* configure.in: Fix sed invocation for GFORTRAN_FOR_TARGET.
[official-gcc.git] / gcc / jump.c
blob2b46f7bc991f3e9d88dfc0e308a1011863c08446
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically set of utility function to
24 operate with jumps.
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes.
34 The subroutines redirect_jump and invert_jump are used
35 from other passes as well. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tm_p.h"
43 #include "flags.h"
44 #include "hard-reg-set.h"
45 #include "regs.h"
46 #include "insn-config.h"
47 #include "insn-attr.h"
48 #include "recog.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "real.h"
52 #include "except.h"
53 #include "diagnostic.h"
54 #include "toplev.h"
55 #include "reload.h"
56 #include "predict.h"
57 #include "timevar.h"
59 /* Optimize jump y; x: ... y: jumpif... x?
60 Don't know if it is worth bothering with. */
61 /* Optimize two cases of conditional jump to conditional jump?
62 This can never delete any instruction or make anything dead,
63 or even change what is live at any point.
64 So perhaps let combiner do it. */
66 static void init_label_info (rtx);
67 static void mark_all_labels (rtx);
68 static void delete_computation (rtx);
69 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
70 static int redirect_exp (rtx, rtx, rtx);
71 static void invert_exp_1 (rtx);
72 static int invert_exp (rtx);
73 static int returnjump_p_1 (rtx *, void *);
74 static void delete_prior_computation (rtx, rtx);
76 /* Alternate entry into the jump optimizer. This entry point only rebuilds
77 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
78 instructions. */
79 void
80 rebuild_jump_labels (rtx f)
82 rtx insn;
84 timevar_push (TV_REBUILD_JUMP);
85 init_label_info (f);
86 mark_all_labels (f);
88 /* Keep track of labels used from static data; we don't track them
89 closely enough to delete them here, so make sure their reference
90 count doesn't drop to zero. */
92 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
93 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
94 LABEL_NUSES (XEXP (insn, 0))++;
95 timevar_pop (TV_REBUILD_JUMP);
98 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
99 non-fallthru insn. This is not generally true, as multiple barriers
100 may have crept in, or the BARRIER may be separated from the last
101 real insn by one or more NOTEs.
103 This simple pass moves barriers and removes duplicates so that the
104 old code is happy.
106 void
107 cleanup_barriers (void)
109 rtx insn, next, prev;
110 for (insn = get_insns (); insn; insn = next)
112 next = NEXT_INSN (insn);
113 if (GET_CODE (insn) == BARRIER)
115 prev = prev_nonnote_insn (insn);
116 if (GET_CODE (prev) == BARRIER)
117 delete_barrier (insn);
118 else if (prev != PREV_INSN (insn))
119 reorder_insns (insn, insn, prev);
124 void
125 purge_line_number_notes (rtx f)
127 rtx last_note = 0;
128 rtx insn;
129 /* Delete extraneous line number notes.
130 Note that two consecutive notes for different lines are not really
131 extraneous. There should be some indication where that line belonged,
132 even if it became empty. */
134 for (insn = f; insn; insn = NEXT_INSN (insn))
135 if (GET_CODE (insn) == NOTE)
137 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
138 /* Any previous line note was for the prologue; gdb wants a new
139 note after the prologue even if it is for the same line. */
140 last_note = NULL_RTX;
141 else if (NOTE_LINE_NUMBER (insn) >= 0)
143 /* Delete this note if it is identical to previous note. */
144 if (last_note
145 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
146 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
148 delete_related_insns (insn);
149 continue;
152 last_note = insn;
157 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
158 notes whose labels don't occur in the insn any more. Returns the
159 largest INSN_UID found. */
160 static void
161 init_label_info (rtx f)
163 rtx insn;
165 for (insn = f; insn; insn = NEXT_INSN (insn))
166 if (GET_CODE (insn) == CODE_LABEL)
167 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
168 else if (GET_CODE (insn) == JUMP_INSN)
169 JUMP_LABEL (insn) = 0;
170 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
172 rtx note, next;
174 for (note = REG_NOTES (insn); note; note = next)
176 next = XEXP (note, 1);
177 if (REG_NOTE_KIND (note) == REG_LABEL
178 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
179 remove_note (insn, note);
184 /* Mark the label each jump jumps to.
185 Combine consecutive labels, and count uses of labels. */
187 static void
188 mark_all_labels (rtx f)
190 rtx insn;
192 for (insn = f; insn; insn = NEXT_INSN (insn))
193 if (INSN_P (insn))
195 if (GET_CODE (insn) == CALL_INSN
196 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
198 mark_all_labels (XEXP (PATTERN (insn), 0));
199 mark_all_labels (XEXP (PATTERN (insn), 1));
200 mark_all_labels (XEXP (PATTERN (insn), 2));
202 /* Canonicalize the tail recursion label attached to the
203 CALL_PLACEHOLDER insn. */
204 if (XEXP (PATTERN (insn), 3))
206 rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
207 XEXP (PATTERN (insn), 3));
208 mark_jump_label (label_ref, insn, 0);
209 XEXP (PATTERN (insn), 3) = XEXP (label_ref, 0);
212 continue;
215 mark_jump_label (PATTERN (insn), insn, 0);
216 if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
218 /* When we know the LABEL_REF contained in a REG used in
219 an indirect jump, we'll have a REG_LABEL note so that
220 flow can tell where it's going. */
221 if (JUMP_LABEL (insn) == 0)
223 rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
224 if (label_note)
226 /* But a LABEL_REF around the REG_LABEL note, so
227 that we can canonicalize it. */
228 rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
229 XEXP (label_note, 0));
231 mark_jump_label (label_ref, insn, 0);
232 XEXP (label_note, 0) = XEXP (label_ref, 0);
233 JUMP_LABEL (insn) = XEXP (label_note, 0);
240 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
241 notes between START and END out before START. START and END may be such
242 notes. Returns the values of the new starting and ending insns, which
243 may be different if the original ones were such notes.
