
577 #endif /* HAVE_SECONDARY_RELOADS */
579 #ifdef SECONDARY_MEMORY_NEEDED
581 /* Return a memory location that will be used to copy X in mode MODE.
582 If we haven't already made a location for this mode in this insn,
583 call find_reloads_address on the location being returned. */
586 get_secondary_mem (x, mode, opnum, type)
587 rtx x ATTRIBUTE_UNUSED;
588 enum machine_mode mode;
589 int opnum;
590 enum reload_type type;
592 rtx loc;
593 int mem_valid;
595 /* By default, if MODE is narrower than a word, widen it to a word.
596 This is required because most machines that require these memory
597 locations do not support short load and stores from all registers
598 (e.g., FP registers). */
600 #ifdef SECONDARY_MEMORY_NEEDED_MODE
601 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
602 #else
603 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
604 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
605 #endif
607 /* If we already have made a MEM for this operand in MODE, return it. */
608 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
609 return secondary_memlocs_elim[(int) mode][opnum];
611 /* If this is the first time we've tried to get a MEM for this mode,
612 allocate a new one. `something_changed' in reload will get set
613 by noticing that the frame size has changed. */
615 if (secondary_memlocs[(int) mode] == 0)
617 #ifdef SECONDARY_MEMORY_NEEDED_RTX
618 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
619 #else
620 secondary_memlocs[(int) mode]
621 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
622 #endif
625 /* Get a version of the address doing any eliminations needed. If that
626 didn't give us a new MEM, make a new one if it isn't valid. */
628 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
629 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
631 if (! mem_valid && loc == secondary_memlocs[(int) mode])
632 loc = copy_rtx (loc);
634 /* The only time the call below will do anything is if the stack
635 offset is too large. In that case IND_LEVELS doesn't matter, so we
636 can just pass a zero. Adjust the type to be the address of the
637 corresponding object. If the address was valid, save the eliminated
638 address. If it wasn't valid, we need to make a reload each time, so
639 don't save it. */
641 if (! mem_valid)
643 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
644 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
645 : RELOAD_OTHER);
647 find_reloads_address (mode, (rtx*) 0, XEXP (loc, 0), &XEXP (loc, 0),
648 opnum, type, 0, 0);
651 secondary_memlocs_elim[(int) mode][opnum] = loc;
652 return loc;
655 /* Clear any secondary memory locations we've made. */
657 void
658 clear_secondary_mem ()
660 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
662 #endif /* SECONDARY_MEMORY_NEEDED */
664 /* Find the largest class for which every register number plus N is valid in
665 M1 (if in range) and is cheap to move into REGNO.
666 Abort if no such class exists. */
668 static enum reg_class
669 find_valid_class (m1, n, dest_regno)
670 enum machine_mode m1 ATTRIBUTE_UNUSED;
671 int n;
672 unsigned int dest_regno;
674 int best_cost = -1;
675 int class;
676 int regno;
677 enum reg_class best_class = NO_REGS;
678 enum reg_class dest_class = REGNO_REG_CLASS (dest_regno);
679 unsigned int best_size = 0;
681 for (class = 1; class < N_REG_CLASSES; class++)
683 int bad = 0;
684 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
685 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
686 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
687 && ! HARD_REGNO_MODE_OK (regno + n, m1))
688 bad = 1;
690 if (! bad && reg_class_size[class] > best_size
691 && (best_cost < 0
692 || best_cost >= REGISTER_MOVE_COST (m1, class, dest_class)))
694 best_class = class;
695 best_size = reg_class_size[class];
696 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
700 if (best_size == 0)
701 abort ();
703 return best_class;
706 /* Return the number of a previously made reload that can be combined with
707 a new one, or n_reloads if none of the existing reloads can be used.
708 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
709 push_reload, they determine the kind of the new reload that we try to
710 combine. P_IN points to the corresponding value of IN, which can be
711 modified by this function.
712 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
714 static int
715 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
716 rtx *p_in, out;
717 enum reg_class class;
718 enum reload_type type;
719 int opnum, dont_share;
721 rtx in = *p_in;
722 int i;
723 /* We can't merge two reloads if the output of either one is
724 earlyclobbered. */
726 if (earlyclobber_operand_p (out))
727 return n_reloads;
729 /* We can use an existing reload if the class is right
730 and at least one of IN and OUT is a match
731 and the other is at worst neutral.
732 (A zero compared against anything is neutral.)
734 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
735 for the same thing since that can cause us to need more reload registers
736 than we otherwise would. */
738 for (i = 0; i < n_reloads; i++)
739 if ((reg_class_subset_p (class, rld[i].class)
740 || reg_class_subset_p (rld[i].class, class))
741 /* If the existing reload has a register, it must fit our class. */
742 && (rld[i].reg_rtx == 0
743 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
744 true_regnum (rld[i].reg_rtx)))
745 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
746 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
747 || (out != 0 && MATCHES (rld[i].out, out)
748 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
749 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
750 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
751 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
752 return i;
754 /* Reloading a plain reg for input can match a reload to postincrement
755 that reg, since the postincrement's value is the right value.
756 Likewise, it can match a preincrement reload, since we regard
757 the preincrementation as happening before any ref in this insn
758 to that register. */
759 for (i = 0; i < n_reloads; i++)
760 if ((reg_class_subset_p (class, rld[i].class)
761 || reg_class_subset_p (rld[i].class, class))
762 /* If the existing reload has a register, it must fit our
763 class. */
764 && (rld[i].reg_rtx == 0
765 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
766 true_regnum (rld[i].reg_rtx)))
767 && out == 0 && rld[i].out == 0 && rld[i].in != 0
768 && ((GET_CODE (in) == REG
769 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
770 && MATCHES (XEXP (rld[i].in, 0), in))
771 || (GET_CODE (rld[i].in) == REG
772 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
773 && MATCHES (XEXP (in, 0), rld[i].in)))
774 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
775 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
776 && MERGABLE_RELOADS (type, rld[i].when_needed,
777 opnum, rld[i].opnum))
779 /* Make sure reload_in ultimately has the increment,
780 not the plain register. */
781 if (GET_CODE (in) == REG)
782 *p_in = rld[i].in;
783 return i;
785 return n_reloads;
788 /* Return nonzero if X is a SUBREG which will require reloading of its
789 SUBREG_REG expression. */
791 static int
792 reload_inner_reg_of_subreg (x, mode)
793 rtx x;
794 enum machine_mode mode;
796 rtx inner;
798 /* Only SUBREGs are problematical. */
799 if (GET_CODE (x) != SUBREG)
800 return 0;
802 inner = SUBREG_REG (x);
804 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
805 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
806 return 1;
808 /* If INNER is not a hard register, then INNER will not need to
809 be reloaded. */
810 if (GET_CODE (inner) != REG
811 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
812 return 0;
814 /* If INNER is not ok for MODE, then INNER will need reloading. */
815 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
816 return 1;
818 /* If the outer part is a word or smaller, INNER larger than a
819 word and the number of regs for INNER is not the same as the
820 number of words in INNER, then INNER will need reloading. */
821 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
822 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
823 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
824 != HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
827 /* Record one reload that needs to be performed.
828 IN is an rtx saying where the data are to be found before this instruction.
829 OUT says where they must be stored after the instruction.
830 (IN is zero for data not read, and OUT is zero for data not written.)
831 INLOC and OUTLOC point to the places in the instructions where
832 IN and OUT were found.
833 If IN and OUT are both non-zero, it means the same register must be used
834 to reload both IN and OUT.
836 CLASS is a register class required for the reloaded data.
837 INMODE is the machine mode that the instruction requires
838 for the reg that replaces IN and OUTMODE is likewise for OUT.
840 If IN is zero, then OUT's location and mode should be passed as
841 INLOC and INMODE.
843 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
845 OPTIONAL nonzero means this reload does not need to be performed:
846 it can be discarded if that is more convenient.
848 OPNUM and TYPE say what the purpose of this reload is.
850 The return value is the reload-number for this reload.
852 If both IN and OUT are nonzero, in some rare cases we might
853 want to make two separate reloads. (Actually we never do this now.)
854 Therefore, the reload-number for OUT is stored in
855 output_reloadnum when we return; the return value applies to IN.
856 Usually (presently always), when IN and OUT are nonzero,
857 the two reload-numbers are equal, but the caller should be careful to
858 distinguish them. */
861 push_reload (in, out, inloc, outloc, class,
862 inmode, outmode, strict_low, optional, opnum, type)
863 rtx in, out;
864 rtx *inloc, *outloc;
865 enum reg_class class;
866 enum machine_mode inmode, outmode;
867 int strict_low;
868 int optional;
869 int opnum;
870 enum reload_type type;
872 int i;
873 int dont_share = 0;
874 int dont_remove_subreg = 0;
875 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
876 int secondary_in_reload = -1, secondary_out_reload = -1;
877 enum insn_code secondary_in_icode = CODE_FOR_nothing;
878 enum insn_code secondary_out_icode = CODE_FOR_nothing;
880 /* INMODE and/or OUTMODE could be VOIDmode if no mode
881 has been specified for the operand. In that case,
882 use the operand's mode as the mode to reload. */
883 if (inmode == VOIDmode && in != 0)
884 inmode = GET_MODE (in);
885 if (outmode == VOIDmode && out != 0)
886 outmode = GET_MODE (out);
888 /* If IN is a pseudo register everywhere-equivalent to a constant, and
889 it is not in a hard register, reload straight from the constant,
890 since we want to get rid of such pseudo registers.
891 Often this is done earlier, but not always in find_reloads_address. */
892 if (in != 0 && GET_CODE (in) == REG)
894 int regno = REGNO (in);
896 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
897 && reg_equiv_constant[regno] != 0)
898 in = reg_equiv_constant[regno];
901 /* Likewise for OUT. Of course, OUT will never be equivalent to
902 an actual constant, but it might be equivalent to a memory location
903 (in the case of a parameter). */
904 if (out != 0 && GET_CODE (out) == REG)
906 int regno = REGNO (out);
908 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
909 && reg_equiv_constant[regno] != 0)
910 out = reg_equiv_constant[regno];
913 /* If we have a read-write operand with an address side-effect,
914 change either IN or OUT so the side-effect happens only once. */
915 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
916 switch (GET_CODE (XEXP (in, 0)))
918 case POST_INC: case POST_DEC: case POST_MODIFY:
919 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
920 break;
922 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
923 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
924 break;
926 default:
927 break;
930 /* If we are reloading a (SUBREG constant ...), really reload just the
931 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
932 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
933 a pseudo and hence will become a MEM) with M1 wider than M2 and the
934 register is a pseudo, also reload the inside expression.
935 For machines that extend byte loads, do this for any SUBREG of a pseudo
936 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
937 M2 is an integral mode that gets extended when loaded.
938 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
939 either M1 is not valid for R or M2 is wider than a word but we only
940 need one word to store an M2-sized quantity in R.
941 (However, if OUT is nonzero, we need to reload the reg *and*
942 the subreg, so do nothing here, and let following statement handle it.)
944 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
945 we can't handle it here because CONST_INT does not indicate a mode.
947 Similarly, we must reload the inside expression if we have a
948 STRICT_LOW_PART (presumably, in == out in the cas).
950 Also reload the inner expression if it does not require a secondary
951 reload but the SUBREG does.
953 Finally, reload the inner expression if it is a register that is in
954 the class whose registers cannot be referenced in a different size
955 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
956 cannot reload just the inside since we might end up with the wrong
957 register class. But if it is inside a STRICT_LOW_PART, we have
958 no choice, so we hope we do get the right register class there. */
960 if (in != 0 && GET_CODE (in) == SUBREG
961 && (subreg_lowpart_p (in) || strict_low)
962 #ifdef CLASS_CANNOT_CHANGE_MODE
963 && (class != CLASS_CANNOT_CHANGE_MODE
964 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)), inmode))
965 #endif
966 && (CONSTANT_P (SUBREG_REG (in))
967 || GET_CODE (SUBREG_REG (in)) == PLUS
968 || strict_low
969 || (((GET_CODE (SUBREG_REG (in)) == REG
970 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
971 || GET_CODE (SUBREG_REG (in)) == MEM)
972 && ((GET_MODE_SIZE (inmode)
973 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
974 #ifdef LOAD_EXTEND_OP
975 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
976 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
977 <= UNITS_PER_WORD)
978 && (GET_MODE_SIZE (inmode)
979 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
980 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
981 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
982 #endif
983 #ifdef WORD_REGISTER_OPERATIONS
984 || ((GET_MODE_SIZE (inmode)
985 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
986 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
987 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
988 / UNITS_PER_WORD)))
989 #endif
991 || (GET_CODE (SUBREG_REG (in)) == REG
992 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
993 /* The case where out is nonzero
994 is handled differently in the following statement. */
995 && (out == 0 || subreg_lowpart_p (in))
996 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
997 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
998 > UNITS_PER_WORD)
999 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1000 / UNITS_PER_WORD)
1001 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
1002 GET_MODE (SUBREG_REG (in)))))
1003 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1004 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1005 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1006 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1007 GET_MODE (SUBREG_REG (in)),
1008 SUBREG_REG (in))
1009 == NO_REGS))
1010 #endif
1011 #ifdef CLASS_CANNOT_CHANGE_MODE
1012 || (GET_CODE (SUBREG_REG (in)) == REG
1013 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1014 && (TEST_HARD_REG_BIT
1015 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1016 REGNO (SUBREG_REG (in))))
1017 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1018 inmode))
1019 #endif
1022 in_subreg_loc = inloc;
1023 inloc = &SUBREG_REG (in);
1024 in = *inloc;
1025 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1026 if (GET_CODE (in) == MEM)
1027 /* This is supposed to happen only for paradoxical subregs made by
1028 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1029 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1030 abort ();
1031 #endif
1032 inmode = GET_MODE (in);
1035 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1036 either M1 is not valid for R or M2 is wider than a word but we only
1037 need one word to store an M2-sized quantity in R.
1039 However, we must reload the inner reg *as well as* the subreg in
1040 that case. */
1042 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1043 code above. This can happen if SUBREG_BYTE != 0. */
1045 if (in != 0 && reload_inner_reg_of_subreg (in, inmode))
1047 enum reg_class in_class = class;
1049 if (GET_CODE (SUBREG_REG (in)) == REG)
1050 in_class
1051 = find_valid_class (inmode,
1052 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1053 GET_MODE (SUBREG_REG (in)),
1054 SUBREG_BYTE (in),
1055 GET_MODE (in)),
1056 REGNO (SUBREG_REG (in)));
1058 /* This relies on the fact that emit_reload_insns outputs the
1059 instructions for input reloads of type RELOAD_OTHER in the same
1060 order as the reloads. Thus if the outer reload is also of type
1061 RELOAD_OTHER, we are guaranteed that this inner reload will be
1062 output before the outer reload. */
1063 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1064 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1065 dont_remove_subreg = 1;
1068 /* Similarly for paradoxical and problematical SUBREGs on the output.
1069 Note that there is no reason we need worry about the previous value
1070 of SUBREG_REG (out); even if wider than out,
1071 storing in a subreg is entitled to clobber it all
1072 (except in the case of STRICT_LOW_PART,
1073 and in that case the constraint should label it input-output.) */
1074 if (out != 0 && GET_CODE (out) == SUBREG
1075 && (subreg_lowpart_p (out) || strict_low)
1076 #ifdef CLASS_CANNOT_CHANGE_MODE
1077 && (class != CLASS_CANNOT_CHANGE_MODE
1078 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1079 outmode))
1080 #endif
1081 && (CONSTANT_P (SUBREG_REG (out))
1082 || strict_low
1083 || (((GET_CODE (SUBREG_REG (out)) == REG
1084 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1085 || GET_CODE (SUBREG_REG (out)) == MEM)
1086 && ((GET_MODE_SIZE (outmode)
1087 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1088 #ifdef WORD_REGISTER_OPERATIONS
1089 || ((GET_MODE_SIZE (outmode)
1090 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1091 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1092 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1093 / UNITS_PER_WORD)))
1094 #endif
1096 || (GET_CODE (SUBREG_REG (out)) == REG
1097 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1098 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1099 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1100 > UNITS_PER_WORD)
1101 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1102 / UNITS_PER_WORD)
1103 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1104 GET_MODE (SUBREG_REG (out)))))
1105 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1106 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1107 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1108 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1109 GET_MODE (SUBREG_REG (out)),
1110 SUBREG_REG (out))
1111 == NO_REGS))
1112 #endif
1113 #ifdef CLASS_CANNOT_CHANGE_MODE
1114 || (GET_CODE (SUBREG_REG (out)) == REG
1115 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1116 && (TEST_HARD_REG_BIT
1117 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1118 REGNO (SUBREG_REG (out))))
1119 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1120 outmode))
1121 #endif
1124 out_subreg_loc = outloc;
1125 outloc = &SUBREG_REG (out);
1126 out = *outloc;
1127 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1128 if (GET_CODE (out) == MEM
1129 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1130 abort ();
1131 #endif
1132 outmode = GET_MODE (out);
1135 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1136 either M1 is not valid for R or M2 is wider than a word but we only
1137 need one word to store an M2-sized quantity in R.
1139 However, we must reload the inner reg *as well as* the subreg in
1140 that case. In this case, the inner reg is an in-out reload. */
1142 if (out != 0 && reload_inner_reg_of_subreg (out, outmode))
1144 /* This relies on the fact that emit_reload_insns outputs the
1145 instructions for output reloads of type RELOAD_OTHER in reverse
1146 order of the reloads. Thus if the outer reload is also of type
1147 RELOAD_OTHER, we are guaranteed that this inner reload will be
1148 output after the outer reload. */
1149 dont_remove_subreg = 1;
1150 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1151 &SUBREG_REG (out),
1152 find_valid_class (outmode,
1153 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1154 GET_MODE (SUBREG_REG (out)),
1155 SUBREG_BYTE (out),
1156 GET_MODE (out)),
1157 REGNO (SUBREG_REG (out))),
1158 VOIDmode, VOIDmode, 0, 0,
1159 opnum, RELOAD_OTHER);
1162 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1163 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1164 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1165 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1166 dont_share = 1;
1168 /* If IN is a SUBREG of a hard register, make a new REG. This
1169 simplifies some of the cases below. */
1171 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1172 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1173 && ! dont_remove_subreg)
1174 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1176 /* Similarly for OUT. */
1177 if (out != 0 && GET_CODE (out) == SUBREG
1178 && GET_CODE (SUBREG_REG (out)) == REG
1179 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1180 && ! dont_remove_subreg)
1181 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1183 /* Narrow down the class of register wanted if that is
1184 desirable on this machine for efficiency. */
1185 if (in != 0)
1186 class = PREFERRED_RELOAD_CLASS (in, class);
1188 /* Output reloads may need analogous treatment, different in detail. */
1189 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1190 if (out != 0)
1191 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1192 #endif
1194 /* Make sure we use a class that can handle the actual pseudo
1195 inside any subreg. For example, on the 386, QImode regs
1196 can appear within SImode subregs. Although GENERAL_REGS
1197 can handle SImode, QImode needs a smaller class. */
1198 #ifdef LIMIT_RELOAD_CLASS
1199 if (in_subreg_loc)
1200 class = LIMIT_RELOAD_CLASS (inmode, class);
1201 else if (in != 0 && GET_CODE (in) == SUBREG)
1202 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1204 if (out_subreg_loc)
1205 class = LIMIT_RELOAD_CLASS (outmode, class);
1206 if (out != 0 && GET_CODE (out) == SUBREG)
1207 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1208 #endif
1210 /* Verify that this class is at least possible for the mode that
1211 is specified. */
1212 if (this_insn_is_asm)
1214 enum machine_mode mode;
1215 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1216 mode = inmode;
1217 else
1218 mode = outmode;
1219 if (mode == VOIDmode)
1221 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1222 mode = word_mode;
1223 if (in != 0)
1224 inmode = word_mode;
1225 if (out != 0)
1226 outmode = word_mode;
1228 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1229 if (HARD_REGNO_MODE_OK (i, mode)
1230 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1232 int nregs = HARD_REGNO_NREGS (i, mode);
1234 int j;
1235 for (j = 1; j < nregs; j++)
1236 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1237 break;
1238 if (j == nregs)
1239 break;
1241 if (i == FIRST_PSEUDO_REGISTER)
1243 error_for_asm (this_insn, "impossible register constraint in `asm'");
1244 class = ALL_REGS;
1248 /* Optional output reloads are always OK even if we have no register class,
1249 since the function of these reloads is only to have spill_reg_store etc.
1250 set, so that the storing insn can be deleted later. */
1251 if (class == NO_REGS
1252 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1253 abort ();
1255 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1257 if (i == n_reloads)
1259 /* See if we need a secondary reload register to move between CLASS
1260 and IN or CLASS and OUT. Get the icode and push any required reloads
1261 needed for each of them if so. */
1263 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1264 if (in != 0)
1265 secondary_in_reload
1266 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1267 &secondary_in_icode);
1268 #endif
1270 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1271 if (out != 0 && GET_CODE (out) != SCRATCH)
1272 secondary_out_reload
1273 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1274 type, &secondary_out_icode);
1275 #endif
1277 /* We found no existing reload suitable for re-use.
1278 So add an additional reload. */
1280 #ifdef SECONDARY_MEMORY_NEEDED
1281 /* If a memory location is needed for the copy, make one. */
1282 if (in != 0 && GET_CODE (in) == REG
1283 && REGNO (in) < FIRST_PSEUDO_REGISTER
1284 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1285 class, inmode))
1286 get_secondary_mem (in, inmode, opnum, type);
1287 #endif
1289 i = n_reloads;
1290 rld[i].in = in;
1291 rld[i].out = out;
1292 rld[i].class = class;
1293 rld[i].inmode = inmode;
1294 rld[i].outmode = outmode;
1295 rld[i].reg_rtx = 0;
1296 rld[i].optional = optional;
1297 rld[i].inc = 0;
1298 rld[i].nocombine = 0;
1299 rld[i].in_reg = inloc ? *inloc : 0;
1300 rld[i].out_reg = outloc ? *outloc : 0;
1301 rld[i].opnum = opnum;
1302 rld[i].when_needed = type;
1303 rld[i].secondary_in_reload = secondary_in_reload;
1304 rld[i].secondary_out_reload = secondary_out_reload;
1305 rld[i].secondary_in_icode = secondary_in_icode;
1306 rld[i].secondary_out_icode = secondary_out_icode;
1307 rld[i].secondary_p = 0;
1309 n_reloads++;
1311 #ifdef SECONDARY_MEMORY_NEEDED
1312 if (out != 0 && GET_CODE (out) == REG
1313 && REGNO (out) < FIRST_PSEUDO_REGISTER
1314 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1315 outmode))
1316 get_secondary_mem (out, outmode, opnum, type);
1317 #endif
1319 else
1321 /* We are reusing an existing reload,
1322 but we may have additional information for it.
1323 For example, we may now have both IN and OUT
1324 while the old one may have just one of them. */
1326 /* The modes can be different. If they are, we want to reload in
1327 the larger mode, so that the value is valid for both modes. */
1328 if (inmode != VOIDmode
1329 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1330 rld[i].inmode = inmode;
1331 if (outmode != VOIDmode
1332 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1333 rld[i].outmode = outmode;
1334 if (in != 0)
1336 rtx in_reg = inloc ? *inloc : 0;
1337 /* If we merge reloads for two distinct rtl expressions that
1338 are identical in content, there might be duplicate address
1339 reloads. Remove the extra set now, so that if we later find
1340 that we can inherit this reload, we can get rid of the
1341 address reloads altogether.
1343 Do not do this if both reloads are optional since the result
1344 would be an optional reload which could potentially leave
1345 unresolved address replacements.
