Fix build on sparc64-linux-gnu.
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob1e325ecade189a51b38931cf7cf4a5b2bf829676
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Lib; use Lib;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Dim; use Sem_Dim;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Elab; use Sem_Elab;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Sem_Warn; use Sem_Warn;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Sinfo; use Sinfo;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
65 package body Sem_Ch5 is
67 Current_Assignment : Node_Id := Empty;
68 -- This variable holds the node for an assignment that contains target
69 -- names. The corresponding flag has been set by the parser, and when
70 -- set the analysis of the RHS must be done with all expansion disabled,
71 -- because the assignment is reanalyzed after expansion has replaced all
72 -- occurrences of the target name appropriately.
74 Unblocked_Exit_Count : Nat := 0;
75 -- This variable is used when processing if statements, case statements,
76 -- and block statements. It counts the number of exit points that are not
77 -- blocked by unconditional transfer instructions: for IF and CASE, these
78 -- are the branches of the conditional; for a block, they are the statement
79 -- sequence of the block, and the statement sequences of any exception
80 -- handlers that are part of the block. When processing is complete, if
81 -- this count is zero, it means that control cannot fall through the IF,
82 -- CASE or block statement. This is used for the generation of warning
83 -- messages. This variable is recursively saved on entry to processing the
84 -- construct, and restored on exit.
86 function Has_Sec_Stack_Call (N : Node_Id) return Boolean;
87 -- N is the node for an arbitrary construct. This function searches the
88 -- construct N to see if any expressions within it contain function
89 -- calls that use the secondary stack, returning True if any such call
90 -- is found, and False otherwise.
92 procedure Preanalyze_Range (R_Copy : Node_Id);
93 -- Determine expected type of range or domain of iteration of Ada 2012
94 -- loop by analyzing separate copy. Do the analysis and resolution of the
95 -- copy of the bound(s) with expansion disabled, to prevent the generation
96 -- of finalization actions. This prevents memory leaks when the bounds
97 -- contain calls to functions returning controlled arrays or when the
98 -- domain of iteration is a container.
100 ------------------------
101 -- Analyze_Assignment --
102 ------------------------
104 -- WARNING: This routine manages Ghost regions. Return statements must be
105 -- replaced by gotos which jump to the end of the routine and restore the
106 -- Ghost mode.
108 procedure Analyze_Assignment (N : Node_Id) is
109 Lhs : constant Node_Id := Name (N);
110 Rhs : Node_Id := Expression (N);
112 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
113 -- N is the node for the left hand side of an assignment, and it is not
114 -- a variable. This routine issues an appropriate diagnostic.
116 function Is_Protected_Part_Of_Constituent
117 (Nod : Node_Id) return Boolean;
118 -- Determine whether arbitrary node Nod denotes a Part_Of constituent of
119 -- a single protected type.
121 procedure Kill_Lhs;
122 -- This is called to kill current value settings of a simple variable
123 -- on the left hand side. We call it if we find any error in analyzing
124 -- the assignment, and at the end of processing before setting any new
125 -- current values in place.
127 procedure Set_Assignment_Type
128 (Opnd : Node_Id;
129 Opnd_Type : in out Entity_Id);
130 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
131 -- nominal subtype. This procedure is used to deal with cases where the
132 -- nominal subtype must be replaced by the actual subtype.
134 procedure Transform_BIP_Assignment (Typ : Entity_Id);
135 function Should_Transform_BIP_Assignment
136 (Typ : Entity_Id) return Boolean;
137 -- If the right-hand side of an assignment statement is a build-in-place
138 -- call we cannot build in place, so we insert a temp initialized with
139 -- the call, and transform the assignment statement to copy the temp.
140 -- Transform_BIP_Assignment does the tranformation, and
141 -- Should_Transform_BIP_Assignment determines whether we should.
142 -- The same goes for qualified expressions and conversions whose
143 -- operand is such a call.
145 -- This is only for nonlimited types; assignment statements are illegal
146 -- for limited types, but are generated internally for aggregates and
147 -- init procs. These limited-type are not really assignment statements
148 -- -- conceptually, they are initializations, so should not be
149 -- transformed.
151 -- Similarly, for nonlimited types, aggregates and init procs generate
152 -- assignment statements that are really initializations. These are
153 -- marked No_Ctrl_Actions.
155 function Within_Function return Boolean;
156 -- Determine whether the current scope is a function or appears within
157 -- one.
159 -------------------------------
160 -- Diagnose_Non_Variable_Lhs --
161 -------------------------------
163 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
164 begin
165 -- Not worth posting another error if left hand side already flagged
166 -- as being illegal in some respect.
168 if Error_Posted (N) then
169 return;
171 -- Some special bad cases of entity names
173 elsif Is_Entity_Name (N) then
174 declare
175 Ent : constant Entity_Id := Entity (N);
177 begin
178 if Ekind (Ent) = E_Loop_Parameter
179 or else Is_Loop_Parameter (Ent)
180 then
181 Error_Msg_N ("assignment to loop parameter not allowed", N);
182 return;
184 elsif Ekind (Ent) = E_In_Parameter then
185 Error_Msg_N
186 ("assignment to IN mode parameter not allowed", N);
187 return;
189 -- Renamings of protected private components are turned into
190 -- constants when compiling a protected function. In the case
191 -- of single protected types, the private component appears
192 -- directly.
194 elsif (Is_Prival (Ent) and then Within_Function)
195 or else
196 (Ekind (Ent) = E_Component
197 and then Is_Protected_Type (Scope (Ent)))
198 then
199 Error_Msg_N
200 ("protected function cannot modify protected object", N);
201 return;
202 end if;
203 end;
205 -- For indexed components, test prefix if it is in array. We do not
206 -- want to recurse for cases where the prefix is a pointer, since we
207 -- may get a message confusing the pointer and what it references.
209 elsif Nkind (N) = N_Indexed_Component
210 and then Is_Array_Type (Etype (Prefix (N)))
211 then
212 Diagnose_Non_Variable_Lhs (Prefix (N));
213 return;
215 -- Another special case for assignment to discriminant
217 elsif Nkind (N) = N_Selected_Component then
218 if Present (Entity (Selector_Name (N)))
219 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
220 then
221 Error_Msg_N ("assignment to discriminant not allowed", N);
222 return;
224 -- For selection from record, diagnose prefix, but note that again
225 -- we only do this for a record, not e.g. for a pointer.
227 elsif Is_Record_Type (Etype (Prefix (N))) then
228 Diagnose_Non_Variable_Lhs (Prefix (N));
229 return;
230 end if;
231 end if;
233 -- If we fall through, we have no special message to issue
235 Error_Msg_N ("left hand side of assignment must be a variable", N);
236 end Diagnose_Non_Variable_Lhs;
238 --------------------------------------
239 -- Is_Protected_Part_Of_Constituent --
240 --------------------------------------
242 function Is_Protected_Part_Of_Constituent
243 (Nod : Node_Id) return Boolean
245 Encap_Id : Entity_Id;
246 Var_Id : Entity_Id;
248 begin
249 -- Abstract states and variables may act as Part_Of constituents of
250 -- single protected types, however only variables can be modified by
251 -- an assignment.
253 if Is_Entity_Name (Nod) then
254 Var_Id := Entity (Nod);
256 if Present (Var_Id) and then Ekind (Var_Id) = E_Variable then
257 Encap_Id := Encapsulating_State (Var_Id);
259 -- To qualify, the node must denote a reference to a variable
260 -- whose encapsulating state is a single protected object.
262 return
263 Present (Encap_Id)
264 and then Is_Single_Protected_Object (Encap_Id);
265 end if;
266 end if;
268 return False;
269 end Is_Protected_Part_Of_Constituent;
271 --------------
272 -- Kill_Lhs --
273 --------------
275 procedure Kill_Lhs is
276 begin
277 if Is_Entity_Name (Lhs) then
278 declare
279 Ent : constant Entity_Id := Entity (Lhs);
280 begin
281 if Present (Ent) then
282 Kill_Current_Values (Ent);
283 end if;
284 end;
285 end if;
286 end Kill_Lhs;
288 -------------------------
289 -- Set_Assignment_Type --
290 -------------------------
292 procedure Set_Assignment_Type
293 (Opnd : Node_Id;
294 Opnd_Type : in out Entity_Id)
296 Decl : Node_Id;
298 begin
299 Require_Entity (Opnd);
301 -- If the assignment operand is an in-out or out parameter, then we
302 -- get the actual subtype (needed for the unconstrained case). If the
303 -- operand is the actual in an entry declaration, then within the
304 -- accept statement it is replaced with a local renaming, which may
305 -- also have an actual subtype.
307 if Is_Entity_Name (Opnd)
308 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
309 or else Ekind_In (Entity (Opnd),
310 E_In_Out_Parameter,
311 E_Generic_In_Out_Parameter)
312 or else
313 (Ekind (Entity (Opnd)) = E_Variable
314 and then Nkind (Parent (Entity (Opnd))) =
315 N_Object_Renaming_Declaration
316 and then Nkind (Parent (Parent (Entity (Opnd)))) =
317 N_Accept_Statement))
318 then
319 Opnd_Type := Get_Actual_Subtype (Opnd);
321 -- If assignment operand is a component reference, then we get the
322 -- actual subtype of the component for the unconstrained case.
324 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
325 and then not Is_Unchecked_Union (Opnd_Type)
326 then
327 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
329 if Present (Decl) then
330 Insert_Action (N, Decl);
331 Mark_Rewrite_Insertion (Decl);
332 Analyze (Decl);
333 Opnd_Type := Defining_Identifier (Decl);
334 Set_Etype (Opnd, Opnd_Type);
335 Freeze_Itype (Opnd_Type, N);
337 elsif Is_Constrained (Etype (Opnd)) then
338 Opnd_Type := Etype (Opnd);
339 end if;
341 -- For slice, use the constrained subtype created for the slice
343 elsif Nkind (Opnd) = N_Slice then
344 Opnd_Type := Etype (Opnd);
345 end if;
346 end Set_Assignment_Type;
348 -------------------------------------
349 -- Should_Transform_BIP_Assignment --
350 -------------------------------------
352 function Should_Transform_BIP_Assignment
353 (Typ : Entity_Id) return Boolean
355 Result : Boolean;
357 begin
358 if Expander_Active
359 and then not Is_Limited_View (Typ)
360 and then Is_Build_In_Place_Result_Type (Typ)
361 and then not No_Ctrl_Actions (N)
362 then
363 -- This function is called early, before name resolution is
364 -- complete, so we have to deal with things that might turn into
365 -- function calls later. N_Function_Call and N_Op nodes are the
366 -- obvious case. An N_Identifier or N_Expanded_Name is a
367 -- parameterless function call if it denotes a function.
368 -- Finally, an attribute reference can be a function call.
370 case Nkind (Unqual_Conv (Rhs)) is
371 when N_Function_Call
372 | N_Op
374 Result := True;
376 when N_Expanded_Name
377 | N_Identifier
379 case Ekind (Entity (Unqual_Conv (Rhs))) is
380 when E_Function
381 | E_Operator
383 Result := True;
385 when others =>
386 Result := False;
387 end case;
389 when N_Attribute_Reference =>
390 Result := Attribute_Name (Unqual_Conv (Rhs)) = Name_Input;
391 -- T'Input will turn into a call whose result type is T
393 when others =>
394 Result := False;
395 end case;
396 else
397 Result := False;
398 end if;
400 return Result;
401 end Should_Transform_BIP_Assignment;
403 ------------------------------
404 -- Transform_BIP_Assignment --
405 ------------------------------
407 procedure Transform_BIP_Assignment (Typ : Entity_Id) is
409 -- Tranform "X : [constant] T := F (...);" into:
411 -- Temp : constant T := F (...);
412 -- X := Temp;
414 Loc : constant Source_Ptr := Sloc (N);
415 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'Y', Rhs);
416 Obj_Decl : constant Node_Id :=
417 Make_Object_Declaration (Loc,
418 Defining_Identifier => Def_Id,
419 Constant_Present => True,
420 Object_Definition => New_Occurrence_Of (Typ, Loc),
421 Expression => Rhs,
422 Has_Init_Expression => True);
424 begin
425 Set_Etype (Def_Id, Typ);
426 Set_Expression (N, New_Occurrence_Of (Def_Id, Loc));
428 -- At this point, Rhs is no longer equal to Expression (N), so:
430 Rhs := Expression (N);
432 Insert_Action (N, Obj_Decl);
433 end Transform_BIP_Assignment;
435 ---------------------
436 -- Within_Function --
437 ---------------------
439 function Within_Function return Boolean is
440 Scop_Id : constant Entity_Id := Current_Scope;
442 begin
443 if Ekind (Scop_Id) = E_Function then
444 return True;
446 elsif Ekind (Enclosing_Dynamic_Scope (Scop_Id)) = E_Function then
447 return True;
448 end if;
450 return False;
451 end Within_Function;
453 -- Local variables
455 T1 : Entity_Id;
456 T2 : Entity_Id;
458 Save_Full_Analysis : Boolean := False;
459 -- Force initialization to facilitate static analysis
461 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
462 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
463 -- Save the Ghost-related attributes to restore on exit
465 -- Start of processing for Analyze_Assignment
467 begin
468 Mark_Coextensions (N, Rhs);
470 -- Preserve relevant elaboration-related attributes of the context which
471 -- are no longer available or very expensive to recompute once analysis,
472 -- resolution, and expansion are over.
474 Mark_Elaboration_Attributes
475 (N_Id => N,
476 Checks => True,
477 Modes => True);
479 -- Analyze the target of the assignment first in case the expression
480 -- contains references to Ghost entities. The checks that verify the
481 -- proper use of a Ghost entity need to know the enclosing context.
483 Analyze (Lhs);
485 -- An assignment statement is Ghost when the left hand side denotes a
486 -- Ghost entity. Set the mode now to ensure that any nodes generated
487 -- during analysis and expansion are properly marked as Ghost.
489 if Has_Target_Names (N) then
490 Current_Assignment := N;
491 Expander_Mode_Save_And_Set (False);
492 Save_Full_Analysis := Full_Analysis;
493 Full_Analysis := False;
494 else
495 Current_Assignment := Empty;
496 end if;
498 Mark_And_Set_Ghost_Assignment (N);
499 Analyze (Rhs);
501 -- Ensure that we never do an assignment on a variable marked as
502 -- Is_Safe_To_Reevaluate.
504 pragma Assert
505 (not Is_Entity_Name (Lhs)
506 or else Ekind (Entity (Lhs)) /= E_Variable
507 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
509 -- Start type analysis for assignment
511 T1 := Etype (Lhs);
513 -- In the most general case, both Lhs and Rhs can be overloaded, and we
514 -- must compute the intersection of the possible types on each side.
516 if Is_Overloaded (Lhs) then
517 declare
518 I : Interp_Index;
519 It : Interp;
521 begin
522 T1 := Any_Type;
523 Get_First_Interp (Lhs, I, It);
525 while Present (It.Typ) loop
527 -- An indexed component with generalized indexing is always
528 -- overloaded with the corresponding dereference. Discard the
529 -- interpretation that yields a reference type, which is not
530 -- assignable.
532 if Nkind (Lhs) = N_Indexed_Component
533 and then Present (Generalized_Indexing (Lhs))
534 and then Has_Implicit_Dereference (It.Typ)
535 then
536 null;
538 -- This may be a call to a parameterless function through an
539 -- implicit dereference, so discard interpretation as well.
541 elsif Is_Entity_Name (Lhs)
542 and then Has_Implicit_Dereference (It.Typ)
543 then
544 null;
546 elsif Has_Compatible_Type (Rhs, It.Typ) then
547 if T1 = Any_Type then
548 T1 := It.Typ;
549 else
550 -- An explicit dereference is overloaded if the prefix
551 -- is. Try to remove the ambiguity on the prefix, the
552 -- error will be posted there if the ambiguity is real.
554 if Nkind (Lhs) = N_Explicit_Dereference then
555 declare
556 PI : Interp_Index;
557 PI1 : Interp_Index := 0;
558 PIt : Interp;
559 Found : Boolean;
561 begin
562 Found := False;
563 Get_First_Interp (Prefix (Lhs), PI, PIt);
565 while Present (PIt.Typ) loop
566 if Is_Access_Type (PIt.Typ)
567 and then Has_Compatible_Type
568 (Rhs, Designated_Type (PIt.Typ))
569 then
570 if Found then
571 PIt :=
572 Disambiguate (Prefix (Lhs),
573 PI1, PI, Any_Type);
575 if PIt = No_Interp then
576 Error_Msg_N
577 ("ambiguous left-hand side in "
578 & "assignment", Lhs);
579 exit;
580 else
581 Resolve (Prefix (Lhs), PIt.Typ);
582 end if;
584 exit;
585 else
586 Found := True;
587 PI1 := PI;
588 end if;
589 end if;
591 Get_Next_Interp (PI, PIt);
592 end loop;
593 end;
595 else
596 Error_Msg_N
597 ("ambiguous left-hand side in assignment", Lhs);
598 exit;
599 end if;
600 end if;
601 end if;
603 Get_Next_Interp (I, It);
604 end loop;
605 end;
607 if T1 = Any_Type then
608 Error_Msg_N
609 ("no valid types for left-hand side for assignment", Lhs);
610 Kill_Lhs;
611 goto Leave;
612 end if;
613 end if;
615 -- Deal with build-in-place calls for nonlimited types. We don't do this
616 -- later, because resolving the rhs tranforms it incorrectly for build-
617 -- in-place.
619 if Should_Transform_BIP_Assignment (Typ => T1) then
621 -- In certain cases involving user-defined concatenation operators,
622 -- we need to resolve the right-hand side before transforming the
623 -- assignment.
