Daily bump.
[official-gcc.git] / gcc / function.c
blob8cdf0beaecc2d3f675940c0fd117081b9b29343d
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "hashtab.h"
55 #include "tm_p.h"
56 #include "langhooks.h"
57 #include "target.h"
58 #include "common/common-target.h"
59 #include "gimple-expr.h"
60 #include "gimplify.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "params.h"
65 #include "bb-reorder.h"
67 /* So we can assign to cfun in this file. */
68 #undef cfun
70 #ifndef STACK_ALIGNMENT_NEEDED
71 #define STACK_ALIGNMENT_NEEDED 1
72 #endif
74 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
76 /* Round a value to the lowest integer less than it that is a multiple of
77 the required alignment. Avoid using division in case the value is
78 negative. Assume the alignment is a power of two. */
79 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
81 /* Similar, but round to the next highest integer that meets the
82 alignment. */
83 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
85 /* Nonzero once virtual register instantiation has been done.
86 assign_stack_local uses frame_pointer_rtx when this is nonzero.
87 calls.c:emit_library_call_value_1 uses it to set up
88 post-instantiation libcalls. */
89 int virtuals_instantiated;
91 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
92 static GTY(()) int funcdef_no;
94 /* These variables hold pointers to functions to create and destroy
95 target specific, per-function data structures. */
96 struct machine_function * (*init_machine_status) (void);
98 /* The currently compiled function. */
99 struct function *cfun = 0;
101 /* These hashes record the prologue and epilogue insns. */
102 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
103 htab_t prologue_insn_hash;
104 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
105 htab_t epilogue_insn_hash;
108 htab_t types_used_by_vars_hash = NULL;
109 vec<tree, va_gc> *types_used_by_cur_var_decl;
111 /* Forward declarations. */
113 static struct temp_slot *find_temp_slot_from_address (rtx);
114 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
115 static void pad_below (struct args_size *, enum machine_mode, tree);
116 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
117 static int all_blocks (tree, tree *);
118 static tree *get_block_vector (tree, int *);
119 extern tree debug_find_var_in_block_tree (tree, tree);
120 /* We always define `record_insns' even if it's not used so that we
121 can always export `prologue_epilogue_contains'. */
122 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
123 static bool contains (const_rtx, htab_t);
124 static void prepare_function_start (void);
125 static void do_clobber_return_reg (rtx, void *);
126 static void do_use_return_reg (rtx, void *);
128 /* Stack of nested functions. */
129 /* Keep track of the cfun stack. */
131 typedef struct function *function_p;
133 static vec<function_p> function_context_stack;
135 /* Save the current context for compilation of a nested function.
136 This is called from language-specific code. */
138 void
139 push_function_context (void)
141 if (cfun == 0)
142 allocate_struct_function (NULL, false);
144 function_context_stack.safe_push (cfun);
145 set_cfun (NULL);
148 /* Restore the last saved context, at the end of a nested function.
149 This function is called from language-specific code. */
151 void
152 pop_function_context (void)
154 struct function *p = function_context_stack.pop ();
155 set_cfun (p);
156 current_function_decl = p->decl;
158 /* Reset variables that have known state during rtx generation. */
159 virtuals_instantiated = 0;
160 generating_concat_p = 1;
163 /* Clear out all parts of the state in F that can safely be discarded
164 after the function has been parsed, but not compiled, to let
165 garbage collection reclaim the memory. */
167 void
168 free_after_parsing (struct function *f)
170 f->language = 0;
173 /* Clear out all parts of the state in F that can safely be discarded
174 after the function has been compiled, to let garbage collection
175 reclaim the memory. */
177 void
178 free_after_compilation (struct function *f)
180 prologue_insn_hash = NULL;
181 epilogue_insn_hash = NULL;
183 free (crtl->emit.regno_pointer_align);
185 memset (crtl, 0, sizeof (struct rtl_data));
186 f->eh = NULL;
187 f->machine = NULL;
188 f->cfg = NULL;
190 regno_reg_rtx = NULL;
193 /* Return size needed for stack frame based on slots so far allocated.
194 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
195 the caller may have to do that. */
197 HOST_WIDE_INT
198 get_frame_size (void)
200 if (FRAME_GROWS_DOWNWARD)
201 return -frame_offset;
202 else
203 return frame_offset;
206 /* Issue an error message and return TRUE if frame OFFSET overflows in
207 the signed target pointer arithmetics for function FUNC. Otherwise
208 return FALSE. */
210 bool
211 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
213 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
215 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
216 /* Leave room for the fixed part of the frame. */
217 - 64 * UNITS_PER_WORD)
219 error_at (DECL_SOURCE_LOCATION (func),
220 "total size of local objects too large");
221 return TRUE;
224 return FALSE;
227 /* Return stack slot alignment in bits for TYPE and MODE. */
229 static unsigned int
230 get_stack_local_alignment (tree type, enum machine_mode mode)
232 unsigned int alignment;
234 if (mode == BLKmode)
235 alignment = BIGGEST_ALIGNMENT;
236 else
237 alignment = GET_MODE_ALIGNMENT (mode);
239 /* Allow the frond-end to (possibly) increase the alignment of this
240 stack slot. */
241 if (! type)
242 type = lang_hooks.types.type_for_mode (mode, 0);
244 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
247 /* Determine whether it is possible to fit a stack slot of size SIZE and
248 alignment ALIGNMENT into an area in the stack frame that starts at
249 frame offset START and has a length of LENGTH. If so, store the frame
250 offset to be used for the stack slot in *POFFSET and return true;
251 return false otherwise. This function will extend the frame size when
252 given a start/length pair that lies at the end of the frame. */
254 static bool
255 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
256 HOST_WIDE_INT size, unsigned int alignment,
257 HOST_WIDE_INT *poffset)
259 HOST_WIDE_INT this_frame_offset;
260 int frame_off, frame_alignment, frame_phase;
262 /* Calculate how many bytes the start of local variables is off from
263 stack alignment. */
264 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
265 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
266 frame_phase = frame_off ? frame_alignment - frame_off : 0;
268 /* Round the frame offset to the specified alignment. */
270 /* We must be careful here, since FRAME_OFFSET might be negative and
271 division with a negative dividend isn't as well defined as we might
272 like. So we instead assume that ALIGNMENT is a power of two and
273 use logical operations which are unambiguous. */
274 if (FRAME_GROWS_DOWNWARD)
275 this_frame_offset
276 = (FLOOR_ROUND (start + length - size - frame_phase,
277 (unsigned HOST_WIDE_INT) alignment)
278 + frame_phase);
279 else
280 this_frame_offset
281 = (CEIL_ROUND (start - frame_phase,
282 (unsigned HOST_WIDE_INT) alignment)
283 + frame_phase);
285 /* See if it fits. If this space is at the edge of the frame,
286 consider extending the frame to make it fit. Our caller relies on
287 this when allocating a new slot. */
288 if (frame_offset == start && this_frame_offset < frame_offset)
289 frame_offset = this_frame_offset;
290 else if (this_frame_offset < start)
291 return false;
292 else if (start + length == frame_offset
293 && this_frame_offset + size > start + length)
294 frame_offset = this_frame_offset + size;
295 else if (this_frame_offset + size > start + length)
296 return false;
298 *poffset = this_frame_offset;
299 return true;
302 /* Create a new frame_space structure describing free space in the stack
303 frame beginning at START and ending at END, and chain it into the
304 function's frame_space_list. */
306 static void
307 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
309 struct frame_space *space = ggc_alloc_frame_space ();
310 space->next = crtl->frame_space_list;
311 crtl->frame_space_list = space;
312 space->start = start;
313 space->length = end - start;
316 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
317 with machine mode MODE.
319 ALIGN controls the amount of alignment for the address of the slot:
320 0 means according to MODE,
321 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
322 -2 means use BITS_PER_UNIT,
323 positive specifies alignment boundary in bits.
325 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
326 alignment and ASLK_RECORD_PAD bit set if we should remember
327 extra space we allocated for alignment purposes. When we are
328 called from assign_stack_temp_for_type, it is not set so we don't
329 track the same stack slot in two independent lists.
331 We do not round to stack_boundary here. */
334 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
335 int align, int kind)
337 rtx x, addr;
338 int bigend_correction = 0;
339 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
340 unsigned int alignment, alignment_in_bits;
342 if (align == 0)
344 alignment = get_stack_local_alignment (NULL, mode);
345 alignment /= BITS_PER_UNIT;
347 else if (align == -1)
349 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
350 size = CEIL_ROUND (size, alignment);
352 else if (align == -2)
353 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
354 else
355 alignment = align / BITS_PER_UNIT;
357 alignment_in_bits = alignment * BITS_PER_UNIT;
359 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
360 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
362 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
363 alignment = alignment_in_bits / BITS_PER_UNIT;
366 if (SUPPORTS_STACK_ALIGNMENT)
368 if (crtl->stack_alignment_estimated < alignment_in_bits)
370 if (!crtl->stack_realign_processed)
371 crtl->stack_alignment_estimated = alignment_in_bits;
372 else
374 /* If stack is realigned and stack alignment value
375 hasn't been finalized, it is OK not to increase
376 stack_alignment_estimated. The bigger alignment
377 requirement is recorded in stack_alignment_needed
378 below. */
379 gcc_assert (!crtl->stack_realign_finalized);
380 if (!crtl->stack_realign_needed)
382 /* It is OK to reduce the alignment as long as the
383 requested size is 0 or the estimated stack
384 alignment >= mode alignment. */
385 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
386 || size == 0
387 || (crtl->stack_alignment_estimated
388 >= GET_MODE_ALIGNMENT (mode)));
389 alignment_in_bits = crtl->stack_alignment_estimated;
390 alignment = alignment_in_bits / BITS_PER_UNIT;
396 if (crtl->stack_alignment_needed < alignment_in_bits)
397 crtl->stack_alignment_needed = alignment_in_bits;
398 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
399 crtl->max_used_stack_slot_alignment = alignment_in_bits;
401 if (mode != BLKmode || size != 0)
403 if (kind & ASLK_RECORD_PAD)
405 struct frame_space **psp;
407 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
409 struct frame_space *space = *psp;
410 if (!try_fit_stack_local (space->start, space->length, size,
411 alignment, &slot_offset))
412 continue;
413 *psp = space->next;
414 if (slot_offset > space->start)
415 add_frame_space (space->start, slot_offset);
416 if (slot_offset + size < space->start + space->length)
417 add_frame_space (slot_offset + size,
418 space->start + space->length);
419 goto found_space;
423 else if (!STACK_ALIGNMENT_NEEDED)
425 slot_offset = frame_offset;
426 goto found_space;
429 old_frame_offset = frame_offset;
431 if (FRAME_GROWS_DOWNWARD)
433 frame_offset -= size;
434 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
436 if (kind & ASLK_RECORD_PAD)
438 if (slot_offset > frame_offset)
439 add_frame_space (frame_offset, slot_offset);
440 if (slot_offset + size < old_frame_offset)
441 add_frame_space (slot_offset + size, old_frame_offset);
444 else
446 frame_offset += size;
447 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
449 if (kind & ASLK_RECORD_PAD)
451 if (slot_offset > old_frame_offset)
452 add_frame_space (old_frame_offset, slot_offset);
453 if (slot_offset + size < frame_offset)
454 add_frame_space (slot_offset + size, frame_offset);
458 found_space:
459 /* On a big-endian machine, if we are allocating more space than we will use,
460 use the least significant bytes of those that are allocated. */
461 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
462 bigend_correction = size - GET_MODE_SIZE (mode);
464 /* If we have already instantiated virtual registers, return the actual
465 address relative to the frame pointer. */
466 if (virtuals_instantiated)
467 addr = plus_constant (Pmode, frame_pointer_rtx,
468 trunc_int_for_mode
469 (slot_offset + bigend_correction
470 + STARTING_FRAME_OFFSET, Pmode));
471 else
472 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
473 trunc_int_for_mode
474 (slot_offset + bigend_correction,
475 Pmode));
477 x = gen_rtx_MEM (mode, addr);
478 set_mem_align (x, alignment_in_bits);
479 MEM_NOTRAP_P (x) = 1;
481 stack_slot_list
482 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
484 if (frame_offset_overflow (frame_offset, current_function_decl))
485 frame_offset = 0;
487 return x;
490 /* Wrap up assign_stack_local_1 with last parameter as false. */
493 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
495 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
498 /* In order to evaluate some expressions, such as function calls returning
499 structures in memory, we need to temporarily allocate stack locations.
500 We record each allocated temporary in the following structure.
502 Associated with each temporary slot is a nesting level. When we pop up
503 one level, all temporaries associated with the previous level are freed.
504 Normally, all temporaries are freed after the execution of the statement
505 in which they were created. However, if we are inside a ({...}) grouping,
506 the result may be in a temporary and hence must be preserved. If the
507 result could be in a temporary, we preserve it if we can determine which
508 one it is in. If we cannot determine which temporary may contain the
509 result, all temporaries are preserved. A temporary is preserved by
510 pretending it was allocated at the previous nesting level. */
512 struct GTY(()) temp_slot {
513 /* Points to next temporary slot. */
514 struct temp_slot *next;
515 /* Points to previous temporary slot. */
516 struct temp_slot *prev;
517 /* The rtx to used to reference the slot. */
518 rtx slot;
519 /* The size, in units, of the slot. */
520 HOST_WIDE_INT size;
521 /* The type of the object in the slot, or zero if it doesn't correspond
522 to a type. We use this to determine whether a slot can be reused.
523 It can be reused if objects of the type of the new slot will always
524 conflict with objects of the type of the old slot. */
525 tree type;
526 /* The alignment (in bits) of the slot. */
527 unsigned int align;
528 /* Nonzero if this temporary is currently in use. */
529 char in_use;
530 /* Nesting level at which this slot is being used. */
531 int level;
532 /* The offset of the slot from the frame_pointer, including extra space
533 for alignment. This info is for combine_temp_slots. */
534 HOST_WIDE_INT base_offset;
535 /* The size of the slot, including extra space for alignment. This
536 info is for combine_temp_slots. */
537 HOST_WIDE_INT full_size;
540 /* A table of addresses that represent a stack slot. The table is a mapping
541 from address RTXen to a temp slot. */
542 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
543 static size_t n_temp_slots_in_use;
545 /* Entry for the above hash table. */
546 struct GTY(()) temp_slot_address_entry {
547 hashval_t hash;
548 rtx address;
549 struct temp_slot *temp_slot;
552 /* Removes temporary slot TEMP from LIST. */
554 static void
555 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
557 if (temp->next)
558 temp->next->prev = temp->prev;
559 if (temp->prev)
560 temp->prev->next = temp->next;
561 else
562 *list = temp->next;
564 temp->prev = temp->next = NULL;
567 /* Inserts temporary slot TEMP to LIST. */
569 static void
570 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
572 temp->next = *list;
573 if (*list)
574 (*list)->prev = temp;
575 temp->prev = NULL;
576 *list = temp;
579 /* Returns the list of used temp slots at LEVEL. */
581 static struct temp_slot **
582 temp_slots_at_level (int level)
584 if (level >= (int) vec_safe_length (used_temp_slots))
585 vec_safe_grow_cleared (used_temp_slots, level + 1);
587 return &(*used_temp_slots)[level];
590 /* Returns the maximal temporary slot level. */
592 static int
593 max_slot_level (void)
595 if (!used_temp_slots)
596 return -1;
598 return used_temp_slots->length () - 1;
601 /* Moves temporary slot TEMP to LEVEL. */
603 static void
604 move_slot_to_level (struct temp_slot *temp, int level)
606 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
607 insert_slot_to_list (temp, temp_slots_at_level (level));
608 temp->level = level;
611 /* Make temporary slot TEMP available. */
613 static void
614 make_slot_available (struct temp_slot *temp)
616 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
617 insert_slot_to_list (temp, &avail_temp_slots);
618 temp->in_use = 0;
619 temp->level = -1;
620 n_temp_slots_in_use--;
623 /* Compute the hash value for an address -> temp slot mapping.
624 The value is cached on the mapping entry. */
625 static hashval_t
626 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
628 int do_not_record = 0;
629 return hash_rtx (t->address, GET_MODE (t->address),
630 &do_not_record, NULL, false);
633 /* Return the hash value for an address -> temp slot mapping. */
634 static hashval_t
635 temp_slot_address_hash (const void *p)
637 const struct temp_slot_address_entry *t;
638 t = (const struct temp_slot_address_entry *) p;
639 return t->hash;
642 /* Compare two address -> temp slot mapping entries. */
643 static int
644 temp_slot_address_eq (const void *p1, const void *p2)
646 const struct temp_slot_address_entry *t1, *t2;
647 t1 = (const struct temp_slot_address_entry *) p1;
648 t2 = (const struct temp_slot_address_entry *) p2;
649 return exp_equiv_p (t1->address, t2->address, 0, true);
652 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
653 static void
654 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
656 void **slot;
657 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
658 t->address = address;
659 t->temp_slot = temp_slot;
660 t->hash = temp_slot_address_compute_hash (t);
661 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
662 *slot = t;
665 /* Remove an address -> temp slot mapping entry if the temp slot is
666 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
667 static int
668 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
670 const struct temp_slot_address_entry *t;
671 t = (const struct temp_slot_address_entry *) *slot;
672 if (! t->temp_slot->in_use)
673 htab_clear_slot (temp_slot_address_table, slot);
674 return 1;
677 /* Remove all mappings of addresses to unused temp slots. */
678 static void
679 remove_unused_temp_slot_addresses (void)
681 /* Use quicker clearing if there aren't any active temp slots. */
682 if (n_temp_slots_in_use)
683 htab_traverse (temp_slot_address_table,
684 remove_unused_temp_slot_addresses_1,
685 NULL);
686 else
687 htab_empty (temp_slot_address_table);
690 /* Find the temp slot corresponding to the object at address X. */
692 static struct temp_slot *
693 find_temp_slot_from_address (rtx x)
695 struct temp_slot *p;
696 struct temp_slot_address_entry tmp, *t;
698 /* First try the easy way:
699 See if X exists in the address -> temp slot mapping. */
700 tmp.address = x;
701 tmp.temp_slot = NULL;
702 tmp.hash = temp_slot_address_compute_hash (&tmp);
703 t = (struct temp_slot_address_entry *)
704 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
705 if (t)
706 return t->temp_slot;
708 /* If we have a sum involving a register, see if it points to a temp
709 slot. */
710 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
711 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
712 return p;
713 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
714 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
715 return p;
717 /* Last resort: Address is a virtual stack var address. */
718 if (GET_CODE (x) == PLUS
719 && XEXP (x, 0) == virtual_stack_vars_rtx
720 && CONST_INT_P (XEXP (x, 1)))
722 int i;
723 for (i = max_slot_level (); i >= 0; i--)
724 for (p = *temp_slots_at_level (i); p; p = p->next)
726 if (INTVAL (XEXP (x, 1)) >= p->base_offset
727 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
728 return p;
732 return NULL;
735 /* Allocate a temporary stack slot and record it for possible later
736 reuse.
738 MODE is the machine mode to be given to the returned rtx.
740 SIZE is the size in units of the space required. We do no rounding here
741 since assign_stack_local will do any required rounding.
743 TYPE is the type that will be used for the stack slot. */
746 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
747 tree type)
749 unsigned int align;
750 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
751 rtx slot;
753 /* If SIZE is -1 it means that somebody tried to allocate a temporary
754 of a variable size. */
755 gcc_assert (size != -1);
757 align = get_stack_local_alignment (type, mode);
759 /* Try to find an available, already-allocated temporary of the proper
760 mode which meets the size and alignment requirements. Choose the
761 smallest one with the closest alignment.
763 If assign_stack_temp is called outside of the tree->rtl expansion,
764 we cannot reuse the stack slots (that may still refer to
765 VIRTUAL_STACK_VARS_REGNUM). */
766 if (!virtuals_instantiated)
768 for (p = avail_temp_slots; p; p = p->next)
770 if (p->align >= align && p->size >= size
771 && GET_MODE (p->slot) == mode
772 && objects_must_conflict_p (p->type, type)
773 && (best_p == 0 || best_p->size > p->size
774 || (best_p->size == p->size && best_p->align > p->align)))
776 if (p->align == align && p->size == size)
778 selected = p;
779 cut_slot_from_list (selected, &avail_temp_slots);
780 best_p = 0;
781 break;
783 best_p = p;
788 /* Make our best, if any, the one to use. */
789 if (best_p)
791 selected = best_p;
792 cut_slot_from_list (selected, &avail_temp_slots);
794 /* If there are enough aligned bytes left over, make them into a new
795 temp_slot so that the extra bytes don't get wasted. Do this only
796 for BLKmode slots, so that we can be sure of the alignment. */
797 if (GET_MODE (best_p->slot) == BLKmode)
799 int alignment = best_p->align / BITS_PER_UNIT;
800 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
802 if (best_p->size - rounded_size >= alignment)
804 p = ggc_alloc_temp_slot ();
805 p->in_use = 0;
806 p->size = best_p->size - rounded_size;
807 p->base_offset = best_p->base_offset + rounded_size;
808 p->full_size = best_p->full_size - rounded_size;
809 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
810 p->align = best_p->align;
811 p->type = best_p->type;
812 insert_slot_to_list (p, &avail_temp_slots);
814 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
815 stack_slot_list);
817 best_p->size = rounded_size;
818 best_p->full_size = rounded_size;
823 /* If we still didn't find one, make a new temporary. */
824 if (selected == 0)
826 HOST_WIDE_INT frame_offset_old = frame_offset;
828 p = ggc_alloc_temp_slot ();
830 /* We are passing an explicit alignment request to assign_stack_local.
831 One side effect of that is assign_stack_local will not round SIZE
832 to ensure the frame offset remains suitably aligned.
834 So for requests which depended on the rounding of SIZE, we go ahead
835 and round it now. We also make sure ALIGNMENT is at least
836 BIGGEST_ALIGNMENT. */
837 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
838 p->slot = assign_stack_local_1 (mode,
839 (mode == BLKmode
840 ? CEIL_ROUND (size,
841 (int) align
842 / BITS_PER_UNIT)
843 : size),
844 align, 0);
846 p->align = align;
848 /* The following slot size computation is necessary because we don't
849 know the actual size of the temporary slot until assign_stack_local
850 has performed all the frame alignment and size rounding for the
851 requested temporary. Note that extra space added for alignment
852 can be either above or below this stack slot depending on which
853 way the frame grows. We include the extra space if and only if it
854 is above this slot. */
855 if (FRAME_GROWS_DOWNWARD)
856 p->size = frame_offset_old - frame_offset;
857 else
858 p->size = size;
860 /* Now define the fields used by combine_temp_slots. */
861 if (FRAME_GROWS_DOWNWARD)
863 p->base_offset = frame_offset;
864 p->full_size = frame_offset_old - frame_offset;
866 else
868 p->base_offset = frame_offset_old;
869 p->full_size = frame_offset - frame_offset_old;
872 selected = p;
875 p = selected;
876 p->in_use = 1;
877 p->type = type;
878 p->level = temp_slot_level;
879 n_temp_slots_in_use++;
881 pp = temp_slots_at_level (p->level);
882 insert_slot_to_list (p, pp);
883 insert_temp_slot_address (XEXP (p->slot, 0), p);
885 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
886 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
887 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
889 /* If we know the alias set for the memory that will be used, use
890 it. If there's no TYPE, then we don't know anything about the
891 alias set for the memory. */
892 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
893 set_mem_align (slot, align);
895 /* If a type is specified, set the relevant flags. */
896 if (type != 0)
897 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
898 MEM_NOTRAP_P (slot) = 1;
900 return slot;
903 /* Allocate a temporary stack slot and record it for possible later
904 reuse. First two arguments are same as in preceding function. */
907 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
909 return assign_stack_temp_for_type (mode, size, NULL_TREE);
912 /* Assign a temporary.
913 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
914 and so that should be used in error messages. In either case, we
915 allocate of the given type.
916 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
917 it is 0 if a register is OK.