244 Return true if there were only such notes and no real instructions. */
246 bool
247 squeeze_notes (rtx* startp, rtx* endp)
249 rtx start = *startp;
250 rtx end = *endp;
252 rtx insn;
253 rtx next;
254 rtx last = NULL;
255 rtx past_end = NEXT_INSN (end);
257 for (insn = start; insn != past_end; insn = next)
259 next = NEXT_INSN (insn);
260 if (GET_CODE (insn) == NOTE
261 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
262 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
263 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
264 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
265 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
266 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
268 if (insn == start)
269 start = next;
270 else
272 rtx prev = PREV_INSN (insn);
273 PREV_INSN (insn) = PREV_INSN (start);
274 NEXT_INSN (insn) = start;
275 NEXT_INSN (PREV_INSN (insn)) = insn;
276 PREV_INSN (NEXT_INSN (insn)) = insn;
277 NEXT_INSN (prev) = next;
278 PREV_INSN (next) = prev;
281 else
282 last = insn;
285 /* There were no real instructions. */
286 if (start == past_end)
287 return true;
289 end = last;
291 *startp = start;
292 *endp = end;
293 return false;
296 /* Return the label before INSN, or put a new label there. */
299 get_label_before (rtx insn)
301 rtx label;
303 /* Find an existing label at this point
304 or make a new one if there is none. */
305 label = prev_nonnote_insn (insn);
307 if (label == 0 || GET_CODE (label) != CODE_LABEL)
309 rtx prev = PREV_INSN (insn);
311 label = gen_label_rtx ();
312 emit_label_after (label, prev);
313 LABEL_NUSES (label) = 0;
315 return label;
318 /* Return the label after INSN, or put a new label there. */
321 get_label_after (rtx insn)
323 rtx label;
325 /* Find an existing label at this point
326 or make a new one if there is none. */
327 label = next_nonnote_insn (insn);
329 if (label == 0 || GET_CODE (label) != CODE_LABEL)
331 label = gen_label_rtx ();
332 emit_label_after (label, insn);
333 LABEL_NUSES (label) = 0;
335 return label;
338 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
339 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
340 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
341 know whether it's source is floating point or integer comparison. Machine
342 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
343 to help this function avoid overhead in these cases. */
344 enum rtx_code
345 reversed_comparison_code_parts (enum rtx_code code, rtx arg0, rtx arg1, rtx insn)
347 enum machine_mode mode;
349 /* If this is not actually a comparison, we can't reverse it. */
350 if (GET_RTX_CLASS (code) != RTX_COMPARE
351 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
352 return UNKNOWN;
354 mode = GET_MODE (arg0);
355 if (mode == VOIDmode)
356 mode = GET_MODE (arg1);
358 /* First see if machine description supplies us way to reverse the
359 comparison. Give it priority over everything else to allow
360 machine description to do tricks. */
361 if (GET_MODE_CLASS (mode) == MODE_CC
362 && REVERSIBLE_CC_MODE (mode))
364 #ifdef REVERSE_CONDITION
365 return REVERSE_CONDITION (code, mode);
366 #endif
367 return reverse_condition (code);
370 /* Try a few special cases based on the comparison code. */
371 switch (code)
373 case GEU:
374 case GTU:
375 case LEU:
376 case LTU:
377 case NE:
378 case EQ:
379 /* It is always safe to reverse EQ and NE, even for the floating
380 point. Similarly the unsigned comparisons are never used for
381 floating point so we can reverse them in the default way. */
382 return reverse_condition (code);
383 case ORDERED:
384 case UNORDERED:
385 case LTGT:
386 case UNEQ:
387 /* In case we already see unordered comparison, we can be sure to
388 be dealing with floating point so we don't need any more tests. */
389 return reverse_condition_maybe_unordered (code);
390 case UNLT:
391 case UNLE:
392 case UNGT:
393 case UNGE:
394 /* We don't have safe way to reverse these yet. */
395 return UNKNOWN;
396 default:
397 break;
400 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
402 rtx prev;
403 /* Try to search for the comparison to determine the real mode.
404 This code is expensive, but with sane machine description it
405 will be never used, since REVERSIBLE_CC_MODE will return true
406 in all cases. */
407 if (! insn)
408 return UNKNOWN;
410 for (prev = prev_nonnote_insn (insn);
411 prev != 0 && GET_CODE (prev) != CODE_LABEL;
412 prev = prev_nonnote_insn (prev))
414 rtx set = set_of (arg0, prev);
415 if (set && GET_CODE (set) == SET
416 && rtx_equal_p (SET_DEST (set), arg0))
418 rtx src = SET_SRC (set);
420 if (GET_CODE (src) == COMPARE)
422 rtx comparison = src;
423 arg0 = XEXP (src, 0);
424 mode = GET_MODE (arg0);
425 if (mode == VOIDmode)
426 mode = GET_MODE (XEXP (comparison, 1));
427 break;
429 /* We can get past reg-reg moves. This may be useful for model
430 of i387 comparisons that first move flag registers around. */
431 if (REG_P (src))
433 arg0 = src;
434 continue;
437 /* If register is clobbered in some ununderstandable way,
438 give up. */
439 if (set)
440 return UNKNOWN;
444 /* Test for an integer condition, or a floating-point comparison
445 in which NaNs can be ignored. */
446 if (GET_CODE (arg0) == CONST_INT
447 || (GET_MODE (arg0) != VOIDmode
448 && GET_MODE_CLASS (mode) != MODE_CC
449 && !HONOR_NANS (mode)))
450 return reverse_condition (code);
452 return UNKNOWN;
455 /* A wrapper around the previous function to take COMPARISON as rtx
456 expression. This simplifies many callers. */
457 enum rtx_code
458 reversed_comparison_code (rtx comparison, rtx insn)
460 if (!COMPARISON_P (comparison))
461 return UNKNOWN;
462 return reversed_comparison_code_parts (GET_CODE (comparison),
463 XEXP (comparison, 0),
464 XEXP (comparison, 1), insn);
467 /* Given an rtx-code for a comparison, return the code for the negated
468 comparison. If no such code exists, return UNKNOWN.
470 WATCH OUT! reverse_condition is not safe to use on a jump that might
471 be acting on the results of an IEEE floating point comparison, because
472 of the special treatment of non-signaling nans in comparisons.
