Don't crash if a constant initializer refers to the constant.
[official-gcc.git] / gcc / go / gofrontend / expressions.cc
blob331238e638eaf9854baffe85be5e33fbc80f0c25
1 // expressions.cc -- Go frontend expression handling.
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
7 #include "go-system.h"
9 #include <gmp.h>
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
14 #endif
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "tree-iterator.h"
21 #include "convert.h"
22 #include "real.h"
23 #include "realmpfr.h"
25 #ifndef ENABLE_BUILD_WITH_CXX
27 #endif
29 #include "go-c.h"
30 #include "gogo.h"
31 #include "types.h"
32 #include "export.h"
33 #include "import.h"
34 #include "statements.h"
35 #include "lex.h"
36 #include "expressions.h"
38 // Class Expression.
40 Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
46 Expression::~Expression()
50 // If this expression has a constant integer value, return it.
52 bool
53 Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
60 // If this expression has a constant floating point value, return it.
62 bool
63 Expression::float_constant_value(mpfr_t val, Type** ptype) const
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
79 mpz_clear(ival);
80 return ret;
83 // If this expression has a constant complex value, return it.
85 bool
86 Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
98 return false;
101 // Traverse the expressions.
104 Expression::traverse(Expression** pexpr, Traverse* traverse)
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
115 return expr->do_traverse(traverse);
118 // Traverse subexpressions of this expression.
121 Expression::traverse_subexpressions(Traverse* traverse)
123 return this->do_traverse(traverse);
126 // Default implementation for do_traverse for child classes.
129 Expression::do_traverse(Traverse*)
131 return TRAVERSE_CONTINUE;
134 // This virtual function is called by the parser if the value of this
135 // expression is being discarded. By default, we warn. Expressions
136 // with side effects override.
138 void
139 Expression::do_discarding_value()
141 this->warn_about_unused_value();
144 // This virtual function is called to export expressions. This will
145 // only be used by expressions which may be constant.
147 void
148 Expression::do_export(Export*) const
150 gcc_unreachable();
153 // Warn that the value of the expression is not used.
155 void
156 Expression::warn_about_unused_value()
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
161 // Note that this expression is an error. This is called by children
162 // when they discover an error.
164 void
165 Expression::set_is_error()
167 this->classification_ = EXPRESSION_ERROR;
170 // For children to call to report an error conveniently.
172 void
173 Expression::report_error(const char* msg)
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
179 // Set types of variables and constants. This is implemented by the
180 // child class.
182 void
183 Expression::determine_type(const Type_context* context)
185 this->do_determine_type(context);
188 // Set types when there is no context.
190 void
191 Expression::determine_type_no_context()
193 Type_context context;
194 this->do_determine_type(&context);
197 // Return a tree handling any conversions which must be done during
198 // assignment.
200 tree
201 Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
205 if (lhs_type == rhs_type)
206 return rhs_tree;
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
222 Gogo* gogo = context->gogo();
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
228 if (lhs_type->interface_type() != NULL)
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
274 return val;
276 else if (rhs_type->is_nil_type())
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
285 // No conversion is needed.
286 return rhs_tree;
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
303 else
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
310 // Return a tree for a conversion from a non-interface type to an
311 // interface type.
313 tree
314 Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
366 // Start building a constructor for the value we will return.
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
382 if (rhs_type->points_to() != NULL)
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
411 // Return a tree for the type descriptor of RHS_TREE, which has
412 // interface type RHS_TYPE. If RHS_TREE is nil the result will be
413 // NULL.
415 tree
416 Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
451 // Return a tree for the conversion of an interface type to an
452 // interface type.
454 tree
455 Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
486 // The result is going to be a two element constructor.
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
494 if (for_type_guard)
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 if (call == error_mark_node)
509 return error_mark_node;
510 // This will panic if the interface conversion fails.
511 TREE_NOTHROW(assert_interface_decl) = 0;
512 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
514 else if (lhs_is_empty)
516 // A convertion to an empty interface always succeeds, and the
517 // first field is just the type descriptor of the object.
518 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
519 "__type_descriptor") == 0);
520 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
521 elt->value = rhs_type_descriptor;
523 else
525 // A conversion to a non-empty interface may fail, but unlike a
526 // type assertion converting nil will always succeed.
527 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
528 == 0);
529 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
530 static tree convert_interface_decl;
531 tree call = Gogo::call_builtin(&convert_interface_decl,
532 location,
533 "__go_convert_interface",
535 ptr_type_node,
536 TREE_TYPE(lhs_type_descriptor),
537 lhs_type_descriptor,
538 TREE_TYPE(rhs_type_descriptor),
539 rhs_type_descriptor);
540 if (call == error_mark_node)
541 return error_mark_node;
542 // This will panic if the interface conversion fails.
543 TREE_NOTHROW(convert_interface_decl) = 0;
544 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
547 // The second field is simply the object pointer.
549 elt = VEC_quick_push(constructor_elt, init, NULL);
550 field = DECL_CHAIN(field);
551 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
552 elt->index = field;
554 tree rhs_type_tree = TREE_TYPE(rhs_tree);
555 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
556 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
557 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
558 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
559 NULL_TREE);
561 return build_constructor(lhs_type_tree, init);
564 // Return a tree for the conversion of an interface type to a
565 // non-interface type.
567 tree
568 Expression::convert_interface_to_type(Translate_context* context,
569 Type *lhs_type, Type* rhs_type,
570 tree rhs_tree, source_location location)
572 Gogo* gogo = context->gogo();
573 tree rhs_type_tree = TREE_TYPE(rhs_tree);
575 tree lhs_type_tree = lhs_type->get_tree(gogo);
576 if (lhs_type_tree == error_mark_node)
577 return error_mark_node;
579 // Call a function to check that the type is valid. The function
580 // will panic with an appropriate runtime type error if the type is
581 // not valid.
583 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
585 if (!DECL_P(rhs_tree))
586 rhs_tree = save_expr(rhs_tree);
588 tree rhs_type_descriptor =
589 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
590 location);
592 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
594 static tree check_interface_type_decl;
595 tree call = Gogo::call_builtin(&check_interface_type_decl,
596 location,
597 "__go_check_interface_type",
599 void_type_node,
600 TREE_TYPE(lhs_type_descriptor),
601 lhs_type_descriptor,
602 TREE_TYPE(rhs_type_descriptor),
603 rhs_type_descriptor,
604 TREE_TYPE(rhs_inter_descriptor),
605 rhs_inter_descriptor);
606 if (call == error_mark_node)
607 return error_mark_node;
608 // This call will panic if the conversion is invalid.
609 TREE_NOTHROW(check_interface_type_decl) = 0;
611 // If the call succeeds, pull out the value.
612 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
613 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
614 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
615 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
616 NULL_TREE);
618 // If the value is a pointer, then it is the value we want.
619 // Otherwise it points to the value.
620 if (lhs_type->points_to() == NULL)
622 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
623 val = build_fold_indirect_ref_loc(location, val);
626 return build2(COMPOUND_EXPR, lhs_type_tree, call,
627 fold_convert_loc(location, lhs_type_tree, val));
630 // Convert an expression to a tree. This is implemented by the child
631 // class. Not that it is not in general safe to call this multiple
632 // times for a single expression, but that we don't catch such errors.
634 tree
635 Expression::get_tree(Translate_context* context)
637 // The child may have marked this expression as having an error.
638 if (this->classification_ == EXPRESSION_ERROR)
639 return error_mark_node;
641 return this->do_get_tree(context);
644 // Return a tree for VAL in TYPE.
646 tree
647 Expression::integer_constant_tree(mpz_t val, tree type)
649 if (type == error_mark_node)
650 return error_mark_node;
651 else if (TREE_CODE(type) == INTEGER_TYPE)
652 return double_int_to_tree(type,
653 mpz_get_double_int(type, val, true));
654 else if (TREE_CODE(type) == REAL_TYPE)
656 mpfr_t fval;
657 mpfr_init_set_z(fval, val, GMP_RNDN);
658 tree ret = Expression::float_constant_tree(fval, type);
659 mpfr_clear(fval);
660 return ret;
662 else if (TREE_CODE(type) == COMPLEX_TYPE)
664 mpfr_t fval;
665 mpfr_init_set_z(fval, val, GMP_RNDN);
666 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
667 mpfr_clear(fval);
668 tree imag = build_real_from_int_cst(TREE_TYPE(type),
669 integer_zero_node);
670 return build_complex(type, real, imag);
672 else
673 gcc_unreachable();
676 // Return a tree for VAL in TYPE.
678 tree
679 Expression::float_constant_tree(mpfr_t val, tree type)
681 if (type == error_mark_node)
682 return error_mark_node;
683 else if (TREE_CODE(type) == INTEGER_TYPE)
685 mpz_t ival;
686 mpz_init(ival);
687 mpfr_get_z(ival, val, GMP_RNDN);
688 tree ret = Expression::integer_constant_tree(ival, type);
689 mpz_clear(ival);
690 return ret;
692 else if (TREE_CODE(type) == REAL_TYPE)
694 REAL_VALUE_TYPE r1;
695 real_from_mpfr(&r1, val, type, GMP_RNDN);
696 REAL_VALUE_TYPE r2;
697 real_convert(&r2, TYPE_MODE(type), &r1);
698 return build_real(type, r2);
700 else if (TREE_CODE(type) == COMPLEX_TYPE)
702 REAL_VALUE_TYPE r1;
703 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
704 REAL_VALUE_TYPE r2;
705 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
706 tree imag = build_real_from_int_cst(TREE_TYPE(type),
707 integer_zero_node);
708 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
710 else
711 gcc_unreachable();
714 // Return a tree for REAL/IMAG in TYPE.
716 tree
717 Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
719 if (TREE_CODE(type) == COMPLEX_TYPE)
721 REAL_VALUE_TYPE r1;
722 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
723 REAL_VALUE_TYPE r2;
724 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
726 REAL_VALUE_TYPE r3;
727 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
728 REAL_VALUE_TYPE r4;
729 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
731 return build_complex(type, build_real(TREE_TYPE(type), r2),
732 build_real(TREE_TYPE(type), r4));
734 else
735 gcc_unreachable();
738 // Return a tree which evaluates to true if VAL, of arbitrary integer
739 // type, is negative or is more than the maximum value of BOUND_TYPE.
740 // If SOFAR is not NULL, it is or'red into the result. The return
741 // value may be NULL if SOFAR is NULL.
743 tree
744 Expression::check_bounds(tree val, tree bound_type, tree sofar,
745 source_location loc)
747 tree val_type = TREE_TYPE(val);
748 tree ret = NULL_TREE;
750 if (!TYPE_UNSIGNED(val_type))
752 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
753 build_int_cst(val_type, 0));
754 if (ret == boolean_false_node)
755 ret = NULL_TREE;
758 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
759 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
761 tree max = TYPE_MAX_VALUE(bound_type);
762 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
763 fold_convert_loc(loc, val_type, max));
764 if (big == boolean_false_node)
766 else if (ret == NULL_TREE)
767 ret = big;
768 else
769 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
770 ret, big);
773 if (ret == NULL_TREE)
774 return sofar;
775 else if (sofar == NULL_TREE)
776 return ret;
777 else
778 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
779 sofar, ret);
782 // Error expressions. This are used to avoid cascading errors.
784 class Error_expression : public Expression
786 public:
787 Error_expression(source_location location)
788 : Expression(EXPRESSION_ERROR, location)
791 protected:
792 bool
793 do_is_constant() const
794 { return true; }
796 bool
797 do_integer_constant_value(bool, mpz_t val, Type**) const
799 mpz_set_ui(val, 0);
800 return true;
803 bool
804 do_float_constant_value(mpfr_t val, Type**) const
806 mpfr_set_ui(val, 0, GMP_RNDN);
807 return true;
810 bool
811 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
813 mpfr_set_ui(real, 0, GMP_RNDN);
814 mpfr_set_ui(imag, 0, GMP_RNDN);
815 return true;
818 void
819 do_discarding_value()
822 Type*
823 do_type()
824 { return Type::make_error_type(); }
826 void
827 do_determine_type(const Type_context*)
830 Expression*
831 do_copy()
832 { return this; }
834 bool
835 do_is_addressable() const
836 { return true; }
838 tree
839 do_get_tree(Translate_context*)
840 { return error_mark_node; }
843 Expression*
844 Expression::make_error(source_location location)
846 return new Error_expression(location);
849 // An expression which is really a type. This is used during parsing.
850 // It is an error if these survive after lowering.
852 class
853 Type_expression : public Expression
855 public:
856 Type_expression(Type* type, source_location location)
857 : Expression(EXPRESSION_TYPE, location),
858 type_(type)
861 protected:
863 do_traverse(Traverse* traverse)
864 { return Type::traverse(this->type_, traverse); }
866 Type*
867 do_type()
868 { return this->type_; }
870 void
871 do_determine_type(const Type_context*)
874 void
875 do_check_types(Gogo*)
876 { this->report_error(_("invalid use of type")); }
878 Expression*
879 do_copy()
880 { return this; }
882 tree
883 do_get_tree(Translate_context*)
884 { gcc_unreachable(); }
886 private:
887 // The type which we are representing as an expression.
888 Type* type_;
891 Expression*
892 Expression::make_type(Type* type, source_location location)
894 return new Type_expression(type, location);
897 // Class Var_expression.
899 // Lower a variable expression. Here we just make sure that the
900 // initialization expression of the variable has been lowered. This
901 // ensures that we will be able to determine the type of the variable
902 // if necessary.
904 Expression*
905 Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
907 if (this->variable_->is_variable())
909 Variable* var = this->variable_->var_value();
910 // This is either a local variable or a global variable. A
911 // reference to a variable which is local to an enclosing
912 // function will be a reference to a field in a closure.
913 if (var->is_global())
914 function = NULL;
915 var->lower_init_expression(gogo, function);
917 return this;
920 // Return the name of the variable.
922 const std::string&
923 Var_expression::name() const
925 return this->variable_->name();
928 // Return the type of a reference to a variable.
930 Type*
931 Var_expression::do_type()
933 if (this->variable_->is_variable())
934 return this->variable_->var_value()->type();
935 else if (this->variable_->is_result_variable())
936 return this->variable_->result_var_value()->type();
937 else
938 gcc_unreachable();
941 // Something takes the address of this variable. This means that we
942 // may want to move the variable onto the heap.
944 void
945 Var_expression::do_address_taken(bool escapes)
947 if (!escapes)
949 else if (this->variable_->is_variable())
950 this->variable_->var_value()->set_address_taken();
951 else if (this->variable_->is_result_variable())
952 this->variable_->result_var_value()->set_address_taken();
953 else
954 gcc_unreachable();
957 // Get the tree for a reference to a variable.
959 tree
960 Var_expression::do_get_tree(Translate_context* context)
962 return this->variable_->get_tree(context->gogo(), context->function());
965 // Make a reference to a variable in an expression.
967 Expression*
968 Expression::make_var_reference(Named_object* var, source_location location)
970 if (var->is_sink())
971 return Expression::make_sink(location);
973 // FIXME: Creating a new object for each reference to a variable is
974 // wasteful.
975 return new Var_expression(var, location);
978 // Class Temporary_reference_expression.
980 // The type.
982 Type*
983 Temporary_reference_expression::do_type()
985 return this->statement_->type();
988 // Called if something takes the address of this temporary variable.
989 // We never have to move temporary variables to the heap, but we do
990 // need to know that they must live in the stack rather than in a
991 // register.
993 void
994 Temporary_reference_expression::do_address_taken(bool)
996 this->statement_->set_is_address_taken();
999 // Get a tree referring to the variable.
1001 tree
1002 Temporary_reference_expression::do_get_tree(Translate_context*)
1004 return this->statement_->get_decl();
1007 // Make a reference to a temporary variable.
1009 Expression*
1010 Expression::make_temporary_reference(Temporary_statement* statement,
1011 source_location location)
1013 return new Temporary_reference_expression(statement, location);
1016 // A sink expression--a use of the blank identifier _.
1018 class Sink_expression : public Expression
1020 public:
1021 Sink_expression(source_location location)
1022 : Expression(EXPRESSION_SINK, location),
1023 type_(NULL), var_(NULL_TREE)
1026 protected:
1027 void
1028 do_discarding_value()
1031 Type*
1032 do_type();
1034 void
1035 do_determine_type(const Type_context*);
1037 Expression*
1038 do_copy()
1039 { return new Sink_expression(this->location()); }
1041 tree
1042 do_get_tree(Translate_context*);
1044 private:
1045 // The type of this sink variable.
1046 Type* type_;
1047 // The temporary variable we generate.
1048 tree var_;
1051 // Return the type of a sink expression.
1053 Type*
1054 Sink_expression::do_type()
1056 if (this->type_ == NULL)
1057 return Type::make_sink_type();
1058 return this->type_;
1061 // Determine the type of a sink expression.
1063 void
1064 Sink_expression::do_determine_type(const Type_context* context)
1066 if (context->type != NULL)
1067 this->type_ = context->type;
1070 // Return a temporary variable for a sink expression. This will
1071 // presumably be a write-only variable which the middle-end will drop.
1073 tree
1074 Sink_expression::do_get_tree(Translate_context* context)
1076 if (this->var_ == NULL_TREE)
1078 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1079 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1080 "blank");
1082 return this->var_;
1085 // Make a sink expression.
1087 Expression*
1088 Expression::make_sink(source_location location)
1090 return new Sink_expression(location);
1093 // Class Func_expression.
1095 // FIXME: Can a function expression appear in a constant expression?
1096 // The value is unchanging. Initializing a constant to the address of
1097 // a function seems like it could work, though there might be little
1098 // point to it.
1100 // Return the name of the function.
1102 const std::string&
1103 Func_expression::name() const
1105 return this->function_->name();
1108 // Traversal.
1111 Func_expression::do_traverse(Traverse* traverse)
1113 return (this->closure_ == NULL
1114 ? TRAVERSE_CONTINUE
1115 : Expression::traverse(&this->closure_, traverse));
1118 // Return the type of a function expression.
1120 Type*
1121 Func_expression::do_type()
1123 if (this->function_->is_function())
1124 return this->function_->func_value()->type();
1125 else if (this->function_->is_function_declaration())
1126 return this->function_->func_declaration_value()->type();
1127 else
1128 gcc_unreachable();
1131 // Get the tree for a function expression without evaluating the
1132 // closure.
1134 tree
1135 Func_expression::get_tree_without_closure(Gogo* gogo)
1137 Function_type* fntype;
1138 if (this->function_->is_function())
1139 fntype = this->function_->func_value()->type();
1140 else if (this->function_->is_function_declaration())
1141 fntype = this->function_->func_declaration_value()->type();
1142 else
1143 gcc_unreachable();
1145 // Builtin functions are handled specially by Call_expression. We
1146 // can't take their address.
1147 if (fntype->is_builtin())
1149 error_at(this->location(), "invalid use of special builtin function %qs",
1150 this->function_->name().c_str());
1151 return error_mark_node;
1154 Named_object* no = this->function_;
1156 tree id = no->get_id(gogo);
1157 if (id == error_mark_node)
1158 return error_mark_node;
1160 tree fndecl;
1161 if (no->is_function())
1162 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1163 else if (no->is_function_declaration())
1164 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1165 else
1166 gcc_unreachable();
1168 if (fndecl == error_mark_node)
1169 return error_mark_node;
1171 return build_fold_addr_expr_loc(this->location(), fndecl);
1174 // Get the tree for a function expression. This is used when we take
1175 // the address of a function rather than simply calling it. If the
1176 // function has a closure, we must use a trampoline.
1178 tree
1179 Func_expression::do_get_tree(Translate_context* context)
1181 Gogo* gogo = context->gogo();
1183 tree fnaddr = this->get_tree_without_closure(gogo);
1184 if (fnaddr == error_mark_node)
1185 return error_mark_node;
1187 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1188 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1189 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1191 // For a normal non-nested function call, that is all we have to do.
1192 if (!this->function_->is_function()
1193 || this->function_->func_value()->enclosing() == NULL)
1195 gcc_assert(this->closure_ == NULL);
1196 return fnaddr;
1199 // For a nested function call, we have to always allocate a
1200 // trampoline. If we don't always allocate, then closures will not
1201 // be reliably distinct.
1202 Expression* closure = this->closure_;
1203 tree closure_tree;
1204 if (closure == NULL)
1205 closure_tree = null_pointer_node;
1206 else
1208 // Get the value of the closure. This will be a pointer to
1209 // space allocated on the heap.
1210 closure_tree = closure->get_tree(context);
1211 if (closure_tree == error_mark_node)
1212 return error_mark_node;
1213 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1216 // Now we need to build some code on the heap. This code will load
1217 // the static chain pointer with the closure and then jump to the
1218 // body of the function. The normal gcc approach is to build the
1219 // code on the stack. Unfortunately we can not do that, as Go
1220 // permits us to return the function pointer.
1222 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1225 // Make a reference to a function in an expression.
1227 Expression*
1228 Expression::make_func_reference(Named_object* function, Expression* closure,
1229 source_location location)
1231 return new Func_expression(function, closure, location);
1234 // Class Unknown_expression.
1236 // Return the name of an unknown expression.
1238 const std::string&
1239 Unknown_expression::name() const
1241 return this->named_object_->name();
1244 // Lower a reference to an unknown name.
1246 Expression*
1247 Unknown_expression::do_lower(Gogo*, Named_object*, int)
1249 source_location location = this->location();
1250 Named_object* no = this->named_object_;
1251 Named_object* real = no->unknown_value()->real_named_object();
1252 if (real == NULL)
1254 if (this->is_composite_literal_key_)
1255 return this;
1256 error_at(location, "reference to undefined name %qs",
1257 this->named_object_->message_name().c_str());
1258 return Expression::make_error(location);
1260 switch (real->classification())
1262 case Named_object::NAMED_OBJECT_CONST:
1263 return Expression::make_const_reference(real, location);
1264 case Named_object::NAMED_OBJECT_TYPE:
1265 return Expression::make_type(real->type_value(), location);
1266 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1267 if (this->is_composite_literal_key_)
1268 return this;
1269 error_at(location, "reference to undefined type %qs",
1270 real->message_name().c_str());
1271 return Expression::make_error(location);
1272 case Named_object::NAMED_OBJECT_VAR:
1273 return Expression::make_var_reference(real, location);
1274 case Named_object::NAMED_OBJECT_FUNC:
1275 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1276 return Expression::make_func_reference(real, NULL, location);
1277 case Named_object::NAMED_OBJECT_PACKAGE:
1278 if (this->is_composite_literal_key_)
1279 return this;
1280 error_at(location, "unexpected reference to package");
1281 return Expression::make_error(location);
1282 default:
1283 gcc_unreachable();
1287 // Make a reference to an unknown name.
1289 Expression*
1290 Expression::make_unknown_reference(Named_object* no, source_location location)
1292 gcc_assert(no->resolve()->is_unknown());
1293 return new Unknown_expression(no, location);
1296 // A boolean expression.
1298 class Boolean_expression : public Expression
1300 public:
1301 Boolean_expression(bool val, source_location location)
1302 : Expression(EXPRESSION_BOOLEAN, location),
1303 val_(val), type_(NULL)
1306 static Expression*
1307 do_import(Import*);
1309 protected:
1310 bool
1311 do_is_constant() const
1312 { return true; }
1314 Type*
1315 do_type();
1317 void
1318 do_determine_type(const Type_context*);
1320 Expression*
1321 do_copy()
1322 { return this; }
1324 tree
1325 do_get_tree(Translate_context*)
1326 { return this->val_ ? boolean_true_node : boolean_false_node; }
1328 void
1329 do_export(Export* exp) const
1330 { exp->write_c_string(this->val_ ? "true" : "false"); }
1332 private:
1333 // The constant.
1334 bool val_;
1335 // The type as determined by context.
1336 Type* type_;
1339 // Get the type.
1341 Type*
1342 Boolean_expression::do_type()
1344 if (this->type_ == NULL)
1345 this->type_ = Type::make_boolean_type();
1346 return this->type_;
1349 // Set the type from the context.
1351 void
1352 Boolean_expression::do_determine_type(const Type_context* context)
1354 if (this->type_ != NULL && !this->type_->is_abstract())
1356 else if (context->type != NULL && context->type->is_boolean_type())
1357 this->type_ = context->type;
1358 else if (!context->may_be_abstract)
1359 this->type_ = Type::lookup_bool_type();
1362 // Import a boolean constant.
1364 Expression*
1365 Boolean_expression::do_import(Import* imp)
1367 if (imp->peek_char() == 't')
1369 imp->require_c_string("true");
1370 return Expression::make_boolean(true, imp->location());
1372 else
1374 imp->require_c_string("false");
1375 return Expression::make_boolean(false, imp->location());
1379 // Make a boolean expression.
1381 Expression*
1382 Expression::make_boolean(bool val, source_location location)
1384 return new Boolean_expression(val, location);
1387 // Class String_expression.
1389 // Get the type.
1391 Type*
1392 String_expression::do_type()
1394 if (this->type_ == NULL)
1395 this->type_ = Type::make_string_type();
1396 return this->type_;
1399 // Set the type from the context.
1401 void
1402 String_expression::do_determine_type(const Type_context* context)
1404 if (this->type_ != NULL && !this->type_->is_abstract())
1406 else if (context->type != NULL && context->type->is_string_type())
1407 this->type_ = context->type;
1408 else if (!context->may_be_abstract)
1409 this->type_ = Type::lookup_string_type();
1412 // Build a string constant.
1414 tree
1415 String_expression::do_get_tree(Translate_context* context)
1417 return context->gogo()->go_string_constant_tree(this->val_);
1420 // Export a string expression.
1422 void
1423 String_expression::do_export(Export* exp) const
1425 std::string s;
1426 s.reserve(this->val_.length() * 4 + 2);
1427 s += '"';
1428 for (std::string::const_iterator p = this->val_.begin();
1429 p != this->val_.end();
1430 ++p)
1432 if (*p == '\\' || *p == '"')
1434 s += '\\';
1435 s += *p;
1437 else if (*p >= 0x20 && *p < 0x7f)
1438 s += *p;
1439 else if (*p == '\n')
1440 s += "\\n";
1441 else if (*p == '\t')
1442 s += "\\t";
1443 else
1445 s += "\\x";
1446 unsigned char c = *p;
1447 unsigned int dig = c >> 4;
1448 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1449 dig = c & 0xf;
1450 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1453 s += '"';
1454 exp->write_string(s);
1457 // Import a string expression.
1459 Expression*
1460 String_expression::do_import(Import* imp)
1462 imp->require_c_string("\"");
1463 std::string val;
1464 while (true)
1466 int c = imp->get_char();
1467 if (c == '"' || c == -1)
1468 break;
1469 if (c != '\\')
1470 val += static_cast<char>(c);
1471 else
1473 c = imp->get_char();
1474 if (c == '\\' || c == '"')
1475 val += static_cast<char>(c);
1476 else if (c == 'n')
1477 val += '\n';
1478 else if (c == 't')
1479 val += '\t';
1480 else if (c == 'x')
1482 c = imp->get_char();
1483 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1484 c = imp->get_char();
1485 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1486 char v = (vh << 4) | vl;
1487 val += v;
1489 else
1491 error_at(imp->location(), "bad string constant");
1492 return Expression::make_error(imp->location());
1496 return Expression::make_string(val, imp->location());
1499 // Make a string expression.
1501 Expression*
1502 Expression::make_string(const std::string& val, source_location location)
1504 return new String_expression(val, location);
1507 // Make an integer expression.
1509 class Integer_expression : public Expression
1511 public:
1512 Integer_expression(const mpz_t* val, Type* type, source_location location)
1513 : Expression(EXPRESSION_INTEGER, location),
1514 type_(type)
1515 { mpz_init_set(this->val_, *val); }
1517 static Expression*
1518 do_import(Import*);
1520 // Return whether VAL fits in the type.
1521 static bool
1522 check_constant(mpz_t val, Type*, source_location);
1524 // Write VAL to export data.
1525 static void
1526 export_integer(Export* exp, const mpz_t val);
1528 protected:
1529 bool
1530 do_is_constant() const
1531 { return true; }
1533 bool
1534 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1536 Type*
1537 do_type();
1539 void
1540 do_determine_type(const Type_context* context);
1542 void
1543 do_check_types(Gogo*);
1545 tree
1546 do_get_tree(Translate_context*);
1548 Expression*
1549 do_copy()
1550 { return Expression::make_integer(&this->val_, this->type_,
1551 this->location()); }
1553 void
1554 do_export(Export*) const;
1556 private:
1557 // The integer value.
1558 mpz_t val_;
1559 // The type so far.
1560 Type* type_;
1563 // Return an integer constant value.
1565 bool
1566 Integer_expression::do_integer_constant_value(bool, mpz_t val,
1567 Type** ptype) const
1569 if (this->type_ != NULL)
1570 *ptype = this->type_;
1571 mpz_set(val, this->val_);
1572 return true;
1575 // Return the current type. If we haven't set the type yet, we return
1576 // an abstract integer type.
1578 Type*
1579 Integer_expression::do_type()
1581 if (this->type_ == NULL)
1582 this->type_ = Type::make_abstract_integer_type();
1583 return this->type_;
1586 // Set the type of the integer value. Here we may switch from an
1587 // abstract type to a real type.
1589 void
1590 Integer_expression::do_determine_type(const Type_context* context)
1592 if (this->type_ != NULL && !this->type_->is_abstract())
1594 else if (context->type != NULL
1595 && (context->type->integer_type() != NULL
1596 || context->type->float_type() != NULL
1597 || context->type->complex_type() != NULL))
1598 this->type_ = context->type;
1599 else if (!context->may_be_abstract)
1600 this->type_ = Type::lookup_integer_type("int");
1603 // Return true if the integer VAL fits in the range of the type TYPE.
1604 // Otherwise give an error and return false. TYPE may be NULL.
1606 bool
1607 Integer_expression::check_constant(mpz_t val, Type* type,
1608 source_location location)
1610 if (type == NULL)
1611 return true;
1612 Integer_type* itype = type->integer_type();
1613 if (itype == NULL || itype->is_abstract())
1614 return true;
1616 int bits = mpz_sizeinbase(val, 2);
1618 if (itype->is_unsigned())
1620 // For an unsigned type we can only accept a nonnegative number,
1621 // and we must be able to represent at least BITS.
1622 if (mpz_sgn(val) >= 0
1623 && bits <= itype->bits())
1624 return true;
1626 else
1628 // For a signed type we need an extra bit to indicate the sign.
1629 // We have to handle the most negative integer specially.
1630 if (bits + 1 <= itype->bits()
1631 || (bits <= itype->bits()
1632 && mpz_sgn(val) < 0
1633 && (mpz_scan1(val, 0)
1634 == static_cast<unsigned long>(itype->bits() - 1))
1635 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1636 return true;
1639 error_at(location, "integer constant overflow");
1640 return false;
1643 // Check the type of an integer constant.
1645 void
1646 Integer_expression::do_check_types(Gogo*)
1648 if (this->type_ == NULL)
1649 return;
1650 if (!Integer_expression::check_constant(this->val_, this->type_,
1651 this->location()))
1652 this->set_is_error();
1655 // Get a tree for an integer constant.
1657 tree
1658 Integer_expression::do_get_tree(Translate_context* context)
1660 Gogo* gogo = context->gogo();
1661 tree type;
1662 if (this->type_ != NULL && !this->type_->is_abstract())
1663 type = this->type_->get_tree(gogo);
1664 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1666 // We are converting to an abstract floating point type.
1667 type = Type::lookup_float_type("float64")->get_tree(gogo);
1669 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1671 // We are converting to an abstract complex type.
1672 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1674 else
1676 // If we still have an abstract type here, then this is being
1677 // used in a constant expression which didn't get reduced for
1678 // some reason. Use a type which will fit the value. We use <,
1679 // not <=, because we need an extra bit for the sign bit.
1680 int bits = mpz_sizeinbase(this->val_, 2);
1681 if (bits < INT_TYPE_SIZE)
1682 type = Type::lookup_integer_type("int")->get_tree(gogo);
1683 else if (bits < 64)
1684 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1685 else
1686 type = long_long_integer_type_node;
1688 return Expression::integer_constant_tree(this->val_, type);
1691 // Write VAL to export data.
1693 void
1694 Integer_expression::export_integer(Export* exp, const mpz_t val)
1696 char* s = mpz_get_str(NULL, 10, val);
1697 exp->write_c_string(s);
1698 free(s);
1701 // Export an integer in a constant expression.
1703 void
1704 Integer_expression::do_export(Export* exp) const
1706 Integer_expression::export_integer(exp, this->val_);
1707 // A trailing space lets us reliably identify the end of the number.
1708 exp->write_c_string(" ");
1711 // Import an integer, floating point, or complex value. This handles
1712 // all these types because they all start with digits.
1714 Expression*
1715 Integer_expression::do_import(Import* imp)
1717 std::string num = imp->read_identifier();
1718 imp->require_c_string(" ");
1719 if (!num.empty() && num[num.length() - 1] == 'i')
1721 mpfr_t real;
1722 size_t plus_pos = num.find('+', 1);
1723 size_t minus_pos = num.find('-', 1);
1724 size_t pos;
1725 if (plus_pos == std::string::npos)
1726 pos = minus_pos;
1727 else if (minus_pos == std::string::npos)
1728 pos = plus_pos;
1729 else
1731 error_at(imp->location(), "bad number in import data: %qs",
1732 num.c_str());
1733 return Expression::make_error(imp->location());
1735 if (pos == std::string::npos)
1736 mpfr_set_ui(real, 0, GMP_RNDN);
1737 else
1739 std::string real_str = num.substr(0, pos);
1740 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1742 error_at(imp->location(), "bad number in import data: %qs",
1743 real_str.c_str());
1744 return Expression::make_error(imp->location());
1748 std::string imag_str;
1749 if (pos == std::string::npos)
1750 imag_str = num;
1751 else
1752 imag_str = num.substr(pos);
1753 imag_str = imag_str.substr(0, imag_str.size() - 1);
1754 mpfr_t imag;
1755 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1757 error_at(imp->location(), "bad number in import data: %qs",
1758 imag_str.c_str());
1759 return Expression::make_error(imp->location());
1761 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1762 imp->location());
1763 mpfr_clear(real);
1764 mpfr_clear(imag);
1765 return ret;
1767 else if (num.find('.') == std::string::npos
1768 && num.find('E') == std::string::npos)
1770 mpz_t val;
1771 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1773 error_at(imp->location(), "bad number in import data: %qs",
1774 num.c_str());
1775 return Expression::make_error(imp->location());
1777 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1778 mpz_clear(val);
1779 return ret;
1781 else
1783 mpfr_t val;
1784 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1786 error_at(imp->location(), "bad number in import data: %qs",
1787 num.c_str());
1788 return Expression::make_error(imp->location());
1790 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1791 mpfr_clear(val);
1792 return ret;
1796 // Build a new integer value.
1798 Expression*
1799 Expression::make_integer(const mpz_t* val, Type* type,
1800 source_location location)
1802 return new Integer_expression(val, type, location);
1805 // Floats.
1807 class Float_expression : public Expression
1809 public:
1810 Float_expression(const mpfr_t* val, Type* type, source_location location)
1811 : Expression(EXPRESSION_FLOAT, location),
1812 type_(type)
1814 mpfr_init_set(this->val_, *val, GMP_RNDN);
1817 // Constrain VAL to fit into TYPE.
1818 static void
1819 constrain_float(mpfr_t val, Type* type);
1821 // Return whether VAL fits in the type.
1822 static bool
1823 check_constant(mpfr_t val, Type*, source_location);
1825 // Write VAL to export data.
1826 static void
1827 export_float(Export* exp, const mpfr_t val);
1829 protected:
1830 bool
1831 do_is_constant() const
1832 { return true; }
1834 bool
1835 do_float_constant_value(mpfr_t val, Type**) const;
1837 Type*
1838 do_type();
1840 void
1841 do_determine_type(const Type_context*);
1843 void
1844 do_check_types(Gogo*);
1846 Expression*
1847 do_copy()
1848 { return Expression::make_float(&this->val_, this->type_,
1849 this->location()); }
1851 tree
1852 do_get_tree(Translate_context*);
1854 void
1855 do_export(Export*) const;
1857 private:
1858 // The floating point value.
1859 mpfr_t val_;
1860 // The type so far.
1861 Type* type_;
1864 // Constrain VAL to fit into TYPE.
1866 void
1867 Float_expression::constrain_float(mpfr_t val, Type* type)
1869 Float_type* ftype = type->float_type();
1870 if (ftype != NULL && !ftype->is_abstract())
1872 tree type_tree = ftype->type_tree();
1873 REAL_VALUE_TYPE rvt;
1874 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1875 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1876 mpfr_from_real(val, &rvt, GMP_RNDN);
1880 // Return a floating point constant value.
1882 bool
1883 Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1885 if (this->type_ != NULL)
1886 *ptype = this->type_;
1887 mpfr_set(val, this->val_, GMP_RNDN);
1888 return true;
1891 // Return the current type. If we haven't set the type yet, we return
1892 // an abstract float type.
1894 Type*
1895 Float_expression::do_type()
1897 if (this->type_ == NULL)
1898 this->type_ = Type::make_abstract_float_type();
1899 return this->type_;
1902 // Set the type of the float value. Here we may switch from an
1903 // abstract type to a real type.
1905 void
1906 Float_expression::do_determine_type(const Type_context* context)
1908 if (this->type_ != NULL && !this->type_->is_abstract())
1910 else if (context->type != NULL
1911 && (context->type->integer_type() != NULL
1912 || context->type->float_type() != NULL
1913 || context->type->complex_type() != NULL))
1914 this->type_ = context->type;
1915 else if (!context->may_be_abstract)
1916 this->type_ = Type::lookup_float_type("float");
1919 // Return true if the floating point value VAL fits in the range of
1920 // the type TYPE. Otherwise give an error and return false. TYPE may
1921 // be NULL.
1923 bool
1924 Float_expression::check_constant(mpfr_t val, Type* type,
1925 source_location location)
1927 if (type == NULL)
1928 return true;
1929 Float_type* ftype = type->float_type();
1930 if (ftype == NULL || ftype->is_abstract())
1931 return true;
1933 // A NaN or Infinity always fits in the range of the type.
1934 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1935 return true;
1937 mp_exp_t exp = mpfr_get_exp(val);
1938 mp_exp_t max_exp;
1939 switch (ftype->bits())
1941 case 32:
1942 max_exp = 128;
1943 break;
1944 case 64:
1945 max_exp = 1024;
1946 break;
1947 default:
1948 gcc_unreachable();
1950 if (exp > max_exp)
1952 error_at(location, "floating point constant overflow");
1953 return false;
1955 return true;
1958 // Check the type of a float value.
1960 void
1961 Float_expression::do_check_types(Gogo*)
1963 if (this->type_ == NULL)
1964 return;
1966 if (!Float_expression::check_constant(this->val_, this->type_,
1967 this->location()))
1968 this->set_is_error();
1970 Integer_type* integer_type = this->type_->integer_type();
1971 if (integer_type != NULL)
1973 if (!mpfr_integer_p(this->val_))
1974 this->report_error(_("floating point constant truncated to integer"));
1975 else
1977 gcc_assert(!integer_type->is_abstract());
1978 mpz_t ival;
1979 mpz_init(ival);
1980 mpfr_get_z(ival, this->val_, GMP_RNDN);
1981 Integer_expression::check_constant(ival, integer_type,
1982 this->location());
1983 mpz_clear(ival);
1988 // Get a tree for a float constant.