1347 It is not sufficient to call transfer_replacements since
1348 choose_reload_regs will remove the replacements for address
1349 reloads of inherited reloads which results in the same
1350 problem. */
1351 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1352 && ! (rld[i].optional && optional))
1354 /* We must keep the address reload with the lower operand
1355 number alive. */
1356 if (opnum > rld[i].opnum)
1358 remove_address_replacements (in);
1359 in = rld[i].in;
1360 in_reg = rld[i].in_reg;
1362 else
1363 remove_address_replacements (rld[i].in);
1365 rld[i].in = in;
1366 rld[i].in_reg = in_reg;
1368 if (out != 0)
1370 rld[i].out = out;
1371 rld[i].out_reg = outloc ? *outloc : 0;
1373 if (reg_class_subset_p (class, rld[i].class))
1374 rld[i].class = class;
1375 rld[i].optional &= optional;
1376 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1377 opnum, rld[i].opnum))
1378 rld[i].when_needed = RELOAD_OTHER;
1379 rld[i].opnum = MIN (rld[i].opnum, opnum);
1382 /* If the ostensible rtx being reloaded differs from the rtx found
1383 in the location to substitute, this reload is not safe to combine
1384 because we cannot reliably tell whether it appears in the insn. */
1386 if (in != 0 && in != *inloc)
1387 rld[i].nocombine = 1;
1389 #if 0
1390 /* This was replaced by changes in find_reloads_address_1 and the new
1391 function inc_for_reload, which go with a new meaning of reload_inc. */
1393 /* If this is an IN/OUT reload in an insn that sets the CC,
1394 it must be for an autoincrement. It doesn't work to store
1395 the incremented value after the insn because that would clobber the CC.
1396 So we must do the increment of the value reloaded from,
1397 increment it, store it back, then decrement again. */
1398 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1400 out = 0;
1401 rld[i].out = 0;
1402 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1403 /* If we did not find a nonzero amount-to-increment-by,
1404 that contradicts the belief that IN is being incremented
1405 in an address in this insn. */
1406 if (rld[i].inc == 0)
1407 abort ();
1409 #endif
1411 /* If we will replace IN and OUT with the reload-reg,
1412 record where they are located so that substitution need
1413 not do a tree walk. */
1415 if (replace_reloads)
1417 if (inloc != 0)
1419 struct replacement *r = &replacements[n_replacements++];
1420 r->what = i;
1421 r->subreg_loc = in_subreg_loc;
1422 r->where = inloc;
1423 r->mode = inmode;
1425 if (outloc != 0 && outloc != inloc)
1427 struct replacement *r = &replacements[n_replacements++];
1428 r->what = i;
1429 r->where = outloc;
1430 r->subreg_loc = out_subreg_loc;
1431 r->mode = outmode;
1435 /* If this reload is just being introduced and it has both
1436 an incoming quantity and an outgoing quantity that are
1437 supposed to be made to match, see if either one of the two
1438 can serve as the place to reload into.
1440 If one of them is acceptable, set rld[i].reg_rtx
1441 to that one. */
1443 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1445 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1446 inmode, outmode,
1447 rld[i].class, i,
1448 earlyclobber_operand_p (out));
1450 /* If the outgoing register already contains the same value
1451 as the incoming one, we can dispense with loading it.
1452 The easiest way to tell the caller that is to give a phony
1453 value for the incoming operand (same as outgoing one). */
1454 if (rld[i].reg_rtx == out
1455 && (GET_CODE (in) == REG || CONSTANT_P (in))
1456 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1457 static_reload_reg_p, i, inmode))
1458 rld[i].in = out;
1461 /* If this is an input reload and the operand contains a register that
1462 dies in this insn and is used nowhere else, see if it is the right class
1463 to be used for this reload. Use it if so. (This occurs most commonly
1464 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1465 this if it is also an output reload that mentions the register unless
1466 the output is a SUBREG that clobbers an entire register.
1468 Note that the operand might be one of the spill regs, if it is a
1469 pseudo reg and we are in a block where spilling has not taken place.
1470 But if there is no spilling in this block, that is OK.
1471 An explicitly used hard reg cannot be a spill reg. */
1473 if (rld[i].reg_rtx == 0 && in != 0)
1475 rtx note;
1476 int regno;
1477 enum machine_mode rel_mode = inmode;
1479 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1480 rel_mode = outmode;
1482 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1483 if (REG_NOTE_KIND (note) == REG_DEAD
1484 && GET_CODE (XEXP (note, 0)) == REG
1485 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1486 && reg_mentioned_p (XEXP (note, 0), in)
1487 && ! refers_to_regno_for_reload_p (regno,
1488 (regno
1489 + HARD_REGNO_NREGS (regno,
1490 rel_mode)),
1491 PATTERN (this_insn), inloc)
1492 /* If this is also an output reload, IN cannot be used as
1493 the reload register if it is set in this insn unless IN
1494 is also OUT. */
1495 && (out == 0 || in == out
1496 || ! hard_reg_set_here_p (regno,
1497 (regno
1498 + HARD_REGNO_NREGS (regno,
1499 rel_mode)),
1500 PATTERN (this_insn)))
1501 /* ??? Why is this code so different from the previous?
1502 Is there any simple coherent way to describe the two together?
1503 What's going on here. */
1504 && (in != out
1505 || (GET_CODE (in) == SUBREG
1506 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1507 / UNITS_PER_WORD)
1508 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1509 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1510 /* Make sure the operand fits in the reg that dies. */
1511 && (GET_MODE_SIZE (rel_mode)
1512 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1513 && HARD_REGNO_MODE_OK (regno, inmode)
1514 && HARD_REGNO_MODE_OK (regno, outmode))
1516 unsigned int offs;
1517 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1518 HARD_REGNO_NREGS (regno, outmode));
1520 for (offs = 0; offs < nregs; offs++)
1521 if (fixed_regs[regno + offs]
1522 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1523 regno + offs))
1524 break;
1526 if (offs == nregs)
1528 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1529 break;
1534 if (out)
1535 output_reloadnum = i;
1537 return i;
1540 /* Record an additional place we must replace a value
1541 for which we have already recorded a reload.
1542 RELOADNUM is the value returned by push_reload
1543 when the reload was recorded.
1544 This is used in insn patterns that use match_dup. */
1546 static void
1547 push_replacement (loc, reloadnum, mode)
1548 rtx *loc;
1549 int reloadnum;
1550 enum machine_mode mode;
1552 if (replace_reloads)
1554 struct replacement *r = &replacements[n_replacements++];
1555 r->what = reloadnum;
1556 r->where = loc;
1557 r->subreg_loc = 0;
1558 r->mode = mode;
1562 /* Transfer all replacements that used to be in reload FROM to be in
1563 reload TO. */
1565 void
1566 transfer_replacements (to, from)
1567 int to, from;
1569 int i;
1571 for (i = 0; i < n_replacements; i++)
1572 if (replacements[i].what == from)
1573 replacements[i].what = to;
1576 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1577 or a subpart of it. If we have any replacements registered for IN_RTX,
1578 cancel the reloads that were supposed to load them.
1579 Return non-zero if we canceled any reloads. */
1581 remove_address_replacements (in_rtx)
1582 rtx in_rtx;
1584 int i, j;
1585 char reload_flags[MAX_RELOADS];
1586 int something_changed = 0;
1588 memset (reload_flags, 0, sizeof reload_flags);
1589 for (i = 0, j = 0; i < n_replacements; i++)
1591 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1592 reload_flags[replacements[i].what] |= 1;
1593 else
1595 replacements[j++] = replacements[i];
1596 reload_flags[replacements[i].what] |= 2;
1599 /* Note that the following store must be done before the recursive calls. */
1600 n_replacements = j;
1602 for (i = n_reloads - 1; i >= 0; i--)
1604 if (reload_flags[i] == 1)
1606 deallocate_reload_reg (i);
1607 remove_address_replacements (rld[i].in);
1608 rld[i].in = 0;
1609 something_changed = 1;
1612 return something_changed;
1615 /* If there is only one output reload, and it is not for an earlyclobber
1616 operand, try to combine it with a (logically unrelated) input reload
1617 to reduce the number of reload registers needed.
1619 This is safe if the input reload does not appear in
1620 the value being output-reloaded, because this implies
1621 it is not needed any more once the original insn completes.
1623 If that doesn't work, see we can use any of the registers that
1624 die in this insn as a reload register. We can if it is of the right
1625 class and does not appear in the value being output-reloaded. */
1627 static void
1628 combine_reloads ()
1630 int i;
1631 int output_reload = -1;
1632 int secondary_out = -1;
1633 rtx note;
1635 /* Find the output reload; return unless there is exactly one
1636 and that one is mandatory. */
1638 for (i = 0; i < n_reloads; i++)
1639 if (rld[i].out != 0)
1641 if (output_reload >= 0)
1642 return;
1643 output_reload = i;
1646 if (output_reload < 0 || rld[output_reload].optional)
1647 return;
1649 /* An input-output reload isn't combinable. */
1651 if (rld[output_reload].in != 0)
1652 return;
1654 /* If this reload is for an earlyclobber operand, we can't do anything. */
1655 if (earlyclobber_operand_p (rld[output_reload].out))
1656 return;
1658 /* If there is a reload for part of the address of this operand, we would
1659 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1660 its life to the point where doing this combine would not lower the
1661 number of spill registers needed. */
1662 for (i = 0; i < n_reloads; i++)
1663 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1664 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1665 && rld[i].opnum == rld[output_reload].opnum)
1666 return;
1668 /* Check each input reload; can we combine it? */
1670 for (i = 0; i < n_reloads; i++)
1671 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1672 /* Life span of this reload must not extend past main insn. */
1673 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1674 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1675 && rld[i].when_needed != RELOAD_OTHER
1676 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1677 == CLASS_MAX_NREGS (rld[output_reload].class,
1678 rld[output_reload].outmode))
1679 && rld[i].inc == 0
1680 && rld[i].reg_rtx == 0
1681 #ifdef SECONDARY_MEMORY_NEEDED
1682 /* Don't combine two reloads with different secondary
1683 memory locations. */
1684 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1685 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1686 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1687 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1688 #endif
1689 && (SMALL_REGISTER_CLASSES
1690 ? (rld[i].class == rld[output_reload].class)
1691 : (reg_class_subset_p (rld[i].class,
1692 rld[output_reload].class)
1693 || reg_class_subset_p (rld[output_reload].class,
1694 rld[i].class)))
1695 && (MATCHES (rld[i].in, rld[output_reload].out)
1696 /* Args reversed because the first arg seems to be
1697 the one that we imagine being modified
1698 while the second is the one that might be affected. */
1699 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1700 rld[i].in)
1701 /* However, if the input is a register that appears inside
1702 the output, then we also can't share.
1703 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1704 If the same reload reg is used for both reg 69 and the
1705 result to be stored in memory, then that result
1706 will clobber the address of the memory ref. */
1707 && ! (GET_CODE (rld[i].in) == REG
1708 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1709 rld[output_reload].out))))
1710 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode)
1711 && (reg_class_size[(int) rld[i].class]
1712 || SMALL_REGISTER_CLASSES)
1713 /* We will allow making things slightly worse by combining an
1714 input and an output, but no worse than that. */
1715 && (rld[i].when_needed == RELOAD_FOR_INPUT
1716 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1718 int j;
1720 /* We have found a reload to combine with! */
1721 rld[i].out = rld[output_reload].out;
1722 rld[i].out_reg = rld[output_reload].out_reg;
1723 rld[i].outmode = rld[output_reload].outmode;
1724 /* Mark the old output reload as inoperative. */
1725 rld[output_reload].out = 0;
1726 /* The combined reload is needed for the entire insn. */
1727 rld[i].when_needed = RELOAD_OTHER;
1728 /* If the output reload had a secondary reload, copy it. */
1729 if (rld[output_reload].secondary_out_reload != -1)
1731 rld[i].secondary_out_reload
1732 = rld[output_reload].secondary_out_reload;
1733 rld[i].secondary_out_icode
1734 = rld[output_reload].secondary_out_icode;
1737 #ifdef SECONDARY_MEMORY_NEEDED
1738 /* Copy any secondary MEM. */
1739 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1740 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1741 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1742 #endif
1743 /* If required, minimize the register class. */
1744 if (reg_class_subset_p (rld[output_reload].class,
1745 rld[i].class))
1746 rld[i].class = rld[output_reload].class;
1748 /* Transfer all replacements from the old reload to the combined. */
1749 for (j = 0; j < n_replacements; j++)
1750 if (replacements[j].what == output_reload)
1751 replacements[j].what = i;
1753 return;
1756 /* If this insn has only one operand that is modified or written (assumed
1757 to be the first), it must be the one corresponding to this reload. It
1758 is safe to use anything that dies in this insn for that output provided
1759 that it does not occur in the output (we already know it isn't an
1760 earlyclobber. If this is an asm insn, give up. */
1762 if (INSN_CODE (this_insn) == -1)
1763 return;
1765 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1766 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1767 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1768 return;
1770 /* See if some hard register that dies in this insn and is not used in
1771 the output is the right class. Only works if the register we pick
1772 up can fully hold our output reload. */
1773 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1774 if (REG_NOTE_KIND (note) == REG_DEAD
1775 && GET_CODE (XEXP (note, 0)) == REG
1776 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1777 rld[output_reload].out)
1778 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1779 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1780 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1781 REGNO (XEXP (note, 0)))
1782 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1783 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1784 /* Ensure that a secondary or tertiary reload for this output
1785 won't want this register. */
1786 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1787 || (! (TEST_HARD_REG_BIT
1788 (reg_class_contents[(int) rld[secondary_out].class],
1789 REGNO (XEXP (note, 0))))
1790 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1791 || ! (TEST_HARD_REG_BIT
1792 (reg_class_contents[(int) rld[secondary_out].class],
1793 REGNO (XEXP (note, 0)))))))
1794 && ! fixed_regs[REGNO (XEXP (note, 0))])
1796 rld[output_reload].reg_rtx
1797 = gen_rtx_REG (rld[output_reload].outmode,
1798 REGNO (XEXP (note, 0)));
1799 return;
1803 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1804 See if one of IN and OUT is a register that may be used;
1805 this is desirable since a spill-register won't be needed.
1806 If so, return the register rtx that proves acceptable.
1808 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1809 CLASS is the register class required for the reload.
1811 If FOR_REAL is >= 0, it is the number of the reload,
1812 and in some cases when it can be discovered that OUT doesn't need
1813 to be computed, clear out rld[FOR_REAL].out.
1815 If FOR_REAL is -1, this should not be done, because this call
1816 is just to see if a register can be found, not to find and install it.
1818 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1819 puts an additional constraint on being able to use IN for OUT since
1820 IN must not appear elsewhere in the insn (it is assumed that IN itself
1821 is safe from the earlyclobber). */
1823 static rtx
1824 find_dummy_reload (real_in, real_out, inloc, outloc,
1825 inmode, outmode, class, for_real, earlyclobber)
1826 rtx real_in, real_out;
1827 rtx *inloc, *outloc;
1828 enum machine_mode inmode, outmode;
1829 enum reg_class class;
1830 int for_real;
1831 int earlyclobber;
1833 rtx in = real_in;
1834 rtx out = real_out;
1835 int in_offset = 0;
1836 int out_offset = 0;
1837 rtx value = 0;
1839 /* If operands exceed a word, we can't use either of them
1840 unless they have the same size. */
1841 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1842 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1843 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1844 return 0;
1846 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1847 respectively refers to a hard register. */
1849 /* Find the inside of any subregs. */
1850 while (GET_CODE (out) == SUBREG)
1852 if (GET_CODE (SUBREG_REG (out)) == REG
1853 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1854 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1855 GET_MODE (SUBREG_REG (out)),
1856 SUBREG_BYTE (out),
1857 GET_MODE (out));
1858 out = SUBREG_REG (out);
1860 while (GET_CODE (in) == SUBREG)
1862 if (GET_CODE (SUBREG_REG (in)) == REG
1863 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1864 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1865 GET_MODE (SUBREG_REG (in)),
1866 SUBREG_BYTE (in),
1867 GET_MODE (in));
1868 in = SUBREG_REG (in);
1871 /* Narrow down the reg class, the same way push_reload will;
1872 otherwise we might find a dummy now, but push_reload won't. */
1873 class = PREFERRED_RELOAD_CLASS (in, class);
1875 /* See if OUT will do. */
1876 if (GET_CODE (out) == REG
1877 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1879 unsigned int regno = REGNO (out) + out_offset;
1880 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1881 rtx saved_rtx;
1883 /* When we consider whether the insn uses OUT,
1884 ignore references within IN. They don't prevent us
1885 from copying IN into OUT, because those refs would
1886 move into the insn that reloads IN.
1888 However, we only ignore IN in its role as this reload.
1889 If the insn uses IN elsewhere and it contains OUT,
1890 that counts. We can't be sure it's the "same" operand
1891 so it might not go through this reload. */
1892 saved_rtx = *inloc;
1893 *inloc = const0_rtx;
1895 if (regno < FIRST_PSEUDO_REGISTER
1896 && HARD_REGNO_MODE_OK (regno, outmode)
1897 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1898 PATTERN (this_insn), outloc))
1900 unsigned int i;
1902 for (i = 0; i < nwords; i++)
1903 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1904 regno + i))
1905 break;
1907 if (i == nwords)
1909 if (GET_CODE (real_out) == REG)
1910 value = real_out;
1911 else
1912 value = gen_rtx_REG (outmode, regno);
1916 *inloc = saved_rtx;
1919 /* Consider using IN if OUT was not acceptable
1920 or if OUT dies in this insn (like the quotient in a divmod insn).
1921 We can't use IN unless it is dies in this insn,
1922 which means we must know accurately which hard regs are live.
1923 Also, the result can't go in IN if IN is used within OUT,
1924 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1925 if (hard_regs_live_known
1926 && GET_CODE (in) == REG
1927 && REGNO (in) < FIRST_PSEUDO_REGISTER
1928 && (value == 0
1929 || find_reg_note (this_insn, REG_UNUSED, real_out))
1930 && find_reg_note (this_insn, REG_DEAD, real_in)
1931 && !fixed_regs[REGNO (in)]
1932 && HARD_REGNO_MODE_OK (REGNO (in),
1933 /* The only case where out and real_out might
1934 have different modes is where real_out
1935 is a subreg, and in that case, out
1936 has a real mode. */
1937 (GET_MODE (out) != VOIDmode
1938 ? GET_MODE (out) : outmode)))
1940 unsigned int regno = REGNO (in) + in_offset;
1941 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1943 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1944 && ! hard_reg_set_here_p (regno, regno + nwords,
1945 PATTERN (this_insn))
1946 && (! earlyclobber
1947 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1948 PATTERN (this_insn), inloc)))
1950 unsigned int i;
1952 for (i = 0; i < nwords; i++)
1953 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1954 regno + i))
1955 break;
1957 if (i == nwords)
1959 /* If we were going to use OUT as the reload reg
1960 and changed our mind, it means OUT is a dummy that
1961 dies here. So don't bother copying value to it. */
1962 if (for_real >= 0 && value == real_out)
1963 rld[for_real].out = 0;
1964 if (GET_CODE (real_in) == REG)
1965 value = real_in;
1966 else
1967 value = gen_rtx_REG (inmode, regno);
1972 return value;
1975 /* This page contains subroutines used mainly for determining
1976 whether the IN or an OUT of a reload can serve as the
1977 reload register. */
1979 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1982 earlyclobber_operand_p (x)
1983 rtx x;
1985 int i;
1987 for (i = 0; i < n_earlyclobbers; i++)
1988 if (reload_earlyclobbers[i] == x)
1989 return 1;
1991 return 0;
1994 /* Return 1 if expression X alters a hard reg in the range
1995 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1996 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1997 X should be the body of an instruction. */
1999 static int
2000 hard_reg_set_here_p (beg_regno, end_regno, x)
2001 unsigned int beg_regno, end_regno;
2002 rtx x;
2004 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2006 rtx op0 = SET_DEST (x);
2008 while (GET_CODE (op0) == SUBREG)
2009 op0 = SUBREG_REG (op0);
2010 if (GET_CODE (op0) == REG)
2012 unsigned int r = REGNO (op0);
2014 /* See if this reg overlaps range under consideration. */
2015 if (r < end_regno
2016 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2017 return 1;
2020 else if (GET_CODE (x) == PARALLEL)
2022 int i = XVECLEN (x, 0) - 1;
2024 for (; i >= 0; i--)
2025 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2026 return 1;
2029 return 0;
2032 /* Return 1 if ADDR is a valid memory address for mode MODE,
2033 and check that each pseudo reg has the proper kind of
2034 hard reg. */
2037 strict_memory_address_p (mode, addr)
2038 enum machine_mode mode ATTRIBUTE_UNUSED;
2039 rtx addr;
2041 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2042 return 0;
2044 win:
2045 return 1;
2048 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2049 if they are the same hard reg, and has special hacks for
2050 autoincrement and autodecrement.
2051 This is specifically intended for find_reloads to use
2052 in determining whether two operands match.
2053 X is the operand whose number is the lower of the two.
2055 The value is 2 if Y contains a pre-increment that matches
2056 a non-incrementing address in X. */
2058 /* ??? To be completely correct, we should arrange to pass
2059 for X the output operand and for Y the input operand.
2060 For now, we assume that the output operand has the lower number
2061 because that is natural in (SET output (... input ...)). */
2064 operands_match_p (x, y)
2065 rtx x, y;
2067 int i;
2068 RTX_CODE code = GET_CODE (x);
2069 const char *fmt;
2070 int success_2;
2072 if (x == y)
2073 return 1;
2074 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2075 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2076 && GET_CODE (SUBREG_REG (y)) == REG)))
2078 int j;
2080 if (code == SUBREG)
2082 i = REGNO (SUBREG_REG (x));
2083 if (i >= FIRST_PSEUDO_REGISTER)
2084 goto slow;
2085 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2086 GET_MODE (SUBREG_REG (x)),
2087 SUBREG_BYTE (x),
2088 GET_MODE (x));
2090 else
2091 i = REGNO (x);
2093 if (GET_CODE (y) == SUBREG)
2095 j = REGNO (SUBREG_REG (y));
2096 if (j >= FIRST_PSEUDO_REGISTER)
2097 goto slow;
2098 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2099 GET_MODE (SUBREG_REG (y)),
2100 SUBREG_BYTE (y),
2101 GET_MODE (y));
2103 else
2104 j = REGNO (y);
2106 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2107 multiple hard register group, so that for example (reg:DI 0) and
2108 (reg:SI 1) will be considered the same register. */
2109 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2110 && i < FIRST_PSEUDO_REGISTER)
2111 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2112 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2113 && j < FIRST_PSEUDO_REGISTER)
2114 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2116 return i == j;
2118 /* If two operands must match, because they are really a single
2119 operand of an assembler insn, then two postincrements are invalid
2120 because the assembler insn would increment only once.
2121 On the other hand, an postincrement matches ordinary indexing
2122 if the postincrement is the output operand. */
2123 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2124 return operands_match_p (XEXP (x, 0), y);
2125 /* Two preincrements are invalid
2126 because the assembler insn would increment only once.
2127 On the other hand, an preincrement matches ordinary indexing
2128 if the preincrement is the input operand.
