2009-10-24 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / rtlanal.c
blob7a734eb66e5f1f01fce02c52af018f6995baf032
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
66 /* Bit flags that specify the machine subtype we are compiling for.
67 Bits are tested using macros TARGET_... defined in the tm.h file
68 and set by `-m...' switches. Must be defined in rtlanal.c. */
70 int target_flags;
72 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
73 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
74 SIGN_EXTEND then while narrowing we also have to enforce the
75 representation and sign-extend the value to mode DESTINATION_REP.
77 If the value is already sign-extended to DESTINATION_REP mode we
78 can just switch to DESTINATION mode on it. For each pair of
79 integral modes SOURCE and DESTINATION, when truncating from SOURCE
80 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
81 contains the number of high-order bits in SOURCE that have to be
82 copies of the sign-bit so that we can do this mode-switch to
83 DESTINATION. */
85 static unsigned int
86 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
88 /* Return 1 if the value of X is unstable
89 (would be different at a different point in the program).
90 The frame pointer, arg pointer, etc. are considered stable
91 (within one function) and so is anything marked `unchanging'. */
93 int
94 rtx_unstable_p (const_rtx x)
96 const RTX_CODE code = GET_CODE (x);
97 int i;
98 const char *fmt;
100 switch (code)
102 case MEM:
103 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
105 case CONST:
106 case CONST_INT:
107 case CONST_DOUBLE:
108 case CONST_FIXED:
109 case CONST_VECTOR:
110 case SYMBOL_REF:
111 case LABEL_REF:
112 return 0;
114 case REG:
115 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
116 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
117 /* The arg pointer varies if it is not a fixed register. */
118 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
119 return 0;
120 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
121 /* ??? When call-clobbered, the value is stable modulo the restore
122 that must happen after a call. This currently screws up local-alloc
123 into believing that the restore is not needed. */
124 if (x == pic_offset_table_rtx)
125 return 0;
126 #endif
127 return 1;
129 case ASM_OPERANDS:
130 if (MEM_VOLATILE_P (x))
131 return 1;
133 /* Fall through. */
135 default:
136 break;
139 fmt = GET_RTX_FORMAT (code);
140 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
141 if (fmt[i] == 'e')
143 if (rtx_unstable_p (XEXP (x, i)))
144 return 1;
146 else if (fmt[i] == 'E')
148 int j;
149 for (j = 0; j < XVECLEN (x, i); j++)
150 if (rtx_unstable_p (XVECEXP (x, i, j)))
151 return 1;
154 return 0;
157 /* Return 1 if X has a value that can vary even between two
158 executions of the program. 0 means X can be compared reliably
159 against certain constants or near-constants.
160 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
161 zero, we are slightly more conservative.
162 The frame pointer and the arg pointer are considered constant. */
164 bool
165 rtx_varies_p (const_rtx x, bool for_alias)
167 RTX_CODE code;
168 int i;
169 const char *fmt;
171 if (!x)
172 return 0;
174 code = GET_CODE (x);
175 switch (code)
177 case MEM:
178 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
180 case CONST:
181 case CONST_INT:
182 case CONST_DOUBLE:
183 case CONST_FIXED:
184 case CONST_VECTOR:
185 case SYMBOL_REF:
186 case LABEL_REF:
187 return 0;
189 case REG:
190 /* Note that we have to test for the actual rtx used for the frame
191 and arg pointers and not just the register number in case we have
192 eliminated the frame and/or arg pointer and are using it
193 for pseudos. */
194 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
195 /* The arg pointer varies if it is not a fixed register. */
196 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
197 return 0;
198 if (x == pic_offset_table_rtx
199 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
200 /* ??? When call-clobbered, the value is stable modulo the restore
201 that must happen after a call. This currently screws up
202 local-alloc into believing that the restore is not needed, so we
203 must return 0 only if we are called from alias analysis. */
204 && for_alias
205 #endif
207 return 0;
208 return 1;
210 case LO_SUM:
211 /* The operand 0 of a LO_SUM is considered constant
212 (in fact it is related specifically to operand 1)
213 during alias analysis. */
214 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
215 || rtx_varies_p (XEXP (x, 1), for_alias);
217 case ASM_OPERANDS:
218 if (MEM_VOLATILE_P (x))
219 return 1;
221 /* Fall through. */
223 default:
224 break;
227 fmt = GET_RTX_FORMAT (code);
228 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
229 if (fmt[i] == 'e')
231 if (rtx_varies_p (XEXP (x, i), for_alias))
232 return 1;
234 else if (fmt[i] == 'E')
236 int j;
237 for (j = 0; j < XVECLEN (x, i); j++)
238 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
239 return 1;
242 return 0;
245 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
246 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
247 whether nonzero is returned for unaligned memory accesses on strict
248 alignment machines. */
250 static int
251 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
252 enum machine_mode mode, bool unaligned_mems)
254 enum rtx_code code = GET_CODE (x);
256 if (STRICT_ALIGNMENT
257 && unaligned_mems
258 && GET_MODE_SIZE (mode) != 0)
260 HOST_WIDE_INT actual_offset = offset;
261 #ifdef SPARC_STACK_BOUNDARY_HACK
262 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
263 the real alignment of %sp. However, when it does this, the
264 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
265 if (SPARC_STACK_BOUNDARY_HACK
266 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
267 actual_offset -= STACK_POINTER_OFFSET;
268 #endif
270 if (actual_offset % GET_MODE_SIZE (mode) != 0)