625 case Nkind (Unqual_Conv (Rhs)) is
626 when N_Function_Call =>
627 declare
628 Actual : Node_Id :=
629 First (Parameter_Associations (Unqual_Conv (Rhs)));
630 Actual_Exp : Node_Id;
632 begin
633 while Present (Actual) loop
634 if Nkind (Actual) = N_Parameter_Association then
635 Actual_Exp := Explicit_Actual_Parameter (Actual);
636 else
637 Actual_Exp := Actual;
638 end if;
640 if Nkind (Actual_Exp) = N_Op_Concat then
641 Resolve (Rhs, T1);
642 exit;
643 end if;
645 Next (Actual);
646 end loop;
647 end;
649 when N_Attribute_Reference
650 | N_Expanded_Name
651 | N_Identifier
652 | N_Op
654 null;
656 when others =>
657 raise Program_Error;
658 end case;
660 Transform_BIP_Assignment (Typ => T1);
661 end if;
663 pragma Assert (not Should_Transform_BIP_Assignment (Typ => T1));
665 -- The resulting assignment type is T1, so now we will resolve the left
666 -- hand side of the assignment using this determined type.
668 Resolve (Lhs, T1);
670 -- Cases where Lhs is not a variable. In an instance or an inlined body
671 -- no need for further check because assignment was legal in template.
673 if In_Inlined_Body then
674 null;
676 elsif not Is_Variable (Lhs) then
678 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
679 -- protected object.
681 declare
682 Ent : Entity_Id;
683 S : Entity_Id;
685 begin
686 if Ada_Version >= Ada_2005 then
688 -- Handle chains of renamings
690 Ent := Lhs;
691 while Nkind (Ent) in N_Has_Entity
692 and then Present (Entity (Ent))
693 and then Present (Renamed_Object (Entity (Ent)))
694 loop
695 Ent := Renamed_Object (Entity (Ent));
696 end loop;
698 if (Nkind (Ent) = N_Attribute_Reference
699 and then Attribute_Name (Ent) = Name_Priority)
701 -- Renamings of the attribute Priority applied to protected
702 -- objects have been previously expanded into calls to the
703 -- Get_Ceiling run-time subprogram.
705 or else Is_Expanded_Priority_Attribute (Ent)
706 then
707 -- The enclosing subprogram cannot be a protected function
709 S := Current_Scope;
710 while not (Is_Subprogram (S)
711 and then Convention (S) = Convention_Protected)
712 and then S /= Standard_Standard
713 loop
714 S := Scope (S);
715 end loop;
717 if Ekind (S) = E_Function
718 and then Convention (S) = Convention_Protected
719 then
720 Error_Msg_N
721 ("protected function cannot modify protected object",
722 Lhs);
723 end if;
725 -- Changes of the ceiling priority of the protected object
726 -- are only effective if the Ceiling_Locking policy is in
727 -- effect (AARM D.5.2 (5/2)).
729 if Locking_Policy /= 'C' then
730 Error_Msg_N
731 ("assignment to the attribute PRIORITY has no effect??",
732 Lhs);
733 Error_Msg_N
734 ("\since no Locking_Policy has been specified??", Lhs);
735 end if;
737 goto Leave;
738 end if;
739 end if;
740 end;
742 Diagnose_Non_Variable_Lhs (Lhs);
743 goto Leave;
745 -- Error of assigning to limited type. We do however allow this in
746 -- certain cases where the front end generates the assignments.
748 elsif Is_Limited_Type (T1)
749 and then not Assignment_OK (Lhs)
750 and then not Assignment_OK (Original_Node (Lhs))
751 then
752 -- CPP constructors can only be called in declarations
754 if Is_CPP_Constructor_Call (Rhs) then
755 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
756 else
757 Error_Msg_N
758 ("left hand of assignment must not be limited type", Lhs);
759 Explain_Limited_Type (T1, Lhs);
760 end if;
762 goto Leave;
764 -- A class-wide type may be a limited view. This illegal case is not
765 -- caught by previous checks.
767 elsif Ekind (T1) = E_Class_Wide_Type and then From_Limited_With (T1) then
768 Error_Msg_NE ("invalid use of limited view of&", Lhs, T1);
769 goto Leave;
771 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
772 -- abstract. This is only checked when the assignment Comes_From_Source,
773 -- because in some cases the expander generates such assignments (such
774 -- in the _assign operation for an abstract type).
776 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
777 Error_Msg_N
778 ("target of assignment operation must not be abstract", Lhs);
779 end if;
781 -- Variables which are Part_Of constituents of single protected types
782 -- behave in similar fashion to protected components. Such variables
783 -- cannot be modified by protected functions.
785 if Is_Protected_Part_Of_Constituent (Lhs) and then Within_Function then
786 Error_Msg_N
787 ("protected function cannot modify protected object", Lhs);
788 end if;
790 -- Resolution may have updated the subtype, in case the left-hand side
791 -- is a private protected component. Use the correct subtype to avoid
792 -- scoping issues in the back-end.
794 T1 := Etype (Lhs);
796 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
797 -- type. For example:
799 -- limited with P;
800 -- package Pkg is
801 -- type Acc is access P.T;
802 -- end Pkg;
804 -- with Pkg; use Acc;
805 -- procedure Example is
806 -- A, B : Acc;
807 -- begin
808 -- A.all := B.all; -- ERROR
809 -- end Example;
811 if Nkind (Lhs) = N_Explicit_Dereference
812 and then Ekind (T1) = E_Incomplete_Type
813 then
814 Error_Msg_N ("invalid use of incomplete type", Lhs);
815 Kill_Lhs;
816 goto Leave;
817 end if;
819 -- Now we can complete the resolution of the right hand side
821 Set_Assignment_Type (Lhs, T1);
823 -- If the target of the assignment is an entity of a mutable type and
824 -- the expression is a conditional expression, its alternatives can be
825 -- of different subtypes of the nominal type of the LHS, so they must be
826 -- resolved with the base type, given that their subtype may differ from
827 -- that of the target mutable object.
829 if Is_Entity_Name (Lhs)
830 and then Ekind_In (Entity (Lhs), E_In_Out_Parameter,
831 E_Out_Parameter,
832 E_Variable)
833 and then Is_Composite_Type (T1)
834 and then not Is_Constrained (Etype (Entity (Lhs)))
835 and then Nkind_In (Rhs, N_If_Expression, N_Case_Expression)
836 then
837 Resolve (Rhs, Base_Type (T1));
839 else
840 Resolve (Rhs, T1);
841 end if;
843 -- This is the point at which we check for an unset reference
845 Check_Unset_Reference (Rhs);
846 Check_Unprotected_Access (Lhs, Rhs);
848 -- Remaining steps are skipped if Rhs was syntactically in error
850 if Rhs = Error then
851 Kill_Lhs;
852 goto Leave;
853 end if;
855 T2 := Etype (Rhs);
857 if not Covers (T1, T2) then
858 Wrong_Type (Rhs, Etype (Lhs));
859 Kill_Lhs;
860 goto Leave;
861 end if;
863 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
864 -- types, use the non-limited view if available
866 if Nkind (Rhs) = N_Explicit_Dereference
867 and then Is_Tagged_Type (T2)
868 and then Has_Non_Limited_View (T2)
869 then
870 T2 := Non_Limited_View (T2);
871 end if;
873 Set_Assignment_Type (Rhs, T2);
875 if Total_Errors_Detected /= 0 then
876 if No (T1) then
877 T1 := Any_Type;
878 end if;
880 if No (T2) then
881 T2 := Any_Type;
882 end if;
883 end if;
885 if T1 = Any_Type or else T2 = Any_Type then
886 Kill_Lhs;
887 goto Leave;
888 end if;
890 -- If the rhs is class-wide or dynamically tagged, then require the lhs
891 -- to be class-wide. The case where the rhs is a dynamically tagged call
892 -- to a dispatching operation with a controlling access result is
893 -- excluded from this check, since the target has an access type (and
894 -- no tag propagation occurs in that case).
896 if (Is_Class_Wide_Type (T2)
897 or else (Is_Dynamically_Tagged (Rhs)
898 and then not Is_Access_Type (T1)))
899 and then not Is_Class_Wide_Type (T1)
900 then
901 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
903 elsif Is_Class_Wide_Type (T1)
904 and then not Is_Class_Wide_Type (T2)
905 and then not Is_Tag_Indeterminate (Rhs)
906 and then not Is_Dynamically_Tagged (Rhs)
907 then
908 Error_Msg_N ("dynamically tagged expression required!", Rhs);
909 end if;
911 -- Propagate the tag from a class-wide target to the rhs when the rhs
912 -- is a tag-indeterminate call.
914 if Is_Tag_Indeterminate (Rhs) then
915 if Is_Class_Wide_Type (T1) then
916 Propagate_Tag (Lhs, Rhs);
918 elsif Nkind (Rhs) = N_Function_Call
919 and then Is_Entity_Name (Name (Rhs))
920 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
921 then
922 Error_Msg_N
923 ("call to abstract function must be dispatching", Name (Rhs));
925 elsif Nkind (Rhs) = N_Qualified_Expression
926 and then Nkind (Expression (Rhs)) = N_Function_Call
927 and then Is_Entity_Name (Name (Expression (Rhs)))
928 and then
929 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
930 then
931 Error_Msg_N
932 ("call to abstract function must be dispatching",
933 Name (Expression (Rhs)));
934 end if;
935 end if;
937 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
938 -- apply an implicit conversion of the rhs to that type to force
939 -- appropriate static and run-time accessibility checks. This applies
940 -- as well to anonymous access-to-subprogram types that are component
941 -- subtypes or formal parameters.
943 if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
944 if Is_Local_Anonymous_Access (T1)
945 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
947 -- Handle assignment to an Ada 2012 stand-alone object
948 -- of an anonymous access type.
950 or else (Ekind (T1) = E_Anonymous_Access_Type
951 and then Nkind (Associated_Node_For_Itype (T1)) =
952 N_Object_Declaration)
954 then
955 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
956 Analyze_And_Resolve (Rhs, T1);
957 end if;
958 end if;
960 -- Ada 2005 (AI-231): Assignment to not null variable
962 if Ada_Version >= Ada_2005
963 and then Can_Never_Be_Null (T1)
964 and then not Assignment_OK (Lhs)
965 then
966 -- Case where we know the right hand side is null
968 if Known_Null (Rhs) then
969 Apply_Compile_Time_Constraint_Error
970 (N => Rhs,
971 Msg =>
972 "(Ada 2005) null not allowed in null-excluding objects??",
973 Reason => CE_Null_Not_Allowed);
975 -- We still mark this as a possible modification, that's necessary
976 -- to reset Is_True_Constant, and desirable for xref purposes.
978 Note_Possible_Modification (Lhs, Sure => True);
979 goto Leave;
981 -- If we know the right hand side is non-null, then we convert to the
982 -- target type, since we don't need a run time check in that case.
984 elsif not Can_Never_Be_Null (T2) then
985 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
986 Analyze_And_Resolve (Rhs, T1);
987 end if;
988 end if;
990 if Is_Scalar_Type (T1) then
991 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
993 -- For array types, verify that lengths match. If the right hand side
994 -- is a function call that has been inlined, the assignment has been
995 -- rewritten as a block, and the constraint check will be applied to the
996 -- assignment within the block.
998 elsif Is_Array_Type (T1)
999 and then (Nkind (Rhs) /= N_Type_Conversion
1000 or else Is_Constrained (Etype (Rhs)))
1001 and then (Nkind (Rhs) /= N_Function_Call
1002 or else Nkind (N) /= N_Block_Statement)
1003 then
1004 -- Assignment verifies that the length of the Lsh and Rhs are equal,
1005 -- but of course the indexes do not have to match. If the right-hand
1006 -- side is a type conversion to an unconstrained type, a length check
1007 -- is performed on the expression itself during expansion. In rare
1008 -- cases, the redundant length check is computed on an index type
1009 -- with a different representation, triggering incorrect code in the
1010 -- back end.
1012 Apply_Length_Check (Rhs, Etype (Lhs));
1014 else
1015 -- Discriminant checks are applied in the course of expansion
1017 null;
1018 end if;
1020 -- Note: modifications of the Lhs may only be recorded after
1021 -- checks have been applied.
1023 Note_Possible_Modification (Lhs, Sure => True);
1025 -- ??? a real accessibility check is needed when ???
1027 -- Post warning for redundant assignment or variable to itself
1029 if Warn_On_Redundant_Constructs
1031 -- We only warn for source constructs
1033 and then Comes_From_Source (N)
1035 -- Where the object is the same on both sides
1037 and then Same_Object (Lhs, Original_Node (Rhs))
1039 -- But exclude the case where the right side was an operation that
1040 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
1041 -- don't want to warn in such a case, since it is reasonable to write
1042 -- such expressions especially when K is defined symbolically in some
1043 -- other package.
1045 and then Nkind (Original_Node (Rhs)) not in N_Op
1046 then
1047 if Nkind (Lhs) in N_Has_Entity then
1048 Error_Msg_NE -- CODEFIX
1049 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
1050 else
1051 Error_Msg_N -- CODEFIX
1052 ("?r?useless assignment of object to itself!", N);
1053 end if;
1054 end if;
1056 -- Check for non-allowed composite assignment
1058 if not Support_Composite_Assign_On_Target
1059 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
1060 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
1061 then
1062 Error_Msg_CRT ("composite assignment", N);
1063 end if;
1065 -- Check elaboration warning for left side if not in elab code
1067 if Legacy_Elaboration_Checks
1068 and not In_Subprogram_Or_Concurrent_Unit
1069 then
1070 Check_Elab_Assign (Lhs);
1071 end if;
1073 -- Save the scenario for later examination by the ABE Processing phase
1075 Record_Elaboration_Scenario (N);
1077 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
1078 -- assignment is a source assignment in the extended main source unit.
1079 -- We are not interested in any reference information outside this
1080 -- context, or in compiler generated assignment statements.
1082 if Comes_From_Source (N)
1083 and then In_Extended_Main_Source_Unit (Lhs)
1084 then
1085 Set_Referenced_Modified (Lhs, Out_Param => False);
1086 end if;
1088 -- RM 7.3.2 (12/3): An assignment to a view conversion (from a type to
1089 -- one of its ancestors) requires an invariant check. Apply check only
1090 -- if expression comes from source, otherwise it will be applied when
1091 -- value is assigned to source entity. This is not done in GNATprove
1092 -- mode, as GNATprove handles invariant checks itself.
1094 if Nkind (Lhs) = N_Type_Conversion
1095 and then Has_Invariants (Etype (Expression (Lhs)))
1096 and then Comes_From_Source (Expression (Lhs))
1097 and then not GNATprove_Mode
1098 then
1099 Insert_After (N, Make_Invariant_Call (Expression (Lhs)));
1100 end if;
1102 -- Final step. If left side is an entity, then we may be able to reset
1103 -- the current tracked values to new safe values. We only have something
1104 -- to do if the left side is an entity name, and expansion has not
1105 -- modified the node into something other than an assignment, and of
1106 -- course we only capture values if it is safe to do so.
1108 if Is_Entity_Name (Lhs)
1109 and then Nkind (N) = N_Assignment_Statement
1110 then
1111 declare
1112 Ent : constant Entity_Id := Entity (Lhs);
1114 begin
1115 if Safe_To_Capture_Value (N, Ent) then
1117 -- If simple variable on left side, warn if this assignment
1118 -- blots out another one (rendering it useless). We only do
1119 -- this for source assignments, otherwise we can generate bogus
1120 -- warnings when an assignment is rewritten as another
1121 -- assignment, and gets tied up with itself.
1123 -- There may have been a previous reference to a component of
1124 -- the variable, which in general removes the Last_Assignment
1125 -- field of the variable to indicate a relevant use of the
1126 -- previous assignment. However, if the assignment is to a
1127 -- subcomponent the reference may not have registered, because
1128 -- it is not possible to determine whether the context is an
1129 -- assignment. In those cases we generate a Deferred_Reference,
1130 -- to be used at the end of compilation to generate the right
1131 -- kind of reference, and we suppress a potential warning for
1132 -- a useless assignment, which might be premature. This may
1133 -- lose a warning in rare cases, but seems preferable to a
1134 -- misleading warning.
1136 if Warn_On_Modified_Unread
1137 and then Is_Assignable (Ent)
1138 and then Comes_From_Source (N)
1139 and then In_Extended_Main_Source_Unit (Ent)
1140 and then not Has_Deferred_Reference (Ent)
1141 then
1142 Warn_On_Useless_Assignment (Ent, N);
1143 end if;
1145 -- If we are assigning an access type and the left side is an
1146 -- entity, then make sure that the Is_Known_[Non_]Null flags
1147 -- properly reflect the state of the entity after assignment.
1149 if Is_Access_Type (T1) then
1150 if Known_Non_Null (Rhs) then
1151 Set_Is_Known_Non_Null (Ent, True);
1153 elsif Known_Null (Rhs)
1154 and then not Can_Never_Be_Null (Ent)
1155 then
1156 Set_Is_Known_Null (Ent, True);
1158 else
1159 Set_Is_Known_Null (Ent, False);
1161 if not Can_Never_Be_Null (Ent) then
1162 Set_Is_Known_Non_Null (Ent, False);
1163 end if;
1164 end if;
1166 -- For discrete types, we may be able to set the current value
1167 -- if the value is known at compile time.
1169 elsif Is_Discrete_Type (T1)
1170 and then Compile_Time_Known_Value (Rhs)
1171 then
1172 Set_Current_Value (Ent, Rhs);
1173 else
1174 Set_Current_Value (Ent, Empty);
1175 end if;
1177 -- If not safe to capture values, kill them
1179 else
1180 Kill_Lhs;
1181 end if;
1182 end;
1183 end if;
1185 -- If assigning to an object in whole or in part, note location of
1186 -- assignment in case no one references value. We only do this for
1187 -- source assignments, otherwise we can generate bogus warnings when an
1188 -- assignment is rewritten as another assignment, and gets tied up with
1189 -- itself.