2129 In this case, return 2, since some callers need to do special
2130 things when this happens. */
2131 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2132 || GET_CODE (y) == PRE_MODIFY)
2133 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2135 slow:
2137 /* Now we have disposed of all the cases
2138 in which different rtx codes can match. */
2139 if (code != GET_CODE (y))
2140 return 0;
2141 if (code == LABEL_REF)
2142 return XEXP (x, 0) == XEXP (y, 0);
2143 if (code == SYMBOL_REF)
2144 return XSTR (x, 0) == XSTR (y, 0);
2146 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2148 if (GET_MODE (x) != GET_MODE (y))
2149 return 0;
2151 /* Compare the elements. If any pair of corresponding elements
2152 fail to match, return 0 for the whole things. */
2154 success_2 = 0;
2155 fmt = GET_RTX_FORMAT (code);
2156 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2158 int val, j;
2159 switch (fmt[i])
2161 case 'w':
2162 if (XWINT (x, i) != XWINT (y, i))
2163 return 0;
2164 break;
2166 case 'i':
2167 if (XINT (x, i) != XINT (y, i))
2168 return 0;
2169 break;
2171 case 'e':
2172 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2173 if (val == 0)
2174 return 0;
2175 /* If any subexpression returns 2,
2176 we should return 2 if we are successful. */
2177 if (val == 2)
2178 success_2 = 1;
2179 break;
2181 case '0':
2182 break;
2184 case 'E':
2185 if (XVECLEN (x, i) != XVECLEN (y, i))
2186 return 0;
2187 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2189 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2190 if (val == 0)
2191 return 0;
2192 if (val == 2)
2193 success_2 = 1;
2195 break;
2197 /* It is believed that rtx's at this level will never
2198 contain anything but integers and other rtx's,
2199 except for within LABEL_REFs and SYMBOL_REFs. */
2200 default:
2201 abort ();
2204 return 1 + success_2;
2207 /* Describe the range of registers or memory referenced by X.
2208 If X is a register, set REG_FLAG and put the first register
2209 number into START and the last plus one into END.
2210 If X is a memory reference, put a base address into BASE
2211 and a range of integer offsets into START and END.
2212 If X is pushing on the stack, we can assume it causes no trouble,
2213 so we set the SAFE field. */
2215 static struct decomposition
2216 decompose (x)
2217 rtx x;
2219 struct decomposition val;
2220 int all_const = 0;
2222 val.reg_flag = 0;
2223 val.safe = 0;
2224 val.base = 0;
2225 if (GET_CODE (x) == MEM)
2227 rtx base = NULL_RTX, offset = 0;
2228 rtx addr = XEXP (x, 0);
2230 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2231 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2233 val.base = XEXP (addr, 0);
2234 val.start = -GET_MODE_SIZE (GET_MODE (x));
2235 val.end = GET_MODE_SIZE (GET_MODE (x));
2236 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2237 return val;
2240 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2242 if (GET_CODE (XEXP (addr, 1)) == PLUS
2243 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2244 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2246 val.base = XEXP (addr, 0);
2247 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2248 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2249 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2250 return val;
2254 if (GET_CODE (addr) == CONST)
2256 addr = XEXP (addr, 0);
2257 all_const = 1;
2259 if (GET_CODE (addr) == PLUS)
2261 if (CONSTANT_P (XEXP (addr, 0)))
2263 base = XEXP (addr, 1);
2264 offset = XEXP (addr, 0);
2266 else if (CONSTANT_P (XEXP (addr, 1)))
2268 base = XEXP (addr, 0);
2269 offset = XEXP (addr, 1);
2273 if (offset == 0)
2275 base = addr;
2276 offset = const0_rtx;
2278 if (GET_CODE (offset) == CONST)
2279 offset = XEXP (offset, 0);
2280 if (GET_CODE (offset) == PLUS)
2282 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2284 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2285 offset = XEXP (offset, 0);
2287 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2289 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2290 offset = XEXP (offset, 1);
2292 else
2294 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2295 offset = const0_rtx;
2298 else if (GET_CODE (offset) != CONST_INT)
2300 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2301 offset = const0_rtx;
2304 if (all_const && GET_CODE (base) == PLUS)
2305 base = gen_rtx_CONST (GET_MODE (base), base);
2307 if (GET_CODE (offset) != CONST_INT)
2308 abort ();
2310 val.start = INTVAL (offset);
2311 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2312 val.base = base;
2313 return val;
2315 else if (GET_CODE (x) == REG)
2317 val.reg_flag = 1;
2318 val.start = true_regnum (x);
2319 if (val.start < 0)
2321 /* A pseudo with no hard reg. */
2322 val.start = REGNO (x);
2323 val.end = val.start + 1;
2325 else
2326 /* A hard reg. */
2327 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2329 else if (GET_CODE (x) == SUBREG)
2331 if (GET_CODE (SUBREG_REG (x)) != REG)
2332 /* This could be more precise, but it's good enough. */
2333 return decompose (SUBREG_REG (x));
2334 val.reg_flag = 1;
2335 val.start = true_regnum (x);
2336 if (val.start < 0)
2337 return decompose (SUBREG_REG (x));
2338 else
2339 /* A hard reg. */
2340 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2342 else if (CONSTANT_P (x)
2343 /* This hasn't been assigned yet, so it can't conflict yet. */
2344 || GET_CODE (x) == SCRATCH)
2345 val.safe = 1;
2346 else
2347 abort ();
2348 return val;
2351 /* Return 1 if altering Y will not modify the value of X.
2352 Y is also described by YDATA, which should be decompose (Y). */
2354 static int
2355 immune_p (x, y, ydata)
2356 rtx x, y;
2357 struct decomposition ydata;
2359 struct decomposition xdata;
2361 if (ydata.reg_flag)
2362 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2363 if (ydata.safe)
2364 return 1;
2366 if (GET_CODE (y) != MEM)
2367 abort ();
2368 /* If Y is memory and X is not, Y can't affect X. */
2369 if (GET_CODE (x) != MEM)
2370 return 1;
2372 xdata = decompose (x);
2374 if (! rtx_equal_p (xdata.base, ydata.base))
2376 /* If bases are distinct symbolic constants, there is no overlap. */
2377 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2378 return 1;
2379 /* Constants and stack slots never overlap. */
2380 if (CONSTANT_P (xdata.base)
2381 && (ydata.base == frame_pointer_rtx
2382 || ydata.base == hard_frame_pointer_rtx
2383 || ydata.base == stack_pointer_rtx))
2384 return 1;
2385 if (CONSTANT_P (ydata.base)
2386 && (xdata.base == frame_pointer_rtx
2387 || xdata.base == hard_frame_pointer_rtx
2388 || xdata.base == stack_pointer_rtx))
2389 return 1;
2390 /* If either base is variable, we don't know anything. */
2391 return 0;
2394 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2397 /* Similar, but calls decompose. */
2400 safe_from_earlyclobber (op, clobber)
2401 rtx op, clobber;
2403 struct decomposition early_data;
2405 early_data = decompose (clobber);
2406 return immune_p (op, clobber, early_data);
2409 /* Main entry point of this file: search the body of INSN
2410 for values that need reloading and record them with push_reload.
2411 REPLACE nonzero means record also where the values occur
2412 so that subst_reloads can be used.
2414 IND_LEVELS says how many levels of indirection are supported by this
2415 machine; a value of zero means that a memory reference is not a valid
2416 memory address.
2418 LIVE_KNOWN says we have valid information about which hard
2419 regs are live at each point in the program; this is true when
2420 we are called from global_alloc but false when stupid register
2421 allocation has been done.
2423 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2424 which is nonnegative if the reg has been commandeered for reloading into.
2425 It is copied into STATIC_RELOAD_REG_P and referenced from there
2426 by various subroutines.
2428 Return TRUE if some operands need to be changed, because of swapping
2429 commutative operands, reg_equiv_address substitution, or whatever. */
2432 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2433 rtx insn;
2434 int replace, ind_levels;
2435 int live_known;
2436 short *reload_reg_p;
2438 int insn_code_number;
2439 int i, j;
2440 int noperands;
2441 /* These start out as the constraints for the insn
2442 and they are chewed up as we consider alternatives. */
2443 char *constraints[MAX_RECOG_OPERANDS];
2444 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2445 a register. */
2446 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2447 char pref_or_nothing[MAX_RECOG_OPERANDS];
2448 /* Nonzero for a MEM operand whose entire address needs a reload. */
2449 int address_reloaded[MAX_RECOG_OPERANDS];
2450 /* Value of enum reload_type to use for operand. */
2451 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2452 /* Value of enum reload_type to use within address of operand. */
2453 enum reload_type address_type[MAX_RECOG_OPERANDS];
2454 /* Save the usage of each operand. */
2455 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2456 int no_input_reloads = 0, no_output_reloads = 0;
2457 int n_alternatives;
2458 int this_alternative[MAX_RECOG_OPERANDS];
2459 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2460 char this_alternative_win[MAX_RECOG_OPERANDS];
2461 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2462 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2463 int this_alternative_matches[MAX_RECOG_OPERANDS];
2464 int swapped;
2465 int goal_alternative[MAX_RECOG_OPERANDS];
2466 int this_alternative_number;
2467 int goal_alternative_number = 0;
2468 int operand_reloadnum[MAX_RECOG_OPERANDS];
2469 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2470 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2471 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2472 char goal_alternative_win[MAX_RECOG_OPERANDS];
2473 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2474 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2475 int goal_alternative_swapped;
2476 int best;
2477 int commutative;
2478 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2479 rtx substed_operand[MAX_RECOG_OPERANDS];
2480 rtx body = PATTERN (insn);
2481 rtx set = single_set (insn);
2482 int goal_earlyclobber = 0, this_earlyclobber;
2483 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2484 int retval = 0;
2486 this_insn = insn;
2487 n_reloads = 0;
2488 n_replacements = 0;
2489 n_earlyclobbers = 0;
2490 replace_reloads = replace;
2491 hard_regs_live_known = live_known;
2492 static_reload_reg_p = reload_reg_p;
2494 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2495 neither are insns that SET cc0. Insns that use CC0 are not allowed
2496 to have any input reloads. */
2497 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2498 no_output_reloads = 1;
2500 #ifdef HAVE_cc0
2501 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2502 no_input_reloads = 1;
2503 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2504 no_output_reloads = 1;
2505 #endif
2507 #ifdef SECONDARY_MEMORY_NEEDED
2508 /* The eliminated forms of any secondary memory locations are per-insn, so
2509 clear them out here. */
2511 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2512 #endif
2514 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2515 is cheap to move between them. If it is not, there may not be an insn
2516 to do the copy, so we may need a reload. */
2517 if (GET_CODE (body) == SET
2518 && GET_CODE (SET_DEST (body)) == REG
2519 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2520 && GET_CODE (SET_SRC (body)) == REG
2521 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2522 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2523 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2524 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2525 return 0;
2527 extract_insn (insn);
2529 noperands = reload_n_operands = recog_data.n_operands;
2530 n_alternatives = recog_data.n_alternatives;
2532 /* Just return "no reloads" if insn has no operands with constraints. */
2533 if (noperands == 0 || n_alternatives == 0)
2534 return 0;
2536 insn_code_number = INSN_CODE (insn);
2537 this_insn_is_asm = insn_code_number < 0;
2539 memcpy (operand_mode, recog_data.operand_mode,
2540 noperands * sizeof (enum machine_mode));
2541 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2543 commutative = -1;
2545 /* If we will need to know, later, whether some pair of operands
2546 are the same, we must compare them now and save the result.
2547 Reloading the base and index registers will clobber them
2548 and afterward they will fail to match. */
2550 for (i = 0; i < noperands; i++)
2552 char *p;
2553 int c;
2555 substed_operand[i] = recog_data.operand[i];
2556 p = constraints[i];
2558 modified[i] = RELOAD_READ;
2560 /* Scan this operand's constraint to see if it is an output operand,
2561 an in-out operand, is commutative, or should match another. */
2563 while ((c = *p++))
2565 if (c == '=')
2566 modified[i] = RELOAD_WRITE;
2567 else if (c == '+')
2568 modified[i] = RELOAD_READ_WRITE;
2569 else if (c == '%')
2571 /* The last operand should not be marked commutative. */
2572 if (i == noperands - 1)
2573 abort ();
2575 commutative = i;
2577 else if (ISDIGIT (c))
2579 c = strtoul (p - 1, &p, 10);
2581 operands_match[c][i]
2582 = operands_match_p (recog_data.operand[c],
2583 recog_data.operand[i]);
2585 /* An operand may not match itself. */
2586 if (c == i)
2587 abort ();
2589 /* If C can be commuted with C+1, and C might need to match I,
2590 then C+1 might also need to match I. */
2591 if (commutative >= 0)
2593 if (c == commutative || c == commutative + 1)
2595 int other = c + (c == commutative ? 1 : -1);
2596 operands_match[other][i]
2597 = operands_match_p (recog_data.operand[other],
2598 recog_data.operand[i]);
2600 if (i == commutative || i == commutative + 1)
2602 int other = i + (i == commutative ? 1 : -1);
2603 operands_match[c][other]
2604 = operands_match_p (recog_data.operand[c],
2605 recog_data.operand[other]);
2607 /* Note that C is supposed to be less than I.
2608 No need to consider altering both C and I because in
2609 that case we would alter one into the other. */
2615 /* Examine each operand that is a memory reference or memory address
2616 and reload parts of the addresses into index registers.
2617 Also here any references to pseudo regs that didn't get hard regs
2618 but are equivalent to constants get replaced in the insn itself
2619 with those constants. Nobody will ever see them again.
2621 Finally, set up the preferred classes of each operand. */
2623 for (i = 0; i < noperands; i++)
2625 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2627 address_reloaded[i] = 0;
2628 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2629 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2630 : RELOAD_OTHER);
2631 address_type[i]
2632 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2633 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2634 : RELOAD_OTHER);
2636 if (*constraints[i] == 0)
2637 /* Ignore things like match_operator operands. */
2639 else if (constraints[i][0] == 'p')
2641 find_reloads_address (VOIDmode, (rtx*) 0,
2642 recog_data.operand[i],
2643 recog_data.operand_loc[i],
2644 i, operand_type[i], ind_levels, insn);
2646 /* If we now have a simple operand where we used to have a
2647 PLUS or MULT, re-recognize and try again. */
2648 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2649 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2650 && (GET_CODE (recog_data.operand[i]) == MULT
2651 || GET_CODE (recog_data.operand[i]) == PLUS))
2653 INSN_CODE (insn) = -1;
2654 retval = find_reloads (insn, replace, ind_levels, live_known,
2655 reload_reg_p);
2656 return retval;
2659 recog_data.operand[i] = *recog_data.operand_loc[i];
2660 substed_operand[i] = recog_data.operand[i];
2662 else if (code == MEM)
2664 address_reloaded[i]
2665 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2666 recog_data.operand_loc[i],
2667 XEXP (recog_data.operand[i], 0),
2668 &XEXP (recog_data.operand[i], 0),
2669 i, address_type[i], ind_levels, insn);
2670 recog_data.operand[i] = *recog_data.operand_loc[i];
2671 substed_operand[i] = recog_data.operand[i];
2673 else if (code == SUBREG)
2675 rtx reg = SUBREG_REG (recog_data.operand[i]);
2676 rtx op
2677 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2678 ind_levels,
2679 set != 0
2680 && &SET_DEST (set) == recog_data.operand_loc[i],
2681 insn,
2682 &address_reloaded[i]);
2684 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2685 that didn't get a hard register, emit a USE with a REG_EQUAL
2686 note in front so that we might inherit a previous, possibly
2687 wider reload. */
2689 if (replace
2690 && GET_CODE (op) == MEM
2691 && GET_CODE (reg) == REG
2692 && (GET_MODE_SIZE (GET_MODE (reg))
2693 >= GET_MODE_SIZE (GET_MODE (op))))
2694 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2695 insn),
2696 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2698 substed_operand[i] = recog_data.operand[i] = op;
2700 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2701 /* We can get a PLUS as an "operand" as a result of register
2702 elimination. See eliminate_regs and gen_reload. We handle
2703 a unary operator by reloading the operand. */
2704 substed_operand[i] = recog_data.operand[i]
2705 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2706 ind_levels, 0, insn,
2707 &address_reloaded[i]);
2708 else if (code == REG)
2710 /* This is equivalent to calling find_reloads_toplev.
2711 The code is duplicated for speed.
2712 When we find a pseudo always equivalent to a constant,
2713 we replace it by the constant. We must be sure, however,
2714 that we don't try to replace it in the insn in which it
2715 is being set. */
2716 int regno = REGNO (recog_data.operand[i]);
2717 if (reg_equiv_constant[regno] != 0
2718 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2720 /* Record the existing mode so that the check if constants are
2721 allowed will work when operand_mode isn't specified. */
2723 if (operand_mode[i] == VOIDmode)
2724 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2726 substed_operand[i] = recog_data.operand[i]
2727 = reg_equiv_constant[regno];
2729 if (reg_equiv_memory_loc[regno] != 0
2730 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2731 /* We need not give a valid is_set_dest argument since the case
2732 of a constant equivalence was checked above. */
2733 substed_operand[i] = recog_data.operand[i]
2734 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2735 ind_levels, 0, insn,
2736 &address_reloaded[i]);
2738 /* If the operand is still a register (we didn't replace it with an
2739 equivalent), get the preferred class to reload it into. */
2740 code = GET_CODE (recog_data.operand[i]);
2741 preferred_class[i]
2742 = ((code == REG && REGNO (recog_data.operand[i])
2743 >= FIRST_PSEUDO_REGISTER)
2744 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2745 : NO_REGS);
2746 pref_or_nothing[i]
2747 = (code == REG
2748 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2749 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2752 /* If this is simply a copy from operand 1 to operand 0, merge the
2753 preferred classes for the operands. */
2754 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2755 && recog_data.operand[1] == SET_SRC (set))
2757 preferred_class[0] = preferred_class[1]
2758 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2759 pref_or_nothing[0] |= pref_or_nothing[1];
2760 pref_or_nothing[1] |= pref_or_nothing[0];
2763 /* Now see what we need for pseudo-regs that didn't get hard regs
2764 or got the wrong kind of hard reg. For this, we must consider
2765 all the operands together against the register constraints. */
2767 best = MAX_RECOG_OPERANDS * 2 + 600;
2769 swapped = 0;
2770 goal_alternative_swapped = 0;
2771 try_swapped:
2773 /* The constraints are made of several alternatives.
2774 Each operand's constraint looks like foo,bar,... with commas
2775 separating the alternatives. The first alternatives for all
2776 operands go together, the second alternatives go together, etc.
2778 First loop over alternatives. */
2780 for (this_alternative_number = 0;
2781 this_alternative_number < n_alternatives;
2782 this_alternative_number++)
2784 /* Loop over operands for one constraint alternative. */
2785 /* LOSERS counts those that don't fit this alternative
2786 and would require loading. */
2787 int losers = 0;
2788 /* BAD is set to 1 if it some operand can't fit this alternative
2789 even after reloading. */
2790 int bad = 0;
2791 /* REJECT is a count of how undesirable this alternative says it is
2792 if any reloading is required. If the alternative matches exactly
2793 then REJECT is ignored, but otherwise it gets this much
2794 counted against it in addition to the reloading needed. Each
2795 ? counts three times here since we want the disparaging caused by
2796 a bad register class to only count 1/3 as much. */
2797 int reject = 0;
2799 this_earlyclobber = 0;
2801 for (i = 0; i < noperands; i++)
2803 char *p = constraints[i];
2804 int win = 0;
2805 int did_match = 0;
2806 /* 0 => this operand can be reloaded somehow for this alternative. */
2807 int badop = 1;
2808 /* 0 => this operand can be reloaded if the alternative allows regs. */
2809 int winreg = 0;
2810 int c;
2811 rtx operand = recog_data.operand[i];
2812 int offset = 0;
2813 /* Nonzero means this is a MEM that must be reloaded into a reg
2814 regardless of what the constraint says. */
2815 int force_reload = 0;
2816 int offmemok = 0;
2817 /* Nonzero if a constant forced into memory would be OK for this
2818 operand. */
2819 int constmemok = 0;
2820 int earlyclobber = 0;
2822 /* If the predicate accepts a unary operator, it means that
2823 we need to reload the operand, but do not do this for
2824 match_operator and friends. */
2825 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2826 operand = XEXP (operand, 0);
2828 /* If the operand is a SUBREG, extract
2829 the REG or MEM (or maybe even a constant) within.
2830 (Constants can occur as a result of reg_equiv_constant.) */
2832 while (GET_CODE (operand) == SUBREG)
2834 /* Offset only matters when operand is a REG and
2835 it is a hard reg. This is because it is passed
2836 to reg_fits_class_p if it is a REG and all pseudos
2837 return 0 from that function. */
2838 if (GET_CODE (SUBREG_REG (operand)) == REG
2839 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2841 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2842 GET_MODE (SUBREG_REG (operand)),
2843 SUBREG_BYTE (operand),
2844 GET_MODE (operand));
2846 operand = SUBREG_REG (operand);
2847 /* Force reload if this is a constant or PLUS or if there may
2848 be a problem accessing OPERAND in the outer mode. */
2849 if (CONSTANT_P (operand)
2850 || GET_CODE (operand) == PLUS
2851 /* We must force a reload of paradoxical SUBREGs
2852 of a MEM because the alignment of the inner value
2853 may not be enough to do the outer reference. On
2854 big-endian machines, it may also reference outside
2855 the object.
2857 On machines that extend byte operations and we have a
2858 SUBREG where both the inner and outer modes are no wider
2859 than a word and the inner mode is narrower, is integral,
2860 and gets extended when loaded from memory, combine.c has
2861 made assumptions about the behavior of the machine in such
2862 register access. If the data is, in fact, in memory we
2863 must always load using the size assumed to be in the
2864 register and let the insn do the different-sized
2865 accesses.
2867 This is doubly true if WORD_REGISTER_OPERATIONS. In
2868 this case eliminate_regs has left non-paradoxical
2869 subregs for push_reloads to see. Make sure it does
2870 by forcing the reload.
2872 ??? When is it right at this stage to have a subreg
2873 of a mem that is _not_ to be handled specialy? IMO
2874 those should have been reduced to just a mem. */
2875 || ((GET_CODE (operand) == MEM
2876 || (GET_CODE (operand)== REG
2877 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2878 #ifndef WORD_REGISTER_OPERATIONS
2879 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2880 < BIGGEST_ALIGNMENT)
2881 && (GET_MODE_SIZE (operand_mode[i])
2882 > GET_MODE_SIZE (GET_MODE (operand))))
2883 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2884 #ifdef LOAD_EXTEND_OP
2885 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2886 && (GET_MODE_SIZE (GET_MODE (operand))
2887 <= UNITS_PER_WORD)
2888 && (GET_MODE_SIZE (operand_mode[i])
2889 > GET_MODE_SIZE (GET_MODE (operand)))
2890 && INTEGRAL_MODE_P (GET_MODE (operand))
2891 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2892 #endif
2894 #endif
2896 /* This following hunk of code should no longer be
2897 needed at all with SUBREG_BYTE. If you need this
2898 code back, please explain to me why so I can
2899 fix the real problem. -DaveM */
2900 #if 0
2901 /* Subreg of a hard reg which can't handle the subreg's mode
2902 or which would handle that mode in the wrong number of
2903 registers for subregging to work. */
2904 || (GET_CODE (operand) == REG
2905 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2906 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2907 && (GET_MODE_SIZE (GET_MODE (operand))
2908 > UNITS_PER_WORD)
2909 && ((GET_MODE_SIZE (GET_MODE (operand))
2910 / UNITS_PER_WORD)
2911 != HARD_REGNO_NREGS (REGNO (operand),
2912 GET_MODE (operand))))
2913 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2914 operand_mode[i])))
2915 #endif
2917 force_reload = 1;
2920 this_alternative[i] = (int) NO_REGS;
2921 this_alternative_win[i] = 0;
2922 this_alternative_match_win[i] = 0;
2923 this_alternative_offmemok[i] = 0;
2924 this_alternative_earlyclobber[i] = 0;
2925 this_alternative_matches[i] = -1;
2927 /* An empty constraint or empty alternative
2928 allows anything which matched the pattern. */
2929 if (*p == 0 || *p == ',')
2930 win = 1, badop = 0;
2932 /* Scan this alternative's specs for this operand;
2933 set WIN if the operand fits any letter in this alternative.