271 return 1;
274 switch (code)
276 case SYMBOL_REF:
277 if (SYMBOL_REF_WEAK (x))
278 return 1;
279 if (!CONSTANT_POOL_ADDRESS_P (x))
281 tree decl;
282 HOST_WIDE_INT decl_size;
284 if (offset < 0)
285 return 1;
286 if (size == 0)
287 size = GET_MODE_SIZE (mode);
288 if (size == 0)
289 return offset != 0;
291 /* If the size of the access or of the symbol is unknown,
292 assume the worst. */
293 decl = SYMBOL_REF_DECL (x);
295 /* Else check that the access is in bounds. TODO: restructure
296 expr_size/tree_expr_size/int_expr_size and just use the latter. */
297 if (!decl)
298 decl_size = -1;
299 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
300 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
301 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
302 : -1);
303 else if (TREE_CODE (decl) == STRING_CST)
304 decl_size = TREE_STRING_LENGTH (decl);
305 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
306 decl_size = int_size_in_bytes (TREE_TYPE (decl));
307 else
308 decl_size = -1;
310 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
313 return 0;
315 case LABEL_REF:
316 return 0;
318 case REG:
319 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
320 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
321 || x == stack_pointer_rtx
322 /* The arg pointer varies if it is not a fixed register. */
323 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
324 return 0;
325 /* All of the virtual frame registers are stack references. */
326 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
327 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
328 return 0;
329 return 1;
331 case CONST:
332 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
333 mode, unaligned_mems);
335 case PLUS:
336 /* An address is assumed not to trap if:
337 - it is the pic register plus a constant. */
338 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
339 return 0;
341 /* - or it is an address that can't trap plus a constant integer,
342 with the proper remainder modulo the mode size if we are
343 considering unaligned memory references. */
344 if (CONST_INT_P (XEXP (x, 1))
345 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
346 size, mode, unaligned_mems))
347 return 0;
349 return 1;
351 case LO_SUM:
352 case PRE_MODIFY:
353 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
354 mode, unaligned_mems);
356 case PRE_DEC:
357 case PRE_INC:
358 case POST_DEC:
359 case POST_INC:
360 case POST_MODIFY:
361 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
362 mode, unaligned_mems);
364 default:
365 break;
368 /* If it isn't one of the case above, it can cause a trap. */
369 return 1;
372 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
375 rtx_addr_can_trap_p (const_rtx x)
377 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
380 /* Return true if X is an address that is known to not be zero. */
382 bool
383 nonzero_address_p (const_rtx x)
385 const enum rtx_code code = GET_CODE (x);
387 switch (code)
389 case SYMBOL_REF:
390 return !SYMBOL_REF_WEAK (x);
392 case LABEL_REF:
393 return true;
395 case REG:
396 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
397 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
398 || x == stack_pointer_rtx
399 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
400 return true;
401 /* All of the virtual frame registers are stack references. */
402 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
403 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
404 return true;
405 return false;
407 case CONST:
408 return nonzero_address_p (XEXP (x, 0));
410 case PLUS:
411 if (CONST_INT_P (XEXP (x, 1)))
412 return nonzero_address_p (XEXP (x, 0));
413 /* Handle PIC references. */
414 else if (XEXP (x, 0) == pic_offset_table_rtx
415 && CONSTANT_P (XEXP (x, 1)))
416 return true;
417 return false;
419 case PRE_MODIFY:
420 /* Similar to the above; allow positive offsets. Further, since
421 auto-inc is only allowed in memories, the register must be a
422 pointer. */
423 if (CONST_INT_P (XEXP (x, 1))
424 && INTVAL (XEXP (x, 1)) > 0)
425 return true;
426 return nonzero_address_p (XEXP (x, 0));
428 case PRE_INC:
429 /* Similarly. Further, the offset is always positive. */
430 return true;
432 case PRE_DEC:
433 case POST_DEC:
434 case POST_INC:
435 case POST_MODIFY:
436 return nonzero_address_p (XEXP (x, 0));
438 case LO_SUM:
439 return nonzero_address_p (XEXP (x, 1));
441 default:
442 break;
445 /* If it isn't one of the case above, might be zero. */
446 return false;
449 /* Return 1 if X refers to a memory location whose address
450 cannot be compared reliably with constant addresses,
451 or if X refers to a BLKmode memory object.
452 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
453 zero, we are slightly more conservative. */
455 bool
456 rtx_addr_varies_p (const_rtx x, bool for_alias)
458 enum rtx_code code;
459 int i;
460 const char *fmt;
462 if (x == 0)
463 return 0;
465 code = GET_CODE (x);
466 if (code == MEM)
467 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
469 fmt = GET_RTX_FORMAT (code);
470 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
471 if (fmt[i] == 'e')
473 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
474 return 1;
476 else if (fmt[i] == 'E')
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
480 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
481 return 1;
483 return 0;
486 /* Return the value of the integer term in X, if one is apparent;
487 otherwise return 0.
488 Only obvious integer terms are detected.
489 This is used in cse.c with the `related_value' field. */
491 HOST_WIDE_INT
492 get_integer_term (const_rtx x)
494 if (GET_CODE (x) == CONST)
495 x = XEXP (x, 0);
497 if (GET_CODE (x) == MINUS
498 && CONST_INT_P (XEXP (x, 1)))
499 return - INTVAL (XEXP (x, 1));
500 if (GET_CODE (x) == PLUS
501 && CONST_INT_P (XEXP (x, 1)))
502 return INTVAL (XEXP (x, 1));
503 return 0;
506 /* If X is a constant, return the value sans apparent integer term;
507 otherwise return 0.