1191 declare
1192 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
1193 begin
1194 if Present (Ent)
1195 and then Safe_To_Capture_Value (N, Ent)
1196 and then Nkind (N) = N_Assignment_Statement
1197 and then Warn_On_Modified_Unread
1198 and then Is_Assignable (Ent)
1199 and then Comes_From_Source (N)
1200 and then In_Extended_Main_Source_Unit (Ent)
1201 then
1202 Set_Last_Assignment (Ent, Lhs);
1203 end if;
1204 end;
1206 Analyze_Dimension (N);
1208 <<Leave>>
1209 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1211 -- If the right-hand side contains target names, expansion has been
1212 -- disabled to prevent expansion that might move target names out of
1213 -- the context of the assignment statement. Restore the expander mode
1214 -- now so that assignment statement can be properly expanded.
1216 if Nkind (N) = N_Assignment_Statement then
1217 if Has_Target_Names (N) then
1218 Expander_Mode_Restore;
1219 Full_Analysis := Save_Full_Analysis;
1220 end if;
1222 pragma Assert (not Should_Transform_BIP_Assignment (Typ => T1));
1223 end if;
1224 end Analyze_Assignment;
1226 -----------------------------
1227 -- Analyze_Block_Statement --
1228 -----------------------------
1230 procedure Analyze_Block_Statement (N : Node_Id) is
1231 procedure Install_Return_Entities (Scop : Entity_Id);
1232 -- Install all entities of return statement scope Scop in the visibility
1233 -- chain except for the return object since its entity is reused in a
1234 -- renaming.
1236 -----------------------------
1237 -- Install_Return_Entities --
1238 -----------------------------
1240 procedure Install_Return_Entities (Scop : Entity_Id) is
1241 Id : Entity_Id;
1243 begin
1244 Id := First_Entity (Scop);
1245 while Present (Id) loop
1247 -- Do not install the return object
1249 if not Ekind_In (Id, E_Constant, E_Variable)
1250 or else not Is_Return_Object (Id)
1251 then
1252 Install_Entity (Id);
1253 end if;
1255 Next_Entity (Id);
1256 end loop;
1257 end Install_Return_Entities;
1259 -- Local constants and variables
1261 Decls : constant List_Id := Declarations (N);
1262 Id : constant Node_Id := Identifier (N);
1263 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1265 Is_BIP_Return_Statement : Boolean;
1267 -- Start of processing for Analyze_Block_Statement
1269 begin
1270 -- In SPARK mode, we reject block statements. Note that the case of
1271 -- block statements generated by the expander is fine.
1273 if Nkind (Original_Node (N)) = N_Block_Statement then
1274 Check_SPARK_05_Restriction ("block statement is not allowed", N);
1275 end if;
1277 -- If no handled statement sequence is present, things are really messed
1278 -- up, and we just return immediately (defence against previous errors).
1280 if No (HSS) then
1281 Check_Error_Detected;
1282 return;
1283 end if;
1285 -- Detect whether the block is actually a rewritten return statement of
1286 -- a build-in-place function.
1288 Is_BIP_Return_Statement :=
1289 Present (Id)
1290 and then Present (Entity (Id))
1291 and then Ekind (Entity (Id)) = E_Return_Statement
1292 and then Is_Build_In_Place_Function
1293 (Return_Applies_To (Entity (Id)));
1295 -- Normal processing with HSS present
1297 declare
1298 EH : constant List_Id := Exception_Handlers (HSS);
1299 Ent : Entity_Id := Empty;
1300 S : Entity_Id;
1302 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1303 -- Recursively save value of this global, will be restored on exit
1305 begin
1306 -- Initialize unblocked exit count for statements of begin block
1307 -- plus one for each exception handler that is present.
1309 Unblocked_Exit_Count := 1;
1311 if Present (EH) then
1312 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
1313 end if;
1315 -- If a label is present analyze it and mark it as referenced
1317 if Present (Id) then
1318 Analyze (Id);
1319 Ent := Entity (Id);
1321 -- An error defense. If we have an identifier, but no entity, then
1322 -- something is wrong. If previous errors, then just remove the
1323 -- identifier and continue, otherwise raise an exception.
1325 if No (Ent) then
1326 Check_Error_Detected;
1327 Set_Identifier (N, Empty);
1329 else
1330 Set_Ekind (Ent, E_Block);
1331 Generate_Reference (Ent, N, ' ');
1332 Generate_Definition (Ent);
1334 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
1335 Set_Label_Construct (Parent (Ent), N);
1336 end if;
1337 end if;
1338 end if;
1340 -- If no entity set, create a label entity
1342 if No (Ent) then
1343 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
1344 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
1345 Set_Parent (Ent, N);
1346 end if;
1348 Set_Etype (Ent, Standard_Void_Type);
1349 Set_Block_Node (Ent, Identifier (N));
1350 Push_Scope (Ent);
1352 -- The block served as an extended return statement. Ensure that any
1353 -- entities created during the analysis and expansion of the return
1354 -- object declaration are once again visible.
1356 if Is_BIP_Return_Statement then
1357 Install_Return_Entities (Ent);
1358 end if;
1360 if Present (Decls) then
1361 Analyze_Declarations (Decls);
1362 Check_Completion;
1363 Inspect_Deferred_Constant_Completion (Decls);
1364 end if;
1366 Analyze (HSS);
1367 Process_End_Label (HSS, 'e', Ent);
1369 -- If exception handlers are present, then we indicate that enclosing
1370 -- scopes contain a block with handlers. We only need to mark non-
1371 -- generic scopes.
1373 if Present (EH) then
1374 S := Scope (Ent);
1375 loop
1376 Set_Has_Nested_Block_With_Handler (S);
1377 exit when Is_Overloadable (S)
1378 or else Ekind (S) = E_Package
1379 or else Is_Generic_Unit (S);
1380 S := Scope (S);
1381 end loop;
1382 end if;
1384 Check_References (Ent);
1385 Update_Use_Clause_Chain;
1386 End_Scope;
1388 if Unblocked_Exit_Count = 0 then
1389 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1390 Check_Unreachable_Code (N);
1391 else
1392 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1393 end if;
1394 end;
1395 end Analyze_Block_Statement;
1397 --------------------------------
1398 -- Analyze_Compound_Statement --
1399 --------------------------------
1401 procedure Analyze_Compound_Statement (N : Node_Id) is
1402 begin
1403 Analyze_List (Actions (N));
1404 end Analyze_Compound_Statement;
1406 ----------------------------
1407 -- Analyze_Case_Statement --
1408 ----------------------------
1410 procedure Analyze_Case_Statement (N : Node_Id) is
1411 Exp : Node_Id;
1412 Exp_Type : Entity_Id;
1413 Exp_Btype : Entity_Id;
1414 Last_Choice : Nat;
1416 Others_Present : Boolean;
1417 -- Indicates if Others was present
1419 pragma Warnings (Off, Last_Choice);
1420 -- Don't care about assigned value
1422 Statements_Analyzed : Boolean := False;
1423 -- Set True if at least some statement sequences get analyzed. If False
1424 -- on exit, means we had a serious error that prevented full analysis of
1425 -- the case statement, and as a result it is not a good idea to output
1426 -- warning messages about unreachable code.
1428 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1429 -- Recursively save value of this global, will be restored on exit
1431 procedure Non_Static_Choice_Error (Choice : Node_Id);
1432 -- Error routine invoked by the generic instantiation below when the
1433 -- case statement has a non static choice.
1435 procedure Process_Statements (Alternative : Node_Id);
1436 -- Analyzes the statements associated with a case alternative. Needed
1437 -- by instantiation below.
1439 package Analyze_Case_Choices is new
1440 Generic_Analyze_Choices
1441 (Process_Associated_Node => Process_Statements);
1442 use Analyze_Case_Choices;
1443 -- Instantiation of the generic choice analysis package
1445 package Check_Case_Choices is new
1446 Generic_Check_Choices
1447 (Process_Empty_Choice => No_OP,
1448 Process_Non_Static_Choice => Non_Static_Choice_Error,
1449 Process_Associated_Node => No_OP);
1450 use Check_Case_Choices;
1451 -- Instantiation of the generic choice processing package
1453 -----------------------------
1454 -- Non_Static_Choice_Error --
1455 -----------------------------
1457 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1458 begin
1459 Flag_Non_Static_Expr
1460 ("choice given in case statement is not static!", Choice);
1461 end Non_Static_Choice_Error;
1463 ------------------------
1464 -- Process_Statements --
1465 ------------------------
1467 procedure Process_Statements (Alternative : Node_Id) is
1468 Choices : constant List_Id := Discrete_Choices (Alternative);
1469 Ent : Entity_Id;
1471 begin
1472 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1473 Statements_Analyzed := True;
1475 -- An interesting optimization. If the case statement expression
1476 -- is a simple entity, then we can set the current value within an
1477 -- alternative if the alternative has one possible value.
1479 -- case N is
1480 -- when 1 => alpha
1481 -- when 2 | 3 => beta
1482 -- when others => gamma
1484 -- Here we know that N is initially 1 within alpha, but for beta and
1485 -- gamma, we do not know anything more about the initial value.
1487 if Is_Entity_Name (Exp) then
1488 Ent := Entity (Exp);
1490 if Ekind_In (Ent, E_Variable,
1491 E_In_Out_Parameter,
1492 E_Out_Parameter)
1493 then
1494 if List_Length (Choices) = 1
1495 and then Nkind (First (Choices)) in N_Subexpr
1496 and then Compile_Time_Known_Value (First (Choices))
1497 then
1498 Set_Current_Value (Entity (Exp), First (Choices));
1499 end if;
1501 Analyze_Statements (Statements (Alternative));
1503 -- After analyzing the case, set the current value to empty
1504 -- since we won't know what it is for the next alternative
1505 -- (unless reset by this same circuit), or after the case.
1507 Set_Current_Value (Entity (Exp), Empty);
1508 return;
1509 end if;
1510 end if;
1512 -- Case where expression is not an entity name of a variable
1514 Analyze_Statements (Statements (Alternative));
1515 end Process_Statements;
1517 -- Start of processing for Analyze_Case_Statement
1519 begin
1520 Unblocked_Exit_Count := 0;
1521 Exp := Expression (N);
1522 Analyze (Exp);
1524 -- The expression must be of any discrete type. In rare cases, the
1525 -- expander constructs a case statement whose expression has a private
1526 -- type whose full view is discrete. This can happen when generating
1527 -- a stream operation for a variant type after the type is frozen,
1528 -- when the partial of view of the type of the discriminant is private.
1529 -- In that case, use the full view to analyze case alternatives.
1531 if not Is_Overloaded (Exp)
1532 and then not Comes_From_Source (N)
1533 and then Is_Private_Type (Etype (Exp))
1534 and then Present (Full_View (Etype (Exp)))
1535 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1536 then
1537 Resolve (Exp, Etype (Exp));
1538 Exp_Type := Full_View (Etype (Exp));
1540 else
1541 Analyze_And_Resolve (Exp, Any_Discrete);
1542 Exp_Type := Etype (Exp);
1543 end if;
1545 Check_Unset_Reference (Exp);
1546 Exp_Btype := Base_Type (Exp_Type);
1548 -- The expression must be of a discrete type which must be determinable
1549 -- independently of the context in which the expression occurs, but
1550 -- using the fact that the expression must be of a discrete type.
1551 -- Moreover, the type this expression must not be a character literal
1552 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1554 -- If error already reported by Resolve, nothing more to do
1556 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1557 return;
1559 elsif Exp_Btype = Any_Character then
1560 Error_Msg_N
1561 ("character literal as case expression is ambiguous", Exp);
1562 return;
1564 elsif Ada_Version = Ada_83
1565 and then (Is_Generic_Type (Exp_Btype)
1566 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1567 then
1568 Error_Msg_N
1569 ("(Ada 83) case expression cannot be of a generic type", Exp);
1570 return;
1571 end if;
1573 -- If the case expression is a formal object of mode in out, then treat
1574 -- it as having a nonstatic subtype by forcing use of the base type
1575 -- (which has to get passed to Check_Case_Choices below). Also use base
1576 -- type when the case expression is parenthesized.
1578 if Paren_Count (Exp) > 0
1579 or else (Is_Entity_Name (Exp)
1580 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1581 then
1582 Exp_Type := Exp_Btype;
1583 end if;
1585 -- Call instantiated procedures to analyzwe and check discrete choices
1587 Analyze_Choices (Alternatives (N), Exp_Type);
1588 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1590 -- Case statement with single OTHERS alternative not allowed in SPARK
1592 if Others_Present and then List_Length (Alternatives (N)) = 1 then
1593 Check_SPARK_05_Restriction
1594 ("OTHERS as unique case alternative is not allowed", N);
1595 end if;
1597 if Exp_Type = Universal_Integer and then not Others_Present then
1598 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1599 end if;
1601 -- If all our exits were blocked by unconditional transfers of control,
1602 -- then the entire CASE statement acts as an unconditional transfer of
1603 -- control, so treat it like one, and check unreachable code. Skip this
1604 -- test if we had serious errors preventing any statement analysis.
1606 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1607 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1608 Check_Unreachable_Code (N);
1609 else
1610 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1611 end if;
1613 -- If the expander is active it will detect the case of a statically
1614 -- determined single alternative and remove warnings for the case, but
1615 -- if we are not doing expansion, that circuit won't be active. Here we
1616 -- duplicate the effect of removing warnings in the same way, so that
1617 -- we will get the same set of warnings in -gnatc mode.
1619 if not Expander_Active
1620 and then Compile_Time_Known_Value (Expression (N))
1621 and then Serious_Errors_Detected = 0
1622 then
1623 declare
1624 Chosen : constant Node_Id := Find_Static_Alternative (N);
1625 Alt : Node_Id;
1627 begin
1628 Alt := First (Alternatives (N));
1629 while Present (Alt) loop
1630 if Alt /= Chosen then
1631 Remove_Warning_Messages (Statements (Alt));
1632 end if;
1634 Next (Alt);
1635 end loop;
1636 end;
1637 end if;
1638 end Analyze_Case_Statement;
1640 ----------------------------
1641 -- Analyze_Exit_Statement --
1642 ----------------------------
1644 -- If the exit includes a name, it must be the name of a currently open
1645 -- loop. Otherwise there must be an innermost open loop on the stack, to
1646 -- which the statement implicitly refers.
1648 -- Additionally, in SPARK mode:
1650 -- The exit can only name the closest enclosing loop;
1652 -- An exit with a when clause must be directly contained in a loop;
1654 -- An exit without a when clause must be directly contained in an
1655 -- if-statement with no elsif or else, which is itself directly contained
1656 -- in a loop. The exit must be the last statement in the if-statement.
1658 procedure Analyze_Exit_Statement (N : Node_Id) is
1659 Target : constant Node_Id := Name (N);
1660 Cond : constant Node_Id := Condition (N);
1661 Scope_Id : Entity_Id := Empty; -- initialize to prevent warning
1662 U_Name : Entity_Id;
1663 Kind : Entity_Kind;
1665 begin
1666 if No (Cond) then
1667 Check_Unreachable_Code (N);
1668 end if;
1670 if Present (Target) then
1671 Analyze (Target);
1672 U_Name := Entity (Target);
1674 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1675 Error_Msg_N ("invalid loop name in exit statement", N);
1676 return;
1678 else
1679 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1680 Check_SPARK_05_Restriction
1681 ("exit label must name the closest enclosing loop", N);
1682 end if;
1684 Set_Has_Exit (U_Name);
1685 end if;
1687 else
1688 U_Name := Empty;
1689 end if;
1691 for J in reverse 0 .. Scope_Stack.Last loop
1692 Scope_Id := Scope_Stack.Table (J).Entity;
1693 Kind := Ekind (Scope_Id);
1695 if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
1696 Set_Has_Exit (Scope_Id);
1697 exit;
1699 elsif Kind = E_Block
1700 or else Kind = E_Loop
1701 or else Kind = E_Return_Statement
1702 then
1703 null;
1705 else
1706 Error_Msg_N
1707 ("cannot exit from program unit or accept statement", N);
1708 return;
1709 end if;
1710 end loop;
1712 -- Verify that if present the condition is a Boolean expression
1714 if Present (Cond) then
1715 Analyze_And_Resolve (Cond, Any_Boolean);
1716 Check_Unset_Reference (Cond);
1717 end if;
1719 -- In SPARK mode, verify that the exit statement respects the SPARK
1720 -- restrictions.
1722 if Present (Cond) then
1723 if Nkind (Parent (N)) /= N_Loop_Statement then
1724 Check_SPARK_05_Restriction
1725 ("exit with when clause must be directly in loop", N);
1726 end if;
1728 else
1729 if Nkind (Parent (N)) /= N_If_Statement then
1730 if Nkind (Parent (N)) = N_Elsif_Part then
1731 Check_SPARK_05_Restriction
1732 ("exit must be in IF without ELSIF", N);
1733 else
1734 Check_SPARK_05_Restriction ("exit must be directly in IF", N);
1735 end if;
1737 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1738 Check_SPARK_05_Restriction
1739 ("exit must be in IF directly in loop", N);
1741 -- First test the presence of ELSE, so that an exit in an ELSE leads
1742 -- to an error mentioning the ELSE.