918 DONT_PROMOTE is 1 if we should not promote values in register
919 to wider modes. */
922 assign_temp (tree type_or_decl, int memory_required,
923 int dont_promote ATTRIBUTE_UNUSED)
925 tree type, decl;
926 enum machine_mode mode;
927 #ifdef PROMOTE_MODE
928 int unsignedp;
929 #endif
931 if (DECL_P (type_or_decl))
932 decl = type_or_decl, type = TREE_TYPE (decl);
933 else
934 decl = NULL, type = type_or_decl;
936 mode = TYPE_MODE (type);
937 #ifdef PROMOTE_MODE
938 unsignedp = TYPE_UNSIGNED (type);
939 #endif
941 if (mode == BLKmode || memory_required)
943 HOST_WIDE_INT size = int_size_in_bytes (type);
944 rtx tmp;
946 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
947 problems with allocating the stack space. */
948 if (size == 0)
949 size = 1;
951 /* Unfortunately, we don't yet know how to allocate variable-sized
952 temporaries. However, sometimes we can find a fixed upper limit on
953 the size, so try that instead. */
954 else if (size == -1)
955 size = max_int_size_in_bytes (type);
957 /* The size of the temporary may be too large to fit into an integer. */
958 /* ??? Not sure this should happen except for user silliness, so limit
959 this to things that aren't compiler-generated temporaries. The
960 rest of the time we'll die in assign_stack_temp_for_type. */
961 if (decl && size == -1
962 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
964 error ("size of variable %q+D is too large", decl);
965 size = 1;
968 tmp = assign_stack_temp_for_type (mode, size, type);
969 return tmp;
972 #ifdef PROMOTE_MODE
973 if (! dont_promote)
974 mode = promote_mode (type, mode, &unsignedp);
975 #endif
977 return gen_reg_rtx (mode);
980 /* Combine temporary stack slots which are adjacent on the stack.
982 This allows for better use of already allocated stack space. This is only
983 done for BLKmode slots because we can be sure that we won't have alignment
984 problems in this case. */
986 static void
987 combine_temp_slots (void)
989 struct temp_slot *p, *q, *next, *next_q;
990 int num_slots;
992 /* We can't combine slots, because the information about which slot
993 is in which alias set will be lost. */
994 if (flag_strict_aliasing)
995 return;
997 /* If there are a lot of temp slots, don't do anything unless
998 high levels of optimization. */
999 if (! flag_expensive_optimizations)
1000 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1001 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1002 return;
1004 for (p = avail_temp_slots; p; p = next)
1006 int delete_p = 0;
1008 next = p->next;
1010 if (GET_MODE (p->slot) != BLKmode)
1011 continue;
1013 for (q = p->next; q; q = next_q)
1015 int delete_q = 0;
1017 next_q = q->next;
1019 if (GET_MODE (q->slot) != BLKmode)
1020 continue;
1022 if (p->base_offset + p->full_size == q->base_offset)
1024 /* Q comes after P; combine Q into P. */
1025 p->size += q->size;
1026 p->full_size += q->full_size;
1027 delete_q = 1;
1029 else if (q->base_offset + q->full_size == p->base_offset)
1031 /* P comes after Q; combine P into Q. */
1032 q->size += p->size;
1033 q->full_size += p->full_size;
1034 delete_p = 1;
1035 break;
1037 if (delete_q)
1038 cut_slot_from_list (q, &avail_temp_slots);
1041 /* Either delete P or advance past it. */
1042 if (delete_p)
1043 cut_slot_from_list (p, &avail_temp_slots);
1047 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1048 slot that previously was known by OLD_RTX. */
1050 void
1051 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1053 struct temp_slot *p;
1055 if (rtx_equal_p (old_rtx, new_rtx))
1056 return;
1058 p = find_temp_slot_from_address (old_rtx);
1060 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1061 NEW_RTX is a register, see if one operand of the PLUS is a
1062 temporary location. If so, NEW_RTX points into it. Otherwise,
1063 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1064 in common between them. If so, try a recursive call on those
1065 values. */
1066 if (p == 0)
1068 if (GET_CODE (old_rtx) != PLUS)
1069 return;
1071 if (REG_P (new_rtx))
1073 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1074 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1075 return;
1077 else if (GET_CODE (new_rtx) != PLUS)
1078 return;
1080 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1081 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1082 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1083 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1084 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1085 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1086 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1087 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1089 return;
1092 /* Otherwise add an alias for the temp's address. */
1093 insert_temp_slot_address (new_rtx, p);
1096 /* If X could be a reference to a temporary slot, mark that slot as
1097 belonging to the to one level higher than the current level. If X
1098 matched one of our slots, just mark that one. Otherwise, we can't
1099 easily predict which it is, so upgrade all of them.
1101 This is called when an ({...}) construct occurs and a statement
1102 returns a value in memory. */
1104 void
1105 preserve_temp_slots (rtx x)
1107 struct temp_slot *p = 0, *next;
1109 if (x == 0)
1110 return;
1112 /* If X is a register that is being used as a pointer, see if we have
1113 a temporary slot we know it points to. */
1114 if (REG_P (x) && REG_POINTER (x))
1115 p = find_temp_slot_from_address (x);
1117 /* If X is not in memory or is at a constant address, it cannot be in
1118 a temporary slot. */
1119 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1120 return;
1122 /* First see if we can find a match. */
1123 if (p == 0)
1124 p = find_temp_slot_from_address (XEXP (x, 0));
1126 if (p != 0)
1128 if (p->level == temp_slot_level)
1129 move_slot_to_level (p, temp_slot_level - 1);
1130 return;
1133 /* Otherwise, preserve all non-kept slots at this level. */
1134 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1136 next = p->next;
1137 move_slot_to_level (p, temp_slot_level - 1);
1141 /* Free all temporaries used so far. This is normally called at the
1142 end of generating code for a statement. */
1144 void
1145 free_temp_slots (void)
1147 struct temp_slot *p, *next;
1148 bool some_available = false;
1150 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1152 next = p->next;
1153 make_slot_available (p);
1154 some_available = true;
1157 if (some_available)
1159 remove_unused_temp_slot_addresses ();
1160 combine_temp_slots ();
1164 /* Push deeper into the nesting level for stack temporaries. */
1166 void
1167 push_temp_slots (void)
1169 temp_slot_level++;
1172 /* Pop a temporary nesting level. All slots in use in the current level
1173 are freed. */
1175 void
1176 pop_temp_slots (void)
1178 free_temp_slots ();
1179 temp_slot_level--;
1182 /* Initialize temporary slots. */
1184 void
1185 init_temp_slots (void)
1187 /* We have not allocated any temporaries yet. */
1188 avail_temp_slots = 0;
1189 vec_alloc (used_temp_slots, 0);
1190 temp_slot_level = 0;
1191 n_temp_slots_in_use = 0;
1193 /* Set up the table to map addresses to temp slots. */
1194 if (! temp_slot_address_table)
1195 temp_slot_address_table = htab_create_ggc (32,
1196 temp_slot_address_hash,
1197 temp_slot_address_eq,
1198 NULL);
1199 else
1200 htab_empty (temp_slot_address_table);
1203 /* Functions and data structures to keep track of the values hard regs
1204 had at the start of the function. */
1206 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1207 and has_hard_reg_initial_val.. */
1208 typedef struct GTY(()) initial_value_pair {
1209 rtx hard_reg;
1210 rtx pseudo;
1211 } initial_value_pair;
1212 /* ??? This could be a VEC but there is currently no way to define an
1213 opaque VEC type. This could be worked around by defining struct
1214 initial_value_pair in function.h. */
1215 typedef struct GTY(()) initial_value_struct {
1216 int num_entries;
1217 int max_entries;
1218 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1219 } initial_value_struct;
1221 /* If a pseudo represents an initial hard reg (or expression), return
1222 it, else return NULL_RTX. */
1225 get_hard_reg_initial_reg (rtx reg)
1227 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1228 int i;
1230 if (ivs == 0)
1231 return NULL_RTX;
1233 for (i = 0; i < ivs->num_entries; i++)
1234 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1235 return ivs->entries[i].hard_reg;
1237 return NULL_RTX;
1240 /* Make sure that there's a pseudo register of mode MODE that stores the
1241 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1244 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1246 struct initial_value_struct *ivs;
1247 rtx rv;
1249 rv = has_hard_reg_initial_val (mode, regno);
1250 if (rv)
1251 return rv;
1253 ivs = crtl->hard_reg_initial_vals;
1254 if (ivs == 0)
1256 ivs = ggc_alloc_initial_value_struct ();
1257 ivs->num_entries = 0;
1258 ivs->max_entries = 5;
1259 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1260 crtl->hard_reg_initial_vals = ivs;
1263 if (ivs->num_entries >= ivs->max_entries)
1265 ivs->max_entries += 5;
1266 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1267 ivs->max_entries);
1270 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1271 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1273 return ivs->entries[ivs->num_entries++].pseudo;
1276 /* See if get_hard_reg_initial_val has been used to create a pseudo
1277 for the initial value of hard register REGNO in mode MODE. Return
1278 the associated pseudo if so, otherwise return NULL. */
1281 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1283 struct initial_value_struct *ivs;
1284 int i;
1286 ivs = crtl->hard_reg_initial_vals;
1287 if (ivs != 0)
1288 for (i = 0; i < ivs->num_entries; i++)
1289 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1290 && REGNO (ivs->entries[i].hard_reg) == regno)
1291 return ivs->entries[i].pseudo;
1293 return NULL_RTX;
1296 unsigned int
1297 emit_initial_value_sets (void)
1299 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1300 int i;
1301 rtx seq;
1303 if (ivs == 0)
1304 return 0;
1306 start_sequence ();
1307 for (i = 0; i < ivs->num_entries; i++)
1308 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1309 seq = get_insns ();
1310 end_sequence ();
1312 emit_insn_at_entry (seq);
1313 return 0;
1316 /* Return the hardreg-pseudoreg initial values pair entry I and
1317 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1318 bool
1319 initial_value_entry (int i, rtx *hreg, rtx *preg)
1321 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1322 if (!ivs || i >= ivs->num_entries)
1323 return false;
1325 *hreg = ivs->entries[i].hard_reg;
1326 *preg = ivs->entries[i].pseudo;
1327 return true;
1330 /* These routines are responsible for converting virtual register references
1331 to the actual hard register references once RTL generation is complete.
1333 The following four variables are used for communication between the
1334 routines. They contain the offsets of the virtual registers from their
1335 respective hard registers. */
1337 static int in_arg_offset;
1338 static int var_offset;
1339 static int dynamic_offset;
1340 static int out_arg_offset;
1341 static int cfa_offset;
1343 /* In most machines, the stack pointer register is equivalent to the bottom
1344 of the stack. */
1346 #ifndef STACK_POINTER_OFFSET
1347 #define STACK_POINTER_OFFSET 0
1348 #endif
1350 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1351 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1352 #endif
1354 /* If not defined, pick an appropriate default for the offset of dynamically
1355 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1356 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1358 #ifndef STACK_DYNAMIC_OFFSET
1360 /* The bottom of the stack points to the actual arguments. If
1361 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1362 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1363 stack space for register parameters is not pushed by the caller, but
1364 rather part of the fixed stack areas and hence not included in
1365 `crtl->outgoing_args_size'. Nevertheless, we must allow
1366 for it when allocating stack dynamic objects. */
1368 #ifdef INCOMING_REG_PARM_STACK_SPACE
1369 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1370 ((ACCUMULATE_OUTGOING_ARGS \
1371 ? (crtl->outgoing_args_size \
1372 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1373 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1374 : 0) + (STACK_POINTER_OFFSET))
1375 #else
1376 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1377 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1378 + (STACK_POINTER_OFFSET))
1379 #endif
1380 #endif
1383 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1384 is a virtual register, return the equivalent hard register and set the
1385 offset indirectly through the pointer. Otherwise, return 0. */
1387 static rtx
1388 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1390 rtx new_rtx;
1391 HOST_WIDE_INT offset;
1393 if (x == virtual_incoming_args_rtx)
1395 if (stack_realign_drap)
1397 /* Replace virtual_incoming_args_rtx with internal arg
1398 pointer if DRAP is used to realign stack. */
1399 new_rtx = crtl->args.internal_arg_pointer;
1400 offset = 0;
1402 else
1403 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1405 else if (x == virtual_stack_vars_rtx)
1406 new_rtx = frame_pointer_rtx, offset = var_offset;
1407 else if (x == virtual_stack_dynamic_rtx)
1408 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1409 else if (x == virtual_outgoing_args_rtx)
1410 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1411 else if (x == virtual_cfa_rtx)
1413 #ifdef FRAME_POINTER_CFA_OFFSET
1414 new_rtx = frame_pointer_rtx;
1415 #else
1416 new_rtx = arg_pointer_rtx;
1417 #endif
1418 offset = cfa_offset;
1420 else if (x == virtual_preferred_stack_boundary_rtx)
1422 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1423 offset = 0;
1425 else
1426 return NULL_RTX;
1428 *poffset = offset;
1429 return new_rtx;
1432 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1433 Instantiate any virtual registers present inside of *LOC. The expression
1434 is simplified, as much as possible, but is not to be considered "valid"
1435 in any sense implied by the target. If any change is made, set CHANGED
1436 to true. */
1438 static int
1439 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1441 HOST_WIDE_INT offset;
1442 bool *changed = (bool *) data;
1443 rtx x, new_rtx;
1445 x = *loc;
1446 if (x == 0)
1447 return 0;
1449 switch (GET_CODE (x))
1451 case REG:
1452 new_rtx = instantiate_new_reg (x, &offset);
1453 if (new_rtx)
1455 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1456 if (changed)
1457 *changed = true;
1459 return -1;
1461 case PLUS:
1462 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1463 if (new_rtx)
1465 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1466 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1467 if (changed)
1468 *changed = true;
1469 return -1;
1472 /* FIXME -- from old code */
1473 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1474 we can commute the PLUS and SUBREG because pointers into the
1475 frame are well-behaved. */
1476 break;
1478 default:
1479 break;
1482 return 0;
1485 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1486 matches the predicate for insn CODE operand OPERAND. */
1488 static int
1489 safe_insn_predicate (int code, int operand, rtx x)
1491 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1494 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1495 registers present inside of insn. The result will be a valid insn. */
1497 static void
1498 instantiate_virtual_regs_in_insn (rtx insn)
1500 HOST_WIDE_INT offset;
1501 int insn_code, i;
1502 bool any_change = false;
1503 rtx set, new_rtx, x, seq;
1505 /* There are some special cases to be handled first. */
1506 set = single_set (insn);
1507 if (set)
1509 /* We're allowed to assign to a virtual register. This is interpreted
1510 to mean that the underlying register gets assigned the inverse
1511 transformation. This is used, for example, in the handling of
1512 non-local gotos. */
1513 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1514 if (new_rtx)
1516 start_sequence ();
1518 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1519 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1520 gen_int_mode (-offset, GET_MODE (new_rtx)));
1521 x = force_operand (x, new_rtx);
1522 if (x != new_rtx)
1523 emit_move_insn (new_rtx, x);
1525 seq = get_insns ();
1526 end_sequence ();
1528 emit_insn_before (seq, insn);
1529 delete_insn (insn);
1530 return;
1533 /* Handle a straight copy from a virtual register by generating a
1534 new add insn. The difference between this and falling through
1535 to the generic case is avoiding a new pseudo and eliminating a
1536 move insn in the initial rtl stream. */
1537 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1538 if (new_rtx && offset != 0
1539 && REG_P (SET_DEST (set))
1540 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1542 start_sequence ();
1544 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1545 gen_int_mode (offset,
1546 GET_MODE (SET_DEST (set))),
1547 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1548 if (x != SET_DEST (set))
1549 emit_move_insn (SET_DEST (set), x);
1551 seq = get_insns ();
1552 end_sequence ();
1554 emit_insn_before (seq, insn);
1555 delete_insn (insn);
1556 return;
1559 extract_insn (insn);
1560 insn_code = INSN_CODE (insn);
1562 /* Handle a plus involving a virtual register by determining if the
1563 operands remain valid if they're modified in place. */
1564 if (GET_CODE (SET_SRC (set)) == PLUS
1565 && recog_data.n_operands >= 3
1566 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1567 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1568 && CONST_INT_P (recog_data.operand[2])
1569 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1571 offset += INTVAL (recog_data.operand[2]);
1573 /* If the sum is zero, then replace with a plain move. */
1574 if (offset == 0
1575 && REG_P (SET_DEST (set))
1576 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1578 start_sequence ();
1579 emit_move_insn (SET_DEST (set), new_rtx);
1580 seq = get_insns ();
1581 end_sequence ();
1583 emit_insn_before (seq, insn);
1584 delete_insn (insn);
1585 return;
1588 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1590 /* Using validate_change and apply_change_group here leaves
1591 recog_data in an invalid state. Since we know exactly what
1592 we want to check, do those two by hand. */
1593 if (safe_insn_predicate (insn_code, 1, new_rtx)
1594 && safe_insn_predicate (insn_code, 2, x))
1596 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1597 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1598 any_change = true;
1600 /* Fall through into the regular operand fixup loop in
1601 order to take care of operands other than 1 and 2. */
1605 else
1607 extract_insn (insn);
1608 insn_code = INSN_CODE (insn);
1611 /* In the general case, we expect virtual registers to appear only in
1612 operands, and then only as either bare registers or inside memories. */
1613 for (i = 0; i < recog_data.n_operands; ++i)
1615 x = recog_data.operand[i];
1616 switch (GET_CODE (x))
1618 case MEM:
1620 rtx addr = XEXP (x, 0);
1621 bool changed = false;
1623 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1624 if (!changed)
1625 continue;
1627 start_sequence ();
1628 x = replace_equiv_address (x, addr);
1629 /* It may happen that the address with the virtual reg
1630 was valid (e.g. based on the virtual stack reg, which might
1631 be acceptable to the predicates with all offsets), whereas
1632 the address now isn't anymore, for instance when the address
1633 is still offsetted, but the base reg isn't virtual-stack-reg
1634 anymore. Below we would do a force_reg on the whole operand,
1635 but this insn might actually only accept memory. Hence,
1636 before doing that last resort, try to reload the address into
1637 a register, so this operand stays a MEM. */
1638 if (!safe_insn_predicate (insn_code, i, x))
1640 addr = force_reg (GET_MODE (addr), addr);
1641 x = replace_equiv_address (x, addr);
1643 seq = get_insns ();
1644 end_sequence ();
1645 if (seq)
1646 emit_insn_before (seq, insn);
1648 break;
1650 case REG:
1651 new_rtx = instantiate_new_reg (x, &offset);
1652 if (new_rtx == NULL)
1653 continue;
1654 if (offset == 0)
1655 x = new_rtx;
1656 else
1658 start_sequence ();
1660 /* Careful, special mode predicates may have stuff in
1661 insn_data[insn_code].operand[i].mode that isn't useful
1662 to us for computing a new value. */
1663 /* ??? Recognize address_operand and/or "p" constraints
1664 to see if (plus new offset) is a valid before we put
1665 this through expand_simple_binop. */
1666 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1667 gen_int_mode (offset, GET_MODE (x)),
1668 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1669 seq = get_insns ();
1670 end_sequence ();
1671 emit_insn_before (seq, insn);
1673 break;
1675 case SUBREG:
1676 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1677 if (new_rtx == NULL)
1678 continue;
1679 if (offset != 0)
1681 start_sequence ();
1682 new_rtx = expand_simple_binop
1683 (GET_MODE (new_rtx), PLUS, new_rtx,
1684 gen_int_mode (offset, GET_MODE (new_rtx)),
1685 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1686 seq = get_insns ();
1687 end_sequence ();
1688 emit_insn_before (seq, insn);
1690 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1691 GET_MODE (new_rtx), SUBREG_BYTE (x));
1692 gcc_assert (x);
1693 break;
1695 default:
1696 continue;
1699 /* At this point, X contains the new value for the operand.
1700 Validate the new value vs the insn predicate. Note that
1701 asm insns will have insn_code -1 here. */
1702 if (!safe_insn_predicate (insn_code, i, x))
1704 start_sequence ();
1705 if (REG_P (x))
1707 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1708 x = copy_to_reg (x);
1710 else
1711 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1712 seq = get_insns ();
1713 end_sequence ();
1714 if (seq)
1715 emit_insn_before (seq, insn);
1718 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1719 any_change = true;
1722 if (any_change)
1724 /* Propagate operand changes into the duplicates. */
1725 for (i = 0; i < recog_data.n_dups; ++i)
1726 *recog_data.dup_loc[i]
1727 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1729 /* Force re-recognition of the instruction for validation. */
1730 INSN_CODE (insn) = -1;
1733 if (asm_noperands (PATTERN (insn)) >= 0)
1735 if (!check_asm_operands (PATTERN (insn)))
1737 error_for_asm (insn, "impossible constraint in %<asm%>");
1738 /* For asm goto, instead of fixing up all the edges
1739 just clear the template and clear input operands
1740 (asm goto doesn't have any output operands). */
1741 if (JUMP_P (insn))
1743 rtx asm_op = extract_asm_operands (PATTERN (insn));
1744 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1745 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1746 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1748 else
1749 delete_insn (insn);
1752 else
1754 if (recog_memoized (insn) < 0)
1755 fatal_insn_not_found (insn);
1759 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1760 do any instantiation required. */
1762 void
1763 instantiate_decl_rtl (rtx x)
1765 rtx addr;
1767 if (x == 0)
1768 return;
1770 /* If this is a CONCAT, recurse for the pieces. */
1771 if (GET_CODE (x) == CONCAT)
1773 instantiate_decl_rtl (XEXP (x, 0));
1774 instantiate_decl_rtl (XEXP (x, 1));
1775 return;
1778 /* If this is not a MEM, no need to do anything. Similarly if the
1779 address is a constant or a register that is not a virtual register. */
1780 if (!MEM_P (x))
1781 return;
1783 addr = XEXP (x, 0);
1784 if (CONSTANT_P (addr)
1785 || (REG_P (addr)
1786 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1787 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1788 return;
1790 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1793 /* Helper for instantiate_decls called via walk_tree: Process all decls
1794 in the given DECL_VALUE_EXPR. */
1796 static tree
1797 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1799 tree t = *tp;
1800 if (! EXPR_P (t))
1802 *walk_subtrees = 0;
1803 if (DECL_P (t))
1805 if (DECL_RTL_SET_P (t))
1806 instantiate_decl_rtl (DECL_RTL (t));
1807 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1808 && DECL_INCOMING_RTL (t))
1809 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1810 if ((TREE_CODE (t) == VAR_DECL
1811 || TREE_CODE (t) == RESULT_DECL)
1812 && DECL_HAS_VALUE_EXPR_P (t))
1814 tree v = DECL_VALUE_EXPR (t);
1815 walk_tree (&v, instantiate_expr, NULL, NULL);
1819 return NULL;
1822 /* Subroutine of instantiate_decls: Process all decls in the given
1823 BLOCK node and all its subblocks. */
1825 static void
1826 instantiate_decls_1 (tree let)
1828 tree t;
1830 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1832 if (DECL_RTL_SET_P (t))
1833 instantiate_decl_rtl (DECL_RTL (t));
1834 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1836 tree v = DECL_VALUE_EXPR (t);
1837 walk_tree (&v, instantiate_expr, NULL, NULL);
1841 /* Process all subblocks. */
1842 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1843 instantiate_decls_1 (t);
1846 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1847 all virtual registers in their DECL_RTL's. */
1849 static void
1850 instantiate_decls (tree fndecl)
1852 tree decl;
1853 unsigned ix;
1855 /* Process all parameters of the function. */
1856 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1858 instantiate_decl_rtl (DECL_RTL (decl));
1859 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1860 if (DECL_HAS_VALUE_EXPR_P (decl))
1862 tree v = DECL_VALUE_EXPR (decl);
1863 walk_tree (&v, instantiate_expr, NULL, NULL);
1867 if ((decl = DECL_RESULT (fndecl))
1868 && TREE_CODE (decl) == RESULT_DECL)
1870 if (DECL_RTL_SET_P (decl))
1871 instantiate_decl_rtl (DECL_RTL (decl));
1872 if (DECL_HAS_VALUE_EXPR_P (decl))
1874 tree v = DECL_VALUE_EXPR (decl);
1875 walk_tree (&v, instantiate_expr, NULL, NULL);
1879 /* Now process all variables defined in the function or its subblocks. */
1880 instantiate_decls_1 (DECL_INITIAL (fndecl));
1882 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1883 if (DECL_RTL_SET_P (decl))
1884 instantiate_decl_rtl (DECL_RTL (decl));
1885 vec_free (cfun->local_decls);
1888 /* Pass through the INSNS of function FNDECL and convert virtual register
1889 references to hard register references. */
1891 static unsigned int
1892 instantiate_virtual_regs (void)
1894 rtx insn;
1896 /* Compute the offsets to use for this function. */
1897 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1898 var_offset = STARTING_FRAME_OFFSET;
1899 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1900 out_arg_offset = STACK_POINTER_OFFSET;
1901 #ifdef FRAME_POINTER_CFA_OFFSET
1902 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1903 #else
1904 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1905 #endif
1907 /* Initialize recognition, indicating that volatile is OK. */
1908 init_recog ();
1910 /* Scan through all the insns, instantiating every virtual register still
1911 present. */
1912 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1913 if (INSN_P (insn))
1915 /* These patterns in the instruction stream can never be recognized.