508 Only obvious integer terms are detected. */
511 get_related_value (const_rtx x)
513 if (GET_CODE (x) != CONST)
514 return 0;
515 x = XEXP (x, 0);
516 if (GET_CODE (x) == PLUS
517 && CONST_INT_P (XEXP (x, 1)))
518 return XEXP (x, 0);
519 else if (GET_CODE (x) == MINUS
520 && CONST_INT_P (XEXP (x, 1)))
521 return XEXP (x, 0);
522 return 0;
525 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
526 to somewhere in the same object or object_block as SYMBOL. */
528 bool
529 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
531 tree decl;
533 if (GET_CODE (symbol) != SYMBOL_REF)
534 return false;
536 if (offset == 0)
537 return true;
539 if (offset > 0)
541 if (CONSTANT_POOL_ADDRESS_P (symbol)
542 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
543 return true;
545 decl = SYMBOL_REF_DECL (symbol);
546 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
547 return true;
550 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
551 && SYMBOL_REF_BLOCK (symbol)
552 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
553 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
554 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
555 return true;
557 return false;
560 /* Split X into a base and a constant offset, storing them in *BASE_OUT
561 and *OFFSET_OUT respectively. */
563 void
564 split_const (rtx x, rtx *base_out, rtx *offset_out)
566 if (GET_CODE (x) == CONST)
568 x = XEXP (x, 0);
569 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
571 *base_out = XEXP (x, 0);
572 *offset_out = XEXP (x, 1);
573 return;
576 *base_out = x;
577 *offset_out = const0_rtx;
580 /* Return the number of places FIND appears within X. If COUNT_DEST is
581 zero, we do not count occurrences inside the destination of a SET. */
584 count_occurrences (const_rtx x, const_rtx find, int count_dest)
586 int i, j;
587 enum rtx_code code;
588 const char *format_ptr;
589 int count;
591 if (x == find)
592 return 1;
594 code = GET_CODE (x);
596 switch (code)
598 case REG:
599 case CONST_INT:
600 case CONST_DOUBLE:
601 case CONST_FIXED:
602 case CONST_VECTOR:
603 case SYMBOL_REF:
604 case CODE_LABEL:
605 case PC:
606 case CC0:
607 return 0;
609 case EXPR_LIST:
610 count = count_occurrences (XEXP (x, 0), find, count_dest);
611 if (XEXP (x, 1))
612 count += count_occurrences (XEXP (x, 1), find, count_dest);
613 return count;
615 case MEM:
616 if (MEM_P (find) && rtx_equal_p (x, find))
617 return 1;
618 break;
620 case SET:
621 if (SET_DEST (x) == find && ! count_dest)
622 return count_occurrences (SET_SRC (x), find, count_dest);
623 break;
625 default:
626 break;
629 format_ptr = GET_RTX_FORMAT (code);
630 count = 0;
632 for (i = 0; i < GET_RTX_LENGTH (code); i++)
634 switch (*format_ptr++)
636 case 'e':
637 count += count_occurrences (XEXP (x, i), find, count_dest);
638 break;
640 case 'E':
641 for (j = 0; j < XVECLEN (x, i); j++)
642 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
643 break;
646 return count;
650 /* Nonzero if register REG appears somewhere within IN.
651 Also works if REG is not a register; in this case it checks
652 for a subexpression of IN that is Lisp "equal" to REG. */
655 reg_mentioned_p (const_rtx reg, const_rtx in)
657 const char *fmt;
658 int i;
659 enum rtx_code code;
661 if (in == 0)
662 return 0;
664 if (reg == in)
665 return 1;
667 if (GET_CODE (in) == LABEL_REF)
668 return reg == XEXP (in, 0);
670 code = GET_CODE (in);
672 switch (code)
674 /* Compare registers by number. */
675 case REG:
676 return REG_P (reg) && REGNO (in) == REGNO (reg);
678 /* These codes have no constituent expressions
679 and are unique. */
680 case SCRATCH:
681 case CC0:
682 case PC:
683 return 0;
685 case CONST_INT:
686 case CONST_VECTOR:
687 case CONST_DOUBLE:
688 case CONST_FIXED:
689 /* These are kept unique for a given value. */
690 return 0;
692 default:
693 break;
696 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
697 return 1;
699 fmt = GET_RTX_FORMAT (code);
701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
703 if (fmt[i] == 'E')
705 int j;
706 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
707 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
708 return 1;
710 else if (fmt[i] == 'e'
711 && reg_mentioned_p (reg, XEXP (in, i)))
712 return 1;
714 return 0;
717 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
718 no CODE_LABEL insn. */
721 no_labels_between_p (const_rtx beg, const_rtx end)
723 rtx p;
724 if (beg == end)
725 return 0;
726 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
727 if (LABEL_P (p))
728 return 0;
729 return 1;
732 /* Nonzero if register REG is used in an insn between
733 FROM_INSN and TO_INSN (exclusive of those two). */
736 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
738 rtx insn;
740 if (from_insn == to_insn)
741 return 0;
743 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
744 if (NONDEBUG_INSN_P (insn)
745 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
746 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
747 return 1;
748 return 0;
751 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
752 is entirely replaced by a new value and the only use is as a SET_DEST,
753 we do not consider it a reference. */
756 reg_referenced_p (const_rtx x, const_rtx body)
758 int i;
760 switch (GET_CODE (body))
762 case SET:
763 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
764 return 1;
766 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
767 of a REG that occupies all of the REG, the insn references X if
768 it is mentioned in the destination. */
769 if (GET_CODE (SET_DEST (body)) != CC0
770 && GET_CODE (SET_DEST (body)) != PC
771 && !REG_P (SET_DEST (body))