1990 tree
1991 Float_expression::do_get_tree(Translate_context* context)
1993 Gogo* gogo = context->gogo();
1994 tree type;
1995 if (this->type_ != NULL && !this->type_->is_abstract())
1996 type = this->type_->get_tree(gogo);
1997 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
1999 // We have an abstract integer type. We just hope for the best.
2000 type = Type::lookup_integer_type("int")->get_tree(gogo);
2002 else
2004 // If we still have an abstract type here, then this is being
2005 // used in a constant expression which didn't get reduced. We
2006 // just use float64 and hope for the best.
2007 type = Type::lookup_float_type("float64")->get_tree(gogo);
2009 return Expression::float_constant_tree(this->val_, type);
2012 // Write a floating point number to export data.
2014 void
2015 Float_expression::export_float(Export *exp, const mpfr_t val)
2017 mp_exp_t exponent;
2018 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2019 if (*s == '-')
2020 exp->write_c_string("-");
2021 exp->write_c_string("0.");
2022 exp->write_c_string(*s == '-' ? s + 1 : s);
2023 mpfr_free_str(s);
2024 char buf[30];
2025 snprintf(buf, sizeof buf, "E%ld", exponent);
2026 exp->write_c_string(buf);
2029 // Export a floating point number in a constant expression.
2031 void
2032 Float_expression::do_export(Export* exp) const
2034 Float_expression::export_float(exp, this->val_);
2035 // A trailing space lets us reliably identify the end of the number.
2036 exp->write_c_string(" ");
2039 // Make a float expression.
2041 Expression*
2042 Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2044 return new Float_expression(val, type, location);
2047 // Complex numbers.
2049 class Complex_expression : public Expression
2051 public:
2052 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2053 source_location location)
2054 : Expression(EXPRESSION_COMPLEX, location),
2055 type_(type)
2057 mpfr_init_set(this->real_, *real, GMP_RNDN);
2058 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2061 // Constrain REAL/IMAG to fit into TYPE.
2062 static void
2063 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2065 // Return whether REAL/IMAG fits in the type.
2066 static bool
2067 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2069 // Write REAL/IMAG to export data.
2070 static void
2071 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2073 protected:
2074 bool
2075 do_is_constant() const
2076 { return true; }
2078 bool
2079 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2081 Type*
2082 do_type();
2084 void
2085 do_determine_type(const Type_context*);
2087 void
2088 do_check_types(Gogo*);
2090 Expression*
2091 do_copy()
2093 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2094 this->location());
2097 tree
2098 do_get_tree(Translate_context*);
2100 void
2101 do_export(Export*) const;
2103 private:
2104 // The real part.
2105 mpfr_t real_;
2106 // The imaginary part;
2107 mpfr_t imag_;
2108 // The type if known.
2109 Type* type_;
2112 // Constrain REAL/IMAG to fit into TYPE.
2114 void
2115 Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2117 Complex_type* ctype = type->complex_type();
2118 if (ctype != NULL && !ctype->is_abstract())
2120 tree type_tree = ctype->type_tree();
2122 REAL_VALUE_TYPE rvt;
2123 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2124 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2125 mpfr_from_real(real, &rvt, GMP_RNDN);
2127 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2128 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2129 mpfr_from_real(imag, &rvt, GMP_RNDN);
2133 // Return a complex constant value.
2135 bool
2136 Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2137 Type** ptype) const
2139 if (this->type_ != NULL)
2140 *ptype = this->type_;
2141 mpfr_set(real, this->real_, GMP_RNDN);
2142 mpfr_set(imag, this->imag_, GMP_RNDN);
2143 return true;
2146 // Return the current type. If we haven't set the type yet, we return
2147 // an abstract complex type.
2149 Type*
2150 Complex_expression::do_type()
2152 if (this->type_ == NULL)
2153 this->type_ = Type::make_abstract_complex_type();
2154 return this->type_;
2157 // Set the type of the complex value. Here we may switch from an
2158 // abstract type to a real type.
2160 void
2161 Complex_expression::do_determine_type(const Type_context* context)
2163 if (this->type_ != NULL && !this->type_->is_abstract())
2165 else if (context->type != NULL
2166 && context->type->complex_type() != NULL)
2167 this->type_ = context->type;
2168 else if (!context->may_be_abstract)
2169 this->type_ = Type::lookup_complex_type("complex");
2172 // Return true if the complex value REAL/IMAG fits in the range of the
2173 // type TYPE. Otherwise give an error and return false. TYPE may be
2174 // NULL.
2176 bool
2177 Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2178 source_location location)
2180 if (type == NULL)
2181 return true;
2182 Complex_type* ctype = type->complex_type();
2183 if (ctype == NULL || ctype->is_abstract())
2184 return true;
2186 mp_exp_t max_exp;
2187 switch (ctype->bits())
2189 case 64:
2190 max_exp = 128;
2191 break;
2192 case 128:
2193 max_exp = 1024;
2194 break;
2195 default:
2196 gcc_unreachable();
2199 // A NaN or Infinity always fits in the range of the type.
2200 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2202 if (mpfr_get_exp(real) > max_exp)
2204 error_at(location, "complex real part constant overflow");
2205 return false;
2209 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2211 if (mpfr_get_exp(imag) > max_exp)
2213 error_at(location, "complex imaginary part constant overflow");
2214 return false;
2218 return true;
2221 // Check the type of a complex value.
2223 void
2224 Complex_expression::do_check_types(Gogo*)
2226 if (this->type_ == NULL)
2227 return;
2229 if (!Complex_expression::check_constant(this->real_, this->imag_,
2230 this->type_, this->location()))
2231 this->set_is_error();
2234 // Get a tree for a complex constant.
2236 tree
2237 Complex_expression::do_get_tree(Translate_context* context)
2239 Gogo* gogo = context->gogo();
2240 tree type;
2241 if (this->type_ != NULL && !this->type_->is_abstract())
2242 type = this->type_->get_tree(gogo);
2243 else
2245 // If we still have an abstract type here, this this is being
2246 // used in a constant expression which didn't get reduced. We
2247 // just use complex128 and hope for the best.
2248 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2250 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2253 // Write REAL/IMAG to export data.
2255 void
2256 Complex_expression::export_complex(Export* exp, const mpfr_t real,
2257 const mpfr_t imag)
2259 if (!mpfr_zero_p(real))
2261 Float_expression::export_float(exp, real);
2262 if (mpfr_sgn(imag) > 0)
2263 exp->write_c_string("+");
2265 Float_expression::export_float(exp, imag);
2266 exp->write_c_string("i");
2269 // Export a complex number in a constant expression.
2271 void
2272 Complex_expression::do_export(Export* exp) const
2274 Complex_expression::export_complex(exp, this->real_, this->imag_);
2275 // A trailing space lets us reliably identify the end of the number.
2276 exp->write_c_string(" ");
2279 // Make a complex expression.
2281 Expression*
2282 Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2283 source_location location)
2285 return new Complex_expression(real, imag, type, location);
2288 // Find a named object in an expression.
2290 class Find_named_object : public Traverse
2292 public:
2293 Find_named_object(Named_object* no)
2294 : Traverse(traverse_expressions),
2295 no_(no), found_(false)
2298 // Whether we found the object.
2299 bool
2300 found() const
2301 { return this->found_; }
2303 protected:
2305 expression(Expression**);
2307 private:
2308 // The object we are looking for.
2309 Named_object* no_;
2310 // Whether we found it.
2311 bool found_;
2314 // A reference to a const in an expression.
2316 class Const_expression : public Expression
2318 public:
2319 Const_expression(Named_object* constant, source_location location)
2320 : Expression(EXPRESSION_CONST_REFERENCE, location),
2321 constant_(constant), type_(NULL), seen_(false)
2324 Named_object*
2325 named_object()
2326 { return this->constant_; }
2328 const std::string&
2329 name() const
2330 { return this->constant_->name(); }
2332 protected:
2333 Expression*
2334 do_lower(Gogo*, Named_object*, int);
2336 bool
2337 do_is_constant() const
2338 { return true; }
2340 bool
2341 do_integer_constant_value(bool, mpz_t val, Type**) const;
2343 bool
2344 do_float_constant_value(mpfr_t val, Type**) const;
2346 bool
2347 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2349 bool
2350 do_string_constant_value(std::string* val) const
2351 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2353 Type*
2354 do_type();
2356 // The type of a const is set by the declaration, not the use.
2357 void
2358 do_determine_type(const Type_context*);
2360 void
2361 do_check_types(Gogo*);
2363 Expression*
2364 do_copy()
2365 { return this; }
2367 tree
2368 do_get_tree(Translate_context* context);
2370 // When exporting a reference to a const as part of a const
2371 // expression, we export the value. We ignore the fact that it has
2372 // a name.
2373 void
2374 do_export(Export* exp) const
2375 { this->constant_->const_value()->expr()->export_expression(exp); }
2377 private:
2378 // The constant.
2379 Named_object* constant_;
2380 // The type of this reference. This is used if the constant has an
2381 // abstract type.
2382 Type* type_;
2383 // Used to prevent infinite recursion when a constant incorrectly
2384 // refers to itself.
2385 mutable bool seen_;
2388 // Lower a constant expression. This is where we convert the
2389 // predeclared constant iota into an integer value.
2391 Expression*
2392 Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2394 if (this->constant_->const_value()->expr()->classification()
2395 == EXPRESSION_IOTA)
2397 if (iota_value == -1)
2399 error_at(this->location(),
2400 "iota is only defined in const declarations");
2401 iota_value = 0;
2403 mpz_t val;
2404 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2405 Expression* ret = Expression::make_integer(&val, NULL,
2406 this->location());
2407 mpz_clear(val);
2408 return ret;
2411 // Make sure that the constant itself has been lowered.
2412 gogo->lower_constant(this->constant_);
2414 return this;
2417 // Return an integer constant value.
2419 bool
2420 Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2421 Type** ptype) const
2423 if (this->seen_)
2424 return false;
2426 Type* ctype;
2427 if (this->type_ != NULL)
2428 ctype = this->type_;
2429 else
2430 ctype = this->constant_->const_value()->type();
2431 if (ctype != NULL && ctype->integer_type() == NULL)
2432 return false;
2434 Expression* e = this->constant_->const_value()->expr();
2436 this->seen_ = true;
2438 Type* t;
2439 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2441 this->seen_ = false;
2443 if (r
2444 && ctype != NULL
2445 && !Integer_expression::check_constant(val, ctype, this->location()))
2446 return false;
2448 *ptype = ctype != NULL ? ctype : t;
2449 return r;
2452 // Return a floating point constant value.
2454 bool
2455 Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2457 if (this->seen_)
2458 return false;
2460 Type* ctype;
2461 if (this->type_ != NULL)
2462 ctype = this->type_;
2463 else
2464 ctype = this->constant_->const_value()->type();
2465 if (ctype != NULL && ctype->float_type() == NULL)
2466 return false;
2468 this->seen_ = true;
2470 Type* t;
2471 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2472 &t);
2474 this->seen_ = false;
2476 if (r && ctype != NULL)
2478 if (!Float_expression::check_constant(val, ctype, this->location()))
2479 return false;
2480 Float_expression::constrain_float(val, ctype);
2482 *ptype = ctype != NULL ? ctype : t;
2483 return r;
2486 // Return a complex constant value.
2488 bool
2489 Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2490 Type **ptype) const
2492 if (this->seen_)
2493 return false;
2495 Type* ctype;
2496 if (this->type_ != NULL)
2497 ctype = this->type_;
2498 else
2499 ctype = this->constant_->const_value()->type();
2500 if (ctype != NULL && ctype->complex_type() == NULL)
2501 return false;
2503 this->seen_ = true;
2505 Type *t;
2506 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2507 imag,
2508 &t);
2510 this->seen_ = false;
2512 if (r && ctype != NULL)
2514 if (!Complex_expression::check_constant(real, imag, ctype,
2515 this->location()))
2516 return false;
2517 Complex_expression::constrain_complex(real, imag, ctype);
2519 *ptype = ctype != NULL ? ctype : t;
2520 return r;
2523 // Return the type of the const reference.
2525 Type*
2526 Const_expression::do_type()
2528 if (this->type_ != NULL)
2529 return this->type_;
2531 Named_constant* nc = this->constant_->const_value();
2533 if (this->seen_ || nc->lowering())
2535 this->report_error(_("constant refers to itself"));
2536 this->type_ = Type::make_error_type();
2537 return this->type_;
2540 this->seen_ = true;
2542 Type* ret = nc->type();
2544 if (ret != NULL)
2546 this->seen_ = false;
2547 return ret;
2550 // During parsing, a named constant may have a NULL type, but we
2551 // must not return a NULL type here.
2552 ret = nc->expr()->type();
2554 this->seen_ = false;
2556 return ret;
2559 // Set the type of the const reference.
2561 void
2562 Const_expression::do_determine_type(const Type_context* context)
2564 Type* ctype = this->constant_->const_value()->type();
2565 Type* cetype = (ctype != NULL
2566 ? ctype
2567 : this->constant_->const_value()->expr()->type());
2568 if (ctype != NULL && !ctype->is_abstract())
2570 else if (context->type != NULL
2571 && (context->type->integer_type() != NULL
2572 || context->type->float_type() != NULL
2573 || context->type->complex_type() != NULL)
2574 && (cetype->integer_type() != NULL
2575 || cetype->float_type() != NULL
2576 || cetype->complex_type() != NULL))
2577 this->type_ = context->type;
2578 else if (context->type != NULL
2579 && context->type->is_string_type()
2580 && cetype->is_string_type())
2581 this->type_ = context->type;
2582 else if (context->type != NULL
2583 && context->type->is_boolean_type()
2584 && cetype->is_boolean_type())
2585 this->type_ = context->type;
2586 else if (!context->may_be_abstract)
2588 if (cetype->is_abstract())
2589 cetype = cetype->make_non_abstract_type();
2590 this->type_ = cetype;
2594 // Check types of a const reference.
2596 void
2597 Const_expression::do_check_types(Gogo*)
2599 if (this->type_ != NULL && this->type_->is_error_type())
2600 return;
2602 Expression* init = this->constant_->const_value()->expr();
2603 Find_named_object find_named_object(this->constant_);
2604 Expression::traverse(&init, &find_named_object);
2605 if (find_named_object.found())
2607 this->report_error(_("constant refers to itself"));
2608 this->type_ = Type::make_error_type();
2609 return;
2612 if (this->type_ == NULL || this->type_->is_abstract())
2613 return;
2615 // Check for integer overflow.
2616 if (this->type_->integer_type() != NULL)
2618 mpz_t ival;
2619 mpz_init(ival);
2620 Type* dummy;
2621 if (!this->integer_constant_value(true, ival, &dummy))
2623 mpfr_t fval;
2624 mpfr_init(fval);
2625 Expression* cexpr = this->constant_->const_value()->expr();
2626 if (cexpr->float_constant_value(fval, &dummy))
2628 if (!mpfr_integer_p(fval))
2629 this->report_error(_("floating point constant "
2630 "truncated to integer"));
2631 else
2633 mpfr_get_z(ival, fval, GMP_RNDN);
2634 Integer_expression::check_constant(ival, this->type_,
2635 this->location());
2638 mpfr_clear(fval);
2640 mpz_clear(ival);
2644 // Return a tree for the const reference.
2646 tree
2647 Const_expression::do_get_tree(Translate_context* context)
2649 Gogo* gogo = context->gogo();
2650 tree type_tree;
2651 if (this->type_ == NULL)
2652 type_tree = NULL_TREE;
2653 else
2655 type_tree = this->type_->get_tree(gogo);
2656 if (type_tree == error_mark_node)
2657 return error_mark_node;
2660 // If the type has been set for this expression, but the underlying
2661 // object is an abstract int or float, we try to get the abstract
2662 // value. Otherwise we may lose something in the conversion.
2663 if (this->type_ != NULL
2664 && this->constant_->const_value()->type()->is_abstract())
2666 Expression* expr = this->constant_->const_value()->expr();
2667 mpz_t ival;
2668 mpz_init(ival);
2669 Type* t;
2670 if (expr->integer_constant_value(true, ival, &t))
2672 tree ret = Expression::integer_constant_tree(ival, type_tree);
2673 mpz_clear(ival);
2674 return ret;
2676 mpz_clear(ival);
2678 mpfr_t fval;
2679 mpfr_init(fval);
2680 if (expr->float_constant_value(fval, &t))
2682 tree ret = Expression::float_constant_tree(fval, type_tree);
2683 mpfr_clear(fval);
2684 return ret;
2687 mpfr_t imag;
2688 mpfr_init(imag);
2689 if (expr->complex_constant_value(fval, imag, &t))
2691 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2692 mpfr_clear(fval);
2693 mpfr_clear(imag);
2694 return ret;
2696 mpfr_clear(imag);
2697 mpfr_clear(fval);
2700 tree const_tree = this->constant_->get_tree(gogo, context->function());
2701 if (this->type_ == NULL
2702 || const_tree == error_mark_node
2703 || TREE_TYPE(const_tree) == error_mark_node)
2704 return const_tree;
2706 tree ret;
2707 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2708 ret = fold_convert(type_tree, const_tree);
2709 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2710 ret = fold(convert_to_integer(type_tree, const_tree));
2711 else if (TREE_CODE(type_tree) == REAL_TYPE)
2712 ret = fold(convert_to_real(type_tree, const_tree));
2713 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2714 ret = fold(convert_to_complex(type_tree, const_tree));
2715 else
2716 gcc_unreachable();
2717 return ret;
2720 // Make a reference to a constant in an expression.
2722 Expression*
2723 Expression::make_const_reference(Named_object* constant,
2724 source_location location)
2726 return new Const_expression(constant, location);
2729 // Find a named object in an expression.
2732 Find_named_object::expression(Expression** pexpr)
2734 switch ((*pexpr)->classification())
2736 case Expression::EXPRESSION_CONST_REFERENCE:
2737 if (static_cast<Const_expression*>(*pexpr)->named_object() == this->no_)
2738 break;
2739 return TRAVERSE_CONTINUE;
2740 case Expression::EXPRESSION_VAR_REFERENCE:
2741 if ((*pexpr)->var_expression()->named_object() == this->no_)
2742 break;
2743 return TRAVERSE_CONTINUE;
2744 case Expression::EXPRESSION_FUNC_REFERENCE:
2745 if ((*pexpr)->func_expression()->named_object() == this->no_)
2746 break;
2747 return TRAVERSE_CONTINUE;
2748 default:
2749 return TRAVERSE_CONTINUE;
2751 this->found_ = true;
2752 return TRAVERSE_EXIT;
2755 // The nil value.
2757 class Nil_expression : public Expression
2759 public:
2760 Nil_expression(source_location location)
2761 : Expression(EXPRESSION_NIL, location)
2764 static Expression*
2765 do_import(Import*);
2767 protected:
2768 bool
2769 do_is_constant() const
2770 { return true; }
2772 Type*
2773 do_type()
2774 { return Type::make_nil_type(); }
2776 void
2777 do_determine_type(const Type_context*)
2780 Expression*
2781 do_copy()
2782 { return this; }
2784 tree
2785 do_get_tree(Translate_context*)
2786 { return null_pointer_node; }
2788 void
2789 do_export(Export* exp) const
2790 { exp->write_c_string("nil"); }
2793 // Import a nil expression.
2795 Expression*
2796 Nil_expression::do_import(Import* imp)
2798 imp->require_c_string("nil");
2799 return Expression::make_nil(imp->location());
2802 // Make a nil expression.
2804 Expression*
2805 Expression::make_nil(source_location location)
2807 return new Nil_expression(location);
2810 // The value of the predeclared constant iota. This is little more
2811 // than a marker. This will be lowered to an integer in
2812 // Const_expression::do_lower, which is where we know the value that
2813 // it should have.
2815 class Iota_expression : public Parser_expression
2817 public:
2818 Iota_expression(source_location location)
2819 : Parser_expression(EXPRESSION_IOTA, location)
2822 protected:
2823 Expression*
2824 do_lower(Gogo*, Named_object*, int)
2825 { gcc_unreachable(); }
2827 // There should only ever be one of these.
2828 Expression*
2829 do_copy()
2830 { gcc_unreachable(); }
2833 // Make an iota expression. This is only called for one case: the
2834 // value of the predeclared constant iota.
2836 Expression*
2837 Expression::make_iota()
2839 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2840 return &iota_expression;
2843 // A type conversion expression.
2845 class Type_conversion_expression : public Expression
2847 public:
2848 Type_conversion_expression(Type* type, Expression* expr,
2849 source_location location)
2850 : Expression(EXPRESSION_CONVERSION, location),
2851 type_(type), expr_(expr), may_convert_function_types_(false)
2854 // Return the type to which we are converting.
2855 Type*
2856 type() const
2857 { return this->type_; }
2859 // Return the expression which we are converting.
2860 Expression*
2861 expr() const
2862 { return this->expr_; }
2864 // Permit converting from one function type to another. This is
2865 // used internally for method expressions.
2866 void
2867 set_may_convert_function_types()
2869 this->may_convert_function_types_ = true;
2872 // Import a type conversion expression.
2873 static Expression*
2874 do_import(Import*);
2876 protected:
2878 do_traverse(Traverse* traverse);
2880 Expression*
2881 do_lower(Gogo*, Named_object*, int);
2883 bool
2884 do_is_constant() const
2885 { return this->expr_->is_constant(); }
2887 bool
2888 do_integer_constant_value(bool, mpz_t, Type**) const;
2890 bool
2891 do_float_constant_value(mpfr_t, Type**) const;
2893 bool
2894 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2896 bool
2897 do_string_constant_value(std::string*) const;
2899 Type*
2900 do_type()
2901 { return this->type_; }
2903 void
2904 do_determine_type(const Type_context*)
2906 Type_context subcontext(this->type_, false);
2907 this->expr_->determine_type(&subcontext);
2910 void
2911 do_check_types(Gogo*);
2913 Expression*
2914 do_copy()
2916 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2917 this->location());
2920 tree
2921 do_get_tree(Translate_context* context);
2923 void
2924 do_export(Export*) const;
2926 private:
2927 // The type to convert to.
2928 Type* type_;
2929 // The expression to convert.
2930 Expression* expr_;
2931 // True if this is permitted to convert function types. This is
2932 // used internally for method expressions.
2933 bool may_convert_function_types_;
2936 // Traversal.
2939 Type_conversion_expression::do_traverse(Traverse* traverse)
2941 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
2942 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
2943 return TRAVERSE_EXIT;
2944 return TRAVERSE_CONTINUE;
2947 // Convert to a constant at lowering time.
2949 Expression*
2950 Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
2952 Type* type = this->type_;
2953 Expression* val = this->expr_;
2954 source_location location = this->location();
2956 if (type->integer_type() != NULL)
2958 mpz_t ival;
2959 mpz_init(ival);
2960 Type* dummy;
2961 if (val->integer_constant_value(false, ival, &dummy))
2963 if (!Integer_expression::check_constant(ival, type, location))
2964 mpz_set_ui(ival, 0);
2965 Expression* ret = Expression::make_integer(&ival, type, location);
2966 mpz_clear(ival);
2967 return ret;
2970 mpfr_t fval;
2971 mpfr_init(fval);
2972 if (val->float_constant_value(fval, &dummy))
2974 if (!mpfr_integer_p(fval))
2976 error_at(location,
2977 "floating point constant truncated to integer");
2978 return Expression::make_error(location);
2980 mpfr_get_z(ival, fval, GMP_RNDN);
2981 if (!Integer_expression::check_constant(ival, type, location))
2982 mpz_set_ui(ival, 0);
2983 Expression* ret = Expression::make_integer(&ival, type, location);
2984 mpfr_clear(fval);
2985 mpz_clear(ival);
2986 return ret;
2988 mpfr_clear(fval);
2989 mpz_clear(ival);
2992 if (type->float_type() != NULL)
2994 mpfr_t fval;
2995 mpfr_init(fval);
2996 Type* dummy;
2997 if (val->float_constant_value(fval, &dummy))
2999 if (!Float_expression::check_constant(fval, type, location))
3000 mpfr_set_ui(fval, 0, GMP_RNDN);
3001 Float_expression::constrain_float(fval, type);
3002 Expression *ret = Expression::make_float(&fval, type, location);
3003 mpfr_clear(fval);
3004 return ret;
3006 mpfr_clear(fval);
3009 if (type->complex_type() != NULL)
3011 mpfr_t real;
3012 mpfr_t imag;
3013 mpfr_init(real);
3014 mpfr_init(imag);
3015 Type* dummy;
3016 if (val->complex_constant_value(real, imag, &dummy))
3018 if (!Complex_expression::check_constant(real, imag, type, location))
3020 mpfr_set_ui(real, 0, GMP_RNDN);
3021 mpfr_set_ui(imag, 0, GMP_RNDN);
3023 Complex_expression::constrain_complex(real, imag, type);
3024 Expression* ret = Expression::make_complex(&real, &imag, type,
3025 location);
3026 mpfr_clear(real);
3027 mpfr_clear(imag);
3028 return ret;
3030 mpfr_clear(real);
3031 mpfr_clear(imag);
3034 if (type->is_open_array_type() && type->named_type() == NULL)
3036 Type* element_type = type->array_type()->element_type()->forwarded();
3037 bool is_byte = element_type == Type::lookup_integer_type("uint8");
3038 bool is_int = element_type == Type::lookup_integer_type("int");
3039 if (is_byte || is_int)
3041 std::string s;
3042 if (val->string_constant_value(&s))
3044 Expression_list* vals = new Expression_list();
3045 if (is_byte)
3047 for (std::string::const_iterator p = s.begin();
3048 p != s.end();
3049 p++)
3051 mpz_t val;
3052 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3053 Expression* v = Expression::make_integer(&val,
3054 element_type,
3055 location);
3056 vals->push_back(v);
3057 mpz_clear(val);
3060 else
3062 const char *p = s.data();
3063 const char *pend = s.data() + s.length();
3064 while (p < pend)
3066 unsigned int c;
3067 int adv = Lex::fetch_char(p, &c);
3068 if (adv == 0)
3070 warning_at(this->location(), 0,
3071 "invalid UTF-8 encoding");
3072 adv = 1;
3074 p += adv;
3075 mpz_t val;
3076 mpz_init_set_ui(val, c);
3077 Expression* v = Expression::make_integer(&val,
3078 element_type,
3079 location);
3080 vals->push_back(v);
3081 mpz_clear(val);
3085 return Expression::make_slice_composite_literal(type, vals,
3086 location);
3091 return this;
3094 // Return the constant integer value if there is one.
3096 bool
3097 Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3098 mpz_t val,
3099 Type** ptype) const
3101 if (this->type_->integer_type() == NULL)
3102 return false;
3104 mpz_t ival;
3105 mpz_init(ival);
3106 Type* dummy;
3107 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3109 if (!Integer_expression::check_constant(ival, this->type_,
3110 this->location()))
3112 mpz_clear(ival);
3113 return false;
3115 mpz_set(val, ival);
3116 mpz_clear(ival);
3117 *ptype = this->type_;
3118 return true;
3120 mpz_clear(ival);
3122 mpfr_t fval;
3123 mpfr_init(fval);
3124 if (this->expr_->float_constant_value(fval, &dummy))
3126 mpfr_get_z(val, fval, GMP_RNDN);
3127 mpfr_clear(fval);
3128 if (!Integer_expression::check_constant(val, this->type_,
3129 this->location()))
3130 return false;
3131 *ptype = this->type_;
3132 return true;
3134 mpfr_clear(fval);
3136 return false;
3139 // Return the constant floating point value if there is one.
3141 bool
3142 Type_conversion_expression::do_float_constant_value(mpfr_t val,
3143 Type** ptype) const
3145 if (this->type_->float_type() == NULL)
3146 return false;
3148 mpfr_t fval;
3149 mpfr_init(fval);
3150 Type* dummy;
3151 if (this->expr_->float_constant_value(fval, &dummy))
3153 if (!Float_expression::check_constant(fval, this->type_,
3154 this->location()))
3156 mpfr_clear(fval);
3157 return false;
3159 mpfr_set(val, fval, GMP_RNDN);
3160 mpfr_clear(fval);
3161 Float_expression::constrain_float(val, this->type_);
3162 *ptype = this->type_;
3163 return true;
3165 mpfr_clear(fval);
3167 return false;
3170 // Return the constant complex value if there is one.
3172 bool
3173 Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3174 mpfr_t imag,
3175 Type **ptype) const
3177 if (this->type_->complex_type() == NULL)
3178 return false;
3180 mpfr_t rval;
3181 mpfr_t ival;
3182 mpfr_init(rval);
3183 mpfr_init(ival);
3184 Type* dummy;
3185 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3187 if (!Complex_expression::check_constant(rval, ival, this->type_,
3188 this->location()))
3190 mpfr_clear(rval);
3191 mpfr_clear(ival);
3192 return false;
3194 mpfr_set(real, rval, GMP_RNDN);
3195 mpfr_set(imag, ival, GMP_RNDN);
3196 mpfr_clear(rval);
3197 mpfr_clear(ival);
3198 Complex_expression::constrain_complex(real, imag, this->type_);
3199 *ptype = this->type_;
3200 return true;
3202 mpfr_clear(rval);
3203 mpfr_clear(ival);
3205 return false;
3208 // Return the constant string value if there is one.
3210 bool
3211 Type_conversion_expression::do_string_constant_value(std::string* val) const
3213 if (this->type_->is_string_type()
3214 && this->expr_->type()->integer_type() != NULL)
3216 mpz_t ival;
3217 mpz_init(ival);
3218 Type* dummy;
3219 if (this->expr_->integer_constant_value(false, ival, &dummy))
3221 unsigned long ulval = mpz_get_ui(ival);
3222 if (mpz_cmp_ui(ival, ulval) == 0)
3224 Lex::append_char(ulval, true, val, this->location());
3225 mpz_clear(ival);
3226 return true;
3229 mpz_clear(ival);
3232 // FIXME: Could handle conversion from const []int here.
3234 return false;
3237 // Check that types are convertible.
3239 void
3240 Type_conversion_expression::do_check_types(Gogo*)
3242 Type* type = this->type_;
3243 Type* expr_type = this->expr_->type();
3244 std::string reason;
3246 if (type->is_error_type()
3247 || type->is_undefined()
3248 || expr_type->is_error_type()
3249 || expr_type->is_undefined())
3251 // Make sure we emit an error for an undefined type.
3252 type->base();
3253 expr_type->base();
3254 this->set_is_error();
3255 return;
3258 if (this->may_convert_function_types_
3259 && type->function_type() != NULL
3260 && expr_type->function_type() != NULL)
3261 return;
3263 if (Type::are_convertible(type, expr_type, &reason))
3264 return;
3266 error_at(this->location(), "%s", reason.c_str());
3267 this->set_is_error();
3270 // Get a tree for a type conversion.
3272 tree
3273 Type_conversion_expression::do_get_tree(Translate_context* context)
3275 Gogo* gogo = context->gogo();
3276 tree type_tree = this->type_->get_tree(gogo);
3277 tree expr_tree = this->expr_->get_tree(context);
3279 if (type_tree == error_mark_node
3280 || expr_tree == error_mark_node
3281 || TREE_TYPE(expr_tree) == error_mark_node)
3282 return error_mark_node;
3284 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3285 return fold_convert(type_tree, expr_tree);
3287 Type* type = this->type_;
3288 Type* expr_type = this->expr_->type();
3289 tree ret;
3290 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3291 ret = Expression::convert_for_assignment(context, type, expr_type,
3292 expr_tree, this->location());
3293 else if (type->integer_type() != NULL)
3295 if (expr_type->integer_type() != NULL
3296 || expr_type->float_type() != NULL
3297 || expr_type->is_unsafe_pointer_type())
3298 ret = fold(convert_to_integer(type_tree, expr_tree));
3299 else
3300 gcc_unreachable();
3302 else if (type->float_type() != NULL)
3304 if (expr_type->integer_type() != NULL
3305 || expr_type->float_type() != NULL)
3306 ret = fold(convert_to_real(type_tree, expr_tree));
3307 else
3308 gcc_unreachable();
3310 else if (type->complex_type() != NULL)
3312 if (expr_type->complex_type() != NULL)
3313 ret = fold(convert_to_complex(type_tree, expr_tree));
3314 else
3315 gcc_unreachable();
3317 else if (type->is_string_type()
3318 && expr_type->integer_type() != NULL)
3320 expr_tree = fold_convert(integer_type_node, expr_tree);
3321 if (host_integerp(expr_tree, 0))
3323 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3324 std::string s;
3325 Lex::append_char(intval, true, &s, this->location());
3326 Expression* se = Expression::make_string(s, this->location());
3327 return se->get_tree(context);
3330 static tree int_to_string_fndecl;
3331 ret = Gogo::call_builtin(&int_to_string_fndecl,
3332 this->location(),
3333 "__go_int_to_string",
3335 type_tree,
3336 integer_type_node,
3337 fold_convert(integer_type_node, expr_tree));
3339 else if (type->is_string_type()
3340 && (expr_type->array_type() != NULL
3341 || (expr_type->points_to() != NULL
3342 && expr_type->points_to()->array_type() != NULL)))
3344 Type* t = expr_type;
3345 if (t->points_to() != NULL)
3347 t = t->points_to();
3348 expr_tree = build_fold_indirect_ref(expr_tree);
3350 if (!DECL_P(expr_tree))
3351 expr_tree = save_expr(expr_tree);
3352 Array_type* a = t->array_type();
3353 Type* e = a->element_type()->forwarded();
3354 gcc_assert(e->integer_type() != NULL);
3355 tree valptr = fold_convert(const_ptr_type_node,
3356 a->value_pointer_tree(gogo, expr_tree));
3357 tree len = a->length_tree(gogo, expr_tree);
3358 len = fold_convert_loc(this->location(), size_type_node, len);
3359 if (e->integer_type()->is_unsigned()
3360 && e->integer_type()->bits() == 8)
3362 static tree byte_array_to_string_fndecl;
3363 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3364 this->location(),
3365 "__go_byte_array_to_string",
3367 type_tree,
3368 const_ptr_type_node,
3369 valptr,
3370 size_type_node,
3371 len);
3373 else
3375 gcc_assert(e == Type::lookup_integer_type("int"));
3376 static tree int_array_to_string_fndecl;
3377 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3378 this->location(),
3379 "__go_int_array_to_string",
3381 type_tree,
3382 const_ptr_type_node,
3383 valptr,
3384 size_type_node,
3385 len);
3388 else if (type->is_open_array_type() && expr_type->is_string_type())
3390 Type* e = type->array_type()->element_type()->forwarded();
3391 gcc_assert(e->integer_type() != NULL);
3392 if (e->integer_type()->is_unsigned()
3393 && e->integer_type()->bits() == 8)
3395 static tree string_to_byte_array_fndecl;
3396 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3397 this->location(),
3398 "__go_string_to_byte_array",
3400 type_tree,
3401 TREE_TYPE(expr_tree),
3402 expr_tree);
3404 else
3406 gcc_assert(e == Type::lookup_integer_type("int"));
3407 static tree string_to_int_array_fndecl;
3408 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3409 this->location(),
3410 "__go_string_to_int_array",
3412 type_tree,
3413 TREE_TYPE(expr_tree),
3414 expr_tree);
3417 else if ((type->is_unsafe_pointer_type()
3418 && expr_type->points_to() != NULL)
3419 || (expr_type->is_unsafe_pointer_type()
3420 && type->points_to() != NULL))
3421 ret = fold_convert(type_tree, expr_tree);
3422 else if (type->is_unsafe_pointer_type()
3423 && expr_type->integer_type() != NULL)
3424 ret = convert_to_pointer(type_tree, expr_tree);
3425 else if (this->may_convert_function_types_
3426 && type->function_type() != NULL
3427 && expr_type->function_type() != NULL)
3428 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3429 else
3430 ret = Expression::convert_for_assignment(context, type, expr_type,
3431 expr_tree, this->location());
3433 return ret;
3436 // Output a type conversion in a constant expression.
3438 void
3439 Type_conversion_expression::do_export(Export* exp) const
3441 exp->write_c_string("convert(");
3442 exp->write_type(this->type_);
3443 exp->write_c_string(", ");
3444 this->expr_->export_expression(exp);
3445 exp->write_c_string(")");
3448 // Import a type conversion or a struct construction.
3450 Expression*
3451 Type_conversion_expression::do_import(Import* imp)
3453 imp->require_c_string("convert(");
3454 Type* type = imp->read_type();
3455 imp->require_c_string(", ");
3456 Expression* val = Expression::import_expression(imp);
3457 imp->require_c_string(")");
3458 return Expression::make_cast(type, val, imp->location());
3461 // Make a type cast expression.
3463 Expression*
3464 Expression::make_cast(Type* type, Expression* val, source_location location)
3466 if (type->is_error_type() || val->is_error_expression())
3467 return Expression::make_error(location);
3468 return new Type_conversion_expression(type, val, location);
3471 // Unary expressions.
3473 class Unary_expression : public Expression
3475 public:
3476 Unary_expression(Operator op, Expression* expr, source_location location)
3477 : Expression(EXPRESSION_UNARY, location),
3478 op_(op), escapes_(true), expr_(expr)
3481 // Return the operator.
3482 Operator
3483 op() const
3484 { return this->op_; }
3486 // Return the operand.
3487 Expression*
3488 operand() const
3489 { return this->expr_; }
3491 // Record that an address expression does not escape.
3492 void
3493 set_does_not_escape()
3495 gcc_assert(this->op_ == OPERATOR_AND);
3496 this->escapes_ = false;
3499 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3500 // could be done, false if not.
3501 static bool
3502 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3503 source_location);
3505 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3506 // could be done, false if not.
3507 static bool
3508 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3510 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3511 // true if this could be done, false if not.
3512 static bool
3513 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3514 mpfr_t imag);
3516 static Expression*
3517 do_import(Import*);
3519 protected:
3521 do_traverse(Traverse* traverse)
3522 { return Expression::traverse(&this->expr_, traverse); }
3524 Expression*
3525 do_lower(Gogo*, Named_object*, int);
3527 bool
3528 do_is_constant() const;
3530 bool
3531 do_integer_constant_value(bool, mpz_t, Type**) const;
3533 bool
3534 do_float_constant_value(mpfr_t, Type**) const;
3536 bool
3537 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3539 Type*
3540 do_type();
3542 void
3543 do_determine_type(const Type_context*);
3545 void
3546 do_check_types(Gogo*);
3548 Expression*
3549 do_copy()
3551 return Expression::make_unary(this->op_, this->expr_->copy(),
3552 this->location());
3555 bool
3556 do_is_addressable() const
3557 { return this->op_ == OPERATOR_MULT; }
3559 tree
3560 do_get_tree(Translate_context*);
3562 void
3563 do_export(Export*) const;
3565 private:
3566 // The unary operator to apply.
3567 Operator op_;
3568 // Normally true. False if this is an address expression which does
3569 // not escape the current function.
3570 bool escapes_;
3571 // The operand.
3572 Expression* expr_;
3575 // If we are taking the address of a composite literal, and the
3576 // contents are not constant, then we want to make a heap composite
3577 // instead.