473 Use reversed_comparison_code instead. */
475 enum rtx_code
476 reverse_condition (enum rtx_code code)
478 switch (code)
480 case EQ:
481 return NE;
482 case NE:
483 return EQ;
484 case GT:
485 return LE;
486 case GE:
487 return LT;
488 case LT:
489 return GE;
490 case LE:
491 return GT;
492 case GTU:
493 return LEU;
494 case GEU:
495 return LTU;
496 case LTU:
497 return GEU;
498 case LEU:
499 return GTU;
500 case UNORDERED:
501 return ORDERED;
502 case ORDERED:
503 return UNORDERED;
505 case UNLT:
506 case UNLE:
507 case UNGT:
508 case UNGE:
509 case UNEQ:
510 case LTGT:
511 return UNKNOWN;
513 default:
514 abort ();
518 /* Similar, but we're allowed to generate unordered comparisons, which
519 makes it safe for IEEE floating-point. Of course, we have to recognize
520 that the target will support them too... */
522 enum rtx_code
523 reverse_condition_maybe_unordered (enum rtx_code code)
525 switch (code)
527 case EQ:
528 return NE;
529 case NE:
530 return EQ;
531 case GT:
532 return UNLE;
533 case GE:
534 return UNLT;
535 case LT:
536 return UNGE;
537 case LE:
538 return UNGT;
539 case LTGT:
540 return UNEQ;
541 case UNORDERED:
542 return ORDERED;
543 case ORDERED:
544 return UNORDERED;
545 case UNLT:
546 return GE;
547 case UNLE:
548 return GT;
549 case UNGT:
550 return LE;
551 case UNGE:
552 return LT;
553 case UNEQ:
554 return LTGT;
556 default:
557 abort ();
561 /* Similar, but return the code when two operands of a comparison are swapped.
562 This IS safe for IEEE floating-point. */
564 enum rtx_code
565 swap_condition (enum rtx_code code)
567 switch (code)
569 case EQ:
570 case NE:
571 case UNORDERED:
572 case ORDERED:
573 case UNEQ:
574 case LTGT:
575 return code;
577 case GT:
578 return LT;
579 case GE:
580 return LE;
581 case LT:
582 return GT;
583 case LE:
584 return GE;
585 case GTU:
586 return LTU;
587 case GEU:
588 return LEU;
589 case LTU:
590 return GTU;
591 case LEU:
592 return GEU;
593 case UNLT:
594 return UNGT;
595 case UNLE:
596 return UNGE;
597 case UNGT:
598 return UNLT;
599 case UNGE:
600 return UNLE;
602 default:
603 abort ();
607 /* Given a comparison CODE, return the corresponding unsigned comparison.
608 If CODE is an equality comparison or already an unsigned comparison,
609 CODE is returned. */
611 enum rtx_code
612 unsigned_condition (enum rtx_code code)
614 switch (code)
616 case EQ:
617 case NE:
618 case GTU:
619 case GEU:
620 case LTU:
621 case LEU:
622 return code;
624 case GT:
625 return GTU;
626 case GE:
627 return GEU;
628 case LT:
629 return LTU;
630 case LE:
631 return LEU;
633 default:
634 abort ();
638 /* Similarly, return the signed version of a comparison. */
640 enum rtx_code
641 signed_condition (enum rtx_code code)
643 switch (code)
645 case EQ:
646 case NE:
647 case GT:
648 case GE:
649 case LT:
650 case LE:
651 return code;
653 case GTU:
654 return GT;
655 case GEU:
656 return GE;
657 case LTU:
658 return LT;
659 case LEU:
660 return LE;
662 default:
663 abort ();
667 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
668 truth of CODE1 implies the truth of CODE2. */
671 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
673 /* UNKNOWN comparison codes can happen as a result of trying to revert
674 comparison codes.
675 They can't match anything, so we have to reject them here. */
676 if (code1 == UNKNOWN || code2 == UNKNOWN)
677 return 0;
679 if (code1 == code2)
680 return 1;
682 switch (code1)
684 case UNEQ:
685 if (code2 == UNLE || code2 == UNGE)
686 return 1;
687 break;
689 case EQ:
690 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
691 || code2 == ORDERED)
692 return 1;
693 break;
695 case UNLT:
696 if (code2 == UNLE || code2 == NE)
697 return 1;
698 break;
700 case LT:
701 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
702 return 1;
703 break;
705 case UNGT:
706 if (code2 == UNGE || code2 == NE)
707 return 1;
708 break;
710 case GT:
711 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
712 return 1;
713 break;
715 case GE:
716 case LE:
717 if (code2 == ORDERED)
718 return 1;
719 break;
721 case LTGT:
722 if (code2 == NE || code2 == ORDERED)
723 return 1;
724 break;
726 case LTU:
727 if (code2 == LEU || code2 == NE)
728 return 1;
729 break;
731 case GTU:
732 if (code2 == GEU || code2 == NE)
733 return 1;
734 break;
736 case UNORDERED:
737 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
738 || code2 == UNGE || code2 == UNGT)
739 return 1;
740 break;
742 default:
743 break;
746 return 0;
749 /* Return 1 if INSN is an unconditional jump and nothing else. */
752 simplejump_p (rtx insn)
754 return (GET_CODE (insn) == JUMP_INSN
755 && GET_CODE (PATTERN (insn)) == SET
756 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
757 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
760 /* Return nonzero if INSN is a (possibly) conditional jump
761 and nothing more.
763 Use of this function is deprecated, since we need to support combined
764 branch and compare insns. Use any_condjump_p instead whenever possible. */
767 condjump_p (rtx insn)
769 rtx x = PATTERN (insn);
771 if (GET_CODE (x) != SET
772 || GET_CODE (SET_DEST (x)) != PC)
773 return 0;
775 x = SET_SRC (x);
776 if (GET_CODE (x) == LABEL_REF)
777 return 1;
778 else
779 return (GET_CODE (x) == IF_THEN_ELSE
780 && ((GET_CODE (XEXP (x, 2)) == PC
781 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
782 || GET_CODE (XEXP (x, 1)) == RETURN))
783 || (GET_CODE (XEXP (x, 1)) == PC
784 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
785 || GET_CODE (XEXP (x, 2)) == RETURN))));
787 return 0;
790 /* Return nonzero if INSN is a (possibly) conditional jump inside a
791 PARALLEL.
793 Use this function is deprecated, since we need to support combined
794 branch and compare insns. Use any_condjump_p instead whenever possible. */
797 condjump_in_parallel_p (rtx insn)
799 rtx x = PATTERN (insn);
801 if (GET_CODE (x) != PARALLEL)
802 return 0;
803 else
804 x = XVECEXP (x, 0, 0);
806 if (GET_CODE (x) != SET)
807 return 0;
808 if (GET_CODE (SET_DEST (x)) != PC)
809 return 0;
810 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
811 return 1;
812 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
813 return 0;
814 if (XEXP (SET_SRC (x), 2) == pc_rtx
815 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
816 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
817 return 1;
818 if (XEXP (SET_SRC (x), 1) == pc_rtx
819 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
820 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
821 return 1;
822 return 0;
825 /* Return set of PC, otherwise NULL. */
828 pc_set (rtx insn)
830 rtx pat;
831 if (GET_CODE (insn) != JUMP_INSN)
832 return NULL_RTX;
833 pat = PATTERN (insn);
835 /* The set is allowed to appear either as the insn pattern or
836 the first set in a PARALLEL. */
837 if (GET_CODE (pat) == PARALLEL)
838 pat = XVECEXP (pat, 0, 0);
839 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
840 return pat;
842 return NULL_RTX;
845 /* Return true when insn is an unconditional direct jump,
846 possibly bundled inside a PARALLEL. */
849 any_uncondjump_p (rtx insn)
851 rtx x = pc_set (insn);
852 if (!x)
853 return 0;
854 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
855 return 0;
856 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
857 return 0;
858 return 1;
861 /* Return true when insn is a conditional jump. This function works for
862 instructions containing PC sets in PARALLELs. The instruction may have
863 various other effects so before removing the jump you must verify
864 onlyjump_p.