772 && ! (GET_CODE (SET_DEST (body)) == SUBREG
773 && REG_P (SUBREG_REG (SET_DEST (body)))
774 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
775 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
776 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
777 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
778 && reg_overlap_mentioned_p (x, SET_DEST (body)))
779 return 1;
780 return 0;
782 case ASM_OPERANDS:
783 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
784 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
785 return 1;
786 return 0;
788 case CALL:
789 case USE:
790 case IF_THEN_ELSE:
791 return reg_overlap_mentioned_p (x, body);
793 case TRAP_IF:
794 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
796 case PREFETCH:
797 return reg_overlap_mentioned_p (x, XEXP (body, 0));
799 case UNSPEC:
800 case UNSPEC_VOLATILE:
801 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
802 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
803 return 1;
804 return 0;
806 case PARALLEL:
807 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
808 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
809 return 1;
810 return 0;
812 case CLOBBER:
813 if (MEM_P (XEXP (body, 0)))
814 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
815 return 1;
816 return 0;
818 case COND_EXEC:
819 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
820 return 1;
821 return reg_referenced_p (x, COND_EXEC_CODE (body));
823 default:
824 return 0;
828 /* Nonzero if register REG is set or clobbered in an insn between
829 FROM_INSN and TO_INSN (exclusive of those two). */
832 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
834 const_rtx insn;
836 if (from_insn == to_insn)
837 return 0;
839 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
840 if (INSN_P (insn) && reg_set_p (reg, insn))
841 return 1;
842 return 0;
845 /* Internals of reg_set_between_p. */
847 reg_set_p (const_rtx reg, const_rtx insn)
849 /* We can be passed an insn or part of one. If we are passed an insn,
850 check if a side-effect of the insn clobbers REG. */
851 if (INSN_P (insn)
852 && (FIND_REG_INC_NOTE (insn, reg)
853 || (CALL_P (insn)
854 && ((REG_P (reg)
855 && REGNO (reg) < FIRST_PSEUDO_REGISTER
856 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
857 GET_MODE (reg), REGNO (reg)))
858 || MEM_P (reg)
859 || find_reg_fusage (insn, CLOBBER, reg)))))
860 return 1;
862 return set_of (reg, insn) != NULL_RTX;
865 /* Similar to reg_set_between_p, but check all registers in X. Return 0
866 only if none of them are modified between START and END. Return 1 if
867 X contains a MEM; this routine does use memory aliasing. */
870 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
872 const enum rtx_code code = GET_CODE (x);
873 const char *fmt;
874 int i, j;
875 rtx insn;
877 if (start == end)
878 return 0;
880 switch (code)
882 case CONST_INT:
883 case CONST_DOUBLE:
884 case CONST_FIXED:
885 case CONST_VECTOR:
886 case CONST:
887 case SYMBOL_REF:
888 case LABEL_REF:
889 return 0;
891 case PC:
892 case CC0:
893 return 1;
895 case MEM:
896 if (modified_between_p (XEXP (x, 0), start, end))
897 return 1;
898 if (MEM_READONLY_P (x))
899 return 0;
900 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
901 if (memory_modified_in_insn_p (x, insn))
902 return 1;
903 return 0;
904 break;
906 case REG:
907 return reg_set_between_p (x, start, end);
909 default:
910 break;
913 fmt = GET_RTX_FORMAT (code);
914 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
916 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
917 return 1;
919 else if (fmt[i] == 'E')
920 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
921 if (modified_between_p (XVECEXP (x, i, j), start, end))
922 return 1;
925 return 0;
928 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
929 of them are modified in INSN. Return 1 if X contains a MEM; this routine
930 does use memory aliasing. */
933 modified_in_p (const_rtx x, const_rtx insn)
935 const enum rtx_code code = GET_CODE (x);
936 const char *fmt;
937 int i, j;
939 switch (code)
941 case CONST_INT:
942 case CONST_DOUBLE:
943 case CONST_FIXED:
944 case CONST_VECTOR:
945 case CONST:
946 case SYMBOL_REF:
947 case LABEL_REF:
948 return 0;
950 case PC:
951 case CC0:
952 return 1;
954 case MEM:
955 if (modified_in_p (XEXP (x, 0), insn))
956 return 1;
957 if (MEM_READONLY_P (x))
958 return 0;
959 if (memory_modified_in_insn_p (x, insn))
960 return 1;
961 return 0;
962 break;
964 case REG:
965 return reg_set_p (x, insn);
967 default:
968 break;
971 fmt = GET_RTX_FORMAT (code);
972 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
974 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
975 return 1;
977 else if (fmt[i] == 'E')
978 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
979 if (modified_in_p (XVECEXP (x, i, j), insn))
980 return 1;
983 return 0;
986 /* Helper function for set_of. */
987 struct set_of_data
989 const_rtx found;
990 const_rtx pat;
993 static void
994 set_of_1 (rtx x, const_rtx pat, void *data1)
996 struct set_of_data *const data = (struct set_of_data *) (data1);
997 if (rtx_equal_p (x, data->pat)
998 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
999 data->found = pat;
1002 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1003 (either directly or via STRICT_LOW_PART and similar modifiers). */
1004 const_rtx
1005 set_of (const_rtx pat, const_rtx insn)
1007 struct set_of_data data;
1008 data.found = NULL_RTX;
1009 data.pat = pat;
1010 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1011 return data.found;
1014 /* Given an INSN, return a SET expression if this insn has only a single SET.