1744 elsif Present (Else_Statements (Parent (N))) then
1745 Check_SPARK_05_Restriction ("exit must be in IF without ELSE", N);
1747 -- An exit in an ELSIF does not reach here, as it would have been
1748 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1750 elsif Present (Elsif_Parts (Parent (N))) then
1751 Check_SPARK_05_Restriction ("exit must be in IF without ELSIF", N);
1752 end if;
1753 end if;
1755 -- Chain exit statement to associated loop entity
1757 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1758 Set_First_Exit_Statement (Scope_Id, N);
1760 -- Since the exit may take us out of a loop, any previous assignment
1761 -- statement is not useless, so clear last assignment indications. It
1762 -- is OK to keep other current values, since if the exit statement
1763 -- does not exit, then the current values are still valid.
1765 Kill_Current_Values (Last_Assignment_Only => True);
1766 end Analyze_Exit_Statement;
1768 ----------------------------
1769 -- Analyze_Goto_Statement --
1770 ----------------------------
1772 procedure Analyze_Goto_Statement (N : Node_Id) is
1773 Label : constant Node_Id := Name (N);
1774 Scope_Id : Entity_Id;
1775 Label_Scope : Entity_Id;
1776 Label_Ent : Entity_Id;
1778 begin
1779 Check_SPARK_05_Restriction ("goto statement is not allowed", N);
1781 -- Actual semantic checks
1783 Check_Unreachable_Code (N);
1784 Kill_Current_Values (Last_Assignment_Only => True);
1786 Analyze (Label);
1787 Label_Ent := Entity (Label);
1789 -- Ignore previous error
1791 if Label_Ent = Any_Id then
1792 Check_Error_Detected;
1793 return;
1795 -- We just have a label as the target of a goto
1797 elsif Ekind (Label_Ent) /= E_Label then
1798 Error_Msg_N ("target of goto statement must be a label", Label);
1799 return;
1801 -- Check that the target of the goto is reachable according to Ada
1802 -- scoping rules. Note: the special gotos we generate for optimizing
1803 -- local handling of exceptions would violate these rules, but we mark
1804 -- such gotos as analyzed when built, so this code is never entered.
1806 elsif not Reachable (Label_Ent) then
1807 Error_Msg_N ("target of goto statement is not reachable", Label);
1808 return;
1809 end if;
1811 -- Here if goto passes initial validity checks
1813 Label_Scope := Enclosing_Scope (Label_Ent);
1815 for J in reverse 0 .. Scope_Stack.Last loop
1816 Scope_Id := Scope_Stack.Table (J).Entity;
1818 if Label_Scope = Scope_Id
1819 or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
1820 then
1821 if Scope_Id /= Label_Scope then
1822 Error_Msg_N
1823 ("cannot exit from program unit or accept statement", N);
1824 end if;
1826 return;
1827 end if;
1828 end loop;
1830 raise Program_Error;
1831 end Analyze_Goto_Statement;
1833 --------------------------
1834 -- Analyze_If_Statement --
1835 --------------------------
1837 -- A special complication arises in the analysis of if statements
1839 -- The expander has circuitry to completely delete code that it can tell
1840 -- will not be executed (as a result of compile time known conditions). In
1841 -- the analyzer, we ensure that code that will be deleted in this manner
1842 -- is analyzed but not expanded. This is obviously more efficient, but
1843 -- more significantly, difficulties arise if code is expanded and then
1844 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1845 -- generated in deleted code must be frozen from start, because the nodes
1846 -- on which they depend will not be available at the freeze point.
1848 procedure Analyze_If_Statement (N : Node_Id) is
1849 E : Node_Id;
1851 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1852 -- Recursively save value of this global, will be restored on exit
1854 Save_In_Deleted_Code : Boolean;
1856 Del : Boolean := False;
1857 -- This flag gets set True if a True condition has been found, which
1858 -- means that remaining ELSE/ELSIF parts are deleted.
1860 procedure Analyze_Cond_Then (Cnode : Node_Id);
1861 -- This is applied to either the N_If_Statement node itself or to an
1862 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1863 -- statements associated with it.
1865 -----------------------
1866 -- Analyze_Cond_Then --
1867 -----------------------
1869 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1870 Cond : constant Node_Id := Condition (Cnode);
1871 Tstm : constant List_Id := Then_Statements (Cnode);
1873 begin
1874 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1875 Analyze_And_Resolve (Cond, Any_Boolean);
1876 Check_Unset_Reference (Cond);
1877 Set_Current_Value_Condition (Cnode);
1879 -- If already deleting, then just analyze then statements
1881 if Del then
1882 Analyze_Statements (Tstm);
1884 -- Compile time known value, not deleting yet
1886 elsif Compile_Time_Known_Value (Cond) then
1887 Save_In_Deleted_Code := In_Deleted_Code;
1889 -- If condition is True, then analyze the THEN statements and set
1890 -- no expansion for ELSE and ELSIF parts.
1892 if Is_True (Expr_Value (Cond)) then
1893 Analyze_Statements (Tstm);
1894 Del := True;
1895 Expander_Mode_Save_And_Set (False);
1896 In_Deleted_Code := True;
1898 -- If condition is False, analyze THEN with expansion off
1900 else -- Is_False (Expr_Value (Cond))
1901 Expander_Mode_Save_And_Set (False);
1902 In_Deleted_Code := True;
1903 Analyze_Statements (Tstm);
1904 Expander_Mode_Restore;
1905 In_Deleted_Code := Save_In_Deleted_Code;
1906 end if;
1908 -- Not known at compile time, not deleting, normal analysis
1910 else
1911 Analyze_Statements (Tstm);
1912 end if;
1913 end Analyze_Cond_Then;
1915 -- Start of processing for Analyze_If_Statement
1917 begin
1918 -- Initialize exit count for else statements. If there is no else part,
1919 -- this count will stay non-zero reflecting the fact that the uncovered
1920 -- else case is an unblocked exit.
1922 Unblocked_Exit_Count := 1;
1923 Analyze_Cond_Then (N);
1925 -- Now to analyze the elsif parts if any are present
1927 if Present (Elsif_Parts (N)) then
1928 E := First (Elsif_Parts (N));
1929 while Present (E) loop
1930 Analyze_Cond_Then (E);
1931 Next (E);
1932 end loop;
1933 end if;
1935 if Present (Else_Statements (N)) then
1936 Analyze_Statements (Else_Statements (N));
1937 end if;
1939 -- If all our exits were blocked by unconditional transfers of control,
1940 -- then the entire IF statement acts as an unconditional transfer of
1941 -- control, so treat it like one, and check unreachable code.
1943 if Unblocked_Exit_Count = 0 then
1944 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1945 Check_Unreachable_Code (N);
1946 else
1947 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1948 end if;
1950 if Del then
1951 Expander_Mode_Restore;
1952 In_Deleted_Code := Save_In_Deleted_Code;
1953 end if;
1955 if not Expander_Active
1956 and then Compile_Time_Known_Value (Condition (N))
1957 and then Serious_Errors_Detected = 0
1958 then
1959 if Is_True (Expr_Value (Condition (N))) then
1960 Remove_Warning_Messages (Else_Statements (N));
1962 if Present (Elsif_Parts (N)) then
1963 E := First (Elsif_Parts (N));
1964 while Present (E) loop
1965 Remove_Warning_Messages (Then_Statements (E));
1966 Next (E);
1967 end loop;
1968 end if;
1970 else
1971 Remove_Warning_Messages (Then_Statements (N));
1972 end if;
1973 end if;
1975 -- Warn on redundant if statement that has no effect
1977 -- Note, we could also check empty ELSIF parts ???
1979 if Warn_On_Redundant_Constructs
1981 -- If statement must be from source
1983 and then Comes_From_Source (N)
1985 -- Condition must not have obvious side effect
1987 and then Has_No_Obvious_Side_Effects (Condition (N))
1989 -- No elsif parts of else part
1991 and then No (Elsif_Parts (N))
1992 and then No (Else_Statements (N))
1994 -- Then must be a single null statement
1996 and then List_Length (Then_Statements (N)) = 1
1997 then
1998 -- Go to original node, since we may have rewritten something as
1999 -- a null statement (e.g. a case we could figure the outcome of).
2001 declare
2002 T : constant Node_Id := First (Then_Statements (N));
2003 S : constant Node_Id := Original_Node (T);
2005 begin
2006 if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
2007 Error_Msg_N ("if statement has no effect?r?", N);
2008 end if;
2009 end;
2010 end if;
2011 end Analyze_If_Statement;
2013 ----------------------------------------
2014 -- Analyze_Implicit_Label_Declaration --
2015 ----------------------------------------
2017 -- An implicit label declaration is generated in the innermost enclosing
2018 -- declarative part. This is done for labels, and block and loop names.
2020 -- Note: any changes in this routine may need to be reflected in
2021 -- Analyze_Label_Entity.
2023 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
2024 Id : constant Node_Id := Defining_Identifier (N);
2025 begin
2026 Enter_Name (Id);
2027 Set_Ekind (Id, E_Label);
2028 Set_Etype (Id, Standard_Void_Type);
2029 Set_Enclosing_Scope (Id, Current_Scope);
2030 end Analyze_Implicit_Label_Declaration;
2032 ------------------------------
2033 -- Analyze_Iteration_Scheme --
2034 ------------------------------
2036 procedure Analyze_Iteration_Scheme (N : Node_Id) is
2037 Cond : Node_Id;
2038 Iter_Spec : Node_Id;
2039 Loop_Spec : Node_Id;
2041 begin
2042 -- For an infinite loop, there is no iteration scheme
2044 if No (N) then
2045 return;
2046 end if;
2048 Cond := Condition (N);
2049 Iter_Spec := Iterator_Specification (N);
2050 Loop_Spec := Loop_Parameter_Specification (N);
2052 if Present (Cond) then
2053 Analyze_And_Resolve (Cond, Any_Boolean);
2054 Check_Unset_Reference (Cond);
2055 Set_Current_Value_Condition (N);
2057 elsif Present (Iter_Spec) then
2058 Analyze_Iterator_Specification (Iter_Spec);
2060 else
2061 Analyze_Loop_Parameter_Specification (Loop_Spec);
2062 end if;
2063 end Analyze_Iteration_Scheme;
2065 ------------------------------------
2066 -- Analyze_Iterator_Specification --
2067 ------------------------------------
2069 procedure Analyze_Iterator_Specification (N : Node_Id) is
2070 Def_Id : constant Node_Id := Defining_Identifier (N);
2071 Iter_Name : constant Node_Id := Name (N);
2072 Loc : constant Source_Ptr := Sloc (N);
2073 Subt : constant Node_Id := Subtype_Indication (N);
2075 Bas : Entity_Id := Empty; -- initialize to prevent warning
2076 Typ : Entity_Id;
2078 procedure Check_Reverse_Iteration (Typ : Entity_Id);
2079 -- For an iteration over a container, if the loop carries the Reverse
2080 -- indicator, verify that the container type has an Iterate aspect that
2081 -- implements the reversible iterator interface.
2083 procedure Check_Subtype_Indication (Comp_Type : Entity_Id);
2084 -- If a subtype indication is present, verify that it is consistent
2085 -- with the component type of the array or container name.
2087 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
2088 -- For containers with Iterator and related aspects, the cursor is
2089 -- obtained by locating an entity with the proper name in the scope
2090 -- of the type.
2092 -----------------------------
2093 -- Check_Reverse_Iteration --
2094 -----------------------------
2096 procedure Check_Reverse_Iteration (Typ : Entity_Id) is
2097 begin
2098 if Reverse_Present (N) then
2099 if Is_Array_Type (Typ)
2100 or else Is_Reversible_Iterator (Typ)
2101 or else
2102 (Present (Find_Aspect (Typ, Aspect_Iterable))
2103 and then
2104 Present
2105 (Get_Iterable_Type_Primitive (Typ, Name_Previous)))
2106 then
2107 null;
2108 else
2109 Error_Msg_NE
2110 ("container type does not support reverse iteration", N, Typ);
2111 end if;
2112 end if;
2113 end Check_Reverse_Iteration;
2115 -------------------------------
2116 -- Check_Subtype_Indication --
2117 -------------------------------
2119 procedure Check_Subtype_Indication (Comp_Type : Entity_Id) is
2120 begin
2121 if Present (Subt)
2122 and then (not Covers (Base_Type ((Bas)), Comp_Type)
2123 or else not Subtypes_Statically_Match (Bas, Comp_Type))
2124 then
2125 if Is_Array_Type (Typ) then
2126 Error_Msg_N
2127 ("subtype indication does not match component type", Subt);
2128 else
2129 Error_Msg_N
2130 ("subtype indication does not match element type", Subt);
2131 end if;
2132 end if;
2133 end Check_Subtype_Indication;
2135 ---------------------
2136 -- Get_Cursor_Type --
2137 ---------------------
2139 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
2140 Ent : Entity_Id;
2142 begin
2143 -- If iterator type is derived, the cursor is declared in the scope
2144 -- of the parent type.
2146 if Is_Derived_Type (Typ) then
2147 Ent := First_Entity (Scope (Etype (Typ)));
2148 else
2149 Ent := First_Entity (Scope (Typ));
2150 end if;
2152 while Present (Ent) loop
2153 exit when Chars (Ent) = Name_Cursor;
2154 Next_Entity (Ent);
2155 end loop;
2157 if No (Ent) then
2158 return Any_Type;
2159 end if;
2161 -- The cursor is the target of generated assignments in the
2162 -- loop, and cannot have a limited type.
2164 if Is_Limited_Type (Etype (Ent)) then
2165 Error_Msg_N ("cursor type cannot be limited", N);
2166 end if;
2168 return Etype (Ent);
2169 end Get_Cursor_Type;
2171 -- Start of processing for Analyze_Iterator_Specification
2173 begin
2174 Enter_Name (Def_Id);
2176 -- AI12-0151 specifies that when the subtype indication is present, it
2177 -- must statically match the type of the array or container element.
2178 -- To simplify this check, we introduce a subtype declaration with the
2179 -- given subtype indication when it carries a constraint, and rewrite
2180 -- the original as a reference to the created subtype entity.
2182 if Present (Subt) then
2183 if Nkind (Subt) = N_Subtype_Indication then
2184 declare
2185 S : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
2186 Decl : constant Node_Id :=
2187 Make_Subtype_Declaration (Loc,
2188 Defining_Identifier => S,
2189 Subtype_Indication => New_Copy_Tree (Subt));
2190 begin
2191 Insert_Before (Parent (Parent (N)), Decl);
2192 Analyze (Decl);
2193 Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
2194 end;
2195 else
2196 Analyze (Subt);
2197 end if;
2199 -- Save entity of subtype indication for subsequent check
2201 Bas := Entity (Subt);
2202 end if;
2204 Preanalyze_Range (Iter_Name);
2206 -- If the domain of iteration is a function call, make sure the function
2207 -- itself is frozen. This is an issue if this is a local expression
2208 -- function.
2210 if Nkind (Iter_Name) = N_Function_Call
2211 and then Is_Entity_Name (Name (Iter_Name))
2212 and then Full_Analysis
2213 and then (In_Assertion_Expr = 0 or else Assertions_Enabled)
2214 then
2215 Freeze_Before (N, Entity (Name (Iter_Name)));
2216 end if;
2218 -- Set the kind of the loop variable, which is not visible within the
2219 -- iterator name.
2221 Set_Ekind (Def_Id, E_Variable);
2223 -- Provide a link between the iterator variable and the container, for
2224 -- subsequent use in cross-reference and modification information.
2226 if Of_Present (N) then
2227 Set_Related_Expression (Def_Id, Iter_Name);
2229 -- For a container, the iterator is specified through the aspect
2231 if not Is_Array_Type (Etype (Iter_Name)) then
2232 declare
2233 Iterator : constant Entity_Id :=
2234 Find_Value_Of_Aspect
2235 (Etype (Iter_Name), Aspect_Default_Iterator);
2237 I : Interp_Index;
2238 It : Interp;
2240 begin
2241 if No (Iterator) then
2242 null; -- error reported below
2244 elsif not Is_Overloaded (Iterator) then
2245 Check_Reverse_Iteration (Etype (Iterator));
2247 -- If Iterator is overloaded, use reversible iterator if one is
2248 -- available.
2250 elsif Is_Overloaded (Iterator) then
2251 Get_First_Interp (Iterator, I, It);
2252 while Present (It.Nam) loop
2253 if Ekind (It.Nam) = E_Function
2254 and then Is_Reversible_Iterator (Etype (It.Nam))
2255 then
2256 Set_Etype (Iterator, It.Typ);
2257 Set_Entity (Iterator, It.Nam);
2258 exit;
2259 end if;
2261 Get_Next_Interp (I, It);
2262 end loop;
2264 Check_Reverse_Iteration (Etype (Iterator));
2265 end if;
2266 end;
2267 end if;
2268 end if;
2270 -- If the domain of iteration is an expression, create a declaration for
2271 -- it, so that finalization actions are introduced outside of the loop.
2272 -- The declaration must be a renaming because the body of the loop may
2273 -- assign to elements.
2275 if not Is_Entity_Name (Iter_Name)
2277 -- When the context is a quantified expression, the renaming
2278 -- declaration is delayed until the expansion phase if we are
2279 -- doing expansion.
2281 and then (Nkind (Parent (N)) /= N_Quantified_Expression
2282 or else Operating_Mode = Check_Semantics)
2284 -- Do not perform this expansion for ASIS and when expansion is
2285 -- disabled, where the temporary may hide the transformation of a
2286 -- selected component into a prefixed function call, and references
2287 -- need to see the original expression.
2289 and then Expander_Active
2290 then
2291 declare
2292 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
2293 Decl : Node_Id;
2294 Act_S : Node_Id;
2296 begin
2298 -- If the domain of iteration is an array component that depends
2299 -- on a discriminant, create actual subtype for it. preanalysis
2300 -- does not generate the actual subtype of a selected component.