866 Note that unlike condjump_p it returns false for unconditional jumps. */
869 any_condjump_p (rtx insn)
871 rtx x = pc_set (insn);
872 enum rtx_code a, b;
874 if (!x)
875 return 0;
876 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
877 return 0;
879 a = GET_CODE (XEXP (SET_SRC (x), 1));
880 b = GET_CODE (XEXP (SET_SRC (x), 2));
882 return ((b == PC && (a == LABEL_REF || a == RETURN))
883 || (a == PC && (b == LABEL_REF || b == RETURN)));
886 /* Return the label of a conditional jump. */
889 condjump_label (rtx insn)
891 rtx x = pc_set (insn);
893 if (!x)
894 return NULL_RTX;
895 x = SET_SRC (x);
896 if (GET_CODE (x) == LABEL_REF)
897 return x;
898 if (GET_CODE (x) != IF_THEN_ELSE)
899 return NULL_RTX;
900 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
901 return XEXP (x, 1);
902 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
903 return XEXP (x, 2);
904 return NULL_RTX;
907 /* Return true if INSN is a (possibly conditional) return insn. */
909 static int
910 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
912 rtx x = *loc;
914 return x && (GET_CODE (x) == RETURN
915 || (GET_CODE (x) == SET && SET_IS_RETURN_P (x)));
919 returnjump_p (rtx insn)
921 if (GET_CODE (insn) != JUMP_INSN)
922 return 0;
923 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
926 /* Return true if INSN is a jump that only transfers control and
927 nothing more. */
930 onlyjump_p (rtx insn)
932 rtx set;
934 if (GET_CODE (insn) != JUMP_INSN)
935 return 0;
937 set = single_set (insn);
938 if (set == NULL)
939 return 0;
940 if (GET_CODE (SET_DEST (set)) != PC)
941 return 0;
942 if (side_effects_p (SET_SRC (set)))
943 return 0;
945 return 1;
948 #ifdef HAVE_cc0
950 /* Return nonzero if X is an RTX that only sets the condition codes
951 and has no side effects. */
954 only_sets_cc0_p (rtx x)
956 if (! x)
957 return 0;
959 if (INSN_P (x))
960 x = PATTERN (x);
962 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
965 /* Return 1 if X is an RTX that does nothing but set the condition codes
966 and CLOBBER or USE registers.
967 Return -1 if X does explicitly set the condition codes,
968 but also does other things. */
971 sets_cc0_p (rtx x)
973 if (! x)
974 return 0;
976 if (INSN_P (x))
977 x = PATTERN (x);
979 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
980 return 1;
981 if (GET_CODE (x) == PARALLEL)
983 int i;
984 int sets_cc0 = 0;
985 int other_things = 0;
986 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
988 if (GET_CODE (XVECEXP (x, 0, i)) == SET
989 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
990 sets_cc0 = 1;
991 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
992 other_things = 1;
994 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
996 return 0;
998 #endif
1000 /* Follow any unconditional jump at LABEL;
1001 return the ultimate label reached by any such chain of jumps.
1002 If LABEL is not followed by a jump, return LABEL.
1003 If the chain loops or we can't find end, return LABEL,
1004 since that tells caller to avoid changing the insn.
1006 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
1007 a USE or CLOBBER. */
1010 follow_jumps (rtx label)
1012 rtx insn;
1013 rtx next;
1014 rtx value = label;
1015 int depth;
1017 for (depth = 0;
1018 (depth < 10
1019 && (insn = next_active_insn (value)) != 0
1020 && GET_CODE (insn) == JUMP_INSN
1021 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
1022 && onlyjump_p (insn))
1023 || GET_CODE (PATTERN (insn)) == RETURN)
1024 && (next = NEXT_INSN (insn))
1025 && GET_CODE (next) == BARRIER);
1026 depth++)
1028 /* Don't chain through the insn that jumps into a loop
1029 from outside the loop,
1030 since that would create multiple loop entry jumps
1031 and prevent loop optimization. */
1032 rtx tem;
1033 if (!reload_completed)
1034 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
1035 if (GET_CODE (tem) == NOTE
1036 && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
1037 /* ??? Optional. Disables some optimizations, but makes
1038 gcov output more accurate with -O. */
1039 || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
1040 return value;
1042 /* If we have found a cycle, make the insn jump to itself. */
1043 if (JUMP_LABEL (insn) == label)
1044 return label;
1046 tem = next_active_insn (JUMP_LABEL (insn));
1047 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
1048 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
1049 break;
1051 value = JUMP_LABEL (insn);
1053 if (depth == 10)
1054 return label;
1055 return value;
1059 /* Find all CODE_LABELs referred to in X, and increment their use counts.
1060 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
1061 in INSN, then store one of them in JUMP_LABEL (INSN).
1062 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
1063 referenced in INSN, add a REG_LABEL note containing that label to INSN.