1916 Fortunately, they shouldn't contain virtual registers either. */
1917 if (GET_CODE (PATTERN (insn)) == USE
1918 || GET_CODE (PATTERN (insn)) == CLOBBER
1919 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1920 continue;
1921 else if (DEBUG_INSN_P (insn))
1922 for_each_rtx (&INSN_VAR_LOCATION (insn),
1923 instantiate_virtual_regs_in_rtx, NULL);
1924 else
1925 instantiate_virtual_regs_in_insn (insn);
1927 if (INSN_DELETED_P (insn))
1928 continue;
1930 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1932 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1933 if (CALL_P (insn))
1934 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1935 instantiate_virtual_regs_in_rtx, NULL);
1938 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1939 instantiate_decls (current_function_decl);
1941 targetm.instantiate_decls ();
1943 /* Indicate that, from now on, assign_stack_local should use
1944 frame_pointer_rtx. */
1945 virtuals_instantiated = 1;
1947 return 0;
1950 namespace {
1952 const pass_data pass_data_instantiate_virtual_regs =
1954 RTL_PASS, /* type */
1955 "vregs", /* name */
1956 OPTGROUP_NONE, /* optinfo_flags */
1957 false, /* has_gate */
1958 true, /* has_execute */
1959 TV_NONE, /* tv_id */
1960 0, /* properties_required */
1961 0, /* properties_provided */
1962 0, /* properties_destroyed */
1963 0, /* todo_flags_start */
1964 0, /* todo_flags_finish */
1967 class pass_instantiate_virtual_regs : public rtl_opt_pass
1969 public:
1970 pass_instantiate_virtual_regs (gcc::context *ctxt)
1971 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1974 /* opt_pass methods: */
1975 unsigned int execute () { return instantiate_virtual_regs (); }
1977 }; // class pass_instantiate_virtual_regs
1979 } // anon namespace
1981 rtl_opt_pass *
1982 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1984 return new pass_instantiate_virtual_regs (ctxt);
1988 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1989 This means a type for which function calls must pass an address to the
1990 function or get an address back from the function.
1991 EXP may be a type node or an expression (whose type is tested). */
1994 aggregate_value_p (const_tree exp, const_tree fntype)
1996 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1997 int i, regno, nregs;
1998 rtx reg;
2000 if (fntype)
2001 switch (TREE_CODE (fntype))
2003 case CALL_EXPR:
2005 tree fndecl = get_callee_fndecl (fntype);
2006 fntype = (fndecl
2007 ? TREE_TYPE (fndecl)
2008 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2010 break;
2011 case FUNCTION_DECL:
2012 fntype = TREE_TYPE (fntype);
2013 break;
2014 case FUNCTION_TYPE:
2015 case METHOD_TYPE:
2016 break;
2017 case IDENTIFIER_NODE:
2018 fntype = NULL_TREE;
2019 break;
2020 default:
2021 /* We don't expect other tree types here. */
2022 gcc_unreachable ();
2025 if (VOID_TYPE_P (type))
2026 return 0;
2028 /* If a record should be passed the same as its first (and only) member
2029 don't pass it as an aggregate. */
2030 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2031 return aggregate_value_p (first_field (type), fntype);
2033 /* If the front end has decided that this needs to be passed by
2034 reference, do so. */
2035 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2036 && DECL_BY_REFERENCE (exp))
2037 return 1;
2039 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2040 if (fntype && TREE_ADDRESSABLE (fntype))
2041 return 1;
2043 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2044 and thus can't be returned in registers. */
2045 if (TREE_ADDRESSABLE (type))
2046 return 1;
2048 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2049 return 1;
2051 if (targetm.calls.return_in_memory (type, fntype))
2052 return 1;
2054 /* Make sure we have suitable call-clobbered regs to return
2055 the value in; if not, we must return it in memory. */
2056 reg = hard_function_value (type, 0, fntype, 0);
2058 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2059 it is OK. */
2060 if (!REG_P (reg))
2061 return 0;
2063 regno = REGNO (reg);
2064 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2065 for (i = 0; i < nregs; i++)
2066 if (! call_used_regs[regno + i])
2067 return 1;
2069 return 0;
2072 /* Return true if we should assign DECL a pseudo register; false if it
2073 should live on the local stack. */
2075 bool
2076 use_register_for_decl (const_tree decl)
2078 if (!targetm.calls.allocate_stack_slots_for_args ())
2079 return true;
2081 /* Honor volatile. */
2082 if (TREE_SIDE_EFFECTS (decl))
2083 return false;
2085 /* Honor addressability. */
2086 if (TREE_ADDRESSABLE (decl))
2087 return false;
2089 /* Only register-like things go in registers. */
2090 if (DECL_MODE (decl) == BLKmode)
2091 return false;
2093 /* If -ffloat-store specified, don't put explicit float variables
2094 into registers. */
2095 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2096 propagates values across these stores, and it probably shouldn't. */
2097 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2098 return false;
2100 /* If we're not interested in tracking debugging information for
2101 this decl, then we can certainly put it in a register. */
2102 if (DECL_IGNORED_P (decl))
2103 return true;
2105 if (optimize)
2106 return true;
2108 if (!DECL_REGISTER (decl))
2109 return false;
2111 switch (TREE_CODE (TREE_TYPE (decl)))
2113 case RECORD_TYPE:
2114 case UNION_TYPE:
2115 case QUAL_UNION_TYPE:
2116 /* When not optimizing, disregard register keyword for variables with
2117 types containing methods, otherwise the methods won't be callable
2118 from the debugger. */
2119 if (TYPE_METHODS (TREE_TYPE (decl)))
2120 return false;
2121 break;
2122 default:
2123 break;
2126 return true;
2129 /* Return true if TYPE should be passed by invisible reference. */
2131 bool
2132 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2133 tree type, bool named_arg)
2135 if (type)
2137 /* If this type contains non-trivial constructors, then it is
2138 forbidden for the middle-end to create any new copies. */
2139 if (TREE_ADDRESSABLE (type))
2140 return true;
2142 /* GCC post 3.4 passes *all* variable sized types by reference. */
2143 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2144 return true;
2146 /* If a record type should be passed the same as its first (and only)
2147 member, use the type and mode of that member. */
2148 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2150 type = TREE_TYPE (first_field (type));
2151 mode = TYPE_MODE (type);
2155 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2156 type, named_arg);
2159 /* Return true if TYPE, which is passed by reference, should be callee
2160 copied instead of caller copied. */
2162 bool
2163 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2164 tree type, bool named_arg)
2166 if (type && TREE_ADDRESSABLE (type))
2167 return false;
2168 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2169 named_arg);
2172 /* Structures to communicate between the subroutines of assign_parms.
2173 The first holds data persistent across all parameters, the second
2174 is cleared out for each parameter. */
2176 struct assign_parm_data_all
2178 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2179 should become a job of the target or otherwise encapsulated. */
2180 CUMULATIVE_ARGS args_so_far_v;
2181 cumulative_args_t args_so_far;
2182 struct args_size stack_args_size;
2183 tree function_result_decl;
2184 tree orig_fnargs;
2185 rtx first_conversion_insn;
2186 rtx last_conversion_insn;
2187 HOST_WIDE_INT pretend_args_size;
2188 HOST_WIDE_INT extra_pretend_bytes;
2189 int reg_parm_stack_space;
2192 struct assign_parm_data_one
2194 tree nominal_type;
2195 tree passed_type;
2196 rtx entry_parm;
2197 rtx stack_parm;
2198 enum machine_mode nominal_mode;
2199 enum machine_mode passed_mode;
2200 enum machine_mode promoted_mode;
2201 struct locate_and_pad_arg_data locate;
2202 int partial;
2203 BOOL_BITFIELD named_arg : 1;
2204 BOOL_BITFIELD passed_pointer : 1;
2205 BOOL_BITFIELD on_stack : 1;
2206 BOOL_BITFIELD loaded_in_reg : 1;
2209 /* A subroutine of assign_parms. Initialize ALL. */
2211 static void
2212 assign_parms_initialize_all (struct assign_parm_data_all *all)
2214 tree fntype ATTRIBUTE_UNUSED;
2216 memset (all, 0, sizeof (*all));
2218 fntype = TREE_TYPE (current_function_decl);
2220 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2221 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2222 #else
2223 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2224 current_function_decl, -1);
2225 #endif
2226 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2228 #ifdef INCOMING_REG_PARM_STACK_SPACE
2229 all->reg_parm_stack_space
2230 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2231 #endif
2234 /* If ARGS contains entries with complex types, split the entry into two
2235 entries of the component type. Return a new list of substitutions are
2236 needed, else the old list. */
2238 static void
2239 split_complex_args (vec<tree> *args)
2241 unsigned i;
2242 tree p;
2244 FOR_EACH_VEC_ELT (*args, i, p)
2246 tree type = TREE_TYPE (p);
2247 if (TREE_CODE (type) == COMPLEX_TYPE
2248 && targetm.calls.split_complex_arg (type))
2250 tree decl;
2251 tree subtype = TREE_TYPE (type);
2252 bool addressable = TREE_ADDRESSABLE (p);
2254 /* Rewrite the PARM_DECL's type with its component. */
2255 p = copy_node (p);
2256 TREE_TYPE (p) = subtype;
2257 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2258 DECL_MODE (p) = VOIDmode;
2259 DECL_SIZE (p) = NULL;
2260 DECL_SIZE_UNIT (p) = NULL;
2261 /* If this arg must go in memory, put it in a pseudo here.
2262 We can't allow it to go in memory as per normal parms,
2263 because the usual place might not have the imag part
2264 adjacent to the real part. */
2265 DECL_ARTIFICIAL (p) = addressable;
2266 DECL_IGNORED_P (p) = addressable;
2267 TREE_ADDRESSABLE (p) = 0;
2268 layout_decl (p, 0);
2269 (*args)[i] = p;
2271 /* Build a second synthetic decl. */
2272 decl = build_decl (EXPR_LOCATION (p),
2273 PARM_DECL, NULL_TREE, subtype);
2274 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2275 DECL_ARTIFICIAL (decl) = addressable;
2276 DECL_IGNORED_P (decl) = addressable;
2277 layout_decl (decl, 0);
2278 args->safe_insert (++i, decl);
2283 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2284 the hidden struct return argument, and (abi willing) complex args.
2285 Return the new parameter list. */
2287 static vec<tree>
2288 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2290 tree fndecl = current_function_decl;
2291 tree fntype = TREE_TYPE (fndecl);
2292 vec<tree> fnargs = vNULL;
2293 tree arg;
2295 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2296 fnargs.safe_push (arg);
2298 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2300 /* If struct value address is treated as the first argument, make it so. */
2301 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2302 && ! cfun->returns_pcc_struct
2303 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2305 tree type = build_pointer_type (TREE_TYPE (fntype));
2306 tree decl;
2308 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2309 PARM_DECL, get_identifier (".result_ptr"), type);
2310 DECL_ARG_TYPE (decl) = type;
2311 DECL_ARTIFICIAL (decl) = 1;
2312 DECL_NAMELESS (decl) = 1;
2313 TREE_CONSTANT (decl) = 1;
2315 DECL_CHAIN (decl) = all->orig_fnargs;
2316 all->orig_fnargs = decl;
2317 fnargs.safe_insert (0, decl);
2319 all->function_result_decl = decl;
2322 /* If the target wants to split complex arguments into scalars, do so. */
2323 if (targetm.calls.split_complex_arg)
2324 split_complex_args (&fnargs);
2326 return fnargs;
2329 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2330 data for the parameter. Incorporate ABI specifics such as pass-by-
2331 reference and type promotion. */
2333 static void
2334 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2335 struct assign_parm_data_one *data)
2337 tree nominal_type, passed_type;
2338 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2339 int unsignedp;
2341 memset (data, 0, sizeof (*data));
2343 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2344 if (!cfun->stdarg)
2345 data->named_arg = 1; /* No variadic parms. */
2346 else if (DECL_CHAIN (parm))
2347 data->named_arg = 1; /* Not the last non-variadic parm. */
2348 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2349 data->named_arg = 1; /* Only variadic ones are unnamed. */
2350 else
2351 data->named_arg = 0; /* Treat as variadic. */
2353 nominal_type = TREE_TYPE (parm);
2354 passed_type = DECL_ARG_TYPE (parm);
2356 /* Look out for errors propagating this far. Also, if the parameter's
2357 type is void then its value doesn't matter. */
2358 if (TREE_TYPE (parm) == error_mark_node
2359 /* This can happen after weird syntax errors
2360 or if an enum type is defined among the parms. */
2361 || TREE_CODE (parm) != PARM_DECL
2362 || passed_type == NULL
2363 || VOID_TYPE_P (nominal_type))
2365 nominal_type = passed_type = void_type_node;
2366 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2367 goto egress;
2370 /* Find mode of arg as it is passed, and mode of arg as it should be
2371 during execution of this function. */
2372 passed_mode = TYPE_MODE (passed_type);
2373 nominal_mode = TYPE_MODE (nominal_type);
2375 /* If the parm is to be passed as a transparent union or record, use the
2376 type of the first field for the tests below. We have already verified
2377 that the modes are the same. */
2378 if ((TREE_CODE (passed_type) == UNION_TYPE
2379 || TREE_CODE (passed_type) == RECORD_TYPE)
2380 && TYPE_TRANSPARENT_AGGR (passed_type))
2381 passed_type = TREE_TYPE (first_field (passed_type));
2383 /* See if this arg was passed by invisible reference. */
2384 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2385 passed_type, data->named_arg))
2387 passed_type = nominal_type = build_pointer_type (passed_type);
2388 data->passed_pointer = true;
2389 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2392 /* Find mode as it is passed by the ABI. */
2393 unsignedp = TYPE_UNSIGNED (passed_type);
2394 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2395 TREE_TYPE (current_function_decl), 0);
2397 egress:
2398 data->nominal_type = nominal_type;
2399 data->passed_type = passed_type;
2400 data->nominal_mode = nominal_mode;
2401 data->passed_mode = passed_mode;
2402 data->promoted_mode = promoted_mode;
2405 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2407 static void
2408 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2409 struct assign_parm_data_one *data, bool no_rtl)
2411 int varargs_pretend_bytes = 0;
2413 targetm.calls.setup_incoming_varargs (all->args_so_far,
2414 data->promoted_mode,
2415 data->passed_type,
2416 &varargs_pretend_bytes, no_rtl);
2418 /* If the back-end has requested extra stack space, record how much is
2419 needed. Do not change pretend_args_size otherwise since it may be
2420 nonzero from an earlier partial argument. */
2421 if (varargs_pretend_bytes > 0)
2422 all->pretend_args_size = varargs_pretend_bytes;
2425 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2426 the incoming location of the current parameter. */
2428 static void
2429 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2430 struct assign_parm_data_one *data)
2432 HOST_WIDE_INT pretend_bytes = 0;
2433 rtx entry_parm;
2434 bool in_regs;
2436 if (data->promoted_mode == VOIDmode)
2438 data->entry_parm = data->stack_parm = const0_rtx;
2439 return;
2442 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2443 data->promoted_mode,
2444 data->passed_type,
2445 data->named_arg);
2447 if (entry_parm == 0)
2448 data->promoted_mode = data->passed_mode;
2450 /* Determine parm's home in the stack, in case it arrives in the stack
2451 or we should pretend it did. Compute the stack position and rtx where
2452 the argument arrives and its size.
2454 There is one complexity here: If this was a parameter that would
2455 have been passed in registers, but wasn't only because it is
2456 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2457 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2458 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2459 as it was the previous time. */
2460 in_regs = entry_parm != 0;
2461 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2462 in_regs = true;
2463 #endif
2464 if (!in_regs && !data->named_arg)
2466 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2468 rtx tem;
2469 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2470 data->promoted_mode,
2471 data->passed_type, true);
2472 in_regs = tem != NULL;
2476 /* If this parameter was passed both in registers and in the stack, use
2477 the copy on the stack. */
2478 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2479 data->passed_type))
2480 entry_parm = 0;
2482 if (entry_parm)
2484 int partial;
2486 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2487 data->promoted_mode,
2488 data->passed_type,
2489 data->named_arg);
2490 data->partial = partial;
2492 /* The caller might already have allocated stack space for the
2493 register parameters. */
2494 if (partial != 0 && all->reg_parm_stack_space == 0)
2496 /* Part of this argument is passed in registers and part
2497 is passed on the stack. Ask the prologue code to extend
2498 the stack part so that we can recreate the full value.
2500 PRETEND_BYTES is the size of the registers we need to store.
2501 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2502 stack space that the prologue should allocate.
2504 Internally, gcc assumes that the argument pointer is aligned
2505 to STACK_BOUNDARY bits. This is used both for alignment
2506 optimizations (see init_emit) and to locate arguments that are
2507 aligned to more than PARM_BOUNDARY bits. We must preserve this
2508 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2509 a stack boundary. */
2511 /* We assume at most one partial arg, and it must be the first
2512 argument on the stack. */
2513 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2515 pretend_bytes = partial;
2516 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2518 /* We want to align relative to the actual stack pointer, so
2519 don't include this in the stack size until later. */
2520 all->extra_pretend_bytes = all->pretend_args_size;
2524 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2525 all->reg_parm_stack_space,
2526 entry_parm ? data->partial : 0, current_function_decl,
2527 &all->stack_args_size, &data->locate);
2529 /* Update parm_stack_boundary if this parameter is passed in the
2530 stack. */
2531 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2532 crtl->parm_stack_boundary = data->locate.boundary;
2534 /* Adjust offsets to include the pretend args. */
2535 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2536 data->locate.slot_offset.constant += pretend_bytes;
2537 data->locate.offset.constant += pretend_bytes;
2539 data->entry_parm = entry_parm;
2542 /* A subroutine of assign_parms. If there is actually space on the stack
2543 for this parm, count it in stack_args_size and return true. */
2545 static bool
2546 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2547 struct assign_parm_data_one *data)
2549 /* Trivially true if we've no incoming register. */
2550 if (data->entry_parm == NULL)
2552 /* Also true if we're partially in registers and partially not,
2553 since we've arranged to drop the entire argument on the stack. */
2554 else if (data->partial != 0)
2556 /* Also true if the target says that it's passed in both registers
2557 and on the stack. */
2558 else if (GET_CODE (data->entry_parm) == PARALLEL
2559 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2561 /* Also true if the target says that there's stack allocated for
2562 all register parameters. */
2563 else if (all->reg_parm_stack_space > 0)
2565 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2566 else
2567 return false;
2569 all->stack_args_size.constant += data->locate.size.constant;
2570 if (data->locate.size.var)
2571 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2573 return true;
2576 /* A subroutine of assign_parms. Given that this parameter is allocated
2577 stack space by the ABI, find it. */
2579 static void
2580 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2582 rtx offset_rtx, stack_parm;
2583 unsigned int align, boundary;
2585 /* If we're passing this arg using a reg, make its stack home the
2586 aligned stack slot. */
2587 if (data->entry_parm)
2588 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2589 else
2590 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2592 stack_parm = crtl->args.internal_arg_pointer;
2593 if (offset_rtx != const0_rtx)
2594 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2595 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2597 if (!data->passed_pointer)
2599 set_mem_attributes (stack_parm, parm, 1);
2600 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2601 while promoted mode's size is needed. */
2602 if (data->promoted_mode != BLKmode
2603 && data->promoted_mode != DECL_MODE (parm))
2605 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2606 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2608 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2609 data->promoted_mode);
2610 if (offset)
2611 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2616 boundary = data->locate.boundary;
2617 align = BITS_PER_UNIT;
2619 /* If we're padding upward, we know that the alignment of the slot
2620 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2621 intentionally forcing upward padding. Otherwise we have to come
2622 up with a guess at the alignment based on OFFSET_RTX. */
2623 if (data->locate.where_pad != downward || data->entry_parm)
2624 align = boundary;
2625 else if (CONST_INT_P (offset_rtx))
2627 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2628 align = align & -align;
2630 set_mem_align (stack_parm, align);
2632 if (data->entry_parm)
2633 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2635 data->stack_parm = stack_parm;
2638 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2639 always valid and contiguous. */
2641 static void
2642 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2644 rtx entry_parm = data->entry_parm;
2645 rtx stack_parm = data->stack_parm;
2647 /* If this parm was passed part in regs and part in memory, pretend it
2648 arrived entirely in memory by pushing the register-part onto the stack.
2649 In the special case of a DImode or DFmode that is split, we could put
2650 it together in a pseudoreg directly, but for now that's not worth
2651 bothering with. */
2652 if (data->partial != 0)
2654 /* Handle calls that pass values in multiple non-contiguous
2655 locations. The Irix 6 ABI has examples of this. */
2656 if (GET_CODE (entry_parm) == PARALLEL)
2657 emit_group_store (validize_mem (stack_parm), entry_parm,
2658 data->passed_type,
2659 int_size_in_bytes (data->passed_type));
2660 else
2662 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2663 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2664 data->partial / UNITS_PER_WORD);
2667 entry_parm = stack_parm;
2670 /* If we didn't decide this parm came in a register, by default it came
2671 on the stack. */
2672 else if (entry_parm == NULL)
2673 entry_parm = stack_parm;
2675 /* When an argument is passed in multiple locations, we can't make use
2676 of this information, but we can save some copying if the whole argument
2677 is passed in a single register. */
2678 else if (GET_CODE (entry_parm) == PARALLEL
2679 && data->nominal_mode != BLKmode
2680 && data->passed_mode != BLKmode)
2682 size_t i, len = XVECLEN (entry_parm, 0);
2684 for (i = 0; i < len; i++)
2685 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2686 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2687 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2688 == data->passed_mode)
2689 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2691 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2692 break;
2696 data->entry_parm = entry_parm;
2699 /* A subroutine of assign_parms. Reconstitute any values which were
2700 passed in multiple registers and would fit in a single register. */
2702 static void
2703 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2705 rtx entry_parm = data->entry_parm;
2707 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2708 This can be done with register operations rather than on the
2709 stack, even if we will store the reconstituted parameter on the
2710 stack later. */
2711 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2713 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2714 emit_group_store (parmreg, entry_parm, data->passed_type,
2715 GET_MODE_SIZE (GET_MODE (entry_parm)));
2716 entry_parm = parmreg;
2719 data->entry_parm = entry_parm;
2722 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2723 always valid and properly aligned. */
2725 static void
2726 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2728 rtx stack_parm = data->stack_parm;
2730 /* If we can't trust the parm stack slot to be aligned enough for its
2731 ultimate type, don't use that slot after entry. We'll make another
2732 stack slot, if we need one. */
2733 if (stack_parm
2734 && ((STRICT_ALIGNMENT
2735 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2736 || (data->nominal_type
2737 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2738 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2739 stack_parm = NULL;
2741 /* If parm was passed in memory, and we need to convert it on entry,
2742 don't store it back in that same slot. */
2743 else if (data->entry_parm == stack_parm
2744 && data->nominal_mode != BLKmode
2745 && data->nominal_mode != data->passed_mode)
2746 stack_parm = NULL;
2748 /* If stack protection is in effect for this function, don't leave any
2749 pointers in their passed stack slots. */
2750 else if (crtl->stack_protect_guard
2751 && (flag_stack_protect == 2
2752 || data->passed_pointer
2753 || POINTER_TYPE_P (data->nominal_type)))
2754 stack_parm = NULL;
2756 data->stack_parm = stack_parm;
2759 /* A subroutine of assign_parms. Return true if the current parameter
2760 should be stored as a BLKmode in the current frame. */
2762 static bool
2763 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2765 if (data->nominal_mode == BLKmode)
2766 return true;
2767 if (GET_MODE (data->entry_parm) == BLKmode)
2768 return true;
2770 #ifdef BLOCK_REG_PADDING
2771 /* Only assign_parm_setup_block knows how to deal with register arguments
2772 that are padded at the least significant end. */
2773 if (REG_P (data->entry_parm)
2774 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2775 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2776 == (BYTES_BIG_ENDIAN ? upward : downward)))
2777 return true;
2778 #endif
2780 return false;
2783 /* A subroutine of assign_parms. Arrange for the parameter to be
2784 present and valid in DATA->STACK_RTL. */
2786 static void
2787 assign_parm_setup_block (struct assign_parm_data_all *all,
2788 tree parm, struct assign_parm_data_one *data)
2790 rtx entry_parm = data->entry_parm;
2791 rtx stack_parm = data->stack_parm;
2792 HOST_WIDE_INT size;
2793 HOST_WIDE_INT size_stored;
2795 if (GET_CODE (entry_parm) == PARALLEL)
2796 entry_parm = emit_group_move_into_temps (entry_parm);
2798 size = int_size_in_bytes (data->passed_type);
2799 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2800 if (stack_parm == 0)
2802 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2803 stack_parm = assign_stack_local (BLKmode, size_stored,
2804 DECL_ALIGN (parm));
2805 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2806 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2807 set_mem_attributes (stack_parm, parm, 1);
2810 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2811 calls that pass values in multiple non-contiguous locations. */
2812 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2814 rtx mem;
2816 /* Note that we will be storing an integral number of words.