2302 if Nkind (Iter_Name) = N_Selected_Component
2303 and then Is_Array_Type (Etype (Iter_Name))
2304 then
2305 Act_S :=
2306 Build_Actual_Subtype_Of_Component
2307 (Etype (Selector_Name (Iter_Name)), Iter_Name);
2308 Insert_Action (N, Act_S);
2310 if Present (Act_S) then
2311 Typ := Defining_Identifier (Act_S);
2312 else
2313 Typ := Etype (Iter_Name);
2314 end if;
2316 else
2317 Typ := Etype (Iter_Name);
2319 -- Verify that the expression produces an iterator
2321 if not Of_Present (N) and then not Is_Iterator (Typ)
2322 and then not Is_Array_Type (Typ)
2323 and then No (Find_Aspect (Typ, Aspect_Iterable))
2324 then
2325 Error_Msg_N
2326 ("expect object that implements iterator interface",
2327 Iter_Name);
2328 end if;
2329 end if;
2331 -- Protect against malformed iterator
2333 if Typ = Any_Type then
2334 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
2335 return;
2336 end if;
2338 if not Of_Present (N) then
2339 Check_Reverse_Iteration (Typ);
2340 end if;
2342 -- The name in the renaming declaration may be a function call.
2343 -- Indicate that it does not come from source, to suppress
2344 -- spurious warnings on renamings of parameterless functions,
2345 -- a common enough idiom in user-defined iterators.
2347 Decl :=
2348 Make_Object_Renaming_Declaration (Loc,
2349 Defining_Identifier => Id,
2350 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2351 Name =>
2352 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
2354 Insert_Actions (Parent (Parent (N)), New_List (Decl));
2355 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
2356 Set_Etype (Id, Typ);
2357 Set_Etype (Name (N), Typ);
2358 end;
2360 -- Container is an entity or an array with uncontrolled components, or
2361 -- else it is a container iterator given by a function call, typically
2362 -- called Iterate in the case of predefined containers, even though
2363 -- Iterate is not a reserved name. What matters is that the return type
2364 -- of the function is an iterator type.
2366 elsif Is_Entity_Name (Iter_Name) then
2367 Analyze (Iter_Name);
2369 if Nkind (Iter_Name) = N_Function_Call then
2370 declare
2371 C : constant Node_Id := Name (Iter_Name);
2372 I : Interp_Index;
2373 It : Interp;
2375 begin
2376 if not Is_Overloaded (Iter_Name) then
2377 Resolve (Iter_Name, Etype (C));
2379 else
2380 Get_First_Interp (C, I, It);
2381 while It.Typ /= Empty loop
2382 if Reverse_Present (N) then
2383 if Is_Reversible_Iterator (It.Typ) then
2384 Resolve (Iter_Name, It.Typ);
2385 exit;
2386 end if;
2388 elsif Is_Iterator (It.Typ) then
2389 Resolve (Iter_Name, It.Typ);
2390 exit;
2391 end if;
2393 Get_Next_Interp (I, It);
2394 end loop;
2395 end if;
2396 end;
2398 -- Domain of iteration is not overloaded
2400 else
2401 Resolve (Iter_Name, Etype (Iter_Name));
2402 end if;
2404 if not Of_Present (N) then
2405 Check_Reverse_Iteration (Etype (Iter_Name));
2406 end if;
2407 end if;
2409 -- Get base type of container, for proper retrieval of Cursor type
2410 -- and primitive operations.
2412 Typ := Base_Type (Etype (Iter_Name));
2414 if Is_Array_Type (Typ) then
2415 if Of_Present (N) then
2416 Set_Etype (Def_Id, Component_Type (Typ));
2418 -- The loop variable is aliased if the array components are
2419 -- aliased.
2421 Set_Is_Aliased (Def_Id, Has_Aliased_Components (Typ));
2423 -- AI12-0047 stipulates that the domain (array or container)
2424 -- cannot be a component that depends on a discriminant if the
2425 -- enclosing object is mutable, to prevent a modification of the
2426 -- dowmain of iteration in the course of an iteration.
2428 -- If the object is an expression it has been captured in a
2429 -- temporary, so examine original node.
2431 if Nkind (Original_Node (Iter_Name)) = N_Selected_Component
2432 and then Is_Dependent_Component_Of_Mutable_Object
2433 (Original_Node (Iter_Name))
2434 then
2435 Error_Msg_N
2436 ("iterable name cannot be a discriminant-dependent "
2437 & "component of a mutable object", N);
2438 end if;
2440 Check_Subtype_Indication (Component_Type (Typ));
2442 -- Here we have a missing Range attribute
2444 else
2445 Error_Msg_N
2446 ("missing Range attribute in iteration over an array", N);
2448 -- In Ada 2012 mode, this may be an attempt at an iterator
2450 if Ada_Version >= Ada_2012 then
2451 Error_Msg_NE
2452 ("\if& is meant to designate an element of the array, use OF",
2453 N, Def_Id);
2454 end if;
2456 -- Prevent cascaded errors
2458 Set_Ekind (Def_Id, E_Loop_Parameter);
2459 Set_Etype (Def_Id, Etype (First_Index (Typ)));
2460 end if;
2462 -- Check for type error in iterator
2464 elsif Typ = Any_Type then
2465 return;
2467 -- Iteration over a container
2469 else
2470 Set_Ekind (Def_Id, E_Loop_Parameter);
2471 Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
2473 -- OF present
2475 if Of_Present (N) then
2476 if Has_Aspect (Typ, Aspect_Iterable) then
2477 declare
2478 Elt : constant Entity_Id :=
2479 Get_Iterable_Type_Primitive (Typ, Name_Element);
2480 begin
2481 if No (Elt) then
2482 Error_Msg_N
2483 ("missing Element primitive for iteration", N);
2484 else
2485 Set_Etype (Def_Id, Etype (Elt));
2486 Check_Reverse_Iteration (Typ);
2487 end if;
2488 end;
2490 Check_Subtype_Indication (Etype (Def_Id));
2492 -- For a predefined container, The type of the loop variable is
2493 -- the Iterator_Element aspect of the container type.
2495 else
2496 declare
2497 Element : constant Entity_Id :=
2498 Find_Value_Of_Aspect
2499 (Typ, Aspect_Iterator_Element);
2500 Iterator : constant Entity_Id :=
2501 Find_Value_Of_Aspect
2502 (Typ, Aspect_Default_Iterator);
2503 Orig_Iter_Name : constant Node_Id :=
2504 Original_Node (Iter_Name);
2505 Cursor_Type : Entity_Id;
2507 begin
2508 if No (Element) then
2509 Error_Msg_NE ("cannot iterate over&", N, Typ);
2510 return;
2512 else
2513 Set_Etype (Def_Id, Entity (Element));
2514 Cursor_Type := Get_Cursor_Type (Typ);
2515 pragma Assert (Present (Cursor_Type));
2517 Check_Subtype_Indication (Etype (Def_Id));
2519 -- If the container has a variable indexing aspect, the
2520 -- element is a variable and is modifiable in the loop.
2522 if Has_Aspect (Typ, Aspect_Variable_Indexing) then
2523 Set_Ekind (Def_Id, E_Variable);
2524 end if;
2526 -- If the container is a constant, iterating over it
2527 -- requires a Constant_Indexing operation.
2529 if not Is_Variable (Iter_Name)
2530 and then not Has_Aspect (Typ, Aspect_Constant_Indexing)
2531 then
2532 Error_Msg_N
2533 ("iteration over constant container require "
2534 & "constant_indexing aspect", N);
2536 -- The Iterate function may have an in_out parameter,
2537 -- and a constant container is thus illegal.
2539 elsif Present (Iterator)
2540 and then Ekind (Entity (Iterator)) = E_Function
2541 and then Ekind (First_Formal (Entity (Iterator))) /=
2542 E_In_Parameter
2543 and then not Is_Variable (Iter_Name)
2544 then
2545 Error_Msg_N ("variable container expected", N);
2546 end if;
2548 -- Detect a case where the iterator denotes a component
2549 -- of a mutable object which depends on a discriminant.
2550 -- Note that the iterator may denote a function call in
2551 -- qualified form, in which case this check should not
2552 -- be performed.
2554 if Nkind (Orig_Iter_Name) = N_Selected_Component
2555 and then
2556 Present (Entity (Selector_Name (Orig_Iter_Name)))
2557 and then Ekind_In
2558 (Entity (Selector_Name (Orig_Iter_Name)),
2559 E_Component,
2560 E_Discriminant)
2561 and then Is_Dependent_Component_Of_Mutable_Object
2562 (Orig_Iter_Name)
2563 then
2564 Error_Msg_N
2565 ("container cannot be a discriminant-dependent "
2566 & "component of a mutable object", N);
2567 end if;
2568 end if;
2569 end;
2570 end if;
2572 -- IN iterator, domain is a range, or a call to Iterate function
2574 else
2575 -- For an iteration of the form IN, the name must denote an
2576 -- iterator, typically the result of a call to Iterate. Give a
2577 -- useful error message when the name is a container by itself.
2579 -- The type may be a formal container type, which has to have
2580 -- an Iterable aspect detailing the required primitives.
2582 if Is_Entity_Name (Original_Node (Name (N)))
2583 and then not Is_Iterator (Typ)
2584 then
2585 if Has_Aspect (Typ, Aspect_Iterable) then
2586 null;
2588 elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
2589 Error_Msg_NE
2590 ("cannot iterate over&", Name (N), Typ);
2591 else
2592 Error_Msg_N
2593 ("name must be an iterator, not a container", Name (N));
2594 end if;
2596 if Has_Aspect (Typ, Aspect_Iterable) then
2597 null;
2598 else
2599 Error_Msg_NE
2600 ("\to iterate directly over the elements of a container, "
2601 & "write `of &`", Name (N), Original_Node (Name (N)));
2603 -- No point in continuing analysis of iterator spec
2605 return;
2606 end if;
2607 end if;
2609 -- If the name is a call (typically prefixed) to some Iterate
2610 -- function, it has been rewritten as an object declaration.
2611 -- If that object is a selected component, verify that it is not
2612 -- a component of an unconstrained mutable object.
2614 if Nkind (Iter_Name) = N_Identifier
2615 or else (not Expander_Active and Comes_From_Source (Iter_Name))
2616 then
2617 declare
2618 Orig_Node : constant Node_Id := Original_Node (Iter_Name);
2619 Iter_Kind : constant Node_Kind := Nkind (Orig_Node);
2620 Obj : Node_Id;
2622 begin
2623 if Iter_Kind = N_Selected_Component then
2624 Obj := Prefix (Orig_Node);
2626 elsif Iter_Kind = N_Function_Call then
2627 Obj := First_Actual (Orig_Node);
2629 -- If neither, the name comes from source
2631 else
2632 Obj := Iter_Name;
2633 end if;
2635 if Nkind (Obj) = N_Selected_Component
2636 and then Is_Dependent_Component_Of_Mutable_Object (Obj)
2637 then
2638 Error_Msg_N
2639 ("container cannot be a discriminant-dependent "
2640 & "component of a mutable object", N);
2641 end if;
2642 end;
2643 end if;
2645 -- The result type of Iterate function is the classwide type of
2646 -- the interface parent. We need the specific Cursor type defined
2647 -- in the container package. We obtain it by name for a predefined
2648 -- container, or through the Iterable aspect for a formal one.
2650 if Has_Aspect (Typ, Aspect_Iterable) then
2651 Set_Etype (Def_Id,
2652 Get_Cursor_Type
2653 (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
2654 Typ));
2656 else
2657 Set_Etype (Def_Id, Get_Cursor_Type (Typ));
2658 Check_Reverse_Iteration (Etype (Iter_Name));
2659 end if;
2661 end if;
2662 end if;
2663 end Analyze_Iterator_Specification;
2665 -------------------
2666 -- Analyze_Label --
2667 -------------------
2669 -- Note: the semantic work required for analyzing labels (setting them as
2670 -- reachable) was done in a prepass through the statements in the block,
2671 -- so that forward gotos would be properly handled. See Analyze_Statements
2672 -- for further details. The only processing required here is to deal with
2673 -- optimizations that depend on an assumption of sequential control flow,
2674 -- since of course the occurrence of a label breaks this assumption.
2676 procedure Analyze_Label (N : Node_Id) is
2677 pragma Warnings (Off, N);
2678 begin
2679 Kill_Current_Values;
2680 end Analyze_Label;
2682 --------------------------
2683 -- Analyze_Label_Entity --
2684 --------------------------
2686 procedure Analyze_Label_Entity (E : Entity_Id) is
2687 begin
2688 Set_Ekind (E, E_Label);
2689 Set_Etype (E, Standard_Void_Type);
2690 Set_Enclosing_Scope (E, Current_Scope);
2691 Set_Reachable (E, True);
2692 end Analyze_Label_Entity;
2694 ------------------------------------------
2695 -- Analyze_Loop_Parameter_Specification --
2696 ------------------------------------------
2698 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
2699 Loop_Nod : constant Node_Id := Parent (Parent (N));
2701 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
2702 -- If the bounds are given by a 'Range reference on a function call
2703 -- that returns a controlled array, introduce an explicit declaration
2704 -- to capture the bounds, so that the function result can be finalized
2705 -- in timely fashion.
2707 procedure Check_Predicate_Use (T : Entity_Id);
2708 -- Diagnose Attempt to iterate through non-static predicate. Note that
2709 -- a type with inherited predicates may have both static and dynamic
2710 -- forms. In this case it is not sufficent to check the static predicate
2711 -- function only, look for a dynamic predicate aspect as well.
2713 procedure Process_Bounds (R : Node_Id);
2714 -- If the iteration is given by a range, create temporaries and
2715 -- assignment statements block to capture the bounds and perform
2716 -- required finalization actions in case a bound includes a function
2717 -- call that uses the temporary stack. We first preanalyze a copy of
2718 -- the range in order to determine the expected type, and analyze and
2719 -- resolve the original bounds.
2721 --------------------------------------
2722 -- Check_Controlled_Array_Attribute --
2723 --------------------------------------
2725 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
2726 begin
2727 if Nkind (DS) = N_Attribute_Reference
2728 and then Is_Entity_Name (Prefix (DS))
2729 and then Ekind (Entity (Prefix (DS))) = E_Function
2730 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
2731 and then
2732 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
2733 and then Expander_Active
2734 then
2735 declare
2736 Loc : constant Source_Ptr := Sloc (N);
2737 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
2738 Indx : constant Entity_Id :=
2739 Base_Type (Etype (First_Index (Arr)));
2740 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
2741 Decl : Node_Id;
2743 begin
2744 Decl :=
2745 Make_Subtype_Declaration (Loc,
2746 Defining_Identifier => Subt,
2747 Subtype_Indication =>
2748 Make_Subtype_Indication (Loc,
2749 Subtype_Mark => New_Occurrence_Of (Indx, Loc),
2750 Constraint =>
2751 Make_Range_Constraint (Loc, Relocate_Node (DS))));
2752 Insert_Before (Loop_Nod, Decl);
2753 Analyze (Decl);
2755 Rewrite (DS,
2756 Make_Attribute_Reference (Loc,
2757 Prefix => New_Occurrence_Of (Subt, Loc),
2758 Attribute_Name => Attribute_Name (DS)));
2760 Analyze (DS);
2761 end;
2762 end if;
2763 end Check_Controlled_Array_Attribute;
2765 -------------------------
2766 -- Check_Predicate_Use --
2767 -------------------------
2769 procedure Check_Predicate_Use (T : Entity_Id) is
2770 begin
2771 -- A predicated subtype is illegal in loops and related constructs
2772 -- if the predicate is not static, or if it is a non-static subtype
2773 -- of a statically predicated subtype.
2775 if Is_Discrete_Type (T)
2776 and then Has_Predicates (T)
2777 and then (not Has_Static_Predicate (T)
2778 or else not Is_Static_Subtype (T)
2779 or else Has_Dynamic_Predicate_Aspect (T))
2780 then
2781 -- Seems a confusing message for the case of a static predicate
2782 -- with a non-static subtype???
2784 Bad_Predicated_Subtype_Use
2785 ("cannot use subtype& with non-static predicate for loop "
2786 & "iteration", Discrete_Subtype_Definition (N),
2787 T, Suggest_Static => True);
2789 elsif Inside_A_Generic
2790 and then Is_Generic_Formal (T)
2791 and then Is_Discrete_Type (T)
2792 then
2793 Set_No_Dynamic_Predicate_On_Actual (T);
2794 end if;
2795 end Check_Predicate_Use;
2797 --------------------
2798 -- Process_Bounds --
2799 --------------------
2801 procedure Process_Bounds (R : Node_Id) is
2802 Loc : constant Source_Ptr := Sloc (N);
2804 function One_Bound
2805 (Original_Bound : Node_Id;
2806 Analyzed_Bound : Node_Id;
2807 Typ : Entity_Id) return Node_Id;
2808 -- Capture value of bound and return captured value
2810 ---------------
2811 -- One_Bound --
2812 ---------------
2814 function One_Bound
2815 (Original_Bound : Node_Id;
2816 Analyzed_Bound : Node_Id;
2817 Typ : Entity_Id) return Node_Id
2819 Assign : Node_Id;
2820 Decl : Node_Id;
2821 Id : Entity_Id;
2823 begin
2824 -- If the bound is a constant or an object, no need for a separate
2825 -- declaration. If the bound is the result of previous expansion
2826 -- it is already analyzed and should not be modified. Note that
2827 -- the Bound will be resolved later, if needed, as part of the
2828 -- call to Make_Index (literal bounds may need to be resolved to
2829 -- type Integer).
2831 if Analyzed (Original_Bound) then
2832 return Original_Bound;
2834 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2835 N_Character_Literal)
2836 or else Is_Entity_Name (Analyzed_Bound)
2837 then
2838 Analyze_And_Resolve (Original_Bound, Typ);
2839 return Original_Bound;
2840 end if;
2842 -- Normally, the best approach is simply to generate a constant
2843 -- declaration that captures the bound. However, there is a nasty
2844 -- case where this is wrong. If the bound is complex, and has a
2845 -- possible use of the secondary stack, we need to generate a
2846 -- separate assignment statement to ensure the creation of a block
2847 -- which will release the secondary stack.