1064 Also, when there are consecutive labels, canonicalize on the last of them.
1066 Note that two labels separated by a loop-beginning note
1067 must be kept distinct if we have not yet done loop-optimization,
1068 because the gap between them is where loop-optimize
1069 will want to move invariant code to. CROSS_JUMP tells us
1070 that loop-optimization is done with. */
1072 void
1073 mark_jump_label (rtx x, rtx insn, int in_mem)
1075 RTX_CODE code = GET_CODE (x);
1076 int i;
1077 const char *fmt;
1079 switch (code)
1081 case PC:
1082 case CC0:
1083 case REG:
1084 case CONST_INT:
1085 case CONST_DOUBLE:
1086 case CLOBBER:
1087 case CALL:
1088 return;
1090 case MEM:
1091 in_mem = 1;
1092 break;
1094 case SYMBOL_REF:
1095 if (!in_mem)
1096 return;
1098 /* If this is a constant-pool reference, see if it is a label. */
1099 if (CONSTANT_POOL_ADDRESS_P (x))
1100 mark_jump_label (get_pool_constant (x), insn, in_mem);
1101 break;
1103 case LABEL_REF:
1105 rtx label = XEXP (x, 0);
1107 /* Ignore remaining references to unreachable labels that
1108 have been deleted. */
1109 if (GET_CODE (label) == NOTE
1110 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
1111 break;
1113 if (GET_CODE (label) != CODE_LABEL)
1114 abort ();
1116 /* Ignore references to labels of containing functions. */
1117 if (LABEL_REF_NONLOCAL_P (x))
1118 break;
1120 XEXP (x, 0) = label;
1121 if (! insn || ! INSN_DELETED_P (insn))
1122 ++LABEL_NUSES (label);
1124 if (insn)
1126 if (GET_CODE (insn) == JUMP_INSN)
1127 JUMP_LABEL (insn) = label;
1128 else
1130 /* Add a REG_LABEL note for LABEL unless there already
1131 is one. All uses of a label, except for labels
1132 that are the targets of jumps, must have a
1133 REG_LABEL note. */
1134 if (! find_reg_note (insn, REG_LABEL, label))
1135 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
1136 REG_NOTES (insn));
1139 return;
1142 /* Do walk the labels in a vector, but not the first operand of an
1143 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1144 case ADDR_VEC:
1145 case ADDR_DIFF_VEC:
1146 if (! INSN_DELETED_P (insn))
1148 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1150 for (i = 0; i < XVECLEN (x, eltnum); i++)
1151 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, in_mem);
1153 return;
1155 default:
1156 break;
1159 fmt = GET_RTX_FORMAT (code);
1160 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1162 if (fmt[i] == 'e')
1163 mark_jump_label (XEXP (x, i), insn, in_mem);
1164 else if (fmt[i] == 'E')
1166 int j;
1167 for (j = 0; j < XVECLEN (x, i); j++)
1168 mark_jump_label (XVECEXP (x, i, j), insn, in_mem);
1173 /* If all INSN does is set the pc, delete it,
1174 and delete the insn that set the condition codes for it
1175 if that's what the previous thing was. */
1177 void
1178 delete_jump (rtx insn)
1180 rtx set = single_set (insn);
1182 if (set && GET_CODE (SET_DEST (set)) == PC)
1183 delete_computation (insn);
1186 /* Verify INSN is a BARRIER and delete it. */
1188 void
1189 delete_barrier (rtx insn)
1191 if (GET_CODE (insn) != BARRIER)
1192 abort ();
1194 delete_insn (insn);
1197 /* Recursively delete prior insns that compute the value (used only by INSN
1198 which the caller is deleting) stored in the register mentioned by NOTE
1199 which is a REG_DEAD note associated with INSN. */
1201 static void
1202 delete_prior_computation (rtx note, rtx insn)
1204 rtx our_prev;
1205 rtx reg = XEXP (note, 0);
1207 for (our_prev = prev_nonnote_insn (insn);
1208 our_prev && (GET_CODE (our_prev) == INSN
1209 || GET_CODE (our_prev) == CALL_INSN);
1210 our_prev = prev_nonnote_insn (our_prev))
1212 rtx pat = PATTERN (our_prev);
1214 /* If we reach a CALL which is not calling a const function
1215 or the callee pops the arguments, then give up. */
1216 if (GET_CODE (our_prev) == CALL_INSN
1217 && (! CONST_OR_PURE_CALL_P (our_prev)
1218 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
1219 break;
1221 /* If we reach a SEQUENCE, it is too complex to try to
1222 do anything with it, so give up. We can be run during
1223 and after reorg, so SEQUENCE rtl can legitimately show
1224 up here. */
1225 if (GET_CODE (pat) == SEQUENCE)
1226 break;
1228 if (GET_CODE (pat) == USE
1229 && GET_CODE (XEXP (pat, 0)) == INSN)
1230 /* reorg creates USEs that look like this. We leave them
1231 alone because reorg needs them for its own purposes. */
1232 break;
1234 if (reg_set_p (reg, pat))
1236 if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
1237 break;
1239 if (GET_CODE (pat) == PARALLEL)
1241 /* If we find a SET of something else, we can't
1242 delete the insn. */
1244 int i;
1246 for (i = 0; i < XVECLEN (pat, 0); i++)
1248 rtx part = XVECEXP (pat, 0, i);
1250 if (GET_CODE (part) == SET
1251 && SET_DEST (part) != reg)
1252 break;
1255 if (i == XVECLEN (pat, 0))
1256 delete_computation (our_prev);
1258 else if (GET_CODE (pat) == SET
1259 && GET_CODE (SET_DEST (pat)) == REG)
1261 int dest_regno = REGNO (SET_DEST (pat));
1262 int dest_endregno
1263 = (dest_regno
1264 + (dest_regno < FIRST_PSEUDO_REGISTER
1265 ? hard_regno_nregs[dest_regno]
1266 [GET_MODE (SET_DEST (pat))] : 1));
1267 int regno = REGNO (reg);
1268 int endregno
1269 = (regno
1270 + (regno < FIRST_PSEUDO_REGISTER
1271 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1));
1273 if (dest_regno >= regno
1274 && dest_endregno <= endregno)
1275 delete_computation (our_prev);
1277 /* We may have a multi-word hard register and some, but not
1278 all, of the words of the register are needed in subsequent
1279 insns. Write REG_UNUSED notes for those parts that were not
1280 needed. */
1281 else if (dest_regno <= regno
1282 && dest_endregno >= endregno)
1284 int i;
1286 REG_NOTES (our_prev)
1287 = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
1288 REG_NOTES (our_prev));
1290 for (i = dest_regno; i < dest_endregno; i++)
1291 if (! find_regno_note (our_prev, REG_UNUSED, i))
1292 break;
1294 if (i == dest_endregno)
1295 delete_computation (our_prev);
1299 break;
1302 /* If PAT references the register that dies here, it is an
1303 additional use. Hence any prior SET isn't dead. However, this
1304 insn becomes the new place for the REG_DEAD note. */
1305 if (reg_overlap_mentioned_p (reg, pat))
1307 XEXP (note, 1) = REG_NOTES (our_prev);
1308 REG_NOTES (our_prev) = note;
1309 break;
1314 /* Delete INSN and recursively delete insns that compute values used only
1315 by INSN. This uses the REG_DEAD notes computed during flow analysis.