1015 It may also have CLOBBERs, USEs, or SET whose output
1016 will not be used, which we ignore. */
1019 single_set_2 (const_rtx insn, const_rtx pat)
1021 rtx set = NULL;
1022 int set_verified = 1;
1023 int i;
1025 if (GET_CODE (pat) == PARALLEL)
1027 for (i = 0; i < XVECLEN (pat, 0); i++)
1029 rtx sub = XVECEXP (pat, 0, i);
1030 switch (GET_CODE (sub))
1032 case USE:
1033 case CLOBBER:
1034 break;
1036 case SET:
1037 /* We can consider insns having multiple sets, where all
1038 but one are dead as single set insns. In common case
1039 only single set is present in the pattern so we want
1040 to avoid checking for REG_UNUSED notes unless necessary.
1042 When we reach set first time, we just expect this is
1043 the single set we are looking for and only when more
1044 sets are found in the insn, we check them. */
1045 if (!set_verified)
1047 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1048 && !side_effects_p (set))
1049 set = NULL;
1050 else
1051 set_verified = 1;
1053 if (!set)
1054 set = sub, set_verified = 0;
1055 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1056 || side_effects_p (sub))
1057 return NULL_RTX;
1058 break;
1060 default:
1061 return NULL_RTX;
1065 return set;
1068 /* Given an INSN, return nonzero if it has more than one SET, else return
1069 zero. */
1072 multiple_sets (const_rtx insn)
1074 int found;
1075 int i;
1077 /* INSN must be an insn. */
1078 if (! INSN_P (insn))
1079 return 0;
1081 /* Only a PARALLEL can have multiple SETs. */
1082 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1084 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1085 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1087 /* If we have already found a SET, then return now. */
1088 if (found)
1089 return 1;
1090 else
1091 found = 1;
1095 /* Either zero or one SET. */
1096 return 0;
1099 /* Return nonzero if the destination of SET equals the source
1100 and there are no side effects. */
1103 set_noop_p (const_rtx set)
1105 rtx src = SET_SRC (set);
1106 rtx dst = SET_DEST (set);
1108 if (dst == pc_rtx && src == pc_rtx)
1109 return 1;
1111 if (MEM_P (dst) && MEM_P (src))
1112 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1114 if (GET_CODE (dst) == ZERO_EXTRACT)
1115 return rtx_equal_p (XEXP (dst, 0), src)
1116 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1117 && !side_effects_p (src);
1119 if (GET_CODE (dst) == STRICT_LOW_PART)
1120 dst = XEXP (dst, 0);
1122 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1124 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1125 return 0;
1126 src = SUBREG_REG (src);
1127 dst = SUBREG_REG (dst);
1130 return (REG_P (src) && REG_P (dst)
1131 && REGNO (src) == REGNO (dst));
1134 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1135 value to itself. */
1138 noop_move_p (const_rtx insn)
1140 rtx pat = PATTERN (insn);
1142 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1143 return 1;
1145 /* Insns carrying these notes are useful later on. */
1146 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1147 return 0;
1149 if (GET_CODE (pat) == SET && set_noop_p (pat))
1150 return 1;
1152 if (GET_CODE (pat) == PARALLEL)
1154 int i;
1155 /* If nothing but SETs of registers to themselves,
1156 this insn can also be deleted. */
1157 for (i = 0; i < XVECLEN (pat, 0); i++)
1159 rtx tem = XVECEXP (pat, 0, i);
1161 if (GET_CODE (tem) == USE
1162 || GET_CODE (tem) == CLOBBER)
1163 continue;
1165 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1166 return 0;
1169 return 1;
1171 return 0;
1175 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1176 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1177 If the object was modified, if we hit a partial assignment to X, or hit a
1178 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1179 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1180 be the src. */
1183 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1185 rtx p;
1187 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1188 p = PREV_INSN (p))
1189 if (INSN_P (p))
1191 rtx set = single_set (p);
1192 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1194 if (set && rtx_equal_p (x, SET_DEST (set)))
1196 rtx src = SET_SRC (set);
1198 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1199 src = XEXP (note, 0);
1201 if ((valid_to == NULL_RTX
1202 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1203 /* Reject hard registers because we don't usually want
1204 to use them; we'd rather use a pseudo. */
1205 && (! (REG_P (src)
1206 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1208 *pinsn = p;
1209 return src;
1213 /* If set in non-simple way, we don't have a value. */
1214 if (reg_set_p (x, p))
1215 break;
1218 return x;
1221 /* Return nonzero if register in range [REGNO, ENDREGNO)
1222 appears either explicitly or implicitly in X
1223 other than being stored into.