3579 Expression*
3580 Unary_expression::do_lower(Gogo*, Named_object*, int)
3582 source_location loc = this->location();
3583 Operator op = this->op_;
3584 Expression* expr = this->expr_;
3586 if (op == OPERATOR_MULT && expr->is_type_expression())
3587 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3589 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3590 // moving x to the heap. FIXME: Is it worth doing a real escape
3591 // analysis here? This case is found in math/unsafe.go and is
3592 // therefore worth special casing.
3593 if (op == OPERATOR_MULT)
3595 Expression* e = expr;
3596 while (e->classification() == EXPRESSION_CONVERSION)
3598 Type_conversion_expression* te
3599 = static_cast<Type_conversion_expression*>(e);
3600 e = te->expr();
3603 if (e->classification() == EXPRESSION_UNARY)
3605 Unary_expression* ue = static_cast<Unary_expression*>(e);
3606 if (ue->op_ == OPERATOR_AND)
3608 if (e == expr)
3610 // *&x == x.
3611 return ue->expr_;
3613 ue->set_does_not_escape();
3618 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3619 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3621 Expression* ret = NULL;
3623 mpz_t eval;
3624 mpz_init(eval);
3625 Type* etype;
3626 if (expr->integer_constant_value(false, eval, &etype))
3628 mpz_t val;
3629 mpz_init(val);
3630 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3631 ret = Expression::make_integer(&val, etype, loc);
3632 mpz_clear(val);
3634 mpz_clear(eval);
3635 if (ret != NULL)
3636 return ret;
3638 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3640 mpfr_t fval;
3641 mpfr_init(fval);
3642 Type* ftype;
3643 if (expr->float_constant_value(fval, &ftype))
3645 mpfr_t val;
3646 mpfr_init(val);
3647 if (Unary_expression::eval_float(op, fval, val))
3648 ret = Expression::make_float(&val, ftype, loc);
3649 mpfr_clear(val);
3651 if (ret != NULL)
3653 mpfr_clear(fval);
3654 return ret;
3657 mpfr_t ival;
3658 mpfr_init(ival);
3659 if (expr->complex_constant_value(fval, ival, &ftype))
3661 mpfr_t real;
3662 mpfr_t imag;
3663 mpfr_init(real);
3664 mpfr_init(imag);
3665 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3666 ret = Expression::make_complex(&real, &imag, ftype, loc);
3667 mpfr_clear(real);
3668 mpfr_clear(imag);
3670 mpfr_clear(ival);
3671 mpfr_clear(fval);
3672 if (ret != NULL)
3673 return ret;
3677 return this;
3680 // Return whether a unary expression is a constant.
3682 bool
3683 Unary_expression::do_is_constant() const
3685 if (this->op_ == OPERATOR_MULT)
3687 // Indirecting through a pointer is only constant if the object
3688 // to which the expression points is constant, but we currently
3689 // have no way to determine that.
3690 return false;
3692 else if (this->op_ == OPERATOR_AND)
3694 // Taking the address of a variable is constant if it is a
3695 // global variable, not constant otherwise. In other cases
3696 // taking the address is probably not a constant.
3697 Var_expression* ve = this->expr_->var_expression();
3698 if (ve != NULL)
3700 Named_object* no = ve->named_object();
3701 return no->is_variable() && no->var_value()->is_global();
3703 return false;
3705 else
3706 return this->expr_->is_constant();
3709 // Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3710 // UVAL, if known; it may be NULL. Return true if this could be done,
3711 // false if not.
3713 bool
3714 Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3715 source_location location)
3717 switch (op)
3719 case OPERATOR_PLUS:
3720 mpz_set(val, uval);
3721 return true;
3722 case OPERATOR_MINUS:
3723 mpz_neg(val, uval);
3724 return Integer_expression::check_constant(val, utype, location);
3725 case OPERATOR_NOT:
3726 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3727 return true;
3728 case OPERATOR_XOR:
3729 if (utype == NULL
3730 || utype->integer_type() == NULL
3731 || utype->integer_type()->is_abstract())
3732 mpz_com(val, uval);
3733 else
3735 // The number of HOST_WIDE_INTs that it takes to represent
3736 // UVAL.
3737 size_t count = ((mpz_sizeinbase(uval, 2)
3738 + HOST_BITS_PER_WIDE_INT
3739 - 1)
3740 / HOST_BITS_PER_WIDE_INT);
3742 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3743 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3745 size_t ecount;
3746 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3747 gcc_assert(ecount <= count);
3749 // Trim down to the number of words required by the type.
3750 size_t obits = utype->integer_type()->bits();
3751 if (!utype->integer_type()->is_unsigned())
3752 ++obits;
3753 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3754 / HOST_BITS_PER_WIDE_INT);
3755 gcc_assert(ocount <= ocount);
3757 for (size_t i = 0; i < ocount; ++i)
3758 phwi[i] = ~phwi[i];
3760 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3761 if (clearbits != 0)
3762 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3763 >> clearbits);
3765 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3767 delete[] phwi;
3769 return Integer_expression::check_constant(val, utype, location);
3770 case OPERATOR_AND:
3771 case OPERATOR_MULT:
3772 return false;
3773 default:
3774 gcc_unreachable();
3778 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3779 // could be done, false if not.
3781 bool
3782 Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3784 switch (op)
3786 case OPERATOR_PLUS:
3787 mpfr_set(val, uval, GMP_RNDN);
3788 return true;
3789 case OPERATOR_MINUS:
3790 mpfr_neg(val, uval, GMP_RNDN);
3791 return true;
3792 case OPERATOR_NOT:
3793 case OPERATOR_XOR:
3794 case OPERATOR_AND:
3795 case OPERATOR_MULT:
3796 return false;
3797 default:
3798 gcc_unreachable();
3802 // Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3803 // if this could be done, false if not.
3805 bool
3806 Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3807 mpfr_t real, mpfr_t imag)
3809 switch (op)
3811 case OPERATOR_PLUS:
3812 mpfr_set(real, rval, GMP_RNDN);
3813 mpfr_set(imag, ival, GMP_RNDN);
3814 return true;
3815 case OPERATOR_MINUS:
3816 mpfr_neg(real, rval, GMP_RNDN);
3817 mpfr_neg(imag, ival, GMP_RNDN);
3818 return true;
3819 case OPERATOR_NOT:
3820 case OPERATOR_XOR:
3821 case OPERATOR_AND:
3822 case OPERATOR_MULT:
3823 return false;
3824 default:
3825 gcc_unreachable();
3829 // Return the integral constant value of a unary expression, if it has one.
3831 bool
3832 Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3833 Type** ptype) const
3835 mpz_t uval;
3836 mpz_init(uval);
3837 bool ret;
3838 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3839 ret = false;
3840 else
3841 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3842 this->location());
3843 mpz_clear(uval);
3844 return ret;
3847 // Return the floating point constant value of a unary expression, if
3848 // it has one.
3850 bool
3851 Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3853 mpfr_t uval;
3854 mpfr_init(uval);
3855 bool ret;
3856 if (!this->expr_->float_constant_value(uval, ptype))
3857 ret = false;
3858 else
3859 ret = Unary_expression::eval_float(this->op_, uval, val);
3860 mpfr_clear(uval);
3861 return ret;
3864 // Return the complex constant value of a unary expression, if it has
3865 // one.
3867 bool
3868 Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3869 Type** ptype) const
3871 mpfr_t rval;
3872 mpfr_t ival;
3873 mpfr_init(rval);
3874 mpfr_init(ival);
3875 bool ret;
3876 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3877 ret = false;
3878 else
3879 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3880 mpfr_clear(rval);
3881 mpfr_clear(ival);
3882 return ret;
3885 // Return the type of a unary expression.
3887 Type*
3888 Unary_expression::do_type()
3890 switch (this->op_)
3892 case OPERATOR_PLUS:
3893 case OPERATOR_MINUS:
3894 case OPERATOR_NOT:
3895 case OPERATOR_XOR:
3896 return this->expr_->type();
3898 case OPERATOR_AND:
3899 return Type::make_pointer_type(this->expr_->type());
3901 case OPERATOR_MULT:
3903 Type* subtype = this->expr_->type();
3904 Type* points_to = subtype->points_to();
3905 if (points_to == NULL)
3906 return Type::make_error_type();
3907 return points_to;
3910 default:
3911 gcc_unreachable();
3915 // Determine abstract types for a unary expression.
3917 void
3918 Unary_expression::do_determine_type(const Type_context* context)
3920 switch (this->op_)
3922 case OPERATOR_PLUS:
3923 case OPERATOR_MINUS:
3924 case OPERATOR_NOT:
3925 case OPERATOR_XOR:
3926 this->expr_->determine_type(context);
3927 break;
3929 case OPERATOR_AND:
3930 // Taking the address of something.
3932 Type* subtype = (context->type == NULL
3933 ? NULL
3934 : context->type->points_to());
3935 Type_context subcontext(subtype, false);
3936 this->expr_->determine_type(&subcontext);
3938 break;
3940 case OPERATOR_MULT:
3941 // Indirecting through a pointer.
3943 Type* subtype = (context->type == NULL
3944 ? NULL
3945 : Type::make_pointer_type(context->type));
3946 Type_context subcontext(subtype, false);
3947 this->expr_->determine_type(&subcontext);
3949 break;
3951 default:
3952 gcc_unreachable();
3956 // Check types for a unary expression.
3958 void
3959 Unary_expression::do_check_types(Gogo*)
3961 Type* type = this->expr_->type();
3962 if (type->is_error_type())
3964 this->set_is_error();
3965 return;
3968 switch (this->op_)
3970 case OPERATOR_PLUS:
3971 case OPERATOR_MINUS:
3972 if (type->integer_type() == NULL
3973 && type->float_type() == NULL
3974 && type->complex_type() == NULL)
3975 this->report_error(_("expected numeric type"));
3976 break;
3978 case OPERATOR_NOT:
3979 case OPERATOR_XOR:
3980 if (type->integer_type() == NULL
3981 && !type->is_boolean_type())
3982 this->report_error(_("expected integer or boolean type"));
3983 break;
3985 case OPERATOR_AND:
3986 if (!this->expr_->is_addressable())
3987 this->report_error(_("invalid operand for unary %<&%>"));
3988 else
3989 this->expr_->address_taken(this->escapes_);
3990 break;
3992 case OPERATOR_MULT:
3993 // Indirecting through a pointer.
3994 if (type->points_to() == NULL)
3995 this->report_error(_("expected pointer"));
3996 break;
3998 default:
3999 gcc_unreachable();
4003 // Get a tree for a unary expression.
4005 tree
4006 Unary_expression::do_get_tree(Translate_context* context)
4008 tree expr = this->expr_->get_tree(context);
4009 if (expr == error_mark_node)
4010 return error_mark_node;
4012 source_location loc = this->location();
4013 switch (this->op_)
4015 case OPERATOR_PLUS:
4016 return expr;
4018 case OPERATOR_MINUS:
4020 tree type = TREE_TYPE(expr);
4021 tree compute_type = excess_precision_type(type);
4022 if (compute_type != NULL_TREE)
4023 expr = ::convert(compute_type, expr);
4024 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
4025 (compute_type != NULL_TREE
4026 ? compute_type
4027 : type),
4028 expr);
4029 if (compute_type != NULL_TREE)
4030 ret = ::convert(type, ret);
4031 return ret;
4034 case OPERATOR_NOT:
4035 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
4036 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
4037 else
4038 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
4039 build_int_cst(TREE_TYPE(expr), 0));
4041 case OPERATOR_XOR:
4042 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
4044 case OPERATOR_AND:
4045 // We should not see a non-constant constructor here; cases
4046 // where we would see one should have been moved onto the heap
4047 // at parse time. Taking the address of a nonconstant
4048 // constructor will not do what the programmer expects.
4049 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4050 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
4052 // Build a decl for a constant constructor.
4053 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4055 tree decl = build_decl(this->location(), VAR_DECL,
4056 create_tmp_var_name("C"), TREE_TYPE(expr));
4057 DECL_EXTERNAL(decl) = 0;
4058 TREE_PUBLIC(decl) = 0;
4059 TREE_READONLY(decl) = 1;
4060 TREE_CONSTANT(decl) = 1;
4061 TREE_STATIC(decl) = 1;
4062 TREE_ADDRESSABLE(decl) = 1;
4063 DECL_ARTIFICIAL(decl) = 1;
4064 DECL_INITIAL(decl) = expr;
4065 rest_of_decl_compilation(decl, 1, 0);
4066 expr = decl;
4069 return build_fold_addr_expr_loc(loc, expr);
4071 case OPERATOR_MULT:
4073 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
4075 // If we are dereferencing the pointer to a large struct, we
4076 // need to check for nil. We don't bother to check for small
4077 // structs because we expect the system to crash on a nil
4078 // pointer dereference.
4079 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
4080 if (s == -1 || s >= 4096)
4082 if (!DECL_P(expr))
4083 expr = save_expr(expr);
4084 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
4085 expr,
4086 fold_convert(TREE_TYPE(expr),
4087 null_pointer_node));
4088 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4089 loc);
4090 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
4091 build3(COND_EXPR, void_type_node,
4092 compare, crash, NULL_TREE),
4093 expr);
4096 // If the type of EXPR is a recursive pointer type, then we
4097 // need to insert a cast before indirecting.
4098 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
4100 Type* pt = this->expr_->type()->points_to();
4101 tree ind = pt->get_tree(context->gogo());
4102 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
4105 return build_fold_indirect_ref_loc(loc, expr);
4108 default:
4109 gcc_unreachable();
4113 // Export a unary expression.
4115 void
4116 Unary_expression::do_export(Export* exp) const
4118 switch (this->op_)
4120 case OPERATOR_PLUS:
4121 exp->write_c_string("+ ");
4122 break;
4123 case OPERATOR_MINUS:
4124 exp->write_c_string("- ");
4125 break;
4126 case OPERATOR_NOT:
4127 exp->write_c_string("! ");
4128 break;
4129 case OPERATOR_XOR:
4130 exp->write_c_string("^ ");
4131 break;
4132 case OPERATOR_AND:
4133 case OPERATOR_MULT:
4134 default:
4135 gcc_unreachable();
4137 this->expr_->export_expression(exp);
4140 // Import a unary expression.
4142 Expression*
4143 Unary_expression::do_import(Import* imp)
4145 Operator op;
4146 switch (imp->get_char())
4148 case '+':
4149 op = OPERATOR_PLUS;
4150 break;
4151 case '-':
4152 op = OPERATOR_MINUS;
4153 break;
4154 case '!':
4155 op = OPERATOR_NOT;
4156 break;
4157 case '^':
4158 op = OPERATOR_XOR;
4159 break;
4160 default:
4161 gcc_unreachable();
4163 imp->require_c_string(" ");
4164 Expression* expr = Expression::import_expression(imp);
4165 return Expression::make_unary(op, expr, imp->location());
4168 // Make a unary expression.
4170 Expression*
4171 Expression::make_unary(Operator op, Expression* expr, source_location location)
4173 return new Unary_expression(op, expr, location);
4176 // If this is an indirection through a pointer, return the expression
4177 // being pointed through. Otherwise return this.
4179 Expression*
4180 Expression::deref()
4182 if (this->classification_ == EXPRESSION_UNARY)
4184 Unary_expression* ue = static_cast<Unary_expression*>(this);
4185 if (ue->op() == OPERATOR_MULT)
4186 return ue->operand();
4188 return this;
4191 // Class Binary_expression.
4193 // Traversal.
4196 Binary_expression::do_traverse(Traverse* traverse)
4198 int t = Expression::traverse(&this->left_, traverse);
4199 if (t == TRAVERSE_EXIT)
4200 return TRAVERSE_EXIT;
4201 return Expression::traverse(&this->right_, traverse);
4204 // Compare integer constants according to OP.
4206 bool
4207 Binary_expression::compare_integer(Operator op, mpz_t left_val,
4208 mpz_t right_val)
4210 int i = mpz_cmp(left_val, right_val);
4211 switch (op)
4213 case OPERATOR_EQEQ:
4214 return i == 0;
4215 case OPERATOR_NOTEQ:
4216 return i != 0;
4217 case OPERATOR_LT:
4218 return i < 0;
4219 case OPERATOR_LE:
4220 return i <= 0;
4221 case OPERATOR_GT:
4222 return i > 0;
4223 case OPERATOR_GE:
4224 return i >= 0;
4225 default:
4226 gcc_unreachable();
4230 // Compare floating point constants according to OP.
4232 bool
4233 Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4234 mpfr_t right_val)
4236 int i;
4237 if (type == NULL)
4238 i = mpfr_cmp(left_val, right_val);
4239 else
4241 mpfr_t lv;
4242 mpfr_init_set(lv, left_val, GMP_RNDN);
4243 mpfr_t rv;
4244 mpfr_init_set(rv, right_val, GMP_RNDN);
4245 Float_expression::constrain_float(lv, type);
4246 Float_expression::constrain_float(rv, type);
4247 i = mpfr_cmp(lv, rv);
4248 mpfr_clear(lv);
4249 mpfr_clear(rv);
4251 switch (op)
4253 case OPERATOR_EQEQ:
4254 return i == 0;
4255 case OPERATOR_NOTEQ:
4256 return i != 0;
4257 case OPERATOR_LT:
4258 return i < 0;
4259 case OPERATOR_LE:
4260 return i <= 0;
4261 case OPERATOR_GT:
4262 return i > 0;
4263 case OPERATOR_GE:
4264 return i >= 0;
4265 default:
4266 gcc_unreachable();
4270 // Compare complex constants according to OP. Complex numbers may
4271 // only be compared for equality.
4273 bool
4274 Binary_expression::compare_complex(Operator op, Type* type,
4275 mpfr_t left_real, mpfr_t left_imag,
4276 mpfr_t right_real, mpfr_t right_imag)
4278 bool is_equal;
4279 if (type == NULL)
4280 is_equal = (mpfr_cmp(left_real, right_real) == 0
4281 && mpfr_cmp(left_imag, right_imag) == 0);
4282 else
4284 mpfr_t lr;
4285 mpfr_t li;
4286 mpfr_init_set(lr, left_real, GMP_RNDN);
4287 mpfr_init_set(li, left_imag, GMP_RNDN);
4288 mpfr_t rr;
4289 mpfr_t ri;
4290 mpfr_init_set(rr, right_real, GMP_RNDN);
4291 mpfr_init_set(ri, right_imag, GMP_RNDN);
4292 Complex_expression::constrain_complex(lr, li, type);
4293 Complex_expression::constrain_complex(rr, ri, type);
4294 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4295 mpfr_clear(lr);
4296 mpfr_clear(li);
4297 mpfr_clear(rr);
4298 mpfr_clear(ri);
4300 switch (op)
4302 case OPERATOR_EQEQ:
4303 return is_equal;
4304 case OPERATOR_NOTEQ:
4305 return !is_equal;
4306 default:
4307 gcc_unreachable();
4311 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4312 // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4313 // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4314 // this could be done, false if not.
4316 bool
4317 Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4318 Type* right_type, mpz_t right_val,
4319 source_location location, mpz_t val)
4321 bool is_shift_op = false;
4322 switch (op)
4324 case OPERATOR_OROR:
4325 case OPERATOR_ANDAND:
4326 case OPERATOR_EQEQ:
4327 case OPERATOR_NOTEQ:
4328 case OPERATOR_LT:
4329 case OPERATOR_LE:
4330 case OPERATOR_GT:
4331 case OPERATOR_GE:
4332 // These return boolean values. We should probably handle them
4333 // anyhow in case a type conversion is used on the result.
4334 return false;
4335 case OPERATOR_PLUS:
4336 mpz_add(val, left_val, right_val);
4337 break;
4338 case OPERATOR_MINUS:
4339 mpz_sub(val, left_val, right_val);
4340 break;
4341 case OPERATOR_OR:
4342 mpz_ior(val, left_val, right_val);
4343 break;
4344 case OPERATOR_XOR:
4345 mpz_xor(val, left_val, right_val);
4346 break;
4347 case OPERATOR_MULT:
4348 mpz_mul(val, left_val, right_val);
4349 break;
4350 case OPERATOR_DIV:
4351 if (mpz_sgn(right_val) != 0)
4352 mpz_tdiv_q(val, left_val, right_val);
4353 else
4355 error_at(location, "division by zero");
4356 mpz_set_ui(val, 0);
4357 return true;
4359 break;
4360 case OPERATOR_MOD:
4361 if (mpz_sgn(right_val) != 0)
4362 mpz_tdiv_r(val, left_val, right_val);
4363 else
4365 error_at(location, "division by zero");
4366 mpz_set_ui(val, 0);
4367 return true;
4369 break;
4370 case OPERATOR_LSHIFT:
4372 unsigned long shift = mpz_get_ui(right_val);
4373 if (mpz_cmp_ui(right_val, shift) != 0)
4375 error_at(location, "shift count overflow");
4376 mpz_set_ui(val, 0);
4377 return true;
4379 mpz_mul_2exp(val, left_val, shift);
4380 is_shift_op = true;
4381 break;
4383 break;
4384 case OPERATOR_RSHIFT:
4386 unsigned long shift = mpz_get_ui(right_val);
4387 if (mpz_cmp_ui(right_val, shift) != 0)
4389 error_at(location, "shift count overflow");
4390 mpz_set_ui(val, 0);
4391 return true;
4393 if (mpz_cmp_ui(left_val, 0) >= 0)
4394 mpz_tdiv_q_2exp(val, left_val, shift);
4395 else
4396 mpz_fdiv_q_2exp(val, left_val, shift);
4397 is_shift_op = true;
4398 break;
4400 break;
4401 case OPERATOR_AND:
4402 mpz_and(val, left_val, right_val);
4403 break;
4404 case OPERATOR_BITCLEAR:
4406 mpz_t tval;
4407 mpz_init(tval);
4408 mpz_com(tval, right_val);
4409 mpz_and(val, left_val, tval);
4410 mpz_clear(tval);
4412 break;
4413 default:
4414 gcc_unreachable();
4417 Type* type = left_type;
4418 if (!is_shift_op)
4420 if (type == NULL)
4421 type = right_type;
4422 else if (type != right_type && right_type != NULL)
4424 if (type->is_abstract())
4425 type = right_type;
4426 else if (!right_type->is_abstract())
4428 // This look like a type error which should be diagnosed
4429 // elsewhere. Don't do anything here, to avoid an
4430 // unhelpful chain of error messages.
4431 return true;
4436 if (type != NULL && !type->is_abstract())
4438 // We have to check the operands too, as we have implicitly
4439 // coerced them to TYPE.
4440 if ((type != left_type
4441 && !Integer_expression::check_constant(left_val, type, location))
4442 || (!is_shift_op
4443 && type != right_type
4444 && !Integer_expression::check_constant(right_val, type,
4445 location))
4446 || !Integer_expression::check_constant(val, type, location))
4447 mpz_set_ui(val, 0);
4450 return true;
4453 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4454 // Return true if this could be done, false if not.
4456 bool
4457 Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4458 Type* right_type, mpfr_t right_val,
4459 mpfr_t val, source_location location)
4461 switch (op)
4463 case OPERATOR_OROR:
4464 case OPERATOR_ANDAND:
4465 case OPERATOR_EQEQ:
4466 case OPERATOR_NOTEQ:
4467 case OPERATOR_LT:
4468 case OPERATOR_LE:
4469 case OPERATOR_GT:
4470 case OPERATOR_GE:
4471 // These return boolean values. We should probably handle them
4472 // anyhow in case a type conversion is used on the result.
4473 return false;
4474 case OPERATOR_PLUS:
4475 mpfr_add(val, left_val, right_val, GMP_RNDN);
4476 break;
4477 case OPERATOR_MINUS:
4478 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4479 break;
4480 case OPERATOR_OR:
4481 case OPERATOR_XOR:
4482 case OPERATOR_AND:
4483 case OPERATOR_BITCLEAR:
4484 return false;
4485 case OPERATOR_MULT:
4486 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4487 break;
4488 case OPERATOR_DIV:
4489 if (mpfr_zero_p(right_val))
4490 error_at(location, "division by zero");
4491 mpfr_div(val, left_val, right_val, GMP_RNDN);
4492 break;
4493 case OPERATOR_MOD:
4494 return false;
4495 case OPERATOR_LSHIFT:
4496 case OPERATOR_RSHIFT:
4497 return false;
4498 default:
4499 gcc_unreachable();
4502 Type* type = left_type;
4503 if (type == NULL)
4504 type = right_type;
4505 else if (type != right_type && right_type != NULL)
4507 if (type->is_abstract())
4508 type = right_type;
4509 else if (!right_type->is_abstract())
4511 // This looks like a type error which should be diagnosed
4512 // elsewhere. Don't do anything here, to avoid an unhelpful
4513 // chain of error messages.
4514 return true;
4518 if (type != NULL && !type->is_abstract())
4520 if ((type != left_type
4521 && !Float_expression::check_constant(left_val, type, location))
4522 || (type != right_type
4523 && !Float_expression::check_constant(right_val, type,
4524 location))
4525 || !Float_expression::check_constant(val, type, location))
4526 mpfr_set_ui(val, 0, GMP_RNDN);
4529 return true;
4532 // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4533 // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4534 // could be done, false if not.
4536 bool
4537 Binary_expression::eval_complex(Operator op, Type* left_type,
4538 mpfr_t left_real, mpfr_t left_imag,
4539 Type *right_type,
4540 mpfr_t right_real, mpfr_t right_imag,
4541 mpfr_t real, mpfr_t imag,
4542 source_location location)
4544 switch (op)
4546 case OPERATOR_OROR:
4547 case OPERATOR_ANDAND:
4548 case OPERATOR_EQEQ:
4549 case OPERATOR_NOTEQ:
4550 case OPERATOR_LT:
4551 case OPERATOR_LE:
4552 case OPERATOR_GT:
4553 case OPERATOR_GE:
4554 // These return boolean values and must be handled differently.
4555 return false;
4556 case OPERATOR_PLUS:
4557 mpfr_add(real, left_real, right_real, GMP_RNDN);
4558 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4559 break;
4560 case OPERATOR_MINUS:
4561 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4562 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4563 break;
4564 case OPERATOR_OR:
4565 case OPERATOR_XOR:
4566 case OPERATOR_AND:
4567 case OPERATOR_BITCLEAR:
4568 return false;
4569 case OPERATOR_MULT:
4571 // You might think that multiplying two complex numbers would
4572 // be simple, and you would be right, until you start to think
4573 // about getting the right answer for infinity. If one
4574 // operand here is infinity and the other is anything other
4575 // than zero or NaN, then we are going to wind up subtracting
4576 // two infinity values. That will give us a NaN, but the
4577 // correct answer is infinity.
4579 mpfr_t lrrr;
4580 mpfr_init(lrrr);
4581 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4583 mpfr_t lrri;
4584 mpfr_init(lrri);
4585 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4587 mpfr_t lirr;
4588 mpfr_init(lirr);
4589 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4591 mpfr_t liri;
4592 mpfr_init(liri);
4593 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4595 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4596 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4598 // If we get NaN on both sides, check whether it should really
4599 // be infinity. The rule is that if either side of the
4600 // complex number is infinity, then the whole value is
4601 // infinity, even if the other side is NaN. So the only case
4602 // we have to fix is the one in which both sides are NaN.
4603 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4604 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4605 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4607 bool is_infinity = false;
4609 mpfr_t lr;
4610 mpfr_t li;
4611 mpfr_init_set(lr, left_real, GMP_RNDN);
4612 mpfr_init_set(li, left_imag, GMP_RNDN);
4614 mpfr_t rr;
4615 mpfr_t ri;
4616 mpfr_init_set(rr, right_real, GMP_RNDN);
4617 mpfr_init_set(ri, right_imag, GMP_RNDN);
4619 // If the left side is infinity, then the result is
4620 // infinity.
4621 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4623 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4624 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4625 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4626 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4627 if (mpfr_nan_p(rr))
4629 mpfr_set_ui(rr, 0, GMP_RNDN);
4630 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4632 if (mpfr_nan_p(ri))
4634 mpfr_set_ui(ri, 0, GMP_RNDN);
4635 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4637 is_infinity = true;
4640 // If the right side is infinity, then the result is
4641 // infinity.
4642 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4644 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4645 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4646 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4647 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4648 if (mpfr_nan_p(lr))
4650 mpfr_set_ui(lr, 0, GMP_RNDN);
4651 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4653 if (mpfr_nan_p(li))
4655 mpfr_set_ui(li, 0, GMP_RNDN);
4656 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4658 is_infinity = true;
4661 // If we got an overflow in the intermediate computations,
4662 // then the result is infinity.
4663 if (!is_infinity
4664 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4665 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4667 if (mpfr_nan_p(lr))
4669 mpfr_set_ui(lr, 0, GMP_RNDN);
4670 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4672 if (mpfr_nan_p(li))
4674 mpfr_set_ui(li, 0, GMP_RNDN);
4675 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4677 if (mpfr_nan_p(rr))
4679 mpfr_set_ui(rr, 0, GMP_RNDN);
4680 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4682 if (mpfr_nan_p(ri))
4684 mpfr_set_ui(ri, 0, GMP_RNDN);
4685 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4687 is_infinity = true;
4690 if (is_infinity)
4692 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4693 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4694 mpfr_mul(lirr, li, rr, GMP_RNDN);
4695 mpfr_mul(liri, li, ri, GMP_RNDN);
4696 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4697 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4698 mpfr_set_inf(real, mpfr_sgn(real));
4699 mpfr_set_inf(imag, mpfr_sgn(imag));
4702 mpfr_clear(lr);
4703 mpfr_clear(li);
4704 mpfr_clear(rr);
4705 mpfr_clear(ri);
4708 mpfr_clear(lrrr);
4709 mpfr_clear(lrri);
4710 mpfr_clear(lirr);
4711 mpfr_clear(liri);
4713 break;
4714 case OPERATOR_DIV:
4716 // For complex division we want to avoid having an
4717 // intermediate overflow turn the whole result in a NaN. We
4718 // scale the values to try to avoid this.
4720 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4721 error_at(location, "division by zero");
4723 mpfr_t rra;
4724 mpfr_t ria;
4725 mpfr_init(rra);
4726 mpfr_init(ria);
4727 mpfr_abs(rra, right_real, GMP_RNDN);
4728 mpfr_abs(ria, right_imag, GMP_RNDN);
4729 mpfr_t t;
4730 mpfr_init(t);
4731 mpfr_max(t, rra, ria, GMP_RNDN);
4733 mpfr_t rr;
4734 mpfr_t ri;
4735 mpfr_init_set(rr, right_real, GMP_RNDN);
4736 mpfr_init_set(ri, right_imag, GMP_RNDN);
4737 long ilogbw = 0;
4738 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4740 ilogbw = mpfr_get_exp(t);
4741 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4742 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4745 mpfr_t denom;
4746 mpfr_init(denom);
4747 mpfr_mul(denom, rr, rr, GMP_RNDN);
4748 mpfr_mul(t, ri, ri, GMP_RNDN);
4749 mpfr_add(denom, denom, t, GMP_RNDN);
4751 mpfr_mul(real, left_real, rr, GMP_RNDN);
4752 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4753 mpfr_add(real, real, t, GMP_RNDN);
4754 mpfr_div(real, real, denom, GMP_RNDN);
4755 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4757 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4758 mpfr_mul(t, left_real, ri, GMP_RNDN);
4759 mpfr_sub(imag, imag, t, GMP_RNDN);
4760 mpfr_div(imag, imag, denom, GMP_RNDN);
4761 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4763 // If we wind up with NaN on both sides, check whether we
4764 // should really have infinity. The rule is that if either
4765 // side of the complex number is infinity, then the whole
4766 // value is infinity, even if the other side is NaN. So the
4767 // only case we have to fix is the one in which both sides are
4768 // NaN.
4769 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4770 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4771 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4773 if (mpfr_zero_p(denom))
4775 mpfr_set_inf(real, mpfr_sgn(rr));
4776 mpfr_mul(real, real, left_real, GMP_RNDN);
4777 mpfr_set_inf(imag, mpfr_sgn(rr));
4778 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4780 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4781 && mpfr_number_p(rr) && mpfr_number_p(ri))
4783 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4784 mpfr_copysign(t, t, left_real, GMP_RNDN);
4786 mpfr_t t2;
4787 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4788 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4790 mpfr_t t3;
4791 mpfr_init(t3);
4792 mpfr_mul(t3, t, rr, GMP_RNDN);
4794 mpfr_t t4;
4795 mpfr_init(t4);
4796 mpfr_mul(t4, t2, ri, GMP_RNDN);
4798 mpfr_add(t3, t3, t4, GMP_RNDN);
4799 mpfr_set_inf(real, mpfr_sgn(t3));
4801 mpfr_mul(t3, t2, rr, GMP_RNDN);
4802 mpfr_mul(t4, t, ri, GMP_RNDN);
4803 mpfr_sub(t3, t3, t4, GMP_RNDN);
4804 mpfr_set_inf(imag, mpfr_sgn(t3));
4806 mpfr_clear(t2);
4807 mpfr_clear(t3);
4808 mpfr_clear(t4);
4810 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4811 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4813 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4814 mpfr_copysign(t, t, rr, GMP_RNDN);
4816 mpfr_t t2;
4817 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4818 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4820 mpfr_t t3;
4821 mpfr_init(t3);
4822 mpfr_mul(t3, left_real, t, GMP_RNDN);
4824 mpfr_t t4;
4825 mpfr_init(t4);
4826 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4828 mpfr_add(t3, t3, t4, GMP_RNDN);
4829 mpfr_set_ui(real, 0, GMP_RNDN);
4830 mpfr_mul(real, real, t3, GMP_RNDN);
4832 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4833 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4834 mpfr_sub(t3, t3, t4, GMP_RNDN);
4835 mpfr_set_ui(imag, 0, GMP_RNDN);
4836 mpfr_mul(imag, imag, t3, GMP_RNDN);
4838 mpfr_clear(t2);
4839 mpfr_clear(t3);
4840 mpfr_clear(t4);
4844 mpfr_clear(denom);
4845 mpfr_clear(rr);
4846 mpfr_clear(ri);
4847 mpfr_clear(t);
4848 mpfr_clear(rra);
4849 mpfr_clear(ria);
4851 break;
4852 case OPERATOR_MOD:
4853 return false;
4854 case OPERATOR_LSHIFT:
4855 case OPERATOR_RSHIFT:
4856 return false;
4857 default:
4858 gcc_unreachable();
4861 Type* type = left_type;
4862 if (type == NULL)
4863 type = right_type;
4864 else if (type != right_type && right_type != NULL)
4866 if (type->is_abstract())
4867 type = right_type;
4868 else if (!right_type->is_abstract())
4870 // This looks like a type error which should be diagnosed
4871 // elsewhere. Don't do anything here, to avoid an unhelpful
4872 // chain of error messages.
4873 return true;
4877 if (type != NULL && !type->is_abstract())
4879 if ((type != left_type
4880 && !Complex_expression::check_constant(left_real, left_imag,
4881 type, location))
4882 || (type != right_type
4883 && !Complex_expression::check_constant(right_real, right_imag,
4884 type, location))
4885 || !Complex_expression::check_constant(real, imag, type,
4886 location))
4888 mpfr_set_ui(real, 0, GMP_RNDN);
4889 mpfr_set_ui(imag, 0, GMP_RNDN);
4893 return true;
4896 // Lower a binary expression. We have to evaluate constant
4897 // expressions now, in order to implement Go's unlimited precision
4898 // constants.
4900 Expression*
4901 Binary_expression::do_lower(Gogo*, Named_object*, int)
4903 source_location location = this->location();
4904 Operator op = this->op_;
4905 Expression* left = this->left_;
4906 Expression* right = this->right_;
4908 const bool is_comparison = (op == OPERATOR_EQEQ
4909 || op == OPERATOR_NOTEQ
4910 || op == OPERATOR_LT
4911 || op == OPERATOR_LE
4912 || op == OPERATOR_GT
4913 || op == OPERATOR_GE);
4915 // Integer constant expressions.
4917 mpz_t left_val;
4918 mpz_init(left_val);
4919 Type* left_type;
4920 mpz_t right_val;
4921 mpz_init(right_val);
4922 Type* right_type;
4923 if (left->integer_constant_value(false, left_val, &left_type)
4924 && right->integer_constant_value(false, right_val, &right_type))
4926 Expression* ret = NULL;
4927 if (left_type != right_type
4928 && left_type != NULL
4929 && right_type != NULL
4930 && left_type->base() != right_type->base()
4931 && op != OPERATOR_LSHIFT
4932 && op != OPERATOR_RSHIFT)
4934 // May be a type error--let it be diagnosed later.
4936 else if (is_comparison)
4938 bool b = Binary_expression::compare_integer(op, left_val,
4939 right_val);
4940 ret = Expression::make_cast(Type::lookup_bool_type(),
4941 Expression::make_boolean(b, location),
4942 location);
4944 else
4946 mpz_t val;
4947 mpz_init(val);
4949 if (Binary_expression::eval_integer(op, left_type, left_val,
4950 right_type, right_val,
4951 location, val))
4953 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
4954 Type* type;
4955 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
4956 type = left_type;
4957 else if (left_type == NULL)
4958 type = right_type;
4959 else if (right_type == NULL)
4960 type = left_type;
4961 else if (!left_type->is_abstract()
4962 && left_type->named_type() != NULL)
4963 type = left_type;
4964 else if (!right_type->is_abstract()
4965 && right_type->named_type() != NULL)
4966 type = right_type;
4967 else if (!left_type->is_abstract())
4968 type = left_type;
4969 else if (!right_type->is_abstract())
4970 type = right_type;
4971 else if (left_type->float_type() != NULL)
4972 type = left_type;
4973 else if (right_type->float_type() != NULL)
4974 type = right_type;
4975 else if (left_type->complex_type() != NULL)
4976 type = left_type;
4977 else if (right_type->complex_type() != NULL)
4978 type = right_type;
4979 else
4980 type = left_type;
4981 ret = Expression::make_integer(&val, type, location);
4984 mpz_clear(val);
4987 if (ret != NULL)
4989 mpz_clear(right_val);
4990 mpz_clear(left_val);
4991 return ret;
4994 mpz_clear(right_val);
4995 mpz_clear(left_val);
4998 // Floating point constant expressions.
5000 mpfr_t left_val;
5001 mpfr_init(left_val);
5002 Type* left_type;
5003 mpfr_t right_val;
5004 mpfr_init(right_val);
5005 Type* right_type;
5006 if (left->float_constant_value(left_val, &left_type)
5007 && right->float_constant_value(right_val, &right_type))
5009 Expression* ret = NULL;
5010 if (left_type != right_type
5011 && left_type != NULL
5012 && right_type != NULL
5013 && left_type->base() != right_type->base()
5014 && op != OPERATOR_LSHIFT
5015 && op != OPERATOR_RSHIFT)
5017 // May be a type error--let it be diagnosed later.