2934 Otherwise, clear BADOP if this operand could
2935 fit some letter after reloads,
2936 or set WINREG if this operand could fit after reloads
2937 provided the constraint allows some registers. */
2939 while (*p && (c = *p++) != ',')
2940 switch (c)
2942 case '=': case '+': case '*':
2943 break;
2945 case '%':
2946 /* The last operand should not be marked commutative. */
2947 if (i != noperands - 1)
2948 commutative = i;
2949 break;
2951 case '?':
2952 reject += 6;
2953 break;
2955 case '!':
2956 reject = 600;
2957 break;
2959 case '#':
2960 /* Ignore rest of this alternative as far as
2961 reloading is concerned. */
2962 while (*p && *p != ',')
2963 p++;
2964 break;
2966 case '0': case '1': case '2': case '3': case '4':
2967 case '5': case '6': case '7': case '8': case '9':
2968 c = strtoul (p - 1, &p, 10);
2970 this_alternative_matches[i] = c;
2971 /* We are supposed to match a previous operand.
2972 If we do, we win if that one did.
2973 If we do not, count both of the operands as losers.
2974 (This is too conservative, since most of the time
2975 only a single reload insn will be needed to make
2976 the two operands win. As a result, this alternative
2977 may be rejected when it is actually desirable.) */
2978 if ((swapped && (c != commutative || i != commutative + 1))
2979 /* If we are matching as if two operands were swapped,
2980 also pretend that operands_match had been computed
2981 with swapped.
2982 But if I is the second of those and C is the first,
2983 don't exchange them, because operands_match is valid
2984 only on one side of its diagonal. */
2985 ? (operands_match
2986 [(c == commutative || c == commutative + 1)
2987 ? 2 * commutative + 1 - c : c]
2988 [(i == commutative || i == commutative + 1)
2989 ? 2 * commutative + 1 - i : i])
2990 : operands_match[c][i])
2992 /* If we are matching a non-offsettable address where an
2993 offsettable address was expected, then we must reject
2994 this combination, because we can't reload it. */
2995 if (this_alternative_offmemok[c]
2996 && GET_CODE (recog_data.operand[c]) == MEM
2997 && this_alternative[c] == (int) NO_REGS
2998 && ! this_alternative_win[c])
2999 bad = 1;
3001 did_match = this_alternative_win[c];
3003 else
3005 /* Operands don't match. */
3006 rtx value;
3007 /* Retroactively mark the operand we had to match
3008 as a loser, if it wasn't already. */
3009 if (this_alternative_win[c])
3010 losers++;
3011 this_alternative_win[c] = 0;
3012 if (this_alternative[c] == (int) NO_REGS)
3013 bad = 1;
3014 /* But count the pair only once in the total badness of
3015 this alternative, if the pair can be a dummy reload. */
3016 value
3017 = find_dummy_reload (recog_data.operand[i],
3018 recog_data.operand[c],
3019 recog_data.operand_loc[i],
3020 recog_data.operand_loc[c],
3021 operand_mode[i], operand_mode[c],
3022 this_alternative[c], -1,
3023 this_alternative_earlyclobber[c]);
3025 if (value != 0)
3026 losers--;
3028 /* This can be fixed with reloads if the operand
3029 we are supposed to match can be fixed with reloads. */
3030 badop = 0;
3031 this_alternative[i] = this_alternative[c];
3033 /* If we have to reload this operand and some previous
3034 operand also had to match the same thing as this
3035 operand, we don't know how to do that. So reject this
3036 alternative. */
3037 if (! did_match || force_reload)
3038 for (j = 0; j < i; j++)
3039 if (this_alternative_matches[j]
3040 == this_alternative_matches[i])
3041 badop = 1;
3042 break;
3044 case 'p':
3045 /* All necessary reloads for an address_operand
3046 were handled in find_reloads_address. */
3047 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3048 win = 1;
3049 badop = 0;
3050 break;
3052 case 'm':
3053 if (force_reload)
3054 break;
3055 if (GET_CODE (operand) == MEM
3056 || (GET_CODE (operand) == REG
3057 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3058 && reg_renumber[REGNO (operand)] < 0))
3059 win = 1;
3060 if (CONSTANT_P (operand)
3061 /* force_const_mem does not accept HIGH. */
3062 && GET_CODE (operand) != HIGH)
3063 badop = 0;
3064 constmemok = 1;
3065 break;
3067 case '<':
3068 if (GET_CODE (operand) == MEM
3069 && ! address_reloaded[i]
3070 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3071 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3072 win = 1;
3073 break;
3075 case '>':
3076 if (GET_CODE (operand) == MEM
3077 && ! address_reloaded[i]
3078 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3079 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3080 win = 1;
3081 break;
3083 /* Memory operand whose address is not offsettable. */
3084 case 'V':
3085 if (force_reload)
3086 break;
3087 if (GET_CODE (operand) == MEM
3088 && ! (ind_levels ? offsettable_memref_p (operand)
3089 : offsettable_nonstrict_memref_p (operand))
3090 /* Certain mem addresses will become offsettable
3091 after they themselves are reloaded. This is important;
3092 we don't want our own handling of unoffsettables
3093 to override the handling of reg_equiv_address. */
3094 && !(GET_CODE (XEXP (operand, 0)) == REG
3095 && (ind_levels == 0
3096 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3097 win = 1;
3098 break;
3100 /* Memory operand whose address is offsettable. */
3101 case 'o':
3102 if (force_reload)
3103 break;
3104 if ((GET_CODE (operand) == MEM
3105 /* If IND_LEVELS, find_reloads_address won't reload a
3106 pseudo that didn't get a hard reg, so we have to
3107 reject that case. */
3108 && ((ind_levels ? offsettable_memref_p (operand)
3109 : offsettable_nonstrict_memref_p (operand))
3110 /* A reloaded address is offsettable because it is now
3111 just a simple register indirect. */
3112 || address_reloaded[i]))
3113 || (GET_CODE (operand) == REG
3114 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3115 && reg_renumber[REGNO (operand)] < 0
3116 /* If reg_equiv_address is nonzero, we will be
3117 loading it into a register; hence it will be
3118 offsettable, but we cannot say that reg_equiv_mem
3119 is offsettable without checking. */
3120 && ((reg_equiv_mem[REGNO (operand)] != 0
3121 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3122 || (reg_equiv_address[REGNO (operand)] != 0))))
3123 win = 1;
3124 /* force_const_mem does not accept HIGH. */
3125 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3126 || GET_CODE (operand) == MEM)
3127 badop = 0;
3128 constmemok = 1;
3129 offmemok = 1;
3130 break;
3132 case '&':
3133 /* Output operand that is stored before the need for the
3134 input operands (and their index registers) is over. */
3135 earlyclobber = 1, this_earlyclobber = 1;
3136 break;
3138 case 'E':
3139 case 'F':
3140 if (GET_CODE (operand) == CONST_DOUBLE)
3141 win = 1;
3142 break;
3144 case 'G':
3145 case 'H':
3146 if (GET_CODE (operand) == CONST_DOUBLE
3147 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3148 win = 1;
3149 break;
3151 case 's':
3152 if (GET_CODE (operand) == CONST_INT
3153 || (GET_CODE (operand) == CONST_DOUBLE
3154 && GET_MODE (operand) == VOIDmode))
3155 break;
3156 case 'i':
3157 if (CONSTANT_P (operand)
3158 #ifdef LEGITIMATE_PIC_OPERAND_P
3159 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3160 #endif
3162 win = 1;
3163 break;
3165 case 'n':
3166 if (GET_CODE (operand) == CONST_INT
3167 || (GET_CODE (operand) == CONST_DOUBLE
3168 && GET_MODE (operand) == VOIDmode))
3169 win = 1;
3170 break;
3172 case 'I':
3173 case 'J':
3174 case 'K':
3175 case 'L':
3176 case 'M':
3177 case 'N':
3178 case 'O':
3179 case 'P':
3180 if (GET_CODE (operand) == CONST_INT
3181 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3182 win = 1;
3183 break;
3185 case 'X':
3186 win = 1;
3187 break;
3189 case 'g':
3190 if (! force_reload
3191 /* A PLUS is never a valid operand, but reload can make
3192 it from a register when eliminating registers. */
3193 && GET_CODE (operand) != PLUS
3194 /* A SCRATCH is not a valid operand. */
3195 && GET_CODE (operand) != SCRATCH
3196 #ifdef LEGITIMATE_PIC_OPERAND_P
3197 && (! CONSTANT_P (operand)
3198 || ! flag_pic
3199 || LEGITIMATE_PIC_OPERAND_P (operand))
3200 #endif
3201 && (GENERAL_REGS == ALL_REGS
3202 || GET_CODE (operand) != REG
3203 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3204 && reg_renumber[REGNO (operand)] < 0)))
3205 win = 1;
3206 /* Drop through into 'r' case. */
3208 case 'r':
3209 this_alternative[i]
3210 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3211 goto reg;
3213 default:
3214 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3216 #ifdef EXTRA_CONSTRAINT
3217 if (EXTRA_CONSTRAINT (operand, c))
3218 win = 1;
3219 #endif
3220 break;
3223 this_alternative[i]
3224 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3225 reg:
3226 if (GET_MODE (operand) == BLKmode)
3227 break;
3228 winreg = 1;
3229 if (GET_CODE (operand) == REG
3230 && reg_fits_class_p (operand, this_alternative[i],
3231 offset, GET_MODE (recog_data.operand[i])))
3232 win = 1;
3233 break;
3236 constraints[i] = p;
3238 /* If this operand could be handled with a reg,
3239 and some reg is allowed, then this operand can be handled. */
3240 if (winreg && this_alternative[i] != (int) NO_REGS)
3241 badop = 0;
3243 /* Record which operands fit this alternative. */
3244 this_alternative_earlyclobber[i] = earlyclobber;
3245 if (win && ! force_reload)
3246 this_alternative_win[i] = 1;
3247 else if (did_match && ! force_reload)
3248 this_alternative_match_win[i] = 1;
3249 else
3251 int const_to_mem = 0;
3253 this_alternative_offmemok[i] = offmemok;
3254 losers++;
3255 if (badop)
3256 bad = 1;
3257 /* Alternative loses if it has no regs for a reg operand. */
3258 if (GET_CODE (operand) == REG
3259 && this_alternative[i] == (int) NO_REGS
3260 && this_alternative_matches[i] < 0)
3261 bad = 1;
3263 /* If this is a constant that is reloaded into the desired
3264 class by copying it to memory first, count that as another
3265 reload. This is consistent with other code and is
3266 required to avoid choosing another alternative when
3267 the constant is moved into memory by this function on
3268 an early reload pass. Note that the test here is
3269 precisely the same as in the code below that calls
3270 force_const_mem. */
3271 if (CONSTANT_P (operand)
3272 /* force_const_mem does not accept HIGH. */
3273 && GET_CODE (operand) != HIGH
3274 && ((PREFERRED_RELOAD_CLASS (operand,
3275 (enum reg_class) this_alternative[i])
3276 == NO_REGS)
3277 || no_input_reloads)
3278 && operand_mode[i] != VOIDmode)
3280 const_to_mem = 1;
3281 if (this_alternative[i] != (int) NO_REGS)
3282 losers++;
3285 /* If we can't reload this value at all, reject this
3286 alternative. Note that we could also lose due to
3287 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3288 here. */
3290 if (! CONSTANT_P (operand)
3291 && (enum reg_class) this_alternative[i] != NO_REGS
3292 && (PREFERRED_RELOAD_CLASS (operand,
3293 (enum reg_class) this_alternative[i])
3294 == NO_REGS))
3295 bad = 1;
3297 /* Alternative loses if it requires a type of reload not
3298 permitted for this insn. We can always reload SCRATCH
3299 and objects with a REG_UNUSED note. */
3300 else if (GET_CODE (operand) != SCRATCH
3301 && modified[i] != RELOAD_READ && no_output_reloads
3302 && ! find_reg_note (insn, REG_UNUSED, operand))
3303 bad = 1;
3304 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3305 && ! const_to_mem)
3306 bad = 1;
3308 /* We prefer to reload pseudos over reloading other things,
3309 since such reloads may be able to be eliminated later.
3310 If we are reloading a SCRATCH, we won't be generating any
3311 insns, just using a register, so it is also preferred.
3312 So bump REJECT in other cases. Don't do this in the
3313 case where we are forcing a constant into memory and
3314 it will then win since we don't want to have a different
3315 alternative match then. */
3316 if (! (GET_CODE (operand) == REG
3317 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3318 && GET_CODE (operand) != SCRATCH
3319 && ! (const_to_mem && constmemok))
3320 reject += 2;
3322 /* Input reloads can be inherited more often than output
3323 reloads can be removed, so penalize output reloads. */
3324 if (operand_type[i] != RELOAD_FOR_INPUT
3325 && GET_CODE (operand) != SCRATCH)
3326 reject++;
3329 /* If this operand is a pseudo register that didn't get a hard
3330 reg and this alternative accepts some register, see if the
3331 class that we want is a subset of the preferred class for this
3332 register. If not, but it intersects that class, use the
3333 preferred class instead. If it does not intersect the preferred
3334 class, show that usage of this alternative should be discouraged;
3335 it will be discouraged more still if the register is `preferred
3336 or nothing'. We do this because it increases the chance of
3337 reusing our spill register in a later insn and avoiding a pair
3338 of memory stores and loads.
3340 Don't bother with this if this alternative will accept this
3341 operand.
3343 Don't do this for a multiword operand, since it is only a
3344 small win and has the risk of requiring more spill registers,
3345 which could cause a large loss.
3347 Don't do this if the preferred class has only one register
3348 because we might otherwise exhaust the class. */
3350 if (! win && ! did_match
3351 && this_alternative[i] != (int) NO_REGS
3352 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3353 && reg_class_size[(int) preferred_class[i]] > 1)
3355 if (! reg_class_subset_p (this_alternative[i],
3356 preferred_class[i]))
3358 /* Since we don't have a way of forming the intersection,
3359 we just do something special if the preferred class
3360 is a subset of the class we have; that's the most
3361 common case anyway. */
3362 if (reg_class_subset_p (preferred_class[i],
3363 this_alternative[i]))
3364 this_alternative[i] = (int) preferred_class[i];
3365 else
3366 reject += (2 + 2 * pref_or_nothing[i]);
3371 /* Now see if any output operands that are marked "earlyclobber"
3372 in this alternative conflict with any input operands
3373 or any memory addresses. */
3375 for (i = 0; i < noperands; i++)
3376 if (this_alternative_earlyclobber[i]
3377 && (this_alternative_win[i] || this_alternative_match_win[i]))
3379 struct decomposition early_data;
3381 early_data = decompose (recog_data.operand[i]);
3383 if (modified[i] == RELOAD_READ)
3384 abort ();
3386 if (this_alternative[i] == NO_REGS)
3388 this_alternative_earlyclobber[i] = 0;
3389 if (this_insn_is_asm)
3390 error_for_asm (this_insn,
3391 "`&' constraint used with no register class");
3392 else
3393 abort ();
3396 for (j = 0; j < noperands; j++)
3397 /* Is this an input operand or a memory ref? */
3398 if ((GET_CODE (recog_data.operand[j]) == MEM
3399 || modified[j] != RELOAD_WRITE)
3400 && j != i
3401 /* Ignore things like match_operator operands. */
3402 && *recog_data.constraints[j] != 0
3403 /* Don't count an input operand that is constrained to match
3404 the early clobber operand. */
3405 && ! (this_alternative_matches[j] == i
3406 && rtx_equal_p (recog_data.operand[i],
3407 recog_data.operand[j]))
3408 /* Is it altered by storing the earlyclobber operand? */
3409 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3410 early_data))
3412 /* If the output is in a single-reg class,
3413 it's costly to reload it, so reload the input instead. */
3414 if (reg_class_size[this_alternative[i]] == 1
3415 && (GET_CODE (recog_data.operand[j]) == REG
3416 || GET_CODE (recog_data.operand[j]) == SUBREG))
3418 losers++;
3419 this_alternative_win[j] = 0;
3420 this_alternative_match_win[j] = 0;
3422 else
3423 break;
3425 /* If an earlyclobber operand conflicts with something,
3426 it must be reloaded, so request this and count the cost. */
3427 if (j != noperands)
3429 losers++;
3430 this_alternative_win[i] = 0;
3431 this_alternative_match_win[j] = 0;
3432 for (j = 0; j < noperands; j++)
3433 if (this_alternative_matches[j] == i
3434 && this_alternative_match_win[j])
3436 this_alternative_win[j] = 0;
3437 this_alternative_match_win[j] = 0;
3438 losers++;
3443 /* If one alternative accepts all the operands, no reload required,
3444 choose that alternative; don't consider the remaining ones. */
3445 if (losers == 0)
3447 /* Unswap these so that they are never swapped at `finish'. */
3448 if (commutative >= 0)
3450 recog_data.operand[commutative] = substed_operand[commutative];
3451 recog_data.operand[commutative + 1]
3452 = substed_operand[commutative + 1];
3454 for (i = 0; i < noperands; i++)
3456 goal_alternative_win[i] = this_alternative_win[i];
3457 goal_alternative_match_win[i] = this_alternative_match_win[i];
3458 goal_alternative[i] = this_alternative[i];
3459 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3460 goal_alternative_matches[i] = this_alternative_matches[i];
3461 goal_alternative_earlyclobber[i]
3462 = this_alternative_earlyclobber[i];
3464 goal_alternative_number = this_alternative_number;
3465 goal_alternative_swapped = swapped;
3466 goal_earlyclobber = this_earlyclobber;
3467 goto finish;
3470 /* REJECT, set by the ! and ? constraint characters and when a register
3471 would be reloaded into a non-preferred class, discourages the use of
3472 this alternative for a reload goal. REJECT is incremented by six
3473 for each ? and two for each non-preferred class. */
3474 losers = losers * 6 + reject;
3476 /* If this alternative can be made to work by reloading,
3477 and it needs less reloading than the others checked so far,
3478 record it as the chosen goal for reloading. */
3479 if (! bad && best > losers)
3481 for (i = 0; i < noperands; i++)
3483 goal_alternative[i] = this_alternative[i];
3484 goal_alternative_win[i] = this_alternative_win[i];
3485 goal_alternative_match_win[i] = this_alternative_match_win[i];
3486 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3487 goal_alternative_matches[i] = this_alternative_matches[i];
3488 goal_alternative_earlyclobber[i]
3489 = this_alternative_earlyclobber[i];
3491 goal_alternative_swapped = swapped;
3492 best = losers;
3493 goal_alternative_number = this_alternative_number;
3494 goal_earlyclobber = this_earlyclobber;
3498 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3499 then we need to try each alternative twice,
3500 the second time matching those two operands
3501 as if we had exchanged them.
3502 To do this, really exchange them in operands.
3504 If we have just tried the alternatives the second time,
3505 return operands to normal and drop through. */
3507 if (commutative >= 0)
3509 swapped = !swapped;
3510 if (swapped)
3512 enum reg_class tclass;
3513 int t;
3515 recog_data.operand[commutative] = substed_operand[commutative + 1];
3516 recog_data.operand[commutative + 1] = substed_operand[commutative];
3517 /* Swap the duplicates too. */
3518 for (i = 0; i < recog_data.n_dups; i++)
3519 if (recog_data.dup_num[i] == commutative
3520 || recog_data.dup_num[i] == commutative + 1)
3521 *recog_data.dup_loc[i]
3522 = recog_data.operand[(int) recog_data.dup_num[i]];
3524 tclass = preferred_class[commutative];
3525 preferred_class[commutative] = preferred_class[commutative + 1];
3526 preferred_class[commutative + 1] = tclass;
3528 t = pref_or_nothing[commutative];
3529 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3530 pref_or_nothing[commutative + 1] = t;
3532 memcpy (constraints, recog_data.constraints,
3533 noperands * sizeof (char *));
3534 goto try_swapped;
3536 else
3538 recog_data.operand[commutative] = substed_operand[commutative];
3539 recog_data.operand[commutative + 1]
3540 = substed_operand[commutative + 1];
3541 /* Unswap the duplicates too. */
3542 for (i = 0; i < recog_data.n_dups; i++)
3543 if (recog_data.dup_num[i] == commutative
3544 || recog_data.dup_num[i] == commutative + 1)
3545 *recog_data.dup_loc[i]
3546 = recog_data.operand[(int) recog_data.dup_num[i]];
3550 /* The operands don't meet the constraints.
3551 goal_alternative describes the alternative
3552 that we could reach by reloading the fewest operands.
3553 Reload so as to fit it. */
3555 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3557 /* No alternative works with reloads?? */
3558 if (insn_code_number >= 0)
3559 fatal_insn ("unable to generate reloads for:", insn);
3560 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3561 /* Avoid further trouble with this insn. */
3562 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3563 n_reloads = 0;
3564 return 0;
3567 /* Jump to `finish' from above if all operands are valid already.
3568 In that case, goal_alternative_win is all 1. */
3569 finish:
3571 /* Right now, for any pair of operands I and J that are required to match,
3572 with I < J,
3573 goal_alternative_matches[J] is I.
3574 Set up goal_alternative_matched as the inverse function:
3575 goal_alternative_matched[I] = J. */
3577 for (i = 0; i < noperands; i++)
3578 goal_alternative_matched[i] = -1;
3580 for (i = 0; i < noperands; i++)
3581 if (! goal_alternative_win[i]
3582 && goal_alternative_matches[i] >= 0)
3583 goal_alternative_matched[goal_alternative_matches[i]] = i;
3585 for (i = 0; i < noperands; i++)
3586 goal_alternative_win[i] |= goal_alternative_match_win[i];
3588 /* If the best alternative is with operands 1 and 2 swapped,
3589 consider them swapped before reporting the reloads. Update the
3590 operand numbers of any reloads already pushed. */
3592 if (goal_alternative_swapped)
3594 rtx tem;
3596 tem = substed_operand[commutative];
3597 substed_operand[commutative] = substed_operand[commutative + 1];
3598 substed_operand[commutative + 1] = tem;
3599 tem = recog_data.operand[commutative];
3600 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3601 recog_data.operand[commutative + 1] = tem;
3602 tem = *recog_data.operand_loc[commutative];
3603 *recog_data.operand_loc[commutative]
3604 = *recog_data.operand_loc[commutative + 1];
3605 *recog_data.operand_loc[commutative + 1] = tem;
3607 for (i = 0; i < n_reloads; i++)
3609 if (rld[i].opnum == commutative)
3610 rld[i].opnum = commutative + 1;
3611 else if (rld[i].opnum == commutative + 1)
3612 rld[i].opnum = commutative;
3616 for (i = 0; i < noperands; i++)
3618 operand_reloadnum[i] = -1;
3620 /* If this is an earlyclobber operand, we need to widen the scope.
3621 The reload must remain valid from the start of the insn being
3622 reloaded until after the operand is stored into its destination.
3623 We approximate this with RELOAD_OTHER even though we know that we
3624 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3626 One special case that is worth checking is when we have an
3627 output that is earlyclobber but isn't used past the insn (typically
3628 a SCRATCH). In this case, we only need have the reload live
3629 through the insn itself, but not for any of our input or output
3630 reloads.
3631 But we must not accidentally narrow the scope of an existing
3632 RELOAD_OTHER reload - leave these alone.
3634 In any case, anything needed to address this operand can remain
3635 however they were previously categorized. */
3637 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3638 operand_type[i]
3639 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3640 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3643 /* Any constants that aren't allowed and can't be reloaded
3644 into registers are here changed into memory references. */
3645 for (i = 0; i < noperands; i++)
3646 if (! goal_alternative_win[i]
3647 && CONSTANT_P (recog_data.operand[i])
3648 /* force_const_mem does not accept HIGH. */
3649 && GET_CODE (recog_data.operand[i]) != HIGH
3650 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3651 (enum reg_class) goal_alternative[i])
3652 == NO_REGS)
3653 || no_input_reloads)
3654 && operand_mode[i] != VOIDmode)
3656 substed_operand[i] = recog_data.operand[i]
3657 = find_reloads_toplev (force_const_mem (operand_mode[i],
3658 recog_data.operand[i]),
3659 i, address_type[i], ind_levels, 0, insn,
3660 NULL);
3661 if (alternative_allows_memconst (recog_data.constraints[i],
3662 goal_alternative_number))
3663 goal_alternative_win[i] = 1;
3666 /* Record the values of the earlyclobber operands for the caller. */
3667 if (goal_earlyclobber)
3668 for (i = 0; i < noperands; i++)
3669 if (goal_alternative_earlyclobber[i])
3670 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3672 /* Now record reloads for all the operands that need them. */
3673 for (i = 0; i < noperands; i++)
3674 if (! goal_alternative_win[i])
3676 /* Operands that match previous ones have already been handled. */
3677 if (goal_alternative_matches[i] >= 0)
3679 /* Handle an operand with a nonoffsettable address
3680 appearing where an offsettable address will do
3681 by reloading the address into a base register.