2817 So we have to be careful to ensure that we allocate an
2818 integral number of words. We do this above when we call
2819 assign_stack_local if space was not allocated in the argument
2820 list. If it was, this will not work if PARM_BOUNDARY is not
2821 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2822 if it becomes a problem. Exception is when BLKmode arrives
2823 with arguments not conforming to word_mode. */
2825 if (data->stack_parm == 0)
2827 else if (GET_CODE (entry_parm) == PARALLEL)
2829 else
2830 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2832 mem = validize_mem (stack_parm);
2834 /* Handle values in multiple non-contiguous locations. */
2835 if (GET_CODE (entry_parm) == PARALLEL)
2837 push_to_sequence2 (all->first_conversion_insn,
2838 all->last_conversion_insn);
2839 emit_group_store (mem, entry_parm, data->passed_type, size);
2840 all->first_conversion_insn = get_insns ();
2841 all->last_conversion_insn = get_last_insn ();
2842 end_sequence ();
2845 else if (size == 0)
2848 /* If SIZE is that of a mode no bigger than a word, just use
2849 that mode's store operation. */
2850 else if (size <= UNITS_PER_WORD)
2852 enum machine_mode mode
2853 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2855 if (mode != BLKmode
2856 #ifdef BLOCK_REG_PADDING
2857 && (size == UNITS_PER_WORD
2858 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2859 != (BYTES_BIG_ENDIAN ? upward : downward)))
2860 #endif
2863 rtx reg;
2865 /* We are really truncating a word_mode value containing
2866 SIZE bytes into a value of mode MODE. If such an
2867 operation requires no actual instructions, we can refer
2868 to the value directly in mode MODE, otherwise we must
2869 start with the register in word_mode and explicitly
2870 convert it. */
2871 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2872 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2873 else
2875 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2876 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2878 emit_move_insn (change_address (mem, mode, 0), reg);
2881 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2882 machine must be aligned to the left before storing
2883 to memory. Note that the previous test doesn't
2884 handle all cases (e.g. SIZE == 3). */
2885 else if (size != UNITS_PER_WORD
2886 #ifdef BLOCK_REG_PADDING
2887 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2888 == downward)
2889 #else
2890 && BYTES_BIG_ENDIAN
2891 #endif
2894 rtx tem, x;
2895 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2896 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2898 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2899 tem = change_address (mem, word_mode, 0);
2900 emit_move_insn (tem, x);
2902 else
2903 move_block_from_reg (REGNO (entry_parm), mem,
2904 size_stored / UNITS_PER_WORD);
2906 else
2907 move_block_from_reg (REGNO (entry_parm), mem,
2908 size_stored / UNITS_PER_WORD);
2910 else if (data->stack_parm == 0)
2912 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2913 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2914 BLOCK_OP_NORMAL);
2915 all->first_conversion_insn = get_insns ();
2916 all->last_conversion_insn = get_last_insn ();
2917 end_sequence ();
2920 data->stack_parm = stack_parm;
2921 SET_DECL_RTL (parm, stack_parm);
2924 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2925 parameter. Get it there. Perform all ABI specified conversions. */
2927 static void
2928 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2929 struct assign_parm_data_one *data)
2931 rtx parmreg, validated_mem;
2932 rtx equiv_stack_parm;
2933 enum machine_mode promoted_nominal_mode;
2934 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2935 bool did_conversion = false;
2936 bool need_conversion, moved;
2938 /* Store the parm in a pseudoregister during the function, but we may
2939 need to do it in a wider mode. Using 2 here makes the result
2940 consistent with promote_decl_mode and thus expand_expr_real_1. */
2941 promoted_nominal_mode
2942 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2943 TREE_TYPE (current_function_decl), 2);
2945 parmreg = gen_reg_rtx (promoted_nominal_mode);
2947 if (!DECL_ARTIFICIAL (parm))
2948 mark_user_reg (parmreg);
2950 /* If this was an item that we received a pointer to,
2951 set DECL_RTL appropriately. */
2952 if (data->passed_pointer)
2954 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2955 set_mem_attributes (x, parm, 1);
2956 SET_DECL_RTL (parm, x);
2958 else
2959 SET_DECL_RTL (parm, parmreg);
2961 assign_parm_remove_parallels (data);
2963 /* Copy the value into the register, thus bridging between
2964 assign_parm_find_data_types and expand_expr_real_1. */
2966 equiv_stack_parm = data->stack_parm;
2967 validated_mem = validize_mem (data->entry_parm);
2969 need_conversion = (data->nominal_mode != data->passed_mode
2970 || promoted_nominal_mode != data->promoted_mode);
2971 moved = false;
2973 if (need_conversion
2974 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2975 && data->nominal_mode == data->passed_mode
2976 && data->nominal_mode == GET_MODE (data->entry_parm))
2978 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2979 mode, by the caller. We now have to convert it to
2980 NOMINAL_MODE, if different. However, PARMREG may be in
2981 a different mode than NOMINAL_MODE if it is being stored
2982 promoted.
2984 If ENTRY_PARM is a hard register, it might be in a register
2985 not valid for operating in its mode (e.g., an odd-numbered
2986 register for a DFmode). In that case, moves are the only
2987 thing valid, so we can't do a convert from there. This
2988 occurs when the calling sequence allow such misaligned
2989 usages.
2991 In addition, the conversion may involve a call, which could
2992 clobber parameters which haven't been copied to pseudo
2993 registers yet.
2995 First, we try to emit an insn which performs the necessary
2996 conversion. We verify that this insn does not clobber any
2997 hard registers. */
2999 enum insn_code icode;
3000 rtx op0, op1;
3002 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3003 unsignedp);
3005 op0 = parmreg;
3006 op1 = validated_mem;
3007 if (icode != CODE_FOR_nothing
3008 && insn_operand_matches (icode, 0, op0)
3009 && insn_operand_matches (icode, 1, op1))
3011 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3012 rtx insn, insns, t = op1;
3013 HARD_REG_SET hardregs;
3015 start_sequence ();
3016 /* If op1 is a hard register that is likely spilled, first
3017 force it into a pseudo, otherwise combiner might extend
3018 its lifetime too much. */
3019 if (GET_CODE (t) == SUBREG)
3020 t = SUBREG_REG (t);
3021 if (REG_P (t)
3022 && HARD_REGISTER_P (t)
3023 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3024 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3026 t = gen_reg_rtx (GET_MODE (op1));
3027 emit_move_insn (t, op1);
3029 else
3030 t = op1;
3031 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3032 data->passed_mode, unsignedp);
3033 emit_insn (insn);
3034 insns = get_insns ();
3036 moved = true;
3037 CLEAR_HARD_REG_SET (hardregs);
3038 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3040 if (INSN_P (insn))
3041 note_stores (PATTERN (insn), record_hard_reg_sets,
3042 &hardregs);
3043 if (!hard_reg_set_empty_p (hardregs))
3044 moved = false;
3047 end_sequence ();
3049 if (moved)
3051 emit_insn (insns);
3052 if (equiv_stack_parm != NULL_RTX)
3053 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3054 equiv_stack_parm);
3059 if (moved)
3060 /* Nothing to do. */
3062 else if (need_conversion)
3064 /* We did not have an insn to convert directly, or the sequence
3065 generated appeared unsafe. We must first copy the parm to a
3066 pseudo reg, and save the conversion until after all
3067 parameters have been moved. */
3069 int save_tree_used;
3070 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3072 emit_move_insn (tempreg, validated_mem);
3074 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3075 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3077 if (GET_CODE (tempreg) == SUBREG
3078 && GET_MODE (tempreg) == data->nominal_mode
3079 && REG_P (SUBREG_REG (tempreg))
3080 && data->nominal_mode == data->passed_mode
3081 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3082 && GET_MODE_SIZE (GET_MODE (tempreg))
3083 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3085 /* The argument is already sign/zero extended, so note it
3086 into the subreg. */
3087 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3088 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3091 /* TREE_USED gets set erroneously during expand_assignment. */
3092 save_tree_used = TREE_USED (parm);
3093 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3094 TREE_USED (parm) = save_tree_used;
3095 all->first_conversion_insn = get_insns ();
3096 all->last_conversion_insn = get_last_insn ();
3097 end_sequence ();
3099 did_conversion = true;
3101 else
3102 emit_move_insn (parmreg, validated_mem);
3104 /* If we were passed a pointer but the actual value can safely live
3105 in a register, retrieve it and use it directly. */
3106 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3108 /* We can't use nominal_mode, because it will have been set to
3109 Pmode above. We must use the actual mode of the parm. */
3110 if (use_register_for_decl (parm))
3112 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3113 mark_user_reg (parmreg);
3115 else
3117 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3118 TYPE_MODE (TREE_TYPE (parm)),
3119 TYPE_ALIGN (TREE_TYPE (parm)));
3120 parmreg
3121 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3122 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3123 align);
3124 set_mem_attributes (parmreg, parm, 1);
3127 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3129 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3130 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3132 push_to_sequence2 (all->first_conversion_insn,
3133 all->last_conversion_insn);
3134 emit_move_insn (tempreg, DECL_RTL (parm));
3135 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3136 emit_move_insn (parmreg, tempreg);
3137 all->first_conversion_insn = get_insns ();
3138 all->last_conversion_insn = get_last_insn ();
3139 end_sequence ();
3141 did_conversion = true;
3143 else
3144 emit_move_insn (parmreg, DECL_RTL (parm));
3146 SET_DECL_RTL (parm, parmreg);
3148 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3149 now the parm. */
3150 data->stack_parm = NULL;
3153 /* Mark the register as eliminable if we did no conversion and it was
3154 copied from memory at a fixed offset, and the arg pointer was not
3155 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3156 offset formed an invalid address, such memory-equivalences as we
3157 make here would screw up life analysis for it. */
3158 if (data->nominal_mode == data->passed_mode
3159 && !did_conversion
3160 && data->stack_parm != 0
3161 && MEM_P (data->stack_parm)
3162 && data->locate.offset.var == 0
3163 && reg_mentioned_p (virtual_incoming_args_rtx,
3164 XEXP (data->stack_parm, 0)))
3166 rtx linsn = get_last_insn ();
3167 rtx sinsn, set;
3169 /* Mark complex types separately. */
3170 if (GET_CODE (parmreg) == CONCAT)
3172 enum machine_mode submode
3173 = GET_MODE_INNER (GET_MODE (parmreg));
3174 int regnor = REGNO (XEXP (parmreg, 0));
3175 int regnoi = REGNO (XEXP (parmreg, 1));
3176 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3177 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3178 GET_MODE_SIZE (submode));
3180 /* Scan backwards for the set of the real and
3181 imaginary parts. */
3182 for (sinsn = linsn; sinsn != 0;
3183 sinsn = prev_nonnote_insn (sinsn))
3185 set = single_set (sinsn);
3186 if (set == 0)
3187 continue;
3189 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3190 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3191 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3192 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3195 else
3196 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3199 /* For pointer data type, suggest pointer register. */
3200 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3201 mark_reg_pointer (parmreg,
3202 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3205 /* A subroutine of assign_parms. Allocate stack space to hold the current
3206 parameter. Get it there. Perform all ABI specified conversions. */
3208 static void
3209 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3210 struct assign_parm_data_one *data)
3212 /* Value must be stored in the stack slot STACK_PARM during function
3213 execution. */
3214 bool to_conversion = false;
3216 assign_parm_remove_parallels (data);
3218 if (data->promoted_mode != data->nominal_mode)
3220 /* Conversion is required. */
3221 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3223 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3225 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3226 to_conversion = true;
3228 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3229 TYPE_UNSIGNED (TREE_TYPE (parm)));
3231 if (data->stack_parm)
3233 int offset = subreg_lowpart_offset (data->nominal_mode,
3234 GET_MODE (data->stack_parm));
3235 /* ??? This may need a big-endian conversion on sparc64. */
3236 data->stack_parm
3237 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3238 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3239 set_mem_offset (data->stack_parm,
3240 MEM_OFFSET (data->stack_parm) + offset);
3244 if (data->entry_parm != data->stack_parm)
3246 rtx src, dest;
3248 if (data->stack_parm == 0)
3250 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3251 GET_MODE (data->entry_parm),
3252 TYPE_ALIGN (data->passed_type));
3253 data->stack_parm
3254 = assign_stack_local (GET_MODE (data->entry_parm),
3255 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3256 align);
3257 set_mem_attributes (data->stack_parm, parm, 1);
3260 dest = validize_mem (data->stack_parm);
3261 src = validize_mem (data->entry_parm);
3263 if (MEM_P (src))
3265 /* Use a block move to handle potentially misaligned entry_parm. */
3266 if (!to_conversion)
3267 push_to_sequence2 (all->first_conversion_insn,
3268 all->last_conversion_insn);
3269 to_conversion = true;
3271 emit_block_move (dest, src,
3272 GEN_INT (int_size_in_bytes (data->passed_type)),
3273 BLOCK_OP_NORMAL);
3275 else
3276 emit_move_insn (dest, src);
3279 if (to_conversion)
3281 all->first_conversion_insn = get_insns ();
3282 all->last_conversion_insn = get_last_insn ();
3283 end_sequence ();
3286 SET_DECL_RTL (parm, data->stack_parm);
3289 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3290 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3292 static void
3293 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3294 vec<tree> fnargs)
3296 tree parm;
3297 tree orig_fnargs = all->orig_fnargs;
3298 unsigned i = 0;
3300 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3302 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3303 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3305 rtx tmp, real, imag;
3306 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3308 real = DECL_RTL (fnargs[i]);
3309 imag = DECL_RTL (fnargs[i + 1]);
3310 if (inner != GET_MODE (real))
3312 real = gen_lowpart_SUBREG (inner, real);
3313 imag = gen_lowpart_SUBREG (inner, imag);
3316 if (TREE_ADDRESSABLE (parm))
3318 rtx rmem, imem;
3319 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3320 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3321 DECL_MODE (parm),
3322 TYPE_ALIGN (TREE_TYPE (parm)));
3324 /* split_complex_arg put the real and imag parts in
3325 pseudos. Move them to memory. */
3326 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3327 set_mem_attributes (tmp, parm, 1);
3328 rmem = adjust_address_nv (tmp, inner, 0);
3329 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3330 push_to_sequence2 (all->first_conversion_insn,
3331 all->last_conversion_insn);
3332 emit_move_insn (rmem, real);
3333 emit_move_insn (imem, imag);
3334 all->first_conversion_insn = get_insns ();
3335 all->last_conversion_insn = get_last_insn ();
3336 end_sequence ();
3338 else
3339 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3340 SET_DECL_RTL (parm, tmp);
3342 real = DECL_INCOMING_RTL (fnargs[i]);
3343 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3344 if (inner != GET_MODE (real))
3346 real = gen_lowpart_SUBREG (inner, real);
3347 imag = gen_lowpart_SUBREG (inner, imag);
3349 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3350 set_decl_incoming_rtl (parm, tmp, false);
3351 i++;
3356 /* Assign RTL expressions to the function's parameters. This may involve
3357 copying them into registers and using those registers as the DECL_RTL. */
3359 static void
3360 assign_parms (tree fndecl)
3362 struct assign_parm_data_all all;
3363 tree parm;
3364 vec<tree> fnargs;
3365 unsigned i;
3367 crtl->args.internal_arg_pointer
3368 = targetm.calls.internal_arg_pointer ();
3370 assign_parms_initialize_all (&all);
3371 fnargs = assign_parms_augmented_arg_list (&all);
3373 FOR_EACH_VEC_ELT (fnargs, i, parm)
3375 struct assign_parm_data_one data;
3377 /* Extract the type of PARM; adjust it according to ABI. */
3378 assign_parm_find_data_types (&all, parm, &data);
3380 /* Early out for errors and void parameters. */
3381 if (data.passed_mode == VOIDmode)
3383 SET_DECL_RTL (parm, const0_rtx);
3384 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3385 continue;
3388 /* Estimate stack alignment from parameter alignment. */
3389 if (SUPPORTS_STACK_ALIGNMENT)
3391 unsigned int align
3392 = targetm.calls.function_arg_boundary (data.promoted_mode,
3393 data.passed_type);
3394 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3395 align);
3396 if (TYPE_ALIGN (data.nominal_type) > align)
3397 align = MINIMUM_ALIGNMENT (data.nominal_type,
3398 TYPE_MODE (data.nominal_type),
3399 TYPE_ALIGN (data.nominal_type));
3400 if (crtl->stack_alignment_estimated < align)
3402 gcc_assert (!crtl->stack_realign_processed);
3403 crtl->stack_alignment_estimated = align;
3407 if (cfun->stdarg && !DECL_CHAIN (parm))
3408 assign_parms_setup_varargs (&all, &data, false);
3410 /* Find out where the parameter arrives in this function. */
3411 assign_parm_find_entry_rtl (&all, &data);
3413 /* Find out where stack space for this parameter might be. */
3414 if (assign_parm_is_stack_parm (&all, &data))
3416 assign_parm_find_stack_rtl (parm, &data);
3417 assign_parm_adjust_entry_rtl (&data);
3420 /* Record permanently how this parm was passed. */
3421 if (data.passed_pointer)
3423 rtx incoming_rtl
3424 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3425 data.entry_parm);
3426 set_decl_incoming_rtl (parm, incoming_rtl, true);
3428 else
3429 set_decl_incoming_rtl (parm, data.entry_parm, false);
3431 /* Update info on where next arg arrives in registers. */
3432 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3433 data.passed_type, data.named_arg);
3435 assign_parm_adjust_stack_rtl (&data);
3437 if (assign_parm_setup_block_p (&data))
3438 assign_parm_setup_block (&all, parm, &data);
3439 else if (data.passed_pointer || use_register_for_decl (parm))
3440 assign_parm_setup_reg (&all, parm, &data);
3441 else
3442 assign_parm_setup_stack (&all, parm, &data);
3445 if (targetm.calls.split_complex_arg)
3446 assign_parms_unsplit_complex (&all, fnargs);
3448 fnargs.release ();
3450 /* Output all parameter conversion instructions (possibly including calls)
3451 now that all parameters have been copied out of hard registers. */
3452 emit_insn (all.first_conversion_insn);
3454 /* Estimate reload stack alignment from scalar return mode. */
3455 if (SUPPORTS_STACK_ALIGNMENT)
3457 if (DECL_RESULT (fndecl))
3459 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3460 enum machine_mode mode = TYPE_MODE (type);
3462 if (mode != BLKmode
3463 && mode != VOIDmode
3464 && !AGGREGATE_TYPE_P (type))
3466 unsigned int align = GET_MODE_ALIGNMENT (mode);
3467 if (crtl->stack_alignment_estimated < align)
3469 gcc_assert (!crtl->stack_realign_processed);
3470 crtl->stack_alignment_estimated = align;
3476 /* If we are receiving a struct value address as the first argument, set up
3477 the RTL for the function result. As this might require code to convert
3478 the transmitted address to Pmode, we do this here to ensure that possible
3479 preliminary conversions of the address have been emitted already. */
3480 if (all.function_result_decl)
3482 tree result = DECL_RESULT (current_function_decl);
3483 rtx addr = DECL_RTL (all.function_result_decl);
3484 rtx x;
3486 if (DECL_BY_REFERENCE (result))
3488 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3489 x = addr;
3491 else
3493 SET_DECL_VALUE_EXPR (result,
3494 build1 (INDIRECT_REF, TREE_TYPE (result),
3495 all.function_result_decl));
3496 addr = convert_memory_address (Pmode, addr);
3497 x = gen_rtx_MEM (DECL_MODE (result), addr);
3498 set_mem_attributes (x, result, 1);
3501 DECL_HAS_VALUE_EXPR_P (result) = 1;
3503 SET_DECL_RTL (result, x);
3506 /* We have aligned all the args, so add space for the pretend args. */
3507 crtl->args.pretend_args_size = all.pretend_args_size;
3508 all.stack_args_size.constant += all.extra_pretend_bytes;
3509 crtl->args.size = all.stack_args_size.constant;
3511 /* Adjust function incoming argument size for alignment and
3512 minimum length. */
3514 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3515 crtl->args.size = CEIL_ROUND (crtl->args.size,
3516 PARM_BOUNDARY / BITS_PER_UNIT);
3518 #ifdef ARGS_GROW_DOWNWARD
3519 crtl->args.arg_offset_rtx
3520 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3521 : expand_expr (size_diffop (all.stack_args_size.var,
3522 size_int (-all.stack_args_size.constant)),
3523 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3524 #else
3525 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3526 #endif
3528 /* See how many bytes, if any, of its args a function should try to pop
3529 on return. */
3531 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3532 TREE_TYPE (fndecl),
3533 crtl->args.size);
3535 /* For stdarg.h function, save info about
3536 regs and stack space used by the named args. */
3538 crtl->args.info = all.args_so_far_v;
3540 /* Set the rtx used for the function return value. Put this in its
3541 own variable so any optimizers that need this information don't have
3542 to include tree.h. Do this here so it gets done when an inlined
3543 function gets output. */
3545 crtl->return_rtx
3546 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3547 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3549 /* If scalar return value was computed in a pseudo-reg, or was a named
3550 return value that got dumped to the stack, copy that to the hard
3551 return register. */
3552 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3554 tree decl_result = DECL_RESULT (fndecl);
3555 rtx decl_rtl = DECL_RTL (decl_result);
3557 if (REG_P (decl_rtl)
3558 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3559 : DECL_REGISTER (decl_result))
3561 rtx real_decl_rtl;
3563 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3564 fndecl, true);
3565 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3566 /* The delay slot scheduler assumes that crtl->return_rtx
3567 holds the hard register containing the return value, not a
3568 temporary pseudo. */
3569 crtl->return_rtx = real_decl_rtl;
3574 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3575 For all seen types, gimplify their sizes. */
3577 static tree
3578 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3580 tree t = *tp;
3582 *walk_subtrees = 0;
3583 if (TYPE_P (t))
3585 if (POINTER_TYPE_P (t))
3586 *walk_subtrees = 1;
3587 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3588 && !TYPE_SIZES_GIMPLIFIED (t))
3590 gimplify_type_sizes (t, (gimple_seq *) data);
3591 *walk_subtrees = 1;
3595 return NULL;
3598 /* Gimplify the parameter list for current_function_decl. This involves
3599 evaluating SAVE_EXPRs of variable sized parameters and generating code
3600 to implement callee-copies reference parameters. Returns a sequence of
3601 statements to add to the beginning of the function. */
3603 gimple_seq
3604 gimplify_parameters (void)
3606 struct assign_parm_data_all all;
3607 tree parm;
3608 gimple_seq stmts = NULL;
3609 vec<tree> fnargs;
3610 unsigned i;
3612 assign_parms_initialize_all (&all);
3613 fnargs = assign_parms_augmented_arg_list (&all);
3615 FOR_EACH_VEC_ELT (fnargs, i, parm)
3617 struct assign_parm_data_one data;
3619 /* Extract the type of PARM; adjust it according to ABI. */
3620 assign_parm_find_data_types (&all, parm, &data);
3622 /* Early out for errors and void parameters. */
3623 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3624 continue;
3626 /* Update info on where next arg arrives in registers. */
3627 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3628 data.passed_type, data.named_arg);
3630 /* ??? Once upon a time variable_size stuffed parameter list
3631 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3632 turned out to be less than manageable in the gimple world.
3633 Now we have to hunt them down ourselves. */
3634 walk_tree_without_duplicates (&data.passed_type,
3635 gimplify_parm_type, &stmts);
3637 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3639 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3640 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3643 if (data.passed_pointer)
3645 tree type = TREE_TYPE (data.passed_type);
3646 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3647 type, data.named_arg))
3649 tree local, t;
3651 /* For constant-sized objects, this is trivial; for
3652 variable-sized objects, we have to play games. */
3653 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3654 && !(flag_stack_check == GENERIC_STACK_CHECK
3655 && compare_tree_int (DECL_SIZE_UNIT (parm),
3656 STACK_CHECK_MAX_VAR_SIZE) > 0))
3658 local = create_tmp_var (type, get_name (parm));
3659 DECL_IGNORED_P (local) = 0;
3660 /* If PARM was addressable, move that flag over
3661 to the local copy, as its address will be taken,
3662 not the PARMs. Keep the parms address taken
3663 as we'll query that flag during gimplification. */
3664 if (TREE_ADDRESSABLE (parm))
3665 TREE_ADDRESSABLE (local) = 1;
3666 else if (TREE_CODE (type) == COMPLEX_TYPE
3667 || TREE_CODE (type) == VECTOR_TYPE)
3668 DECL_GIMPLE_REG_P (local) = 1;
3670 else
3672 tree ptr_type, addr;
3674 ptr_type = build_pointer_type (type);
3675 addr = create_tmp_reg (ptr_type, get_name (parm));
3676 DECL_IGNORED_P (addr) = 0;
3677 local = build_fold_indirect_ref (addr);
3679 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3680 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3681 size_int (DECL_ALIGN (parm)));
3683 /* The call has been built for a variable-sized object. */
3684 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3685 t = fold_convert (ptr_type, t);
3686 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3687 gimplify_and_add (t, &stmts);
3690 gimplify_assign (local, parm, &stmts);
3692 SET_DECL_VALUE_EXPR (parm, local);
3693 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3698 fnargs.release ();
3700 return stmts;
3703 /* Compute the size and offset from the start of the stacked arguments for a
3704 parm passed in mode PASSED_MODE and with type TYPE.