5019 else if (is_comparison)
5021 bool b = Binary_expression::compare_float(op,
5022 (left_type != NULL
5023 ? left_type
5024 : right_type),
5025 left_val, right_val);
5026 ret = Expression::make_boolean(b, location);
5028 else
5030 mpfr_t val;
5031 mpfr_init(val);
5033 if (Binary_expression::eval_float(op, left_type, left_val,
5034 right_type, right_val, val,
5035 location))
5037 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5038 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5039 Type* type;
5040 if (left_type == NULL)
5041 type = right_type;
5042 else if (right_type == NULL)
5043 type = left_type;
5044 else if (!left_type->is_abstract()
5045 && left_type->named_type() != NULL)
5046 type = left_type;
5047 else if (!right_type->is_abstract()
5048 && right_type->named_type() != NULL)
5049 type = right_type;
5050 else if (!left_type->is_abstract())
5051 type = left_type;
5052 else if (!right_type->is_abstract())
5053 type = right_type;
5054 else if (left_type->float_type() != NULL)
5055 type = left_type;
5056 else if (right_type->float_type() != NULL)
5057 type = right_type;
5058 else
5059 type = left_type;
5060 ret = Expression::make_float(&val, type, location);
5063 mpfr_clear(val);
5066 if (ret != NULL)
5068 mpfr_clear(right_val);
5069 mpfr_clear(left_val);
5070 return ret;
5073 mpfr_clear(right_val);
5074 mpfr_clear(left_val);
5077 // Complex constant expressions.
5079 mpfr_t left_real;
5080 mpfr_t left_imag;
5081 mpfr_init(left_real);
5082 mpfr_init(left_imag);
5083 Type* left_type;
5085 mpfr_t right_real;
5086 mpfr_t right_imag;
5087 mpfr_init(right_real);
5088 mpfr_init(right_imag);
5089 Type* right_type;
5091 if (left->complex_constant_value(left_real, left_imag, &left_type)
5092 && right->complex_constant_value(right_real, right_imag, &right_type))
5094 Expression* ret = NULL;
5095 if (left_type != right_type
5096 && left_type != NULL
5097 && right_type != NULL
5098 && left_type->base() != right_type->base())
5100 // May be a type error--let it be diagnosed later.
5102 else if (is_comparison)
5104 bool b = Binary_expression::compare_complex(op,
5105 (left_type != NULL
5106 ? left_type
5107 : right_type),
5108 left_real,
5109 left_imag,
5110 right_real,
5111 right_imag);
5112 ret = Expression::make_boolean(b, location);
5114 else
5116 mpfr_t real;
5117 mpfr_t imag;
5118 mpfr_init(real);
5119 mpfr_init(imag);
5121 if (Binary_expression::eval_complex(op, left_type,
5122 left_real, left_imag,
5123 right_type,
5124 right_real, right_imag,
5125 real, imag,
5126 location))
5128 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5129 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5130 Type* type;
5131 if (left_type == NULL)
5132 type = right_type;
5133 else if (right_type == NULL)
5134 type = left_type;
5135 else if (!left_type->is_abstract()
5136 && left_type->named_type() != NULL)
5137 type = left_type;
5138 else if (!right_type->is_abstract()
5139 && right_type->named_type() != NULL)
5140 type = right_type;
5141 else if (!left_type->is_abstract())
5142 type = left_type;
5143 else if (!right_type->is_abstract())
5144 type = right_type;
5145 else if (left_type->complex_type() != NULL)
5146 type = left_type;
5147 else if (right_type->complex_type() != NULL)
5148 type = right_type;
5149 else
5150 type = left_type;
5151 ret = Expression::make_complex(&real, &imag, type,
5152 location);
5154 mpfr_clear(real);
5155 mpfr_clear(imag);
5158 if (ret != NULL)
5160 mpfr_clear(left_real);
5161 mpfr_clear(left_imag);
5162 mpfr_clear(right_real);
5163 mpfr_clear(right_imag);
5164 return ret;
5168 mpfr_clear(left_real);
5169 mpfr_clear(left_imag);
5170 mpfr_clear(right_real);
5171 mpfr_clear(right_imag);
5174 // String constant expressions.
5175 if (op == OPERATOR_PLUS
5176 && left->type()->is_string_type()
5177 && right->type()->is_string_type())
5179 std::string left_string;
5180 std::string right_string;
5181 if (left->string_constant_value(&left_string)
5182 && right->string_constant_value(&right_string))
5183 return Expression::make_string(left_string + right_string, location);
5186 return this;
5189 // Return the integer constant value, if it has one.
5191 bool
5192 Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5193 Type** ptype) const
5195 mpz_t left_val;
5196 mpz_init(left_val);
5197 Type* left_type;
5198 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5199 &left_type))
5201 mpz_clear(left_val);
5202 return false;
5205 mpz_t right_val;
5206 mpz_init(right_val);
5207 Type* right_type;
5208 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5209 &right_type))
5211 mpz_clear(right_val);
5212 mpz_clear(left_val);
5213 return false;
5216 bool ret;
5217 if (left_type != right_type
5218 && left_type != NULL
5219 && right_type != NULL
5220 && left_type->base() != right_type->base()
5221 && this->op_ != OPERATOR_RSHIFT
5222 && this->op_ != OPERATOR_LSHIFT)
5223 ret = false;
5224 else
5225 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5226 right_type, right_val,
5227 this->location(), val);
5229 mpz_clear(right_val);
5230 mpz_clear(left_val);
5232 if (ret)
5233 *ptype = left_type;
5235 return ret;
5238 // Return the floating point constant value, if it has one.
5240 bool
5241 Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5243 mpfr_t left_val;
5244 mpfr_init(left_val);
5245 Type* left_type;
5246 if (!this->left_->float_constant_value(left_val, &left_type))
5248 mpfr_clear(left_val);
5249 return false;
5252 mpfr_t right_val;
5253 mpfr_init(right_val);
5254 Type* right_type;
5255 if (!this->right_->float_constant_value(right_val, &right_type))
5257 mpfr_clear(right_val);
5258 mpfr_clear(left_val);
5259 return false;
5262 bool ret;
5263 if (left_type != right_type
5264 && left_type != NULL
5265 && right_type != NULL
5266 && left_type->base() != right_type->base())
5267 ret = false;
5268 else
5269 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5270 right_type, right_val,
5271 val, this->location());
5273 mpfr_clear(left_val);
5274 mpfr_clear(right_val);
5276 if (ret)
5277 *ptype = left_type;
5279 return ret;
5282 // Return the complex constant value, if it has one.
5284 bool
5285 Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5286 Type** ptype) const
5288 mpfr_t left_real;
5289 mpfr_t left_imag;
5290 mpfr_init(left_real);
5291 mpfr_init(left_imag);
5292 Type* left_type;
5293 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5295 mpfr_clear(left_real);
5296 mpfr_clear(left_imag);
5297 return false;
5300 mpfr_t right_real;
5301 mpfr_t right_imag;
5302 mpfr_init(right_real);
5303 mpfr_init(right_imag);
5304 Type* right_type;
5305 if (!this->right_->complex_constant_value(right_real, right_imag,
5306 &right_type))
5308 mpfr_clear(left_real);
5309 mpfr_clear(left_imag);
5310 mpfr_clear(right_real);
5311 mpfr_clear(right_imag);
5312 return false;
5315 bool ret;
5316 if (left_type != right_type
5317 && left_type != NULL
5318 && right_type != NULL
5319 && left_type->base() != right_type->base())
5320 ret = false;
5321 else
5322 ret = Binary_expression::eval_complex(this->op_, left_type,
5323 left_real, left_imag,
5324 right_type,
5325 right_real, right_imag,
5326 real, imag,
5327 this->location());
5328 mpfr_clear(left_real);
5329 mpfr_clear(left_imag);
5330 mpfr_clear(right_real);
5331 mpfr_clear(right_imag);
5333 if (ret)
5334 *ptype = left_type;
5336 return ret;
5339 // Note that the value is being discarded.
5341 void
5342 Binary_expression::do_discarding_value()
5344 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5345 this->right_->discarding_value();
5346 else
5347 this->warn_about_unused_value();
5350 // Get type.
5352 Type*
5353 Binary_expression::do_type()
5355 switch (this->op_)
5357 case OPERATOR_OROR:
5358 case OPERATOR_ANDAND:
5359 case OPERATOR_EQEQ:
5360 case OPERATOR_NOTEQ:
5361 case OPERATOR_LT:
5362 case OPERATOR_LE:
5363 case OPERATOR_GT:
5364 case OPERATOR_GE:
5365 return Type::lookup_bool_type();
5367 case OPERATOR_PLUS:
5368 case OPERATOR_MINUS:
5369 case OPERATOR_OR:
5370 case OPERATOR_XOR:
5371 case OPERATOR_MULT:
5372 case OPERATOR_DIV:
5373 case OPERATOR_MOD:
5374 case OPERATOR_AND:
5375 case OPERATOR_BITCLEAR:
5377 Type* left_type = this->left_->type();
5378 Type* right_type = this->right_->type();
5379 if (!left_type->is_abstract() && left_type->named_type() != NULL)
5380 return left_type;
5381 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5382 return right_type;
5383 else if (!left_type->is_abstract())
5384 return left_type;
5385 else if (!right_type->is_abstract())
5386 return right_type;
5387 else if (left_type->complex_type() != NULL)
5388 return left_type;
5389 else if (right_type->complex_type() != NULL)
5390 return right_type;
5391 else if (left_type->float_type() != NULL)
5392 return left_type;
5393 else if (right_type->float_type() != NULL)
5394 return right_type;
5395 else
5396 return left_type;
5399 case OPERATOR_LSHIFT:
5400 case OPERATOR_RSHIFT:
5401 return this->left_->type();
5403 default:
5404 gcc_unreachable();
5408 // Set type for a binary expression.
5410 void
5411 Binary_expression::do_determine_type(const Type_context* context)
5413 Type* tleft = this->left_->type();
5414 Type* tright = this->right_->type();
5416 // Both sides should have the same type, except for the shift
5417 // operations. For a comparison, we should ignore the incoming
5418 // type.
5420 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5421 || this->op_ == OPERATOR_RSHIFT);
5423 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5424 || this->op_ == OPERATOR_NOTEQ
5425 || this->op_ == OPERATOR_LT
5426 || this->op_ == OPERATOR_LE
5427 || this->op_ == OPERATOR_GT
5428 || this->op_ == OPERATOR_GE);
5430 Type_context subcontext(*context);
5432 if (is_comparison)
5434 // In a comparison, the context does not determine the types of
5435 // the operands.
5436 subcontext.type = NULL;
5439 // Set the context for the left hand operand.
5440 if (is_shift_op)
5442 // The right hand operand plays no role in determining the type
5443 // of the left hand operand. A shift of an abstract integer in
5444 // a string context gets special treatment, which may be a
5445 // language bug.
5446 if (subcontext.type != NULL
5447 && subcontext.type->is_string_type()
5448 && tleft->is_abstract())
5449 error_at(this->location(), "shift of non-integer operand");
5451 else if (!tleft->is_abstract())
5452 subcontext.type = tleft;
5453 else if (!tright->is_abstract())
5454 subcontext.type = tright;
5455 else if (subcontext.type == NULL)
5457 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5458 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5459 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5461 // Both sides have an abstract integer, abstract float, or
5462 // abstract complex type. Just let CONTEXT determine
5463 // whether they may remain abstract or not.
5465 else if (tleft->complex_type() != NULL)
5466 subcontext.type = tleft;
5467 else if (tright->complex_type() != NULL)
5468 subcontext.type = tright;
5469 else if (tleft->float_type() != NULL)
5470 subcontext.type = tleft;
5471 else if (tright->float_type() != NULL)
5472 subcontext.type = tright;
5473 else
5474 subcontext.type = tleft;
5477 this->left_->determine_type(&subcontext);
5479 // The context for the right hand operand is the same as for the
5480 // left hand operand, except for a shift operator.
5481 if (is_shift_op)
5483 subcontext.type = Type::lookup_integer_type("uint");
5484 subcontext.may_be_abstract = false;
5487 this->right_->determine_type(&subcontext);
5490 // Report an error if the binary operator OP does not support TYPE.
5491 // Return whether the operation is OK. This should not be used for
5492 // shift.
5494 bool
5495 Binary_expression::check_operator_type(Operator op, Type* type,
5496 source_location location)
5498 switch (op)
5500 case OPERATOR_OROR:
5501 case OPERATOR_ANDAND:
5502 if (!type->is_boolean_type())
5504 error_at(location, "expected boolean type");
5505 return false;
5507 break;
5509 case OPERATOR_EQEQ:
5510 case OPERATOR_NOTEQ:
5511 if (type->integer_type() == NULL
5512 && type->float_type() == NULL
5513 && type->complex_type() == NULL
5514 && !type->is_string_type()
5515 && type->points_to() == NULL
5516 && !type->is_nil_type()
5517 && !type->is_boolean_type()
5518 && type->interface_type() == NULL
5519 && (type->array_type() == NULL
5520 || type->array_type()->length() != NULL)
5521 && type->map_type() == NULL
5522 && type->channel_type() == NULL
5523 && type->function_type() == NULL)
5525 error_at(location,
5526 ("expected integer, floating, complex, string, pointer, "
5527 "boolean, interface, slice, map, channel, "
5528 "or function type"));
5529 return false;
5531 break;
5533 case OPERATOR_LT:
5534 case OPERATOR_LE:
5535 case OPERATOR_GT:
5536 case OPERATOR_GE:
5537 if (type->integer_type() == NULL
5538 && type->float_type() == NULL
5539 && !type->is_string_type())
5541 error_at(location, "expected integer, floating, or string type");
5542 return false;
5544 break;
5546 case OPERATOR_PLUS:
5547 case OPERATOR_PLUSEQ:
5548 if (type->integer_type() == NULL
5549 && type->float_type() == NULL
5550 && type->complex_type() == NULL
5551 && !type->is_string_type())
5553 error_at(location,
5554 "expected integer, floating, complex, or string type");
5555 return false;
5557 break;
5559 case OPERATOR_MINUS:
5560 case OPERATOR_MINUSEQ:
5561 case OPERATOR_MULT:
5562 case OPERATOR_MULTEQ:
5563 case OPERATOR_DIV:
5564 case OPERATOR_DIVEQ:
5565 if (type->integer_type() == NULL
5566 && type->float_type() == NULL
5567 && type->complex_type() == NULL)
5569 error_at(location, "expected integer, floating, or complex type");
5570 return false;
5572 break;
5574 case OPERATOR_MOD:
5575 case OPERATOR_MODEQ:
5576 case OPERATOR_OR:
5577 case OPERATOR_OREQ:
5578 case OPERATOR_AND:
5579 case OPERATOR_ANDEQ:
5580 case OPERATOR_XOR:
5581 case OPERATOR_XOREQ:
5582 case OPERATOR_BITCLEAR:
5583 case OPERATOR_BITCLEAREQ:
5584 if (type->integer_type() == NULL)
5586 error_at(location, "expected integer type");
5587 return false;
5589 break;
5591 default:
5592 gcc_unreachable();
5595 return true;
5598 // Check types.
5600 void
5601 Binary_expression::do_check_types(Gogo*)
5603 Type* left_type = this->left_->type();
5604 Type* right_type = this->right_->type();
5605 if (left_type->is_error_type() || right_type->is_error_type())
5607 this->set_is_error();
5608 return;
5611 if (this->op_ == OPERATOR_EQEQ
5612 || this->op_ == OPERATOR_NOTEQ
5613 || this->op_ == OPERATOR_LT
5614 || this->op_ == OPERATOR_LE
5615 || this->op_ == OPERATOR_GT
5616 || this->op_ == OPERATOR_GE)
5618 if (!Type::are_assignable(left_type, right_type, NULL)
5619 && !Type::are_assignable(right_type, left_type, NULL))
5621 this->report_error(_("incompatible types in binary expression"));
5622 return;
5624 if (!Binary_expression::check_operator_type(this->op_, left_type,
5625 this->location())
5626 || !Binary_expression::check_operator_type(this->op_, right_type,
5627 this->location()))
5629 this->set_is_error();
5630 return;
5633 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5635 if (!Type::are_compatible_for_binop(left_type, right_type))
5637 this->report_error(_("incompatible types in binary expression"));
5638 return;
5640 if (!Binary_expression::check_operator_type(this->op_, left_type,
5641 this->location()))
5643 this->set_is_error();
5644 return;
5647 else
5649 if (left_type->integer_type() == NULL)
5650 this->report_error(_("shift of non-integer operand"));
5652 if (!right_type->is_abstract()
5653 && (right_type->integer_type() == NULL
5654 || !right_type->integer_type()->is_unsigned()))
5655 this->report_error(_("shift count not unsigned integer"));
5656 else
5658 mpz_t val;
5659 mpz_init(val);
5660 Type* type;
5661 if (this->right_->integer_constant_value(true, val, &type))
5663 if (mpz_sgn(val) < 0)
5664 this->report_error(_("negative shift count"));
5666 mpz_clear(val);
5671 // Get a tree for a binary expression.
5673 tree
5674 Binary_expression::do_get_tree(Translate_context* context)
5676 tree left = this->left_->get_tree(context);
5677 tree right = this->right_->get_tree(context);
5679 if (left == error_mark_node || right == error_mark_node)
5680 return error_mark_node;
5682 enum tree_code code;
5683 bool use_left_type = true;
5684 bool is_shift_op = false;
5685 switch (this->op_)
5687 case OPERATOR_EQEQ:
5688 case OPERATOR_NOTEQ:
5689 case OPERATOR_LT:
5690 case OPERATOR_LE:
5691 case OPERATOR_GT:
5692 case OPERATOR_GE:
5693 return Expression::comparison_tree(context, this->op_,
5694 this->left_->type(), left,
5695 this->right_->type(), right,
5696 this->location());
5698 case OPERATOR_OROR:
5699 code = TRUTH_ORIF_EXPR;
5700 use_left_type = false;
5701 break;
5702 case OPERATOR_ANDAND:
5703 code = TRUTH_ANDIF_EXPR;
5704 use_left_type = false;
5705 break;
5706 case OPERATOR_PLUS:
5707 code = PLUS_EXPR;
5708 break;
5709 case OPERATOR_MINUS:
5710 code = MINUS_EXPR;
5711 break;
5712 case OPERATOR_OR:
5713 code = BIT_IOR_EXPR;
5714 break;
5715 case OPERATOR_XOR:
5716 code = BIT_XOR_EXPR;
5717 break;
5718 case OPERATOR_MULT:
5719 code = MULT_EXPR;
5720 break;
5721 case OPERATOR_DIV:
5723 Type *t = this->left_->type();
5724 if (t->float_type() != NULL || t->complex_type() != NULL)
5725 code = RDIV_EXPR;
5726 else
5727 code = TRUNC_DIV_EXPR;
5729 break;
5730 case OPERATOR_MOD:
5731 code = TRUNC_MOD_EXPR;
5732 break;
5733 case OPERATOR_LSHIFT:
5734 code = LSHIFT_EXPR;
5735 is_shift_op = true;
5736 break;
5737 case OPERATOR_RSHIFT:
5738 code = RSHIFT_EXPR;
5739 is_shift_op = true;
5740 break;
5741 case OPERATOR_AND:
5742 code = BIT_AND_EXPR;
5743 break;
5744 case OPERATOR_BITCLEAR:
5745 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5746 code = BIT_AND_EXPR;
5747 break;
5748 default:
5749 gcc_unreachable();
5752 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5754 if (this->left_->type()->is_string_type())
5756 gcc_assert(this->op_ == OPERATOR_PLUS);
5757 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5758 static tree string_plus_decl;
5759 return Gogo::call_builtin(&string_plus_decl,
5760 this->location(),
5761 "__go_string_plus",
5763 string_type,
5764 string_type,
5765 left,
5766 string_type,
5767 right);
5770 tree compute_type = excess_precision_type(type);
5771 if (compute_type != NULL_TREE)
5773 left = ::convert(compute_type, left);
5774 right = ::convert(compute_type, right);
5777 tree eval_saved = NULL_TREE;
5778 if (is_shift_op)
5780 if (!DECL_P(left))
5781 left = save_expr(left);
5782 if (!DECL_P(right))
5783 right = save_expr(right);
5784 // Make sure the values are evaluated.
5785 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5786 void_type_node, left, right);
5789 tree ret = fold_build2_loc(this->location(),
5790 code,
5791 compute_type != NULL_TREE ? compute_type : type,
5792 left, right);
5794 if (compute_type != NULL_TREE)
5795 ret = ::convert(type, ret);
5797 // In Go, a shift larger than the size of the type is well-defined.
5798 // This is not true in GENERIC, so we need to insert a conditional.
5799 if (is_shift_op)
5801 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5802 gcc_assert(this->left_->type()->integer_type() != NULL);
5803 int bits = TYPE_PRECISION(TREE_TYPE(left));
5805 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5806 build_int_cst_type(TREE_TYPE(right), bits));
5808 tree overflow_result = fold_convert_loc(this->location(),
5809 TREE_TYPE(left),
5810 integer_zero_node);
5811 if (this->op_ == OPERATOR_RSHIFT
5812 && !this->left_->type()->integer_type()->is_unsigned())
5814 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5815 boolean_type_node, left,
5816 fold_convert_loc(this->location(),
5817 TREE_TYPE(left),
5818 integer_zero_node));
5819 tree neg_one = fold_build2_loc(this->location(),
5820 MINUS_EXPR, TREE_TYPE(left),
5821 fold_convert_loc(this->location(),
5822 TREE_TYPE(left),
5823 integer_zero_node),
5824 fold_convert_loc(this->location(),
5825 TREE_TYPE(left),
5826 integer_one_node));
5827 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5828 TREE_TYPE(left), neg, neg_one,
5829 overflow_result);
5832 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5833 compare, ret, overflow_result);
5835 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5836 TREE_TYPE(ret), eval_saved, ret);
5839 return ret;
5842 // Export a binary expression.
5844 void
5845 Binary_expression::do_export(Export* exp) const
5847 exp->write_c_string("(");
5848 this->left_->export_expression(exp);
5849 switch (this->op_)
5851 case OPERATOR_OROR:
5852 exp->write_c_string(" || ");
5853 break;
5854 case OPERATOR_ANDAND:
5855 exp->write_c_string(" && ");
5856 break;
5857 case OPERATOR_EQEQ:
5858 exp->write_c_string(" == ");
5859 break;
5860 case OPERATOR_NOTEQ:
5861 exp->write_c_string(" != ");
5862 break;
5863 case OPERATOR_LT:
5864 exp->write_c_string(" < ");
5865 break;
5866 case OPERATOR_LE:
5867 exp->write_c_string(" <= ");
5868 break;
5869 case OPERATOR_GT:
5870 exp->write_c_string(" > ");
5871 break;
5872 case OPERATOR_GE:
5873 exp->write_c_string(" >= ");
5874 break;
5875 case OPERATOR_PLUS:
5876 exp->write_c_string(" + ");
5877 break;
5878 case OPERATOR_MINUS:
5879 exp->write_c_string(" - ");
5880 break;
5881 case OPERATOR_OR:
5882 exp->write_c_string(" | ");
5883 break;
5884 case OPERATOR_XOR:
5885 exp->write_c_string(" ^ ");
5886 break;
5887 case OPERATOR_MULT:
5888 exp->write_c_string(" * ");
5889 break;
5890 case OPERATOR_DIV:
5891 exp->write_c_string(" / ");
5892 break;
5893 case OPERATOR_MOD:
5894 exp->write_c_string(" % ");
5895 break;
5896 case OPERATOR_LSHIFT:
5897 exp->write_c_string(" << ");
5898 break;
5899 case OPERATOR_RSHIFT:
5900 exp->write_c_string(" >> ");
5901 break;
5902 case OPERATOR_AND:
5903 exp->write_c_string(" & ");
5904 break;
5905 case OPERATOR_BITCLEAR:
5906 exp->write_c_string(" &^ ");
5907 break;
5908 default:
5909 gcc_unreachable();
5911 this->right_->export_expression(exp);
5912 exp->write_c_string(")");
5915 // Import a binary expression.
5917 Expression*
5918 Binary_expression::do_import(Import* imp)
5920 imp->require_c_string("(");
5922 Expression* left = Expression::import_expression(imp);
5924 Operator op;
5925 if (imp->match_c_string(" || "))
5927 op = OPERATOR_OROR;
5928 imp->advance(4);
5930 else if (imp->match_c_string(" && "))
5932 op = OPERATOR_ANDAND;
5933 imp->advance(4);
5935 else if (imp->match_c_string(" == "))
5937 op = OPERATOR_EQEQ;
5938 imp->advance(4);
5940 else if (imp->match_c_string(" != "))
5942 op = OPERATOR_NOTEQ;
5943 imp->advance(4);
5945 else if (imp->match_c_string(" < "))
5947 op = OPERATOR_LT;
5948 imp->advance(3);
5950 else if (imp->match_c_string(" <= "))
5952 op = OPERATOR_LE;
5953 imp->advance(4);
5955 else if (imp->match_c_string(" > "))
5957 op = OPERATOR_GT;
5958 imp->advance(3);
5960 else if (imp->match_c_string(" >= "))
5962 op = OPERATOR_GE;
5963 imp->advance(4);
5965 else if (imp->match_c_string(" + "))
5967 op = OPERATOR_PLUS;
5968 imp->advance(3);
5970 else if (imp->match_c_string(" - "))
5972 op = OPERATOR_MINUS;
5973 imp->advance(3);
5975 else if (imp->match_c_string(" | "))
5977 op = OPERATOR_OR;
5978 imp->advance(3);
5980 else if (imp->match_c_string(" ^ "))
5982 op = OPERATOR_XOR;
5983 imp->advance(3);
5985 else if (imp->match_c_string(" * "))
5987 op = OPERATOR_MULT;
5988 imp->advance(3);
5990 else if (imp->match_c_string(" / "))
5992 op = OPERATOR_DIV;
5993 imp->advance(3);
5995 else if (imp->match_c_string(" % "))
5997 op = OPERATOR_MOD;
5998 imp->advance(3);
6000 else if (imp->match_c_string(" << "))
6002 op = OPERATOR_LSHIFT;
6003 imp->advance(4);
6005 else if (imp->match_c_string(" >> "))
6007 op = OPERATOR_RSHIFT;
6008 imp->advance(4);
6010 else if (imp->match_c_string(" & "))
6012 op = OPERATOR_AND;
6013 imp->advance(3);
6015 else if (imp->match_c_string(" &^ "))
6017 op = OPERATOR_BITCLEAR;
6018 imp->advance(4);
6020 else
6022 error_at(imp->location(), "unrecognized binary operator");
6023 return Expression::make_error(imp->location());
6026 Expression* right = Expression::import_expression(imp);
6028 imp->require_c_string(")");
6030 return Expression::make_binary(op, left, right, imp->location());
6033 // Make a binary expression.
6035 Expression*
6036 Expression::make_binary(Operator op, Expression* left, Expression* right,
6037 source_location location)
6039 return new Binary_expression(op, left, right, location);
6042 // Implement a comparison.
6044 tree
6045 Expression::comparison_tree(Translate_context* context, Operator op,
6046 Type* left_type, tree left_tree,
6047 Type* right_type, tree right_tree,
6048 source_location location)
6050 enum tree_code code;
6051 switch (op)
6053 case OPERATOR_EQEQ:
6054 code = EQ_EXPR;
6055 break;
6056 case OPERATOR_NOTEQ:
6057 code = NE_EXPR;
6058 break;
6059 case OPERATOR_LT:
6060 code = LT_EXPR;
6061 break;
6062 case OPERATOR_LE:
6063 code = LE_EXPR;
6064 break;
6065 case OPERATOR_GT:
6066 code = GT_EXPR;
6067 break;
6068 case OPERATOR_GE:
6069 code = GE_EXPR;
6070 break;
6071 default:
6072 gcc_unreachable();
6075 if (left_type->is_string_type() && right_type->is_string_type())
6077 tree string_type = Type::make_string_type()->get_tree(context->gogo());
6078 static tree string_compare_decl;
6079 left_tree = Gogo::call_builtin(&string_compare_decl,
6080 location,
6081 "__go_strcmp",
6083 integer_type_node,
6084 string_type,
6085 left_tree,
6086 string_type,
6087 right_tree);
6088 right_tree = build_int_cst_type(integer_type_node, 0);
6090 else if ((left_type->interface_type() != NULL
6091 && right_type->interface_type() == NULL
6092 && !right_type->is_nil_type())
6093 || (left_type->interface_type() == NULL
6094 && !left_type->is_nil_type()
6095 && right_type->interface_type() != NULL))
6097 // Comparing an interface value to a non-interface value.
6098 if (left_type->interface_type() == NULL)
6100 std::swap(left_type, right_type);
6101 std::swap(left_tree, right_tree);
6104 // The right operand is not an interface. We need to take its
6105 // address if it is not a pointer.
6106 tree make_tmp;
6107 tree arg;
6108 if (right_type->points_to() != NULL)
6110 make_tmp = NULL_TREE;
6111 arg = right_tree;
6113 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
6115 make_tmp = NULL_TREE;
6116 arg = build_fold_addr_expr_loc(location, right_tree);
6117 if (DECL_P(right_tree))
6118 TREE_ADDRESSABLE(right_tree) = 1;
6120 else
6122 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
6123 get_name(right_tree));
6124 DECL_IGNORED_P(tmp) = 0;
6125 DECL_INITIAL(tmp) = right_tree;
6126 TREE_ADDRESSABLE(tmp) = 1;
6127 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
6128 SET_EXPR_LOCATION(make_tmp, location);
6129 arg = build_fold_addr_expr_loc(location, tmp);
6131 arg = fold_convert_loc(location, ptr_type_node, arg);
6133 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6135 if (left_type->interface_type()->is_empty())
6137 static tree empty_interface_value_compare_decl;
6138 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6139 location,
6140 "__go_empty_interface_value_compare",
6142 integer_type_node,
6143 TREE_TYPE(left_tree),
6144 left_tree,
6145 TREE_TYPE(descriptor),
6146 descriptor,
6147 ptr_type_node,
6148 arg);
6149 if (left_tree == error_mark_node)
6150 return error_mark_node;
6151 // This can panic if the type is not comparable.
6152 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6154 else
6156 static tree interface_value_compare_decl;
6157 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6158 location,
6159 "__go_interface_value_compare",
6161 integer_type_node,
6162 TREE_TYPE(left_tree),
6163 left_tree,
6164 TREE_TYPE(descriptor),
6165 descriptor,
6166 ptr_type_node,
6167 arg);
6168 if (left_tree == error_mark_node)
6169 return error_mark_node;
6170 // This can panic if the type is not comparable.
6171 TREE_NOTHROW(interface_value_compare_decl) = 0;
6173 right_tree = build_int_cst_type(integer_type_node, 0);
6175 if (make_tmp != NULL_TREE)
6176 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6177 left_tree);
6179 else if (left_type->interface_type() != NULL
6180 && right_type->interface_type() != NULL)
6182 if (left_type->interface_type()->is_empty())
6184 gcc_assert(right_type->interface_type()->is_empty());
6185 static tree empty_interface_compare_decl;
6186 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6187 location,
6188 "__go_empty_interface_compare",
6190 integer_type_node,
6191 TREE_TYPE(left_tree),
6192 left_tree,
6193 TREE_TYPE(right_tree),
6194 right_tree);
6195 if (left_tree == error_mark_node)
6196 return error_mark_node;
6197 // This can panic if the type is uncomparable.
6198 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6200 else
6202 gcc_assert(!right_type->interface_type()->is_empty());
6203 static tree interface_compare_decl;
6204 left_tree = Gogo::call_builtin(&interface_compare_decl,
6205 location,
6206 "__go_interface_compare",
6208 integer_type_node,
6209 TREE_TYPE(left_tree),
6210 left_tree,
6211 TREE_TYPE(right_tree),
6212 right_tree);
6213 if (left_tree == error_mark_node)
6214 return error_mark_node;
6215 // This can panic if the type is uncomparable.
6216 TREE_NOTHROW(interface_compare_decl) = 0;
6218 right_tree = build_int_cst_type(integer_type_node, 0);
6221 if (left_type->is_nil_type()
6222 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6224 std::swap(left_type, right_type);
6225 std::swap(left_tree, right_tree);
6228 if (right_type->is_nil_type())
6230 if (left_type->array_type() != NULL
6231 && left_type->array_type()->length() == NULL)
6233 Array_type* at = left_type->array_type();
6234 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6235 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6237 else if (left_type->interface_type() != NULL)
6239 // An interface is nil if the first field is nil.
6240 tree left_type_tree = TREE_TYPE(left_tree);
6241 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6242 tree field = TYPE_FIELDS(left_type_tree);
6243 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6244 field, NULL_TREE);
6245 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6247 else
6249 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6250 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6254 if (left_tree == error_mark_node || right_tree == error_mark_node)
6255 return error_mark_node;
6257 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6258 if (CAN_HAVE_LOCATION_P(ret))
6259 SET_EXPR_LOCATION(ret, location);
6260 return ret;
6263 // Class Bound_method_expression.
6265 // Traversal.
6268 Bound_method_expression::do_traverse(Traverse* traverse)
6270 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6271 return TRAVERSE_EXIT;
6272 return Expression::traverse(&this->method_, traverse);
6275 // Return the type of a bound method expression. The type of this
6276 // object is really the type of the method with no receiver. We
6277 // should be able to get away with just returning the type of the
6278 // method.
6280 Type*
6281 Bound_method_expression::do_type()
6283 return this->method_->type();
6286 // Determine the types of a method expression.
6288 void
6289 Bound_method_expression::do_determine_type(const Type_context*)
6291 this->method_->determine_type_no_context();
6292 Type* mtype = this->method_->type();
6293 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6294 if (fntype == NULL || !fntype->is_method())
6295 this->expr_->determine_type_no_context();
6296 else
6298 Type_context subcontext(fntype->receiver()->type(), false);
6299 this->expr_->determine_type(&subcontext);
6303 // Check the types of a method expression.
6305 void
6306 Bound_method_expression::do_check_types(Gogo*)
6308 Type* type = this->method_->type()->deref();
6309 if (type == NULL
6310 || type->function_type() == NULL
6311 || !type->function_type()->is_method())
6312 this->report_error(_("object is not a method"));
6313 else
6315 Type* rtype = type->function_type()->receiver()->type()->deref();
6316 Type* etype = (this->expr_type_ != NULL
6317 ? this->expr_type_
6318 : this->expr_->type());
6319 etype = etype->deref();
6320 if (!Type::are_identical(rtype, etype, true, NULL))
6321 this->report_error(_("method type does not match object type"));
6325 // Get the tree for a method expression. There is no standard tree
6326 // representation for this. The only places it may currently be used
6327 // are in a Call_expression or a Go_statement, which will take it
6328 // apart directly. So this has nothing to do at present.
6330 tree
6331 Bound_method_expression::do_get_tree(Translate_context*)
6333 gcc_unreachable();
6336 // Make a method expression.
6338 Bound_method_expression*
6339 Expression::make_bound_method(Expression* expr, Expression* method,
6340 source_location location)
6342 return new Bound_method_expression(expr, method, location);
6345 // Class Builtin_call_expression. This is used for a call to a
6346 // builtin function.
6348 class Builtin_call_expression : public Call_expression
6350 public:
6351 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6352 bool is_varargs, source_location location);
6354 protected:
6355 // This overrides Call_expression::do_lower.
6356 Expression*
6357 do_lower(Gogo*, Named_object*, int);
6359 bool
6360 do_is_constant() const;
6362 bool
6363 do_integer_constant_value(bool, mpz_t, Type**) const;
6365 bool
6366 do_float_constant_value(mpfr_t, Type**) const;
6368 bool
6369 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6371 Type*
6372 do_type();
6374 void
6375 do_determine_type(const Type_context*);
6377 void
6378 do_check_types(Gogo*);
6380 Expression*
6381 do_copy()
6383 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6384 this->args()->copy(),
6385 this->is_varargs(),
6386 this->location());
6389 tree
6390 do_get_tree(Translate_context*);
6392 void
6393 do_export(Export*) const;
6395 virtual bool
6396 do_is_recover_call() const;
6398 virtual void
6399 do_set_recover_arg(Expression*);
6401 private:
6402 // The builtin functions.
6403 enum Builtin_function_code
6405 BUILTIN_INVALID,
6407 // Predeclared builtin functions.
6408 BUILTIN_APPEND,
6409 BUILTIN_CAP,
6410 BUILTIN_CLOSE,
6411 BUILTIN_CLOSED,
6412 BUILTIN_CMPLX,
6413 BUILTIN_COPY,
6414 BUILTIN_IMAG,
6415 BUILTIN_LEN,
6416 BUILTIN_MAKE,
6417 BUILTIN_NEW,
6418 BUILTIN_PANIC,
6419 BUILTIN_PRINT,
6420 BUILTIN_PRINTLN,
6421 BUILTIN_REAL,
6422 BUILTIN_RECOVER,
6424 // Builtin functions from the unsafe package.
6425 BUILTIN_ALIGNOF,
6426 BUILTIN_OFFSETOF,
6427 BUILTIN_SIZEOF
6430 Expression*
6431 one_arg() const;
6433 bool
6434 check_one_arg();
6436 static Type*
6437 real_imag_type(Type*);
6439 static Type*
6440 cmplx_type(Type*);
6442 // A pointer back to the general IR structure. This avoids a global
6443 // variable, or passing it around everywhere.
6444 Gogo* gogo_;
6445 // The builtin function being called.
6446 Builtin_function_code code_;
6449 Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6450 Expression* fn,
6451 Expression_list* args,
6452 bool is_varargs,
6453 source_location location)
6454 : Call_expression(fn, args, is_varargs, location),
6455 gogo_(gogo), code_(BUILTIN_INVALID)
6457 Func_expression* fnexp = this->fn()->func_expression();
6458 gcc_assert(fnexp != NULL);
6459 const std::string& name(fnexp->named_object()->name());
6460 if (name == "append")
6461 this->code_ = BUILTIN_APPEND;
6462 else if (name == "cap")
6463 this->code_ = BUILTIN_CAP;
6464 else if (name == "close")
6465 this->code_ = BUILTIN_CLOSE;
6466 else if (name == "closed")
6467 this->code_ = BUILTIN_CLOSED;
6468 else if (name == "cmplx")
6469 this->code_ = BUILTIN_CMPLX;
6470 else if (name == "copy")
6471 this->code_ = BUILTIN_COPY;
6472 else if (name == "imag")
6473 this->code_ = BUILTIN_IMAG;
6474 else if (name == "len")
6475 this->code_ = BUILTIN_LEN;
6476 else if (name == "make")
6477 this->code_ = BUILTIN_MAKE;
6478 else if (name == "new")
6479 this->code_ = BUILTIN_NEW;
6480 else if (name == "panic")
6481 this->code_ = BUILTIN_PANIC;
6482 else if (name == "print")
6483 this->code_ = BUILTIN_PRINT;
6484 else if (name == "println")
6485 this->code_ = BUILTIN_PRINTLN;
6486 else if (name == "real")
6487 this->code_ = BUILTIN_REAL;
6488 else if (name == "recover")
6489 this->code_ = BUILTIN_RECOVER;
6490 else if (name == "Alignof")
6491 this->code_ = BUILTIN_ALIGNOF;
6492 else if (name == "Offsetof")
6493 this->code_ = BUILTIN_OFFSETOF;
6494 else if (name == "Sizeof")
6495 this->code_ = BUILTIN_SIZEOF;
6496 else
6497 gcc_unreachable();
6500 // Return whether this is a call to recover. This is a virtual
6501 // function called from the parent class.
6503 bool
6504 Builtin_call_expression::do_is_recover_call() const
6506 if (this->classification() == EXPRESSION_ERROR)
6507 return false;
6508 return this->code_ == BUILTIN_RECOVER;
6511 // Set the argument for a call to recover.