1225 References contained within the substructure at LOC do not count.
1226 LOC may be zero, meaning don't ignore anything. */
1229 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1230 rtx *loc)
1232 int i;
1233 unsigned int x_regno;
1234 RTX_CODE code;
1235 const char *fmt;
1237 repeat:
1238 /* The contents of a REG_NONNEG note is always zero, so we must come here
1239 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1240 if (x == 0)
1241 return 0;
1243 code = GET_CODE (x);
1245 switch (code)
1247 case REG:
1248 x_regno = REGNO (x);
1250 /* If we modifying the stack, frame, or argument pointer, it will
1251 clobber a virtual register. In fact, we could be more precise,
1252 but it isn't worth it. */
1253 if ((x_regno == STACK_POINTER_REGNUM
1254 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1255 || x_regno == ARG_POINTER_REGNUM
1256 #endif
1257 || x_regno == FRAME_POINTER_REGNUM)
1258 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1259 return 1;
1261 return endregno > x_regno && regno < END_REGNO (x);
1263 case SUBREG:
1264 /* If this is a SUBREG of a hard reg, we can see exactly which
1265 registers are being modified. Otherwise, handle normally. */
1266 if (REG_P (SUBREG_REG (x))
1267 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1269 unsigned int inner_regno = subreg_regno (x);
1270 unsigned int inner_endregno
1271 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1272 ? subreg_nregs (x) : 1);
1274 return endregno > inner_regno && regno < inner_endregno;
1276 break;
1278 case CLOBBER:
1279 case SET:
1280 if (&SET_DEST (x) != loc
1281 /* Note setting a SUBREG counts as referring to the REG it is in for
1282 a pseudo but not for hard registers since we can
1283 treat each word individually. */
1284 && ((GET_CODE (SET_DEST (x)) == SUBREG
1285 && loc != &SUBREG_REG (SET_DEST (x))
1286 && REG_P (SUBREG_REG (SET_DEST (x)))
1287 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1288 && refers_to_regno_p (regno, endregno,
1289 SUBREG_REG (SET_DEST (x)), loc))
1290 || (!REG_P (SET_DEST (x))
1291 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1292 return 1;
1294 if (code == CLOBBER || loc == &SET_SRC (x))
1295 return 0;
1296 x = SET_SRC (x);
1297 goto repeat;
1299 default:
1300 break;
1303 /* X does not match, so try its subexpressions. */
1305 fmt = GET_RTX_FORMAT (code);
1306 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1308 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1310 if (i == 0)
1312 x = XEXP (x, 0);
1313 goto repeat;
1315 else
1316 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1317 return 1;
1319 else if (fmt[i] == 'E')
1321 int j;
1322 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1323 if (loc != &XVECEXP (x, i, j)
1324 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1325 return 1;
1328 return 0;
1331 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1332 we check if any register number in X conflicts with the relevant register
1333 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1334 contains a MEM (we don't bother checking for memory addresses that can't
1335 conflict because we expect this to be a rare case. */
1338 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1340 unsigned int regno, endregno;
1342 /* If either argument is a constant, then modifying X can not
1343 affect IN. Here we look at IN, we can profitably combine
1344 CONSTANT_P (x) with the switch statement below. */
1345 if (CONSTANT_P (in))
1346 return 0;
1348 recurse:
1349 switch (GET_CODE (x))
1351 case STRICT_LOW_PART:
1352 case ZERO_EXTRACT:
1353 case SIGN_EXTRACT:
1354 /* Overly conservative. */
1355 x = XEXP (x, 0);
1356 goto recurse;
1358 case SUBREG:
1359 regno = REGNO (SUBREG_REG (x));
1360 if (regno < FIRST_PSEUDO_REGISTER)
1361 regno = subreg_regno (x);
1362 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1363 ? subreg_nregs (x) : 1);
1364 goto do_reg;
1366 case REG:
1367 regno = REGNO (x);
1368 endregno = END_REGNO (x);
1369 do_reg:
1370 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1372 case MEM:
1374 const char *fmt;
1375 int i;
1377 if (MEM_P (in))
1378 return 1;
1380 fmt = GET_RTX_FORMAT (GET_CODE (in));
1381 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1382 if (fmt[i] == 'e')
1384 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1385 return 1;
1387 else if (fmt[i] == 'E')
1389 int j;
1390 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1391 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1392 return 1;
1395 return 0;
1398 case SCRATCH:
1399 case PC:
1400 case CC0:
1401 return reg_mentioned_p (x, in);
1403 case PARALLEL:
1405 int i;
1407 /* If any register in here refers to it we return true. */
1408 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1409 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1410 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1411 return 1;
1412 return 0;
1415 default:
1416 gcc_assert (CONSTANT_P (x));
1417 return 0;
1421 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1422 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1423 ignored by note_stores, but passed to FUN.
1425 FUN receives three arguments:
1426 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1427 2. the SET or CLOBBER rtx that does the store,
1428 3. the pointer DATA provided to note_stores.