2849 -- We prefer the constant declaration, since it leaves us with a
2850 -- proper trace of the value, useful in optimizations that get rid
2851 -- of junk range checks.
2853 if not Has_Sec_Stack_Call (Analyzed_Bound) then
2854 Analyze_And_Resolve (Original_Bound, Typ);
2856 -- Ensure that the bound is valid. This check should not be
2857 -- generated when the range belongs to a quantified expression
2858 -- as the construct is still not expanded into its final form.
2860 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
2861 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
2862 then
2863 Ensure_Valid (Original_Bound);
2864 end if;
2866 Force_Evaluation (Original_Bound);
2867 return Original_Bound;
2868 end if;
2870 Id := Make_Temporary (Loc, 'R', Original_Bound);
2872 -- Here we make a declaration with a separate assignment
2873 -- statement, and insert before loop header.
2875 Decl :=
2876 Make_Object_Declaration (Loc,
2877 Defining_Identifier => Id,
2878 Object_Definition => New_Occurrence_Of (Typ, Loc));
2880 Assign :=
2881 Make_Assignment_Statement (Loc,
2882 Name => New_Occurrence_Of (Id, Loc),
2883 Expression => Relocate_Node (Original_Bound));
2885 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2887 -- Now that this temporary variable is initialized we decorate it
2888 -- as safe-to-reevaluate to inform to the backend that no further
2889 -- asignment will be issued and hence it can be handled as side
2890 -- effect free. Note that this decoration must be done when the
2891 -- assignment has been analyzed because otherwise it will be
2892 -- rejected (see Analyze_Assignment).
2894 Set_Is_Safe_To_Reevaluate (Id);
2896 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2898 if Nkind (Assign) = N_Assignment_Statement then
2899 return Expression (Assign);
2900 else
2901 return Original_Bound;
2902 end if;
2903 end One_Bound;
2905 Hi : constant Node_Id := High_Bound (R);
2906 Lo : constant Node_Id := Low_Bound (R);
2907 R_Copy : constant Node_Id := New_Copy_Tree (R);
2908 New_Hi : Node_Id;
2909 New_Lo : Node_Id;
2910 Typ : Entity_Id;
2912 -- Start of processing for Process_Bounds
2914 begin
2915 Set_Parent (R_Copy, Parent (R));
2916 Preanalyze_Range (R_Copy);
2917 Typ := Etype (R_Copy);
2919 -- If the type of the discrete range is Universal_Integer, then the
2920 -- bound's type must be resolved to Integer, and any object used to
2921 -- hold the bound must also have type Integer, unless the literal
2922 -- bounds are constant-folded expressions with a user-defined type.
2924 if Typ = Universal_Integer then
2925 if Nkind (Lo) = N_Integer_Literal
2926 and then Present (Etype (Lo))
2927 and then Scope (Etype (Lo)) /= Standard_Standard
2928 then
2929 Typ := Etype (Lo);
2931 elsif Nkind (Hi) = N_Integer_Literal
2932 and then Present (Etype (Hi))
2933 and then Scope (Etype (Hi)) /= Standard_Standard
2934 then
2935 Typ := Etype (Hi);
2937 else
2938 Typ := Standard_Integer;
2939 end if;
2940 end if;
2942 Set_Etype (R, Typ);
2944 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2945 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2947 -- Propagate staticness to loop range itself, in case the
2948 -- corresponding subtype is static.
2950 if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
2951 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2952 end if;
2954 if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
2955 Rewrite (High_Bound (R), New_Copy (New_Hi));
2956 end if;
2957 end Process_Bounds;
2959 -- Local variables
2961 DS : constant Node_Id := Discrete_Subtype_Definition (N);
2962 Id : constant Entity_Id := Defining_Identifier (N);
2964 DS_Copy : Node_Id;
2966 -- Start of processing for Analyze_Loop_Parameter_Specification
2968 begin
2969 Enter_Name (Id);
2971 -- We always consider the loop variable to be referenced, since the loop
2972 -- may be used just for counting purposes.
2974 Generate_Reference (Id, N, ' ');
2976 -- Check for the case of loop variable hiding a local variable (used
2977 -- later on to give a nice warning if the hidden variable is never
2978 -- assigned).
2980 declare
2981 H : constant Entity_Id := Homonym (Id);
2982 begin
2983 if Present (H)
2984 and then Ekind (H) = E_Variable
2985 and then Is_Discrete_Type (Etype (H))
2986 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
2987 then
2988 Set_Hiding_Loop_Variable (H, Id);
2989 end if;
2990 end;
2992 -- Loop parameter specification must include subtype mark in SPARK
2994 if Nkind (DS) = N_Range then
2995 Check_SPARK_05_Restriction
2996 ("loop parameter specification must include subtype mark", N);
2997 end if;
2999 -- Analyze the subtype definition and create temporaries for the bounds.
3000 -- Do not evaluate the range when preanalyzing a quantified expression
3001 -- because bounds expressed as function calls with side effects will be
3002 -- incorrectly replicated.
3004 if Nkind (DS) = N_Range
3005 and then Expander_Active
3006 and then Nkind (Parent (N)) /= N_Quantified_Expression
3007 then
3008 Process_Bounds (DS);
3010 -- Either the expander not active or the range of iteration is a subtype
3011 -- indication, an entity, or a function call that yields an aggregate or
3012 -- a container.
3014 else
3015 DS_Copy := New_Copy_Tree (DS);
3016 Set_Parent (DS_Copy, Parent (DS));
3017 Preanalyze_Range (DS_Copy);
3019 -- Ada 2012: If the domain of iteration is:
3021 -- a) a function call,
3022 -- b) an identifier that is not a type,
3023 -- c) an attribute reference 'Old (within a postcondition),
3024 -- d) an unchecked conversion or a qualified expression with
3025 -- the proper iterator type.
3027 -- then it is an iteration over a container. It was classified as
3028 -- a loop specification by the parser, and must be rewritten now
3029 -- to activate container iteration. The last case will occur within
3030 -- an expanded inlined call, where the expansion wraps an actual in
3031 -- an unchecked conversion when needed. The expression of the
3032 -- conversion is always an object.
3034 if Nkind (DS_Copy) = N_Function_Call
3036 or else (Is_Entity_Name (DS_Copy)
3037 and then not Is_Type (Entity (DS_Copy)))
3039 or else (Nkind (DS_Copy) = N_Attribute_Reference
3040 and then Nam_In (Attribute_Name (DS_Copy),
3041 Name_Loop_Entry, Name_Old))
3043 or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)
3045 or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
3046 or else (Nkind (DS_Copy) = N_Qualified_Expression
3047 and then Is_Iterator (Etype (DS_Copy)))
3048 then
3049 -- This is an iterator specification. Rewrite it as such and
3050 -- analyze it to capture function calls that may require
3051 -- finalization actions.
3053 declare
3054 I_Spec : constant Node_Id :=
3055 Make_Iterator_Specification (Sloc (N),
3056 Defining_Identifier => Relocate_Node (Id),
3057 Name => DS_Copy,
3058 Subtype_Indication => Empty,
3059 Reverse_Present => Reverse_Present (N));
3060 Scheme : constant Node_Id := Parent (N);
3062 begin
3063 Set_Iterator_Specification (Scheme, I_Spec);
3064 Set_Loop_Parameter_Specification (Scheme, Empty);
3065 Analyze_Iterator_Specification (I_Spec);
3067 -- In a generic context, analyze the original domain of
3068 -- iteration, for name capture.
3070 if not Expander_Active then
3071 Analyze (DS);
3072 end if;
3074 -- Set kind of loop parameter, which may be used in the
3075 -- subsequent analysis of the condition in a quantified
3076 -- expression.
3078 Set_Ekind (Id, E_Loop_Parameter);
3079 return;
3080 end;
3082 -- Domain of iteration is not a function call, and is side-effect
3083 -- free.
3085 else
3086 -- A quantified expression that appears in a pre/post condition
3087 -- is preanalyzed several times. If the range is given by an
3088 -- attribute reference it is rewritten as a range, and this is
3089 -- done even with expansion disabled. If the type is already set
3090 -- do not reanalyze, because a range with static bounds may be
3091 -- typed Integer by default.
3093 if Nkind (Parent (N)) = N_Quantified_Expression
3094 and then Present (Etype (DS))
3095 then
3096 null;
3097 else
3098 Analyze (DS);
3099 end if;
3100 end if;
3101 end if;
3103 if DS = Error then
3104 return;
3105 end if;
3107 -- Some additional checks if we are iterating through a type
3109 if Is_Entity_Name (DS)
3110 and then Present (Entity (DS))
3111 and then Is_Type (Entity (DS))
3112 then
3113 -- The subtype indication may denote the completion of an incomplete
3114 -- type declaration.
3116 if Ekind (Entity (DS)) = E_Incomplete_Type then
3117 Set_Entity (DS, Get_Full_View (Entity (DS)));
3118 Set_Etype (DS, Entity (DS));
3119 end if;
3121 Check_Predicate_Use (Entity (DS));
3122 end if;
3124 -- Error if not discrete type
3126 if not Is_Discrete_Type (Etype (DS)) then
3127 Wrong_Type (DS, Any_Discrete);
3128 Set_Etype (DS, Any_Type);
3129 end if;
3131 Check_Controlled_Array_Attribute (DS);
3133 if Nkind (DS) = N_Subtype_Indication then
3134 Check_Predicate_Use (Entity (Subtype_Mark (DS)));
3135 end if;
3137 Make_Index (DS, N, In_Iter_Schm => True);
3138 Set_Ekind (Id, E_Loop_Parameter);
3140 -- A quantified expression which appears in a pre- or post-condition may
3141 -- be analyzed multiple times. The analysis of the range creates several
3142 -- itypes which reside in different scopes depending on whether the pre-
3143 -- or post-condition has been expanded. Update the type of the loop
3144 -- variable to reflect the proper itype at each stage of analysis.
3146 if No (Etype (Id))
3147 or else Etype (Id) = Any_Type
3148 or else
3149 (Present (Etype (Id))
3150 and then Is_Itype (Etype (Id))
3151 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
3152 and then Nkind (Original_Node (Parent (Loop_Nod))) =
3153 N_Quantified_Expression)
3154 then
3155 Set_Etype (Id, Etype (DS));
3156 end if;
3158 -- Treat a range as an implicit reference to the type, to inhibit
3159 -- spurious warnings.
3161 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
3162 Set_Is_Known_Valid (Id, True);
3164 -- The loop is not a declarative part, so the loop variable must be
3165 -- frozen explicitly. Do not freeze while preanalyzing a quantified
3166 -- expression because the freeze node will not be inserted into the
3167 -- tree due to flag Is_Spec_Expression being set.
3169 if Nkind (Parent (N)) /= N_Quantified_Expression then
3170 declare
3171 Flist : constant List_Id := Freeze_Entity (Id, N);
3172 begin
3173 if Is_Non_Empty_List (Flist) then
3174 Insert_Actions (N, Flist);
3175 end if;
3176 end;
3177 end if;
3179 -- Case where we have a range or a subtype, get type bounds
3181 if Nkind_In (DS, N_Range, N_Subtype_Indication)
3182 and then not Error_Posted (DS)
3183 and then Etype (DS) /= Any_Type
3184 and then Is_Discrete_Type (Etype (DS))
3185 then
3186 declare
3187 L : Node_Id;
3188 H : Node_Id;
3190 begin
3191 if Nkind (DS) = N_Range then
3192 L := Low_Bound (DS);
3193 H := High_Bound (DS);
3194 else
3195 L :=
3196 Type_Low_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
3197 H :=
3198 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
3199 end if;
3201 -- Check for null or possibly null range and issue warning. We
3202 -- suppress such messages in generic templates and instances,
3203 -- because in practice they tend to be dubious in these cases. The
3204 -- check applies as well to rewritten array element loops where a
3205 -- null range may be detected statically.
3207 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
3209 -- Suppress the warning if inside a generic template or
3210 -- instance, since in practice they tend to be dubious in these
3211 -- cases since they can result from intended parameterization.
3213 if not Inside_A_Generic and then not In_Instance then
3215 -- Specialize msg if invalid values could make the loop
3216 -- non-null after all.
3218 if Compile_Time_Compare
3219 (L, H, Assume_Valid => False) = GT
3220 then
3221 -- Since we know the range of the loop is null, set the
3222 -- appropriate flag to remove the loop entirely during
3223 -- expansion.
3225 Set_Is_Null_Loop (Loop_Nod);
3227 if Comes_From_Source (N) then
3228 Error_Msg_N
3229 ("??loop range is null, loop will not execute", DS);
3230 end if;
3232 -- Here is where the loop could execute because of
3233 -- invalid values, so issue appropriate message and in
3234 -- this case we do not set the Is_Null_Loop flag since
3235 -- the loop may execute.
3237 elsif Comes_From_Source (N) then
3238 Error_Msg_N
3239 ("??loop range may be null, loop may not execute",
3240 DS);
3241 Error_Msg_N
3242 ("??can only execute if invalid values are present",
3243 DS);
3244 end if;
3245 end if;
3247 -- In either case, suppress warnings in the body of the loop,
3248 -- since it is likely that these warnings will be inappropriate
3249 -- if the loop never actually executes, which is likely.
3251 Set_Suppress_Loop_Warnings (Loop_Nod);
3253 -- The other case for a warning is a reverse loop where the
3254 -- upper bound is the integer literal zero or one, and the
3255 -- lower bound may exceed this value.
3257 -- For example, we have
3259 -- for J in reverse N .. 1 loop
3261 -- In practice, this is very likely to be a case of reversing
3262 -- the bounds incorrectly in the range.
3264 elsif Reverse_Present (N)
3265 and then Nkind (Original_Node (H)) = N_Integer_Literal
3266 and then
3267 (Intval (Original_Node (H)) = Uint_0
3268 or else
3269 Intval (Original_Node (H)) = Uint_1)
3270 then
3271 -- Lower bound may in fact be known and known not to exceed
3272 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
3274 if Compile_Time_Known_Value (L)
3275 and then Expr_Value (L) <= Expr_Value (H)
3276 then
3277 null;
3279 -- Otherwise warning is warranted
3281 else
3282 Error_Msg_N ("??loop range may be null", DS);
3283 Error_Msg_N ("\??bounds may be wrong way round", DS);
3284 end if;
3285 end if;
3287 -- Check if either bound is known to be outside the range of the
3288 -- loop parameter type, this is e.g. the case of a loop from
3289 -- 20..X where the type is 1..19.
3291 -- Such a loop is dubious since either it raises CE or it executes
3292 -- zero times, and that cannot be useful!
3294 if Etype (DS) /= Any_Type
3295 and then not Error_Posted (DS)
3296 and then Nkind (DS) = N_Subtype_Indication
3297 and then Nkind (Constraint (DS)) = N_Range_Constraint
3298 then
3299 declare
3300 LLo : constant Node_Id :=
3301 Low_Bound (Range_Expression (Constraint (DS)));
3302 LHi : constant Node_Id :=
3303 High_Bound (Range_Expression (Constraint (DS)));
3305 Bad_Bound : Node_Id := Empty;
3306 -- Suspicious loop bound
3308 begin
3309 -- At this stage L, H are the bounds of the type, and LLo
3310 -- Lhi are the low bound and high bound of the loop.
3312 if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
3313 or else
3314 Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
3315 then
3316 Bad_Bound := LLo;
3317 end if;
3319 if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
3320 or else
3321 Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
3322 then
3323 Bad_Bound := LHi;
3324 end if;
3326 if Present (Bad_Bound) then
3327 Error_Msg_N
3328 ("suspicious loop bound out of range of "
3329 & "loop subtype??", Bad_Bound);
3330 Error_Msg_N
3331 ("\loop executes zero times or raises "
3332 & "Constraint_Error??", Bad_Bound);
3333 end if;
3334 end;
3335 end if;
3337 -- This declare block is about warnings, if we get an exception while
3338 -- testing for warnings, we simply abandon the attempt silently. This
3339 -- most likely occurs as the result of a previous error, but might
3340 -- just be an obscure case we have missed. In either case, not giving
3341 -- the warning is perfectly acceptable.
3343 exception
3344 when others => null;
3345 end;
3346 end if;
3348 -- A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
3349 -- This check is relevant only when SPARK_Mode is on as it is not a
3350 -- standard Ada legality check.
3352 if SPARK_Mode = On and then Is_Effectively_Volatile (Id) then
3353 Error_Msg_N ("loop parameter cannot be volatile", Id);
3354 end if;
3355 end Analyze_Loop_Parameter_Specification;
3357 ----------------------------
3358 -- Analyze_Loop_Statement --
3359 ----------------------------
3361 procedure Analyze_Loop_Statement (N : Node_Id) is
3363 -- The following exception is raised by routine Prepare_Loop_Statement
3364 -- to avoid further analysis of a transformed loop.
3366 Skip_Analysis : exception;
3368 function Disable_Constant (N : Node_Id) return Traverse_Result;
3369 -- If N represents an E_Variable entity, set Is_True_Constant To False
3371 procedure Disable_Constants is new Traverse_Proc (Disable_Constant);
3372 -- Helper for Analyze_Loop_Statement, to unset Is_True_Constant on
3373 -- variables referenced within an OpenACC construct.
3375 procedure Prepare_Loop_Statement (Iter : Node_Id);
3376 -- Determine whether loop statement N with iteration scheme Iter must be
3377 -- transformed prior to analysis, and if so, perform it. The routine
3378 -- raises Skip_Analysis to prevent further analysis of the transformed
3379 -- loop.