6513 void
6514 Builtin_call_expression::do_set_recover_arg(Expression* arg)
6516 const Expression_list* args = this->args();
6517 gcc_assert(args == NULL || args->empty());
6518 Expression_list* new_args = new Expression_list();
6519 new_args->push_back(arg);
6520 this->set_args(new_args);
6523 // A traversal class which looks for a call expression.
6525 class Find_call_expression : public Traverse
6527 public:
6528 Find_call_expression()
6529 : Traverse(traverse_expressions),
6530 found_(false)
6534 expression(Expression**);
6536 bool
6537 found()
6538 { return this->found_; }
6540 private:
6541 bool found_;
6545 Find_call_expression::expression(Expression** pexpr)
6547 if ((*pexpr)->call_expression() != NULL)
6549 this->found_ = true;
6550 return TRAVERSE_EXIT;
6552 return TRAVERSE_CONTINUE;
6555 // Lower a builtin call expression. This turns new and make into
6556 // specific expressions. We also convert to a constant if we can.
6558 Expression*
6559 Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6561 if (this->code_ == BUILTIN_NEW)
6563 const Expression_list* args = this->args();
6564 if (args == NULL || args->size() < 1)
6565 this->report_error(_("not enough arguments"));
6566 else if (args->size() > 1)
6567 this->report_error(_("too many arguments"));
6568 else
6570 Expression* arg = args->front();
6571 if (!arg->is_type_expression())
6573 error_at(arg->location(), "expected type");
6574 this->set_is_error();
6576 else
6577 return Expression::make_allocation(arg->type(), this->location());
6580 else if (this->code_ == BUILTIN_MAKE)
6582 const Expression_list* args = this->args();
6583 if (args == NULL || args->size() < 1)
6584 this->report_error(_("not enough arguments"));
6585 else
6587 Expression* arg = args->front();
6588 if (!arg->is_type_expression())
6590 error_at(arg->location(), "expected type");
6591 this->set_is_error();
6593 else
6595 Expression_list* newargs;
6596 if (args->size() == 1)
6597 newargs = NULL;
6598 else
6600 newargs = new Expression_list();
6601 Expression_list::const_iterator p = args->begin();
6602 ++p;
6603 for (; p != args->end(); ++p)
6604 newargs->push_back(*p);
6606 return Expression::make_make(arg->type(), newargs,
6607 this->location());
6611 else if (this->is_constant())
6613 // We can only lower len and cap if there are no function calls
6614 // in the arguments. Otherwise we have to make the call.
6615 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6617 Expression* arg = this->one_arg();
6618 if (!arg->is_constant())
6620 Find_call_expression find_call;
6621 Expression::traverse(&arg, &find_call);
6622 if (find_call.found())
6623 return this;
6627 mpz_t ival;
6628 mpz_init(ival);
6629 Type* type;
6630 if (this->integer_constant_value(true, ival, &type))
6632 Expression* ret = Expression::make_integer(&ival, type,
6633 this->location());
6634 mpz_clear(ival);
6635 return ret;
6637 mpz_clear(ival);
6639 mpfr_t rval;
6640 mpfr_init(rval);
6641 if (this->float_constant_value(rval, &type))
6643 Expression* ret = Expression::make_float(&rval, type,
6644 this->location());
6645 mpfr_clear(rval);
6646 return ret;
6649 mpfr_t imag;
6650 mpfr_init(imag);
6651 if (this->complex_constant_value(rval, imag, &type))
6653 Expression* ret = Expression::make_complex(&rval, &imag, type,
6654 this->location());
6655 mpfr_clear(rval);
6656 mpfr_clear(imag);
6657 return ret;
6659 mpfr_clear(rval);
6660 mpfr_clear(imag);
6662 else if (this->code_ == BUILTIN_RECOVER)
6664 if (function != NULL)
6665 function->func_value()->set_calls_recover();
6666 else
6668 // Calling recover outside of a function always returns the
6669 // nil empty interface.
6670 Type* eface = Type::make_interface_type(NULL, this->location());
6671 return Expression::make_cast(eface,
6672 Expression::make_nil(this->location()),
6673 this->location());
6676 else if (this->code_ == BUILTIN_APPEND)
6678 // Lower the varargs.
6679 const Expression_list* args = this->args();
6680 if (args == NULL || args->empty())
6681 return this;
6682 Type* slice_type = args->front()->type();
6683 if (!slice_type->is_open_array_type())
6685 error_at(args->front()->location(), "argument 1 must be a slice");
6686 this->set_is_error();
6687 return this;
6689 return this->lower_varargs(gogo, function, slice_type, 2);
6692 return this;
6695 // Return the type of the real or imag functions, given the type of
6696 // the argument. We need to map complex to float, complex64 to
6697 // float32, and complex128 to float64, so it has to be done by name.
6698 // This returns NULL if it can't figure out the type.
6700 Type*
6701 Builtin_call_expression::real_imag_type(Type* arg_type)
6703 if (arg_type == NULL || arg_type->is_abstract())
6704 return NULL;
6705 Named_type* nt = arg_type->named_type();
6706 if (nt == NULL)
6707 return NULL;
6708 while (nt->real_type()->named_type() != NULL)
6709 nt = nt->real_type()->named_type();
6710 if (nt->name() == "complex")
6711 return Type::lookup_float_type("float");
6712 else if (nt->name() == "complex64")
6713 return Type::lookup_float_type("float32");
6714 else if (nt->name() == "complex128")
6715 return Type::lookup_float_type("float64");
6716 else
6717 return NULL;
6720 // Return the type of the cmplx function, given the type of one of the
6721 // argments. Like real_imag_type, we have to map by name.
6723 Type*
6724 Builtin_call_expression::cmplx_type(Type* arg_type)
6726 if (arg_type == NULL || arg_type->is_abstract())
6727 return NULL;
6728 Named_type* nt = arg_type->named_type();
6729 if (nt == NULL)
6730 return NULL;
6731 while (nt->real_type()->named_type() != NULL)
6732 nt = nt->real_type()->named_type();
6733 if (nt->name() == "float")
6734 return Type::lookup_complex_type("complex");
6735 else if (nt->name() == "float32")
6736 return Type::lookup_complex_type("complex64");
6737 else if (nt->name() == "float64")
6738 return Type::lookup_complex_type("complex128");
6739 else
6740 return NULL;
6743 // Return a single argument, or NULL if there isn't one.
6745 Expression*
6746 Builtin_call_expression::one_arg() const
6748 const Expression_list* args = this->args();
6749 if (args->size() != 1)
6750 return NULL;
6751 return args->front();
6754 // Return whether this is constant: len of a string, or len or cap of
6755 // a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6757 bool
6758 Builtin_call_expression::do_is_constant() const
6760 switch (this->code_)
6762 case BUILTIN_LEN:
6763 case BUILTIN_CAP:
6765 Expression* arg = this->one_arg();
6766 if (arg == NULL)
6767 return false;
6768 Type* arg_type = arg->type();
6770 if (arg_type->points_to() != NULL
6771 && arg_type->points_to()->array_type() != NULL
6772 && !arg_type->points_to()->is_open_array_type())
6773 arg_type = arg_type->points_to();
6775 if (arg_type->array_type() != NULL
6776 && arg_type->array_type()->length() != NULL)
6777 return arg_type->array_type()->length()->is_constant();
6779 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6780 return arg->is_constant();
6782 break;
6784 case BUILTIN_SIZEOF:
6785 case BUILTIN_ALIGNOF:
6786 return this->one_arg() != NULL;
6788 case BUILTIN_OFFSETOF:
6790 Expression* arg = this->one_arg();
6791 if (arg == NULL)
6792 return false;
6793 return arg->field_reference_expression() != NULL;
6796 case BUILTIN_CMPLX:
6798 const Expression_list* args = this->args();
6799 if (args != NULL && args->size() == 2)
6800 return args->front()->is_constant() && args->back()->is_constant();
6802 break;
6804 case BUILTIN_REAL:
6805 case BUILTIN_IMAG:
6807 Expression* arg = this->one_arg();
6808 return arg != NULL && arg->is_constant();
6811 default:
6812 break;
6815 return false;
6818 // Return an integer constant value if possible.
6820 bool
6821 Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6822 mpz_t val,
6823 Type** ptype) const
6825 if (this->code_ == BUILTIN_LEN
6826 || this->code_ == BUILTIN_CAP)
6828 Expression* arg = this->one_arg();
6829 if (arg == NULL)
6830 return false;
6831 Type* arg_type = arg->type();
6833 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6835 std::string sval;
6836 if (arg->string_constant_value(&sval))
6838 mpz_set_ui(val, sval.length());
6839 *ptype = Type::lookup_integer_type("int");
6840 return true;
6844 if (arg_type->points_to() != NULL
6845 && arg_type->points_to()->array_type() != NULL
6846 && !arg_type->points_to()->is_open_array_type())
6847 arg_type = arg_type->points_to();
6849 if (arg_type->array_type() != NULL
6850 && arg_type->array_type()->length() != NULL)
6852 Expression* e = arg_type->array_type()->length();
6853 if (e->integer_constant_value(iota_is_constant, val, ptype))
6855 *ptype = Type::lookup_integer_type("int");
6856 return true;
6860 else if (this->code_ == BUILTIN_SIZEOF
6861 || this->code_ == BUILTIN_ALIGNOF)
6863 Expression* arg = this->one_arg();
6864 if (arg == NULL)
6865 return false;
6866 Type* arg_type = arg->type();
6867 if (arg_type->is_error_type() || arg_type->is_undefined())
6868 return false;
6869 if (arg_type->is_abstract())
6870 return false;
6871 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6872 unsigned long val_long;
6873 if (this->code_ == BUILTIN_SIZEOF)
6875 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6876 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6877 if (TREE_INT_CST_HIGH(type_size) != 0)
6878 return false;
6879 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6880 val_long = static_cast<unsigned long>(val_wide);
6881 if (val_long != val_wide)
6882 return false;
6884 else if (this->code_ == BUILTIN_ALIGNOF)
6886 if (arg->field_reference_expression() == NULL)
6887 val_long = go_type_alignment(arg_type_tree);
6888 else
6890 // Calling unsafe.Alignof(s.f) returns the alignment of
6891 // the type of f when it is used as a field in a struct.
6892 val_long = go_field_alignment(arg_type_tree);
6895 else
6896 gcc_unreachable();
6897 mpz_set_ui(val, val_long);
6898 *ptype = NULL;
6899 return true;
6901 else if (this->code_ == BUILTIN_OFFSETOF)
6903 Expression* arg = this->one_arg();
6904 if (arg == NULL)
6905 return false;
6906 Field_reference_expression* farg = arg->field_reference_expression();
6907 if (farg == NULL)
6908 return false;
6909 Expression* struct_expr = farg->expr();
6910 Type* st = struct_expr->type();
6911 if (st->struct_type() == NULL)
6912 return false;
6913 tree struct_tree = st->get_tree(this->gogo_);
6914 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
6915 tree field = TYPE_FIELDS(struct_tree);
6916 for (unsigned int index = farg->field_index(); index > 0; --index)
6918 field = DECL_CHAIN(field);
6919 gcc_assert(field != NULL_TREE);
6921 HOST_WIDE_INT offset_wide = int_byte_position (field);
6922 if (offset_wide < 0)
6923 return false;
6924 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
6925 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
6926 return false;
6927 mpz_set_ui(val, offset_long);
6928 return true;
6930 return false;
6933 // Return a floating point constant value if possible.
6935 bool
6936 Builtin_call_expression::do_float_constant_value(mpfr_t val,
6937 Type** ptype) const
6939 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
6941 Expression* arg = this->one_arg();
6942 if (arg == NULL)
6943 return false;
6945 mpfr_t real;
6946 mpfr_t imag;
6947 mpfr_init(real);
6948 mpfr_init(imag);
6950 bool ret = false;
6951 Type* type;
6952 if (arg->complex_constant_value(real, imag, &type))
6954 if (this->code_ == BUILTIN_REAL)
6955 mpfr_set(val, real, GMP_RNDN);
6956 else
6957 mpfr_set(val, imag, GMP_RNDN);
6958 *ptype = Builtin_call_expression::real_imag_type(type);
6959 ret = true;
6962 mpfr_clear(real);
6963 mpfr_clear(imag);
6964 return ret;
6967 return false;
6970 // Return a complex constant value if possible.
6972 bool
6973 Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
6974 Type** ptype) const
6976 if (this->code_ == BUILTIN_CMPLX)
6978 const Expression_list* args = this->args();
6979 if (args == NULL || args->size() != 2)
6980 return false;
6982 mpfr_t r;
6983 mpfr_init(r);
6984 Type* rtype;
6985 if (!args->front()->float_constant_value(r, &rtype))
6987 mpfr_clear(r);
6988 return false;
6991 mpfr_t i;
6992 mpfr_init(i);
6994 bool ret = false;
6995 Type* itype;
6996 if (args->back()->float_constant_value(i, &itype)
6997 && Type::are_identical(rtype, itype, false, NULL))
6999 mpfr_set(real, r, GMP_RNDN);
7000 mpfr_set(imag, i, GMP_RNDN);
7001 *ptype = Builtin_call_expression::cmplx_type(rtype);
7002 ret = true;
7005 mpfr_clear(r);
7006 mpfr_clear(i);
7008 return ret;
7011 return false;
7014 // Return the type.
7016 Type*
7017 Builtin_call_expression::do_type()
7019 switch (this->code_)
7021 case BUILTIN_INVALID:
7022 default:
7023 gcc_unreachable();
7025 case BUILTIN_NEW:
7026 case BUILTIN_MAKE:
7028 const Expression_list* args = this->args();
7029 if (args == NULL || args->empty())
7030 return Type::make_error_type();
7031 return Type::make_pointer_type(args->front()->type());
7034 case BUILTIN_CAP:
7035 case BUILTIN_COPY:
7036 case BUILTIN_LEN:
7037 case BUILTIN_ALIGNOF:
7038 case BUILTIN_OFFSETOF:
7039 case BUILTIN_SIZEOF:
7040 return Type::lookup_integer_type("int");
7042 case BUILTIN_CLOSE:
7043 case BUILTIN_PANIC:
7044 case BUILTIN_PRINT:
7045 case BUILTIN_PRINTLN:
7046 return Type::make_void_type();
7048 case BUILTIN_CLOSED:
7049 return Type::lookup_bool_type();
7051 case BUILTIN_RECOVER:
7052 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
7054 case BUILTIN_APPEND:
7056 const Expression_list* args = this->args();
7057 if (args == NULL || args->empty())
7058 return Type::make_error_type();
7059 return args->front()->type();
7062 case BUILTIN_REAL:
7063 case BUILTIN_IMAG:
7065 Expression* arg = this->one_arg();
7066 if (arg == NULL)
7067 return Type::make_error_type();
7068 Type* t = arg->type();
7069 if (t->is_abstract())
7070 t = t->make_non_abstract_type();
7071 t = Builtin_call_expression::real_imag_type(t);
7072 if (t == NULL)
7073 t = Type::make_error_type();
7074 return t;
7077 case BUILTIN_CMPLX:
7079 const Expression_list* args = this->args();
7080 if (args == NULL || args->size() != 2)
7081 return Type::make_error_type();
7082 Type* t = args->front()->type();
7083 if (t->is_abstract())
7085 t = args->back()->type();
7086 if (t->is_abstract())
7087 t = t->make_non_abstract_type();
7089 t = Builtin_call_expression::cmplx_type(t);
7090 if (t == NULL)
7091 t = Type::make_error_type();
7092 return t;
7097 // Determine the type.
7099 void
7100 Builtin_call_expression::do_determine_type(const Type_context* context)
7102 this->fn()->determine_type_no_context();
7104 const Expression_list* args = this->args();
7106 bool is_print;
7107 Type* arg_type = NULL;
7108 switch (this->code_)
7110 case BUILTIN_PRINT:
7111 case BUILTIN_PRINTLN:
7112 // Do not force a large integer constant to "int".
7113 is_print = true;
7114 break;
7116 case BUILTIN_REAL:
7117 case BUILTIN_IMAG:
7118 arg_type = Builtin_call_expression::cmplx_type(context->type);
7119 is_print = false;
7120 break;
7122 case BUILTIN_CMPLX:
7124 // For the cmplx function the type of one operand can
7125 // determine the type of the other, as in a binary expression.
7126 arg_type = Builtin_call_expression::real_imag_type(context->type);
7127 if (args != NULL && args->size() == 2)
7129 Type* t1 = args->front()->type();
7130 Type* t2 = args->front()->type();
7131 if (!t1->is_abstract())
7132 arg_type = t1;
7133 else if (!t2->is_abstract())
7134 arg_type = t2;
7136 is_print = false;
7138 break;
7140 default:
7141 is_print = false;
7142 break;
7145 if (args != NULL)
7147 for (Expression_list::const_iterator pa = args->begin();
7148 pa != args->end();
7149 ++pa)
7151 Type_context subcontext;
7152 subcontext.type = arg_type;
7154 if (is_print)
7156 // We want to print large constants, we so can't just
7157 // use the appropriate nonabstract type. Use uint64 for
7158 // an integer if we know it is nonnegative, otherwise
7159 // use int64 for a integer, otherwise use float64 for a
7160 // float or complex128 for a complex.
7161 Type* want_type = NULL;
7162 Type* atype = (*pa)->type();
7163 if (atype->is_abstract())
7165 if (atype->integer_type() != NULL)
7167 mpz_t val;
7168 mpz_init(val);
7169 Type* dummy;
7170 if (this->integer_constant_value(true, val, &dummy)
7171 && mpz_sgn(val) >= 0)
7172 want_type = Type::lookup_integer_type("uint64");
7173 else
7174 want_type = Type::lookup_integer_type("int64");
7175 mpz_clear(val);
7177 else if (atype->float_type() != NULL)
7178 want_type = Type::lookup_float_type("float64");
7179 else if (atype->complex_type() != NULL)
7180 want_type = Type::lookup_complex_type("complex128");
7181 else if (atype->is_abstract_string_type())
7182 want_type = Type::lookup_string_type();
7183 else if (atype->is_abstract_boolean_type())
7184 want_type = Type::lookup_bool_type();
7185 else
7186 gcc_unreachable();
7187 subcontext.type = want_type;
7191 (*pa)->determine_type(&subcontext);
7196 // If there is exactly one argument, return true. Otherwise give an
7197 // error message and return false.
7199 bool
7200 Builtin_call_expression::check_one_arg()
7202 const Expression_list* args = this->args();
7203 if (args == NULL || args->size() < 1)
7205 this->report_error(_("not enough arguments"));
7206 return false;
7208 else if (args->size() > 1)
7210 this->report_error(_("too many arguments"));
7211 return false;
7213 if (args->front()->is_error_expression()
7214 || args->front()->type()->is_error_type()
7215 || args->front()->type()->is_undefined())
7217 this->set_is_error();
7218 return false;
7220 return true;
7223 // Check argument types for a builtin function.
7225 void
7226 Builtin_call_expression::do_check_types(Gogo*)
7228 switch (this->code_)
7230 case BUILTIN_INVALID:
7231 case BUILTIN_NEW:
7232 case BUILTIN_MAKE:
7233 return;
7235 case BUILTIN_LEN:
7236 case BUILTIN_CAP:
7238 // The single argument may be either a string or an array or a
7239 // map or a channel, or a pointer to a closed array.
7240 if (this->check_one_arg())
7242 Type* arg_type = this->one_arg()->type();
7243 if (arg_type->points_to() != NULL
7244 && arg_type->points_to()->array_type() != NULL
7245 && !arg_type->points_to()->is_open_array_type())
7246 arg_type = arg_type->points_to();
7247 if (this->code_ == BUILTIN_CAP)
7249 if (!arg_type->is_error_type()
7250 && arg_type->array_type() == NULL
7251 && arg_type->channel_type() == NULL)
7252 this->report_error(_("argument must be array or slice "
7253 "or channel"));
7255 else
7257 if (!arg_type->is_error_type()
7258 && !arg_type->is_string_type()
7259 && arg_type->array_type() == NULL
7260 && arg_type->map_type() == NULL
7261 && arg_type->channel_type() == NULL)
7262 this->report_error(_("argument must be string or "
7263 "array or slice or map or channel"));
7267 break;
7269 case BUILTIN_PRINT:
7270 case BUILTIN_PRINTLN:
7272 const Expression_list* args = this->args();
7273 if (args == NULL)
7275 if (this->code_ == BUILTIN_PRINT)
7276 warning_at(this->location(), 0,
7277 "no arguments for builtin function %<%s%>",
7278 (this->code_ == BUILTIN_PRINT
7279 ? "print"
7280 : "println"));
7282 else
7284 for (Expression_list::const_iterator p = args->begin();
7285 p != args->end();
7286 ++p)
7288 Type* type = (*p)->type();
7289 if (type->is_error_type()
7290 || type->is_string_type()
7291 || type->integer_type() != NULL
7292 || type->float_type() != NULL
7293 || type->complex_type() != NULL
7294 || type->is_boolean_type()
7295 || type->points_to() != NULL
7296 || type->interface_type() != NULL
7297 || type->channel_type() != NULL
7298 || type->map_type() != NULL
7299 || type->function_type() != NULL
7300 || type->is_open_array_type())
7302 else
7303 this->report_error(_("unsupported argument type to "
7304 "builtin function"));
7308 break;
7310 case BUILTIN_CLOSE:
7311 case BUILTIN_CLOSED:
7312 if (this->check_one_arg())
7314 if (this->one_arg()->type()->channel_type() == NULL)
7315 this->report_error(_("argument must be channel"));
7317 break;
7319 case BUILTIN_PANIC:
7320 case BUILTIN_SIZEOF:
7321 case BUILTIN_ALIGNOF:
7322 this->check_one_arg();
7323 break;
7325 case BUILTIN_RECOVER:
7326 if (this->args() != NULL && !this->args()->empty())
7327 this->report_error(_("too many arguments"));
7328 break;
7330 case BUILTIN_OFFSETOF:
7331 if (this->check_one_arg())
7333 Expression* arg = this->one_arg();
7334 if (arg->field_reference_expression() == NULL)
7335 this->report_error(_("argument must be a field reference"));
7337 break;
7339 case BUILTIN_COPY:
7341 const Expression_list* args = this->args();
7342 if (args == NULL || args->size() < 2)
7344 this->report_error(_("not enough arguments"));
7345 break;
7347 else if (args->size() > 2)
7349 this->report_error(_("too many arguments"));
7350 break;
7352 Type* arg1_type = args->front()->type();
7353 Type* arg2_type = args->back()->type();
7354 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7355 break;
7357 Type* e1;
7358 if (arg1_type->is_open_array_type())
7359 e1 = arg1_type->array_type()->element_type();
7360 else
7362 this->report_error(_("left argument must be a slice"));
7363 break;
7366 Type* e2;
7367 if (arg2_type->is_open_array_type())
7368 e2 = arg2_type->array_type()->element_type();
7369 else if (arg2_type->is_string_type())
7370 e2 = Type::lookup_integer_type("uint8");
7371 else
7373 this->report_error(_("right argument must be a slice or a string"));
7374 break;
7377 if (!Type::are_identical(e1, e2, true, NULL))
7378 this->report_error(_("element types must be the same"));
7380 break;
7382 case BUILTIN_APPEND:
7384 const Expression_list* args = this->args();
7385 if (args == NULL || args->empty())
7387 this->report_error(_("not enough arguments"));
7388 break;
7390 /* Lowering varargs should have left us with 2 arguments. */
7391 gcc_assert(args->size() == 2);
7392 std::string reason;
7393 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7394 &reason))
7396 if (reason.empty())
7397 this->report_error(_("arguments 1 and 2 have different types"));
7398 else
7400 error_at(this->location(),
7401 "arguments 1 and 2 have different types (%s)",
7402 reason.c_str());
7403 this->set_is_error();
7406 break;
7409 case BUILTIN_REAL:
7410 case BUILTIN_IMAG:
7411 if (this->check_one_arg())
7413 if (this->one_arg()->type()->complex_type() == NULL)
7414 this->report_error(_("argument must have complex type"));
7416 break;
7418 case BUILTIN_CMPLX:
7420 const Expression_list* args = this->args();
7421 if (args == NULL || args->size() < 2)
7422 this->report_error(_("not enough arguments"));
7423 else if (args->size() > 2)
7424 this->report_error(_("too many arguments"));
7425 else if (args->front()->is_error_expression()
7426 || args->front()->type()->is_error_type()
7427 || args->back()->is_error_expression()
7428 || args->back()->type()->is_error_type())
7429 this->set_is_error();
7430 else if (!Type::are_identical(args->front()->type(),
7431 args->back()->type(), true, NULL))
7432 this->report_error(_("cmplx arguments must have identical types"));
7433 else if (args->front()->type()->float_type() == NULL)
7434 this->report_error(_("cmplx arguments must have "
7435 "floating-point type"));
7437 break;
7439 default:
7440 gcc_unreachable();
7444 // Return the tree for a builtin function.
7446 tree
7447 Builtin_call_expression::do_get_tree(Translate_context* context)
7449 Gogo* gogo = context->gogo();
7450 source_location location = this->location();
7451 switch (this->code_)
7453 case BUILTIN_INVALID:
7454 case BUILTIN_NEW:
7455 case BUILTIN_MAKE:
7456 gcc_unreachable();
7458 case BUILTIN_LEN:
7459 case BUILTIN_CAP:
7461 const Expression_list* args = this->args();
7462 gcc_assert(args != NULL && args->size() == 1);
7463 Expression* arg = *args->begin();
7464 Type* arg_type = arg->type();
7465 tree arg_tree = arg->get_tree(context);
7466 if (arg_tree == error_mark_node)
7467 return error_mark_node;
7469 if (arg_type->points_to() != NULL)
7471 arg_type = arg_type->points_to();
7472 gcc_assert(arg_type->array_type() != NULL
7473 && !arg_type->is_open_array_type());
7474 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7475 arg_tree = build_fold_indirect_ref(arg_tree);
7478 tree val_tree;
7479 if (this->code_ == BUILTIN_LEN)
7481 if (arg_type->is_string_type())
7482 val_tree = String_type::length_tree(gogo, arg_tree);
7483 else if (arg_type->array_type() != NULL)
7484 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7485 else if (arg_type->map_type() != NULL)
7487 static tree map_len_fndecl;
7488 val_tree = Gogo::call_builtin(&map_len_fndecl,
7489 location,
7490 "__go_map_len",
7492 sizetype,
7493 arg_type->get_tree(gogo),
7494 arg_tree);
7496 else if (arg_type->channel_type() != NULL)
7498 static tree chan_len_fndecl;
7499 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7500 location,
7501 "__go_chan_len",
7503 sizetype,
7504 arg_type->get_tree(gogo),
7505 arg_tree);
7507 else
7508 gcc_unreachable();
7510 else
7512 if (arg_type->array_type() != NULL)
7513 val_tree = arg_type->array_type()->capacity_tree(gogo, arg_tree);
7514 else if (arg_type->channel_type() != NULL)
7516 static tree chan_cap_fndecl;
7517 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7518 location,
7519 "__go_chan_cap",
7521 sizetype,
7522 arg_type->get_tree(gogo),
7523 arg_tree);
7525 else
7526 gcc_unreachable();
7529 if (val_tree == error_mark_node)
7530 return error_mark_node;
7532 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7533 if (type_tree == TREE_TYPE(val_tree))
7534 return val_tree;
7535 else
7536 return fold(convert_to_integer(type_tree, val_tree));
7539 case BUILTIN_PRINT:
7540 case BUILTIN_PRINTLN:
7542 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7543 tree stmt_list = NULL_TREE;
7545 const Expression_list* call_args = this->args();
7546 if (call_args != NULL)
7548 for (Expression_list::const_iterator p = call_args->begin();
7549 p != call_args->end();
7550 ++p)
7552 if (is_ln && p != call_args->begin())
7554 static tree print_space_fndecl;
7555 tree call = Gogo::call_builtin(&print_space_fndecl,
7556 location,
7557 "__go_print_space",
7559 void_type_node);
7560 if (call == error_mark_node)
7561 return error_mark_node;
7562 append_to_statement_list(call, &stmt_list);
7565 Type* type = (*p)->type();
7567 tree arg = (*p)->get_tree(context);
7568 if (arg == error_mark_node)
7569 return error_mark_node;
7571 tree* pfndecl;
7572 const char* fnname;
7573 if (type->is_string_type())
7575 static tree print_string_fndecl;
7576 pfndecl = &print_string_fndecl;
7577 fnname = "__go_print_string";
7579 else if (type->integer_type() != NULL
7580 && type->integer_type()->is_unsigned())
7582 static tree print_uint64_fndecl;
7583 pfndecl = &print_uint64_fndecl;
7584 fnname = "__go_print_uint64";
7585 Type* itype = Type::lookup_integer_type("uint64");
7586 arg = fold_convert_loc(location, itype->get_tree(gogo),
7587 arg);
7589 else if (type->integer_type() != NULL)
7591 static tree print_int64_fndecl;
7592 pfndecl = &print_int64_fndecl;
7593 fnname = "__go_print_int64";
7594 Type* itype = Type::lookup_integer_type("int64");
7595 arg = fold_convert_loc(location, itype->get_tree(gogo),
7596 arg);
7598 else if (type->float_type() != NULL)
7600 static tree print_double_fndecl;
7601 pfndecl = &print_double_fndecl;
7602 fnname = "__go_print_double";
7603 arg = fold_convert_loc(location, double_type_node, arg);
7605 else if (type->complex_type() != NULL)
7607 static tree print_complex_fndecl;
7608 pfndecl = &print_complex_fndecl;
7609 fnname = "__go_print_complex";
7610 arg = fold_convert_loc(location, complex_double_type_node,
7611 arg);
7613 else if (type->is_boolean_type())
7615 static tree print_bool_fndecl;
7616 pfndecl = &print_bool_fndecl;
7617 fnname = "__go_print_bool";
7619 else if (type->points_to() != NULL
7620 || type->channel_type() != NULL
7621 || type->map_type() != NULL
7622 || type->function_type() != NULL)
7624 static tree print_pointer_fndecl;
7625 pfndecl = &print_pointer_fndecl;
7626 fnname = "__go_print_pointer";
7627 arg = fold_convert_loc(location, ptr_type_node, arg);
7629 else if (type->interface_type() != NULL)
7631 if (type->interface_type()->is_empty())
7633 static tree print_empty_interface_fndecl;
7634 pfndecl = &print_empty_interface_fndecl;
7635 fnname = "__go_print_empty_interface";
7637 else
7639 static tree print_interface_fndecl;
7640 pfndecl = &print_interface_fndecl;
7641 fnname = "__go_print_interface";
7644 else if (type->is_open_array_type())
7646 static tree print_slice_fndecl;
7647 pfndecl = &print_slice_fndecl;
7648 fnname = "__go_print_slice";
7650 else
7651 gcc_unreachable();
7653 tree call = Gogo::call_builtin(pfndecl,
7654 location,
7655 fnname,
7657 void_type_node,
7658 TREE_TYPE(arg),
7659 arg);
7660 if (call == error_mark_node)
7661 return error_mark_node;
7662 append_to_statement_list(call, &stmt_list);
7666 if (is_ln)
7668 static tree print_nl_fndecl;
7669 tree call = Gogo::call_builtin(&print_nl_fndecl,
7670 location,
7671 "__go_print_nl",
7673 void_type_node);
7674 if (call == error_mark_node)
7675 return error_mark_node;
7676 append_to_statement_list(call, &stmt_list);
7679 return stmt_list;
7682 case BUILTIN_PANIC:
7684 const Expression_list* args = this->args();
7685 gcc_assert(args != NULL && args->size() == 1);
7686 Expression* arg = args->front();
7687 tree arg_tree = arg->get_tree(context);
7688 if (arg_tree == error_mark_node)
7689 return error_mark_node;
7690 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7691 arg_tree = Expression::convert_for_assignment(context, empty,
7692 arg->type(),
7693 arg_tree, location);
7694 static tree panic_fndecl;
7695 tree call = Gogo::call_builtin(&panic_fndecl,
7696 location,
7697 "__go_panic",
7699 void_type_node,
7700 TREE_TYPE(arg_tree),
7701 arg_tree);
7702 if (call == error_mark_node)
7703 return error_mark_node;
7704 // This function will throw an exception.
7705 TREE_NOTHROW(panic_fndecl) = 0;
7706 // This function will not return.
7707 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7708 return call;
7711 case BUILTIN_RECOVER:
7713 // The argument is set when building recover thunks. It's a
7714 // boolean value which is true if we can recover a value now.
7715 const Expression_list* args = this->args();
7716 gcc_assert(args != NULL && args->size() == 1);
7717 Expression* arg = args->front();
7718 tree arg_tree = arg->get_tree(context);
7719 if (arg_tree == error_mark_node)
7720 return error_mark_node;
7722 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7723 tree empty_tree = empty->get_tree(context->gogo());
7725 Type* nil_type = Type::make_nil_type();
7726 Expression* nil = Expression::make_nil(location);
7727 tree nil_tree = nil->get_tree(context);
7728 tree empty_nil_tree = Expression::convert_for_assignment(context,
7729 empty,
7730 nil_type,
7731 nil_tree,
7732 location);
7734 // We need to handle a deferred call to recover specially,
7735 // because it changes whether it can recover a panic or not.
7736 // See test7 in test/recover1.go.
7737 tree call;
7738 if (this->is_deferred())
7740 static tree deferred_recover_fndecl;
7741 call = Gogo::call_builtin(&deferred_recover_fndecl,
7742 location,
7743 "__go_deferred_recover",
7745 empty_tree);
7747 else
7749 static tree recover_fndecl;
7750 call = Gogo::call_builtin(&recover_fndecl,
7751 location,
7752 "__go_recover",
7754 empty_tree);
7756 if (call == error_mark_node)
7757 return error_mark_node;
7758 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7759 call, empty_nil_tree);
7762 case BUILTIN_CLOSE:
7763 case BUILTIN_CLOSED:
7765 const Expression_list* args = this->args();
7766 gcc_assert(args != NULL && args->size() == 1);
7767 Expression* arg = args->front();
7768 tree arg_tree = arg->get_tree(context);
7769 if (arg_tree == error_mark_node)
7770 return error_mark_node;
7771 if (this->code_ == BUILTIN_CLOSE)
7773 static tree close_fndecl;
7774 return Gogo::call_builtin(&close_fndecl,
7775 location,
7776 "__go_builtin_close",
7778 void_type_node,
7779 TREE_TYPE(arg_tree),
7780 arg_tree);
7782 else
7784 static tree closed_fndecl;
7785 return Gogo::call_builtin(&closed_fndecl,
7786 location,
7787 "__go_builtin_closed",
7789 boolean_type_node,
7790 TREE_TYPE(arg_tree),
7791 arg_tree);
7795 case BUILTIN_SIZEOF:
7796 case BUILTIN_OFFSETOF:
7797 case BUILTIN_ALIGNOF:
7799 mpz_t val;
7800 mpz_init(val);
7801 Type* dummy;
7802 bool b = this->integer_constant_value(true, val, &dummy);
7803 gcc_assert(b);
7804 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7805 tree ret = Expression::integer_constant_tree(val, type);
7806 mpz_clear(val);
7807 return ret;
7810 case BUILTIN_COPY:
7812 const Expression_list* args = this->args();
7813 gcc_assert(args != NULL && args->size() == 2);
7814 Expression* arg1 = args->front();
7815 Expression* arg2 = args->back();
7817 tree arg1_tree = arg1->get_tree(context);
7818 tree arg2_tree = arg2->get_tree(context);
7819 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7820 return error_mark_node;
7822 Type* arg1_type = arg1->type();
7823 Array_type* at = arg1_type->array_type();
7824 arg1_tree = save_expr(arg1_tree);
7825 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7826 tree arg1_len = at->length_tree(gogo, arg1_tree);
7827 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
7828 return error_mark_node;
7830 Type* arg2_type = arg2->type();
7831 tree arg2_val;
7832 tree arg2_len;
7833 if (arg2_type->is_open_array_type())
7835 at = arg2_type->array_type();
7836 arg2_tree = save_expr(arg2_tree);
7837 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7838 arg2_len = at->length_tree(gogo, arg2_tree);
7840 else
7842 arg2_tree = save_expr(arg2_tree);
7843 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7844 arg2_len = String_type::length_tree(gogo, arg2_tree);
7846 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7847 return error_mark_node;
7849 arg1_len = save_expr(arg1_len);
7850 arg2_len = save_expr(arg2_len);
7851 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7852 fold_build2_loc(location, LT_EXPR,
7853 boolean_type_node,
7854 arg1_len, arg2_len),
7855 arg1_len, arg2_len);
7856 len = save_expr(len);
7858 Type* element_type = at->element_type();
7859 tree element_type_tree = element_type->get_tree(gogo);
7860 if (element_type_tree == error_mark_node)
7861 return error_mark_node;
7862 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7863 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7864 len);
7865 bytecount = fold_build2_loc(location, MULT_EXPR,
7866 TREE_TYPE(element_size),
7867 bytecount, element_size);
7868 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7870 arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
7871 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
7873 static tree copy_fndecl;
7874 tree call = Gogo::call_builtin(&copy_fndecl,
7875 location,
7876 "__go_copy",
7878 void_type_node,
7879 ptr_type_node,
7880 arg1_val,
7881 ptr_type_node,
7882 arg2_val,
7883 size_type_node,
7884 bytecount);
7885 if (call == error_mark_node)
7886 return error_mark_node;
7888 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
7889 call, len);
7892 case BUILTIN_APPEND:
7894 const Expression_list* args = this->args();
7895 gcc_assert(args != NULL && args->size() == 2);
7896 Expression* arg1 = args->front();
7897 Expression* arg2 = args->back();
7899 Array_type* at = arg1->type()->array_type();
7900 Type* element_type = at->element_type();
7902 tree arg1_tree = arg1->get_tree(context);
7903 tree arg2_tree = arg2->get_tree(context);
7904 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7905 return error_mark_node;
7907 Array_type* at2 = arg2->type()->array_type();
7908 arg2_tree = save_expr(arg2_tree);
7909 tree arg2_val = at2->value_pointer_tree(gogo, arg2_tree);
7910 tree arg2_len = at2->length_tree(gogo, arg2_tree);
7911 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7912 return error_mark_node;
7913 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
7914 arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
7916 tree element_type_tree = element_type->get_tree(gogo);
7917 if (element_type_tree == error_mark_node)
7918 return error_mark_node;
7919 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7920 element_size = fold_convert_loc(location, size_type_node,
7921 element_size);
7923 // We rebuild the decl each time since the slice types may
7924 // change.