3706 INITIAL_OFFSET_PTR points to the current offset into the stacked
3707 arguments.
3709 The starting offset and size for this parm are returned in
3710 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3711 nonzero, the offset is that of stack slot, which is returned in
3712 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3713 padding required from the initial offset ptr to the stack slot.
3715 IN_REGS is nonzero if the argument will be passed in registers. It will
3716 never be set if REG_PARM_STACK_SPACE is not defined.
3718 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3719 for arguments which are passed in registers.
3721 FNDECL is the function in which the argument was defined.
3723 There are two types of rounding that are done. The first, controlled by
3724 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3725 argument list to be aligned to the specific boundary (in bits). This
3726 rounding affects the initial and starting offsets, but not the argument
3727 size.
3729 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3730 optionally rounds the size of the parm to PARM_BOUNDARY. The
3731 initial offset is not affected by this rounding, while the size always
3732 is and the starting offset may be. */
3734 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3735 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3736 callers pass in the total size of args so far as
3737 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3739 void
3740 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3741 int reg_parm_stack_space, int partial,
3742 tree fndecl ATTRIBUTE_UNUSED,
3743 struct args_size *initial_offset_ptr,
3744 struct locate_and_pad_arg_data *locate)
3746 tree sizetree;
3747 enum direction where_pad;
3748 unsigned int boundary, round_boundary;
3749 int part_size_in_regs;
3751 /* If we have found a stack parm before we reach the end of the
3752 area reserved for registers, skip that area. */
3753 if (! in_regs)
3755 if (reg_parm_stack_space > 0)
3757 if (initial_offset_ptr->var)
3759 initial_offset_ptr->var
3760 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3761 ssize_int (reg_parm_stack_space));
3762 initial_offset_ptr->constant = 0;
3764 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3765 initial_offset_ptr->constant = reg_parm_stack_space;
3769 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3771 sizetree
3772 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3773 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3774 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3775 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3776 type);
3777 locate->where_pad = where_pad;
3779 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3780 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3781 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3783 locate->boundary = boundary;
3785 if (SUPPORTS_STACK_ALIGNMENT)
3787 /* stack_alignment_estimated can't change after stack has been
3788 realigned. */
3789 if (crtl->stack_alignment_estimated < boundary)
3791 if (!crtl->stack_realign_processed)
3792 crtl->stack_alignment_estimated = boundary;
3793 else
3795 /* If stack is realigned and stack alignment value
3796 hasn't been finalized, it is OK not to increase
3797 stack_alignment_estimated. The bigger alignment
3798 requirement is recorded in stack_alignment_needed
3799 below. */
3800 gcc_assert (!crtl->stack_realign_finalized
3801 && crtl->stack_realign_needed);
3806 /* Remember if the outgoing parameter requires extra alignment on the
3807 calling function side. */
3808 if (crtl->stack_alignment_needed < boundary)
3809 crtl->stack_alignment_needed = boundary;
3810 if (crtl->preferred_stack_boundary < boundary)
3811 crtl->preferred_stack_boundary = boundary;
3813 #ifdef ARGS_GROW_DOWNWARD
3814 locate->slot_offset.constant = -initial_offset_ptr->constant;
3815 if (initial_offset_ptr->var)
3816 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3817 initial_offset_ptr->var);
3820 tree s2 = sizetree;
3821 if (where_pad != none
3822 && (!tree_fits_uhwi_p (sizetree)
3823 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3824 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3825 SUB_PARM_SIZE (locate->slot_offset, s2);
3828 locate->slot_offset.constant += part_size_in_regs;
3830 if (!in_regs || reg_parm_stack_space > 0)
3831 pad_to_arg_alignment (&locate->slot_offset, boundary,
3832 &locate->alignment_pad);
3834 locate->size.constant = (-initial_offset_ptr->constant
3835 - locate->slot_offset.constant);
3836 if (initial_offset_ptr->var)
3837 locate->size.var = size_binop (MINUS_EXPR,
3838 size_binop (MINUS_EXPR,
3839 ssize_int (0),
3840 initial_offset_ptr->var),
3841 locate->slot_offset.var);
3843 /* Pad_below needs the pre-rounded size to know how much to pad
3844 below. */
3845 locate->offset = locate->slot_offset;
3846 if (where_pad == downward)
3847 pad_below (&locate->offset, passed_mode, sizetree);
3849 #else /* !ARGS_GROW_DOWNWARD */
3850 if (!in_regs || reg_parm_stack_space > 0)
3851 pad_to_arg_alignment (initial_offset_ptr, boundary,
3852 &locate->alignment_pad);
3853 locate->slot_offset = *initial_offset_ptr;
3855 #ifdef PUSH_ROUNDING
3856 if (passed_mode != BLKmode)
3857 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3858 #endif
3860 /* Pad_below needs the pre-rounded size to know how much to pad below
3861 so this must be done before rounding up. */
3862 locate->offset = locate->slot_offset;
3863 if (where_pad == downward)
3864 pad_below (&locate->offset, passed_mode, sizetree);
3866 if (where_pad != none
3867 && (!tree_fits_uhwi_p (sizetree)
3868 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3869 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3871 ADD_PARM_SIZE (locate->size, sizetree);
3873 locate->size.constant -= part_size_in_regs;
3874 #endif /* ARGS_GROW_DOWNWARD */
3876 #ifdef FUNCTION_ARG_OFFSET
3877 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3878 #endif
3881 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3882 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3884 static void
3885 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3886 struct args_size *alignment_pad)
3888 tree save_var = NULL_TREE;
3889 HOST_WIDE_INT save_constant = 0;
3890 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3891 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3893 #ifdef SPARC_STACK_BOUNDARY_HACK
3894 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3895 the real alignment of %sp. However, when it does this, the
3896 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3897 if (SPARC_STACK_BOUNDARY_HACK)
3898 sp_offset = 0;
3899 #endif
3901 if (boundary > PARM_BOUNDARY)
3903 save_var = offset_ptr->var;
3904 save_constant = offset_ptr->constant;
3907 alignment_pad->var = NULL_TREE;
3908 alignment_pad->constant = 0;
3910 if (boundary > BITS_PER_UNIT)
3912 if (offset_ptr->var)
3914 tree sp_offset_tree = ssize_int (sp_offset);
3915 tree offset = size_binop (PLUS_EXPR,
3916 ARGS_SIZE_TREE (*offset_ptr),
3917 sp_offset_tree);
3918 #ifdef ARGS_GROW_DOWNWARD
3919 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3920 #else
3921 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3922 #endif
3924 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3925 /* ARGS_SIZE_TREE includes constant term. */
3926 offset_ptr->constant = 0;
3927 if (boundary > PARM_BOUNDARY)
3928 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3929 save_var);
3931 else
3933 offset_ptr->constant = -sp_offset +
3934 #ifdef ARGS_GROW_DOWNWARD
3935 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3936 #else
3937 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3938 #endif
3939 if (boundary > PARM_BOUNDARY)
3940 alignment_pad->constant = offset_ptr->constant - save_constant;
3945 static void
3946 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3948 if (passed_mode != BLKmode)
3950 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3951 offset_ptr->constant
3952 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3953 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3954 - GET_MODE_SIZE (passed_mode));
3956 else
3958 if (TREE_CODE (sizetree) != INTEGER_CST
3959 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3961 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3962 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3963 /* Add it in. */
3964 ADD_PARM_SIZE (*offset_ptr, s2);
3965 SUB_PARM_SIZE (*offset_ptr, sizetree);
3971 /* True if register REGNO was alive at a place where `setjmp' was
3972 called and was set more than once or is an argument. Such regs may
3973 be clobbered by `longjmp'. */
3975 static bool
3976 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3978 /* There appear to be cases where some local vars never reach the
3979 backend but have bogus regnos. */
3980 if (regno >= max_reg_num ())
3981 return false;
3983 return ((REG_N_SETS (regno) > 1
3984 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
3985 regno))
3986 && REGNO_REG_SET_P (setjmp_crosses, regno));
3989 /* Walk the tree of blocks describing the binding levels within a
3990 function and warn about variables the might be killed by setjmp or
3991 vfork. This is done after calling flow_analysis before register
3992 allocation since that will clobber the pseudo-regs to hard
3993 regs. */
3995 static void
3996 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3998 tree decl, sub;
4000 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4002 if (TREE_CODE (decl) == VAR_DECL
4003 && DECL_RTL_SET_P (decl)
4004 && REG_P (DECL_RTL (decl))
4005 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4006 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4007 " %<longjmp%> or %<vfork%>", decl);
4010 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4011 setjmp_vars_warning (setjmp_crosses, sub);
4014 /* Do the appropriate part of setjmp_vars_warning
4015 but for arguments instead of local variables. */
4017 static void
4018 setjmp_args_warning (bitmap setjmp_crosses)
4020 tree decl;
4021 for (decl = DECL_ARGUMENTS (current_function_decl);
4022 decl; decl = DECL_CHAIN (decl))
4023 if (DECL_RTL (decl) != 0
4024 && REG_P (DECL_RTL (decl))
4025 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4026 warning (OPT_Wclobbered,
4027 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4028 decl);
4031 /* Generate warning messages for variables live across setjmp. */
4033 void
4034 generate_setjmp_warnings (void)
4036 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4038 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4039 || bitmap_empty_p (setjmp_crosses))
4040 return;
4042 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4043 setjmp_args_warning (setjmp_crosses);
4047 /* Reverse the order of elements in the fragment chain T of blocks,
4048 and return the new head of the chain (old last element).
4049 In addition to that clear BLOCK_SAME_RANGE flags when needed
4050 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4051 its super fragment origin. */
4053 static tree
4054 block_fragments_nreverse (tree t)
4056 tree prev = 0, block, next, prev_super = 0;
4057 tree super = BLOCK_SUPERCONTEXT (t);
4058 if (BLOCK_FRAGMENT_ORIGIN (super))
4059 super = BLOCK_FRAGMENT_ORIGIN (super);
4060 for (block = t; block; block = next)
4062 next = BLOCK_FRAGMENT_CHAIN (block);
4063 BLOCK_FRAGMENT_CHAIN (block) = prev;
4064 if ((prev && !BLOCK_SAME_RANGE (prev))
4065 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4066 != prev_super))
4067 BLOCK_SAME_RANGE (block) = 0;
4068 prev_super = BLOCK_SUPERCONTEXT (block);
4069 BLOCK_SUPERCONTEXT (block) = super;
4070 prev = block;
4072 t = BLOCK_FRAGMENT_ORIGIN (t);
4073 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4074 != prev_super)
4075 BLOCK_SAME_RANGE (t) = 0;
4076 BLOCK_SUPERCONTEXT (t) = super;
4077 return prev;
4080 /* Reverse the order of elements in the chain T of blocks,
4081 and return the new head of the chain (old last element).
4082 Also do the same on subblocks and reverse the order of elements
4083 in BLOCK_FRAGMENT_CHAIN as well. */
4085 static tree
4086 blocks_nreverse_all (tree t)
4088 tree prev = 0, block, next;
4089 for (block = t; block; block = next)
4091 next = BLOCK_CHAIN (block);
4092 BLOCK_CHAIN (block) = prev;
4093 if (BLOCK_FRAGMENT_CHAIN (block)
4094 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4096 BLOCK_FRAGMENT_CHAIN (block)
4097 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4098 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4099 BLOCK_SAME_RANGE (block) = 0;
4101 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4102 prev = block;
4104 return prev;
4108 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4109 and create duplicate blocks. */
4110 /* ??? Need an option to either create block fragments or to create
4111 abstract origin duplicates of a source block. It really depends
4112 on what optimization has been performed. */
4114 void
4115 reorder_blocks (void)
4117 tree block = DECL_INITIAL (current_function_decl);
4119 if (block == NULL_TREE)
4120 return;
4122 auto_vec<tree, 10> block_stack;
4124 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4125 clear_block_marks (block);
4127 /* Prune the old trees away, so that they don't get in the way. */
4128 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4129 BLOCK_CHAIN (block) = NULL_TREE;
4131 /* Recreate the block tree from the note nesting. */
4132 reorder_blocks_1 (get_insns (), block, &block_stack);
4133 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4136 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4138 void
4139 clear_block_marks (tree block)
4141 while (block)
4143 TREE_ASM_WRITTEN (block) = 0;
4144 clear_block_marks (BLOCK_SUBBLOCKS (block));
4145 block = BLOCK_CHAIN (block);
4149 static void
4150 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4152 rtx insn;
4153 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4155 for (insn = insns; insn; insn = NEXT_INSN (insn))
4157 if (NOTE_P (insn))
4159 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4161 tree block = NOTE_BLOCK (insn);
4162 tree origin;
4164 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4165 origin = block;
4167 if (prev_end)
4168 BLOCK_SAME_RANGE (prev_end) = 0;
4169 prev_end = NULL_TREE;
4171 /* If we have seen this block before, that means it now
4172 spans multiple address regions. Create a new fragment. */
4173 if (TREE_ASM_WRITTEN (block))
4175 tree new_block = copy_node (block);
4177 BLOCK_SAME_RANGE (new_block) = 0;
4178 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4179 BLOCK_FRAGMENT_CHAIN (new_block)
4180 = BLOCK_FRAGMENT_CHAIN (origin);
4181 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4183 NOTE_BLOCK (insn) = new_block;
4184 block = new_block;
4187 if (prev_beg == current_block && prev_beg)
4188 BLOCK_SAME_RANGE (block) = 1;
4190 prev_beg = origin;
4192 BLOCK_SUBBLOCKS (block) = 0;
4193 TREE_ASM_WRITTEN (block) = 1;
4194 /* When there's only one block for the entire function,
4195 current_block == block and we mustn't do this, it
4196 will cause infinite recursion. */
4197 if (block != current_block)
4199 tree super;
4200 if (block != origin)
4201 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4202 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4203 (origin))
4204 == current_block);
4205 if (p_block_stack->is_empty ())
4206 super = current_block;
4207 else
4209 super = p_block_stack->last ();
4210 gcc_assert (super == current_block
4211 || BLOCK_FRAGMENT_ORIGIN (super)
4212 == current_block);
4214 BLOCK_SUPERCONTEXT (block) = super;
4215 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4216 BLOCK_SUBBLOCKS (current_block) = block;
4217 current_block = origin;
4219 p_block_stack->safe_push (block);
4221 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4223 NOTE_BLOCK (insn) = p_block_stack->pop ();
4224 current_block = BLOCK_SUPERCONTEXT (current_block);
4225 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4226 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4227 prev_beg = NULL_TREE;
4228 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4229 ? NOTE_BLOCK (insn) : NULL_TREE;
4232 else
4234 prev_beg = NULL_TREE;
4235 if (prev_end)
4236 BLOCK_SAME_RANGE (prev_end) = 0;
4237 prev_end = NULL_TREE;
4242 /* Reverse the order of elements in the chain T of blocks,
4243 and return the new head of the chain (old last element). */
4245 tree
4246 blocks_nreverse (tree t)
4248 tree prev = 0, block, next;
4249 for (block = t; block; block = next)
4251 next = BLOCK_CHAIN (block);
4252 BLOCK_CHAIN (block) = prev;
4253 prev = block;
4255 return prev;
4258 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4259 by modifying the last node in chain 1 to point to chain 2. */
4261 tree
4262 block_chainon (tree op1, tree op2)
4264 tree t1;
4266 if (!op1)
4267 return op2;
4268 if (!op2)
4269 return op1;
4271 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4272 continue;
4273 BLOCK_CHAIN (t1) = op2;
4275 #ifdef ENABLE_TREE_CHECKING
4277 tree t2;
4278 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4279 gcc_assert (t2 != t1);
4281 #endif
4283 return op1;
4286 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4287 non-NULL, list them all into VECTOR, in a depth-first preorder
4288 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4289 blocks. */
4291 static int
4292 all_blocks (tree block, tree *vector)
4294 int n_blocks = 0;
4296 while (block)
4298 TREE_ASM_WRITTEN (block) = 0;
4300 /* Record this block. */
4301 if (vector)
4302 vector[n_blocks] = block;
4304 ++n_blocks;
4306 /* Record the subblocks, and their subblocks... */
4307 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4308 vector ? vector + n_blocks : 0);
4309 block = BLOCK_CHAIN (block);
4312 return n_blocks;
4315 /* Return a vector containing all the blocks rooted at BLOCK. The
4316 number of elements in the vector is stored in N_BLOCKS_P. The
4317 vector is dynamically allocated; it is the caller's responsibility
4318 to call `free' on the pointer returned. */
4320 static tree *
4321 get_block_vector (tree block, int *n_blocks_p)
4323 tree *block_vector;
4325 *n_blocks_p = all_blocks (block, NULL);
4326 block_vector = XNEWVEC (tree, *n_blocks_p);
4327 all_blocks (block, block_vector);
4329 return block_vector;
4332 static GTY(()) int next_block_index = 2;
4334 /* Set BLOCK_NUMBER for all the blocks in FN. */
4336 void
4337 number_blocks (tree fn)
4339 int i;
4340 int n_blocks;
4341 tree *block_vector;
4343 /* For SDB and XCOFF debugging output, we start numbering the blocks
4344 from 1 within each function, rather than keeping a running
4345 count. */
4346 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4347 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4348 next_block_index = 1;
4349 #endif
4351 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4353 /* The top-level BLOCK isn't numbered at all. */
4354 for (i = 1; i < n_blocks; ++i)
4355 /* We number the blocks from two. */
4356 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4358 free (block_vector);
4360 return;
4363 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4365 DEBUG_FUNCTION tree
4366 debug_find_var_in_block_tree (tree var, tree block)
4368 tree t;
4370 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4371 if (t == var)
4372 return block;
4374 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4376 tree ret = debug_find_var_in_block_tree (var, t);
4377 if (ret)
4378 return ret;
4381 return NULL_TREE;
4384 /* Keep track of whether we're in a dummy function context. If we are,
4385 we don't want to invoke the set_current_function hook, because we'll
4386 get into trouble if the hook calls target_reinit () recursively or
4387 when the initial initialization is not yet complete. */
4389 static bool in_dummy_function;
4391 /* Invoke the target hook when setting cfun. Update the optimization options
4392 if the function uses different options than the default. */
4394 static void
4395 invoke_set_current_function_hook (tree fndecl)
4397 if (!in_dummy_function)
4399 tree opts = ((fndecl)
4400 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4401 : optimization_default_node);
4403 if (!opts)
4404 opts = optimization_default_node;
4406 /* Change optimization options if needed. */
4407 if (optimization_current_node != opts)
4409 optimization_current_node = opts;
4410 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4413 targetm.set_current_function (fndecl);
4414 this_fn_optabs = this_target_optabs;
4416 if (opts != optimization_default_node)
4418 init_tree_optimization_optabs (opts);
4419 if (TREE_OPTIMIZATION_OPTABS (opts))
4420 this_fn_optabs = (struct target_optabs *)
4421 TREE_OPTIMIZATION_OPTABS (opts);
4426 /* cfun should never be set directly; use this function. */
4428 void
4429 set_cfun (struct function *new_cfun)
4431 if (cfun != new_cfun)
4433 cfun = new_cfun;
4434 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4438 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4440 static vec<function_p> cfun_stack;
4442 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4443 current_function_decl accordingly. */
4445 void
4446 push_cfun (struct function *new_cfun)
4448 gcc_assert ((!cfun && !current_function_decl)
4449 || (cfun && current_function_decl == cfun->decl));
4450 cfun_stack.safe_push (cfun);
4451 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4452 set_cfun (new_cfun);
4455 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4457 void
4458 pop_cfun (void)
4460 struct function *new_cfun = cfun_stack.pop ();
4461 /* When in_dummy_function, we do have a cfun but current_function_decl is
4462 NULL. We also allow pushing NULL cfun and subsequently changing
4463 current_function_decl to something else and have both restored by
4464 pop_cfun. */
4465 gcc_checking_assert (in_dummy_function
4466 || !cfun
4467 || current_function_decl == cfun->decl);
4468 set_cfun (new_cfun);
4469 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4472 /* Return value of funcdef and increase it. */
4474 get_next_funcdef_no (void)
4476 return funcdef_no++;
4479 /* Return value of funcdef. */
4481 get_last_funcdef_no (void)
4483 return funcdef_no;
4486 /* Allocate a function structure for FNDECL and set its contents
4487 to the defaults. Set cfun to the newly-allocated object.
4488 Some of the helper functions invoked during initialization assume
4489 that cfun has already been set. Therefore, assign the new object
4490 directly into cfun and invoke the back end hook explicitly at the
4491 very end, rather than initializing a temporary and calling set_cfun
4492 on it.
4494 ABSTRACT_P is true if this is a function that will never be seen by
4495 the middle-end. Such functions are front-end concepts (like C++
4496 function templates) that do not correspond directly to functions
4497 placed in object files. */
4499 void
4500 allocate_struct_function (tree fndecl, bool abstract_p)
4502 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4504 cfun = ggc_alloc_cleared_function ();
4506 init_eh_for_function ();
4508 if (init_machine_status)
4509 cfun->machine = (*init_machine_status) ();
4511 #ifdef OVERRIDE_ABI_FORMAT
4512 OVERRIDE_ABI_FORMAT (fndecl);
4513 #endif
4515 if (fndecl != NULL_TREE)
4517 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4518 cfun->decl = fndecl;
4519 current_function_funcdef_no = get_next_funcdef_no ();
4522 invoke_set_current_function_hook (fndecl);
4524 if (fndecl != NULL_TREE)
4526 tree result = DECL_RESULT (fndecl);
4527 if (!abstract_p && aggregate_value_p (result, fndecl))
4529 #ifdef PCC_STATIC_STRUCT_RETURN
4530 cfun->returns_pcc_struct = 1;
4531 #endif
4532 cfun->returns_struct = 1;
4535 cfun->stdarg = stdarg_p (fntype);
4537 /* Assume all registers in stdarg functions need to be saved. */
4538 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4539 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4541 /* ??? This could be set on a per-function basis by the front-end
4542 but is this worth the hassle? */
4543 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4547 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4548 instead of just setting it. */
4550 void
4551 push_struct_function (tree fndecl)
4553 /* When in_dummy_function we might be in the middle of a pop_cfun and
4554 current_function_decl and cfun may not match. */
4555 gcc_assert (in_dummy_function
4556 || (!cfun && !current_function_decl)
4557 || (cfun && current_function_decl == cfun->decl));
4558 cfun_stack.safe_push (cfun);
4559 current_function_decl = fndecl;
4560 allocate_struct_function (fndecl, false);
4563 /* Reset crtl and other non-struct-function variables to defaults as
4564 appropriate for emitting rtl at the start of a function. */
4566 static void
4567 prepare_function_start (void)
4569 gcc_assert (!crtl->emit.x_last_insn);
4570 init_temp_slots ();
4571 init_emit ();
4572 init_varasm_status ();
4573 init_expr ();
4574 default_rtl_profile ();
4576 if (flag_stack_usage_info)
4578 cfun->su = ggc_alloc_cleared_stack_usage ();
4579 cfun->su->static_stack_size = -1;
4582 cse_not_expected = ! optimize;
4584 /* Caller save not needed yet. */
4585 caller_save_needed = 0;
4587 /* We haven't done register allocation yet. */
4588 reg_renumber = 0;
4590 /* Indicate that we have not instantiated virtual registers yet. */
4591 virtuals_instantiated = 0;
4593 /* Indicate that we want CONCATs now. */
4594 generating_concat_p = 1;
4596 /* Indicate we have no need of a frame pointer yet. */
4597 frame_pointer_needed = 0;
4600 /* Initialize the rtl expansion mechanism so that we can do simple things
4601 like generate sequences. This is used to provide a context during global
4602 initialization of some passes. You must call expand_dummy_function_end
4603 to exit this context. */
4605 void
4606 init_dummy_function_start (void)
4608 gcc_assert (!in_dummy_function);
4609 in_dummy_function = true;
4610 push_struct_function (NULL_TREE);
4611 prepare_function_start ();
4614 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4615 and initialize static variables for generating RTL for the statements
4616 of the function. */
4618 void
4619 init_function_start (tree subr)
4621 if (subr && DECL_STRUCT_FUNCTION (subr))
4622 set_cfun (DECL_STRUCT_FUNCTION (subr));
4623 else
4624 allocate_struct_function (subr, false);
4625 prepare_function_start ();
4626 decide_function_section (subr);
4628 /* Warn if this value is an aggregate type,
4629 regardless of which calling convention we are using for it. */
4630 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4631 warning (OPT_Waggregate_return, "function returns an aggregate");
4634 /* Expand code to verify the stack_protect_guard. This is invoked at
4635 the end of a function to be protected. */
4637 #ifndef HAVE_stack_protect_test
4638 # define HAVE_stack_protect_test 0
4639 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4640 #endif
4642 void
4643 stack_protect_epilogue (void)
4645 tree guard_decl = targetm.stack_protect_guard ();
4646 rtx label = gen_label_rtx ();
4647 rtx x, y, tmp;
4649 x = expand_normal (crtl->stack_protect_guard);
4650 y = expand_normal (guard_decl);
4652 /* Allow the target to compare Y with X without leaking either into
4653 a register. */
4654 switch (HAVE_stack_protect_test != 0)
4656 case 1:
4657 tmp = gen_stack_protect_test (x, y, label);
4658 if (tmp)
4660 emit_insn (tmp);
4661 break;
4663 /* FALLTHRU */
4665 default:
4666 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4667 break;
4670 /* The noreturn predictor has been moved to the tree level. The rtl-level
4671 predictors estimate this branch about 20%, which isn't enough to get
4672 things moved out of line. Since this is the only extant case of adding
4673 a noreturn function at the rtl level, it doesn't seem worth doing ought
4674 except adding the prediction by hand. */
4675 tmp = get_last_insn ();
4676 if (JUMP_P (tmp))
4677 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4679 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4680 free_temp_slots ();
4681 emit_label (label);
4684 /* Start the RTL for a new function, and set variables used for
4685 emitting RTL.