3381 ----------------------
3382 -- Disable_Constant --
3383 ----------------------
3385 function Disable_Constant (N : Node_Id) return Traverse_Result is
3386 begin
3387 if Is_Entity_Name (N)
3388 and then Present (Entity (N))
3389 and then Ekind (Entity (N)) = E_Variable
3390 then
3391 Set_Is_True_Constant (Entity (N), False);
3392 end if;
3394 return OK;
3395 end Disable_Constant;
3397 ----------------------------
3398 -- Prepare_Loop_Statement --
3399 ----------------------------
3401 procedure Prepare_Loop_Statement (Iter : Node_Id) is
3402 function Has_Sec_Stack_Default_Iterator
3403 (Cont_Typ : Entity_Id) return Boolean;
3404 pragma Inline (Has_Sec_Stack_Default_Iterator);
3405 -- Determine whether container type Cont_Typ has a default iterator
3406 -- that requires secondary stack management.
3408 function Is_Sec_Stack_Iteration_Primitive
3409 (Cont_Typ : Entity_Id;
3410 Iter_Prim_Nam : Name_Id) return Boolean;
3411 pragma Inline (Is_Sec_Stack_Iteration_Primitive);
3412 -- Determine whether container type Cont_Typ has an iteration routine
3413 -- described by its name Iter_Prim_Nam that requires secondary stack
3414 -- management.
3416 function Is_Wrapped_In_Block (Stmt : Node_Id) return Boolean;
3417 pragma Inline (Is_Wrapped_In_Block);
3418 -- Determine whether arbitrary statement Stmt is the sole statement
3419 -- wrapped within some block, excluding pragmas.
3421 procedure Prepare_Iterator_Loop (Iter_Spec : Node_Id);
3422 pragma Inline (Prepare_Iterator_Loop);
3423 -- Prepare an iterator loop with iteration specification Iter_Spec
3424 -- for transformation if needed.
3426 procedure Prepare_Param_Spec_Loop (Param_Spec : Node_Id);
3427 pragma Inline (Prepare_Param_Spec_Loop);
3428 -- Prepare a discrete loop with parameter specification Param_Spec
3429 -- for transformation if needed.
3431 procedure Wrap_Loop_Statement (Manage_Sec_Stack : Boolean);
3432 pragma Inline (Wrap_Loop_Statement);
3433 pragma No_Return (Wrap_Loop_Statement);
3434 -- Wrap loop statement N within a block. Flag Manage_Sec_Stack must
3435 -- be set when the block must mark and release the secondary stack.
3437 ------------------------------------
3438 -- Has_Sec_Stack_Default_Iterator --
3439 ------------------------------------
3441 function Has_Sec_Stack_Default_Iterator
3442 (Cont_Typ : Entity_Id) return Boolean
3444 Def_Iter : constant Node_Id :=
3445 Find_Value_Of_Aspect
3446 (Cont_Typ, Aspect_Default_Iterator);
3447 begin
3448 return
3449 Present (Def_Iter)
3450 and then Requires_Transient_Scope (Etype (Def_Iter));
3451 end Has_Sec_Stack_Default_Iterator;
3453 --------------------------------------
3454 -- Is_Sec_Stack_Iteration_Primitive --
3455 --------------------------------------
3457 function Is_Sec_Stack_Iteration_Primitive
3458 (Cont_Typ : Entity_Id;
3459 Iter_Prim_Nam : Name_Id) return Boolean
3461 Iter_Prim : constant Entity_Id :=
3462 Get_Iterable_Type_Primitive
3463 (Cont_Typ, Iter_Prim_Nam);
3464 begin
3465 return
3466 Present (Iter_Prim)
3467 and then Requires_Transient_Scope (Etype (Iter_Prim));
3468 end Is_Sec_Stack_Iteration_Primitive;
3470 -------------------------
3471 -- Is_Wrapped_In_Block --
3472 -------------------------
3474 function Is_Wrapped_In_Block (Stmt : Node_Id) return Boolean is
3475 Blk_HSS : Node_Id;
3476 Blk_Id : Entity_Id;
3477 Blk_Stmt : Node_Id;
3479 begin
3480 Blk_Id := Current_Scope;
3482 -- The current context is a block. Inspect the statements of the
3483 -- block to determine whether it wraps Stmt.
3485 if Ekind (Blk_Id) = E_Block
3486 and then Present (Block_Node (Blk_Id))
3487 then
3488 Blk_HSS :=
3489 Handled_Statement_Sequence (Parent (Block_Node (Blk_Id)));
3491 -- Skip leading pragmas introduced for invariant and predicate
3492 -- checks.
3494 Blk_Stmt := First (Statements (Blk_HSS));
3495 while Present (Blk_Stmt)
3496 and then Nkind (Blk_Stmt) = N_Pragma
3497 loop
3498 Next (Blk_Stmt);
3499 end loop;
3501 return Blk_Stmt = Stmt and then No (Next (Blk_Stmt));
3502 end if;
3504 return False;
3505 end Is_Wrapped_In_Block;
3507 ---------------------------
3508 -- Prepare_Iterator_Loop --
3509 ---------------------------
3511 procedure Prepare_Iterator_Loop (Iter_Spec : Node_Id) is
3512 Cont_Typ : Entity_Id;
3513 Nam : Node_Id;
3514 Nam_Copy : Node_Id;
3516 begin
3517 -- The iterator specification has syntactic errors. Transform the
3518 -- loop into an infinite loop in order to safely perform at least
3519 -- some minor analysis. This check must come first.
3521 if Error_Posted (Iter_Spec) then
3522 Set_Iteration_Scheme (N, Empty);
3523 Analyze (N);
3525 raise Skip_Analysis;
3527 -- Nothing to do when the loop is already wrapped in a block
3529 elsif Is_Wrapped_In_Block (N) then
3530 null;
3532 -- Otherwise the iterator loop traverses an array or a container
3533 -- and appears in the form
3535 -- for Def_Id in [reverse] Iterator_Name loop
3536 -- for Def_Id [: Subtyp_Indic] of [reverse] Iterable_Name loop
3538 else
3539 -- Prepare a copy of the iterated name for preanalysis. The
3540 -- copy is semi inserted into the tree by setting its Parent
3541 -- pointer.
3543 Nam := Name (Iter_Spec);
3544 Nam_Copy := New_Copy_Tree (Nam);
3545 Set_Parent (Nam_Copy, Parent (Nam));
3547 -- Determine what the loop is iterating on
3549 Preanalyze_Range (Nam_Copy);
3550 Cont_Typ := Etype (Nam_Copy);
3552 -- The iterator loop is traversing an array. This case does not
3553 -- require any transformation.
3555 if Is_Array_Type (Cont_Typ) then
3556 null;
3558 -- Otherwise unconditionally wrap the loop statement within
3559 -- a block. The expansion of iterator loops may relocate the
3560 -- iterator outside the loop, thus "leaking" its entity into
3561 -- the enclosing scope. Wrapping the loop statement allows
3562 -- for multiple iterator loops using the same iterator name
3563 -- to coexist within the same scope.
3565 -- The block must manage the secondary stack when the iterator
3566 -- loop is traversing a container using either
3568 -- * A default iterator obtained on the secondary stack
3570 -- * Call to Iterate where the iterator is returned on the
3571 -- secondary stack.
3573 -- * Combination of First, Next, and Has_Element where the
3574 -- first two return a cursor on the secondary stack.
3576 else
3577 Wrap_Loop_Statement
3578 (Manage_Sec_Stack =>
3579 Has_Sec_Stack_Default_Iterator (Cont_Typ)
3580 or else Has_Sec_Stack_Call (Nam_Copy)
3581 or else Is_Sec_Stack_Iteration_Primitive
3582 (Cont_Typ, Name_First)
3583 or else Is_Sec_Stack_Iteration_Primitive
3584 (Cont_Typ, Name_Next));
3585 end if;
3586 end if;
3587 end Prepare_Iterator_Loop;
3589 -----------------------------
3590 -- Prepare_Param_Spec_Loop --
3591 -----------------------------
3593 procedure Prepare_Param_Spec_Loop (Param_Spec : Node_Id) is
3594 High : Node_Id;
3595 Low : Node_Id;
3596 Rng : Node_Id;
3597 Rng_Copy : Node_Id;
3598 Rng_Typ : Entity_Id;
3600 begin
3601 Rng := Discrete_Subtype_Definition (Param_Spec);
3603 -- Nothing to do when the loop is already wrapped in a block
3605 if Is_Wrapped_In_Block (N) then
3606 null;
3608 -- The parameter specification appears in the form
3610 -- for Def_Id in Subtype_Mark Constraint loop
3612 elsif Nkind (Rng) = N_Subtype_Indication
3613 and then Nkind (Range_Expression (Constraint (Rng))) = N_Range
3614 then
3615 Rng := Range_Expression (Constraint (Rng));
3617 -- Preanalyze the bounds of the range constraint
3619 Low := New_Copy_Tree (Low_Bound (Rng));
3620 High := New_Copy_Tree (High_Bound (Rng));
3622 Preanalyze (Low);
3623 Preanalyze (High);
3625 -- The bounds contain at least one function call that returns
3626 -- on the secondary stack. Note that the loop must be wrapped
3627 -- only when such a call exists.
3629 if Has_Sec_Stack_Call (Low)
3630 or else
3631 Has_Sec_Stack_Call (High)
3632 then
3633 Wrap_Loop_Statement (Manage_Sec_Stack => True);
3634 end if;
3636 -- Otherwise the parameter specification appears in the form
3638 -- for Def_Id in Range loop
3640 else
3641 -- Prepare a copy of the discrete range for preanalysis. The
3642 -- copy is semi inserted into the tree by setting its Parent
3643 -- pointer.
3645 Rng_Copy := New_Copy_Tree (Rng);
3646 Set_Parent (Rng_Copy, Parent (Rng));
3648 -- Determine what the loop is iterating on
3650 Preanalyze_Range (Rng_Copy);
3651 Rng_Typ := Etype (Rng_Copy);
3653 -- Wrap the loop statement within a block in order to manage
3654 -- the secondary stack when the discrete range is
3656 -- * Either a Forward_Iterator or a Reverse_Iterator
3658 -- * Function call whose return type requires finalization
3659 -- actions.
3661 -- ??? it is unclear why using Has_Sec_Stack_Call directly on
3662 -- the discrete range causes the freeze node of an itype to be
3663 -- in the wrong scope in complex assertion expressions.
3665 if Is_Iterator (Rng_Typ)
3666 or else (Nkind (Rng_Copy) = N_Function_Call
3667 and then Needs_Finalization (Rng_Typ))
3668 then
3669 Wrap_Loop_Statement (Manage_Sec_Stack => True);
3670 end if;
3671 end if;
3672 end Prepare_Param_Spec_Loop;
3674 -------------------------
3675 -- Wrap_Loop_Statement --
3676 -------------------------
3678 procedure Wrap_Loop_Statement (Manage_Sec_Stack : Boolean) is
3679 Loc : constant Source_Ptr := Sloc (N);
3681 Blk : Node_Id;
3682 Blk_Id : Entity_Id;
3684 begin
3685 Blk :=
3686 Make_Block_Statement (Loc,
3687 Declarations => New_List,
3688 Handled_Statement_Sequence =>
3689 Make_Handled_Sequence_Of_Statements (Loc,
3690 Statements => New_List (Relocate_Node (N))));
3692 Add_Block_Identifier (Blk, Blk_Id);
3693 Set_Uses_Sec_Stack (Blk_Id, Manage_Sec_Stack);
3695 Rewrite (N, Blk);
3696 Analyze (N);
3698 raise Skip_Analysis;
3699 end Wrap_Loop_Statement;
3701 -- Local variables
3703 Iter_Spec : constant Node_Id := Iterator_Specification (Iter);
3704 Param_Spec : constant Node_Id := Loop_Parameter_Specification (Iter);
3706 -- Start of processing for Prepare_Loop_Statement
3708 begin
3709 if Present (Iter_Spec) then
3710 Prepare_Iterator_Loop (Iter_Spec);
3712 elsif Present (Param_Spec) then
3713 Prepare_Param_Spec_Loop (Param_Spec);
3714 end if;
3715 end Prepare_Loop_Statement;
3717 -- Local declarations
3719 Id : constant Node_Id := Identifier (N);
3720 Iter : constant Node_Id := Iteration_Scheme (N);
3721 Loc : constant Source_Ptr := Sloc (N);
3722 Ent : Entity_Id;
3723 Stmt : Node_Id;
3725 -- Start of processing for Analyze_Loop_Statement
3727 begin
3728 if Present (Id) then
3730 -- Make name visible, e.g. for use in exit statements. Loop labels
3731 -- are always considered to be referenced.
3733 Analyze (Id);
3734 Ent := Entity (Id);
3736 -- Guard against serious error (typically, a scope mismatch when
3737 -- semantic analysis is requested) by creating loop entity to
3738 -- continue analysis.
3740 if No (Ent) then
3741 if Total_Errors_Detected /= 0 then
3742 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3743 else
3744 raise Program_Error;
3745 end if;
3747 -- Verify that the loop name is hot hidden by an unrelated
3748 -- declaration in an inner scope.
3750 elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
3751 Error_Msg_Sloc := Sloc (Ent);
3752 Error_Msg_N ("implicit label declaration for & is hidden#", Id);
3754 if Present (Homonym (Ent))
3755 and then Ekind (Homonym (Ent)) = E_Label
3756 then
3757 Set_Entity (Id, Ent);
3758 Set_Ekind (Ent, E_Loop);
3759 end if;
3761 else
3762 Generate_Reference (Ent, N, ' ');
3763 Generate_Definition (Ent);
3765 -- If we found a label, mark its type. If not, ignore it, since it
3766 -- means we have a conflicting declaration, which would already
3767 -- have been diagnosed at declaration time. Set Label_Construct
3768 -- of the implicit label declaration, which is not created by the
3769 -- parser for generic units.
3771 if Ekind (Ent) = E_Label then
3772 Set_Ekind (Ent, E_Loop);
3774 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
3775 Set_Label_Construct (Parent (Ent), N);
3776 end if;
3777 end if;
3778 end if;
3780 -- Case of no identifier present. Create one and attach it to the
3781 -- loop statement for use as a scope and as a reference for later
3782 -- expansions. Indicate that the label does not come from source,
3783 -- and attach it to the loop statement so it is part of the tree,
3784 -- even without a full declaration.
3786 else
3787 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3788 Set_Etype (Ent, Standard_Void_Type);
3789 Set_Identifier (N, New_Occurrence_Of (Ent, Loc));
3790 Set_Parent (Ent, N);
3791 Set_Has_Created_Identifier (N);
3792 end if;
3794 -- Determine whether the loop statement must be transformed prior to
3795 -- analysis, and if so, perform it. This early modification is needed
3796 -- when:
3798 -- * The loop has an erroneous iteration scheme. In this case the
3799 -- loop is converted into an infinite loop in order to perform
3800 -- minor analysis.
3802 -- * The loop is an Ada 2012 iterator loop. In this case the loop is
3803 -- wrapped within a block to provide a local scope for the iterator.
3804 -- If the iterator specification requires the secondary stack in any
3805 -- way, the block is marked in order to manage it.
3807 -- * The loop is using a parameter specification where the discrete
3808 -- range requires the secondary stack. In this case the loop is
3809 -- wrapped within a block in order to manage the secondary stack.
3811 if Present (Iter) then
3812 Prepare_Loop_Statement (Iter);
3813 end if;
3815 -- Kill current values on entry to loop, since statements in the body of
3816 -- the loop may have been executed before the loop is entered. Similarly
3817 -- we kill values after the loop, since we do not know that the body of
3818 -- the loop was executed.
3820 Kill_Current_Values;
3821 Push_Scope (Ent);
3822 Analyze_Iteration_Scheme (Iter);
3824 -- Check for following case which merits a warning if the type E of is
3825 -- a multi-dimensional array (and no explicit subscript ranges present).
3827 -- for J in E'Range
3828 -- for K in E'Range
3830 if Present (Iter)
3831 and then Present (Loop_Parameter_Specification (Iter))
3832 then
3833 declare
3834 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
3835 DSD : constant Node_Id :=
3836 Original_Node (Discrete_Subtype_Definition (LPS));
3837 begin
3838 if Nkind (DSD) = N_Attribute_Reference
3839 and then Attribute_Name (DSD) = Name_Range
3840 and then No (Expressions (DSD))
3841 then
3842 declare
3843 Typ : constant Entity_Id := Etype (Prefix (DSD));
3844 begin
3845 if Is_Array_Type (Typ)
3846 and then Number_Dimensions (Typ) > 1
3847 and then Nkind (Parent (N)) = N_Loop_Statement
3848 and then Present (Iteration_Scheme (Parent (N)))
3849 then
3850 declare
3851 OIter : constant Node_Id :=
3852 Iteration_Scheme (Parent (N));
3853 OLPS : constant Node_Id :=
3854 Loop_Parameter_Specification (OIter);
3855 ODSD : constant Node_Id :=
3856 Original_Node (Discrete_Subtype_Definition (OLPS));
3857 begin
3858 if Nkind (ODSD) = N_Attribute_Reference
3859 and then Attribute_Name (ODSD) = Name_Range
3860 and then No (Expressions (ODSD))
3861 and then Etype (Prefix (ODSD)) = Typ
3862 then
3863 Error_Msg_Sloc := Sloc (ODSD);
3864 Error_Msg_N
3865 ("inner range same as outer range#??", DSD);
3866 end if;
3867 end;
3868 end if;
3869 end;
3870 end if;
3871 end;
3872 end if;
3874 -- Analyze the statements of the body except in the case of an Ada 2012
3875 -- iterator with the expander active. In this case the expander will do
3876 -- a rewrite of the loop into a while loop. We will then analyze the
3877 -- loop body when we analyze this while loop.