1430 If the item being stored in or clobbered is a SUBREG of a hard register,
1431 the SUBREG will be passed. */
1433 void
1434 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1436 int i;
1438 if (GET_CODE (x) == COND_EXEC)
1439 x = COND_EXEC_CODE (x);
1441 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1443 rtx dest = SET_DEST (x);
1445 while ((GET_CODE (dest) == SUBREG
1446 && (!REG_P (SUBREG_REG (dest))
1447 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1448 || GET_CODE (dest) == ZERO_EXTRACT
1449 || GET_CODE (dest) == STRICT_LOW_PART)
1450 dest = XEXP (dest, 0);
1452 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1453 each of whose first operand is a register. */
1454 if (GET_CODE (dest) == PARALLEL)
1456 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1457 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1458 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1460 else
1461 (*fun) (dest, x, data);
1464 else if (GET_CODE (x) == PARALLEL)
1465 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1466 note_stores (XVECEXP (x, 0, i), fun, data);
1469 /* Like notes_stores, but call FUN for each expression that is being
1470 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1471 FUN for each expression, not any interior subexpressions. FUN receives a
1472 pointer to the expression and the DATA passed to this function.
1474 Note that this is not quite the same test as that done in reg_referenced_p
1475 since that considers something as being referenced if it is being
1476 partially set, while we do not. */
1478 void
1479 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1481 rtx body = *pbody;
1482 int i;
1484 switch (GET_CODE (body))
1486 case COND_EXEC:
1487 (*fun) (&COND_EXEC_TEST (body), data);
1488 note_uses (&COND_EXEC_CODE (body), fun, data);
1489 return;
1491 case PARALLEL:
1492 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1493 note_uses (&XVECEXP (body, 0, i), fun, data);
1494 return;
1496 case SEQUENCE:
1497 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1498 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1499 return;
1501 case USE:
1502 (*fun) (&XEXP (body, 0), data);
1503 return;
1505 case ASM_OPERANDS:
1506 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1507 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1508 return;
1510 case TRAP_IF:
1511 (*fun) (&TRAP_CONDITION (body), data);
1512 return;
1514 case PREFETCH:
1515 (*fun) (&XEXP (body, 0), data);
1516 return;
1518 case UNSPEC:
1519 case UNSPEC_VOLATILE:
1520 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1521 (*fun) (&XVECEXP (body, 0, i), data);
1522 return;
1524 case CLOBBER:
1525 if (MEM_P (XEXP (body, 0)))
1526 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1527 return;
1529 case SET:
1531 rtx dest = SET_DEST (body);
1533 /* For sets we replace everything in source plus registers in memory
1534 expression in store and operands of a ZERO_EXTRACT. */
1535 (*fun) (&SET_SRC (body), data);
1537 if (GET_CODE (dest) == ZERO_EXTRACT)
1539 (*fun) (&XEXP (dest, 1), data);
1540 (*fun) (&XEXP (dest, 2), data);
1543 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1544 dest = XEXP (dest, 0);
1546 if (MEM_P (dest))
1547 (*fun) (&XEXP (dest, 0), data);
1549 return;
1551 default:
1552 /* All the other possibilities never store. */
1553 (*fun) (pbody, data);
1554 return;
1558 /* Return nonzero if X's old contents don't survive after INSN.
1559 This will be true if X is (cc0) or if X is a register and
1560 X dies in INSN or because INSN entirely sets X.
1562 "Entirely set" means set directly and not through a SUBREG, or
1563 ZERO_EXTRACT, so no trace of the old contents remains.
1564 Likewise, REG_INC does not count.
1566 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1567 but for this use that makes no difference, since regs don't overlap
1568 during their lifetimes. Therefore, this function may be used
1569 at any time after deaths have been computed.
1571 If REG is a hard reg that occupies multiple machine registers, this
1572 function will only return 1 if each of those registers will be replaced
1573 by INSN. */
1576 dead_or_set_p (const_rtx insn, const_rtx x)
1578 unsigned int regno, end_regno;
1579 unsigned int i;
1581 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1582 if (GET_CODE (x) == CC0)
1583 return 1;
1585 gcc_assert (REG_P (x));
1587 regno = REGNO (x);
1588 end_regno = END_REGNO (x);
1589 for (i = regno; i < end_regno; i++)
1590 if (! dead_or_set_regno_p (insn, i))
1591 return 0;
1593 return 1;
1596 /* Return TRUE iff DEST is a register or subreg of a register and
1597 doesn't change the number of words of the inner register, and any
1598 part of the register is TEST_REGNO. */
1600 static bool
1601 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1603 unsigned int regno, endregno;
1605 if (GET_CODE (dest) == SUBREG
1606 && (((GET_MODE_SIZE (GET_MODE (dest))
1607 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1608 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1609 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1610 dest = SUBREG_REG (dest);
1612 if (!REG_P (dest))
1613 return false;
1615 regno = REGNO (dest);
1616 endregno = END_REGNO (dest);
1617 return (test_regno >= regno && test_regno < endregno);
1620 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1621 any member matches the covers_regno_no_parallel_p criteria. */
1623 static bool
1624 covers_regno_p (const_rtx dest, unsigned int test_regno)
1626 if (GET_CODE (dest) == PARALLEL)
1628 /* Some targets place small structures in registers for return
1629 values of functions, and those registers are wrapped in
1630 PARALLELs that we may see as the destination of a SET. */
1631 int i;
1633 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1635 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1636 if (inner != NULL_RTX
1637 && covers_regno_no_parallel_p (inner, test_regno))
1638 return true;
1641 return false;
1643 else
1644 return covers_regno_no_parallel_p (dest, test_regno);
1647 /* Utility function for dead_or_set_p to check an individual register. */