3683 ??? We can also do this when the operand is a register and
3684 reg_equiv_mem is not offsettable, but this is a bit tricky,
3685 so we don't bother with it. It may not be worth doing. */
3686 else if (goal_alternative_matched[i] == -1
3687 && goal_alternative_offmemok[i]
3688 && GET_CODE (recog_data.operand[i]) == MEM)
3690 operand_reloadnum[i]
3691 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3692 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3693 MODE_BASE_REG_CLASS (VOIDmode),
3694 GET_MODE (XEXP (recog_data.operand[i], 0)),
3695 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3696 rld[operand_reloadnum[i]].inc
3697 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3699 /* If this operand is an output, we will have made any
3700 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3701 now we are treating part of the operand as an input, so
3702 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3704 if (modified[i] == RELOAD_WRITE)
3706 for (j = 0; j < n_reloads; j++)
3708 if (rld[j].opnum == i)
3710 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3711 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3712 else if (rld[j].when_needed
3713 == RELOAD_FOR_OUTADDR_ADDRESS)
3714 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3719 else if (goal_alternative_matched[i] == -1)
3721 operand_reloadnum[i]
3722 = push_reload ((modified[i] != RELOAD_WRITE
3723 ? recog_data.operand[i] : 0),
3724 (modified[i] != RELOAD_READ
3725 ? recog_data.operand[i] : 0),
3726 (modified[i] != RELOAD_WRITE
3727 ? recog_data.operand_loc[i] : 0),
3728 (modified[i] != RELOAD_READ
3729 ? recog_data.operand_loc[i] : 0),
3730 (enum reg_class) goal_alternative[i],
3731 (modified[i] == RELOAD_WRITE
3732 ? VOIDmode : operand_mode[i]),
3733 (modified[i] == RELOAD_READ
3734 ? VOIDmode : operand_mode[i]),
3735 (insn_code_number < 0 ? 0
3736 : insn_data[insn_code_number].operand[i].strict_low),
3737 0, i, operand_type[i]);
3739 /* In a matching pair of operands, one must be input only
3740 and the other must be output only.
3741 Pass the input operand as IN and the other as OUT. */
3742 else if (modified[i] == RELOAD_READ
3743 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3745 operand_reloadnum[i]
3746 = push_reload (recog_data.operand[i],
3747 recog_data.operand[goal_alternative_matched[i]],
3748 recog_data.operand_loc[i],
3749 recog_data.operand_loc[goal_alternative_matched[i]],
3750 (enum reg_class) goal_alternative[i],
3751 operand_mode[i],
3752 operand_mode[goal_alternative_matched[i]],
3753 0, 0, i, RELOAD_OTHER);
3754 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3756 else if (modified[i] == RELOAD_WRITE
3757 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3759 operand_reloadnum[goal_alternative_matched[i]]
3760 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3761 recog_data.operand[i],
3762 recog_data.operand_loc[goal_alternative_matched[i]],
3763 recog_data.operand_loc[i],
3764 (enum reg_class) goal_alternative[i],
3765 operand_mode[goal_alternative_matched[i]],
3766 operand_mode[i],
3767 0, 0, i, RELOAD_OTHER);
3768 operand_reloadnum[i] = output_reloadnum;
3770 else if (insn_code_number >= 0)
3771 abort ();
3772 else
3774 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3775 /* Avoid further trouble with this insn. */
3776 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3777 n_reloads = 0;
3778 return 0;
3781 else if (goal_alternative_matched[i] < 0
3782 && goal_alternative_matches[i] < 0
3783 && optimize)
3785 /* For each non-matching operand that's a MEM or a pseudo-register
3786 that didn't get a hard register, make an optional reload.
3787 This may get done even if the insn needs no reloads otherwise. */
3789 rtx operand = recog_data.operand[i];
3791 while (GET_CODE (operand) == SUBREG)
3792 operand = SUBREG_REG (operand);
3793 if ((GET_CODE (operand) == MEM
3794 || (GET_CODE (operand) == REG
3795 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3796 /* If this is only for an output, the optional reload would not
3797 actually cause us to use a register now, just note that
3798 something is stored here. */
3799 && ((enum reg_class) goal_alternative[i] != NO_REGS
3800 || modified[i] == RELOAD_WRITE)
3801 && ! no_input_reloads
3802 /* An optional output reload might allow to delete INSN later.
3803 We mustn't make in-out reloads on insns that are not permitted
3804 output reloads.
3805 If this is an asm, we can't delete it; we must not even call
3806 push_reload for an optional output reload in this case,
3807 because we can't be sure that the constraint allows a register,
3808 and push_reload verifies the constraints for asms. */
3809 && (modified[i] == RELOAD_READ
3810 || (! no_output_reloads && ! this_insn_is_asm)))
3811 operand_reloadnum[i]
3812 = push_reload ((modified[i] != RELOAD_WRITE
3813 ? recog_data.operand[i] : 0),
3814 (modified[i] != RELOAD_READ
3815 ? recog_data.operand[i] : 0),
3816 (modified[i] != RELOAD_WRITE
3817 ? recog_data.operand_loc[i] : 0),
3818 (modified[i] != RELOAD_READ
3819 ? recog_data.operand_loc[i] : 0),
3820 (enum reg_class) goal_alternative[i],
3821 (modified[i] == RELOAD_WRITE
3822 ? VOIDmode : operand_mode[i]),
3823 (modified[i] == RELOAD_READ
3824 ? VOIDmode : operand_mode[i]),
3825 (insn_code_number < 0 ? 0
3826 : insn_data[insn_code_number].operand[i].strict_low),
3827 1, i, operand_type[i]);
3828 /* If a memory reference remains (either as a MEM or a pseudo that
3829 did not get a hard register), yet we can't make an optional
3830 reload, check if this is actually a pseudo register reference;
3831 we then need to emit a USE and/or a CLOBBER so that reload
3832 inheritance will do the right thing. */
3833 else if (replace
3834 && (GET_CODE (operand) == MEM
3835 || (GET_CODE (operand) == REG
3836 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3837 && reg_renumber [REGNO (operand)] < 0)))
3839 operand = *recog_data.operand_loc[i];
3841 while (GET_CODE (operand) == SUBREG)
3842 operand = SUBREG_REG (operand);
3843 if (GET_CODE (operand) == REG)
3845 if (modified[i] != RELOAD_WRITE)
3846 /* We mark the USE with QImode so that we recognize
3847 it as one that can be safely deleted at the end
3848 of reload. */
3849 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3850 insn), QImode);
3851 if (modified[i] != RELOAD_READ)
3852 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3856 else if (goal_alternative_matches[i] >= 0
3857 && goal_alternative_win[goal_alternative_matches[i]]
3858 && modified[i] == RELOAD_READ
3859 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3860 && ! no_input_reloads && ! no_output_reloads
3861 && optimize)
3863 /* Similarly, make an optional reload for a pair of matching
3864 objects that are in MEM or a pseudo that didn't get a hard reg. */
3866 rtx operand = recog_data.operand[i];
3868 while (GET_CODE (operand) == SUBREG)
3869 operand = SUBREG_REG (operand);
3870 if ((GET_CODE (operand) == MEM
3871 || (GET_CODE (operand) == REG
3872 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3873 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3874 != NO_REGS))
3875 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3876 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3877 recog_data.operand[i],
3878 recog_data.operand_loc[goal_alternative_matches[i]],
3879 recog_data.operand_loc[i],
3880 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3881 operand_mode[goal_alternative_matches[i]],
3882 operand_mode[i],
3883 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3886 /* Perform whatever substitutions on the operands we are supposed
3887 to make due to commutativity or replacement of registers
3888 with equivalent constants or memory slots. */
3890 for (i = 0; i < noperands; i++)
3892 /* We only do this on the last pass through reload, because it is
3893 possible for some data (like reg_equiv_address) to be changed during
3894 later passes. Moreover, we loose the opportunity to get a useful
3895 reload_{in,out}_reg when we do these replacements. */
3897 if (replace)
3899 rtx substitution = substed_operand[i];
3901 *recog_data.operand_loc[i] = substitution;
3903 /* If we're replacing an operand with a LABEL_REF, we need
3904 to make sure that there's a REG_LABEL note attached to
3905 this instruction. */
3906 if (GET_CODE (insn) != JUMP_INSN
3907 && GET_CODE (substitution) == LABEL_REF
3908 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3909 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
3910 XEXP (substitution, 0),
3911 REG_NOTES (insn));
3913 else
3914 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3917 /* If this insn pattern contains any MATCH_DUP's, make sure that
3918 they will be substituted if the operands they match are substituted.
3919 Also do now any substitutions we already did on the operands.
3921 Don't do this if we aren't making replacements because we might be
3922 propagating things allocated by frame pointer elimination into places
3923 it doesn't expect. */
3925 if (insn_code_number >= 0 && replace)
3926 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3928 int opno = recog_data.dup_num[i];
3929 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3930 if (operand_reloadnum[opno] >= 0)
3931 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3932 insn_data[insn_code_number].operand[opno].mode);
3935 #if 0
3936 /* This loses because reloading of prior insns can invalidate the equivalence
3937 (or at least find_equiv_reg isn't smart enough to find it any more),
3938 causing this insn to need more reload regs than it needed before.
3939 It may be too late to make the reload regs available.
3940 Now this optimization is done safely in choose_reload_regs. */
3942 /* For each reload of a reg into some other class of reg,
3943 search for an existing equivalent reg (same value now) in the right class.
3944 We can use it as long as we don't need to change its contents. */
3945 for (i = 0; i < n_reloads; i++)
3946 if (rld[i].reg_rtx == 0
3947 && rld[i].in != 0
3948 && GET_CODE (rld[i].in) == REG
3949 && rld[i].out == 0)
3951 rld[i].reg_rtx
3952 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3953 static_reload_reg_p, 0, rld[i].inmode);
3954 /* Prevent generation of insn to load the value
3955 because the one we found already has the value. */
3956 if (rld[i].reg_rtx)
3957 rld[i].in = rld[i].reg_rtx;
3959 #endif
3961 /* Perhaps an output reload can be combined with another
3962 to reduce needs by one. */
3963 if (!goal_earlyclobber)
3964 combine_reloads ();
3966 /* If we have a pair of reloads for parts of an address, they are reloading
3967 the same object, the operands themselves were not reloaded, and they
3968 are for two operands that are supposed to match, merge the reloads and
3969 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3971 for (i = 0; i < n_reloads; i++)
3973 int k;
3975 for (j = i + 1; j < n_reloads; j++)
3976 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3977 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3978 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3979 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3980 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3981 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3982 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3983 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3984 && rtx_equal_p (rld[i].in, rld[j].in)
3985 && (operand_reloadnum[rld[i].opnum] < 0
3986 || rld[operand_reloadnum[rld[i].opnum]].optional)
3987 && (operand_reloadnum[rld[j].opnum] < 0
3988 || rld[operand_reloadnum[rld[j].opnum]].optional)
3989 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3990 || (goal_alternative_matches[rld[j].opnum]
3991 == rld[i].opnum)))
3993 for (k = 0; k < n_replacements; k++)
3994 if (replacements[k].what == j)
3995 replacements[k].what = i;
3997 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3998 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3999 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4000 else
4001 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4002 rld[j].in = 0;
4006 /* Scan all the reloads and update their type.
4007 If a reload is for the address of an operand and we didn't reload
4008 that operand, change the type. Similarly, change the operand number
4009 of a reload when two operands match. If a reload is optional, treat it
4010 as though the operand isn't reloaded.
4012 ??? This latter case is somewhat odd because if we do the optional
4013 reload, it means the object is hanging around. Thus we need only
4014 do the address reload if the optional reload was NOT done.
4016 Change secondary reloads to be the address type of their operand, not
4017 the normal type.
4019 If an operand's reload is now RELOAD_OTHER, change any
4020 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4021 RELOAD_FOR_OTHER_ADDRESS. */
4023 for (i = 0; i < n_reloads; i++)
4025 if (rld[i].secondary_p
4026 && rld[i].when_needed == operand_type[rld[i].opnum])
4027 rld[i].when_needed = address_type[rld[i].opnum];
4029 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4030 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4031 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4032 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4033 && (operand_reloadnum[rld[i].opnum] < 0
4034 || rld[operand_reloadnum[rld[i].opnum]].optional))
4036 /* If we have a secondary reload to go along with this reload,
4037 change its type to RELOAD_FOR_OPADDR_ADDR. */
4039 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4040 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4041 && rld[i].secondary_in_reload != -1)
4043 int secondary_in_reload = rld[i].secondary_in_reload;
4045 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4047 /* If there's a tertiary reload we have to change it also. */
4048 if (secondary_in_reload > 0
4049 && rld[secondary_in_reload].secondary_in_reload != -1)
4050 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4051 = RELOAD_FOR_OPADDR_ADDR;
4054 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4055 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4056 && rld[i].secondary_out_reload != -1)
4058 int secondary_out_reload = rld[i].secondary_out_reload;
4060 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4062 /* If there's a tertiary reload we have to change it also. */
4063 if (secondary_out_reload
4064 && rld[secondary_out_reload].secondary_out_reload != -1)
4065 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4066 = RELOAD_FOR_OPADDR_ADDR;
4069 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4070 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4071 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4072 else
4073 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4076 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4077 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4078 && operand_reloadnum[rld[i].opnum] >= 0
4079 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4080 == RELOAD_OTHER))
4081 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4083 if (goal_alternative_matches[rld[i].opnum] >= 0)
4084 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4087 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4088 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4089 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4091 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4092 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4093 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4094 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4095 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4096 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4097 This is complicated by the fact that a single operand can have more
4098 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4099 choose_reload_regs without affecting code quality, and cases that
4100 actually fail are extremely rare, so it turns out to be better to fix
4101 the problem here by not generating cases that choose_reload_regs will
4102 fail for. */
4103 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4104 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4105 a single operand.
4106 We can reduce the register pressure by exploiting that a
4107 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4108 does not conflict with any of them, if it is only used for the first of
4109 the RELOAD_FOR_X_ADDRESS reloads. */
4111 int first_op_addr_num = -2;
4112 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4113 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4114 int need_change = 0;
4115 /* We use last_op_addr_reload and the contents of the above arrays
4116 first as flags - -2 means no instance encountered, -1 means exactly
4117 one instance encountered.
4118 If more than one instance has been encountered, we store the reload
4119 number of the first reload of the kind in question; reload numbers
4120 are known to be non-negative. */
4121 for (i = 0; i < noperands; i++)
4122 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4123 for (i = n_reloads - 1; i >= 0; i--)
4125 switch (rld[i].when_needed)
4127 case RELOAD_FOR_OPERAND_ADDRESS:
4128 if (++first_op_addr_num >= 0)
4130 first_op_addr_num = i;
4131 need_change = 1;
4133 break;
4134 case RELOAD_FOR_INPUT_ADDRESS:
4135 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4137 first_inpaddr_num[rld[i].opnum] = i;
4138 need_change = 1;
4140 break;
4141 case RELOAD_FOR_OUTPUT_ADDRESS:
4142 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4144 first_outpaddr_num[rld[i].opnum] = i;
4145 need_change = 1;
4147 break;
4148 default:
4149 break;
4153 if (need_change)
4155 for (i = 0; i < n_reloads; i++)
4157 int first_num;
4158 enum reload_type type;
4160 switch (rld[i].when_needed)
4162 case RELOAD_FOR_OPADDR_ADDR:
4163 first_num = first_op_addr_num;
4164 type = RELOAD_FOR_OPERAND_ADDRESS;
4165 break;
4166 case RELOAD_FOR_INPADDR_ADDRESS:
4167 first_num = first_inpaddr_num[rld[i].opnum];
4168 type = RELOAD_FOR_INPUT_ADDRESS;
4169 break;
4170 case RELOAD_FOR_OUTADDR_ADDRESS:
4171 first_num = first_outpaddr_num[rld[i].opnum];
4172 type = RELOAD_FOR_OUTPUT_ADDRESS;
4173 break;
4174 default:
4175 continue;
4177 if (first_num < 0)
4178 continue;
4179 else if (i > first_num)
4180 rld[i].when_needed = type;
4181 else
4183 /* Check if the only TYPE reload that uses reload I is
4184 reload FIRST_NUM. */
4185 for (j = n_reloads - 1; j > first_num; j--)
4187 if (rld[j].when_needed == type
4188 && (rld[i].secondary_p
4189 ? rld[j].secondary_in_reload == i
4190 : reg_mentioned_p (rld[i].in, rld[j].in)))
4192 rld[i].when_needed = type;
4193 break;
4201 /* See if we have any reloads that are now allowed to be merged
4202 because we've changed when the reload is needed to
4203 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4204 check for the most common cases. */
4206 for (i = 0; i < n_reloads; i++)
4207 if (rld[i].in != 0 && rld[i].out == 0
4208 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4209 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4210 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4211 for (j = 0; j < n_reloads; j++)
4212 if (i != j && rld[j].in != 0 && rld[j].out == 0
4213 && rld[j].when_needed == rld[i].when_needed
4214 && MATCHES (rld[i].in, rld[j].in)
4215 && rld[i].class == rld[j].class
4216 && !rld[i].nocombine && !rld[j].nocombine
4217 && rld[i].reg_rtx == rld[j].reg_rtx)
4219 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4220 transfer_replacements (i, j);
4221 rld[j].in = 0;
4224 #ifdef HAVE_cc0
4225 /* If we made any reloads for addresses, see if they violate a
4226 "no input reloads" requirement for this insn. But loads that we
4227 do after the insn (such as for output addresses) are fine. */
4228 if (no_input_reloads)
4229 for (i = 0; i < n_reloads; i++)
4230 if (rld[i].in != 0
4231 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4232 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4233 abort ();
4234 #endif
4236 /* Compute reload_mode and reload_nregs. */
4237 for (i = 0; i < n_reloads; i++)
4239 rld[i].mode
4240 = (rld[i].inmode == VOIDmode
4241 || (GET_MODE_SIZE (rld[i].outmode)
4242 > GET_MODE_SIZE (rld[i].inmode)))
4243 ? rld[i].outmode : rld[i].inmode;
4245 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4248 /* Special case a simple move with an input reload and a
4249 destination of a hard reg, if the hard reg is ok, use it. */
4250 for (i = 0; i < n_reloads; i++)
4251 if (rld[i].when_needed == RELOAD_FOR_INPUT
4252 && GET_CODE (PATTERN (insn)) == SET
4253 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
4254 && SET_SRC (PATTERN (insn)) == rld[i].in)
4256 rtx dest = SET_DEST (PATTERN (insn));
4257 unsigned int regno = REGNO (dest);
4259 if (regno < FIRST_PSEUDO_REGISTER
4260 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4261 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4262 rld[i].reg_rtx = dest;
4265 return retval;
4268 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4269 accepts a memory operand with constant address. */
4271 static int
4272 alternative_allows_memconst (constraint, altnum)
4273 const char *constraint;
4274 int altnum;
4276 int c;
4277 /* Skip alternatives before the one requested. */
4278 while (altnum > 0)
4280 while (*constraint++ != ',');
4281 altnum--;
4283 /* Scan the requested alternative for 'm' or 'o'.
4284 If one of them is present, this alternative accepts memory constants. */
4285 while ((c = *constraint++) && c != ',' && c != '#')
4286 if (c == 'm' || c == 'o')
4287 return 1;
4288 return 0;
4291 /* Scan X for memory references and scan the addresses for reloading.
4292 Also checks for references to "constant" regs that we want to eliminate
4293 and replaces them with the values they stand for.
4294 We may alter X destructively if it contains a reference to such.
4295 If X is just a constant reg, we return the equivalent value
4296 instead of X.
4298 IND_LEVELS says how many levels of indirect addressing this machine
4299 supports.
4301 OPNUM and TYPE identify the purpose of the reload.
4303 IS_SET_DEST is true if X is the destination of a SET, which is not
4304 appropriate to be replaced by a constant.
4306 INSN, if nonzero, is the insn in which we do the reload. It is used
4307 to determine if we may generate output reloads, and where to put USEs
4308 for pseudos that we have to replace with stack slots.
4310 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4311 result of find_reloads_address. */
4313 static rtx
4314 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4315 address_reloaded)
4316 rtx x;
4317 int opnum;
4318 enum reload_type type;
4319 int ind_levels;
4320 int is_set_dest;
4321 rtx insn;
4322 int *address_reloaded;
4324 RTX_CODE code = GET_CODE (x);
4326 const char *fmt = GET_RTX_FORMAT (code);
4327 int i;
4328 int copied;
4330 if (code == REG)
4332 /* This code is duplicated for speed in find_reloads. */
4333 int regno = REGNO (x);
4334 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4335 x = reg_equiv_constant[regno];
4336 #if 0
4337 /* This creates (subreg (mem...)) which would cause an unnecessary
4338 reload of the mem. */
4339 else if (reg_equiv_mem[regno] != 0)
4340 x = reg_equiv_mem[regno];
4341 #endif
4342 else if (reg_equiv_memory_loc[regno]
4343 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4345 rtx mem = make_memloc (x, regno);
4346 if (reg_equiv_address[regno]
4347 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4349 /* If this is not a toplevel operand, find_reloads doesn't see
4350 this substitution. We have to emit a USE of the pseudo so
4351 that delete_output_reload can see it. */
4352 if (replace_reloads && recog_data.operand[opnum] != x)
4353 /* We mark the USE with QImode so that we recognize it
4354 as one that can be safely deleted at the end of
4355 reload. */
4356 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4357 QImode);
4358 x = mem;
4359 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4360 opnum, type, ind_levels, insn);
4361 if (address_reloaded)
4362 *address_reloaded = i;
4365 return x;
4367 if (code == MEM)
4369 rtx tem = x;
4371 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4372 opnum, type, ind_levels, insn);
4373 if (address_reloaded)
4374 *address_reloaded = i;
4376 return tem;
4379 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4381 /* Check for SUBREG containing a REG that's equivalent to a constant.
4382 If the constant has a known value, truncate it right now.
4383 Similarly if we are extracting a single-word of a multi-word
4384 constant. If the constant is symbolic, allow it to be substituted
4385 normally. push_reload will strip the subreg later. If the
4386 constant is VOIDmode, abort because we will lose the mode of
4387 the register (this should never happen because one of the cases
4388 above should handle it). */
4390 int regno = REGNO (SUBREG_REG (x));
4391 rtx tem;
4393 if (subreg_lowpart_p (x)
4394 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4395 && reg_equiv_constant[regno] != 0
4396 && (tem = gen_lowpart_common (GET_MODE (x),
4397 reg_equiv_constant[regno])) != 0)
4398 return tem;
4400 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4401 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4402 && reg_equiv_constant[regno] != 0
4403 && (tem = operand_subword (reg_equiv_constant[regno],
4404 SUBREG_BYTE (x) / UNITS_PER_WORD, 0,
4405 GET_MODE (SUBREG_REG (x)))) != 0)
4407 /* TEM is now a word sized constant for the bits from X that
4408 we wanted. However, TEM may be the wrong representation.