1316 If we are running before flow.c, we need do nothing since flow.c will
1317 delete dead code. We also can't know if the registers being used are
1318 dead or not at this point.
1320 Otherwise, look at all our REG_DEAD notes. If a previous insn does
1321 nothing other than set a register that dies in this insn, we can delete
1322 that insn as well.
1324 On machines with CC0, if CC0 is used in this insn, we may be able to
1325 delete the insn that set it. */
1327 static void
1328 delete_computation (rtx insn)
1330 rtx note, next;
1332 #ifdef HAVE_cc0
1333 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
1335 rtx prev = prev_nonnote_insn (insn);
1336 /* We assume that at this stage
1337 CC's are always set explicitly
1338 and always immediately before the jump that
1339 will use them. So if the previous insn
1340 exists to set the CC's, delete it
1341 (unless it performs auto-increments, etc.). */
1342 if (prev && GET_CODE (prev) == INSN
1343 && sets_cc0_p (PATTERN (prev)))
1345 if (sets_cc0_p (PATTERN (prev)) > 0
1346 && ! side_effects_p (PATTERN (prev)))
1347 delete_computation (prev);
1348 else
1349 /* Otherwise, show that cc0 won't be used. */
1350 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
1351 cc0_rtx, REG_NOTES (prev));
1354 #endif
1356 for (note = REG_NOTES (insn); note; note = next)
1358 next = XEXP (note, 1);
1360 if (REG_NOTE_KIND (note) != REG_DEAD
1361 /* Verify that the REG_NOTE is legitimate. */
1362 || GET_CODE (XEXP (note, 0)) != REG)
1363 continue;
1365 delete_prior_computation (note, insn);
1368 delete_related_insns (insn);
1371 /* Delete insn INSN from the chain of insns and update label ref counts
1372 and delete insns now unreachable.
1374 Returns the first insn after INSN that was not deleted.
1376 Usage of this instruction is deprecated. Use delete_insn instead and
1377 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1380 delete_related_insns (rtx insn)
1382 int was_code_label = (GET_CODE (insn) == CODE_LABEL);
1383 rtx note;
1384 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1386 while (next && INSN_DELETED_P (next))
1387 next = NEXT_INSN (next);
1389 /* This insn is already deleted => return first following nondeleted. */
1390 if (INSN_DELETED_P (insn))
1391 return next;
1393 delete_insn (insn);
1395 /* If instruction is followed by a barrier,
1396 delete the barrier too. */
1398 if (next != 0 && GET_CODE (next) == BARRIER)
1399 delete_insn (next);
1401 /* If deleting a jump, decrement the count of the label,
1402 and delete the label if it is now unused. */
1404 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
1406 rtx lab = JUMP_LABEL (insn), lab_next;
1408 if (LABEL_NUSES (lab) == 0)
1410 /* This can delete NEXT or PREV,
1411 either directly if NEXT is JUMP_LABEL (INSN),
1412 or indirectly through more levels of jumps. */
1413 delete_related_insns (lab);
1415 /* I feel a little doubtful about this loop,
1416 but I see no clean and sure alternative way
1417 to find the first insn after INSN that is not now deleted.
1418 I hope this works. */
1419 while (next && INSN_DELETED_P (next))
1420 next = NEXT_INSN (next);
1421 return next;
1423 else if (tablejump_p (insn, NULL, &lab_next))
1425 /* If we're deleting the tablejump, delete the dispatch table.
1426 We may not be able to kill the label immediately preceding
1427 just yet, as it might be referenced in code leading up to
1428 the tablejump. */
1429 delete_related_insns (lab_next);
1433 /* Likewise if we're deleting a dispatch table. */
1435 if (GET_CODE (insn) == JUMP_INSN
1436 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
1437 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
1439 rtx pat = PATTERN (insn);
1440 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1441 int len = XVECLEN (pat, diff_vec_p);
1443 for (i = 0; i < len; i++)
1444 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1445 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1446 while (next && INSN_DELETED_P (next))
1447 next = NEXT_INSN (next);
1448 return next;
1451 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
1452 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
1453 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1454 if (REG_NOTE_KIND (note) == REG_LABEL
1455 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1456 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
1457 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1458 delete_related_insns (XEXP (note, 0));
1460 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
1461 prev = PREV_INSN (prev);
1463 /* If INSN was a label and a dispatch table follows it,
1464 delete the dispatch table. The tablejump must have gone already.
1465 It isn't useful to fall through into a table. */
1467 if (was_code_label
1468 && NEXT_INSN (insn) != 0
1469 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
1470 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
1471 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
1472 next = delete_related_insns (NEXT_INSN (insn));
1474 /* If INSN was a label, delete insns following it if now unreachable. */
1476 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
1478 enum rtx_code code;
1479 while (next)
1481 code = GET_CODE (next);
1482 if (code == NOTE
1483 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
1484 next = NEXT_INSN (next);
1485 /* Keep going past other deleted labels to delete what follows. */
1486 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1487 next = NEXT_INSN (next);
1488 else if (code == BARRIER || INSN_P (next))
1489 /* Note: if this deletes a jump, it can cause more
1490 deletion of unreachable code, after a different label.
1491 As long as the value from this recursive call is correct,
1492 this invocation functions correctly. */
1493 next = delete_related_insns (next);
1494 else
1495 break;
1499 return next;
1502 /* Delete a range of insns from FROM to TO, inclusive.