4686 SUBR is the FUNCTION_DECL node.
4687 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4688 the function's parameters, which must be run at any return statement. */
4690 void
4691 expand_function_start (tree subr)
4693 /* Make sure volatile mem refs aren't considered
4694 valid operands of arithmetic insns. */
4695 init_recog_no_volatile ();
4697 crtl->profile
4698 = (profile_flag
4699 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4701 crtl->limit_stack
4702 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4704 /* Make the label for return statements to jump to. Do not special
4705 case machines with special return instructions -- they will be
4706 handled later during jump, ifcvt, or epilogue creation. */
4707 return_label = gen_label_rtx ();
4709 /* Initialize rtx used to return the value. */
4710 /* Do this before assign_parms so that we copy the struct value address
4711 before any library calls that assign parms might generate. */
4713 /* Decide whether to return the value in memory or in a register. */
4714 if (aggregate_value_p (DECL_RESULT (subr), subr))
4716 /* Returning something that won't go in a register. */
4717 rtx value_address = 0;
4719 #ifdef PCC_STATIC_STRUCT_RETURN
4720 if (cfun->returns_pcc_struct)
4722 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4723 value_address = assemble_static_space (size);
4725 else
4726 #endif
4728 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4729 /* Expect to be passed the address of a place to store the value.
4730 If it is passed as an argument, assign_parms will take care of
4731 it. */
4732 if (sv)
4734 value_address = gen_reg_rtx (Pmode);
4735 emit_move_insn (value_address, sv);
4738 if (value_address)
4740 rtx x = value_address;
4741 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4743 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4744 set_mem_attributes (x, DECL_RESULT (subr), 1);
4746 SET_DECL_RTL (DECL_RESULT (subr), x);
4749 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4750 /* If return mode is void, this decl rtl should not be used. */
4751 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4752 else
4754 /* Compute the return values into a pseudo reg, which we will copy
4755 into the true return register after the cleanups are done. */
4756 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4757 if (TYPE_MODE (return_type) != BLKmode
4758 && targetm.calls.return_in_msb (return_type))
4759 /* expand_function_end will insert the appropriate padding in
4760 this case. Use the return value's natural (unpadded) mode
4761 within the function proper. */
4762 SET_DECL_RTL (DECL_RESULT (subr),
4763 gen_reg_rtx (TYPE_MODE (return_type)));
4764 else
4766 /* In order to figure out what mode to use for the pseudo, we
4767 figure out what the mode of the eventual return register will
4768 actually be, and use that. */
4769 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4771 /* Structures that are returned in registers are not
4772 aggregate_value_p, so we may see a PARALLEL or a REG. */
4773 if (REG_P (hard_reg))
4774 SET_DECL_RTL (DECL_RESULT (subr),
4775 gen_reg_rtx (GET_MODE (hard_reg)));
4776 else
4778 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4779 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4783 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4784 result to the real return register(s). */
4785 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4788 /* Initialize rtx for parameters and local variables.
4789 In some cases this requires emitting insns. */
4790 assign_parms (subr);
4792 /* If function gets a static chain arg, store it. */
4793 if (cfun->static_chain_decl)
4795 tree parm = cfun->static_chain_decl;
4796 rtx local, chain, insn;
4798 local = gen_reg_rtx (Pmode);
4799 chain = targetm.calls.static_chain (current_function_decl, true);
4801 set_decl_incoming_rtl (parm, chain, false);
4802 SET_DECL_RTL (parm, local);
4803 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4805 insn = emit_move_insn (local, chain);
4807 /* Mark the register as eliminable, similar to parameters. */
4808 if (MEM_P (chain)
4809 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4810 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4813 /* If the function receives a non-local goto, then store the
4814 bits we need to restore the frame pointer. */
4815 if (cfun->nonlocal_goto_save_area)
4817 tree t_save;
4818 rtx r_save;
4820 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4821 gcc_assert (DECL_RTL_SET_P (var));
4823 t_save = build4 (ARRAY_REF,
4824 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4825 cfun->nonlocal_goto_save_area,
4826 integer_zero_node, NULL_TREE, NULL_TREE);
4827 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4828 gcc_assert (GET_MODE (r_save) == Pmode);
4830 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4831 update_nonlocal_goto_save_area ();
4834 /* The following was moved from init_function_start.
4835 The move is supposed to make sdb output more accurate. */
4836 /* Indicate the beginning of the function body,
4837 as opposed to parm setup. */
4838 emit_note (NOTE_INSN_FUNCTION_BEG);
4840 gcc_assert (NOTE_P (get_last_insn ()));
4842 parm_birth_insn = get_last_insn ();
4844 if (crtl->profile)
4846 #ifdef PROFILE_HOOK
4847 PROFILE_HOOK (current_function_funcdef_no);
4848 #endif
4851 /* If we are doing generic stack checking, the probe should go here. */
4852 if (flag_stack_check == GENERIC_STACK_CHECK)
4853 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4856 /* Undo the effects of init_dummy_function_start. */
4857 void
4858 expand_dummy_function_end (void)
4860 gcc_assert (in_dummy_function);
4862 /* End any sequences that failed to be closed due to syntax errors. */
4863 while (in_sequence_p ())
4864 end_sequence ();
4866 /* Outside function body, can't compute type's actual size
4867 until next function's body starts. */
4869 free_after_parsing (cfun);
4870 free_after_compilation (cfun);
4871 pop_cfun ();
4872 in_dummy_function = false;
4875 /* Call DOIT for each hard register used as a return value from
4876 the current function. */
4878 void
4879 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4881 rtx outgoing = crtl->return_rtx;
4883 if (! outgoing)
4884 return;
4886 if (REG_P (outgoing))
4887 (*doit) (outgoing, arg);
4888 else if (GET_CODE (outgoing) == PARALLEL)
4890 int i;
4892 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4894 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4896 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4897 (*doit) (x, arg);
4902 static void
4903 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4905 emit_clobber (reg);
4908 void
4909 clobber_return_register (void)
4911 diddle_return_value (do_clobber_return_reg, NULL);
4913 /* In case we do use pseudo to return value, clobber it too. */
4914 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4916 tree decl_result = DECL_RESULT (current_function_decl);
4917 rtx decl_rtl = DECL_RTL (decl_result);
4918 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4920 do_clobber_return_reg (decl_rtl, NULL);
4925 static void
4926 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4928 emit_use (reg);
4931 static void
4932 use_return_register (void)
4934 diddle_return_value (do_use_return_reg, NULL);
4937 /* Possibly warn about unused parameters. */
4938 void
4939 do_warn_unused_parameter (tree fn)
4941 tree decl;
4943 for (decl = DECL_ARGUMENTS (fn);
4944 decl; decl = DECL_CHAIN (decl))
4945 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4946 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4947 && !TREE_NO_WARNING (decl))
4948 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4951 /* Set the location of the insn chain starting at INSN to LOC. */
4953 static void
4954 set_insn_locations (rtx insn, int loc)
4956 while (insn != NULL_RTX)
4958 if (INSN_P (insn))
4959 INSN_LOCATION (insn) = loc;
4960 insn = NEXT_INSN (insn);
4964 /* Generate RTL for the end of the current function. */
4966 void
4967 expand_function_end (void)
4969 rtx clobber_after;
4971 /* If arg_pointer_save_area was referenced only from a nested
4972 function, we will not have initialized it yet. Do that now. */
4973 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4974 get_arg_pointer_save_area ();
4976 /* If we are doing generic stack checking and this function makes calls,
4977 do a stack probe at the start of the function to ensure we have enough
4978 space for another stack frame. */
4979 if (flag_stack_check == GENERIC_STACK_CHECK)
4981 rtx insn, seq;
4983 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4984 if (CALL_P (insn))
4986 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4987 start_sequence ();
4988 if (STACK_CHECK_MOVING_SP)
4989 anti_adjust_stack_and_probe (max_frame_size, true);
4990 else
4991 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4992 seq = get_insns ();
4993 end_sequence ();
4994 set_insn_locations (seq, prologue_location);
4995 emit_insn_before (seq, stack_check_probe_note);
4996 break;
5000 /* End any sequences that failed to be closed due to syntax errors. */
5001 while (in_sequence_p ())
5002 end_sequence ();
5004 clear_pending_stack_adjust ();
5005 do_pending_stack_adjust ();
5007 /* Output a linenumber for the end of the function.
5008 SDB depends on this. */
5009 set_curr_insn_location (input_location);
5011 /* Before the return label (if any), clobber the return
5012 registers so that they are not propagated live to the rest of
5013 the function. This can only happen with functions that drop
5014 through; if there had been a return statement, there would
5015 have either been a return rtx, or a jump to the return label.
5017 We delay actual code generation after the current_function_value_rtx
5018 is computed. */
5019 clobber_after = get_last_insn ();
5021 /* Output the label for the actual return from the function. */
5022 emit_label (return_label);
5024 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5026 /* Let except.c know where it should emit the call to unregister
5027 the function context for sjlj exceptions. */
5028 if (flag_exceptions)
5029 sjlj_emit_function_exit_after (get_last_insn ());
5031 else
5033 /* We want to ensure that instructions that may trap are not
5034 moved into the epilogue by scheduling, because we don't
5035 always emit unwind information for the epilogue. */
5036 if (cfun->can_throw_non_call_exceptions)
5037 emit_insn (gen_blockage ());
5040 /* If this is an implementation of throw, do what's necessary to
5041 communicate between __builtin_eh_return and the epilogue. */
5042 expand_eh_return ();
5044 /* If scalar return value was computed in a pseudo-reg, or was a named
5045 return value that got dumped to the stack, copy that to the hard
5046 return register. */
5047 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5049 tree decl_result = DECL_RESULT (current_function_decl);
5050 rtx decl_rtl = DECL_RTL (decl_result);
5052 if (REG_P (decl_rtl)
5053 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5054 : DECL_REGISTER (decl_result))
5056 rtx real_decl_rtl = crtl->return_rtx;
5058 /* This should be set in assign_parms. */
5059 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5061 /* If this is a BLKmode structure being returned in registers,
5062 then use the mode computed in expand_return. Note that if
5063 decl_rtl is memory, then its mode may have been changed,
5064 but that crtl->return_rtx has not. */
5065 if (GET_MODE (real_decl_rtl) == BLKmode)
5066 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5068 /* If a non-BLKmode return value should be padded at the least
5069 significant end of the register, shift it left by the appropriate
5070 amount. BLKmode results are handled using the group load/store
5071 machinery. */
5072 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5073 && REG_P (real_decl_rtl)
5074 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5076 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5077 REGNO (real_decl_rtl)),
5078 decl_rtl);
5079 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5081 /* If a named return value dumped decl_return to memory, then
5082 we may need to re-do the PROMOTE_MODE signed/unsigned
5083 extension. */
5084 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5086 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5087 promote_function_mode (TREE_TYPE (decl_result),
5088 GET_MODE (decl_rtl), &unsignedp,
5089 TREE_TYPE (current_function_decl), 1);
5091 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5093 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5095 /* If expand_function_start has created a PARALLEL for decl_rtl,
5096 move the result to the real return registers. Otherwise, do
5097 a group load from decl_rtl for a named return. */
5098 if (GET_CODE (decl_rtl) == PARALLEL)
5099 emit_group_move (real_decl_rtl, decl_rtl);
5100 else
5101 emit_group_load (real_decl_rtl, decl_rtl,
5102 TREE_TYPE (decl_result),
5103 int_size_in_bytes (TREE_TYPE (decl_result)));
5105 /* In the case of complex integer modes smaller than a word, we'll
5106 need to generate some non-trivial bitfield insertions. Do that
5107 on a pseudo and not the hard register. */
5108 else if (GET_CODE (decl_rtl) == CONCAT
5109 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5110 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5112 int old_generating_concat_p;
5113 rtx tmp;
5115 old_generating_concat_p = generating_concat_p;
5116 generating_concat_p = 0;
5117 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5118 generating_concat_p = old_generating_concat_p;
5120 emit_move_insn (tmp, decl_rtl);
5121 emit_move_insn (real_decl_rtl, tmp);
5123 else
5124 emit_move_insn (real_decl_rtl, decl_rtl);
5128 /* If returning a structure, arrange to return the address of the value
5129 in a place where debuggers expect to find it.
5131 If returning a structure PCC style,
5132 the caller also depends on this value.
5133 And cfun->returns_pcc_struct is not necessarily set. */
5134 if (cfun->returns_struct
5135 || cfun->returns_pcc_struct)
5137 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5138 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5139 rtx outgoing;
5141 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5142 type = TREE_TYPE (type);
5143 else
5144 value_address = XEXP (value_address, 0);
5146 outgoing = targetm.calls.function_value (build_pointer_type (type),
5147 current_function_decl, true);
5149 /* Mark this as a function return value so integrate will delete the
5150 assignment and USE below when inlining this function. */
5151 REG_FUNCTION_VALUE_P (outgoing) = 1;
5153 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5154 value_address = convert_memory_address (GET_MODE (outgoing),
5155 value_address);
5157 emit_move_insn (outgoing, value_address);
5159 /* Show return register used to hold result (in this case the address
5160 of the result. */
5161 crtl->return_rtx = outgoing;
5164 /* Emit the actual code to clobber return register. Don't emit
5165 it if clobber_after is a barrier, then the previous basic block
5166 certainly doesn't fall thru into the exit block. */
5167 if (!BARRIER_P (clobber_after))
5169 rtx seq;
5171 start_sequence ();
5172 clobber_return_register ();
5173 seq = get_insns ();
5174 end_sequence ();
5176 emit_insn_after (seq, clobber_after);
5179 /* Output the label for the naked return from the function. */
5180 if (naked_return_label)
5181 emit_label (naked_return_label);
5183 /* @@@ This is a kludge. We want to ensure that instructions that
5184 may trap are not moved into the epilogue by scheduling, because
5185 we don't always emit unwind information for the epilogue. */
5186 if (cfun->can_throw_non_call_exceptions
5187 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5188 emit_insn (gen_blockage ());
5190 /* If stack protection is enabled for this function, check the guard. */
5191 if (crtl->stack_protect_guard)
5192 stack_protect_epilogue ();
5194 /* If we had calls to alloca, and this machine needs
5195 an accurate stack pointer to exit the function,
5196 insert some code to save and restore the stack pointer. */
5197 if (! EXIT_IGNORE_STACK
5198 && cfun->calls_alloca)
5200 rtx tem = 0, seq;
5202 start_sequence ();
5203 emit_stack_save (SAVE_FUNCTION, &tem);
5204 seq = get_insns ();
5205 end_sequence ();
5206 emit_insn_before (seq, parm_birth_insn);
5208 emit_stack_restore (SAVE_FUNCTION, tem);
5211 /* ??? This should no longer be necessary since stupid is no longer with
5212 us, but there are some parts of the compiler (eg reload_combine, and
5213 sh mach_dep_reorg) that still try and compute their own lifetime info
5214 instead of using the general framework. */
5215 use_return_register ();
5219 get_arg_pointer_save_area (void)
5221 rtx ret = arg_pointer_save_area;
5223 if (! ret)
5225 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5226 arg_pointer_save_area = ret;
5229 if (! crtl->arg_pointer_save_area_init)
5231 rtx seq;
5233 /* Save the arg pointer at the beginning of the function. The
5234 generated stack slot may not be a valid memory address, so we
5235 have to check it and fix it if necessary. */
5236 start_sequence ();
5237 emit_move_insn (validize_mem (ret),
5238 crtl->args.internal_arg_pointer);
5239 seq = get_insns ();
5240 end_sequence ();
5242 push_topmost_sequence ();
5243 emit_insn_after (seq, entry_of_function ());
5244 pop_topmost_sequence ();
5246 crtl->arg_pointer_save_area_init = true;
5249 return ret;
5252 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5253 for the first time. */
5255 static void
5256 record_insns (rtx insns, rtx end, htab_t *hashp)
5258 rtx tmp;
5259 htab_t hash = *hashp;
5261 if (hash == NULL)
5262 *hashp = hash
5263 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5265 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5267 void **slot = htab_find_slot (hash, tmp, INSERT);
5268 gcc_assert (*slot == NULL);
5269 *slot = tmp;
5273 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5274 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5275 insn, then record COPY as well. */
5277 void
5278 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5280 htab_t hash;
5281 void **slot;
5283 hash = epilogue_insn_hash;
5284 if (!hash || !htab_find (hash, insn))
5286 hash = prologue_insn_hash;
5287 if (!hash || !htab_find (hash, insn))
5288 return;
5291 slot = htab_find_slot (hash, copy, INSERT);
5292 gcc_assert (*slot == NULL);
5293 *slot = copy;
5296 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5297 we can be running after reorg, SEQUENCE rtl is possible. */
5299 static bool
5300 contains (const_rtx insn, htab_t hash)
5302 if (hash == NULL)
5303 return false;
5305 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5307 int i;
5308 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5309 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5310 return true;
5311 return false;
5314 return htab_find (hash, insn) != NULL;
5318 prologue_epilogue_contains (const_rtx insn)
5320 if (contains (insn, prologue_insn_hash))
5321 return 1;
5322 if (contains (insn, epilogue_insn_hash))
5323 return 1;
5324 return 0;
5327 #ifdef HAVE_simple_return
5329 /* Return true if INSN requires the stack frame to be set up.
5330 PROLOGUE_USED contains the hard registers used in the function
5331 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5332 prologue to set up for the function. */
5333 bool
5334 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5335 HARD_REG_SET set_up_by_prologue)
5337 df_ref *df_rec;
5338 HARD_REG_SET hardregs;
5339 unsigned regno;
5341 if (CALL_P (insn))
5342 return !SIBLING_CALL_P (insn);
5344 /* We need a frame to get the unique CFA expected by the unwinder. */
5345 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5346 return true;
5348 CLEAR_HARD_REG_SET (hardregs);
5349 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5351 rtx dreg = DF_REF_REG (*df_rec);
5353 if (!REG_P (dreg))
5354 continue;
5356 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5357 REGNO (dreg));
5359 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5360 return true;
5361 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5362 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5363 if (TEST_HARD_REG_BIT (hardregs, regno)
5364 && df_regs_ever_live_p (regno))
5365 return true;
5367 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5369 rtx reg = DF_REF_REG (*df_rec);
5371 if (!REG_P (reg))
5372 continue;
5374 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5375 REGNO (reg));
5377 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5378 return true;
5380 return false;
5383 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5384 and if BB is its only predecessor. Return that block if so,
5385 otherwise return null. */
5387 static basic_block
5388 next_block_for_reg (basic_block bb, int regno, int end_regno)
5390 edge e, live_edge;
5391 edge_iterator ei;
5392 bitmap live;
5393 int i;
5395 live_edge = NULL;
5396 FOR_EACH_EDGE (e, ei, bb->succs)
5398 live = df_get_live_in (e->dest);
5399 for (i = regno; i < end_regno; i++)
5400 if (REGNO_REG_SET_P (live, i))
5402 if (live_edge && live_edge != e)
5403 return NULL;
5404 live_edge = e;
5408 /* We can sometimes encounter dead code. Don't try to move it
5409 into the exit block. */
5410 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
5411 return NULL;
5413 /* Reject targets of abnormal edges. This is needed for correctness
5414 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5415 exception edges even though it is generally treated as call-saved
5416 for the majority of the compilation. Moving across abnormal edges
5417 isn't going to be interesting for shrink-wrap usage anyway. */
5418 if (live_edge->flags & EDGE_ABNORMAL)
5419 return NULL;
5421 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5422 return NULL;
5424 return live_edge->dest;
5427 /* Try to move INSN from BB to a successor. Return true on success.