4410 Use gen_lowpart_common to convert a CONST_INT into a
4411 CONST_DOUBLE and vice versa as needed according to by the mode
4412 of the SUBREG. */
4413 tem = gen_lowpart_common (GET_MODE (x), tem);
4414 if (!tem)
4415 abort ();
4416 return tem;
4419 /* If the SUBREG is wider than a word, the above test will fail.
4420 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4421 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4422 a 32 bit target. We still can - and have to - handle this
4423 for non-paradoxical subregs of CONST_INTs. */
4424 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4425 && reg_equiv_constant[regno] != 0
4426 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4427 && (GET_MODE_SIZE (GET_MODE (x))
4428 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4430 int shift = SUBREG_BYTE (x) * BITS_PER_UNIT;
4431 if (WORDS_BIG_ENDIAN)
4432 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4433 - GET_MODE_BITSIZE (GET_MODE (x))
4434 - shift);
4435 /* Here we use the knowledge that CONST_INTs have a
4436 HOST_WIDE_INT field. */
4437 if (shift >= HOST_BITS_PER_WIDE_INT)
4438 shift = HOST_BITS_PER_WIDE_INT - 1;
4439 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4442 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4443 && reg_equiv_constant[regno] != 0
4444 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4445 abort ();
4447 /* If the subreg contains a reg that will be converted to a mem,
4448 convert the subreg to a narrower memref now.
4449 Otherwise, we would get (subreg (mem ...) ...),
4450 which would force reload of the mem.
4452 We also need to do this if there is an equivalent MEM that is
4453 not offsettable. In that case, alter_subreg would produce an
4454 invalid address on big-endian machines.
4456 For machines that extend byte loads, we must not reload using
4457 a wider mode if we have a paradoxical SUBREG. find_reloads will
4458 force a reload in that case. So we should not do anything here. */
4460 else if (regno >= FIRST_PSEUDO_REGISTER
4461 #ifdef LOAD_EXTEND_OP
4462 && (GET_MODE_SIZE (GET_MODE (x))
4463 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4464 #endif
4465 && (reg_equiv_address[regno] != 0
4466 || (reg_equiv_mem[regno] != 0
4467 && (! strict_memory_address_p (GET_MODE (x),
4468 XEXP (reg_equiv_mem[regno], 0))
4469 || ! offsettable_memref_p (reg_equiv_mem[regno])
4470 || num_not_at_initial_offset))))
4471 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4472 insn);
4475 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4477 if (fmt[i] == 'e')
4479 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4480 ind_levels, is_set_dest, insn,
4481 address_reloaded);
4482 /* If we have replaced a reg with it's equivalent memory loc -
4483 that can still be handled here e.g. if it's in a paradoxical
4484 subreg - we must make the change in a copy, rather than using
4485 a destructive change. This way, find_reloads can still elect
4486 not to do the change. */
4487 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4489 x = shallow_copy_rtx (x);
4490 copied = 1;
4492 XEXP (x, i) = new_part;
4495 return x;
4498 /* Return a mem ref for the memory equivalent of reg REGNO.
4499 This mem ref is not shared with anything. */
4501 static rtx
4502 make_memloc (ad, regno)
4503 rtx ad;
4504 int regno;
4506 /* We must rerun eliminate_regs, in case the elimination
4507 offsets have changed. */
4508 rtx tem
4509 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4511 /* If TEM might contain a pseudo, we must copy it to avoid
4512 modifying it when we do the substitution for the reload. */
4513 if (rtx_varies_p (tem, 0))
4514 tem = copy_rtx (tem);
4516 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4517 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4519 /* Copy the result if it's still the same as the equivalence, to avoid
4520 modifying it when we do the substitution for the reload. */
4521 if (tem == reg_equiv_memory_loc[regno])
4522 tem = copy_rtx (tem);
4523 return tem;
4526 /* Record all reloads needed for handling memory address AD
4527 which appears in *LOC in a memory reference to mode MODE
4528 which itself is found in location *MEMREFLOC.
4529 Note that we take shortcuts assuming that no multi-reg machine mode
4530 occurs as part of an address.
4532 OPNUM and TYPE specify the purpose of this reload.
4534 IND_LEVELS says how many levels of indirect addressing this machine
4535 supports.
4537 INSN, if nonzero, is the insn in which we do the reload. It is used
4538 to determine if we may generate output reloads, and where to put USEs
4539 for pseudos that we have to replace with stack slots.
4541 Value is nonzero if this address is reloaded or replaced as a whole.
4542 This is interesting to the caller if the address is an autoincrement.
4544 Note that there is no verification that the address will be valid after
4545 this routine does its work. Instead, we rely on the fact that the address
4546 was valid when reload started. So we need only undo things that reload
4547 could have broken. These are wrong register types, pseudos not allocated
4548 to a hard register, and frame pointer elimination. */
4550 static int
4551 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4552 enum machine_mode mode;
4553 rtx *memrefloc;
4554 rtx ad;
4555 rtx *loc;
4556 int opnum;
4557 enum reload_type type;
4558 int ind_levels;
4559 rtx insn;
4561 int regno;
4562 int removed_and = 0;
4563 rtx tem;
4565 /* If the address is a register, see if it is a legitimate address and
4566 reload if not. We first handle the cases where we need not reload
4567 or where we must reload in a non-standard way. */
4569 if (GET_CODE (ad) == REG)
4571 regno = REGNO (ad);
4573 /* If the register is equivalent to an invariant expression, substitute
4574 the invariant, and eliminate any eliminable register references. */
4575 tem = reg_equiv_constant[regno];
4576 if (tem != 0
4577 && (tem = eliminate_regs (tem, mode, insn))
4578 && strict_memory_address_p (mode, tem))
4580 *loc = ad = tem;
4581 return 0;
4584 tem = reg_equiv_memory_loc[regno];
4585 if (tem != 0)
4587 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4589 tem = make_memloc (ad, regno);
4590 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4592 find_reloads_address (GET_MODE (tem), (rtx*) 0, XEXP (tem, 0),
4593 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4594 ind_levels, insn);
4596 /* We can avoid a reload if the register's equivalent memory
4597 expression is valid as an indirect memory address.
4598 But not all addresses are valid in a mem used as an indirect
4599 address: only reg or reg+constant. */
4601 if (ind_levels > 0
4602 && strict_memory_address_p (mode, tem)
4603 && (GET_CODE (XEXP (tem, 0)) == REG
4604 || (GET_CODE (XEXP (tem, 0)) == PLUS
4605 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4606 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4608 /* TEM is not the same as what we'll be replacing the
4609 pseudo with after reload, put a USE in front of INSN
4610 in the final reload pass. */
4611 if (replace_reloads
4612 && num_not_at_initial_offset
4613 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4615 *loc = tem;
4616 /* We mark the USE with QImode so that we
4617 recognize it as one that can be safely
4618 deleted at the end of reload. */
4619 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4620 insn), QImode);
4622 /* This doesn't really count as replacing the address
4623 as a whole, since it is still a memory access. */
4625 return 0;
4627 ad = tem;
4631 /* The only remaining case where we can avoid a reload is if this is a
4632 hard register that is valid as a base register and which is not the
4633 subject of a CLOBBER in this insn. */
4635 else if (regno < FIRST_PSEUDO_REGISTER
4636 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4637 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4638 return 0;
4640 /* If we do not have one of the cases above, we must do the reload. */
4641 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4642 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4643 return 1;
4646 if (strict_memory_address_p (mode, ad))
4648 /* The address appears valid, so reloads are not needed.
4649 But the address may contain an eliminable register.
4650 This can happen because a machine with indirect addressing
4651 may consider a pseudo register by itself a valid address even when
4652 it has failed to get a hard reg.
4653 So do a tree-walk to find and eliminate all such regs. */
4655 /* But first quickly dispose of a common case. */
4656 if (GET_CODE (ad) == PLUS
4657 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4658 && GET_CODE (XEXP (ad, 0)) == REG
4659 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4660 return 0;
4662 subst_reg_equivs_changed = 0;
4663 *loc = subst_reg_equivs (ad, insn);
4665 if (! subst_reg_equivs_changed)
4666 return 0;
4668 /* Check result for validity after substitution. */
4669 if (strict_memory_address_p (mode, ad))
4670 return 0;
4673 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4676 if (memrefloc)
4678 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4679 ind_levels, win);
4681 break;
4682 win:
4683 *memrefloc = copy_rtx (*memrefloc);
4684 XEXP (*memrefloc, 0) = ad;
4685 move_replacements (&ad, &XEXP (*memrefloc, 0));
4686 return 1;
4688 while (0);
4689 #endif
4691 /* The address is not valid. We have to figure out why. First see if
4692 we have an outer AND and remove it if so. Then analyze what's inside. */
4694 if (GET_CODE (ad) == AND)
4696 removed_and = 1;
4697 loc = &XEXP (ad, 0);
4698 ad = *loc;
4701 /* One possibility for why the address is invalid is that it is itself
4702 a MEM. This can happen when the frame pointer is being eliminated, a
4703 pseudo is not allocated to a hard register, and the offset between the
4704 frame and stack pointers is not its initial value. In that case the
4705 pseudo will have been replaced by a MEM referring to the
4706 stack pointer. */
4707 if (GET_CODE (ad) == MEM)
4709 /* First ensure that the address in this MEM is valid. Then, unless
4710 indirect addresses are valid, reload the MEM into a register. */
4711 tem = ad;
4712 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4713 opnum, ADDR_TYPE (type),
4714 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4716 /* If tem was changed, then we must create a new memory reference to
4717 hold it and store it back into memrefloc. */
4718 if (tem != ad && memrefloc)
4720 *memrefloc = copy_rtx (*memrefloc);
4721 copy_replacements (tem, XEXP (*memrefloc, 0));
4722 loc = &XEXP (*memrefloc, 0);
4723 if (removed_and)
4724 loc = &XEXP (*loc, 0);
4727 /* Check similar cases as for indirect addresses as above except
4728 that we can allow pseudos and a MEM since they should have been
4729 taken care of above. */
4731 if (ind_levels == 0
4732 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4733 || GET_CODE (XEXP (tem, 0)) == MEM
4734 || ! (GET_CODE (XEXP (tem, 0)) == REG
4735 || (GET_CODE (XEXP (tem, 0)) == PLUS
4736 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4737 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4739 /* Must use TEM here, not AD, since it is the one that will
4740 have any subexpressions reloaded, if needed. */
4741 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4742 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4743 VOIDmode, 0,
4744 0, opnum, type);
4745 return ! removed_and;
4747 else
4748 return 0;
4751 /* If we have address of a stack slot but it's not valid because the
4752 displacement is too large, compute the sum in a register.
4753 Handle all base registers here, not just fp/ap/sp, because on some
4754 targets (namely SH) we can also get too large displacements from
4755 big-endian corrections. */
4756 else if (GET_CODE (ad) == PLUS
4757 && GET_CODE (XEXP (ad, 0)) == REG
4758 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4759 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4760 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4762 /* Unshare the MEM rtx so we can safely alter it. */
4763 if (memrefloc)
4765 *memrefloc = copy_rtx (*memrefloc);
4766 loc = &XEXP (*memrefloc, 0);
4767 if (removed_and)
4768 loc = &XEXP (*loc, 0);
4771 if (double_reg_address_ok)
4773 /* Unshare the sum as well. */
4774 *loc = ad = copy_rtx (ad);
4776 /* Reload the displacement into an index reg.
4777 We assume the frame pointer or arg pointer is a base reg. */
4778 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4779 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4780 type, ind_levels);
4781 return 0;
4783 else
4785 /* If the sum of two regs is not necessarily valid,
4786 reload the sum into a base reg.
4787 That will at least work. */
4788 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4789 Pmode, opnum, type, ind_levels);
4791 return ! removed_and;
4794 /* If we have an indexed stack slot, there are three possible reasons why
4795 it might be invalid: The index might need to be reloaded, the address
4796 might have been made by frame pointer elimination and hence have a
4797 constant out of range, or both reasons might apply.
4799 We can easily check for an index needing reload, but even if that is the
4800 case, we might also have an invalid constant. To avoid making the
4801 conservative assumption and requiring two reloads, we see if this address
4802 is valid when not interpreted strictly. If it is, the only problem is
4803 that the index needs a reload and find_reloads_address_1 will take care
4804 of it.
4806 If we decide to do something here, it must be that
4807 `double_reg_address_ok' is true and that this address rtl was made by
4808 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4809 rework the sum so that the reload register will be added to the index.
4810 This is safe because we know the address isn't shared.
4812 We check for fp/ap/sp as both the first and second operand of the
4813 innermost PLUS. */
4815 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4816 && GET_CODE (XEXP (ad, 0)) == PLUS
4817 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4818 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4819 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4820 #endif
4821 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4822 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4823 #endif
4824 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4825 && ! memory_address_p (mode, ad))
4827 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4828 plus_constant (XEXP (XEXP (ad, 0), 0),
4829 INTVAL (XEXP (ad, 1))),
4830 XEXP (XEXP (ad, 0), 1));
4831 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4832 MODE_BASE_REG_CLASS (mode),
4833 GET_MODE (ad), opnum, type, ind_levels);
4834 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4835 type, 0, insn);
4837 return 0;
4840 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4841 && GET_CODE (XEXP (ad, 0)) == PLUS
4842 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4843 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4844 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4845 #endif
4846 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4847 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4848 #endif
4849 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4850 && ! memory_address_p (mode, ad))
4852 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4853 XEXP (XEXP (ad, 0), 0),
4854 plus_constant (XEXP (XEXP (ad, 0), 1),
4855 INTVAL (XEXP (ad, 1))));
4856 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4857 MODE_BASE_REG_CLASS (mode),
4858 GET_MODE (ad), opnum, type, ind_levels);
4859 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4860 type, 0, insn);
4862 return 0;
4865 /* See if address becomes valid when an eliminable register
4866 in a sum is replaced. */
4868 tem = ad;
4869 if (GET_CODE (ad) == PLUS)
4870 tem = subst_indexed_address (ad);
4871 if (tem != ad && strict_memory_address_p (mode, tem))
4873 /* Ok, we win that way. Replace any additional eliminable
4874 registers. */
4876 subst_reg_equivs_changed = 0;
4877 tem = subst_reg_equivs (tem, insn);
4879 /* Make sure that didn't make the address invalid again. */
4881 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4883 *loc = tem;
4884 return 0;
4888 /* If constants aren't valid addresses, reload the constant address
4889 into a register. */
4890 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4892 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4893 Unshare it so we can safely alter it. */
4894 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4895 && CONSTANT_POOL_ADDRESS_P (ad))
4897 *memrefloc = copy_rtx (*memrefloc);
4898 loc = &XEXP (*memrefloc, 0);
4899 if (removed_and)
4900 loc = &XEXP (*loc, 0);
4903 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4904 Pmode, opnum, type, ind_levels);
4905 return ! removed_and;
4908 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4909 insn);
4912 /* Find all pseudo regs appearing in AD
4913 that are eliminable in favor of equivalent values
4914 and do not have hard regs; replace them by their equivalents.
4915 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4916 front of it for pseudos that we have to replace with stack slots. */
4918 static rtx
4919 subst_reg_equivs (ad, insn)
4920 rtx ad;
4921 rtx insn;
4923 RTX_CODE code = GET_CODE (ad);
4924 int i;
4925 const char *fmt;
4927 switch (code)
4929 case HIGH:
4930 case CONST_INT:
4931 case CONST:
4932 case CONST_DOUBLE:
4933 case CONST_VECTOR:
4934 case SYMBOL_REF:
4935 case LABEL_REF:
4936 case PC:
4937 case CC0:
4938 return ad;
4940 case REG:
4942 int regno = REGNO (ad);
4944 if (reg_equiv_constant[regno] != 0)
4946 subst_reg_equivs_changed = 1;
4947 return reg_equiv_constant[regno];
4949 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4951 rtx mem = make_memloc (ad, regno);
4952 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4954 subst_reg_equivs_changed = 1;
4955 /* We mark the USE with QImode so that we recognize it
4956 as one that can be safely deleted at the end of
4957 reload. */
4958 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
4959 QImode);
4960 return mem;
4964 return ad;
4966 case PLUS:
4967 /* Quickly dispose of a common case. */
4968 if (XEXP (ad, 0) == frame_pointer_rtx
4969 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4970 return ad;
4971 break;
4973 default:
4974 break;
4977 fmt = GET_RTX_FORMAT (code);
4978 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4979 if (fmt[i] == 'e')
4980 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4981 return ad;
4984 /* Compute the sum of X and Y, making canonicalizations assumed in an
4985 address, namely: sum constant integers, surround the sum of two
4986 constants with a CONST, put the constant as the second operand, and
4987 group the constant on the outermost sum.
4989 This routine assumes both inputs are already in canonical form. */
4992 form_sum (x, y)
4993 rtx x, y;
4995 rtx tem;
4996 enum machine_mode mode = GET_MODE (x);
4998 if (mode == VOIDmode)
4999 mode = GET_MODE (y);
5001 if (mode == VOIDmode)
5002 mode = Pmode;
5004 if (GET_CODE (x) == CONST_INT)
5005 return plus_constant (y, INTVAL (x));
5006 else if (GET_CODE (y) == CONST_INT)
5007 return plus_constant (x, INTVAL (y));
5008 else if (CONSTANT_P (x))
5009 tem = x, x = y, y = tem;
5011 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5012 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5014 /* Note that if the operands of Y are specified in the opposite
5015 order in the recursive calls below, infinite recursion will occur. */
5016 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5017 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5019 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5020 constant will have been placed second. */
5021 if (CONSTANT_P (x) && CONSTANT_P (y))
5023 if (GET_CODE (x) == CONST)
5024 x = XEXP (x, 0);
5025 if (GET_CODE (y) == CONST)
5026 y = XEXP (y, 0);
5028 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5031 return gen_rtx_PLUS (mode, x, y);
5034 /* If ADDR is a sum containing a pseudo register that should be
5035 replaced with a constant (from reg_equiv_constant),
5036 return the result of doing so, and also apply the associative
5037 law so that the result is more likely to be a valid address.
5038 (But it is not guaranteed to be one.)
5040 Note that at most one register is replaced, even if more are
5041 replaceable. Also, we try to put the result into a canonical form
5042 so it is more likely to be a valid address.
5044 In all other cases, return ADDR. */
5046 static rtx
5047 subst_indexed_address (addr)
5048 rtx addr;
5050 rtx op0 = 0, op1 = 0, op2 = 0;
5051 rtx tem;
5052 int regno;
5054 if (GET_CODE (addr) == PLUS)
5056 /* Try to find a register to replace. */
5057 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5058 if (GET_CODE (op0) == REG
5059 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5060 && reg_renumber[regno] < 0
5061 && reg_equiv_constant[regno] != 0)
5062 op0 = reg_equiv_constant[regno];
5063 else if (GET_CODE (op1) == REG
5064 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5065 && reg_renumber[regno] < 0
5066 && reg_equiv_constant[regno] != 0)
5067 op1 = reg_equiv_constant[regno];
5068 else if (GET_CODE (op0) == PLUS
5069 && (tem = subst_indexed_address (op0)) != op0)
5070 op0 = tem;
5071 else if (GET_CODE (op1) == PLUS
5072 && (tem = subst_indexed_address (op1)) != op1)
5073 op1 = tem;
5074 else
5075 return addr;
5077 /* Pick out up to three things to add. */
5078 if (GET_CODE (op1) == PLUS)
5079 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5080 else if (GET_CODE (op0) == PLUS)
5081 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5083 /* Compute the sum. */
5084 if (op2 != 0)
5085 op1 = form_sum (op1, op2);
5086 if (op1 != 0)
5087 op0 = form_sum (op0, op1);
5089 return op0;
5091 return addr;
5094 /* Update the REG_INC notes for an insn. It updates all REG_INC
5095 notes for the instruction which refer to REGNO the to refer
5096 to the reload number.
5098 INSN is the insn for which any REG_INC notes need updating.
5100 REGNO is the register number which has been reloaded.
5102 RELOADNUM is the reload number. */
5104 static void
5105 update_auto_inc_notes (insn, regno, reloadnum)
5106 rtx insn ATTRIBUTE_UNUSED;
5107 int regno ATTRIBUTE_UNUSED;
5108 int reloadnum ATTRIBUTE_UNUSED;
5110 #ifdef AUTO_INC_DEC
5111 rtx link;
5113 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5114 if (REG_NOTE_KIND (link) == REG_INC
5115 && REGNO (XEXP (link, 0)) == regno)
5116 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5117 #endif
5120 /* Record the pseudo registers we must reload into hard registers in a
5121 subexpression of a would-be memory address, X referring to a value
5122 in mode MODE. (This function is not called if the address we find
5123 is strictly valid.)
5125 CONTEXT = 1 means we are considering regs as index regs,
5126 = 0 means we are considering them as base regs.
5128 OPNUM and TYPE specify the purpose of any reloads made.
5130 IND_LEVELS says how many levels of indirect addressing are
5131 supported at this point in the address.
5133 INSN, if nonzero, is the insn in which we do the reload. It is used
5134 to determine if we may generate output reloads.
5136 We return nonzero if X, as a whole, is reloaded or replaced. */
5138 /* Note that we take shortcuts assuming that no multi-reg machine mode
5139 occurs as part of an address.
5140 Also, this is not fully machine-customizable; it works for machines
5141 such as VAXen and 68000's and 32000's, but other possible machines
5142 could have addressing modes that this does not handle right. */
5144 static int
5145 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5146 enum machine_mode mode;
5147 rtx x;
5148 int context;
5149 rtx *loc;
5150 int opnum;
5151 enum reload_type type;
5152 int ind_levels;
5153 rtx insn;
5155 RTX_CODE code = GET_CODE (x);
5157 switch (code)
5159 case PLUS:
5161 rtx orig_op0 = XEXP (x, 0);
5162 rtx orig_op1 = XEXP (x, 1);
5163 RTX_CODE code0 = GET_CODE (orig_op0);
5164 RTX_CODE code1 = GET_CODE (orig_op1);
5165 rtx op0 = orig_op0;
5166 rtx op1 = orig_op1;
5168 if (GET_CODE (op0) == SUBREG)
5170 op0 = SUBREG_REG (op0);
5171 code0 = GET_CODE (op0);
5172 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5173 op0 = gen_rtx_REG (word_mode,
5174 (REGNO (op0) +
5175 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5176 GET_MODE (SUBREG_REG (orig_op0)),
5177 SUBREG_BYTE (orig_op0),
5178 GET_MODE (orig_op0))));
5181 if (GET_CODE (op1) == SUBREG)
5183 op1 = SUBREG_REG (op1);
5184 code1 = GET_CODE (op1);
5185 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5186 /* ??? Why is this given op1's mode and above for
5187 ??? op0 SUBREGs we use word_mode? */
5188 op1 = gen_rtx_REG (GET_MODE (op1),
5189 (REGNO (op1) +
5190 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5191 GET_MODE (SUBREG_REG (orig_op1)),
5192 SUBREG_BYTE (orig_op1),
5193 GET_MODE (orig_op1))));
5196 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5197 || code0 == ZERO_EXTEND || code1 == MEM)
5199 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5200 type, ind_levels, insn);
5201 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5202 type, ind_levels, insn);
5205 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5206 || code1 == ZERO_EXTEND || code0 == MEM)
5208 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5209 type, ind_levels, insn);
5210 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5211 type, ind_levels, insn);
5214 else if (code0 == CONST_INT || code0 == CONST
5215 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5216 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5217 type, ind_levels, insn);
5219 else if (code1 == CONST_INT || code1 == CONST
5220 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5221 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5222 type, ind_levels, insn);
5224 else if (code0 == REG && code1 == REG)
5226 if (REG_OK_FOR_INDEX_P (op0)
5227 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5228 return 0;
5229 else if (REG_OK_FOR_INDEX_P (op1)
5230 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5231 return 0;
5232 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5233 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5234 type, ind_levels, insn);
5235 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5236 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5237 type, ind_levels, insn);
5238 else if (REG_OK_FOR_INDEX_P (op1))
5239 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5240 type, ind_levels, insn);
5241 else if (REG_OK_FOR_INDEX_P (op0))
5242 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5243 type, ind_levels, insn);
5244 else
5246 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5247 type, ind_levels, insn);
5248 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5249 type, ind_levels, insn);
5253 else if (code0 == REG)
5255 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5256 type, ind_levels, insn);
5257 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5258 type, ind_levels, insn);
5261 else if (code1 == REG)
5263 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5264 type, ind_levels, insn);
5265 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5266 type, ind_levels, insn);
5270 return 0;
5272 case POST_MODIFY:
5273 case PRE_MODIFY:
5275 rtx op0 = XEXP (x, 0);
5276 rtx op1 = XEXP (x, 1);
5278 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5279 return 0;
5281 /* Currently, we only support {PRE,POST}_MODIFY constructs
5282 where a base register is {inc,dec}remented by the contents
5283 of another register or by a constant value. Thus, these
5284 operands must match. */
5285 if (op0 != XEXP (op1, 0))
5286 abort ();
5288 /* Require index register (or constant). Let's just handle the
5289 register case in the meantime... If the target allows
5290 auto-modify by a constant then we could try replacing a pseudo
5291 register with its equivalent constant where applicable. */
5292 if (REG_P (XEXP (op1, 1)))
5293 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5294 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5295 opnum, type, ind_levels, insn);
5297 if (REG_P (XEXP (op1, 0)))
5299 int regno = REGNO (XEXP (op1, 0));
5300 int reloadnum;
5302 /* A register that is incremented cannot be constant! */
5303 if (regno >= FIRST_PSEUDO_REGISTER
5304 && reg_equiv_constant[regno] != 0)
5305 abort ();
5307 /* Handle a register that is equivalent to a memory location
5308 which cannot be addressed directly. */
5309 if (reg_equiv_memory_loc[regno] != 0
5310 && (reg_equiv_address[regno] != 0
5311 || num_not_at_initial_offset))
5313 rtx tem = make_memloc (XEXP (x, 0), regno);
5315 if (reg_equiv_address[regno]
5316 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5318 /* First reload the memory location's address.