1503 This is for the sake of peephole optimization, so assume
1504 that whatever these insns do will still be done by a new
1505 peephole insn that will replace them. */
1507 void
1508 delete_for_peephole (rtx from, rtx to)
1510 rtx insn = from;
1512 while (1)
1514 rtx next = NEXT_INSN (insn);
1515 rtx prev = PREV_INSN (insn);
1517 if (GET_CODE (insn) != NOTE)
1519 INSN_DELETED_P (insn) = 1;
1521 /* Patch this insn out of the chain. */
1522 /* We don't do this all at once, because we
1523 must preserve all NOTEs. */
1524 if (prev)
1525 NEXT_INSN (prev) = next;
1527 if (next)
1528 PREV_INSN (next) = prev;
1531 if (insn == to)
1532 break;
1533 insn = next;
1536 /* Note that if TO is an unconditional jump
1537 we *do not* delete the BARRIER that follows,
1538 since the peephole that replaces this sequence
1539 is also an unconditional jump in that case. */
1542 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1543 NLABEL as a return. Accrue modifications into the change group. */
1545 static void
1546 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1548 rtx x = *loc;
1549 RTX_CODE code = GET_CODE (x);
1550 int i;
1551 const char *fmt;
1553 if (code == LABEL_REF)
1555 if (XEXP (x, 0) == olabel)
1557 rtx n;
1558 if (nlabel)
1559 n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
1560 else
1561 n = gen_rtx_RETURN (VOIDmode);
1563 validate_change (insn, loc, n, 1);
1564 return;
1567 else if (code == RETURN && olabel == 0)
1569 x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
1570 if (loc == &PATTERN (insn))
1571 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1572 validate_change (insn, loc, x, 1);
1573 return;
1576 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
1577 && GET_CODE (SET_SRC (x)) == LABEL_REF
1578 && XEXP (SET_SRC (x), 0) == olabel)
1580 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
1581 return;
1584 fmt = GET_RTX_FORMAT (code);
1585 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1587 if (fmt[i] == 'e')
1588 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1589 else if (fmt[i] == 'E')
1591 int j;
1592 for (j = 0; j < XVECLEN (x, i); j++)
1593 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1598 /* Similar, but apply the change group and report success or failure. */
1600 static int
1601 redirect_exp (rtx olabel, rtx nlabel, rtx insn)
1603 rtx *loc;
1605 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1606 loc = &XVECEXP (PATTERN (insn), 0, 0);
1607 else
1608 loc = &PATTERN (insn);
1610 redirect_exp_1 (loc, olabel, nlabel, insn);
1611 if (num_validated_changes () == 0)
1612 return 0;
1614 return apply_change_group ();
1617 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1618 the modifications into the change group. Return false if we did
1619 not see how to do that. */
1622 redirect_jump_1 (rtx jump, rtx nlabel)
1624 int ochanges = num_validated_changes ();
1625 rtx *loc;
1627 if (GET_CODE (PATTERN (jump)) == PARALLEL)
1628 loc = &XVECEXP (PATTERN (jump), 0, 0);
1629 else
1630 loc = &PATTERN (jump);
1632 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1633 return num_validated_changes () > ochanges;
1636 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1637 jump target label is unused as a result, it and the code following
1638 it may be deleted.
1640 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1641 RETURN insn.
1643 The return value will be 1 if the change was made, 0 if it wasn't
1644 (this can only occur for NLABEL == 0). */
1647 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1649 rtx olabel = JUMP_LABEL (jump);
1650 rtx note;
1652 if (nlabel == olabel)
1653 return 1;
1655 if (! redirect_exp (olabel, nlabel, jump))
1656 return 0;
1658 JUMP_LABEL (jump) = nlabel;
1659 if (nlabel)
1660 ++LABEL_NUSES (nlabel);
1662 /* Update labels in any REG_EQUAL note. */
1663 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1665 if (nlabel && olabel)
1667 rtx dest = XEXP (note, 0);
1669 if (GET_CODE (dest) == IF_THEN_ELSE)
1671 if (GET_CODE (XEXP (dest, 1)) == LABEL_REF
1672 && XEXP (XEXP (dest, 1), 0) == olabel)
1673 XEXP (XEXP (dest, 1), 0) = nlabel;
1674 if (GET_CODE (XEXP (dest, 2)) == LABEL_REF
1675 && XEXP (XEXP (dest, 2), 0) == olabel)
1676 XEXP (XEXP (dest, 2), 0) = nlabel;
1678 else
1679 remove_note (jump, note);
1681 else
1682 remove_note (jump, note);
1685 /* If we're eliding the jump over exception cleanups at the end of a
1686 function, move the function end note so that -Wreturn-type works. */
1687 if (olabel && nlabel
1688 && NEXT_INSN (olabel)
1689 && GET_CODE (NEXT_INSN (olabel)) == NOTE
1690 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
1691 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
1693 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused
1694 /* Undefined labels will remain outside the insn stream. */
1695 && INSN_UID (olabel))
1696 delete_related_insns (olabel);
1698 return 1;
1701 /* Invert the jump condition of rtx X contained in jump insn, INSN.
1702 Accrue the modifications into the change group. */
1704 static void
1705 invert_exp_1 (rtx insn)
1707 RTX_CODE code;
1708 rtx x = pc_set (insn);
1710 if (!x)
1711 abort ();
1712 x = SET_SRC (x);
1714 code = GET_CODE (x);
1716 if (code == IF_THEN_ELSE)
1718 rtx comp = XEXP (x, 0);
1719 rtx tem;
1720 enum rtx_code reversed_code;
1722 /* We can do this in two ways: The preferable way, which can only
1723 be done if this is not an integer comparison, is to reverse
1724 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1725 of the IF_THEN_ELSE. If we can't do either, fail. */
1727 reversed_code = reversed_comparison_code (comp, insn);
1729 if (reversed_code != UNKNOWN)
1731 validate_change (insn, &XEXP (x, 0),
1732 gen_rtx_fmt_ee (reversed_code,
1733 GET_MODE (comp), XEXP (comp, 0),
1734 XEXP (comp, 1)),
1736 return;
1739 tem = XEXP (x, 1);
1740 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1741 validate_change (insn, &XEXP (x, 2), tem, 1);
1743 else
1744 abort ();
1747 /* Invert the jump condition of conditional jump insn, INSN.
1749 Return 1 if we can do so, 0 if we cannot find a way to do so that
1750 matches a pattern. */
1752 static int
1753 invert_exp (rtx insn)
1755 invert_exp_1 (insn);
1756 if (num_validated_changes () == 0)
1757 return 0;
1759 return apply_change_group ();
1762 /* Invert the condition of the jump JUMP, and make it jump to label
1763 NLABEL instead of where it jumps now. Accrue changes into the
1764 change group. Return false if we didn't see how to perform the
1765 inversion and redirection. */
1768 invert_jump_1 (rtx jump, rtx nlabel)
1770 int ochanges;
1772 ochanges = num_validated_changes ();
1773 invert_exp_1 (jump);
1774 if (num_validated_changes () == ochanges)
1775 return 0;
1777 return redirect_jump_1 (jump, nlabel);
1780 /* Invert the condition of the jump JUMP, and make it jump to label
1781 NLABEL instead of where it jumps now. Return true if successful. */
1784 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1786 /* We have to either invert the condition and change the label or
1787 do neither. Either operation could fail. We first try to invert
1788 the jump. If that succeeds, we try changing the label. If that fails,
1789 we invert the jump back to what it was. */
1791 if (! invert_exp (jump))
1792 return 0;
1794 if (redirect_jump (jump, nlabel, delete_unused))
1796 /* Remove REG_EQUAL note if we have one. */
1797 rtx note = find_reg_note (jump, REG_EQUAL, NULL_RTX);
1798 if (note)
1799 remove_note (jump, note);
1801 invert_br_probabilities (jump);
1803 return 1;
1806 if (! invert_exp (jump))
1807 /* This should just be putting it back the way it was. */
1808 abort ();
1810 return 0;
1814 /* Like rtx_equal_p except that it considers two REGs as equal
1815 if they renumber to the same value and considers two commutative
1816 operations to be the same if the order of the operands has been
1817 reversed.