3879 -- We need to do this delay because if the container is for indefinite
3880 -- types the actual subtype of the components will only be determined
3881 -- when the cursor declaration is analyzed.
3883 -- If the expander is not active then we want to analyze the loop body
3884 -- now even in the Ada 2012 iterator case, since the rewriting will not
3885 -- be done. Insert the loop variable in the current scope, if not done
3886 -- when analysing the iteration scheme. Set its kind properly to detect
3887 -- improper uses in the loop body.
3889 -- In GNATprove mode, we do one of the above depending on the kind of
3890 -- loop. If it is an iterator over an array, then we do not analyze the
3891 -- loop now. We will analyze it after it has been rewritten by the
3892 -- special SPARK expansion which is activated in GNATprove mode. We need
3893 -- to do this so that other expansions that should occur in GNATprove
3894 -- mode take into account the specificities of the rewritten loop, in
3895 -- particular the introduction of a renaming (which needs to be
3896 -- expanded).
3898 -- In other cases in GNATprove mode then we want to analyze the loop
3899 -- body now, since no rewriting will occur. Within a generic the
3900 -- GNATprove mode is irrelevant, we must analyze the generic for
3901 -- non-local name capture.
3903 if Present (Iter)
3904 and then Present (Iterator_Specification (Iter))
3905 then
3906 if GNATprove_Mode
3907 and then Is_Iterator_Over_Array (Iterator_Specification (Iter))
3908 and then not Inside_A_Generic
3909 then
3910 null;
3912 elsif not Expander_Active then
3913 declare
3914 I_Spec : constant Node_Id := Iterator_Specification (Iter);
3915 Id : constant Entity_Id := Defining_Identifier (I_Spec);
3917 begin
3918 if Scope (Id) /= Current_Scope then
3919 Enter_Name (Id);
3920 end if;
3922 -- In an element iterator, The loop parameter is a variable if
3923 -- the domain of iteration (container or array) is a variable.
3925 if not Of_Present (I_Spec)
3926 or else not Is_Variable (Name (I_Spec))
3927 then
3928 Set_Ekind (Id, E_Loop_Parameter);
3929 end if;
3930 end;
3932 Analyze_Statements (Statements (N));
3933 end if;
3935 else
3936 -- Pre-Ada2012 for-loops and while loops
3938 Analyze_Statements (Statements (N));
3939 end if;
3941 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
3942 -- the loop is transformed into a conditional block. Retrieve the loop.
3944 Stmt := N;
3946 if Subject_To_Loop_Entry_Attributes (Stmt) then
3947 Stmt := Find_Loop_In_Conditional_Block (Stmt);
3948 end if;
3950 -- Finish up processing for the loop. We kill all current values, since
3951 -- in general we don't know if the statements in the loop have been
3952 -- executed. We could do a bit better than this with a loop that we
3953 -- know will execute at least once, but it's not worth the trouble and
3954 -- the front end is not in the business of flow tracing.
3956 Process_End_Label (Stmt, 'e', Ent);
3957 End_Scope;
3958 Kill_Current_Values;
3960 -- Check for infinite loop. Skip check for generated code, since it
3961 -- justs waste time and makes debugging the routine called harder.
3963 -- Note that we have to wait till the body of the loop is fully analyzed
3964 -- before making this call, since Check_Infinite_Loop_Warning relies on
3965 -- being able to use semantic visibility information to find references.
3967 if Comes_From_Source (Stmt) then
3968 Check_Infinite_Loop_Warning (Stmt);
3969 end if;
3971 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3972 -- contains no EXIT statements within the body of the loop.
3974 if No (Iter) and then not Has_Exit (Ent) then
3975 Check_Unreachable_Code (Stmt);
3976 end if;
3978 -- Variables referenced within a loop subject to possible OpenACC
3979 -- offloading may be implicitly written to as part of the OpenACC
3980 -- transaction. Clear flags possibly conveying that they are constant,
3981 -- set for example when the code does not explicitly assign them.
3983 if Is_OpenAcc_Environment (Stmt) then
3984 Disable_Constants (Stmt);
3985 end if;
3987 exception
3988 when Skip_Analysis =>
3989 null;
3990 end Analyze_Loop_Statement;
3992 ----------------------------
3993 -- Analyze_Null_Statement --
3994 ----------------------------
3996 -- Note: the semantics of the null statement is implemented by a single
3997 -- null statement, too bad everything isn't as simple as this.
3999 procedure Analyze_Null_Statement (N : Node_Id) is
4000 pragma Warnings (Off, N);
4001 begin
4002 null;
4003 end Analyze_Null_Statement;
4005 -------------------------
4006 -- Analyze_Target_Name --
4007 -------------------------
4009 procedure Analyze_Target_Name (N : Node_Id) is
4010 begin
4011 -- A target name has the type of the left-hand side of the enclosing
4012 -- assignment.
4014 Set_Etype (N, Etype (Name (Current_Assignment)));
4015 end Analyze_Target_Name;
4017 ------------------------
4018 -- Analyze_Statements --
4019 ------------------------
4021 procedure Analyze_Statements (L : List_Id) is
4022 Lab : Entity_Id;
4023 S : Node_Id;
4025 begin
4026 -- The labels declared in the statement list are reachable from
4027 -- statements in the list. We do this as a prepass so that any goto
4028 -- statement will be properly flagged if its target is not reachable.
4029 -- This is not required, but is nice behavior.
4031 S := First (L);
4032 while Present (S) loop
4033 if Nkind (S) = N_Label then
4034 Analyze (Identifier (S));
4035 Lab := Entity (Identifier (S));
4037 -- If we found a label mark it as reachable
4039 if Ekind (Lab) = E_Label then
4040 Generate_Definition (Lab);
4041 Set_Reachable (Lab);
4043 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
4044 Set_Label_Construct (Parent (Lab), S);
4045 end if;
4047 -- If we failed to find a label, it means the implicit declaration
4048 -- of the label was hidden. A for-loop parameter can do this to
4049 -- a label with the same name inside the loop, since the implicit
4050 -- label declaration is in the innermost enclosing body or block
4051 -- statement.
4053 else
4054 Error_Msg_Sloc := Sloc (Lab);
4055 Error_Msg_N
4056 ("implicit label declaration for & is hidden#",
4057 Identifier (S));
4058 end if;
4059 end if;
4061 Next (S);
4062 end loop;
4064 -- Perform semantic analysis on all statements
4066 Conditional_Statements_Begin;
4068 S := First (L);
4069 while Present (S) loop
4070 Analyze (S);
4072 -- Remove dimension in all statements
4074 Remove_Dimension_In_Statement (S);
4075 Next (S);
4076 end loop;
4078 Conditional_Statements_End;
4080 -- Make labels unreachable. Visibility is not sufficient, because labels
4081 -- in one if-branch for example are not reachable from the other branch,
4082 -- even though their declarations are in the enclosing declarative part.
4084 S := First (L);
4085 while Present (S) loop
4086 if Nkind (S) = N_Label then
4087 Set_Reachable (Entity (Identifier (S)), False);
4088 end if;
4090 Next (S);
4091 end loop;
4092 end Analyze_Statements;
4094 ----------------------------
4095 -- Check_Unreachable_Code --
4096 ----------------------------
4098 procedure Check_Unreachable_Code (N : Node_Id) is
4099 Error_Node : Node_Id;
4100 P : Node_Id;
4102 begin
4103 if Is_List_Member (N) and then Comes_From_Source (N) then
4104 declare
4105 Nxt : Node_Id;
4107 begin
4108 Nxt := Original_Node (Next (N));
4110 -- Skip past pragmas
4112 while Nkind (Nxt) = N_Pragma loop
4113 Nxt := Original_Node (Next (Nxt));
4114 end loop;
4116 -- If a label follows us, then we never have dead code, since
4117 -- someone could branch to the label, so we just ignore it, unless
4118 -- we are in formal mode where goto statements are not allowed.
4120 if Nkind (Nxt) = N_Label
4121 and then not Restriction_Check_Required (SPARK_05)
4122 then
4123 return;
4125 -- Otherwise see if we have a real statement following us
4127 elsif Present (Nxt)
4128 and then Comes_From_Source (Nxt)
4129 and then Is_Statement (Nxt)
4130 then
4131 -- Special very annoying exception. If we have a return that
4132 -- follows a raise, then we allow it without a warning, since
4133 -- the Ada RM annoyingly requires a useless return here.
4135 if Nkind (Original_Node (N)) /= N_Raise_Statement
4136 or else Nkind (Nxt) /= N_Simple_Return_Statement
4137 then
4138 -- The rather strange shenanigans with the warning message
4139 -- here reflects the fact that Kill_Dead_Code is very good
4140 -- at removing warnings in deleted code, and this is one
4141 -- warning we would prefer NOT to have removed.
4143 Error_Node := Nxt;
4145 -- If we have unreachable code, analyze and remove the
4146 -- unreachable code, since it is useless and we don't
4147 -- want to generate junk warnings.
4149 -- We skip this step if we are not in code generation mode
4150 -- or CodePeer mode.
4152 -- This is the one case where we remove dead code in the
4153 -- semantics as opposed to the expander, and we do not want
4154 -- to remove code if we are not in code generation mode,
4155 -- since this messes up the ASIS trees or loses useful
4156 -- information in the CodePeer tree.
4158 -- Note that one might react by moving the whole circuit to
4159 -- exp_ch5, but then we lose the warning in -gnatc mode.
4161 if Operating_Mode = Generate_Code
4162 and then not CodePeer_Mode
4163 then
4164 loop
4165 Nxt := Next (N);
4167 -- Quit deleting when we have nothing more to delete
4168 -- or if we hit a label (since someone could transfer
4169 -- control to a label, so we should not delete it).
4171 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
4173 -- Statement/declaration is to be deleted
4175 Analyze (Nxt);
4176 Remove (Nxt);
4177 Kill_Dead_Code (Nxt);
4178 end loop;
4179 end if;
4181 -- Now issue the warning (or error in formal mode)
4183 if Restriction_Check_Required (SPARK_05) then
4184 Check_SPARK_05_Restriction
4185 ("unreachable code is not allowed", Error_Node);
4186 else
4187 Error_Msg
4188 ("??unreachable code!", Sloc (Error_Node), Error_Node);
4189 end if;
4190 end if;
4192 -- If the unconditional transfer of control instruction is the
4193 -- last statement of a sequence, then see if our parent is one of
4194 -- the constructs for which we count unblocked exits, and if so,
4195 -- adjust the count.
4197 else
4198 P := Parent (N);
4200 -- Statements in THEN part or ELSE part of IF statement
4202 if Nkind (P) = N_If_Statement then
4203 null;
4205 -- Statements in ELSIF part of an IF statement
4207 elsif Nkind (P) = N_Elsif_Part then
4208 P := Parent (P);
4209 pragma Assert (Nkind (P) = N_If_Statement);
4211 -- Statements in CASE statement alternative
4213 elsif Nkind (P) = N_Case_Statement_Alternative then
4214 P := Parent (P);
4215 pragma Assert (Nkind (P) = N_Case_Statement);
4217 -- Statements in body of block
4219 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
4220 and then Nkind (Parent (P)) = N_Block_Statement
4221 then
4222 -- The original loop is now placed inside a block statement
4223 -- due to the expansion of attribute 'Loop_Entry. Return as
4224 -- this is not a "real" block for the purposes of exit
4225 -- counting.
4227 if Nkind (N) = N_Loop_Statement
4228 and then Subject_To_Loop_Entry_Attributes (N)
4229 then
4230 return;
4231 end if;
4233 -- Statements in exception handler in a block
4235 elsif Nkind (P) = N_Exception_Handler
4236 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
4237 and then Nkind (Parent (Parent (P))) = N_Block_Statement
4238 then
4239 null;
4241 -- None of these cases, so return
4243 else
4244 return;
4245 end if;
4247 -- This was one of the cases we are looking for (i.e. the
4248 -- parent construct was IF, CASE or block) so decrement count.
4250 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
4251 end if;
4252 end;
4253 end if;
4254 end Check_Unreachable_Code;
4256 ------------------------
4257 -- Has_Sec_Stack_Call --
4258 ------------------------
4260 function Has_Sec_Stack_Call (N : Node_Id) return Boolean is
4261 function Check_Call (N : Node_Id) return Traverse_Result;
4262 -- Check if N is a function call which uses the secondary stack
4264 ----------------
4265 -- Check_Call --
4266 ----------------
4268 function Check_Call (N : Node_Id) return Traverse_Result is
4269 Nam : Node_Id;
4270 Subp : Entity_Id;
4271 Typ : Entity_Id;
4273 begin
4274 if Nkind (N) = N_Function_Call then
4275 Nam := Name (N);
4277 -- Obtain the subprogram being invoked
4279 loop
4280 if Nkind (Nam) = N_Explicit_Dereference then
4281 Nam := Prefix (Nam);
4283 elsif Nkind (Nam) = N_Selected_Component then
4284 Nam := Selector_Name (Nam);
4286 else
4287 exit;
4288 end if;
4289 end loop;
4291 Subp := Entity (Nam);
4293 if Present (Subp) then
4294 Typ := Etype (Subp);
4296 if Requires_Transient_Scope (Typ) then
4297 return Abandon;
4299 elsif Sec_Stack_Needed_For_Return (Subp) then
4300 return Abandon;
4301 end if;
4302 end if;
4303 end if;
4305 -- Continue traversing the tree
4307 return OK;
4308 end Check_Call;
4310 function Check_Calls is new Traverse_Func (Check_Call);
4312 -- Start of processing for Has_Sec_Stack_Call
4314 begin
4315 return Check_Calls (N) = Abandon;
4316 end Has_Sec_Stack_Call;
4318 ----------------------
4319 -- Preanalyze_Range --
4320 ----------------------
4322 procedure Preanalyze_Range (R_Copy : Node_Id) is
4323 Save_Analysis : constant Boolean := Full_Analysis;
4324 Typ : Entity_Id;
4326 begin
4327 Full_Analysis := False;
4328 Expander_Mode_Save_And_Set (False);
4330 -- In addition to the above we must explicitly suppress the generation
4331 -- of freeze nodes that might otherwise be generated during resolution
4332 -- of the range (e.g. if given by an attribute that will freeze its
4333 -- prefix).
4335 Set_Must_Not_Freeze (R_Copy);
4337 if Nkind (R_Copy) = N_Attribute_Reference then
4338 Set_Must_Not_Freeze (Prefix (R_Copy));
4339 end if;
4341 Analyze (R_Copy);
4343 if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
4345 -- Apply preference rules for range of predefined integer types, or
4346 -- check for array or iterable construct for "of" iterator, or
4347 -- diagnose true ambiguity.
4349 declare
4350 I : Interp_Index;
4351 It : Interp;
4352 Found : Entity_Id := Empty;
4354 begin
4355 Get_First_Interp (R_Copy, I, It);
4356 while Present (It.Typ) loop
4357 if Is_Discrete_Type (It.Typ) then
4358 if No (Found) then
4359 Found := It.Typ;
4360 else
4361 if Scope (Found) = Standard_Standard then
4362 null;
4364 elsif Scope (It.Typ) = Standard_Standard then
4365 Found := It.Typ;
4367 else
4368 -- Both of them are user-defined
4370 Error_Msg_N
4371 ("ambiguous bounds in range of iteration", R_Copy);
4372 Error_Msg_N ("\possible interpretations:", R_Copy);
4373 Error_Msg_NE ("\\} ", R_Copy, Found);
4374 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
4375 exit;
4376 end if;
4377 end if;
4379 elsif Nkind (Parent (R_Copy)) = N_Iterator_Specification
4380 and then Of_Present (Parent (R_Copy))
4381 then
4382 if Is_Array_Type (It.Typ)
4383 or else Has_Aspect (It.Typ, Aspect_Iterator_Element)
4384 or else Has_Aspect (It.Typ, Aspect_Constant_Indexing)
4385 or else Has_Aspect (It.Typ, Aspect_Variable_Indexing)
4386 then
4387 if No (Found) then
4388 Found := It.Typ;
4389 Set_Etype (R_Copy, It.Typ);
4391 else
4392 Error_Msg_N ("ambiguous domain of iteration", R_Copy);
4393 end if;
4394 end if;
4395 end if;
4397 Get_Next_Interp (I, It);
4398 end loop;
4399 end;
4400 end if;
4402 -- Subtype mark in iteration scheme
4404 if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
4405 null;
4407 -- Expression in range, or Ada 2012 iterator
4409 elsif Nkind (R_Copy) in N_Subexpr then
4410 Resolve (R_Copy);
4411 Typ := Etype (R_Copy);
4413 if Is_Discrete_Type (Typ) then
4414 null;
4416 -- Check that the resulting object is an iterable container
4418 elsif Has_Aspect (Typ, Aspect_Iterator_Element)
4419 or else Has_Aspect (Typ, Aspect_Constant_Indexing)
4420 or else Has_Aspect (Typ, Aspect_Variable_Indexing)
4421 then
4422 null;
4424 -- The expression may yield an implicit reference to an iterable
4425 -- container. Insert explicit dereference so that proper type is
4426 -- visible in the loop.
4428 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
4429 declare
4430 Disc : Entity_Id;
4432 begin
4433 Disc := First_Discriminant (Typ);
4434 while Present (Disc) loop
4435 if Has_Implicit_Dereference (Disc) then
4436 Build_Explicit_Dereference (R_Copy, Disc);
4437 exit;
4438 end if;
4440 Next_Discriminant (Disc);
4441 end loop;
4442 end;
4444 end if;
4445 end if;
4447 Expander_Mode_Restore;
4448 Full_Analysis := Save_Analysis;
4449 end Preanalyze_Range;
4451 end Sem_Ch5;