5428 USES and DEFS are the set of registers that are used and defined
5429 after INSN in BB. */
5431 static bool
5432 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5433 const HARD_REG_SET uses,
5434 const HARD_REG_SET defs)
5436 rtx set, src, dest;
5437 bitmap live_out, live_in, bb_uses, bb_defs;
5438 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5439 basic_block next_block;
5441 /* Look for a simple register copy. */
5442 set = single_set (insn);
5443 if (!set)
5444 return false;
5445 src = SET_SRC (set);
5446 dest = SET_DEST (set);
5447 if (!REG_P (dest) || !REG_P (src))
5448 return false;
5450 /* Make sure that the source register isn't defined later in BB. */
5451 sregno = REGNO (src);
5452 end_sregno = END_REGNO (src);
5453 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5454 return false;
5456 /* Make sure that the destination register isn't referenced later in BB. */
5457 dregno = REGNO (dest);
5458 end_dregno = END_REGNO (dest);
5459 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5460 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5461 return false;
5463 /* See whether there is a successor block to which we could move INSN. */
5464 next_block = next_block_for_reg (bb, dregno, end_dregno);
5465 if (!next_block)
5466 return false;
5468 /* At this point we are committed to moving INSN, but let's try to
5469 move it as far as we can. */
5472 live_out = df_get_live_out (bb);
5473 live_in = df_get_live_in (next_block);
5474 bb = next_block;
5476 /* Check whether BB uses DEST or clobbers DEST. We need to add
5477 INSN to BB if so. Either way, DEST is no longer live on entry,
5478 except for any part that overlaps SRC (next loop). */
5479 bb_uses = &DF_LR_BB_INFO (bb)->use;
5480 bb_defs = &DF_LR_BB_INFO (bb)->def;
5481 if (df_live)
5483 for (i = dregno; i < end_dregno; i++)
5485 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i)
5486 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5487 next_block = NULL;
5488 CLEAR_REGNO_REG_SET (live_out, i);
5489 CLEAR_REGNO_REG_SET (live_in, i);
5492 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5493 Either way, SRC is now live on entry. */
5494 for (i = sregno; i < end_sregno; i++)
5496 if (REGNO_REG_SET_P (bb_defs, i)
5497 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5498 next_block = NULL;
5499 SET_REGNO_REG_SET (live_out, i);
5500 SET_REGNO_REG_SET (live_in, i);
5503 else
5505 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
5506 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
5507 at -O1, just give up searching NEXT_BLOCK. */
5508 next_block = NULL;
5509 for (i = dregno; i < end_dregno; i++)
5511 CLEAR_REGNO_REG_SET (live_out, i);
5512 CLEAR_REGNO_REG_SET (live_in, i);
5515 for (i = sregno; i < end_sregno; i++)
5517 SET_REGNO_REG_SET (live_out, i);
5518 SET_REGNO_REG_SET (live_in, i);
5522 /* If we don't need to add the move to BB, look for a single
5523 successor block. */
5524 if (next_block)
5525 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5527 while (next_block);
5529 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5530 (next loop). */
5531 for (i = dregno; i < end_dregno; i++)
5533 CLEAR_REGNO_REG_SET (bb_uses, i);
5534 SET_REGNO_REG_SET (bb_defs, i);
5537 /* BB now uses SRC. */
5538 for (i = sregno; i < end_sregno; i++)
5539 SET_REGNO_REG_SET (bb_uses, i);
5541 emit_insn_after (PATTERN (insn), bb_note (bb));
5542 delete_insn (insn);
5543 return true;
5546 /* Look for register copies in the first block of the function, and move
5547 them down into successor blocks if the register is used only on one
5548 path. This exposes more opportunities for shrink-wrapping. These
5549 kinds of sets often occur when incoming argument registers are moved
5550 to call-saved registers because their values are live across one or
5551 more calls during the function. */
5553 static void
5554 prepare_shrink_wrap (basic_block entry_block)
5556 rtx insn, curr, x;
5557 HARD_REG_SET uses, defs;
5558 df_ref *ref;
5560 CLEAR_HARD_REG_SET (uses);
5561 CLEAR_HARD_REG_SET (defs);
5562 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5563 if (NONDEBUG_INSN_P (insn)
5564 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5566 /* Add all defined registers to DEFs. */
5567 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5569 x = DF_REF_REG (*ref);
5570 if (REG_P (x) && HARD_REGISTER_P (x))
5571 SET_HARD_REG_BIT (defs, REGNO (x));
5574 /* Add all used registers to USESs. */
5575 for (ref = DF_INSN_USES (insn); *ref; ref++)
5577 x = DF_REF_REG (*ref);
5578 if (REG_P (x) && HARD_REGISTER_P (x))
5579 SET_HARD_REG_BIT (uses, REGNO (x));
5584 #endif
5586 #ifdef HAVE_return
5587 /* Insert use of return register before the end of BB. */
5589 static void
5590 emit_use_return_register_into_block (basic_block bb)
5592 rtx seq, insn;
5593 start_sequence ();
5594 use_return_register ();
5595 seq = get_insns ();
5596 end_sequence ();
5597 insn = BB_END (bb);
5598 #ifdef HAVE_cc0
5599 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5600 insn = prev_cc0_setter (insn);
5601 #endif
5602 emit_insn_before (seq, insn);
5606 /* Create a return pattern, either simple_return or return, depending on
5607 simple_p. */
5609 static rtx
5610 gen_return_pattern (bool simple_p)
5612 #ifdef HAVE_simple_return
5613 return simple_p ? gen_simple_return () : gen_return ();
5614 #else
5615 gcc_assert (!simple_p);
5616 return gen_return ();
5617 #endif
5620 /* Insert an appropriate return pattern at the end of block BB. This
5621 also means updating block_for_insn appropriately. SIMPLE_P is
5622 the same as in gen_return_pattern and passed to it. */
5624 static void
5625 emit_return_into_block (bool simple_p, basic_block bb)
5627 rtx jump, pat;
5628 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5629 pat = PATTERN (jump);
5630 if (GET_CODE (pat) == PARALLEL)
5631 pat = XVECEXP (pat, 0, 0);
5632 gcc_assert (ANY_RETURN_P (pat));
5633 JUMP_LABEL (jump) = pat;
5635 #endif
5637 /* Set JUMP_LABEL for a return insn. */
5639 void
5640 set_return_jump_label (rtx returnjump)
5642 rtx pat = PATTERN (returnjump);
5643 if (GET_CODE (pat) == PARALLEL)
5644 pat = XVECEXP (pat, 0, 0);
5645 if (ANY_RETURN_P (pat))
5646 JUMP_LABEL (returnjump) = pat;
5647 else
5648 JUMP_LABEL (returnjump) = ret_rtx;
5651 #ifdef HAVE_simple_return
5652 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5653 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5654 static void
5655 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5656 bitmap_head *need_prologue)
5658 edge_iterator ei;
5659 edge e;
5660 rtx insn = BB_END (bb);
5662 /* We know BB has a single successor, so there is no need to copy a
5663 simple jump at the end of BB. */
5664 if (simplejump_p (insn))
5665 insn = PREV_INSN (insn);
5667 start_sequence ();
5668 duplicate_insn_chain (BB_HEAD (bb), insn);
5669 if (dump_file)
5671 unsigned count = 0;
5672 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5673 if (active_insn_p (insn))
5674 ++count;
5675 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5676 bb->index, copy_bb->index, count);
5678 insn = get_insns ();
5679 end_sequence ();
5680 emit_insn_before (insn, before);
5682 /* Redirect all the paths that need no prologue into copy_bb. */
5683 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5684 if (!bitmap_bit_p (need_prologue, e->src->index))
5686 int freq = EDGE_FREQUENCY (e);
5687 copy_bb->count += e->count;
5688 copy_bb->frequency += EDGE_FREQUENCY (e);
5689 e->dest->count -= e->count;
5690 if (e->dest->count < 0)
5691 e->dest->count = 0;
5692 e->dest->frequency -= freq;
5693 if (e->dest->frequency < 0)
5694 e->dest->frequency = 0;
5695 redirect_edge_and_branch_force (e, copy_bb);
5696 continue;
5698 else
5699 ei_next (&ei);
5701 #endif
5703 #if defined (HAVE_return) || defined (HAVE_simple_return)
5704 /* Return true if there are any active insns between HEAD and TAIL. */
5705 static bool
5706 active_insn_between (rtx head, rtx tail)
5708 while (tail)
5710 if (active_insn_p (tail))
5711 return true;
5712 if (tail == head)
5713 return false;
5714 tail = PREV_INSN (tail);
5716 return false;
5719 /* LAST_BB is a block that exits, and empty of active instructions.
5720 Examine its predecessors for jumps that can be converted to
5721 (conditional) returns. */
5722 static vec<edge>
5723 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5724 vec<edge> unconverted ATTRIBUTE_UNUSED)
5726 int i;
5727 basic_block bb;
5728 rtx label;
5729 edge_iterator ei;
5730 edge e;
5731 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5733 FOR_EACH_EDGE (e, ei, last_bb->preds)
5734 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5735 src_bbs.quick_push (e->src);
5737 label = BB_HEAD (last_bb);
5739 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5741 rtx jump = BB_END (bb);
5743 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5744 continue;
5746 e = find_edge (bb, last_bb);
5748 /* If we have an unconditional jump, we can replace that
5749 with a simple return instruction. */
5750 if (simplejump_p (jump))
5752 /* The use of the return register might be present in the exit
5753 fallthru block. Either:
5754 - removing the use is safe, and we should remove the use in
5755 the exit fallthru block, or
5756 - removing the use is not safe, and we should add it here.
5757 For now, we conservatively choose the latter. Either of the
5758 2 helps in crossjumping. */
5759 emit_use_return_register_into_block (bb);
5761 emit_return_into_block (simple_p, bb);
5762 delete_insn (jump);
5765 /* If we have a conditional jump branching to the last
5766 block, we can try to replace that with a conditional
5767 return instruction. */
5768 else if (condjump_p (jump))
5770 rtx dest;
5772 if (simple_p)
5773 dest = simple_return_rtx;
5774 else
5775 dest = ret_rtx;
5776 if (!redirect_jump (jump, dest, 0))
5778 #ifdef HAVE_simple_return
5779 if (simple_p)
5781 if (dump_file)
5782 fprintf (dump_file,
5783 "Failed to redirect bb %d branch.\n", bb->index);
5784 unconverted.safe_push (e);
5786 #endif
5787 continue;
5790 /* See comment in simplejump_p case above. */
5791 emit_use_return_register_into_block (bb);
5793 /* If this block has only one successor, it both jumps
5794 and falls through to the fallthru block, so we can't
5795 delete the edge. */
5796 if (single_succ_p (bb))
5797 continue;
5799 else
5801 #ifdef HAVE_simple_return
5802 if (simple_p)
5804 if (dump_file)
5805 fprintf (dump_file,
5806 "Failed to redirect bb %d branch.\n", bb->index);
5807 unconverted.safe_push (e);
5809 #endif
5810 continue;
5813 /* Fix up the CFG for the successful change we just made. */
5814 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5815 e->flags &= ~EDGE_CROSSING;
5817 src_bbs.release ();
5818 return unconverted;
5821 /* Emit a return insn for the exit fallthru block. */
5822 static basic_block
5823 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5825 basic_block last_bb = exit_fallthru_edge->src;
5827 if (JUMP_P (BB_END (last_bb)))
5829 last_bb = split_edge (exit_fallthru_edge);
5830 exit_fallthru_edge = single_succ_edge (last_bb);
5832 emit_barrier_after (BB_END (last_bb));
5833 emit_return_into_block (simple_p, last_bb);
5834 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5835 return last_bb;
5837 #endif
5840 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5841 this into place with notes indicating where the prologue ends and where
5842 the epilogue begins. Update the basic block information when possible.
5844 Notes on epilogue placement:
5845 There are several kinds of edges to the exit block:
5846 * a single fallthru edge from LAST_BB
5847 * possibly, edges from blocks containing sibcalls
5848 * possibly, fake edges from infinite loops
5850 The epilogue is always emitted on the fallthru edge from the last basic
5851 block in the function, LAST_BB, into the exit block.
5853 If LAST_BB is empty except for a label, it is the target of every
5854 other basic block in the function that ends in a return. If a
5855 target has a return or simple_return pattern (possibly with
5856 conditional variants), these basic blocks can be changed so that a
5857 return insn is emitted into them, and their target is adjusted to
5858 the real exit block.
5860 Notes on shrink wrapping: We implement a fairly conservative
5861 version of shrink-wrapping rather than the textbook one. We only
5862 generate a single prologue and a single epilogue. This is
5863 sufficient to catch a number of interesting cases involving early
5864 exits.
5866 First, we identify the blocks that require the prologue to occur before
5867 them. These are the ones that modify a call-saved register, or reference
5868 any of the stack or frame pointer registers. To simplify things, we then
5869 mark everything reachable from these blocks as also requiring a prologue.
5870 This takes care of loops automatically, and avoids the need to examine
5871 whether MEMs reference the frame, since it is sufficient to check for
5872 occurrences of the stack or frame pointer.
5874 We then compute the set of blocks for which the need for a prologue
5875 is anticipatable (borrowing terminology from the shrink-wrapping
5876 description in Muchnick's book). These are the blocks which either
5877 require a prologue themselves, or those that have only successors
5878 where the prologue is anticipatable. The prologue needs to be
5879 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5880 is not. For the moment, we ensure that only one such edge exists.
5882 The epilogue is placed as described above, but we make a
5883 distinction between inserting return and simple_return patterns
5884 when modifying other blocks that end in a return. Blocks that end
5885 in a sibcall omit the sibcall_epilogue if the block is not in
5886 ANTIC. */
5888 static void
5889 thread_prologue_and_epilogue_insns (void)
5891 bool inserted;
5892 #ifdef HAVE_simple_return
5893 vec<edge> unconverted_simple_returns = vNULL;
5894 bool nonempty_prologue;
5895 bitmap_head bb_flags;
5896 unsigned max_grow_size;
5897 #endif
5898 rtx returnjump;
5899 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5900 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5901 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5902 edge_iterator ei;
5904 df_analyze ();
5906 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5908 inserted = false;
5909 seq = NULL_RTX;
5910 epilogue_end = NULL_RTX;
5911 returnjump = NULL_RTX;
5913 /* Can't deal with multiple successors of the entry block at the
5914 moment. Function should always have at least one entry
5915 point. */
5916 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5917 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5918 orig_entry_edge = entry_edge;
5920 split_prologue_seq = NULL_RTX;
5921 if (flag_split_stack
5922 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5923 == NULL))
5925 #ifndef HAVE_split_stack_prologue
5926 gcc_unreachable ();
5927 #else
5928 gcc_assert (HAVE_split_stack_prologue);
5930 start_sequence ();
5931 emit_insn (gen_split_stack_prologue ());
5932 split_prologue_seq = get_insns ();
5933 end_sequence ();
5935 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5936 set_insn_locations (split_prologue_seq, prologue_location);
5937 #endif
5940 prologue_seq = NULL_RTX;
5941 #ifdef HAVE_prologue
5942 if (HAVE_prologue)
5944 start_sequence ();
5945 seq = gen_prologue ();
5946 emit_insn (seq);
5948 /* Insert an explicit USE for the frame pointer
5949 if the profiling is on and the frame pointer is required. */
5950 if (crtl->profile && frame_pointer_needed)
5951 emit_use (hard_frame_pointer_rtx);
5953 /* Retain a map of the prologue insns. */
5954 record_insns (seq, NULL, &prologue_insn_hash);
5955 emit_note (NOTE_INSN_PROLOGUE_END);
5957 /* Ensure that instructions are not moved into the prologue when
5958 profiling is on. The call to the profiling routine can be
5959 emitted within the live range of a call-clobbered register. */
5960 if (!targetm.profile_before_prologue () && crtl->profile)
5961 emit_insn (gen_blockage ());
5963 prologue_seq = get_insns ();
5964 end_sequence ();
5965 set_insn_locations (prologue_seq, prologue_location);
5967 #endif
5969 #ifdef HAVE_simple_return
5970 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5972 /* Try to perform a kind of shrink-wrapping, making sure the
5973 prologue/epilogue is emitted only around those parts of the
5974 function that require it. */
5976 nonempty_prologue = false;
5977 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5978 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5980 nonempty_prologue = true;
5981 break;
5984 if (flag_shrink_wrap && HAVE_simple_return
5985 && (targetm.profile_before_prologue () || !crtl->profile)
5986 && nonempty_prologue && !crtl->calls_eh_return)
5988 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5989 struct hard_reg_set_container set_up_by_prologue;
5990 rtx p_insn;
5991 vec<basic_block> vec;
5992 basic_block bb;
5993 bitmap_head bb_antic_flags;
5994 bitmap_head bb_on_list;
5995 bitmap_head bb_tail;
5997 if (dump_file)
5998 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
6000 /* Compute the registers set and used in the prologue. */
6001 CLEAR_HARD_REG_SET (prologue_clobbered);
6002 CLEAR_HARD_REG_SET (prologue_used);
6003 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
6005 HARD_REG_SET this_used;
6006 if (!NONDEBUG_INSN_P (p_insn))
6007 continue;
6009 CLEAR_HARD_REG_SET (this_used);
6010 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6011 &this_used);
6012 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6013 IOR_HARD_REG_SET (prologue_used, this_used);
6014 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6015 &prologue_clobbered);
6018 prepare_shrink_wrap (entry_edge->dest);
6020 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6021 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6022 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6024 /* Find the set of basic blocks that require a stack frame,
6025 and blocks that are too big to be duplicated. */
6027 vec.create (n_basic_blocks_for_fn (cfun));
6029 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6030 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6031 STACK_POINTER_REGNUM);
6032 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6033 if (frame_pointer_needed)
6034 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6035 HARD_FRAME_POINTER_REGNUM);
6036 if (pic_offset_table_rtx)
6037 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6038 PIC_OFFSET_TABLE_REGNUM);
6039 if (crtl->drap_reg)
6040 add_to_hard_reg_set (&set_up_by_prologue.set,
6041 GET_MODE (crtl->drap_reg),
6042 REGNO (crtl->drap_reg));
6043 if (targetm.set_up_by_prologue)
6044 targetm.set_up_by_prologue (&set_up_by_prologue);
6046 /* We don't use a different max size depending on
6047 optimize_bb_for_speed_p because increasing shrink-wrapping
6048 opportunities by duplicating tail blocks can actually result
6049 in an overall decrease in code size. */
6050 max_grow_size = get_uncond_jump_length ();
6051 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6053 FOR_EACH_BB_FN (bb, cfun)
6055 rtx insn;
6056 unsigned size = 0;
6058 FOR_BB_INSNS (bb, insn)
6059 if (NONDEBUG_INSN_P (insn))
6061 if (requires_stack_frame_p (insn, prologue_used,
6062 set_up_by_prologue.set))
6064 if (bb == entry_edge->dest)
6065 goto fail_shrinkwrap;
6066 bitmap_set_bit (&bb_flags, bb->index);
6067 vec.quick_push (bb);
6068 break;
6070 else if (size <= max_grow_size)
6072 size += get_attr_min_length (insn);
6073 if (size > max_grow_size)
6074 bitmap_set_bit (&bb_on_list, bb->index);
6079 /* Blocks that really need a prologue, or are too big for tails. */
6080 bitmap_ior_into (&bb_on_list, &bb_flags);
6082 /* For every basic block that needs a prologue, mark all blocks
6083 reachable from it, so as to ensure they are also seen as
6084 requiring a prologue. */
6085 while (!vec.is_empty ())
6087 basic_block tmp_bb = vec.pop ();
6089 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6090 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6091 && bitmap_set_bit (&bb_flags, e->dest->index))
6092 vec.quick_push (e->dest);
6095 /* Find the set of basic blocks that need no prologue, have a
6096 single successor, can be duplicated, meet a max size
6097 requirement, and go to the exit via like blocks. */
6098 vec.quick_push (EXIT_BLOCK_PTR_FOR_FN (cfun));
6099 while (!vec.is_empty ())
6101 basic_block tmp_bb = vec.pop ();
6103 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6104 if (single_succ_p (e->src)
6105 && !bitmap_bit_p (&bb_on_list, e->src->index)
6106 && can_duplicate_block_p (e->src))
6108 edge pe;
6109 edge_iterator pei;
6111 /* If there is predecessor of e->src which doesn't
6112 need prologue and the edge is complex,
6113 we might not be able to redirect the branch
6114 to a copy of e->src. */
6115 FOR_EACH_EDGE (pe, pei, e->src->preds)
6116 if ((pe->flags & EDGE_COMPLEX) != 0
6117 && !bitmap_bit_p (&bb_flags, pe->src->index))
6118 break;
6119 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6120 vec.quick_push (e->src);
6124 /* Now walk backwards from every block that is marked as needing
6125 a prologue to compute the bb_antic_flags bitmap. Exclude
6126 tail blocks; They can be duplicated to be used on paths not
6127 needing a prologue. */
6128 bitmap_clear (&bb_on_list);
6129 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6130 FOR_EACH_BB_FN (bb, cfun)
6132 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6133 continue;
6134 FOR_EACH_EDGE (e, ei, bb->preds)
6135 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6136 && bitmap_set_bit (&bb_on_list, e->src->index))
6137 vec.quick_push (e->src);
6139 while (!vec.is_empty ())
6141 basic_block tmp_bb = vec.pop ();
6142 bool all_set = true;
6144 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6145 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6146 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6148 all_set = false;
6149 break;
6152 if (all_set)
6154 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6155 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6156 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6157 && bitmap_set_bit (&bb_on_list, e->src->index))
6158 vec.quick_push (e->src);
6161 /* Find exactly one edge that leads to a block in ANTIC from
6162 a block that isn't. */
6163 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6164 FOR_EACH_BB_FN (bb, cfun)
6166 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6167 continue;
6168 FOR_EACH_EDGE (e, ei, bb->preds)
6169 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6171 if (entry_edge != orig_entry_edge)
6173 entry_edge = orig_entry_edge;
6174 if (dump_file)
6175 fprintf (dump_file, "More than one candidate edge.\n");
6176 goto fail_shrinkwrap;
6178 if (dump_file)
6179 fprintf (dump_file, "Found candidate edge for "
6180 "shrink-wrapping, %d->%d.\n", e->src->index,
6181 e->dest->index);
6182 entry_edge = e;
6186 if (entry_edge != orig_entry_edge)
6188 /* Test whether the prologue is known to clobber any register
6189 (other than FP or SP) which are live on the edge. */
6190 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6191 if (frame_pointer_needed)
6192 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6193 REG_SET_TO_HARD_REG_SET (live_on_edge,
6194 df_get_live_in (entry_edge->dest));
6195 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6197 entry_edge = orig_entry_edge;
6198 if (dump_file)
6199 fprintf (dump_file,
6200 "Shrink-wrapping aborted due to clobber.\n");
6203 if (entry_edge != orig_entry_edge)
6205 crtl->shrink_wrapped = true;
6206 if (dump_file)
6207 fprintf (dump_file, "Performing shrink-wrapping.\n");
6209 /* Find tail blocks reachable from both blocks needing a
6210 prologue and blocks not needing a prologue. */
6211 if (!bitmap_empty_p (&bb_tail))
6212 FOR_EACH_BB_FN (bb, cfun)
6214 bool some_pro, some_no_pro;
6215 if (!bitmap_bit_p (&bb_tail, bb->index))
6216 continue;
6217 some_pro = some_no_pro = false;
6218 FOR_EACH_EDGE (e, ei, bb->preds)
6220 if (bitmap_bit_p (&bb_flags, e->src->index))
6221 some_pro = true;
6222 else
6223 some_no_pro = true;
6225 if (some_pro && some_no_pro)
6226 vec.quick_push (bb);
6227 else
6228 bitmap_clear_bit (&bb_tail, bb->index);
6230 /* Find the head of each tail. */
6231 while (!vec.is_empty ())
6233 basic_block tbb = vec.pop ();
6235 if (!bitmap_bit_p (&bb_tail, tbb->index))
6236 continue;
6238 while (single_succ_p (tbb))
6240 tbb = single_succ (tbb);
6241 bitmap_clear_bit (&bb_tail, tbb->index);
6244 /* Now duplicate the tails. */
6245 if (!bitmap_empty_p (&bb_tail))
6246 FOR_EACH_BB_REVERSE_FN (bb, cfun)
6248 basic_block copy_bb, tbb;
6249 rtx insert_point;
6250 int eflags;
6252 if (!bitmap_clear_bit (&bb_tail, bb->index))
6253 continue;
6255 /* Create a copy of BB, instructions and all, for
6256 use on paths that don't need a prologue.
6257 Ideal placement of the copy is on a fall-thru edge
6258 or after a block that would jump to the copy. */
6259 FOR_EACH_EDGE (e, ei, bb->preds)
6260 if (!bitmap_bit_p (&bb_flags, e->src->index)
6261 && single_succ_p (e->src))
6262 break;
6263 if (e)
6265 /* Make sure we insert after any barriers. */
6266 rtx end = get_last_bb_insn (e->src);
6267 copy_bb = create_basic_block (NEXT_INSN (end),
6268 NULL_RTX, e->src);
6269 BB_COPY_PARTITION (copy_bb, e->src);
6271 else
6273 /* Otherwise put the copy at the end of the function. */
6274 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6275 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6276 BB_COPY_PARTITION (copy_bb, bb);
6279 insert_point = emit_note_after (NOTE_INSN_DELETED,
6280 BB_END (copy_bb));
6281 emit_barrier_after (BB_END (copy_bb));
6283 tbb = bb;
6284 while (1)
6286 dup_block_and_redirect (tbb, copy_bb, insert_point,
6287 &bb_flags);
6288 tbb = single_succ (tbb);
6289 if (tbb == EXIT_BLOCK_PTR_FOR_FN (cfun))
6290 break;
6291 e = split_block (copy_bb, PREV_INSN (insert_point));
6292 copy_bb = e->dest;
6295 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6296 We have yet to add a simple_return to the tails,
6297 as we'd like to first convert_jumps_to_returns in
6298 case the block is no longer used after that. */
6299 eflags = EDGE_FAKE;
6300 if (CALL_P (PREV_INSN (insert_point))
6301 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6302 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6303 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR_FOR_FN (cfun),
6304 eflags);
6306 /* verify_flow_info doesn't like a note after a
6307 sibling call. */
6308 delete_insn (insert_point);
6309 if (bitmap_empty_p (&bb_tail))
6310 break;
6314 fail_shrinkwrap:
6315 bitmap_clear (&bb_tail);
6316 bitmap_clear (&bb_antic_flags);
6317 bitmap_clear (&bb_on_list);
6318 vec.release ();
6320 #endif
6322 if (split_prologue_seq != NULL_RTX)
6324 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6325 inserted = true;
6327 if (prologue_seq != NULL_RTX)
6329 insert_insn_on_edge (prologue_seq, entry_edge);
6330 inserted = true;
6333 /* If the exit block has no non-fake predecessors, we don't need
6334 an epilogue. */
6335 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6336 if ((e->flags & EDGE_FAKE) == 0)
6337 break;
6338 if (e == NULL)
6339 goto epilogue_done;
6341 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6343 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6345 /* If we're allowed to generate a simple return instruction, then by
6346 definition we don't need a full epilogue. If the last basic
6347 block before the exit block does not contain active instructions,
6348 examine its predecessors and try to emit (conditional) return
6349 instructions. */
6350 #ifdef HAVE_simple_return
6351 if (entry_edge != orig_entry_edge)
6353 if (optimize)
6355 unsigned i, last;
6357 /* convert_jumps_to_returns may add to preds of the exit block
6358 (but won't remove). Stop at end of current preds. */
6359 last = EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6360 for (i = 0; i < last; i++)
6362 e = EDGE_I (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds, i);
6363 if (LABEL_P (BB_HEAD (e->src))
6364 && !bitmap_bit_p (&bb_flags, e->src->index)
6365 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6366 unconverted_simple_returns
6367 = convert_jumps_to_returns (e->src, true,
6368 unconverted_simple_returns);
6372 if (exit_fallthru_edge != NULL
6373 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6374 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6376 basic_block last_bb;
6378 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6379 returnjump = BB_END (last_bb);
6380 exit_fallthru_edge = NULL;
6383 #endif
6384 #ifdef HAVE_return
6385 if (HAVE_return)
6387 if (exit_fallthru_edge == NULL)
6388 goto epilogue_done;
6390 if (optimize)
6392 basic_block last_bb = exit_fallthru_edge->src;
6394 if (LABEL_P (BB_HEAD (last_bb))
6395 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6396 convert_jumps_to_returns (last_bb, false, vNULL);
6398 if (EDGE_COUNT (last_bb->preds) != 0
6399 && single_succ_p (last_bb))
6401 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6402 epilogue_end = returnjump = BB_END (last_bb);
6403 #ifdef HAVE_simple_return
6404 /* Emitting the return may add a basic block.