7925 tree append_fndecl = NULL_TREE;
7926 return Gogo::call_builtin(&append_fndecl,
7927 location,
7928 "__go_append",
7930 TREE_TYPE(arg1_tree),
7931 TREE_TYPE(arg1_tree),
7932 arg1_tree,
7933 ptr_type_node,
7934 arg2_val,
7935 size_type_node,
7936 arg2_len,
7937 size_type_node,
7938 element_size);
7941 case BUILTIN_REAL:
7942 case BUILTIN_IMAG:
7944 const Expression_list* args = this->args();
7945 gcc_assert(args != NULL && args->size() == 1);
7946 Expression* arg = args->front();
7947 tree arg_tree = arg->get_tree(context);
7948 if (arg_tree == error_mark_node)
7949 return error_mark_node;
7950 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
7951 if (this->code_ == BUILTIN_REAL)
7952 return fold_build1_loc(location, REALPART_EXPR,
7953 TREE_TYPE(TREE_TYPE(arg_tree)),
7954 arg_tree);
7955 else
7956 return fold_build1_loc(location, IMAGPART_EXPR,
7957 TREE_TYPE(TREE_TYPE(arg_tree)),
7958 arg_tree);
7961 case BUILTIN_CMPLX:
7963 const Expression_list* args = this->args();
7964 gcc_assert(args != NULL && args->size() == 2);
7965 tree r = args->front()->get_tree(context);
7966 tree i = args->back()->get_tree(context);
7967 if (r == error_mark_node || i == error_mark_node)
7968 return error_mark_node;
7969 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
7970 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
7971 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
7972 return fold_build2_loc(location, COMPLEX_EXPR,
7973 build_complex_type(TREE_TYPE(r)),
7974 r, i);
7977 default:
7978 gcc_unreachable();
7982 // We have to support exporting a builtin call expression, because
7983 // code can set a constant to the result of a builtin expression.
7985 void
7986 Builtin_call_expression::do_export(Export* exp) const
7988 bool ok = false;
7990 mpz_t val;
7991 mpz_init(val);
7992 Type* dummy;
7993 if (this->integer_constant_value(true, val, &dummy))
7995 Integer_expression::export_integer(exp, val);
7996 ok = true;
7998 mpz_clear(val);
8000 if (!ok)
8002 mpfr_t fval;
8003 mpfr_init(fval);
8004 if (this->float_constant_value(fval, &dummy))
8006 Float_expression::export_float(exp, fval);
8007 ok = true;
8009 mpfr_clear(fval);
8012 if (!ok)
8014 mpfr_t real;
8015 mpfr_t imag;
8016 mpfr_init(real);
8017 mpfr_init(imag);
8018 if (this->complex_constant_value(real, imag, &dummy))
8020 Complex_expression::export_complex(exp, real, imag);
8021 ok = true;
8023 mpfr_clear(real);
8024 mpfr_clear(imag);
8027 if (!ok)
8029 error_at(this->location(), "value is not constant");
8030 return;
8033 // A trailing space lets us reliably identify the end of the number.
8034 exp->write_c_string(" ");
8037 // Class Call_expression.
8039 // Traversal.
8042 Call_expression::do_traverse(Traverse* traverse)
8044 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
8045 return TRAVERSE_EXIT;
8046 if (this->args_ != NULL)
8048 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
8049 return TRAVERSE_EXIT;
8051 return TRAVERSE_CONTINUE;
8054 // Lower a call statement.
8056 Expression*
8057 Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
8059 // A type case can look like a function call.
8060 if (this->fn_->is_type_expression()
8061 && this->args_ != NULL
8062 && this->args_->size() == 1)
8063 return Expression::make_cast(this->fn_->type(), this->args_->front(),
8064 this->location());
8066 // Recognize a call to a builtin function.
8067 Func_expression* fne = this->fn_->func_expression();
8068 if (fne != NULL
8069 && fne->named_object()->is_function_declaration()
8070 && fne->named_object()->func_declaration_value()->type()->is_builtin())
8071 return new Builtin_call_expression(gogo, this->fn_, this->args_,
8072 this->is_varargs_, this->location());
8074 // Handle an argument which is a call to a function which returns
8075 // multiple results.
8076 if (this->args_ != NULL
8077 && this->args_->size() == 1
8078 && this->args_->front()->call_expression() != NULL
8079 && this->fn_->type()->function_type() != NULL)
8081 Function_type* fntype = this->fn_->type()->function_type();
8082 size_t rc = this->args_->front()->call_expression()->result_count();
8083 if (rc > 1
8084 && fntype->parameters() != NULL
8085 && (fntype->parameters()->size() == rc
8086 || (fntype->is_varargs()
8087 && fntype->parameters()->size() - 1 <= rc)))
8089 Call_expression* call = this->args_->front()->call_expression();
8090 Expression_list* args = new Expression_list;
8091 for (size_t i = 0; i < rc; ++i)
8092 args->push_back(Expression::make_call_result(call, i));
8093 // We can't return a new call expression here, because this
8094 // one may be referenced by Call_result expressions. FIXME.
8095 delete this->args_;
8096 this->args_ = args;
8100 // Handle a call to a varargs function by packaging up the extra
8101 // parameters.
8102 if (this->fn_->type()->function_type() != NULL
8103 && this->fn_->type()->function_type()->is_varargs())
8105 Function_type* fntype = this->fn_->type()->function_type();
8106 const Typed_identifier_list* parameters = fntype->parameters();
8107 gcc_assert(parameters != NULL && !parameters->empty());
8108 Type* varargs_type = parameters->back().type();
8109 return this->lower_varargs(gogo, function, varargs_type,
8110 parameters->size());
8113 return this;
8116 // Lower a call to a varargs function. FUNCTION is the function in
8117 // which the call occurs--it's not the function we are calling.
8118 // VARARGS_TYPE is the type of the varargs parameter, a slice type.
8119 // PARAM_COUNT is the number of parameters of the function we are
8120 // calling; the last of these parameters will be the varargs
8121 // parameter.
8123 Expression*
8124 Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
8125 Type* varargs_type, size_t param_count)
8127 if (this->varargs_are_lowered_)
8128 return this;
8130 source_location loc = this->location();
8132 gcc_assert(param_count > 0);
8133 gcc_assert(varargs_type->is_open_array_type());
8135 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
8136 if (arg_count < param_count - 1)
8138 // Not enough arguments; will be caught in check_types.
8139 return this;
8142 Expression_list* old_args = this->args_;
8143 Expression_list* new_args = new Expression_list();
8144 bool push_empty_arg = false;
8145 if (old_args == NULL || old_args->empty())
8147 gcc_assert(param_count == 1);
8148 push_empty_arg = true;
8150 else
8152 Expression_list::const_iterator pa;
8153 int i = 1;
8154 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
8156 if (static_cast<size_t>(i) == param_count)
8157 break;
8158 new_args->push_back(*pa);
8161 // We have reached the varargs parameter.
8163 bool issued_error = false;
8164 if (pa == old_args->end())
8165 push_empty_arg = true;
8166 else if (pa + 1 == old_args->end() && this->is_varargs_)
8167 new_args->push_back(*pa);
8168 else if (this->is_varargs_)
8170 this->report_error(_("too many arguments"));
8171 return this;
8173 else if (pa + 1 == old_args->end()
8174 && this->is_compatible_varargs_argument(function, *pa,
8175 varargs_type,
8176 &issued_error))
8177 new_args->push_back(*pa);
8178 else
8180 Type* element_type = varargs_type->array_type()->element_type();
8181 Expression_list* vals = new Expression_list;
8182 for (; pa != old_args->end(); ++pa, ++i)
8184 // Check types here so that we get a better message.
8185 Type* patype = (*pa)->type();
8186 source_location paloc = (*pa)->location();
8187 if (!this->check_argument_type(i, element_type, patype,
8188 paloc, issued_error))
8189 continue;
8190 vals->push_back(*pa);
8192 Expression* val =
8193 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8194 new_args->push_back(val);
8198 if (push_empty_arg)
8199 new_args->push_back(Expression::make_nil(loc));
8201 // We can't return a new call expression here, because this one may
8202 // be referenced by Call_result expressions. FIXME.
8203 if (old_args != NULL)
8204 delete old_args;
8205 this->args_ = new_args;
8206 this->varargs_are_lowered_ = true;
8208 // Lower all the new subexpressions.
8209 Expression* ret = this;
8210 gogo->lower_expression(function, &ret);
8211 gcc_assert(ret == this);
8212 return ret;
8215 // Return true if ARG is a varargs argment which should be passed to
8216 // the varargs parameter of type PARAM_TYPE without wrapping. ARG
8217 // will be the last argument passed in the call, and PARAM_TYPE will
8218 // be the type of the last parameter of the varargs function being
8219 // called.
8221 bool
8222 Call_expression::is_compatible_varargs_argument(Named_object* function,
8223 Expression* arg,
8224 Type* param_type,
8225 bool* issued_error)
8227 *issued_error = false;
8229 Type* var_type = NULL;
8231 // The simple case is passing the varargs parameter of the caller.
8232 Var_expression* ve = arg->var_expression();
8233 if (ve != NULL && ve->named_object()->is_variable())
8235 Variable* var = ve->named_object()->var_value();
8236 if (var->is_varargs_parameter())
8237 var_type = var->type();
8240 // The complex case is passing the varargs parameter of some
8241 // enclosing function. This will look like passing down *c.f where
8242 // c is the closure variable and f is a field in the closure.
8243 if (function != NULL
8244 && function->func_value()->needs_closure()
8245 && arg->classification() == EXPRESSION_UNARY)
8247 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8248 if (ue->op() == OPERATOR_MULT)
8250 Field_reference_expression* fre =
8251 ue->operand()->deref()->field_reference_expression();
8252 if (fre != NULL)
8254 Var_expression* ve = fre->expr()->deref()->var_expression();
8255 if (ve != NULL)
8257 Named_object* no = ve->named_object();
8258 Function* f = function->func_value();
8259 if (no == f->closure_var())
8261 // At this point we know that this indeed a
8262 // reference to some enclosing variable. Now we
8263 // need to figure out whether that variable is a
8264 // varargs parameter.
8265 Named_object* enclosing =
8266 f->enclosing_var(fre->field_index());
8267 Variable* var = enclosing->var_value();
8268 if (var->is_varargs_parameter())
8269 var_type = var->type();
8276 if (var_type == NULL)
8277 return false;
8279 // We only match if the parameter is the same, with an identical
8280 // type.
8281 Array_type* var_at = var_type->array_type();
8282 gcc_assert(var_at != NULL);
8283 Array_type* param_at = param_type->array_type();
8284 if (param_at != NULL
8285 && Type::are_identical(var_at->element_type(),
8286 param_at->element_type(), true, NULL))
8287 return true;
8288 error_at(arg->location(), "... mismatch: passing ...T as ...");
8289 *issued_error = true;
8290 return false;
8293 // Get the function type. Returns NULL if we don't know the type. If
8294 // this returns NULL, and if_ERROR is true, issues an error.
8296 Function_type*
8297 Call_expression::get_function_type() const
8299 return this->fn_->type()->function_type();
8302 // Return the number of values which this call will return.
8304 size_t
8305 Call_expression::result_count() const
8307 const Function_type* fntype = this->get_function_type();
8308 if (fntype == NULL)
8309 return 0;
8310 if (fntype->results() == NULL)
8311 return 0;
8312 return fntype->results()->size();
8315 // Return whether this is a call to the predeclared function recover.
8317 bool
8318 Call_expression::is_recover_call() const
8320 return this->do_is_recover_call();
8323 // Set the argument to the recover function.
8325 void
8326 Call_expression::set_recover_arg(Expression* arg)
8328 this->do_set_recover_arg(arg);
8331 // Virtual functions also implemented by Builtin_call_expression.
8333 bool
8334 Call_expression::do_is_recover_call() const
8336 return false;
8339 void
8340 Call_expression::do_set_recover_arg(Expression*)
8342 gcc_unreachable();
8345 // Get the type.
8347 Type*
8348 Call_expression::do_type()
8350 if (this->type_ != NULL)
8351 return this->type_;
8353 Type* ret;
8354 Function_type* fntype = this->get_function_type();
8355 if (fntype == NULL)
8356 return Type::make_error_type();
8358 const Typed_identifier_list* results = fntype->results();
8359 if (results == NULL)
8360 ret = Type::make_void_type();
8361 else if (results->size() == 1)
8362 ret = results->begin()->type();
8363 else
8364 ret = Type::make_call_multiple_result_type(this);
8366 this->type_ = ret;
8368 return this->type_;
8371 // Determine types for a call expression. We can use the function
8372 // parameter types to set the types of the arguments.
8374 void
8375 Call_expression::do_determine_type(const Type_context*)
8377 this->fn_->determine_type_no_context();
8378 Function_type* fntype = this->get_function_type();
8379 const Typed_identifier_list* parameters = NULL;
8380 if (fntype != NULL)
8381 parameters = fntype->parameters();
8382 if (this->args_ != NULL)
8384 Typed_identifier_list::const_iterator pt;
8385 if (parameters != NULL)
8386 pt = parameters->begin();
8387 for (Expression_list::const_iterator pa = this->args_->begin();
8388 pa != this->args_->end();
8389 ++pa)
8391 if (parameters != NULL && pt != parameters->end())
8393 Type_context subcontext(pt->type(), false);
8394 (*pa)->determine_type(&subcontext);
8395 ++pt;
8397 else
8398 (*pa)->determine_type_no_context();
8403 // Check types for parameter I.
8405 bool
8406 Call_expression::check_argument_type(int i, const Type* parameter_type,
8407 const Type* argument_type,
8408 source_location argument_location,
8409 bool issued_error)
8411 std::string reason;
8412 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8414 if (!issued_error)
8416 if (reason.empty())
8417 error_at(argument_location, "argument %d has incompatible type", i);
8418 else
8419 error_at(argument_location,
8420 "argument %d has incompatible type (%s)",
8421 i, reason.c_str());
8423 this->set_is_error();
8424 return false;
8426 return true;
8429 // Check types.
8431 void
8432 Call_expression::do_check_types(Gogo*)
8434 Function_type* fntype = this->get_function_type();
8435 if (fntype == NULL)
8437 if (!this->fn_->type()->is_error_type())
8438 this->report_error(_("expected function"));
8439 return;
8442 if (fntype->is_method())
8444 // We don't support pointers to methods, so the function has to
8445 // be a bound method expression.
8446 Bound_method_expression* bme = this->fn_->bound_method_expression();
8447 if (bme == NULL)
8449 this->report_error(_("method call without object"));
8450 return;
8452 Type* first_arg_type = bme->first_argument()->type();
8453 if (first_arg_type->points_to() == NULL)
8455 // When passing a value, we need to check that we are
8456 // permitted to copy it.
8457 std::string reason;
8458 if (!Type::are_assignable(fntype->receiver()->type(),
8459 first_arg_type, &reason))
8461 if (reason.empty())
8462 this->report_error(_("incompatible type for receiver"));
8463 else
8465 error_at(this->location(),
8466 "incompatible type for receiver (%s)",
8467 reason.c_str());
8468 this->set_is_error();
8474 // Note that varargs was handled by the lower_varargs() method, so
8475 // we don't have to worry about it here.
8477 const Typed_identifier_list* parameters = fntype->parameters();
8478 if (this->args_ == NULL)
8480 if (parameters != NULL && !parameters->empty())
8481 this->report_error(_("not enough arguments"));
8483 else if (parameters == NULL)
8484 this->report_error(_("too many arguments"));
8485 else
8487 int i = 0;
8488 Typed_identifier_list::const_iterator pt = parameters->begin();
8489 for (Expression_list::const_iterator pa = this->args_->begin();
8490 pa != this->args_->end();
8491 ++pa, ++pt, ++i)
8493 if (pt == parameters->end())
8495 this->report_error(_("too many arguments"));
8496 return;
8498 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8499 (*pa)->location(), false);
8501 if (pt != parameters->end())
8502 this->report_error(_("not enough arguments"));
8506 // Return whether we have to use a temporary variable to ensure that
8507 // we evaluate this call expression in order. If the call returns no
8508 // results then it will inevitably be executed last. If the call
8509 // returns more than one result then it will be used with Call_result
8510 // expressions. So we only have to use a temporary variable if the
8511 // call returns exactly one result.
8513 bool
8514 Call_expression::do_must_eval_in_order() const
8516 return this->result_count() == 1;
8519 // Get the function and the first argument to use when calling a bound
8520 // method.
8522 tree
8523 Call_expression::bound_method_function(Translate_context* context,
8524 Bound_method_expression* bound_method,
8525 tree* first_arg_ptr)
8527 Expression* first_argument = bound_method->first_argument();
8528 tree first_arg = first_argument->get_tree(context);
8529 if (first_arg == error_mark_node)
8530 return error_mark_node;
8532 // We always pass a pointer to the first argument when calling a
8533 // method.
8534 if (first_argument->type()->points_to() == NULL)
8536 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8537 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8538 || DECL_P(first_arg)
8539 || TREE_CODE(first_arg) == INDIRECT_REF
8540 || TREE_CODE(first_arg) == COMPONENT_REF)
8542 first_arg = build_fold_addr_expr(first_arg);
8543 if (DECL_P(first_arg))
8544 TREE_ADDRESSABLE(first_arg) = 1;
8546 else
8548 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8549 get_name(first_arg));
8550 DECL_IGNORED_P(tmp) = 0;
8551 DECL_INITIAL(tmp) = first_arg;
8552 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8553 build1(DECL_EXPR, void_type_node, tmp),
8554 build_fold_addr_expr(tmp));
8555 TREE_ADDRESSABLE(tmp) = 1;
8557 if (first_arg == error_mark_node)
8558 return error_mark_node;
8561 Type* fatype = bound_method->first_argument_type();
8562 if (fatype != NULL)
8564 if (fatype->points_to() == NULL)
8565 fatype = Type::make_pointer_type(fatype);
8566 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8567 if (first_arg == error_mark_node
8568 || TREE_TYPE(first_arg) == error_mark_node)
8569 return error_mark_node;
8572 *first_arg_ptr = first_arg;
8574 return bound_method->method()->get_tree(context);
8577 // Get the function and the first argument to use when calling an
8578 // interface method.
8580 tree
8581 Call_expression::interface_method_function(
8582 Translate_context* context,
8583 Interface_field_reference_expression* interface_method,
8584 tree* first_arg_ptr)
8586 tree expr = interface_method->expr()->get_tree(context);
8587 if (expr == error_mark_node)
8588 return error_mark_node;
8589 expr = save_expr(expr);
8590 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8591 if (first_arg == error_mark_node)
8592 return error_mark_node;
8593 *first_arg_ptr = first_arg;
8594 return interface_method->get_function_tree(context, expr);
8597 // Build the call expression.
8599 tree
8600 Call_expression::do_get_tree(Translate_context* context)
8602 if (this->tree_ != NULL_TREE)
8603 return this->tree_;
8605 Function_type* fntype = this->get_function_type();
8606 if (fntype == NULL)
8607 return error_mark_node;
8609 if (this->fn_->is_error_expression())
8610 return error_mark_node;
8612 Gogo* gogo = context->gogo();
8613 source_location location = this->location();
8615 Func_expression* func = this->fn_->func_expression();
8616 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8617 Interface_field_reference_expression* interface_method =
8618 this->fn_->interface_field_reference_expression();
8619 const bool has_closure = func != NULL && func->closure() != NULL;
8620 const bool is_method = bound_method != NULL || interface_method != NULL;
8621 gcc_assert(!fntype->is_method() || is_method);
8623 int nargs;
8624 tree* args;
8625 if (this->args_ == NULL || this->args_->empty())
8627 nargs = is_method ? 1 : 0;
8628 args = nargs == 0 ? NULL : new tree[nargs];
8630 else
8632 const Typed_identifier_list* params = fntype->parameters();
8633 gcc_assert(params != NULL);
8635 nargs = this->args_->size();
8636 int i = is_method ? 1 : 0;
8637 nargs += i;
8638 args = new tree[nargs];
8640 Typed_identifier_list::const_iterator pp = params->begin();
8641 Expression_list::const_iterator pe;
8642 for (pe = this->args_->begin();
8643 pe != this->args_->end();
8644 ++pe, ++pp, ++i)
8646 gcc_assert(pp != params->end());
8647 tree arg_val = (*pe)->get_tree(context);
8648 args[i] = Expression::convert_for_assignment(context,
8649 pp->type(),
8650 (*pe)->type(),
8651 arg_val,
8652 location);
8653 if (args[i] == error_mark_node)
8654 return error_mark_node;
8656 gcc_assert(pp == params->end());
8657 gcc_assert(i == nargs);
8660 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8661 if (rettype == error_mark_node)
8662 return error_mark_node;
8664 tree fn;
8665 if (has_closure)
8666 fn = func->get_tree_without_closure(gogo);
8667 else if (!is_method)
8668 fn = this->fn_->get_tree(context);
8669 else if (bound_method != NULL)
8670 fn = this->bound_method_function(context, bound_method, &args[0]);
8671 else if (interface_method != NULL)
8672 fn = this->interface_method_function(context, interface_method, &args[0]);
8673 else
8674 gcc_unreachable();
8676 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8677 return error_mark_node;
8679 // This is to support builtin math functions when using 80387 math.
8680 tree fndecl = fn;
8681 if (TREE_CODE(fndecl) == ADDR_EXPR)
8682 fndecl = TREE_OPERAND(fndecl, 0);
8683 tree excess_type = NULL_TREE;
8684 if (DECL_P(fndecl)
8685 && DECL_IS_BUILTIN(fndecl)
8686 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8687 && nargs > 0
8688 && ((SCALAR_FLOAT_TYPE_P(rettype)
8689 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8690 || (COMPLEX_FLOAT_TYPE_P(rettype)
8691 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8693 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8694 if (excess_type != NULL_TREE)
8696 tree excess_fndecl = mathfn_built_in(excess_type,
8697 DECL_FUNCTION_CODE(fndecl));
8698 if (excess_fndecl == NULL_TREE)
8699 excess_type = NULL_TREE;
8700 else
8702 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8703 for (int i = 0; i < nargs; ++i)
8704 args[i] = ::convert(excess_type, args[i]);
8709 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8710 fn, nargs, args);
8711 delete[] args;
8713 SET_EXPR_LOCATION(ret, location);
8715 if (has_closure)
8717 tree closure_tree = func->closure()->get_tree(context);
8718 if (closure_tree != error_mark_node)
8719 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8722 // If this is a recursive function type which returns itself, as in
8723 // type F func() F
8724 // we have used ptr_type_node for the return type. Add a cast here
8725 // to the correct type.
8726 if (TREE_TYPE(ret) == ptr_type_node)
8728 tree t = this->type()->get_tree(gogo);
8729 ret = fold_convert_loc(location, t, ret);
8732 if (excess_type != NULL_TREE)
8734 // Calling convert here can undo our excess precision change.
8735 // That may or may not be a bug in convert_to_real.
8736 ret = build1(NOP_EXPR, rettype, ret);
8739 // If there is more than one result, we will refer to the call
8740 // multiple times.
8741 if (fntype->results() != NULL && fntype->results()->size() > 1)
8742 ret = save_expr(ret);
8744 this->tree_ = ret;
8746 return ret;
8749 // Make a call expression.
8751 Call_expression*
8752 Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8753 source_location location)
8755 return new Call_expression(fn, args, is_varargs, location);
8758 // A single result from a call which returns multiple results.
8760 class Call_result_expression : public Expression
8762 public:
8763 Call_result_expression(Call_expression* call, unsigned int index)
8764 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8765 call_(call), index_(index)
8768 protected:
8770 do_traverse(Traverse*);
8772 Type*
8773 do_type();
8775 void
8776 do_determine_type(const Type_context*);
8778 void
8779 do_check_types(Gogo*);
8781 Expression*
8782 do_copy()
8784 return new Call_result_expression(this->call_->call_expression(),
8785 this->index_);
8788 bool
8789 do_must_eval_in_order() const
8790 { return true; }
8792 tree
8793 do_get_tree(Translate_context*);
8795 private:
8796 // The underlying call expression.
8797 Expression* call_;
8798 // Which result we want.
8799 unsigned int index_;
8802 // Traverse a call result.
8805 Call_result_expression::do_traverse(Traverse* traverse)
8807 if (traverse->remember_expression(this->call_))
8809 // We have already traversed the call expression.
8810 return TRAVERSE_CONTINUE;
8812 return Expression::traverse(&this->call_, traverse);
8815 // Get the type.
8817 Type*
8818 Call_result_expression::do_type()
8820 if (this->classification() == EXPRESSION_ERROR)
8821 return Type::make_error_type();
8823 // THIS->CALL_ can be replaced with a temporary reference due to
8824 // Call_expression::do_must_eval_in_order when there is an error.
8825 Call_expression* ce = this->call_->call_expression();
8826 if (ce == NULL)
8827 return Type::make_error_type();
8828 Function_type* fntype = ce->get_function_type();
8829 if (fntype == NULL)
8830 return Type::make_error_type();
8831 const Typed_identifier_list* results = fntype->results();
8832 if (results == NULL)
8834 this->report_error(_("number of results does not match "
8835 "number of values"));
8836 return Type::make_error_type();
8838 Typed_identifier_list::const_iterator pr = results->begin();
8839 for (unsigned int i = 0; i < this->index_; ++i)
8841 if (pr == results->end())
8842 break;
8843 ++pr;
8845 if (pr == results->end())
8847 this->report_error(_("number of results does not match "
8848 "number of values"));
8849 return Type::make_error_type();
8851 return pr->type();
8854 // Check the type. Just make sure that we trigger the warning in
8855 // do_type.
8857 void
8858 Call_result_expression::do_check_types(Gogo*)
8860 this->type();
8863 // Determine the type. We have nothing to do here, but the 0 result
8864 // needs to pass down to the caller.
8866 void
8867 Call_result_expression::do_determine_type(const Type_context*)
8869 if (this->index_ == 0)
8870 this->call_->determine_type_no_context();
8873 // Return the tree.
8875 tree
8876 Call_result_expression::do_get_tree(Translate_context* context)
8878 tree call_tree = this->call_->get_tree(context);
8879 if (call_tree == error_mark_node)
8880 return error_mark_node;
8881 gcc_assert(TREE_CODE(TREE_TYPE(call_tree)) == RECORD_TYPE);
8882 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
8883 for (unsigned int i = 0; i < this->index_; ++i)
8885 gcc_assert(field != NULL_TREE);
8886 field = DECL_CHAIN(field);
8888 gcc_assert(field != NULL_TREE);
8889 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
8892 // Make a reference to a single result of a call which returns
8893 // multiple results.
8895 Expression*
8896 Expression::make_call_result(Call_expression* call, unsigned int index)
8898 return new Call_result_expression(call, index);
8901 // Class Index_expression.
8903 // Traversal.
8906 Index_expression::do_traverse(Traverse* traverse)
8908 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
8909 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
8910 || (this->end_ != NULL
8911 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
8912 return TRAVERSE_EXIT;
8913 return TRAVERSE_CONTINUE;
8916 // Lower an index expression. This converts the generic index
8917 // expression into an array index, a string index, or a map index.
8919 Expression*
8920 Index_expression::do_lower(Gogo*, Named_object*, int)
8922 source_location location = this->location();
8923 Expression* left = this->left_;
8924 Expression* start = this->start_;
8925 Expression* end = this->end_;
8927 Type* type = left->type();
8928 if (type->is_error_type())
8929 return Expression::make_error(location);
8930 else if (type->array_type() != NULL)
8931 return Expression::make_array_index(left, start, end, location);
8932 else if (type->points_to() != NULL
8933 && type->points_to()->array_type() != NULL
8934 && !type->points_to()->is_open_array_type())
8936 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
8937 location);
8938 return Expression::make_array_index(deref, start, end, location);
8940 else if (type->is_string_type())
8941 return Expression::make_string_index(left, start, end, location);
8942 else if (type->map_type() != NULL)
8944 if (end != NULL)
8946 error_at(location, "invalid slice of map");
8947 return Expression::make_error(location);
8949 Map_index_expression* ret= Expression::make_map_index(left, start,
8950 location);
8951 if (this->is_lvalue_)
8952 ret->set_is_lvalue();
8953 return ret;
8955 else
8957 error_at(location,
8958 "attempt to index object which is not array, string, or map");
8959 return Expression::make_error(location);
8963 // Make an index expression.
8965 Expression*
8966 Expression::make_index(Expression* left, Expression* start, Expression* end,
8967 source_location location)
8969 return new Index_expression(left, start, end, location);
8972 // An array index. This is used for both indexing and slicing.
8974 class Array_index_expression : public Expression
8976 public:
8977 Array_index_expression(Expression* array, Expression* start,
8978 Expression* end, source_location location)
8979 : Expression(EXPRESSION_ARRAY_INDEX, location),
8980 array_(array), start_(start), end_(end), type_(NULL)
8983 protected:
8985 do_traverse(Traverse*);
8987 Type*
8988 do_type();
8990 void
8991 do_determine_type(const Type_context*);
8993 void
8994 do_check_types(Gogo*);
8996 Expression*
8997 do_copy()
8999 return Expression::make_array_index(this->array_->copy(),
9000 this->start_->copy(),
9001 (this->end_ == NULL
9002 ? NULL
9003 : this->end_->copy()),
9004 this->location());
9007 bool
9008 do_is_addressable() const;
9010 void
9011 do_address_taken(bool escapes)
9012 { this->array_->address_taken(escapes); }
9014 tree
9015 do_get_tree(Translate_context*);
9017 private:
9018 // The array we are getting a value from.
9019 Expression* array_;
9020 // The start or only index.
9021 Expression* start_;
9022 // The end index of a slice. This may be NULL for a simple array
9023 // index, or it may be a nil expression for the length of the array.
9024 Expression* end_;
9025 // The type of the expression.
9026 Type* type_;
9029 // Array index traversal.
9032 Array_index_expression::do_traverse(Traverse* traverse)
9034 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
9035 return TRAVERSE_EXIT;
9036 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9037 return TRAVERSE_EXIT;
9038 if (this->end_ != NULL)
9040 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9041 return TRAVERSE_EXIT;
9043 return TRAVERSE_CONTINUE;
9046 // Return the type of an array index.
9048 Type*
9049 Array_index_expression::do_type()
9051 if (this->type_ == NULL)
9053 Array_type* type = this->array_->type()->array_type();
9054 if (type == NULL)
9055 this->type_ = Type::make_error_type();
9056 else if (this->end_ == NULL)
9057 this->type_ = type->element_type();
9058 else if (type->is_open_array_type())
9060 // A slice of a slice has the same type as the original
9061 // slice.
9062 this->type_ = this->array_->type()->deref();
9064 else
9066 // A slice of an array is a slice.
9067 this->type_ = Type::make_array_type(type->element_type(), NULL);
9070 return this->type_;
9073 // Set the type of an array index.
9075 void
9076 Array_index_expression::do_determine_type(const Type_context*)
9078 this->array_->determine_type_no_context();
9079 Type_context subcontext(NULL, true);
9080 this->start_->determine_type(&subcontext);
9081 if (this->end_ != NULL)
9082 this->end_->determine_type(&subcontext);
9085 // Check types of an array index.
9087 void
9088 Array_index_expression::do_check_types(Gogo*)
9090 if (this->start_->type()->integer_type() == NULL)
9091 this->report_error(_("index must be integer"));
9092 if (this->end_ != NULL
9093 && this->end_->type()->integer_type() == NULL
9094 && !this->end_->is_nil_expression())
9095 this->report_error(_("slice end must be integer"));
9097 Array_type* array_type = this->array_->type()->array_type();
9098 gcc_assert(array_type != NULL);
9100 unsigned int int_bits =
9101 Type::lookup_integer_type("int")->integer_type()->bits();
9103 Type* dummy;
9104 mpz_t lval;
9105 mpz_init(lval);
9106 bool lval_valid = (array_type->length() != NULL
9107 && array_type->length()->integer_constant_value(true,
9108 lval,
9109 &dummy));
9110 mpz_t ival;
9111 mpz_init(ival);
9112 if (this->start_->integer_constant_value(true, ival, &dummy))
9114 if (mpz_sgn(ival) < 0
9115 || mpz_sizeinbase(ival, 2) >= int_bits
9116 || (lval_valid
9117 && (this->end_ == NULL
9118 ? mpz_cmp(ival, lval) >= 0
9119 : mpz_cmp(ival, lval) > 0)))
9121 error_at(this->start_->location(), "array index out of bounds");
9122 this->set_is_error();
9125 if (this->end_ != NULL && !this->end_->is_nil_expression())
9127 if (this->end_->integer_constant_value(true, ival, &dummy))
9129 if (mpz_sgn(ival) < 0
9130 || mpz_sizeinbase(ival, 2) >= int_bits
9131 || (lval_valid && mpz_cmp(ival, lval) > 0))
9133 error_at(this->end_->location(), "array index out of bounds");
9134 this->set_is_error();
9138 mpz_clear(ival);
9139 mpz_clear(lval);
9141 // A slice of an array requires an addressable array. A slice of a
9142 // slice is always possible.
9143 if (this->end_ != NULL
9144 && !array_type->is_open_array_type()
9145 && !this->array_->is_addressable())
9146 this->report_error(_("array is not addressable"));
9149 // Return whether this expression is addressable.
9151 bool
9152 Array_index_expression::do_is_addressable() const
9154 // A slice expression is not addressable.
9155 if (this->end_ != NULL)
9156 return false;
9158 // An index into a slice is addressable.
9159 if (this->array_->type()->is_open_array_type())
9160 return true;
9162 // An index into an array is addressable if the array is
9163 // addressable.
9164 return this->array_->is_addressable();
9167 // Get a tree for an array index.
9169 tree
9170 Array_index_expression::do_get_tree(Translate_context* context)
9172 Gogo* gogo = context->gogo();
9173 source_location loc = this->location();
9175 Array_type* array_type = this->array_->type()->array_type();
9176 if (array_type == NULL)
9178 gcc_assert(this->array_->type()->is_error_type());
9179 return error_mark_node;
9182 tree type_tree = array_type->get_tree(gogo);
9183 if (type_tree == error_mark_node)
9184 return error_mark_node;
9186 tree array_tree = this->array_->get_tree(context);
9187 if (array_tree == error_mark_node)
9188 return error_mark_node;
9190 if (array_type->length() == NULL && !DECL_P(array_tree))
9191 array_tree = save_expr(array_tree);
9192 tree length_tree = array_type->length_tree(gogo, array_tree);
9193 if (length_tree == error_mark_node)
9194 return error_mark_node;
9195 length_tree = save_expr(length_tree);
9196 tree length_type = TREE_TYPE(length_tree);
9198 tree bad_index = boolean_false_node;
9200 tree start_tree = this->start_->get_tree(context);
9201 if (start_tree == error_mark_node)
9202 return error_mark_node;
9203 if (!DECL_P(start_tree))
9204 start_tree = save_expr(start_tree);
9205 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9206 start_tree = convert_to_integer(length_type, start_tree);
9208 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9209 loc);
9211 start_tree = fold_convert_loc(loc, length_type, start_tree);
9212 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9213 fold_build2_loc(loc,
9214 (this->end_ == NULL
9215 ? GE_EXPR
9216 : GT_EXPR),
9217 boolean_type_node, start_tree,
9218 length_tree));
9220 int code = (array_type->length() != NULL
9221 ? (this->end_ == NULL
9222 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9223 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9224 : (this->end_ == NULL
9225 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9226 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9227 tree crash = Gogo::runtime_error(code, loc);
9229 if (this->end_ == NULL)
9231 // Simple array indexing. This has to return an l-value, so
9232 // wrap the index check into START_TREE.
9233 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9234 build3(COND_EXPR, void_type_node,
9235 bad_index, crash, NULL_TREE),
9236 start_tree);
9237 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9239 if (array_type->length() != NULL)
9241 // Fixed array.
9242 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9243 start_tree, NULL_TREE, NULL_TREE);
9245 else
9247 // Open array.
9248 tree values = array_type->value_pointer_tree(gogo, array_tree);
9249 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9250 if (element_type_tree == error_mark_node)
9251 return error_mark_node;
9252 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9253 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9254 start_tree, element_size);
9255 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9256 TREE_TYPE(values), values, offset);
9257 return build_fold_indirect_ref(ptr);
9261 // Array slice.
9263 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
9264 if (capacity_tree == error_mark_node)
9265 return error_mark_node;
9266 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9268 tree end_tree;
9269 if (this->end_->is_nil_expression())
9270 end_tree = length_tree;
9271 else
9273 end_tree = this->end_->get_tree(context);
9274 if (end_tree == error_mark_node)
9275 return error_mark_node;
9276 if (!DECL_P(end_tree))
9277 end_tree = save_expr(end_tree);
9278 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9279 end_tree = convert_to_integer(length_type, end_tree);
9281 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9282 loc);
9284 end_tree = fold_convert_loc(loc, length_type, end_tree);
9286 capacity_tree = save_expr(capacity_tree);
9287 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9288 fold_build2_loc(loc, LT_EXPR,
9289 boolean_type_node,
9290 end_tree, start_tree),
9291 fold_build2_loc(loc, GT_EXPR,
9292 boolean_type_node,
9293 end_tree, capacity_tree));
9294 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9295 bad_index, bad_end);
9298 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9299 if (element_type_tree == error_mark_node)
9300 return error_mark_node;
9301 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9303 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9304 fold_convert_loc(loc, sizetype, start_tree),
9305 element_size);
9307 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
9308 if (value_pointer == error_mark_node)
9309 return error_mark_node;
9311 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9312 TREE_TYPE(value_pointer),
9313 value_pointer, offset);
9315 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9316 end_tree, start_tree);
9318 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9319 capacity_tree, start_tree);
9321 tree struct_tree = this->type()->get_tree(gogo);
9322 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9324 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9326 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9327 tree field = TYPE_FIELDS(struct_tree);
9328 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9329 elt->index = field;
9330 elt->value = value_pointer;
9332 elt = VEC_quick_push(constructor_elt, init, NULL);
9333 field = DECL_CHAIN(field);
9334 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9335 elt->index = field;
9336 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9338 elt = VEC_quick_push(constructor_elt, init, NULL);
9339 field = DECL_CHAIN(field);
9340 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9341 elt->index = field;
9342 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9344 tree constructor = build_constructor(struct_tree, init);
9346 if (TREE_CONSTANT(value_pointer)
9347 && TREE_CONSTANT(result_length_tree)
9348 && TREE_CONSTANT(result_capacity_tree))
9349 TREE_CONSTANT(constructor) = 1;
9351 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9352 build3(COND_EXPR, void_type_node,
9353 bad_index, crash, NULL_TREE),
9354 constructor);
9357 // Make an array index expression. END may be NULL.
9359 Expression*
9360 Expression::make_array_index(Expression* array, Expression* start,
9361 Expression* end, source_location location)
9363 // Taking a slice of a composite literal requires moving the literal
9364 // onto the heap.
9365 if (end != NULL && array->is_composite_literal())
9367 array = Expression::make_heap_composite(array, location);
9368 array = Expression::make_unary(OPERATOR_MULT, array, location);
9370 return new Array_index_expression(array, start, end, location);
9373 // A string index. This is used for both indexing and slicing.
9375 class String_index_expression : public Expression
9377 public:
9378 String_index_expression(Expression* string, Expression* start,
9379 Expression* end, source_location location)
9380 : Expression(EXPRESSION_STRING_INDEX, location),
9381 string_(string), start_(start), end_(end)
9384 protected:
9386 do_traverse(Traverse*);
9388 Type*
9389 do_type();
9391 void
9392 do_determine_type(const Type_context*);
9394 void
9395 do_check_types(Gogo*);
9397 Expression*
9398 do_copy()
9400 return Expression::make_string_index(this->string_->copy(),
9401 this->start_->copy(),
9402 (this->end_ == NULL
9403 ? NULL
9404 : this->end_->copy()),
9405 this->location());
9408 tree
9409 do_get_tree(Translate_context*);
9411 private:
9412 // The string we are getting a value from.