5319 We can't use ADDR_TYPE (type) here, because we need to
5320 write back the value after reading it, hence we actually
5321 need two registers. */
5322 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
5323 &XEXP (tem, 0), opnum,
5324 RELOAD_OTHER,
5325 ind_levels, insn);
5327 /* Then reload the memory location into a base
5328 register. */
5329 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5330 &XEXP (op1, 0),
5331 MODE_BASE_REG_CLASS (mode),
5332 GET_MODE (x), GET_MODE (x), 0,
5333 0, opnum, RELOAD_OTHER);
5335 update_auto_inc_notes (this_insn, regno, reloadnum);
5336 return 0;
5340 if (reg_renumber[regno] >= 0)
5341 regno = reg_renumber[regno];
5343 /* We require a base register here... */
5344 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5346 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5347 &XEXP (op1, 0), &XEXP (x, 0),
5348 MODE_BASE_REG_CLASS (mode),
5349 GET_MODE (x), GET_MODE (x), 0, 0,
5350 opnum, RELOAD_OTHER);
5352 update_auto_inc_notes (this_insn, regno, reloadnum);
5353 return 0;
5356 else
5357 abort ();
5359 return 0;
5361 case POST_INC:
5362 case POST_DEC:
5363 case PRE_INC:
5364 case PRE_DEC:
5365 if (GET_CODE (XEXP (x, 0)) == REG)
5367 int regno = REGNO (XEXP (x, 0));
5368 int value = 0;
5369 rtx x_orig = x;
5371 /* A register that is incremented cannot be constant! */
5372 if (regno >= FIRST_PSEUDO_REGISTER
5373 && reg_equiv_constant[regno] != 0)
5374 abort ();
5376 /* Handle a register that is equivalent to a memory location
5377 which cannot be addressed directly. */
5378 if (reg_equiv_memory_loc[regno] != 0
5379 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5381 rtx tem = make_memloc (XEXP (x, 0), regno);
5382 if (reg_equiv_address[regno]
5383 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5385 /* First reload the memory location's address.
5386 We can't use ADDR_TYPE (type) here, because we need to
5387 write back the value after reading it, hence we actually
5388 need two registers. */
5389 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5390 &XEXP (tem, 0), opnum, type,
5391 ind_levels, insn);
5392 /* Put this inside a new increment-expression. */
5393 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5394 /* Proceed to reload that, as if it contained a register. */
5398 /* If we have a hard register that is ok as an index,
5399 don't make a reload. If an autoincrement of a nice register
5400 isn't "valid", it must be that no autoincrement is "valid".
5401 If that is true and something made an autoincrement anyway,
5402 this must be a special context where one is allowed.
5403 (For example, a "push" instruction.)
5404 We can't improve this address, so leave it alone. */
5406 /* Otherwise, reload the autoincrement into a suitable hard reg
5407 and record how much to increment by. */
5409 if (reg_renumber[regno] >= 0)
5410 regno = reg_renumber[regno];
5411 if ((regno >= FIRST_PSEUDO_REGISTER
5412 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5413 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5415 int reloadnum;
5417 /* If we can output the register afterwards, do so, this
5418 saves the extra update.
5419 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5420 CALL_INSN - and it does not set CC0.
5421 But don't do this if we cannot directly address the
5422 memory location, since this will make it harder to
5423 reuse address reloads, and increases register pressure.
5424 Also don't do this if we can probably update x directly. */
5425 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5426 ? XEXP (x, 0)
5427 : reg_equiv_mem[regno]);
5428 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5429 if (insn && GET_CODE (insn) == INSN && equiv
5430 && memory_operand (equiv, GET_MODE (equiv))
5431 #ifdef HAVE_cc0
5432 && ! sets_cc0_p (PATTERN (insn))
5433 #endif
5434 && ! (icode != CODE_FOR_nothing
5435 && ((*insn_data[icode].operand[0].predicate)
5436 (equiv, Pmode))
5437 && ((*insn_data[icode].operand[1].predicate)
5438 (equiv, Pmode))))
5440 /* We use the original pseudo for loc, so that
5441 emit_reload_insns() knows which pseudo this
5442 reload refers to and updates the pseudo rtx, not
5443 its equivalent memory location, as well as the
5444 corresponding entry in reg_last_reload_reg. */
5445 loc = &XEXP (x_orig, 0);
5446 x = XEXP (x, 0);
5447 reloadnum
5448 = push_reload (x, x, loc, loc,
5449 (context ? INDEX_REG_CLASS :
5450 MODE_BASE_REG_CLASS (mode)),
5451 GET_MODE (x), GET_MODE (x), 0, 0,
5452 opnum, RELOAD_OTHER);
5454 else
5456 reloadnum
5457 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5458 (context ? INDEX_REG_CLASS :
5459 MODE_BASE_REG_CLASS (mode)),
5460 GET_MODE (x), GET_MODE (x), 0, 0,
5461 opnum, type);
5462 rld[reloadnum].inc
5463 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5465 value = 1;
5468 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5469 reloadnum);
5471 return value;
5474 else if (GET_CODE (XEXP (x, 0)) == MEM)
5476 /* This is probably the result of a substitution, by eliminate_regs,
5477 of an equivalent address for a pseudo that was not allocated to a
5478 hard register. Verify that the specified address is valid and
5479 reload it into a register. */
5480 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5481 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5482 rtx link;
5483 int reloadnum;
5485 /* Since we know we are going to reload this item, don't decrement
5486 for the indirection level.
5488 Note that this is actually conservative: it would be slightly
5489 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5490 reload1.c here. */
5491 /* We can't use ADDR_TYPE (type) here, because we need to
5492 write back the value after reading it, hence we actually
5493 need two registers. */
5494 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5495 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5496 opnum, type, ind_levels, insn);
5498 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5499 (context ? INDEX_REG_CLASS :
5500 MODE_BASE_REG_CLASS (mode)),
5501 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5502 rld[reloadnum].inc
5503 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5505 link = FIND_REG_INC_NOTE (this_insn, tem);
5506 if (link != 0)
5507 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5509 return 1;
5511 return 0;
5513 case MEM:
5514 /* This is probably the result of a substitution, by eliminate_regs, of
5515 an equivalent address for a pseudo that was not allocated to a hard
5516 register. Verify that the specified address is valid and reload it
5517 into a register.
5519 Since we know we are going to reload this item, don't decrement for
5520 the indirection level.
5522 Note that this is actually conservative: it would be slightly more
5523 efficient to use the value of SPILL_INDIRECT_LEVELS from
5524 reload1.c here. */
5526 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5527 opnum, ADDR_TYPE (type), ind_levels, insn);
5528 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5529 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5530 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5531 return 1;
5533 case REG:
5535 int regno = REGNO (x);
5537 if (reg_equiv_constant[regno] != 0)
5539 find_reloads_address_part (reg_equiv_constant[regno], loc,
5540 (context ? INDEX_REG_CLASS :
5541 MODE_BASE_REG_CLASS (mode)),
5542 GET_MODE (x), opnum, type, ind_levels);
5543 return 1;
5546 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5547 that feeds this insn. */
5548 if (reg_equiv_mem[regno] != 0)
5550 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5551 (context ? INDEX_REG_CLASS :
5552 MODE_BASE_REG_CLASS (mode)),
5553 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5554 return 1;
5556 #endif
5558 if (reg_equiv_memory_loc[regno]
5559 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5561 rtx tem = make_memloc (x, regno);
5562 if (reg_equiv_address[regno] != 0
5563 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5565 x = tem;
5566 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5567 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5568 ind_levels, insn);
5572 if (reg_renumber[regno] >= 0)
5573 regno = reg_renumber[regno];
5575 if ((regno >= FIRST_PSEUDO_REGISTER
5576 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5577 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5579 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5580 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5581 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5582 return 1;
5585 /* If a register appearing in an address is the subject of a CLOBBER
5586 in this insn, reload it into some other register to be safe.
5587 The CLOBBER is supposed to make the register unavailable
5588 from before this insn to after it. */
5589 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5591 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5592 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5593 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5594 return 1;
5597 return 0;
5599 case SUBREG:
5600 if (GET_CODE (SUBREG_REG (x)) == REG)
5602 /* If this is a SUBREG of a hard register and the resulting register
5603 is of the wrong class, reload the whole SUBREG. This avoids
5604 needless copies if SUBREG_REG is multi-word. */
5605 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5607 int regno = subreg_regno (x);
5609 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5610 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5612 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5613 (context ? INDEX_REG_CLASS :
5614 MODE_BASE_REG_CLASS (mode)),
5615 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5616 return 1;
5619 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5620 is larger than the class size, then reload the whole SUBREG. */
5621 else
5623 enum reg_class class = (context ? INDEX_REG_CLASS
5624 : MODE_BASE_REG_CLASS (mode));
5625 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5626 > reg_class_size[class])
5628 x = find_reloads_subreg_address (x, 0, opnum, type,
5629 ind_levels, insn);
5630 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5631 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5632 return 1;
5636 break;
5638 default:
5639 break;
5643 const char *fmt = GET_RTX_FORMAT (code);
5644 int i;
5646 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5648 if (fmt[i] == 'e')
5649 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5650 opnum, type, ind_levels, insn);
5654 return 0;
5657 /* X, which is found at *LOC, is a part of an address that needs to be
5658 reloaded into a register of class CLASS. If X is a constant, or if
5659 X is a PLUS that contains a constant, check that the constant is a
5660 legitimate operand and that we are supposed to be able to load
5661 it into the register.
5663 If not, force the constant into memory and reload the MEM instead.
5665 MODE is the mode to use, in case X is an integer constant.
5667 OPNUM and TYPE describe the purpose of any reloads made.
5669 IND_LEVELS says how many levels of indirect addressing this machine
5670 supports. */
5672 static void
5673 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5674 rtx x;
5675 rtx *loc;
5676 enum reg_class class;
5677 enum machine_mode mode;
5678 int opnum;
5679 enum reload_type type;
5680 int ind_levels;
5682 if (CONSTANT_P (x)
5683 && (! LEGITIMATE_CONSTANT_P (x)
5684 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5686 rtx tem;
5688 tem = x = force_const_mem (mode, x);
5689 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5690 opnum, type, ind_levels, 0);
5693 else if (GET_CODE (x) == PLUS
5694 && CONSTANT_P (XEXP (x, 1))
5695 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5696 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5698 rtx tem;
5700 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5701 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5702 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5703 opnum, type, ind_levels, 0);
5706 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5707 mode, VOIDmode, 0, 0, opnum, type);
5710 /* X, a subreg of a pseudo, is a part of an address that needs to be
5711 reloaded.
5713 If the pseudo is equivalent to a memory location that cannot be directly
5714 addressed, make the necessary address reloads.
5716 If address reloads have been necessary, or if the address is changed
5717 by register elimination, return the rtx of the memory location;
5718 otherwise, return X.
5720 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5721 memory location.
5723 OPNUM and TYPE identify the purpose of the reload.
5725 IND_LEVELS says how many levels of indirect addressing are
5726 supported at this point in the address.
5728 INSN, if nonzero, is the insn in which we do the reload. It is used
5729 to determine where to put USEs for pseudos that we have to replace with
5730 stack slots. */
5732 static rtx
5733 find_reloads_subreg_address (x, force_replace, opnum, type,
5734 ind_levels, insn)
5735 rtx x;
5736 int force_replace;
5737 int opnum;
5738 enum reload_type type;
5739 int ind_levels;
5740 rtx insn;
5742 int regno = REGNO (SUBREG_REG (x));
5744 if (reg_equiv_memory_loc[regno])
5746 /* If the address is not directly addressable, or if the address is not
5747 offsettable, then it must be replaced. */
5748 if (! force_replace
5749 && (reg_equiv_address[regno]
5750 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5751 force_replace = 1;
5753 if (force_replace || num_not_at_initial_offset)
5755 rtx tem = make_memloc (SUBREG_REG (x), regno);
5757 /* If the address changes because of register elimination, then
5758 it must be replaced. */
5759 if (force_replace
5760 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5762 int offset = SUBREG_BYTE (x);
5763 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5764 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5766 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5767 PUT_MODE (tem, GET_MODE (x));
5769 /* If this was a paradoxical subreg that we replaced, the
5770 resulting memory must be sufficiently aligned to allow
5771 us to widen the mode of the memory. */
5772 if (outer_size > inner_size && STRICT_ALIGNMENT)
5774 rtx base;
5776 base = XEXP (tem, 0);
5777 if (GET_CODE (base) == PLUS)
5779 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5780 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5781 return x;
5782 base = XEXP (base, 0);
5784 if (GET_CODE (base) != REG
5785 || (REGNO_POINTER_ALIGN (REGNO (base))
5786 < outer_size * BITS_PER_UNIT))
5787 return x;
5790 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5791 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5792 ind_levels, insn);
5794 /* If this is not a toplevel operand, find_reloads doesn't see
5795 this substitution. We have to emit a USE of the pseudo so
5796 that delete_output_reload can see it. */
5797 if (replace_reloads && recog_data.operand[opnum] != x)
5798 /* We mark the USE with QImode so that we recognize it
5799 as one that can be safely deleted at the end of
5800 reload. */
5801 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5802 SUBREG_REG (x)),
5803 insn), QImode);
5804 x = tem;
5808 return x;
5811 /* Substitute into the current INSN the registers into which we have reloaded
5812 the things that need reloading. The array `replacements'
5813 contains the locations of all pointers that must be changed
5814 and says what to replace them with.
5816 Return the rtx that X translates into; usually X, but modified. */
5818 void
5819 subst_reloads (insn)
5820 rtx insn;
5822 int i;
5824 for (i = 0; i < n_replacements; i++)
5826 struct replacement *r = &replacements[i];
5827 rtx reloadreg = rld[r->what].reg_rtx;
5828 if (reloadreg)
5830 #ifdef ENABLE_CHECKING
5831 /* Internal consistency test. Check that we don't modify
5832 anything in the equivalence arrays. Whenever something from
5833 those arrays needs to be reloaded, it must be unshared before
5834 being substituted into; the equivalence must not be modified.
5835 Otherwise, if the equivalence is used after that, it will
5836 have been modified, and the thing substituted (probably a
5837 register) is likely overwritten and not a usable equivalence. */
5838 int check_regno;
5840 for (check_regno = 0; check_regno < max_regno; check_regno++)
5842 #define CHECK_MODF(ARRAY) \
5843 if (ARRAY[check_regno] \
5844 && loc_mentioned_in_p (r->where, \
5845 ARRAY[check_regno])) \
5846 abort ()
5848 CHECK_MODF (reg_equiv_constant);
5849 CHECK_MODF (reg_equiv_memory_loc);
5850 CHECK_MODF (reg_equiv_address);
5851 CHECK_MODF (reg_equiv_mem);
5852 #undef CHECK_MODF
5854 #endif /* ENABLE_CHECKING */
5856 /* If we're replacing a LABEL_REF with a register, add a
5857 REG_LABEL note to indicate to flow which label this
5858 register refers to. */
5859 if (GET_CODE (*r->where) == LABEL_REF
5860 && GET_CODE (insn) == JUMP_INSN)
5861 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5862 XEXP (*r->where, 0),
5863 REG_NOTES (insn));
5865 /* Encapsulate RELOADREG so its machine mode matches what
5866 used to be there. Note that gen_lowpart_common will
5867 do the wrong thing if RELOADREG is multi-word. RELOADREG
5868 will always be a REG here. */
5869 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5870 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5872 /* If we are putting this into a SUBREG and RELOADREG is a
5873 SUBREG, we would be making nested SUBREGs, so we have to fix
5874 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5876 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5878 if (GET_MODE (*r->subreg_loc)
5879 == GET_MODE (SUBREG_REG (reloadreg)))
5880 *r->subreg_loc = SUBREG_REG (reloadreg);
5881 else
5883 int final_offset =
5884 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5886 /* When working with SUBREGs the rule is that the byte
5887 offset must be a multiple of the SUBREG's mode. */
5888 final_offset = (final_offset /
5889 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5890 final_offset = (final_offset *
5891 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5893 *r->where = SUBREG_REG (reloadreg);
5894 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5897 else
5898 *r->where = reloadreg;
5900 /* If reload got no reg and isn't optional, something's wrong. */
5901 else if (! rld[r->what].optional)
5902 abort ();
5906 /* Make a copy of any replacements being done into X and move those
5907 copies to locations in Y, a copy of X. */
5909 void
5910 copy_replacements (x, y)
5911 rtx x, y;
5913 /* We can't support X being a SUBREG because we might then need to know its
5914 location if something inside it was replaced. */
5915 if (GET_CODE (x) == SUBREG)
5916 abort ();
5918 copy_replacements_1 (&x, &y, n_replacements);
5921 static void
5922 copy_replacements_1 (px, py, orig_replacements)
5923 rtx *px;
5924 rtx *py;
5925 int orig_replacements;
5927 int i, j;
5928 rtx x, y;
5929 struct replacement *r;
5930 enum rtx_code code;
5931 const char *fmt;
5933 for (j = 0; j < orig_replacements; j++)
5935 if (replacements[j].subreg_loc == px)
5937 r = &replacements[n_replacements++];
5938 r->where = replacements[j].where;
5939 r->subreg_loc = py;
5940 r->what = replacements[j].what;
5941 r->mode = replacements[j].mode;
5943 else if (replacements[j].where == px)
5945 r = &replacements[n_replacements++];
5946 r->where = py;
5947 r->subreg_loc = 0;
5948 r->what = replacements[j].what;
5949 r->mode = replacements[j].mode;
5953 x = *px;
5954 y = *py;
5955 code = GET_CODE (x);
5956 fmt = GET_RTX_FORMAT (code);
5958 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5960 if (fmt[i] == 'e')
5961 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
5962 else if (fmt[i] == 'E')
5963 for (j = XVECLEN (x, i); --j >= 0; )
5964 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
5965 orig_replacements);
5969 /* Change any replacements being done to *X to be done to *Y */
5971 void
5972 move_replacements (x, y)
5973 rtx *x;
5974 rtx *y;
5976 int i;
5978 for (i = 0; i < n_replacements; i++)
5979 if (replacements[i].subreg_loc == x)
5980 replacements[i].subreg_loc = y;
5981 else if (replacements[i].where == x)
5983 replacements[i].where = y;
5984 replacements[i].subreg_loc = 0;
5988 /* If LOC was scheduled to be replaced by something, return the replacement.
5989 Otherwise, return *LOC. */
5992 find_replacement (loc)
5993 rtx *loc;
5995 struct replacement *r;
5997 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5999 rtx reloadreg = rld[r->what].reg_rtx;
6001 if (reloadreg && r->where == loc)
6003 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6004 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6006 return reloadreg;
6008 else if (reloadreg && r->subreg_loc == loc)
6010 /* RELOADREG must be either a REG or a SUBREG.
6012 ??? Is it actually still ever a SUBREG? If so, why? */
6014 if (GET_CODE (reloadreg) == REG)
6015 return gen_rtx_REG (GET_MODE (*loc),
6016 (REGNO (reloadreg) +
6017 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6018 GET_MODE (SUBREG_REG (*loc)),
6019 SUBREG_BYTE (*loc),
6020 GET_MODE (*loc))));
6021 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6022 return reloadreg;
6023 else
6025 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6027 /* When working with SUBREGs the rule is that the byte
6028 offset must be a multiple of the SUBREG's mode. */
6029 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6030 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6031 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6032 final_offset);
6037 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6038 what's inside and make a new rtl if so. */
6039 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6040 || GET_CODE (*loc) == MULT)
6042 rtx x = find_replacement (&XEXP (*loc, 0));
6043 rtx y = find_replacement (&XEXP (*loc, 1));
6045 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6046 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6049 return *loc;
6052 /* Return nonzero if register in range [REGNO, ENDREGNO)
6053 appears either explicitly or implicitly in X
6054 other than being stored into (except for earlyclobber operands).
6056 References contained within the substructure at LOC do not count.
6057 LOC may be zero, meaning don't ignore anything.
6059 This is similar to refers_to_regno_p in rtlanal.c except that we
6060 look at equivalences for pseudos that didn't get hard registers. */
6063 refers_to_regno_for_reload_p (regno, endregno, x, loc)
6064 unsigned int regno, endregno;
6065 rtx x;
6066 rtx *loc;
6068 int i;
6069 unsigned int r;
6070 RTX_CODE code;
6071 const char *fmt;
6073 if (x == 0)
6074 return 0;
6076 repeat:
6077 code = GET_CODE (x);
6079 switch (code)
6081 case REG:
6082 r = REGNO (x);
6084 /* If this is a pseudo, a hard register must not have been allocated.