6405 Fix bb_flags for the added block. */
6406 if (last_bb != exit_fallthru_edge->src)
6407 bitmap_set_bit (&bb_flags, last_bb->index);
6408 #endif
6409 goto epilogue_done;
6413 #endif
6415 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6416 this marker for the splits of EH_RETURN patterns, and nothing else
6417 uses the flag in the meantime. */
6418 epilogue_completed = 1;
6420 #ifdef HAVE_eh_return
6421 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6422 some targets, these get split to a special version of the epilogue
6423 code. In order to be able to properly annotate these with unwind
6424 info, try to split them now. If we get a valid split, drop an
6425 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6426 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6428 rtx prev, last, trial;
6430 if (e->flags & EDGE_FALLTHRU)
6431 continue;
6432 last = BB_END (e->src);
6433 if (!eh_returnjump_p (last))
6434 continue;
6436 prev = PREV_INSN (last);
6437 trial = try_split (PATTERN (last), last, 1);
6438 if (trial == last)
6439 continue;
6441 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6442 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6444 #endif
6446 /* If nothing falls through into the exit block, we don't need an
6447 epilogue. */
6449 if (exit_fallthru_edge == NULL)
6450 goto epilogue_done;
6452 #ifdef HAVE_epilogue
6453 if (HAVE_epilogue)
6455 start_sequence ();
6456 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6457 seq = gen_epilogue ();
6458 if (seq)
6459 emit_jump_insn (seq);
6461 /* Retain a map of the epilogue insns. */
6462 record_insns (seq, NULL, &epilogue_insn_hash);
6463 set_insn_locations (seq, epilogue_location);
6465 seq = get_insns ();
6466 returnjump = get_last_insn ();
6467 end_sequence ();
6469 insert_insn_on_edge (seq, exit_fallthru_edge);
6470 inserted = true;
6472 if (JUMP_P (returnjump))
6473 set_return_jump_label (returnjump);
6475 else
6476 #endif
6478 basic_block cur_bb;
6480 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6481 goto epilogue_done;
6482 /* We have a fall-through edge to the exit block, the source is not
6483 at the end of the function, and there will be an assembler epilogue
6484 at the end of the function.
6485 We can't use force_nonfallthru here, because that would try to
6486 use return. Inserting a jump 'by hand' is extremely messy, so
6487 we take advantage of cfg_layout_finalize using
6488 fixup_fallthru_exit_predecessor. */
6489 cfg_layout_initialize (0);
6490 FOR_EACH_BB_FN (cur_bb, cfun)
6491 if (cur_bb->index >= NUM_FIXED_BLOCKS
6492 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6493 cur_bb->aux = cur_bb->next_bb;
6494 cfg_layout_finalize ();
6497 epilogue_done:
6499 default_rtl_profile ();
6501 if (inserted)
6503 sbitmap blocks;
6505 commit_edge_insertions ();
6507 /* Look for basic blocks within the prologue insns. */
6508 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6509 bitmap_clear (blocks);
6510 bitmap_set_bit (blocks, entry_edge->dest->index);
6511 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6512 find_many_sub_basic_blocks (blocks);
6513 sbitmap_free (blocks);
6515 /* The epilogue insns we inserted may cause the exit edge to no longer
6516 be fallthru. */
6517 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6519 if (((e->flags & EDGE_FALLTHRU) != 0)
6520 && returnjump_p (BB_END (e->src)))
6521 e->flags &= ~EDGE_FALLTHRU;
6525 #ifdef HAVE_simple_return
6526 /* If there were branches to an empty LAST_BB which we tried to
6527 convert to conditional simple_returns, but couldn't for some
6528 reason, create a block to hold a simple_return insn and redirect
6529 those remaining edges. */
6530 if (!unconverted_simple_returns.is_empty ())
6532 basic_block simple_return_block_hot = NULL;
6533 basic_block simple_return_block_cold = NULL;
6534 edge pending_edge_hot = NULL;
6535 edge pending_edge_cold = NULL;
6536 basic_block exit_pred;
6537 int i;
6539 gcc_assert (entry_edge != orig_entry_edge);
6541 /* See if we can reuse the last insn that was emitted for the
6542 epilogue. */
6543 if (returnjump != NULL_RTX
6544 && JUMP_LABEL (returnjump) == simple_return_rtx)
6546 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6547 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6548 simple_return_block_hot = e->dest;
6549 else
6550 simple_return_block_cold = e->dest;
6553 /* Also check returns we might need to add to tail blocks. */
6554 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6555 if (EDGE_COUNT (e->src->preds) != 0
6556 && (e->flags & EDGE_FAKE) != 0
6557 && !bitmap_bit_p (&bb_flags, e->src->index))
6559 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6560 pending_edge_hot = e;
6561 else
6562 pending_edge_cold = e;
6565 /* Save a pointer to the exit's predecessor BB for use in
6566 inserting new BBs at the end of the function. Do this
6567 after the call to split_block above which may split
6568 the original exit pred. */
6569 exit_pred = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
6571 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6573 basic_block *pdest_bb;
6574 edge pending;
6576 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6578 pdest_bb = &simple_return_block_hot;
6579 pending = pending_edge_hot;
6581 else
6583 pdest_bb = &simple_return_block_cold;
6584 pending = pending_edge_cold;
6587 if (*pdest_bb == NULL && pending != NULL)
6589 emit_return_into_block (true, pending->src);
6590 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6591 *pdest_bb = pending->src;
6593 else if (*pdest_bb == NULL)
6595 basic_block bb;
6596 rtx start;
6598 bb = create_basic_block (NULL, NULL, exit_pred);
6599 BB_COPY_PARTITION (bb, e->src);
6600 start = emit_jump_insn_after (gen_simple_return (),
6601 BB_END (bb));
6602 JUMP_LABEL (start) = simple_return_rtx;
6603 emit_barrier_after (start);
6605 *pdest_bb = bb;
6606 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
6608 redirect_edge_and_branch_force (e, *pdest_bb);
6610 unconverted_simple_returns.release ();
6613 if (entry_edge != orig_entry_edge)
6615 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6616 if (EDGE_COUNT (e->src->preds) != 0
6617 && (e->flags & EDGE_FAKE) != 0
6618 && !bitmap_bit_p (&bb_flags, e->src->index))
6620 emit_return_into_block (true, e->src);
6621 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6624 #endif
6626 #ifdef HAVE_sibcall_epilogue
6627 /* Emit sibling epilogues before any sibling call sites. */
6628 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6629 ei_safe_edge (ei));
6632 basic_block bb = e->src;
6633 rtx insn = BB_END (bb);
6634 rtx ep_seq;
6636 if (!CALL_P (insn)
6637 || ! SIBLING_CALL_P (insn)
6638 #ifdef HAVE_simple_return
6639 || (entry_edge != orig_entry_edge
6640 && !bitmap_bit_p (&bb_flags, bb->index))
6641 #endif
6644 ei_next (&ei);
6645 continue;
6648 ep_seq = gen_sibcall_epilogue ();
6649 if (ep_seq)
6651 start_sequence ();
6652 emit_note (NOTE_INSN_EPILOGUE_BEG);
6653 emit_insn (ep_seq);
6654 seq = get_insns ();
6655 end_sequence ();
6657 /* Retain a map of the epilogue insns. Used in life analysis to
6658 avoid getting rid of sibcall epilogue insns. Do this before we
6659 actually emit the sequence. */
6660 record_insns (seq, NULL, &epilogue_insn_hash);
6661 set_insn_locations (seq, epilogue_location);
6663 emit_insn_before (seq, insn);
6665 ei_next (&ei);
6667 #endif
6669 #ifdef HAVE_epilogue
6670 if (epilogue_end)
6672 rtx insn, next;
6674 /* Similarly, move any line notes that appear after the epilogue.
6675 There is no need, however, to be quite so anal about the existence
6676 of such a note. Also possibly move
6677 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6678 info generation. */
6679 for (insn = epilogue_end; insn; insn = next)
6681 next = NEXT_INSN (insn);
6682 if (NOTE_P (insn)
6683 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6684 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6687 #endif
6689 #ifdef HAVE_simple_return
6690 bitmap_clear (&bb_flags);
6691 #endif
6693 /* Threading the prologue and epilogue changes the artificial refs
6694 in the entry and exit blocks. */
6695 epilogue_completed = 1;
6696 df_update_entry_exit_and_calls ();
6699 /* Reposition the prologue-end and epilogue-begin notes after
6700 instruction scheduling. */
6702 void
6703 reposition_prologue_and_epilogue_notes (void)
6705 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6706 || defined (HAVE_sibcall_epilogue)
6707 /* Since the hash table is created on demand, the fact that it is
6708 non-null is a signal that it is non-empty. */
6709 if (prologue_insn_hash != NULL)
6711 size_t len = htab_elements (prologue_insn_hash);
6712 rtx insn, last = NULL, note = NULL;
6714 /* Scan from the beginning until we reach the last prologue insn. */
6715 /* ??? While we do have the CFG intact, there are two problems:
6716 (1) The prologue can contain loops (typically probing the stack),
6717 which means that the end of the prologue isn't in the first bb.
6718 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6719 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6721 if (NOTE_P (insn))
6723 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6724 note = insn;
6726 else if (contains (insn, prologue_insn_hash))
6728 last = insn;
6729 if (--len == 0)
6730 break;
6734 if (last)
6736 if (note == NULL)
6738 /* Scan forward looking for the PROLOGUE_END note. It should
6739 be right at the beginning of the block, possibly with other
6740 insn notes that got moved there. */
6741 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6743 if (NOTE_P (note)
6744 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6745 break;
6749 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6750 if (LABEL_P (last))
6751 last = NEXT_INSN (last);
6752 reorder_insns (note, note, last);
6756 if (epilogue_insn_hash != NULL)
6758 edge_iterator ei;
6759 edge e;
6761 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6763 rtx insn, first = NULL, note = NULL;
6764 basic_block bb = e->src;
6766 /* Scan from the beginning until we reach the first epilogue insn. */
6767 FOR_BB_INSNS (bb, insn)
6769 if (NOTE_P (insn))
6771 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6773 note = insn;
6774 if (first != NULL)
6775 break;
6778 else if (first == NULL && contains (insn, epilogue_insn_hash))
6780 first = insn;
6781 if (note != NULL)
6782 break;
6786 if (note)
6788 /* If the function has a single basic block, and no real
6789 epilogue insns (e.g. sibcall with no cleanup), the
6790 epilogue note can get scheduled before the prologue
6791 note. If we have frame related prologue insns, having
6792 them scanned during the epilogue will result in a crash.
6793 In this case re-order the epilogue note to just before
6794 the last insn in the block. */
6795 if (first == NULL)
6796 first = BB_END (bb);
6798 if (PREV_INSN (first) != note)
6799 reorder_insns (note, note, PREV_INSN (first));
6803 #endif /* HAVE_prologue or HAVE_epilogue */
6806 /* Returns the name of function declared by FNDECL. */
6807 const char *
6808 fndecl_name (tree fndecl)
6810 if (fndecl == NULL)
6811 return "(nofn)";
6812 return lang_hooks.decl_printable_name (fndecl, 2);
6815 /* Returns the name of function FN. */
6816 const char *
6817 function_name (struct function *fn)
6819 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6820 return fndecl_name (fndecl);
6823 /* Returns the name of the current function. */
6824 const char *
6825 current_function_name (void)
6827 return function_name (cfun);
6831 static unsigned int
6832 rest_of_handle_check_leaf_regs (void)
6834 #ifdef LEAF_REGISTERS
6835 crtl->uses_only_leaf_regs
6836 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6837 #endif
6838 return 0;
6841 /* Insert a TYPE into the used types hash table of CFUN. */
6843 static void
6844 used_types_insert_helper (tree type, struct function *func)
6846 if (type != NULL && func != NULL)
6848 void **slot;
6850 if (func->used_types_hash == NULL)
6851 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6852 htab_eq_pointer, NULL);
6853 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6854 if (*slot == NULL)
6855 *slot = type;
6859 /* Given a type, insert it into the used hash table in cfun. */
6860 void
6861 used_types_insert (tree t)
6863 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6864 if (TYPE_NAME (t))
6865 break;
6866 else
6867 t = TREE_TYPE (t);
6868 if (TREE_CODE (t) == ERROR_MARK)
6869 return;
6870 if (TYPE_NAME (t) == NULL_TREE
6871 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6872 t = TYPE_MAIN_VARIANT (t);
6873 if (debug_info_level > DINFO_LEVEL_NONE)
6875 if (cfun)
6876 used_types_insert_helper (t, cfun);
6877 else
6879 /* So this might be a type referenced by a global variable.
6880 Record that type so that we can later decide to emit its
6881 debug information. */
6882 vec_safe_push (types_used_by_cur_var_decl, t);
6887 /* Helper to Hash a struct types_used_by_vars_entry. */
6889 static hashval_t
6890 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6892 gcc_assert (entry && entry->var_decl && entry->type);
6894 return iterative_hash_object (entry->type,
6895 iterative_hash_object (entry->var_decl, 0));
6898 /* Hash function of the types_used_by_vars_entry hash table. */
6900 hashval_t
6901 types_used_by_vars_do_hash (const void *x)
6903 const struct types_used_by_vars_entry *entry =
6904 (const struct types_used_by_vars_entry *) x;
6906 return hash_types_used_by_vars_entry (entry);
6909 /*Equality function of the types_used_by_vars_entry hash table. */
6912 types_used_by_vars_eq (const void *x1, const void *x2)
6914 const struct types_used_by_vars_entry *e1 =
6915 (const struct types_used_by_vars_entry *) x1;
6916 const struct types_used_by_vars_entry *e2 =
6917 (const struct types_used_by_vars_entry *)x2;
6919 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6922 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6924 void
6925 types_used_by_var_decl_insert (tree type, tree var_decl)
6927 if (type != NULL && var_decl != NULL)
6929 void **slot;
6930 struct types_used_by_vars_entry e;
6931 e.var_decl = var_decl;
6932 e.type = type;
6933 if (types_used_by_vars_hash == NULL)
6934 types_used_by_vars_hash =
6935 htab_create_ggc (37, types_used_by_vars_do_hash,
6936 types_used_by_vars_eq, NULL);
6937 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6938 hash_types_used_by_vars_entry (&e), INSERT);
6939 if (*slot == NULL)
6941 struct types_used_by_vars_entry *entry;
6942 entry = ggc_alloc_types_used_by_vars_entry ();
6943 entry->type = type;
6944 entry->var_decl = var_decl;
6945 *slot = entry;
6950 namespace {
6952 const pass_data pass_data_leaf_regs =
6954 RTL_PASS, /* type */
6955 "*leaf_regs", /* name */
6956 OPTGROUP_NONE, /* optinfo_flags */
6957 false, /* has_gate */
6958 true, /* has_execute */
6959 TV_NONE, /* tv_id */
6960 0, /* properties_required */
6961 0, /* properties_provided */
6962 0, /* properties_destroyed */
6963 0, /* todo_flags_start */
6964 0, /* todo_flags_finish */
6967 class pass_leaf_regs : public rtl_opt_pass
6969 public:
6970 pass_leaf_regs (gcc::context *ctxt)
6971 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6974 /* opt_pass methods: */
6975 unsigned int execute () { return rest_of_handle_check_leaf_regs (); }
6977 }; // class pass_leaf_regs
6979 } // anon namespace
6981 rtl_opt_pass *
6982 make_pass_leaf_regs (gcc::context *ctxt)
6984 return new pass_leaf_regs (ctxt);
6987 static unsigned int
6988 rest_of_handle_thread_prologue_and_epilogue (void)
6990 if (optimize)
6991 cleanup_cfg (CLEANUP_EXPENSIVE);
6993 /* On some machines, the prologue and epilogue code, or parts thereof,
6994 can be represented as RTL. Doing so lets us schedule insns between
6995 it and the rest of the code and also allows delayed branch
6996 scheduling to operate in the epilogue. */
6997 thread_prologue_and_epilogue_insns ();
6999 /* Shrink-wrapping can result in unreachable edges in the epilogue,
7000 see PR57320. */
7001 cleanup_cfg (0);
7003 /* The stack usage info is finalized during prologue expansion. */
7004 if (flag_stack_usage_info)
7005 output_stack_usage ();
7007 return 0;
7010 namespace {
7012 const pass_data pass_data_thread_prologue_and_epilogue =
7014 RTL_PASS, /* type */
7015 "pro_and_epilogue", /* name */
7016 OPTGROUP_NONE, /* optinfo_flags */
7017 false, /* has_gate */
7018 true, /* has_execute */
7019 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
7020 0, /* properties_required */
7021 0, /* properties_provided */
7022 0, /* properties_destroyed */
7023 TODO_verify_flow, /* todo_flags_start */
7024 ( TODO_df_verify | TODO_df_finish
7025 | TODO_verify_rtl_sharing ), /* todo_flags_finish */
7028 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
7030 public:
7031 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7032 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
7035 /* opt_pass methods: */
7036 unsigned int execute () {
7037 return rest_of_handle_thread_prologue_and_epilogue ();
7040 }; // class pass_thread_prologue_and_epilogue
7042 } // anon namespace
7044 rtl_opt_pass *
7045 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7047 return new pass_thread_prologue_and_epilogue (ctxt);
7051 /* This mini-pass fixes fall-out from SSA in asm statements that have
7052 in-out constraints. Say you start with
7054 orig = inout;
7055 asm ("": "+mr" (inout));
7056 use (orig);
7058 which is transformed very early to use explicit output and match operands:
7060 orig = inout;
7061 asm ("": "=mr" (inout) : "0" (inout));
7062 use (orig);
7064 Or, after SSA and copyprop,
7066 asm ("": "=mr" (inout_2) : "0" (inout_1));
7067 use (inout_1);
7069 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7070 they represent two separate values, so they will get different pseudo
7071 registers during expansion. Then, since the two operands need to match
7072 per the constraints, but use different pseudo registers, reload can
7073 only register a reload for these operands. But reloads can only be
7074 satisfied by hardregs, not by memory, so we need a register for this
7075 reload, just because we are presented with non-matching operands.
7076 So, even though we allow memory for this operand, no memory can be
7077 used for it, just because the two operands don't match. This can
7078 cause reload failures on register-starved targets.
7080 So it's a symptom of reload not being able to use memory for reloads
7081 or, alternatively it's also a symptom of both operands not coming into
7082 reload as matching (in which case the pseudo could go to memory just
7083 fine, as the alternative allows it, and no reload would be necessary).
7084 We fix the latter problem here, by transforming
7086 asm ("": "=mr" (inout_2) : "0" (inout_1));
7088 back to
7090 inout_2 = inout_1;
7091 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7093 static void
7094 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7096 int i;
7097 bool changed = false;
7098 rtx op = SET_SRC (p_sets[0]);
7099 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7100 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7101 bool *output_matched = XALLOCAVEC (bool, noutputs);
7103 memset (output_matched, 0, noutputs * sizeof (bool));
7104 for (i = 0; i < ninputs; i++)
7106 rtx input, output, insns;
7107 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7108 char *end;
7109 int match, j;
7111 if (*constraint == '%')
7112 constraint++;
7114 match = strtoul (constraint, &end, 10);
7115 if (end == constraint)
7116 continue;
7118 gcc_assert (match < noutputs);
7119 output = SET_DEST (p_sets[match]);
7120 input = RTVEC_ELT (inputs, i);
7121 /* Only do the transformation for pseudos. */
7122 if (! REG_P (output)
7123 || rtx_equal_p (output, input)
7124 || (GET_MODE (input) != VOIDmode
7125 && GET_MODE (input) != GET_MODE (output)))
7126 continue;
7128 /* We can't do anything if the output is also used as input,
7129 as we're going to overwrite it. */
7130 for (j = 0; j < ninputs; j++)
7131 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7132 break;
7133 if (j != ninputs)
7134 continue;
7136 /* Avoid changing the same input several times. For
7137 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7138 only change in once (to out1), rather than changing it
7139 first to out1 and afterwards to out2. */
7140 if (i > 0)
7142 for (j = 0; j < noutputs; j++)
7143 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7144 break;
7145 if (j != noutputs)
7146 continue;
7148 output_matched[match] = true;
7150 start_sequence ();
7151 emit_move_insn (output, input);
7152 insns = get_insns ();
7153 end_sequence ();
7154 emit_insn_before (insns, insn);
7156 /* Now replace all mentions of the input with output. We can't
7157 just replace the occurrence in inputs[i], as the register might
7158 also be used in some other input (or even in an address of an
7159 output), which would mean possibly increasing the number of
7160 inputs by one (namely 'output' in addition), which might pose
7161 a too complicated problem for reload to solve. E.g. this situation:
7163 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7165 Here 'input' is used in two occurrences as input (once for the
7166 input operand, once for the address in the second output operand).
7167 If we would replace only the occurrence of the input operand (to
7168 make the matching) we would be left with this:
7170 output = input
7171 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7173 Now we suddenly have two different input values (containing the same
7174 value, but different pseudos) where we formerly had only one.
7175 With more complicated asms this might lead to reload failures
7176 which wouldn't have happen without this pass. So, iterate over
7177 all operands and replace all occurrences of the register used. */
7178 for (j = 0; j < noutputs; j++)
7179 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7180 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7181 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7182 input, output);
7183 for (j = 0; j < ninputs; j++)
7184 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7185 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7186 input, output);
7188 changed = true;
7191 if (changed)
7192 df_insn_rescan (insn);
7195 static unsigned
7196 rest_of_match_asm_constraints (void)
7198 basic_block bb;
7199 rtx insn, pat, *p_sets;
7200 int noutputs;
7202 if (!crtl->has_asm_statement)
7203 return 0;
7205 df_set_flags (DF_DEFER_INSN_RESCAN);
7206 FOR_EACH_BB_FN (bb, cfun)
7208 FOR_BB_INSNS (bb, insn)
7210 if (!INSN_P (insn))
7211 continue;
7213 pat = PATTERN (insn);
7214 if (GET_CODE (pat) == PARALLEL)
7215 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7216 else if (GET_CODE (pat) == SET)
7217 p_sets = &PATTERN (insn), noutputs = 1;
7218 else
7219 continue;
7221 if (GET_CODE (*p_sets) == SET
7222 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7223 match_asm_constraints_1 (insn, p_sets, noutputs);
7227 return TODO_df_finish;
7230 namespace {
7232 const pass_data pass_data_match_asm_constraints =
7234 RTL_PASS, /* type */
7235 "asmcons", /* name */
7236 OPTGROUP_NONE, /* optinfo_flags */
7237 false, /* has_gate */
7238 true, /* has_execute */
7239 TV_NONE, /* tv_id */
7240 0, /* properties_required */
7241 0, /* properties_provided */
7242 0, /* properties_destroyed */
7243 0, /* todo_flags_start */
7244 0, /* todo_flags_finish */
7247 class pass_match_asm_constraints : public rtl_opt_pass
7249 public:
7250 pass_match_asm_constraints (gcc::context *ctxt)
7251 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
7254 /* opt_pass methods: */
7255 unsigned int execute () { return rest_of_match_asm_constraints (); }
7257 }; // class pass_match_asm_constraints
7259 } // anon namespace
7261 rtl_opt_pass *
7262 make_pass_match_asm_constraints (gcc::context *ctxt)
7264 return new pass_match_asm_constraints (ctxt);
7268 #include "gt-function.h"