9413 Expression* string_;
9414 // The start or only index.
9415 Expression* start_;
9416 // The end index of a slice. This may be NULL for a single index,
9417 // or it may be a nil expression for the length of the string.
9418 Expression* end_;
9421 // String index traversal.
9424 String_index_expression::do_traverse(Traverse* traverse)
9426 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9427 return TRAVERSE_EXIT;
9428 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9429 return TRAVERSE_EXIT;
9430 if (this->end_ != NULL)
9432 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9433 return TRAVERSE_EXIT;
9435 return TRAVERSE_CONTINUE;
9438 // Return the type of a string index.
9440 Type*
9441 String_index_expression::do_type()
9443 if (this->end_ == NULL)
9444 return Type::lookup_integer_type("uint8");
9445 else
9446 return Type::make_string_type();
9449 // Determine the type of a string index.
9451 void
9452 String_index_expression::do_determine_type(const Type_context*)
9454 this->string_->determine_type_no_context();
9455 Type_context subcontext(NULL, true);
9456 this->start_->determine_type(&subcontext);
9457 if (this->end_ != NULL)
9458 this->end_->determine_type(&subcontext);
9461 // Check types of a string index.
9463 void
9464 String_index_expression::do_check_types(Gogo*)
9466 if (this->start_->type()->integer_type() == NULL)
9467 this->report_error(_("index must be integer"));
9468 if (this->end_ != NULL
9469 && this->end_->type()->integer_type() == NULL
9470 && !this->end_->is_nil_expression())
9471 this->report_error(_("slice end must be integer"));
9473 std::string sval;
9474 bool sval_valid = this->string_->string_constant_value(&sval);
9476 mpz_t ival;
9477 mpz_init(ival);
9478 Type* dummy;
9479 if (this->start_->integer_constant_value(true, ival, &dummy))
9481 if (mpz_sgn(ival) < 0
9482 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9484 error_at(this->start_->location(), "string index out of bounds");
9485 this->set_is_error();
9488 if (this->end_ != NULL && !this->end_->is_nil_expression())
9490 if (this->end_->integer_constant_value(true, ival, &dummy))
9492 if (mpz_sgn(ival) < 0
9493 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9495 error_at(this->end_->location(), "string index out of bounds");
9496 this->set_is_error();
9500 mpz_clear(ival);
9503 // Get a tree for a string index.
9505 tree
9506 String_index_expression::do_get_tree(Translate_context* context)
9508 source_location loc = this->location();
9510 tree string_tree = this->string_->get_tree(context);
9511 if (string_tree == error_mark_node)
9512 return error_mark_node;
9514 if (this->string_->type()->points_to() != NULL)
9515 string_tree = build_fold_indirect_ref(string_tree);
9516 if (!DECL_P(string_tree))
9517 string_tree = save_expr(string_tree);
9518 tree string_type = TREE_TYPE(string_tree);
9520 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9521 length_tree = save_expr(length_tree);
9522 tree length_type = TREE_TYPE(length_tree);
9524 tree bad_index = boolean_false_node;
9526 tree start_tree = this->start_->get_tree(context);
9527 if (start_tree == error_mark_node)
9528 return error_mark_node;
9529 if (!DECL_P(start_tree))
9530 start_tree = save_expr(start_tree);
9531 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9532 start_tree = convert_to_integer(length_type, start_tree);
9534 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9535 loc);
9537 start_tree = fold_convert_loc(loc, length_type, start_tree);
9539 int code = (this->end_ == NULL
9540 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9541 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9542 tree crash = Gogo::runtime_error(code, loc);
9544 if (this->end_ == NULL)
9546 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9547 bad_index,
9548 fold_build2_loc(loc, GE_EXPR,
9549 boolean_type_node,
9550 start_tree, length_tree));
9552 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9553 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9554 bytes_tree,
9555 fold_convert_loc(loc, sizetype, start_tree));
9556 tree index = build_fold_indirect_ref_loc(loc, ptr);
9558 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9559 build3(COND_EXPR, void_type_node,
9560 bad_index, crash, NULL_TREE),
9561 index);
9563 else
9565 tree end_tree;
9566 if (this->end_->is_nil_expression())
9567 end_tree = build_int_cst(length_type, -1);
9568 else
9570 end_tree = this->end_->get_tree(context);
9571 if (end_tree == error_mark_node)
9572 return error_mark_node;
9573 if (!DECL_P(end_tree))
9574 end_tree = save_expr(end_tree);
9575 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9576 end_tree = convert_to_integer(length_type, end_tree);
9578 bad_index = Expression::check_bounds(end_tree, length_type,
9579 bad_index, loc);
9581 end_tree = fold_convert_loc(loc, length_type, end_tree);
9584 static tree strslice_fndecl;
9585 tree ret = Gogo::call_builtin(&strslice_fndecl,
9586 loc,
9587 "__go_string_slice",
9589 string_type,
9590 string_type,
9591 string_tree,
9592 length_type,
9593 start_tree,
9594 length_type,
9595 end_tree);
9596 if (ret == error_mark_node)
9597 return error_mark_node;
9598 // This will panic if the bounds are out of range for the
9599 // string.
9600 TREE_NOTHROW(strslice_fndecl) = 0;
9602 if (bad_index == boolean_false_node)
9603 return ret;
9604 else
9605 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9606 build3(COND_EXPR, void_type_node,
9607 bad_index, crash, NULL_TREE),
9608 ret);
9612 // Make a string index expression. END may be NULL.
9614 Expression*
9615 Expression::make_string_index(Expression* string, Expression* start,
9616 Expression* end, source_location location)
9618 return new String_index_expression(string, start, end, location);
9621 // Class Map_index.
9623 // Get the type of the map.
9625 Map_type*
9626 Map_index_expression::get_map_type() const
9628 Map_type* mt = this->map_->type()->deref()->map_type();
9629 gcc_assert(mt != NULL);
9630 return mt;
9633 // Map index traversal.
9636 Map_index_expression::do_traverse(Traverse* traverse)
9638 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9639 return TRAVERSE_EXIT;
9640 return Expression::traverse(&this->index_, traverse);
9643 // Return the type of a map index.
9645 Type*
9646 Map_index_expression::do_type()
9648 Type* type = this->get_map_type()->val_type();
9649 // If this map index is in a tuple assignment, we actually return a
9650 // pointer to the value type. Tuple_map_assignment_statement is
9651 // responsible for handling this correctly. We need to get the type
9652 // right in case this gets assigned to a temporary variable.
9653 if (this->is_in_tuple_assignment_)
9654 type = Type::make_pointer_type(type);
9655 return type;
9658 // Fix the type of a map index.
9660 void
9661 Map_index_expression::do_determine_type(const Type_context*)
9663 this->map_->determine_type_no_context();
9664 Type_context subcontext(this->get_map_type()->key_type(), false);
9665 this->index_->determine_type(&subcontext);
9668 // Check types of a map index.
9670 void
9671 Map_index_expression::do_check_types(Gogo*)
9673 std::string reason;
9674 if (!Type::are_assignable(this->get_map_type()->key_type(),
9675 this->index_->type(), &reason))
9677 if (reason.empty())
9678 this->report_error(_("incompatible type for map index"));
9679 else
9681 error_at(this->location(), "incompatible type for map index (%s)",
9682 reason.c_str());
9683 this->set_is_error();
9688 // Get a tree for a map index.
9690 tree
9691 Map_index_expression::do_get_tree(Translate_context* context)
9693 Map_type* type = this->get_map_type();
9695 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9696 if (valptr == error_mark_node)
9697 return error_mark_node;
9698 valptr = save_expr(valptr);
9700 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9702 if (this->is_lvalue_)
9703 return build_fold_indirect_ref(valptr);
9704 else if (this->is_in_tuple_assignment_)
9706 // Tuple_map_assignment_statement is responsible for using this
9707 // appropriately.
9708 return valptr;
9710 else
9712 return fold_build3(COND_EXPR, val_type_tree,
9713 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9714 fold_convert(TREE_TYPE(valptr),
9715 null_pointer_node)),
9716 type->val_type()->get_init_tree(context->gogo(),
9717 false),
9718 build_fold_indirect_ref(valptr));
9722 // Get a tree for the map index. This returns a tree which evaluates
9723 // to a pointer to a value. The pointer will be NULL if the key is
9724 // not in the map.
9726 tree
9727 Map_index_expression::get_value_pointer(Translate_context* context,
9728 bool insert)
9730 Map_type* type = this->get_map_type();
9732 tree map_tree = this->map_->get_tree(context);
9733 tree index_tree = this->index_->get_tree(context);
9734 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9735 this->index_->type(),
9736 index_tree,
9737 this->location());
9738 if (map_tree == error_mark_node || index_tree == error_mark_node)
9739 return error_mark_node;
9741 if (this->map_->type()->points_to() != NULL)
9742 map_tree = build_fold_indirect_ref(map_tree);
9744 // We need to pass in a pointer to the key, so stuff it into a
9745 // variable.
9746 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9747 DECL_IGNORED_P(tmp) = 0;
9748 DECL_INITIAL(tmp) = index_tree;
9749 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9750 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9751 TREE_ADDRESSABLE(tmp) = 1;
9753 static tree map_index_fndecl;
9754 tree call = Gogo::call_builtin(&map_index_fndecl,
9755 this->location(),
9756 "__go_map_index",
9758 const_ptr_type_node,
9759 TREE_TYPE(map_tree),
9760 map_tree,
9761 const_ptr_type_node,
9762 tmpref,
9763 boolean_type_node,
9764 (insert
9765 ? boolean_true_node
9766 : boolean_false_node));
9767 if (call == error_mark_node)
9768 return error_mark_node;
9769 // This can panic on a map of interface type if the interface holds
9770 // an uncomparable or unhashable type.
9771 TREE_NOTHROW(map_index_fndecl) = 0;
9773 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9774 if (val_type_tree == error_mark_node)
9775 return error_mark_node;
9776 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9778 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9779 make_tmp,
9780 fold_convert(ptr_val_type_tree, call));
9783 // Make a map index expression.
9785 Map_index_expression*
9786 Expression::make_map_index(Expression* map, Expression* index,
9787 source_location location)
9789 return new Map_index_expression(map, index, location);
9792 // Class Field_reference_expression.
9794 // Return the type of a field reference.
9796 Type*
9797 Field_reference_expression::do_type()
9799 Struct_type* struct_type = this->expr_->type()->struct_type();
9800 gcc_assert(struct_type != NULL);
9801 return struct_type->field(this->field_index_)->type();
9804 // Check the types for a field reference.
9806 void
9807 Field_reference_expression::do_check_types(Gogo*)
9809 Struct_type* struct_type = this->expr_->type()->struct_type();
9810 gcc_assert(struct_type != NULL);
9811 gcc_assert(struct_type->field(this->field_index_) != NULL);
9814 // Get a tree for a field reference.
9816 tree
9817 Field_reference_expression::do_get_tree(Translate_context* context)
9819 tree struct_tree = this->expr_->get_tree(context);
9820 if (struct_tree == error_mark_node
9821 || TREE_TYPE(struct_tree) == error_mark_node)
9822 return error_mark_node;
9823 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9824 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
9825 if (field == NULL_TREE)
9827 // This can happen for a type which refers to itself indirectly
9828 // and then turns out to be erroneous.
9829 gcc_assert(saw_errors());
9830 return error_mark_node;
9832 for (unsigned int i = this->field_index_; i > 0; --i)
9834 field = DECL_CHAIN(field);
9835 gcc_assert(field != NULL_TREE);
9837 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
9838 NULL_TREE);
9841 // Make a reference to a qualified identifier in an expression.
9843 Field_reference_expression*
9844 Expression::make_field_reference(Expression* expr, unsigned int field_index,
9845 source_location location)
9847 return new Field_reference_expression(expr, field_index, location);
9850 // Class Interface_field_reference_expression.
9852 // Return a tree for the pointer to the function to call.
9854 tree
9855 Interface_field_reference_expression::get_function_tree(Translate_context*,
9856 tree expr)
9858 if (this->expr_->type()->points_to() != NULL)
9859 expr = build_fold_indirect_ref(expr);
9861 tree expr_type = TREE_TYPE(expr);
9862 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9864 tree field = TYPE_FIELDS(expr_type);
9865 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
9867 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9868 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
9870 table = build_fold_indirect_ref(table);
9871 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
9873 std::string name = Gogo::unpack_hidden_name(this->name_);
9874 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
9875 field != NULL_TREE;
9876 field = DECL_CHAIN(field))
9878 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
9879 break;
9881 gcc_assert(field != NULL_TREE);
9883 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
9886 // Return a tree for the first argument to pass to the interface
9887 // function.
9889 tree
9890 Interface_field_reference_expression::get_underlying_object_tree(
9891 Translate_context*,
9892 tree expr)
9894 if (this->expr_->type()->points_to() != NULL)
9895 expr = build_fold_indirect_ref(expr);
9897 tree expr_type = TREE_TYPE(expr);
9898 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9900 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
9901 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
9903 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9906 // Traversal.
9909 Interface_field_reference_expression::do_traverse(Traverse* traverse)
9911 return Expression::traverse(&this->expr_, traverse);
9914 // Return the type of an interface field reference.
9916 Type*
9917 Interface_field_reference_expression::do_type()
9919 Type* expr_type = this->expr_->type();
9921 Type* points_to = expr_type->points_to();
9922 if (points_to != NULL)
9923 expr_type = points_to;
9925 Interface_type* interface_type = expr_type->interface_type();
9926 if (interface_type == NULL)
9927 return Type::make_error_type();
9929 const Typed_identifier* method = interface_type->find_method(this->name_);
9930 if (method == NULL)
9931 return Type::make_error_type();
9933 return method->type();
9936 // Determine types.
9938 void
9939 Interface_field_reference_expression::do_determine_type(const Type_context*)
9941 this->expr_->determine_type_no_context();
9944 // Check the types for an interface field reference.
9946 void
9947 Interface_field_reference_expression::do_check_types(Gogo*)
9949 Type* type = this->expr_->type();
9951 Type* points_to = type->points_to();
9952 if (points_to != NULL)
9953 type = points_to;
9955 Interface_type* interface_type = type->interface_type();
9956 if (interface_type == NULL)
9957 this->report_error(_("expected interface or pointer to interface"));
9958 else
9960 const Typed_identifier* method =
9961 interface_type->find_method(this->name_);
9962 if (method == NULL)
9964 error_at(this->location(), "method %qs not in interface",
9965 Gogo::message_name(this->name_).c_str());
9966 this->set_is_error();
9971 // Get a tree for a reference to a field in an interface. There is no
9972 // standard tree type representation for this: it's a function
9973 // attached to its first argument, like a Bound_method_expression.
9974 // The only places it may currently be used are in a Call_expression
9975 // or a Go_statement, which will take it apart directly. So this has
9976 // nothing to do at present.
9978 tree
9979 Interface_field_reference_expression::do_get_tree(Translate_context*)
9981 gcc_unreachable();
9984 // Make a reference to a field in an interface.
9986 Expression*
9987 Expression::make_interface_field_reference(Expression* expr,
9988 const std::string& field,
9989 source_location location)
9991 return new Interface_field_reference_expression(expr, field, location);
9994 // A general selector. This is a Parser_expression for LEFT.NAME. It
9995 // is lowered after we know the type of the left hand side.
9997 class Selector_expression : public Parser_expression
9999 public:
10000 Selector_expression(Expression* left, const std::string& name,
10001 source_location location)
10002 : Parser_expression(EXPRESSION_SELECTOR, location),
10003 left_(left), name_(name)
10006 protected:
10008 do_traverse(Traverse* traverse)
10009 { return Expression::traverse(&this->left_, traverse); }
10011 Expression*
10012 do_lower(Gogo*, Named_object*, int);
10014 Expression*
10015 do_copy()
10017 return new Selector_expression(this->left_->copy(), this->name_,
10018 this->location());
10021 private:
10022 Expression*
10023 lower_method_expression(Gogo*);
10025 // The expression on the left hand side.
10026 Expression* left_;
10027 // The name on the right hand side.
10028 std::string name_;
10031 // Lower a selector expression once we know the real type of the left
10032 // hand side.
10034 Expression*
10035 Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
10037 Expression* left = this->left_;
10038 if (left->is_type_expression())
10039 return this->lower_method_expression(gogo);
10040 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
10041 this->location());
10044 // Lower a method expression T.M or (*T).M. We turn this into a
10045 // function literal.
10047 Expression*
10048 Selector_expression::lower_method_expression(Gogo* gogo)
10050 source_location location = this->location();
10051 Type* type = this->left_->type();
10052 const std::string& name(this->name_);
10054 bool is_pointer;
10055 if (type->points_to() == NULL)
10056 is_pointer = false;
10057 else
10059 is_pointer = true;
10060 type = type->points_to();
10062 Named_type* nt = type->named_type();
10063 if (nt == NULL)
10065 error_at(location,
10066 ("method expression requires named type or "
10067 "pointer to named type"));
10068 return Expression::make_error(location);
10071 bool is_ambiguous;
10072 Method* method = nt->method_function(name, &is_ambiguous);
10073 if (method == NULL)
10075 if (!is_ambiguous)
10076 error_at(location, "type %<%s%> has no method %<%s%>",
10077 nt->message_name().c_str(),
10078 Gogo::message_name(name).c_str());
10079 else
10080 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
10081 Gogo::message_name(name).c_str(),
10082 nt->message_name().c_str());
10083 return Expression::make_error(location);
10086 if (!is_pointer && !method->is_value_method())
10088 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
10089 nt->message_name().c_str(),
10090 Gogo::message_name(name).c_str());
10091 return Expression::make_error(location);
10094 // Build a new function type in which the receiver becomes the first
10095 // argument.
10096 Function_type* method_type = method->type();
10097 gcc_assert(method_type->is_method());
10099 const char* const receiver_name = "$this";
10100 Typed_identifier_list* parameters = new Typed_identifier_list();
10101 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
10102 location));
10104 const Typed_identifier_list* method_parameters = method_type->parameters();
10105 if (method_parameters != NULL)
10107 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10108 p != method_parameters->end();
10109 ++p)
10110 parameters->push_back(*p);
10113 const Typed_identifier_list* method_results = method_type->results();
10114 Typed_identifier_list* results;
10115 if (method_results == NULL)
10116 results = NULL;
10117 else
10119 results = new Typed_identifier_list();
10120 for (Typed_identifier_list::const_iterator p = method_results->begin();
10121 p != method_results->end();
10122 ++p)
10123 results->push_back(*p);
10126 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
10127 location);
10128 if (method_type->is_varargs())
10129 fntype->set_is_varargs();
10131 // We generate methods which always takes a pointer to the receiver
10132 // as their first argument. If this is for a pointer type, we can
10133 // simply reuse the existing function. We use an internal hack to
10134 // get the right type.
10136 if (is_pointer)
10138 Named_object* mno = (method->needs_stub_method()
10139 ? method->stub_object()
10140 : method->named_object());
10141 Expression* f = Expression::make_func_reference(mno, NULL, location);
10142 f = Expression::make_cast(fntype, f, location);
10143 Type_conversion_expression* tce =
10144 static_cast<Type_conversion_expression*>(f);
10145 tce->set_may_convert_function_types();
10146 return f;
10149 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
10150 location);
10152 Named_object* vno = gogo->lookup(receiver_name, NULL);
10153 gcc_assert(vno != NULL);
10154 Expression* ve = Expression::make_var_reference(vno, location);
10155 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
10156 gcc_assert(bm != NULL && !bm->is_error_expression());
10158 Expression_list* args;
10159 if (method_parameters == NULL)
10160 args = NULL;
10161 else
10163 args = new Expression_list();
10164 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10165 p != method_parameters->end();
10166 ++p)
10168 vno = gogo->lookup(p->name(), NULL);
10169 gcc_assert(vno != NULL);
10170 args->push_back(Expression::make_var_reference(vno, location));
10174 Call_expression* call = Expression::make_call(bm, args,
10175 method_type->is_varargs(),
10176 location);
10178 size_t count = call->result_count();
10179 Statement* s;
10180 if (count == 0)
10181 s = Statement::make_statement(call);
10182 else
10184 Expression_list* retvals = new Expression_list();
10185 if (count <= 1)
10186 retvals->push_back(call);
10187 else
10189 for (size_t i = 0; i < count; ++i)
10190 retvals->push_back(Expression::make_call_result(call, i));
10192 s = Statement::make_return_statement(no->func_value()->type()->results(),
10193 retvals, location);
10195 gogo->add_statement(s);
10197 gogo->finish_function(location);
10199 return Expression::make_func_reference(no, NULL, location);
10202 // Make a selector expression.
10204 Expression*
10205 Expression::make_selector(Expression* left, const std::string& name,
10206 source_location location)
10208 return new Selector_expression(left, name, location);
10211 // Implement the builtin function new.
10213 class Allocation_expression : public Expression
10215 public:
10216 Allocation_expression(Type* type, source_location location)
10217 : Expression(EXPRESSION_ALLOCATION, location),
10218 type_(type)
10221 protected:
10223 do_traverse(Traverse* traverse)
10224 { return Type::traverse(this->type_, traverse); }
10226 Type*
10227 do_type()
10228 { return Type::make_pointer_type(this->type_); }
10230 void
10231 do_determine_type(const Type_context*)
10234 void
10235 do_check_types(Gogo*);
10237 Expression*
10238 do_copy()
10239 { return new Allocation_expression(this->type_, this->location()); }
10241 tree
10242 do_get_tree(Translate_context*);
10244 private:
10245 // The type we are allocating.
10246 Type* type_;
10249 // Check the type of an allocation expression.
10251 void
10252 Allocation_expression::do_check_types(Gogo*)
10254 if (this->type_->function_type() != NULL)
10255 this->report_error(_("invalid new of function type"));
10258 // Return a tree for an allocation expression.
10260 tree
10261 Allocation_expression::do_get_tree(Translate_context* context)
10263 tree type_tree = this->type_->get_tree(context->gogo());
10264 if (type_tree == error_mark_node)
10265 return error_mark_node;
10266 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10267 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10268 this->location());
10269 if (space == error_mark_node)
10270 return error_mark_node;
10271 return fold_convert(build_pointer_type(type_tree), space);
10274 // Make an allocation expression.
10276 Expression*
10277 Expression::make_allocation(Type* type, source_location location)
10279 return new Allocation_expression(type, location);
10282 // Implement the builtin function make.
10284 class Make_expression : public Expression
10286 public:
10287 Make_expression(Type* type, Expression_list* args, source_location location)
10288 : Expression(EXPRESSION_MAKE, location),
10289 type_(type), args_(args)
10292 protected:
10294 do_traverse(Traverse* traverse);
10296 Type*
10297 do_type()
10298 { return this->type_; }
10300 void
10301 do_determine_type(const Type_context*);
10303 void
10304 do_check_types(Gogo*);
10306 Expression*
10307 do_copy()
10309 return new Make_expression(this->type_, this->args_->copy(),
10310 this->location());
10313 tree
10314 do_get_tree(Translate_context*);
10316 private:
10317 // The type we are making.
10318 Type* type_;
10319 // The arguments to pass to the make routine.
10320 Expression_list* args_;
10323 // Traversal.
10326 Make_expression::do_traverse(Traverse* traverse)
10328 if (this->args_ != NULL
10329 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10330 return TRAVERSE_EXIT;
10331 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10332 return TRAVERSE_EXIT;
10333 return TRAVERSE_CONTINUE;
10336 // Set types of arguments.
10338 void
10339 Make_expression::do_determine_type(const Type_context*)
10341 if (this->args_ != NULL)
10343 Type_context context(Type::lookup_integer_type("int"), false);
10344 for (Expression_list::const_iterator pe = this->args_->begin();
10345 pe != this->args_->end();
10346 ++pe)
10347 (*pe)->determine_type(&context);
10351 // Check types for a make expression.
10353 void
10354 Make_expression::do_check_types(Gogo*)
10356 if (this->type_->channel_type() == NULL
10357 && this->type_->map_type() == NULL
10358 && (this->type_->array_type() == NULL
10359 || this->type_->array_type()->length() != NULL))
10360 this->report_error(_("invalid type for make function"));
10361 else if (!this->type_->check_make_expression(this->args_, this->location()))
10362 this->set_is_error();
10365 // Return a tree for a make expression.
10367 tree
10368 Make_expression::do_get_tree(Translate_context* context)
10370 return this->type_->make_expression_tree(context, this->args_,
10371 this->location());
10374 // Make a make expression.
10376 Expression*
10377 Expression::make_make(Type* type, Expression_list* args,
10378 source_location location)
10380 return new Make_expression(type, args, location);
10383 // Construct a struct.
10385 class Struct_construction_expression : public Expression
10387 public:
10388 Struct_construction_expression(Type* type, Expression_list* vals,
10389 source_location location)
10390 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10391 type_(type), vals_(vals)
10394 // Return whether this is a constant initializer.
10395 bool
10396 is_constant_struct() const;
10398 protected:
10400 do_traverse(Traverse* traverse);
10402 Type*
10403 do_type()
10404 { return this->type_; }
10406 void
10407 do_determine_type(const Type_context*);
10409 void
10410 do_check_types(Gogo*);
10412 Expression*
10413 do_copy()
10415 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10416 this->location());
10419 bool
10420 do_is_addressable() const
10421 { return true; }
10423 tree
10424 do_get_tree(Translate_context*);
10426 void
10427 do_export(Export*) const;
10429 private:
10430 // The type of the struct to construct.
10431 Type* type_;
10432 // The list of values, in order of the fields in the struct. A NULL
10433 // entry means that the field should be zero-initialized.
10434 Expression_list* vals_;
10437 // Traversal.
10440 Struct_construction_expression::do_traverse(Traverse* traverse)
10442 if (this->vals_ != NULL
10443 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10444 return TRAVERSE_EXIT;
10445 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10446 return TRAVERSE_EXIT;
10447 return TRAVERSE_CONTINUE;
10450 // Return whether this is a constant initializer.
10452 bool
10453 Struct_construction_expression::is_constant_struct() const
10455 if (this->vals_ == NULL)
10456 return true;
10457 for (Expression_list::const_iterator pv = this->vals_->begin();
10458 pv != this->vals_->end();
10459 ++pv)
10461 if (*pv != NULL
10462 && !(*pv)->is_constant()
10463 && (!(*pv)->is_composite_literal()
10464 || (*pv)->is_nonconstant_composite_literal()))
10465 return false;
10468 const Struct_field_list* fields = this->type_->struct_type()->fields();
10469 for (Struct_field_list::const_iterator pf = fields->begin();
10470 pf != fields->end();
10471 ++pf)
10473 // There are no constant constructors for interfaces.
10474 if (pf->type()->interface_type() != NULL)
10475 return false;
10478 return true;
10481 // Final type determination.
10483 void
10484 Struct_construction_expression::do_determine_type(const Type_context*)
10486 if (this->vals_ == NULL)
10487 return;
10488 const Struct_field_list* fields = this->type_->struct_type()->fields();
10489 Expression_list::const_iterator pv = this->vals_->begin();
10490 for (Struct_field_list::const_iterator pf = fields->begin();
10491 pf != fields->end();
10492 ++pf, ++pv)
10494 if (pv == this->vals_->end())
10495 return;
10496 if (*pv != NULL)
10498 Type_context subcontext(pf->type(), false);
10499 (*pv)->determine_type(&subcontext);
10504 // Check types.
10506 void
10507 Struct_construction_expression::do_check_types(Gogo*)
10509 if (this->vals_ == NULL)
10510 return;
10512 Struct_type* st = this->type_->struct_type();
10513 if (this->vals_->size() > st->field_count())
10515 this->report_error(_("too many expressions for struct"));
10516 return;
10519 const Struct_field_list* fields = st->fields();
10520 Expression_list::const_iterator pv = this->vals_->begin();
10521 int i = 0;
10522 for (Struct_field_list::const_iterator pf = fields->begin();
10523 pf != fields->end();
10524 ++pf, ++pv, ++i)
10526 if (pv == this->vals_->end())
10528 this->report_error(_("too few expressions for struct"));
10529 break;
10532 if (*pv == NULL)
10533 continue;
10535 std::string reason;
10536 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10538 if (reason.empty())
10539 error_at((*pv)->location(),
10540 "incompatible type for field %d in struct construction",
10541 i + 1);
10542 else
10543 error_at((*pv)->location(),
10544 ("incompatible type for field %d in "
10545 "struct construction (%s)"),
10546 i + 1, reason.c_str());
10547 this->set_is_error();
10550 gcc_assert(pv == this->vals_->end());
10553 // Return a tree for constructing a struct.
10555 tree
10556 Struct_construction_expression::do_get_tree(Translate_context* context)
10558 Gogo* gogo = context->gogo();
10560 if (this->vals_ == NULL)
10561 return this->type_->get_init_tree(gogo, false);
10563 tree type_tree = this->type_->get_tree(gogo);
10564 if (type_tree == error_mark_node)
10565 return error_mark_node;
10566 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10568 bool is_constant = true;
10569 const Struct_field_list* fields = this->type_->struct_type()->fields();
10570 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10571 fields->size());
10572 Struct_field_list::const_iterator pf = fields->begin();
10573 Expression_list::const_iterator pv = this->vals_->begin();
10574 for (tree field = TYPE_FIELDS(type_tree);
10575 field != NULL_TREE;
10576 field = DECL_CHAIN(field), ++pf)
10578 gcc_assert(pf != fields->end());
10580 tree val;
10581 if (pv == this->vals_->end())
10582 val = pf->type()->get_init_tree(gogo, false);
10583 else if (*pv == NULL)
10585 val = pf->type()->get_init_tree(gogo, false);
10586 ++pv;
10588 else
10590 val = Expression::convert_for_assignment(context, pf->type(),
10591 (*pv)->type(),
10592 (*pv)->get_tree(context),
10593 this->location());
10594 ++pv;
10597 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10598 return error_mark_node;
10600 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10601 elt->index = field;
10602 elt->value = val;
10603 if (!TREE_CONSTANT(val))
10604 is_constant = false;
10606 gcc_assert(pf == fields->end());
10608 tree ret = build_constructor(type_tree, elts);
10609 if (is_constant)
10610 TREE_CONSTANT(ret) = 1;
10611 return ret;
10614 // Export a struct construction.
10616 void
10617 Struct_construction_expression::do_export(Export* exp) const
10619 exp->write_c_string("convert(");
10620 exp->write_type(this->type_);
10621 for (Expression_list::const_iterator pv = this->vals_->begin();
10622 pv != this->vals_->end();
10623 ++pv)
10625 exp->write_c_string(", ");
10626 if (*pv != NULL)
10627 (*pv)->export_expression(exp);
10629 exp->write_c_string(")");
10632 // Make a struct composite literal. This used by the thunk code.
10634 Expression*
10635 Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10636 source_location location)
10638 gcc_assert(type->struct_type() != NULL);
10639 return new Struct_construction_expression(type, vals, location);
10642 // Construct an array. This class is not used directly; instead we
10643 // use the child classes, Fixed_array_construction_expression and
10644 // Open_array_construction_expression.
10646 class Array_construction_expression : public Expression
10648 protected:
10649 Array_construction_expression(Expression_classification classification,
10650 Type* type, Expression_list* vals,
10651 source_location location)
10652 : Expression(classification, location),
10653 type_(type), vals_(vals)
10656 public:
10657 // Return whether this is a constant initializer.
10658 bool
10659 is_constant_array() const;
10661 // Return the number of elements.
10662 size_t
10663 element_count() const
10664 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10666 protected:
10668 do_traverse(Traverse* traverse);
10670 Type*
10671 do_type()
10672 { return this->type_; }
10674 void
10675 do_determine_type(const Type_context*);
10677 void
10678 do_check_types(Gogo*);
10680 bool
10681 do_is_addressable() const
10682 { return true; }
10684 void
10685 do_export(Export*) const;
10687 // The list of values.
10688 Expression_list*
10689 vals()
10690 { return this->vals_; }
10692 // Get a constructor tree for the array values.
10693 tree
10694 get_constructor_tree(Translate_context* context, tree type_tree);
10696 private:
10697 // The type of the array to construct.
10698 Type* type_;
10699 // The list of values.
10700 Expression_list* vals_;
10703 // Traversal.
10706 Array_construction_expression::do_traverse(Traverse* traverse)
10708 if (this->vals_ != NULL
10709 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10710 return TRAVERSE_EXIT;
10711 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10712 return TRAVERSE_EXIT;
10713 return TRAVERSE_CONTINUE;
10716 // Return whether this is a constant initializer.
10718 bool
10719 Array_construction_expression::is_constant_array() const
10721 if (this->vals_ == NULL)
10722 return true;
10724 // There are no constant constructors for interfaces.
10725 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10726 return false;
10728 for (Expression_list::const_iterator pv = this->vals_->begin();
10729 pv != this->vals_->end();
10730 ++pv)
10732 if (*pv != NULL
10733 && !(*pv)->is_constant()
10734 && (!(*pv)->is_composite_literal()
10735 || (*pv)->is_nonconstant_composite_literal()))
10736 return false;
10738 return true;
10741 // Final type determination.
10743 void
10744 Array_construction_expression::do_determine_type(const Type_context*)
10746 if (this->vals_ == NULL)
10747 return;
10748 Type_context subcontext(this->type_->array_type()->element_type(), false);
10749 for (Expression_list::const_iterator pv = this->vals_->begin();
10750 pv != this->vals_->end();
10751 ++pv)
10753 if (*pv != NULL)
10754 (*pv)->determine_type(&subcontext);
10758 // Check types.
10760 void
10761 Array_construction_expression::do_check_types(Gogo*)
10763 if (this->vals_ == NULL)
10764 return;
10766 Array_type* at = this->type_->array_type();
10767 int i = 0;
10768 Type* element_type = at->element_type();
10769 for (Expression_list::const_iterator pv = this->vals_->begin();
10770 pv != this->vals_->end();
10771 ++pv, ++i)
10773 if (*pv != NULL
10774 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10776 error_at((*pv)->location(),
10777 "incompatible type for element %d in composite literal",
10778 i + 1);
10779 this->set_is_error();
10783 Expression* length = at->length();
10784 if (length != NULL)
10786 mpz_t val;
10787 mpz_init(val);
10788 Type* type;
10789 if (at->length()->integer_constant_value(true, val, &type))
10791 if (this->vals_->size() > mpz_get_ui(val))
10792 this->report_error(_("too many elements in composite literal"));
10794 mpz_clear(val);
10798 // Get a constructor tree for the array values.
10800 tree
10801 Array_construction_expression::get_constructor_tree(Translate_context* context,
10802 tree type_tree)
10804 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10805 (this->vals_ == NULL
10807 : this->vals_->size()));
10808 Type* element_type = this->type_->array_type()->element_type();
10809 bool is_constant = true;
10810 if (this->vals_ != NULL)
10812 size_t i = 0;
10813 for (Expression_list::const_iterator pv = this->vals_->begin();
10814 pv != this->vals_->end();
10815 ++pv, ++i)
10817 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10818 elt->index = size_int(i);
10819 if (*pv == NULL)
10820 elt->value = element_type->get_init_tree(context->gogo(), false);
10821 else
10823 tree value_tree = (*pv)->get_tree(context);
10824 elt->value = Expression::convert_for_assignment(context,
10825 element_type,
10826 (*pv)->type(),
10827 value_tree,
10828 this->location());
10830 if (elt->value == error_mark_node)
10831 return error_mark_node;
10832 if (!TREE_CONSTANT(elt->value))
10833 is_constant = false;
10837 tree ret = build_constructor(type_tree, values);
10838 if (is_constant)
10839 TREE_CONSTANT(ret) = 1;
10840 return ret;
10843 // Export an array construction.
10845 void
10846 Array_construction_expression::do_export(Export* exp) const
10848 exp->write_c_string("convert(");
10849 exp->write_type(this->type_);
10850 if (this->vals_ != NULL)
10852 for (Expression_list::const_iterator pv = this->vals_->begin();
10853 pv != this->vals_->end();
10854 ++pv)
10856 exp->write_c_string(", ");
10857 if (*pv != NULL)
10858 (*pv)->export_expression(exp);
10861 exp->write_c_string(")");
10864 // Construct a fixed array.
10866 class Fixed_array_construction_expression :
10867 public Array_construction_expression
10869 public:
10870 Fixed_array_construction_expression(Type* type, Expression_list* vals,
10871 source_location location)
10872 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
10873 type, vals, location)
10875 gcc_assert(type->array_type() != NULL
10876 && type->array_type()->length() != NULL);
10879 protected:
10880 Expression*
10881 do_copy()
10883 return new Fixed_array_construction_expression(this->type(),
10884 (this->vals() == NULL
10885 ? NULL
10886 : this->vals()->copy()),
10887 this->location());
10890 tree
10891 do_get_tree(Translate_context*);
10894 // Return a tree for constructing a fixed array.
10896 tree
10897 Fixed_array_construction_expression::do_get_tree(Translate_context* context)
10899 return this->get_constructor_tree(context,
10900 this->type()->get_tree(context->gogo()));
10903 // Construct an open array.
10905 class Open_array_construction_expression : public Array_construction_expression
10907 public:
10908 Open_array_construction_expression(Type* type, Expression_list* vals,
10909 source_location location)
10910 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
10911 type, vals, location)
10913 gcc_assert(type->array_type() != NULL
10914 && type->array_type()->length() == NULL);
10917 protected:
10918 // Note that taking the address of an open array literal is invalid.
10920 Expression*
10921 do_copy()
10923 return new Open_array_construction_expression(this->type(),
10924 (this->vals() == NULL
10925 ? NULL
10926 : this->vals()->copy()),
10927 this->location());
10930 tree
10931 do_get_tree(Translate_context*);
10934 // Return a tree for constructing an open array.
10936 tree
10937 Open_array_construction_expression::do_get_tree(Translate_context* context)
10939 Type* element_type = this->type()->array_type()->element_type();
10940 tree element_type_tree = element_type->get_tree(context->gogo());
10941 if (element_type_tree == error_mark_node)
10942 return error_mark_node;
10944 tree values;
10945 tree length_tree;
10946 if (this->vals() == NULL || this->vals()->empty())
10948 // We need to create a unique value.
10949 tree max = size_int(0);
10950 tree constructor_type = build_array_type(element_type_tree,
10951 build_index_type(max));
10952 if (constructor_type == error_mark_node)
10953 return error_mark_node;
10954 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
10955 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
10956 elt->index = size_int(0);
10957 elt->value = element_type->get_init_tree(context->gogo(), false);
10958 values = build_constructor(constructor_type, vec);
10959 if (TREE_CONSTANT(elt->value))
10960 TREE_CONSTANT(values) = 1;
10961 length_tree = size_int(0);
10963 else
10965 tree max = size_int(this->vals()->size() - 1);
10966 tree constructor_type = build_array_type(element_type_tree,
10967 build_index_type(max));
10968 if (constructor_type == error_mark_node)
10969 return error_mark_node;
10970 values = this->get_constructor_tree(context, constructor_type);
10971 length_tree = size_int(this->vals()->size());
10974 if (values == error_mark_node)
10975 return error_mark_node;
10977 bool is_constant_initializer = TREE_CONSTANT(values);
10978 bool is_in_function = context->function() != NULL;
10980 if (is_constant_initializer)
10982 tree tmp = build_decl(this->location(), VAR_DECL,
10983 create_tmp_var_name("C"), TREE_TYPE(values));
10984 DECL_EXTERNAL(tmp) = 0;
10985 TREE_PUBLIC(tmp) = 0;
10986 TREE_STATIC(tmp) = 1;
10987 DECL_ARTIFICIAL(tmp) = 1;
10988 if (is_in_function)
10990 // If this is not a function, we will only initialize the
10991 // value once, so we can use this directly rather than
10992 // copying it. In that case we can't make it read-only,
10993 // because the program is permitted to change it.