1819 ??? Addition is not commutative on the PA due to the weird implicit
1820 space register selection rules for memory addresses. Therefore, we
1821 don't consider a + b == b + a.
1823 We could/should make this test a little tighter. Possibly only
1824 disabling it on the PA via some backend macro or only disabling this
1825 case when the PLUS is inside a MEM. */
1828 rtx_renumbered_equal_p (rtx x, rtx y)
1830 int i;
1831 enum rtx_code code = GET_CODE (x);
1832 const char *fmt;
1834 if (x == y)
1835 return 1;
1837 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
1838 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
1839 && GET_CODE (SUBREG_REG (y)) == REG)))
1841 int reg_x = -1, reg_y = -1;
1842 int byte_x = 0, byte_y = 0;
1844 if (GET_MODE (x) != GET_MODE (y))
1845 return 0;
1847 /* If we haven't done any renumbering, don't
1848 make any assumptions. */
1849 if (reg_renumber == 0)
1850 return rtx_equal_p (x, y);
1852 if (code == SUBREG)
1854 reg_x = REGNO (SUBREG_REG (x));
1855 byte_x = SUBREG_BYTE (x);
1857 if (reg_renumber[reg_x] >= 0)
1859 reg_x = subreg_regno_offset (reg_renumber[reg_x],
1860 GET_MODE (SUBREG_REG (x)),
1861 byte_x,
1862 GET_MODE (x));
1863 byte_x = 0;
1866 else
1868 reg_x = REGNO (x);
1869 if (reg_renumber[reg_x] >= 0)
1870 reg_x = reg_renumber[reg_x];
1873 if (GET_CODE (y) == SUBREG)
1875 reg_y = REGNO (SUBREG_REG (y));
1876 byte_y = SUBREG_BYTE (y);
1878 if (reg_renumber[reg_y] >= 0)
1880 reg_y = subreg_regno_offset (reg_renumber[reg_y],
1881 GET_MODE (SUBREG_REG (y)),
1882 byte_y,
1883 GET_MODE (y));
1884 byte_y = 0;
1887 else
1889 reg_y = REGNO (y);
1890 if (reg_renumber[reg_y] >= 0)
1891 reg_y = reg_renumber[reg_y];
1894 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1897 /* Now we have disposed of all the cases
1898 in which different rtx codes can match. */
1899 if (code != GET_CODE (y))
1900 return 0;
1902 switch (code)
1904 case PC:
1905 case CC0:
1906 case ADDR_VEC:
1907 case ADDR_DIFF_VEC:
1908 case CONST_INT:
1909 return 0;
1911 case LABEL_REF:
1912 /* We can't assume nonlocal labels have their following insns yet. */
1913 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1914 return XEXP (x, 0) == XEXP (y, 0);
1916 /* Two label-refs are equivalent if they point at labels
1917 in the same position in the instruction stream. */
1918 return (next_real_insn (XEXP (x, 0))
1919 == next_real_insn (XEXP (y, 0)));
1921 case SYMBOL_REF:
1922 return XSTR (x, 0) == XSTR (y, 0);
1924 case CODE_LABEL:
1925 /* If we didn't match EQ equality above, they aren't the same. */
1926 return 0;
1928 default:
1929 break;
1932 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1934 if (GET_MODE (x) != GET_MODE (y))
1935 return 0;
1937 /* For commutative operations, the RTX match if the operand match in any
1938 order. Also handle the simple binary and unary cases without a loop.
1940 ??? Don't consider PLUS a commutative operator; see comments above. */
1941 if (COMMUTATIVE_P (x) && code != PLUS)
1942 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1943 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1944 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1945 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1946 else if (NON_COMMUTATIVE_P (x))
1947 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1948 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1949 else if (UNARY_P (x))
1950 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1952 /* Compare the elements. If any pair of corresponding elements
1953 fail to match, return 0 for the whole things. */
1955 fmt = GET_RTX_FORMAT (code);
1956 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1958 int j;
1959 switch (fmt[i])
1961 case 'w':
1962 if (XWINT (x, i) != XWINT (y, i))
1963 return 0;
1964 break;
1966 case 'i':
1967 if (XINT (x, i) != XINT (y, i))
1968 return 0;
1969 break;
1971 case 't':
1972 if (XTREE (x, i) != XTREE (y, i))
1973 return 0;
1974 break;
1976 case 's':
1977 if (strcmp (XSTR (x, i), XSTR (y, i)))
1978 return 0;
1979 break;
1981 case 'e':
1982 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1983 return 0;
1984 break;
1986 case 'u':
1987 if (XEXP (x, i) != XEXP (y, i))
1988 return 0;
1989 /* Fall through. */
1990 case '0':
1991 break;
1993 case 'E':
1994 if (XVECLEN (x, i) != XVECLEN (y, i))
1995 return 0;
1996 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1997 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1998 return 0;
1999 break;
2001 default:
2002 abort ();
2005 return 1;
2008 /* If X is a hard register or equivalent to one or a subregister of one,
2009 return the hard register number. If X is a pseudo register that was not
2010 assigned a hard register, return the pseudo register number. Otherwise,
2011 return -1. Any rtx is valid for X. */
2014 true_regnum (rtx x)
2016 if (GET_CODE (x) == REG)
2018 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
2019 return reg_renumber[REGNO (x)];
2020 return REGNO (x);
2022 if (GET_CODE (x) == SUBREG)
2024 int base = true_regnum (SUBREG_REG (x));
2025 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
2026 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
2027 GET_MODE (SUBREG_REG (x)),
2028 SUBREG_BYTE (x), GET_MODE (x));
2030 return -1;
2033 /* Return regno of the register REG and handle subregs too. */
2034 unsigned int
2035 reg_or_subregno (rtx reg)
2037 if (REG_P (reg))
2038 return REGNO (reg);
2039 if (GET_CODE (reg) == SUBREG)
2040 return REGNO (SUBREG_REG (reg));
2041 abort ();