6085 X must therefore either be a constant or be in memory. */
6086 if (r >= FIRST_PSEUDO_REGISTER)
6088 if (reg_equiv_memory_loc[r])
6089 return refers_to_regno_for_reload_p (regno, endregno,
6090 reg_equiv_memory_loc[r],
6091 (rtx*) 0);
6093 if (reg_equiv_constant[r])
6094 return 0;
6096 abort ();
6099 return (endregno > r
6100 && regno < r + (r < FIRST_PSEUDO_REGISTER
6101 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6102 : 1));
6104 case SUBREG:
6105 /* If this is a SUBREG of a hard reg, we can see exactly which
6106 registers are being modified. Otherwise, handle normally. */
6107 if (GET_CODE (SUBREG_REG (x)) == REG
6108 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6110 unsigned int inner_regno = subreg_regno (x);
6111 unsigned int inner_endregno
6112 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6113 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6115 return endregno > inner_regno && regno < inner_endregno;
6117 break;
6119 case CLOBBER:
6120 case SET:
6121 if (&SET_DEST (x) != loc
6122 /* Note setting a SUBREG counts as referring to the REG it is in for
6123 a pseudo but not for hard registers since we can
6124 treat each word individually. */
6125 && ((GET_CODE (SET_DEST (x)) == SUBREG
6126 && loc != &SUBREG_REG (SET_DEST (x))
6127 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6128 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6129 && refers_to_regno_for_reload_p (regno, endregno,
6130 SUBREG_REG (SET_DEST (x)),
6131 loc))
6132 /* If the output is an earlyclobber operand, this is
6133 a conflict. */
6134 || ((GET_CODE (SET_DEST (x)) != REG
6135 || earlyclobber_operand_p (SET_DEST (x)))
6136 && refers_to_regno_for_reload_p (regno, endregno,
6137 SET_DEST (x), loc))))
6138 return 1;
6140 if (code == CLOBBER || loc == &SET_SRC (x))
6141 return 0;
6142 x = SET_SRC (x);
6143 goto repeat;
6145 default:
6146 break;
6149 /* X does not match, so try its subexpressions. */
6151 fmt = GET_RTX_FORMAT (code);
6152 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6154 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6156 if (i == 0)
6158 x = XEXP (x, 0);
6159 goto repeat;
6161 else
6162 if (refers_to_regno_for_reload_p (regno, endregno,
6163 XEXP (x, i), loc))
6164 return 1;
6166 else if (fmt[i] == 'E')
6168 int j;
6169 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6170 if (loc != &XVECEXP (x, i, j)
6171 && refers_to_regno_for_reload_p (regno, endregno,
6172 XVECEXP (x, i, j), loc))
6173 return 1;
6176 return 0;
6179 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6180 we check if any register number in X conflicts with the relevant register
6181 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6182 contains a MEM (we don't bother checking for memory addresses that can't
6183 conflict because we expect this to be a rare case.
6185 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6186 that we look at equivalences for pseudos that didn't get hard registers. */
6189 reg_overlap_mentioned_for_reload_p (x, in)
6190 rtx x, in;
6192 int regno, endregno;
6194 /* Overly conservative. */
6195 if (GET_CODE (x) == STRICT_LOW_PART
6196 || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6197 x = XEXP (x, 0);
6199 /* If either argument is a constant, then modifying X can not affect IN. */
6200 if (CONSTANT_P (x) || CONSTANT_P (in))
6201 return 0;
6202 else if (GET_CODE (x) == SUBREG)
6204 regno = REGNO (SUBREG_REG (x));
6205 if (regno < FIRST_PSEUDO_REGISTER)
6206 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6207 GET_MODE (SUBREG_REG (x)),
6208 SUBREG_BYTE (x),
6209 GET_MODE (x));
6211 else if (GET_CODE (x) == REG)
6213 regno = REGNO (x);
6215 /* If this is a pseudo, it must not have been assigned a hard register.
6216 Therefore, it must either be in memory or be a constant. */
6218 if (regno >= FIRST_PSEUDO_REGISTER)
6220 if (reg_equiv_memory_loc[regno])
6221 return refers_to_mem_for_reload_p (in);
6222 else if (reg_equiv_constant[regno])
6223 return 0;
6224 abort ();
6227 else if (GET_CODE (x) == MEM)
6228 return refers_to_mem_for_reload_p (in);
6229 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6230 || GET_CODE (x) == CC0)
6231 return reg_mentioned_p (x, in);
6232 else if (GET_CODE (x) == PLUS)
6233 return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6234 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6235 else
6236 abort ();
6238 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6239 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6241 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6244 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6245 registers. */
6248 refers_to_mem_for_reload_p (x)
6249 rtx x;
6251 const char *fmt;
6252 int i;
6254 if (GET_CODE (x) == MEM)
6255 return 1;
6257 if (GET_CODE (x) == REG)
6258 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6259 && reg_equiv_memory_loc[REGNO (x)]);
6261 fmt = GET_RTX_FORMAT (GET_CODE (x));
6262 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6263 if (fmt[i] == 'e'
6264 && (GET_CODE (XEXP (x, i)) == MEM
6265 || refers_to_mem_for_reload_p (XEXP (x, i))))
6266 return 1;
6268 return 0;
6271 /* Check the insns before INSN to see if there is a suitable register
6272 containing the same value as GOAL.
6273 If OTHER is -1, look for a register in class CLASS.
6274 Otherwise, just see if register number OTHER shares GOAL's value.
6276 Return an rtx for the register found, or zero if none is found.
6278 If RELOAD_REG_P is (short *)1,
6279 we reject any hard reg that appears in reload_reg_rtx
6280 because such a hard reg is also needed coming into this insn.
6282 If RELOAD_REG_P is any other nonzero value,
6283 it is a vector indexed by hard reg number
6284 and we reject any hard reg whose element in the vector is nonnegative
6285 as well as any that appears in reload_reg_rtx.
6287 If GOAL is zero, then GOALREG is a register number; we look
6288 for an equivalent for that register.
6290 MODE is the machine mode of the value we want an equivalence for.
6291 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6293 This function is used by jump.c as well as in the reload pass.
6295 If GOAL is the sum of the stack pointer and a constant, we treat it
6296 as if it were a constant except that sp is required to be unchanging. */
6299 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6300 rtx goal;
6301 rtx insn;
6302 enum reg_class class;
6303 int other;
6304 short *reload_reg_p;
6305 int goalreg;
6306 enum machine_mode mode;
6308 rtx p = insn;
6309 rtx goaltry, valtry, value, where;
6310 rtx pat;
6311 int regno = -1;
6312 int valueno;
6313 int goal_mem = 0;
6314 int goal_const = 0;
6315 int goal_mem_addr_varies = 0;
6316 int need_stable_sp = 0;
6317 int nregs;
6318 int valuenregs;
6320 if (goal == 0)
6321 regno = goalreg;
6322 else if (GET_CODE (goal) == REG)
6323 regno = REGNO (goal);
6324 else if (GET_CODE (goal) == MEM)
6326 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6327 if (MEM_VOLATILE_P (goal))
6328 return 0;
6329 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6330 return 0;
6331 /* An address with side effects must be reexecuted. */
6332 switch (code)
6334 case POST_INC:
6335 case PRE_INC:
6336 case POST_DEC:
6337 case PRE_DEC:
6338 case POST_MODIFY:
6339 case PRE_MODIFY:
6340 return 0;
6341 default:
6342 break;
6344 goal_mem = 1;
6346 else if (CONSTANT_P (goal))
6347 goal_const = 1;
6348 else if (GET_CODE (goal) == PLUS
6349 && XEXP (goal, 0) == stack_pointer_rtx
6350 && CONSTANT_P (XEXP (goal, 1)))
6351 goal_const = need_stable_sp = 1;
6352 else if (GET_CODE (goal) == PLUS
6353 && XEXP (goal, 0) == frame_pointer_rtx
6354 && CONSTANT_P (XEXP (goal, 1)))
6355 goal_const = 1;
6356 else
6357 return 0;
6359 /* Scan insns back from INSN, looking for one that copies
6360 a value into or out of GOAL.
6361 Stop and give up if we reach a label. */
6363 while (1)
6365 p = PREV_INSN (p);
6366 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6367 return 0;
6369 if (GET_CODE (p) == INSN
6370 /* If we don't want spill regs ... */
6371 && (! (reload_reg_p != 0
6372 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6373 /* ... then ignore insns introduced by reload; they aren't
6374 useful and can cause results in reload_as_needed to be
6375 different from what they were when calculating the need for
6376 spills. If we notice an input-reload insn here, we will
6377 reject it below, but it might hide a usable equivalent.
6378 That makes bad code. It may even abort: perhaps no reg was
6379 spilled for this insn because it was assumed we would find
6380 that equivalent. */
6381 || INSN_UID (p) < reload_first_uid))
6383 rtx tem;
6384 pat = single_set (p);
6386 /* First check for something that sets some reg equal to GOAL. */
6387 if (pat != 0
6388 && ((regno >= 0
6389 && true_regnum (SET_SRC (pat)) == regno
6390 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6392 (regno >= 0
6393 && true_regnum (SET_DEST (pat)) == regno
6394 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6396 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6397 /* When looking for stack pointer + const,
6398 make sure we don't use a stack adjust. */
6399 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6400 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6401 || (goal_mem
6402 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6403 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6404 || (goal_mem
6405 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6406 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6407 /* If we are looking for a constant,
6408 and something equivalent to that constant was copied
6409 into a reg, we can use that reg. */
6410 || (goal_const && REG_NOTES (p) != 0
6411 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6412 && ((rtx_equal_p (XEXP (tem, 0), goal)
6413 && (valueno
6414 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6415 || (GET_CODE (SET_DEST (pat)) == REG
6416 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6417 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6418 == MODE_FLOAT)
6419 && GET_CODE (goal) == CONST_INT
6420 && 0 != (goaltry
6421 = operand_subword (XEXP (tem, 0), 0, 0,
6422 VOIDmode))
6423 && rtx_equal_p (goal, goaltry)
6424 && (valtry
6425 = operand_subword (SET_DEST (pat), 0, 0,
6426 VOIDmode))
6427 && (valueno = true_regnum (valtry)) >= 0)))
6428 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6429 NULL_RTX))
6430 && GET_CODE (SET_DEST (pat)) == REG
6431 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6432 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6433 == MODE_FLOAT)
6434 && GET_CODE (goal) == CONST_INT
6435 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6436 VOIDmode))
6437 && rtx_equal_p (goal, goaltry)
6438 && (valtry
6439 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6440 && (valueno = true_regnum (valtry)) >= 0)))
6442 if (other >= 0)
6444 if (valueno != other)
6445 continue;
6447 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6448 continue;
6449 else
6451 int i;
6453 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6454 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6455 valueno + i))
6456 break;
6457 if (i >= 0)
6458 continue;
6460 value = valtry;
6461 where = p;
6462 break;
6467 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6468 (or copying VALUE into GOAL, if GOAL is also a register).
6469 Now verify that VALUE is really valid. */
6471 /* VALUENO is the register number of VALUE; a hard register. */
6473 /* Don't try to re-use something that is killed in this insn. We want
6474 to be able to trust REG_UNUSED notes. */
6475 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6476 return 0;
6478 /* If we propose to get the value from the stack pointer or if GOAL is
6479 a MEM based on the stack pointer, we need a stable SP. */
6480 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6481 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6482 goal)))
6483 need_stable_sp = 1;
6485 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6486 if (GET_MODE (value) != mode)
6487 return 0;
6489 /* Reject VALUE if it was loaded from GOAL
6490 and is also a register that appears in the address of GOAL. */
6492 if (goal_mem && value == SET_DEST (single_set (where))
6493 && refers_to_regno_for_reload_p (valueno,
6494 (valueno
6495 + HARD_REGNO_NREGS (valueno, mode)),
6496 goal, (rtx*) 0))
6497 return 0;
6499 /* Reject registers that overlap GOAL. */
6501 if (!goal_mem && !goal_const
6502 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6503 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6504 return 0;
6506 nregs = HARD_REGNO_NREGS (regno, mode);
6507 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6509 /* Reject VALUE if it is one of the regs reserved for reloads.
6510 Reload1 knows how to reuse them anyway, and it would get
6511 confused if we allocated one without its knowledge.
6512 (Now that insns introduced by reload are ignored above,
6513 this case shouldn't happen, but I'm not positive.) */
6515 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6517 int i;
6518 for (i = 0; i < valuenregs; ++i)
6519 if (reload_reg_p[valueno + i] >= 0)
6520 return 0;
6523 /* Reject VALUE if it is a register being used for an input reload
6524 even if it is not one of those reserved. */
6526 if (reload_reg_p != 0)
6528 int i;
6529 for (i = 0; i < n_reloads; i++)
6530 if (rld[i].reg_rtx != 0 && rld[i].in)
6532 int regno1 = REGNO (rld[i].reg_rtx);
6533 int nregs1 = HARD_REGNO_NREGS (regno1,
6534 GET_MODE (rld[i].reg_rtx));
6535 if (regno1 < valueno + valuenregs
6536 && regno1 + nregs1 > valueno)
6537 return 0;
6541 if (goal_mem)
6542 /* We must treat frame pointer as varying here,
6543 since it can vary--in a nonlocal goto as generated by expand_goto. */
6544 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6546 /* Now verify that the values of GOAL and VALUE remain unaltered
6547 until INSN is reached. */
6549 p = insn;
6550 while (1)
6552 p = PREV_INSN (p);
6553 if (p == where)
6554 return value;
6556 /* Don't trust the conversion past a function call
6557 if either of the two is in a call-clobbered register, or memory. */
6558 if (GET_CODE (p) == CALL_INSN)
6560 int i;
6562 if (goal_mem || need_stable_sp)
6563 return 0;
6565 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6566 for (i = 0; i < nregs; ++i)
6567 if (call_used_regs[regno + i])
6568 return 0;
6570 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6571 for (i = 0; i < valuenregs; ++i)
6572 if (call_used_regs[valueno + i])
6573 return 0;
6574 #ifdef NON_SAVING_SETJMP
6575 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6576 return 0;
6577 #endif
6580 if (INSN_P (p))
6582 pat = PATTERN (p);
6584 /* Watch out for unspec_volatile, and volatile asms. */
6585 if (volatile_insn_p (pat))
6586 return 0;
6588 /* If this insn P stores in either GOAL or VALUE, return 0.
6589 If GOAL is a memory ref and this insn writes memory, return 0.
6590 If GOAL is a memory ref and its address is not constant,
6591 and this insn P changes a register used in GOAL, return 0. */
6593 if (GET_CODE (pat) == COND_EXEC)
6594 pat = COND_EXEC_CODE (pat);
6595 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6597 rtx dest = SET_DEST (pat);
6598 while (GET_CODE (dest) == SUBREG
6599 || GET_CODE (dest) == ZERO_EXTRACT
6600 || GET_CODE (dest) == SIGN_EXTRACT
6601 || GET_CODE (dest) == STRICT_LOW_PART)
6602 dest = XEXP (dest, 0);
6603 if (GET_CODE (dest) == REG)
6605 int xregno = REGNO (dest);
6606 int xnregs;
6607 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6608 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6609 else
6610 xnregs = 1;
6611 if (xregno < regno + nregs && xregno + xnregs > regno)
6612 return 0;
6613 if (xregno < valueno + valuenregs
6614 && xregno + xnregs > valueno)
6615 return 0;
6616 if (goal_mem_addr_varies
6617 && reg_overlap_mentioned_for_reload_p (dest, goal))
6618 return 0;
6619 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6620 return 0;
6622 else if (goal_mem && GET_CODE (dest) == MEM
6623 && ! push_operand (dest, GET_MODE (dest)))
6624 return 0;
6625 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6626 && reg_equiv_memory_loc[regno] != 0)
6627 return 0;
6628 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6629 return 0;
6631 else if (GET_CODE (pat) == PARALLEL)
6633 int i;
6634 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6636 rtx v1 = XVECEXP (pat, 0, i);
6637 if (GET_CODE (v1) == COND_EXEC)
6638 v1 = COND_EXEC_CODE (v1);
6639 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6641 rtx dest = SET_DEST (v1);
6642 while (GET_CODE (dest) == SUBREG
6643 || GET_CODE (dest) == ZERO_EXTRACT
6644 || GET_CODE (dest) == SIGN_EXTRACT
6645 || GET_CODE (dest) == STRICT_LOW_PART)
6646 dest = XEXP (dest, 0);
6647 if (GET_CODE (dest) == REG)
6649 int xregno = REGNO (dest);
6650 int xnregs;
6651 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6652 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6653 else
6654 xnregs = 1;
6655 if (xregno < regno + nregs
6656 && xregno + xnregs > regno)
6657 return 0;
6658 if (xregno < valueno + valuenregs
6659 && xregno + xnregs > valueno)
6660 return 0;
6661 if (goal_mem_addr_varies
6662 && reg_overlap_mentioned_for_reload_p (dest,
6663 goal))
6664 return 0;
6665 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6666 return 0;
6668 else if (goal_mem && GET_CODE (dest) == MEM
6669 && ! push_operand (dest, GET_MODE (dest)))
6670 return 0;
6671 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6672 && reg_equiv_memory_loc[regno] != 0)
6673 return 0;
6674 else if (need_stable_sp
6675 && push_operand (dest, GET_MODE (dest)))
6676 return 0;
6681 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6683 rtx link;
6685 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6686 link = XEXP (link, 1))
6688 pat = XEXP (link, 0);
6689 if (GET_CODE (pat) == CLOBBER)
6691 rtx dest = SET_DEST (pat);
6693 if (GET_CODE (dest) == REG)
6695 int xregno = REGNO (dest);
6696 int xnregs
6697 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6699 if (xregno < regno + nregs
6700 && xregno + xnregs > regno)
6701 return 0;
6702 else if (xregno < valueno + valuenregs
6703 && xregno + xnregs > valueno)
6704 return 0;
6705 else if (goal_mem_addr_varies
6706 && reg_overlap_mentioned_for_reload_p (dest,
6707 goal))
6708 return 0;
6711 else if (goal_mem && GET_CODE (dest) == MEM
6712 && ! push_operand (dest, GET_MODE (dest)))
6713 return 0;
6714 else if (need_stable_sp
6715 && push_operand (dest, GET_MODE (dest)))
6716 return 0;
6721 #ifdef AUTO_INC_DEC
6722 /* If this insn auto-increments or auto-decrements
6723 either regno or valueno, return 0 now.
6724 If GOAL is a memory ref and its address is not constant,
6725 and this insn P increments a register used in GOAL, return 0. */
6727 rtx link;
6729 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6730 if (REG_NOTE_KIND (link) == REG_INC
6731 && GET_CODE (XEXP (link, 0)) == REG)
6733 int incno = REGNO (XEXP (link, 0));
6734 if (incno < regno + nregs && incno >= regno)
6735 return 0;
6736 if (incno < valueno + valuenregs && incno >= valueno)
6737 return 0;
6738 if (goal_mem_addr_varies
6739 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6740 goal))
6741 return 0;
6744 #endif
6749 /* Find a place where INCED appears in an increment or decrement operator
6750 within X, and return the amount INCED is incremented or decremented by.
6751 The value is always positive. */
6753 static int
6754 find_inc_amount (x, inced)
6755 rtx x, inced;
6757 enum rtx_code code = GET_CODE (x);
6758 const char *fmt;
6759 int i;
6761 if (code == MEM)
6763 rtx addr = XEXP (x, 0);
6764 if ((GET_CODE (addr) == PRE_DEC
6765 || GET_CODE (addr) == POST_DEC
6766 || GET_CODE (addr) == PRE_INC
6767 || GET_CODE (addr) == POST_INC)
6768 && XEXP (addr, 0) == inced)
6769 return GET_MODE_SIZE (GET_MODE (x));
6770 else if ((GET_CODE (addr) == PRE_MODIFY
6771 || GET_CODE (addr) == POST_MODIFY)
6772 && GET_CODE (XEXP (addr, 1)) == PLUS
6773 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6774 && XEXP (addr, 0) == inced
6775 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6777 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6778 return i < 0 ? -i : i;
6782 fmt = GET_RTX_FORMAT (code);
6783 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6785 if (fmt[i] == 'e')
6787 int tem = find_inc_amount (XEXP (x, i), inced);
6788 if (tem != 0)
6789 return tem;
6791 if (fmt[i] == 'E')
6793 int j;
6794 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6796 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6797 if (tem != 0)
6798 return tem;
6803 return 0;
6806 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6807 If SETS is nonzero, also consider SETs. */
6810 regno_clobbered_p (regno, insn, mode, sets)
6811 unsigned int regno;
6812 rtx insn;
6813 enum machine_mode mode;
6814 int sets;
6816 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6817 unsigned int endregno = regno + nregs;
6819 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6820 || (sets && GET_CODE (PATTERN (insn)) == SET))
6821 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6823 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6825 return test >= regno && test < endregno;
6828 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6830 int i = XVECLEN (PATTERN (insn), 0) - 1;
6832 for (; i >= 0; i--)
6834 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6835 if ((GET_CODE (elt) == CLOBBER
6836 || (sets && GET_CODE (PATTERN (insn)) == SET))
6837 && GET_CODE (XEXP (elt, 0)) == REG)
6839 unsigned int test = REGNO (XEXP (elt, 0));
6841 if (test >= regno && test < endregno)
6842 return 1;
6847 return 0;
6850 static const char *const reload_when_needed_name[] =
6852 "RELOAD_FOR_INPUT",
6853 "RELOAD_FOR_OUTPUT",
6854 "RELOAD_FOR_INSN",
6855 "RELOAD_FOR_INPUT_ADDRESS",
6856 "RELOAD_FOR_INPADDR_ADDRESS",
6857 "RELOAD_FOR_OUTPUT_ADDRESS",
6858 "RELOAD_FOR_OUTADDR_ADDRESS",
6859 "RELOAD_FOR_OPERAND_ADDRESS",
6860 "RELOAD_FOR_OPADDR_ADDR",
6861 "RELOAD_OTHER",
6862 "RELOAD_FOR_OTHER_ADDRESS"
6865 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6867 /* These functions are used to print the variables set by 'find_reloads' */
6869 void
6870 debug_reload_to_stream (f)
6871 FILE *f;
6873 int r;
6874 const char *prefix;
6876 if (! f)
6877 f = stderr;
6878 for (r = 0; r < n_reloads; r++)
6880 fprintf (f, "Reload %d: ", r);
6882 if (rld[r].in != 0)
6884 fprintf (f, "reload_in (%s) = ",
6885 GET_MODE_NAME (rld[r].inmode));
6886 print_inline_rtx (f, rld[r].in, 24);
6887 fprintf (f, "\n\t");
6890 if (rld[r].out != 0)
6892 fprintf (f, "reload_out (%s) = ",
6893 GET_MODE_NAME (rld[r].outmode));
6894 print_inline_rtx (f, rld[r].out, 24);
6895 fprintf (f, "\n\t");
6898 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6900 fprintf (f, "%s (opnum = %d)",
6901 reload_when_needed_name[(int) rld[r].when_needed],
6902 rld[r].opnum);
6904 if (rld[r].optional)
6905 fprintf (f, ", optional");
6907 if (rld[r].nongroup)
6908 fprintf (f, ", nongroup");
6910 if (rld[r].inc != 0)
6911 fprintf (f, ", inc by %d", rld[r].inc);
6913 if (rld[r].nocombine)
6914 fprintf (f, ", can't combine");
6916 if (rld[r].secondary_p)
6917 fprintf (f, ", secondary_reload_p");
6919 if (rld[r].in_reg != 0)
6921 fprintf (f, "\n\treload_in_reg: ");
6922 print_inline_rtx (f, rld[r].in_reg, 24);
6925 if (rld[r].out_reg != 0)
6927 fprintf (f, "\n\treload_out_reg: ");
6928 print_inline_rtx (f, rld[r].out_reg, 24);
6931 if (rld[r].reg_rtx != 0)
6933 fprintf (f, "\n\treload_reg_rtx: ");
6934 print_inline_rtx (f, rld[r].reg_rtx, 24);
6937 prefix = "\n\t";
6938 if (rld[r].secondary_in_reload != -1)
6940 fprintf (f, "%ssecondary_in_reload = %d",
6941 prefix, rld[r].secondary_in_reload);
6942 prefix = ", ";
6945 if (rld[r].secondary_out_reload != -1)
6946 fprintf (f, "%ssecondary_out_reload = %d\n",
6947 prefix, rld[r].secondary_out_reload);
6949 prefix = "\n\t";
6950 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6952 fprintf (f, "%ssecondary_in_icode = %s", prefix,
6953 insn_data[rld[r].secondary_in_icode].name);
6954 prefix = ", ";
6957 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6958 fprintf (f, "%ssecondary_out_icode = %s", prefix,
6959 insn_data[rld[r].secondary_out_icode].name);
6961 fprintf (f, "\n");
6965 void
6966 debug_reload ()
6968 debug_reload_to_stream (stderr);