10994 TREE_READONLY(tmp) = 1;
10995 TREE_CONSTANT(tmp) = 1;
10997 DECL_INITIAL(tmp) = values;
10998 rest_of_decl_compilation(tmp, 1, 0);
10999 values = tmp;
11002 tree space;
11003 tree set;
11004 if (!is_in_function && is_constant_initializer)
11006 // Outside of a function, we know the initializer will only run
11007 // once.
11008 space = build_fold_addr_expr(values);
11009 set = NULL_TREE;
11011 else
11013 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
11014 space = context->gogo()->allocate_memory(element_type, memsize,
11015 this->location());
11016 space = save_expr(space);
11018 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
11019 tree ref = build_fold_indirect_ref_loc(this->location(), s);
11020 TREE_THIS_NOTRAP(ref) = 1;
11021 set = build2(MODIFY_EXPR, void_type_node, ref, values);
11024 // Build a constructor for the open array.
11026 tree type_tree = this->type()->get_tree(context->gogo());
11027 if (type_tree == error_mark_node)
11028 return error_mark_node;
11029 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
11031 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
11033 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
11034 tree field = TYPE_FIELDS(type_tree);
11035 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
11036 elt->index = field;
11037 elt->value = fold_convert(TREE_TYPE(field), space);
11039 elt = VEC_quick_push(constructor_elt, init, NULL);
11040 field = DECL_CHAIN(field);
11041 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
11042 elt->index = field;
11043 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11045 elt = VEC_quick_push(constructor_elt, init, NULL);
11046 field = DECL_CHAIN(field);
11047 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
11048 elt->index = field;
11049 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11051 tree constructor = build_constructor(type_tree, init);
11052 if (constructor == error_mark_node)
11053 return error_mark_node;
11054 if (!is_in_function && is_constant_initializer)
11055 TREE_CONSTANT(constructor) = 1;
11057 if (set == NULL_TREE)
11058 return constructor;
11059 else
11060 return build2(COMPOUND_EXPR, type_tree, set, constructor);
11063 // Make a slice composite literal. This is used by the type
11064 // descriptor code.
11066 Expression*
11067 Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
11068 source_location location)
11070 gcc_assert(type->is_open_array_type());
11071 return new Open_array_construction_expression(type, vals, location);
11074 // Construct a map.
11076 class Map_construction_expression : public Expression
11078 public:
11079 Map_construction_expression(Type* type, Expression_list* vals,
11080 source_location location)
11081 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
11082 type_(type), vals_(vals)
11083 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
11085 protected:
11087 do_traverse(Traverse* traverse);
11089 Type*
11090 do_type()
11091 { return this->type_; }
11093 void
11094 do_determine_type(const Type_context*);
11096 void
11097 do_check_types(Gogo*);
11099 Expression*
11100 do_copy()
11102 return new Map_construction_expression(this->type_, this->vals_->copy(),
11103 this->location());
11106 tree
11107 do_get_tree(Translate_context*);
11109 void
11110 do_export(Export*) const;
11112 private:
11113 // The type of the map to construct.
11114 Type* type_;
11115 // The list of values.
11116 Expression_list* vals_;
11119 // Traversal.
11122 Map_construction_expression::do_traverse(Traverse* traverse)
11124 if (this->vals_ != NULL
11125 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11126 return TRAVERSE_EXIT;
11127 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11128 return TRAVERSE_EXIT;
11129 return TRAVERSE_CONTINUE;
11132 // Final type determination.
11134 void
11135 Map_construction_expression::do_determine_type(const Type_context*)
11137 if (this->vals_ == NULL)
11138 return;
11140 Map_type* mt = this->type_->map_type();
11141 Type_context key_context(mt->key_type(), false);
11142 Type_context val_context(mt->val_type(), false);
11143 for (Expression_list::const_iterator pv = this->vals_->begin();
11144 pv != this->vals_->end();
11145 ++pv)
11147 (*pv)->determine_type(&key_context);
11148 ++pv;
11149 (*pv)->determine_type(&val_context);
11153 // Check types.
11155 void
11156 Map_construction_expression::do_check_types(Gogo*)
11158 if (this->vals_ == NULL)
11159 return;
11161 Map_type* mt = this->type_->map_type();
11162 int i = 0;
11163 Type* key_type = mt->key_type();
11164 Type* val_type = mt->val_type();
11165 for (Expression_list::const_iterator pv = this->vals_->begin();
11166 pv != this->vals_->end();
11167 ++pv, ++i)
11169 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
11171 error_at((*pv)->location(),
11172 "incompatible type for element %d key in map construction",
11173 i + 1);
11174 this->set_is_error();
11176 ++pv;
11177 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
11179 error_at((*pv)->location(),
11180 ("incompatible type for element %d value "
11181 "in map construction"),
11182 i + 1);
11183 this->set_is_error();
11188 // Return a tree for constructing a map.
11190 tree
11191 Map_construction_expression::do_get_tree(Translate_context* context)
11193 Gogo* gogo = context->gogo();
11194 source_location loc = this->location();
11196 Map_type* mt = this->type_->map_type();
11198 // Build a struct to hold the key and value.
11199 tree struct_type = make_node(RECORD_TYPE);
11201 Type* key_type = mt->key_type();
11202 tree id = get_identifier("__key");
11203 tree key_type_tree = key_type->get_tree(gogo);
11204 if (key_type_tree == error_mark_node)
11205 return error_mark_node;
11206 tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
11207 DECL_CONTEXT(key_field) = struct_type;
11208 TYPE_FIELDS(struct_type) = key_field;
11210 Type* val_type = mt->val_type();
11211 id = get_identifier("__val");
11212 tree val_type_tree = val_type->get_tree(gogo);
11213 if (val_type_tree == error_mark_node)
11214 return error_mark_node;
11215 tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
11216 DECL_CONTEXT(val_field) = struct_type;
11217 DECL_CHAIN(key_field) = val_field;
11219 layout_type(struct_type);
11221 bool is_constant = true;
11222 size_t i = 0;
11223 tree valaddr;
11224 tree make_tmp;
11226 if (this->vals_ == NULL || this->vals_->empty())
11228 valaddr = null_pointer_node;
11229 make_tmp = NULL_TREE;
11231 else
11233 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11234 this->vals_->size() / 2);
11236 for (Expression_list::const_iterator pv = this->vals_->begin();
11237 pv != this->vals_->end();
11238 ++pv, ++i)
11240 bool one_is_constant = true;
11242 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11244 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11245 elt->index = key_field;
11246 tree val_tree = (*pv)->get_tree(context);
11247 elt->value = Expression::convert_for_assignment(context, key_type,
11248 (*pv)->type(),
11249 val_tree, loc);
11250 if (elt->value == error_mark_node)
11251 return error_mark_node;
11252 if (!TREE_CONSTANT(elt->value))
11253 one_is_constant = false;
11255 ++pv;
11257 elt = VEC_quick_push(constructor_elt, one, NULL);
11258 elt->index = val_field;
11259 val_tree = (*pv)->get_tree(context);
11260 elt->value = Expression::convert_for_assignment(context, val_type,
11261 (*pv)->type(),
11262 val_tree, loc);
11263 if (elt->value == error_mark_node)
11264 return error_mark_node;
11265 if (!TREE_CONSTANT(elt->value))
11266 one_is_constant = false;
11268 elt = VEC_quick_push(constructor_elt, values, NULL);
11269 elt->index = size_int(i);
11270 elt->value = build_constructor(struct_type, one);
11271 if (one_is_constant)
11272 TREE_CONSTANT(elt->value) = 1;
11273 else
11274 is_constant = false;
11277 tree index_type = build_index_type(size_int(i - 1));
11278 tree array_type = build_array_type(struct_type, index_type);
11279 tree init = build_constructor(array_type, values);
11280 if (is_constant)
11281 TREE_CONSTANT(init) = 1;
11282 tree tmp;
11283 if (current_function_decl != NULL)
11285 tmp = create_tmp_var(array_type, get_name(array_type));
11286 DECL_INITIAL(tmp) = init;
11287 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11288 TREE_ADDRESSABLE(tmp) = 1;
11290 else
11292 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11293 DECL_EXTERNAL(tmp) = 0;
11294 TREE_PUBLIC(tmp) = 0;
11295 TREE_STATIC(tmp) = 1;
11296 DECL_ARTIFICIAL(tmp) = 1;
11297 if (!TREE_CONSTANT(init))
11298 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11299 init);
11300 else
11302 TREE_READONLY(tmp) = 1;
11303 TREE_CONSTANT(tmp) = 1;
11304 DECL_INITIAL(tmp) = init;
11305 make_tmp = NULL_TREE;
11307 rest_of_decl_compilation(tmp, 1, 0);
11310 valaddr = build_fold_addr_expr(tmp);
11313 tree descriptor = gogo->map_descriptor(mt);
11315 tree type_tree = this->type_->get_tree(gogo);
11316 if (type_tree == error_mark_node)
11317 return error_mark_node;
11319 static tree construct_map_fndecl;
11320 tree call = Gogo::call_builtin(&construct_map_fndecl,
11321 loc,
11322 "__go_construct_map",
11324 type_tree,
11325 TREE_TYPE(descriptor),
11326 descriptor,
11327 sizetype,
11328 size_int(i),
11329 sizetype,
11330 TYPE_SIZE_UNIT(struct_type),
11331 sizetype,
11332 byte_position(val_field),
11333 sizetype,
11334 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11335 const_ptr_type_node,
11336 fold_convert(const_ptr_type_node, valaddr));
11337 if (call == error_mark_node)
11338 return error_mark_node;
11340 tree ret;
11341 if (make_tmp == NULL)
11342 ret = call;
11343 else
11344 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11345 return ret;
11348 // Export an array construction.
11350 void
11351 Map_construction_expression::do_export(Export* exp) const
11353 exp->write_c_string("convert(");
11354 exp->write_type(this->type_);
11355 for (Expression_list::const_iterator pv = this->vals_->begin();
11356 pv != this->vals_->end();
11357 ++pv)
11359 exp->write_c_string(", ");
11360 (*pv)->export_expression(exp);
11362 exp->write_c_string(")");
11365 // A general composite literal. This is lowered to a type specific
11366 // version.
11368 class Composite_literal_expression : public Parser_expression
11370 public:
11371 Composite_literal_expression(Type* type, int depth, bool has_keys,
11372 Expression_list* vals, source_location location)
11373 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11374 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11377 protected:
11379 do_traverse(Traverse* traverse);
11381 Expression*
11382 do_lower(Gogo*, Named_object*, int);
11384 Expression*
11385 do_copy()
11387 return new Composite_literal_expression(this->type_, this->depth_,
11388 this->has_keys_,
11389 (this->vals_ == NULL
11390 ? NULL
11391 : this->vals_->copy()),
11392 this->location());
11395 private:
11396 Expression*
11397 lower_struct(Type*);
11399 Expression*
11400 lower_array(Type*);
11402 Expression*
11403 make_array(Type*, Expression_list*);
11405 Expression*
11406 lower_map(Gogo*, Named_object*, Type*);
11408 // The type of the composite literal.
11409 Type* type_;
11410 // The depth within a list of composite literals within a composite
11411 // literal, when the type is omitted.
11412 int depth_;
11413 // The values to put in the composite literal.
11414 Expression_list* vals_;
11415 // If this is true, then VALS_ is a list of pairs: a key and a
11416 // value. In an array initializer, a missing key will be NULL.
11417 bool has_keys_;
11420 // Traversal.
11423 Composite_literal_expression::do_traverse(Traverse* traverse)
11425 if (this->vals_ != NULL
11426 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11427 return TRAVERSE_EXIT;
11428 return Type::traverse(this->type_, traverse);
11431 // Lower a generic composite literal into a specific version based on
11432 // the type.
11434 Expression*
11435 Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
11437 Type* type = this->type_;
11439 for (int depth = this->depth_; depth > 0; --depth)
11441 if (type->array_type() != NULL)
11442 type = type->array_type()->element_type();
11443 else if (type->map_type() != NULL)
11444 type = type->map_type()->val_type();
11445 else
11447 if (!type->is_error_type())
11448 error_at(this->location(),
11449 ("may only omit types within composite literals "
11450 "of slice, array, or map type"));
11451 return Expression::make_error(this->location());
11455 if (type->is_error_type())
11456 return Expression::make_error(this->location());
11457 else if (type->struct_type() != NULL)
11458 return this->lower_struct(type);
11459 else if (type->array_type() != NULL)
11460 return this->lower_array(type);
11461 else if (type->map_type() != NULL)
11462 return this->lower_map(gogo, function, type);
11463 else
11465 error_at(this->location(),
11466 ("expected struct, slice, array, or map type "
11467 "for composite literal"));
11468 return Expression::make_error(this->location());
11472 // Lower a struct composite literal.
11474 Expression*
11475 Composite_literal_expression::lower_struct(Type* type)
11477 source_location location = this->location();
11478 Struct_type* st = type->struct_type();
11479 if (this->vals_ == NULL || !this->has_keys_)
11480 return new Struct_construction_expression(type, this->vals_, location);
11482 size_t field_count = st->field_count();
11483 std::vector<Expression*> vals(field_count);
11484 Expression_list::const_iterator p = this->vals_->begin();
11485 while (p != this->vals_->end())
11487 Expression* name_expr = *p;
11489 ++p;
11490 gcc_assert(p != this->vals_->end());
11491 Expression* val = *p;
11493 ++p;
11495 if (name_expr == NULL)
11497 error_at(val->location(), "mixture of field and value initializers");
11498 return Expression::make_error(location);
11501 bool bad_key = false;
11502 std::string name;
11503 switch (name_expr->classification())
11505 case EXPRESSION_UNKNOWN_REFERENCE:
11506 name = name_expr->unknown_expression()->name();
11507 break;
11509 case EXPRESSION_CONST_REFERENCE:
11510 name = static_cast<Const_expression*>(name_expr)->name();
11511 break;
11513 case EXPRESSION_TYPE:
11515 Type* t = name_expr->type();
11516 Named_type* nt = t->named_type();
11517 if (nt == NULL)
11518 bad_key = true;
11519 else
11520 name = nt->name();
11522 break;
11524 case EXPRESSION_VAR_REFERENCE:
11525 name = name_expr->var_expression()->name();
11526 break;
11528 case EXPRESSION_FUNC_REFERENCE:
11529 name = name_expr->func_expression()->name();
11530 break;
11532 case EXPRESSION_UNARY:
11533 // If there is a local variable around with the same name as
11534 // the field, and this occurs in the closure, then the
11535 // parser may turn the field reference into an indirection
11536 // through the closure. FIXME: This is a mess.
11538 bad_key = true;
11539 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11540 if (ue->op() == OPERATOR_MULT)
11542 Field_reference_expression* fre =
11543 ue->operand()->field_reference_expression();
11544 if (fre != NULL)
11546 Struct_type* st =
11547 fre->expr()->type()->deref()->struct_type();
11548 if (st != NULL)
11550 const Struct_field* sf = st->field(fre->field_index());
11551 name = sf->field_name();
11552 char buf[20];
11553 snprintf(buf, sizeof buf, "%u", fre->field_index());
11554 size_t buflen = strlen(buf);
11555 if (name.compare(name.length() - buflen, buflen, buf)
11556 == 0)
11558 name = name.substr(0, name.length() - buflen);
11559 bad_key = false;
11565 break;
11567 default:
11568 bad_key = true;
11569 break;
11571 if (bad_key)
11573 error_at(name_expr->location(), "expected struct field name");
11574 return Expression::make_error(location);
11577 unsigned int index;
11578 const Struct_field* sf = st->find_local_field(name, &index);
11579 if (sf == NULL)
11581 error_at(name_expr->location(), "unknown field %qs in %qs",
11582 Gogo::message_name(name).c_str(),
11583 (type->named_type() != NULL
11584 ? type->named_type()->message_name().c_str()
11585 : "unnamed struct"));
11586 return Expression::make_error(location);
11588 if (vals[index] != NULL)
11590 error_at(name_expr->location(),
11591 "duplicate value for field %qs in %qs",
11592 Gogo::message_name(name).c_str(),
11593 (type->named_type() != NULL
11594 ? type->named_type()->message_name().c_str()
11595 : "unnamed struct"));
11596 return Expression::make_error(location);
11599 vals[index] = val;
11602 Expression_list* list = new Expression_list;
11603 list->reserve(field_count);
11604 for (size_t i = 0; i < field_count; ++i)
11605 list->push_back(vals[i]);
11607 return new Struct_construction_expression(type, list, location);
11610 // Lower an array composite literal.
11612 Expression*
11613 Composite_literal_expression::lower_array(Type* type)
11615 source_location location = this->location();
11616 if (this->vals_ == NULL || !this->has_keys_)
11617 return this->make_array(type, this->vals_);
11619 std::vector<Expression*> vals;
11620 vals.reserve(this->vals_->size());
11621 unsigned long index = 0;
11622 Expression_list::const_iterator p = this->vals_->begin();
11623 while (p != this->vals_->end())
11625 Expression* index_expr = *p;
11627 ++p;
11628 gcc_assert(p != this->vals_->end());
11629 Expression* val = *p;
11631 ++p;
11633 if (index_expr != NULL)
11635 mpz_t ival;
11636 mpz_init(ival);
11637 Type* dummy;
11638 if (!index_expr->integer_constant_value(true, ival, &dummy))
11640 mpz_clear(ival);
11641 error_at(index_expr->location(),
11642 "index expression is not integer constant");
11643 return Expression::make_error(location);
11645 if (mpz_sgn(ival) < 0)
11647 mpz_clear(ival);
11648 error_at(index_expr->location(), "index expression is negative");
11649 return Expression::make_error(location);
11651 index = mpz_get_ui(ival);
11652 if (mpz_cmp_ui(ival, index) != 0)
11654 mpz_clear(ival);
11655 error_at(index_expr->location(), "index value overflow");
11656 return Expression::make_error(location);
11658 mpz_clear(ival);
11661 if (index == vals.size())
11662 vals.push_back(val);
11663 else
11665 if (index > vals.size())
11667 vals.reserve(index + 32);
11668 vals.resize(index + 1, static_cast<Expression*>(NULL));
11670 if (vals[index] != NULL)
11672 error_at((index_expr != NULL
11673 ? index_expr->location()
11674 : val->location()),
11675 "duplicate value for index %lu",
11676 index);
11677 return Expression::make_error(location);
11679 vals[index] = val;
11682 ++index;
11685 size_t size = vals.size();
11686 Expression_list* list = new Expression_list;
11687 list->reserve(size);
11688 for (size_t i = 0; i < size; ++i)
11689 list->push_back(vals[i]);
11691 return this->make_array(type, list);
11694 // Actually build the array composite literal. This handles
11695 // [...]{...}.
11697 Expression*
11698 Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11700 source_location location = this->location();
11701 Array_type* at = type->array_type();
11702 if (at->length() != NULL && at->length()->is_nil_expression())
11704 size_t size = vals == NULL ? 0 : vals->size();
11705 mpz_t vlen;
11706 mpz_init_set_ui(vlen, size);
11707 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11708 mpz_clear(vlen);
11709 at = Type::make_array_type(at->element_type(), elen);
11710 type = at;
11712 if (at->length() != NULL)
11713 return new Fixed_array_construction_expression(type, vals, location);
11714 else
11715 return new Open_array_construction_expression(type, vals, location);
11718 // Lower a map composite literal.
11720 Expression*
11721 Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11722 Type* type)
11724 source_location location = this->location();
11725 if (this->vals_ != NULL)
11727 if (!this->has_keys_)
11729 error_at(location, "map composite literal must have keys");
11730 return Expression::make_error(location);
11733 for (Expression_list::iterator p = this->vals_->begin();
11734 p != this->vals_->end();
11735 p += 2)
11737 if (*p == NULL)
11739 ++p;
11740 error_at((*p)->location(),
11741 "map composite literal must have keys for every value");
11742 return Expression::make_error(location);
11744 // Make sure we have lowered the key; it may not have been
11745 // lowered in order to handle keys for struct composite
11746 // literals. Lower it now to get the right error message.
11747 if ((*p)->unknown_expression() != NULL)
11749 (*p)->unknown_expression()->clear_is_composite_literal_key();
11750 gogo->lower_expression(function, &*p);
11751 gcc_assert((*p)->is_error_expression());
11752 return Expression::make_error(location);
11757 return new Map_construction_expression(type, this->vals_, location);
11760 // Make a composite literal expression.
11762 Expression*
11763 Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11764 Expression_list* vals,
11765 source_location location)
11767 return new Composite_literal_expression(type, depth, has_keys, vals,
11768 location);
11771 // Return whether this expression is a composite literal.
11773 bool
11774 Expression::is_composite_literal() const
11776 switch (this->classification_)
11778 case EXPRESSION_COMPOSITE_LITERAL:
11779 case EXPRESSION_STRUCT_CONSTRUCTION:
11780 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11781 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11782 case EXPRESSION_MAP_CONSTRUCTION:
11783 return true;
11784 default:
11785 return false;
11789 // Return whether this expression is a composite literal which is not
11790 // constant.
11792 bool
11793 Expression::is_nonconstant_composite_literal() const
11795 switch (this->classification_)
11797 case EXPRESSION_STRUCT_CONSTRUCTION:
11799 const Struct_construction_expression *psce =
11800 static_cast<const Struct_construction_expression*>(this);
11801 return !psce->is_constant_struct();
11803 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11805 const Fixed_array_construction_expression *pace =
11806 static_cast<const Fixed_array_construction_expression*>(this);
11807 return !pace->is_constant_array();
11809 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11811 const Open_array_construction_expression *pace =
11812 static_cast<const Open_array_construction_expression*>(this);
11813 return !pace->is_constant_array();
11815 case EXPRESSION_MAP_CONSTRUCTION:
11816 return true;
11817 default:
11818 return false;
11822 // Return true if this is a reference to a local variable.
11824 bool
11825 Expression::is_local_variable() const
11827 const Var_expression* ve = this->var_expression();
11828 if (ve == NULL)
11829 return false;
11830 const Named_object* no = ve->named_object();
11831 return (no->is_result_variable()
11832 || (no->is_variable() && !no->var_value()->is_global()));
11835 // Class Type_guard_expression.
11837 // Traversal.
11840 Type_guard_expression::do_traverse(Traverse* traverse)
11842 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
11843 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11844 return TRAVERSE_EXIT;
11845 return TRAVERSE_CONTINUE;
11848 // Check types of a type guard expression. The expression must have
11849 // an interface type, but the actual type conversion is checked at run
11850 // time.
11852 void
11853 Type_guard_expression::do_check_types(Gogo*)
11855 // 6g permits using a type guard with unsafe.pointer; we are
11856 // compatible.
11857 Type* expr_type = this->expr_->type();
11858 if (expr_type->is_unsafe_pointer_type())
11860 if (this->type_->points_to() == NULL
11861 && (this->type_->integer_type() == NULL
11862 || (this->type_->forwarded()
11863 != Type::lookup_integer_type("uintptr"))))
11864 this->report_error(_("invalid unsafe.Pointer conversion"));
11866 else if (this->type_->is_unsafe_pointer_type())
11868 if (expr_type->points_to() == NULL
11869 && (expr_type->integer_type() == NULL
11870 || (expr_type->forwarded()
11871 != Type::lookup_integer_type("uintptr"))))
11872 this->report_error(_("invalid unsafe.Pointer conversion"));
11874 else if (expr_type->interface_type() == NULL)
11876 if (!expr_type->is_error_type() && !this->type_->is_error_type())
11877 this->report_error(_("type assertion only valid for interface types"));
11878 this->set_is_error();
11880 else if (this->type_->interface_type() == NULL)
11882 std::string reason;
11883 if (!expr_type->interface_type()->implements_interface(this->type_,
11884 &reason))
11886 if (!this->type_->is_error_type())
11888 if (reason.empty())
11889 this->report_error(_("impossible type assertion: "
11890 "type does not implement interface"));
11891 else
11892 error_at(this->location(),
11893 ("impossible type assertion: "
11894 "type does not implement interface (%s)"),
11895 reason.c_str());
11897 this->set_is_error();
11902 // Return a tree for a type guard expression.
11904 tree
11905 Type_guard_expression::do_get_tree(Translate_context* context)
11907 Gogo* gogo = context->gogo();
11908 tree expr_tree = this->expr_->get_tree(context);
11909 if (expr_tree == error_mark_node)
11910 return error_mark_node;
11911 Type* expr_type = this->expr_->type();
11912 if ((this->type_->is_unsafe_pointer_type()
11913 && (expr_type->points_to() != NULL
11914 || expr_type->integer_type() != NULL))
11915 || (expr_type->is_unsafe_pointer_type()
11916 && this->type_->points_to() != NULL))
11917 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
11918 else if (expr_type->is_unsafe_pointer_type()
11919 && this->type_->integer_type() != NULL)
11920 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
11921 else if (this->type_->interface_type() != NULL)
11922 return Expression::convert_interface_to_interface(context, this->type_,
11923 this->expr_->type(),
11924 expr_tree, true,
11925 this->location());
11926 else
11927 return Expression::convert_for_assignment(context, this->type_,
11928 this->expr_->type(), expr_tree,
11929 this->location());
11932 // Make a type guard expression.
11934 Expression*
11935 Expression::make_type_guard(Expression* expr, Type* type,
11936 source_location location)
11938 return new Type_guard_expression(expr, type, location);
11941 // Class Heap_composite_expression.
11943 // When you take the address of a composite literal, it is allocated
11944 // on the heap. This class implements that.
11946 class Heap_composite_expression : public Expression
11948 public:
11949 Heap_composite_expression(Expression* expr, source_location location)
11950 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
11951 expr_(expr)
11954 protected:
11956 do_traverse(Traverse* traverse)
11957 { return Expression::traverse(&this->expr_, traverse); }
11959 Type*
11960 do_type()
11961 { return Type::make_pointer_type(this->expr_->type()); }
11963 void
11964 do_determine_type(const Type_context*)
11965 { this->expr_->determine_type_no_context(); }
11967 Expression*
11968 do_copy()
11970 return Expression::make_heap_composite(this->expr_->copy(),
11971 this->location());
11974 tree
11975 do_get_tree(Translate_context*);
11977 // We only export global objects, and the parser does not generate
11978 // this in global scope.
11979 void
11980 do_export(Export*) const
11981 { gcc_unreachable(); }
11983 private:
11984 // The composite literal which is being put on the heap.
11985 Expression* expr_;
11988 // Return a tree which allocates a composite literal on the heap.
11990 tree
11991 Heap_composite_expression::do_get_tree(Translate_context* context)
11993 tree expr_tree = this->expr_->get_tree(context);
11994 if (expr_tree == error_mark_node)
11995 return error_mark_node;
11996 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
11997 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
11998 tree space = context->gogo()->allocate_memory(this->expr_->type(),
11999 expr_size, this->location());
12000 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
12001 space = save_expr(space);
12002 tree ref = build_fold_indirect_ref_loc(this->location(), space);
12003 TREE_THIS_NOTRAP(ref) = 1;
12004 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
12005 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
12006 space);
12007 SET_EXPR_LOCATION(ret, this->location());
12008 return ret;
12011 // Allocate a composite literal on the heap.
12013 Expression*
12014 Expression::make_heap_composite(Expression* expr, source_location location)
12016 return new Heap_composite_expression(expr, location);
12019 // Class Receive_expression.
12021 // Return the type of a receive expression.
12023 Type*
12024 Receive_expression::do_type()
12026 Channel_type* channel_type = this->channel_->type()->channel_type();
12027 if (channel_type == NULL)
12028 return Type::make_error_type();
12029 return channel_type->element_type();
12032 // Check types for a receive expression.
12034 void
12035 Receive_expression::do_check_types(Gogo*)
12037 Type* type = this->channel_->type();
12038 if (type->is_error_type())
12040 this->set_is_error();
12041 return;
12043 if (type->channel_type() == NULL)
12045 this->report_error(_("expected channel"));
12046 return;
12048 if (!type->channel_type()->may_receive())
12050 this->report_error(_("invalid receive on send-only channel"));
12051 return;
12055 // Get a tree for a receive expression.
12057 tree
12058 Receive_expression::do_get_tree(Translate_context* context)
12060 Channel_type* channel_type = this->channel_->type()->channel_type();
12061 gcc_assert(channel_type != NULL);
12062 Type* element_type = channel_type->element_type();
12063 tree element_type_tree = element_type->get_tree(context->gogo());
12065 tree channel = this->channel_->get_tree(context);
12066 if (element_type_tree == error_mark_node || channel == error_mark_node)
12067 return error_mark_node;
12069 return Gogo::receive_from_channel(element_type_tree, channel,
12070 this->for_select_, this->location());
12073 // Make a receive expression.
12075 Receive_expression*
12076 Expression::make_receive(Expression* channel, source_location location)
12078 return new Receive_expression(channel, location);
12081 // Class Send_expression.
12083 // Traversal.
12086 Send_expression::do_traverse(Traverse* traverse)
12088 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
12089 return TRAVERSE_EXIT;
12090 return Expression::traverse(&this->val_, traverse);
12093 // Get the type.
12095 Type*
12096 Send_expression::do_type()
12098 return Type::lookup_bool_type();
12101 // Set types.
12103 void
12104 Send_expression::do_determine_type(const Type_context*)
12106 this->channel_->determine_type_no_context();
12108 Type* type = this->channel_->type();
12109 Type_context subcontext;
12110 if (type->channel_type() != NULL)
12111 subcontext.type = type->channel_type()->element_type();
12112 this->val_->determine_type(&subcontext);
12115 // Check types.
12117 void
12118 Send_expression::do_check_types(Gogo*)
12120 Type* type = this->channel_->type();
12121 if (type->is_error_type())
12123 this->set_is_error();
12124 return;
12126 Channel_type* channel_type = type->channel_type();
12127 if (channel_type == NULL)
12129 error_at(this->location(), "left operand of %<<-%> must be channel");
12130 this->set_is_error();
12131 return;
12133 Type* element_type = channel_type->element_type();
12134 if (element_type != NULL
12135 && !Type::are_assignable(element_type, this->val_->type(), NULL))
12137 this->report_error(_("incompatible types in send"));
12138 return;
12140 if (!channel_type->may_send())
12142 this->report_error(_("invalid send on receive-only channel"));
12143 return;
12147 // Get a tree for a send expression.
12149 tree
12150 Send_expression::do_get_tree(Translate_context* context)
12152 tree channel = this->channel_->get_tree(context);
12153 tree val = this->val_->get_tree(context);
12154 if (channel == error_mark_node || val == error_mark_node)
12155 return error_mark_node;
12156 Channel_type* channel_type = this->channel_->type()->channel_type();
12157 val = Expression::convert_for_assignment(context,
12158 channel_type->element_type(),
12159 this->val_->type(),
12160 val,
12161 this->location());
12162 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
12163 this->for_select_, this->location());
12166 // Make a send expression
12168 Send_expression*
12169 Expression::make_send(Expression* channel, Expression* val,
12170 source_location location)
12172 return new Send_expression(channel, val, location);
12175 // An expression which evaluates to a pointer to the type descriptor
12176 // of a type.
12178 class Type_descriptor_expression : public Expression
12180 public:
12181 Type_descriptor_expression(Type* type, source_location location)
12182 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
12183 type_(type)
12186 protected:
12187 Type*
12188 do_type()
12189 { return Type::make_type_descriptor_ptr_type(); }
12191 void
12192 do_determine_type(const Type_context*)
12195 Expression*
12196 do_copy()
12197 { return this; }
12199 tree
12200 do_get_tree(Translate_context* context)
12201 { return this->type_->type_descriptor_pointer(context->gogo()); }
12203 private:
12204 // The type for which this is the descriptor.
12205 Type* type_;
12208 // Make a type descriptor expression.
12210 Expression*
12211 Expression::make_type_descriptor(Type* type, source_location location)
12213 return new Type_descriptor_expression(type, location);
12216 // An expression which evaluates to some characteristic of a type.
12217 // This is only used to initialize fields of a type descriptor. Using
12218 // a new expression class is slightly inefficient but gives us a good
12219 // separation between the frontend and the middle-end with regard to
12220 // how types are laid out.
12222 class Type_info_expression : public Expression
12224 public:
12225 Type_info_expression(Type* type, Type_info type_info)
12226 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12227 type_(type), type_info_(type_info)
12230 protected:
12231 Type*
12232 do_type();
12234 void
12235 do_determine_type(const Type_context*)
12238 Expression*
12239 do_copy()
12240 { return this; }
12242 tree
12243 do_get_tree(Translate_context* context);
12245 private:
12246 // The type for which we are getting information.
12247 Type* type_;
12248 // What information we want.
12249 Type_info type_info_;
12252 // The type is chosen to match what the type descriptor struct
12253 // expects.
12255 Type*
12256 Type_info_expression::do_type()
12258 switch (this->type_info_)
12260 case TYPE_INFO_SIZE:
12261 return Type::lookup_integer_type("uintptr");
12262 case TYPE_INFO_ALIGNMENT:
12263 case TYPE_INFO_FIELD_ALIGNMENT:
12264 return Type::lookup_integer_type("uint8");
12265 default:
12266 gcc_unreachable();
12270 // Return type information in GENERIC.
12272 tree
12273 Type_info_expression::do_get_tree(Translate_context* context)
12275 tree type_tree = this->type_->get_tree(context->gogo());
12276 if (type_tree == error_mark_node)
12277 return error_mark_node;
12279 tree val_type_tree = this->type()->get_tree(context->gogo());
12280 gcc_assert(val_type_tree != error_mark_node);
12282 if (this->type_info_ == TYPE_INFO_SIZE)
12283 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12284 TYPE_SIZE_UNIT(type_tree));
12285 else
12287 unsigned int val;
12288 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
12289 val = go_type_alignment(type_tree);
12290 else
12291 val = go_field_alignment(type_tree);
12292 return build_int_cstu(val_type_tree, val);
12296 // Make a type info expression.
12298 Expression*
12299 Expression::make_type_info(Type* type, Type_info type_info)
12301 return new Type_info_expression(type, type_info);
12304 // An expression which evaluates to the offset of a field within a
12305 // struct. This, like Type_info_expression, q.v., is only used to
12306 // initialize fields of a type descriptor.
12308 class Struct_field_offset_expression : public Expression
12310 public:
12311 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12312 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12313 type_(type), field_(field)
12316 protected:
12317 Type*
12318 do_type()
12319 { return Type::lookup_integer_type("uintptr"); }
12321 void
12322 do_determine_type(const Type_context*)
12325 Expression*
12326 do_copy()
12327 { return this; }
12329 tree
12330 do_get_tree(Translate_context* context);
12332 private:
12333 // The type of the struct.
12334 Struct_type* type_;
12335 // The field.
12336 const Struct_field* field_;
12339 // Return a struct field offset in GENERIC.
12341 tree
12342 Struct_field_offset_expression::do_get_tree(Translate_context* context)
12344 tree type_tree = this->type_->get_tree(context->gogo());
12345 if (type_tree == error_mark_node)
12346 return error_mark_node;
12348 tree val_type_tree = this->type()->get_tree(context->gogo());
12349 gcc_assert(val_type_tree != error_mark_node);
12351 const Struct_field_list* fields = this->type_->fields();
12352 tree struct_field_tree = TYPE_FIELDS(type_tree);
12353 Struct_field_list::const_iterator p;
12354 for (p = fields->begin();
12355 p != fields->end();
12356 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12358 gcc_assert(struct_field_tree != NULL_TREE);
12359 if (&*p == this->field_)
12360 break;
12362 gcc_assert(&*p == this->field_);
12364 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12365 byte_position(struct_field_tree));
12368 // Make an expression for a struct field offset.
12370 Expression*
12371 Expression::make_struct_field_offset(Struct_type* type,
12372 const Struct_field* field)
12374 return new Struct_field_offset_expression(type, field);
12377 // An expression which evaluates to the address of an unnamed label.
12379 class Label_addr_expression : public Expression
12381 public:
12382 Label_addr_expression(Label* label, source_location location)
12383 : Expression(EXPRESSION_LABEL_ADDR, location),
12384 label_(label)
12387 protected:
12388 Type*
12389 do_type()
12390 { return Type::make_pointer_type(Type::make_void_type()); }
12392 void
12393 do_determine_type(const Type_context*)
12396 Expression*
12397 do_copy()
12398 { return new Label_addr_expression(this->label_, this->location()); }
12400 tree
12401 do_get_tree(Translate_context*)
12402 { return this->label_->get_addr(this->location()); }
12404 private:
12405 // The label whose address we are taking.
12406 Label* label_;
12409 // Make an expression for the address of an unnamed label.
12411 Expression*
12412 Expression::make_label_addr(Label* label, source_location location)
12414 return new Label_addr_expression(label, location);
12417 // Import an expression. This comes at the end in order to see the
12418 // various class definitions.
12420 Expression*
12421 Expression::import_expression(Import* imp)
12423 int c = imp->peek_char();
12424 if (imp->match_c_string("- ")
12425 || imp->match_c_string("! ")
12426 || imp->match_c_string("^ "))
12427 return Unary_expression::do_import(imp);
12428 else if (c == '(')
12429 return Binary_expression::do_import(imp);
12430 else if (imp->match_c_string("true")
12431 || imp->match_c_string("false"))
12432 return Boolean_expression::do_import(imp);
12433 else if (c == '"')
12434 return String_expression::do_import(imp);
12435 else if (c == '-' || (c >= '0' && c <= '9'))
12437 // This handles integers, floats and complex constants.
12438 return Integer_expression::do_import(imp);
12440 else if (imp->match_c_string("nil"))
12441 return Nil_expression::do_import(imp);
12442 else if (imp->match_c_string("convert"))
12443 return Type_conversion_expression::do_import(imp);
12444 else
12446 error_at(imp->location(), "import error: expected expression");
12447 return Expression::make_error(imp->location());
12451 // Class Expression_list.
12453 // Traverse the list.
12456 Expression_list::traverse(Traverse* traverse)
12458 for (Expression_list::iterator p = this->begin();
12459 p != this->end();
12460 ++p)
12462 if (*p != NULL)
12464 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12465 return TRAVERSE_EXIT;
12468 return TRAVERSE_CONTINUE;
12471 // Copy the list.
12473 Expression_list*
12474 Expression_list::copy()
12476 Expression_list* ret = new Expression_list();
12477 for (Expression_list::iterator p = this->begin();
12478 p != this->end();
12479 ++p)
12481 if (*p == NULL)
12482 ret->push_back(NULL);
12483 else
12484 ret->push_back((*p)->copy());
12486 return ret;
12489 // Return whether an expression list has an error expression.
12491 bool
12492 Expression_list::contains_error() const
12494 for (Expression_list::const_iterator p = this->begin();
12495 p != this->end();
12496 ++p)
12497 if (*p != NULL && (*p)->is_error_expression())
12498 return true;
12499 return false;