Fix build on sparc64-linux-gnu.
[official-gcc.git] / gcc / ada / libgnat / a-numaux__darwin.adb
blob71d874f0b0256f6ef241a6877ce4f78a14ff9dd4
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- A D A . N U M E R I C S . A U X --
6 -- --
7 -- B o d y --
8 -- (Apple OS X Version) --
9 -- --
10 -- Copyright (C) 1998-2018, Free Software Foundation, Inc. --
11 -- --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 3, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- --
19 -- As a special exception under Section 7 of GPL version 3, you are granted --
20 -- additional permissions described in the GCC Runtime Library Exception, --
21 -- version 3.1, as published by the Free Software Foundation. --
22 -- --
23 -- You should have received a copy of the GNU General Public License and --
24 -- a copy of the GCC Runtime Library Exception along with this program; --
25 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
26 -- <http://www.gnu.org/licenses/>. --
27 -- --
28 -- GNAT was originally developed by the GNAT team at New York University. --
29 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 -- --
31 ------------------------------------------------------------------------------
33 package body Ada.Numerics.Aux is
35 -----------------------
36 -- Local subprograms --
37 -----------------------
39 function Is_Nan (X : Double) return Boolean;
40 -- Return True iff X is a IEEE NaN value
42 procedure Reduce (X : in out Double; Q : out Natural);
43 -- Implement reduction of X by Pi/2. Q is the quadrant of the final
44 -- result in the range 0..3. The absolute value of X is at most Pi/4.
45 -- It is needed to avoid a loss of accuracy for sin near Pi and cos
46 -- near Pi/2 due to the use of an insufficiently precise value of Pi
47 -- in the range reduction.
49 -- The following two functions implement Chebishev approximations
50 -- of the trigonometric functions in their reduced domain.
51 -- These approximations have been computed using Maple.
53 function Sine_Approx (X : Double) return Double;
54 function Cosine_Approx (X : Double) return Double;
56 pragma Inline (Reduce);
57 pragma Inline (Sine_Approx);
58 pragma Inline (Cosine_Approx);
60 -------------------
61 -- Cosine_Approx --
62 -------------------
64 function Cosine_Approx (X : Double) return Double is
65 XX : constant Double := X * X;
66 begin
67 return (((((16#8.DC57FBD05F640#E-08 * XX
68 - 16#4.9F7D00BF25D80#E-06) * XX
69 + 16#1.A019F7FDEFCC2#E-04) * XX
70 - 16#5.B05B058F18B20#E-03) * XX
71 + 16#A.AAAAAAAA73FA8#E-02) * XX
72 - 16#7.FFFFFFFFFFDE4#E-01) * XX
73 - 16#3.655E64869ECCE#E-14 + 1.0;
74 end Cosine_Approx;
76 -----------------
77 -- Sine_Approx --
78 -----------------
80 function Sine_Approx (X : Double) return Double is
81 XX : constant Double := X * X;
82 begin
83 return (((((16#A.EA2D4ABE41808#E-09 * XX
84 - 16#6.B974C10F9D078#E-07) * XX
85 + 16#2.E3BC673425B0E#E-05) * XX
86 - 16#D.00D00CCA7AF00#E-04) * XX
87 + 16#2.222222221B190#E-02) * XX
88 - 16#2.AAAAAAAAAAA44#E-01) * (XX * X) + X;
89 end Sine_Approx;
91 ------------
92 -- Is_Nan --
93 ------------
95 function Is_Nan (X : Double) return Boolean is
96 begin
97 -- The IEEE NaN values are the only ones that do not equal themselves
99 return X /= X;
100 end Is_Nan;
102 ------------
103 -- Reduce --
104 ------------
106 procedure Reduce (X : in out Double; Q : out Natural) is
107 Half_Pi : constant := Pi / 2.0;
108 Two_Over_Pi : constant := 2.0 / Pi;
110 HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size);
111 M : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant
112 P1 : constant Double := Double'Leading_Part (Half_Pi, HM);
113 P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM);
114 P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM);
115 P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM);
116 P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3
117 - P4, HM);
118 P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5);
119 K : Double;
120 R : Integer;
122 begin
123 -- For X < 2.0**HM, all products below are computed exactly.
124 -- Due to cancellation effects all subtractions are exact as well.
125 -- As no double extended floating-point number has more than 75
126 -- zeros after the binary point, the result will be the correctly
127 -- rounded result of X - K * (Pi / 2.0).
129 K := X * Two_Over_Pi;
130 while abs K >= 2.0**HM loop
131 K := K * M - (K * M - K);
132 X :=
133 (((((X - K * P1) - K * P2) - K * P3) - K * P4) - K * P5) - K * P6;
134 K := X * Two_Over_Pi;
135 end loop;
137 -- If K is not a number (because X was not finite) raise exception
139 if Is_Nan (K) then
140 raise Constraint_Error;
141 end if;
143 -- Go through an integer temporary so as to use machine instructions
145 R := Integer (Double'Rounding (K));
146 Q := R mod 4;
147 K := Double (R);
148 X := (((((X - K * P1) - K * P2) - K * P3) - K * P4) - K * P5) - K * P6;
149 end Reduce;
151 ---------
152 -- Cos --
153 ---------
155 function Cos (X : Double) return Double is
156 Reduced_X : Double := abs X;
157 Quadrant : Natural range 0 .. 3;
159 begin
160 if Reduced_X > Pi / 4.0 then
161 Reduce (Reduced_X, Quadrant);
163 case Quadrant is
164 when 0 =>
165 return Cosine_Approx (Reduced_X);
167 when 1 =>
168 return Sine_Approx (-Reduced_X);
170 when 2 =>
171 return -Cosine_Approx (Reduced_X);
173 when 3 =>
174 return Sine_Approx (Reduced_X);
175 end case;
176 end if;
178 return Cosine_Approx (Reduced_X);
179 end Cos;
181 ---------
182 -- Sin --
183 ---------
185 function Sin (X : Double) return Double is
186 Reduced_X : Double := X;
187 Quadrant : Natural range 0 .. 3;
189 begin
190 if abs X > Pi / 4.0 then
191 Reduce (Reduced_X, Quadrant);
193 case Quadrant is
194 when 0 =>
195 return Sine_Approx (Reduced_X);
197 when 1 =>
198 return Cosine_Approx (Reduced_X);
200 when 2 =>
201 return Sine_Approx (-Reduced_X);
203 when 3 =>
204 return -Cosine_Approx (Reduced_X);
205 end case;
206 end if;
208 return Sine_Approx (Reduced_X);
209 end Sin;
211 end Ada.Numerics.Aux;