1650 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1652 const_rtx pattern;
1654 /* See if there is a death note for something that includes TEST_REGNO. */
1655 if (find_regno_note (insn, REG_DEAD, test_regno))
1656 return 1;
1658 if (CALL_P (insn)
1659 && find_regno_fusage (insn, CLOBBER, test_regno))
1660 return 1;
1662 pattern = PATTERN (insn);
1664 if (GET_CODE (pattern) == COND_EXEC)
1665 pattern = COND_EXEC_CODE (pattern);
1667 if (GET_CODE (pattern) == SET)
1668 return covers_regno_p (SET_DEST (pattern), test_regno);
1669 else if (GET_CODE (pattern) == PARALLEL)
1671 int i;
1673 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1675 rtx body = XVECEXP (pattern, 0, i);
1677 if (GET_CODE (body) == COND_EXEC)
1678 body = COND_EXEC_CODE (body);
1680 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1681 && covers_regno_p (SET_DEST (body), test_regno))
1682 return 1;
1686 return 0;
1689 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1690 If DATUM is nonzero, look for one whose datum is DATUM. */
1693 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1695 rtx link;
1697 gcc_assert (insn);
1699 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1700 if (! INSN_P (insn))
1701 return 0;
1702 if (datum == 0)
1704 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1705 if (REG_NOTE_KIND (link) == kind)
1706 return link;
1707 return 0;
1710 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1711 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1712 return link;
1713 return 0;
1716 /* Return the reg-note of kind KIND in insn INSN which applies to register
1717 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1718 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1719 it might be the case that the note overlaps REGNO. */
1722 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1724 rtx link;
1726 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1727 if (! INSN_P (insn))
1728 return 0;
1730 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1731 if (REG_NOTE_KIND (link) == kind
1732 /* Verify that it is a register, so that scratch and MEM won't cause a
1733 problem here. */
1734 && REG_P (XEXP (link, 0))
1735 && REGNO (XEXP (link, 0)) <= regno
1736 && END_REGNO (XEXP (link, 0)) > regno)
1737 return link;
1738 return 0;
1741 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1742 has such a note. */
1745 find_reg_equal_equiv_note (const_rtx insn)
1747 rtx link;
1749 if (!INSN_P (insn))
1750 return 0;
1752 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1753 if (REG_NOTE_KIND (link) == REG_EQUAL
1754 || REG_NOTE_KIND (link) == REG_EQUIV)
1756 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1757 insns that have multiple sets. Checking single_set to
1758 make sure of this is not the proper check, as explained
1759 in the comment in set_unique_reg_note.
1761 This should be changed into an assert. */
1762 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1763 return 0;
1764 return link;
1766 return NULL;
1769 /* Check whether INSN is a single_set whose source is known to be
1770 equivalent to a constant. Return that constant if so, otherwise
1771 return null. */
1774 find_constant_src (const_rtx insn)
1776 rtx note, set, x;
1778 set = single_set (insn);
1779 if (set)
1781 x = avoid_constant_pool_reference (SET_SRC (set));
1782 if (CONSTANT_P (x))
1783 return x;
1786 note = find_reg_equal_equiv_note (insn);
1787 if (note && CONSTANT_P (XEXP (note, 0)))
1788 return XEXP (note, 0);
1790 return NULL_RTX;
1793 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1794 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1797 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1799 /* If it's not a CALL_INSN, it can't possibly have a
1800 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1801 if (!CALL_P (insn))
1802 return 0;
1804 gcc_assert (datum);
1806 if (!REG_P (datum))
1808 rtx link;
1810 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1811 link;
1812 link = XEXP (link, 1))
1813 if (GET_CODE (XEXP (link, 0)) == code
1814 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1815 return 1;
1817 else
1819 unsigned int regno = REGNO (datum);
1821 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1822 to pseudo registers, so don't bother checking. */
1824 if (regno < FIRST_PSEUDO_REGISTER)
1826 unsigned int end_regno = END_HARD_REGNO (datum);
1827 unsigned int i;
1829 for (i = regno; i < end_regno; i++)
1830 if (find_regno_fusage (insn, code, i))
1831 return 1;
1835 return 0;
1838 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1839 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1842 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1844 rtx link;
1846 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1847 to pseudo registers, so don't bother checking. */
1849 if (regno >= FIRST_PSEUDO_REGISTER
1850 || !CALL_P (insn) )
1851 return 0;
1853 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1855 rtx op, reg;
1857 if (GET_CODE (op = XEXP (link, 0)) == code
1858 && REG_P (reg = XEXP (op, 0))
1859 && REGNO (reg) <= regno
1860 && END_HARD_REGNO (reg) > regno)
1861 return 1;
1864 return 0;
1868 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1869 stored as the pointer to the next register note. */
1872 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1874 rtx note;
1876 switch (kind)
1878 case REG_CC_SETTER:
1879 case REG_CC_USER:
1880 case REG_LABEL_TARGET:
1881 case REG_LABEL_OPERAND:
1882 /* These types of register notes use an INSN_LIST rather than an
1883 EXPR_LIST, so that copying is done right and dumps look
1884 better. */
1885 note = alloc_INSN_LIST (datum, list);
1886 PUT_REG_NOTE_KIND (note, kind);
1887 break;
1889 default:
1890 note = alloc_EXPR_LIST (kind, datum, list);
1891 break;
1894 return note;
1897 /* Add register note with kind KIND and datum DATUM to INSN. */
1899 void
1900 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1902 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1905 /* Remove register note NOTE from the REG_NOTES of INSN. */
1907 void
1908 remove_note (rtx insn, const_rtx note)
1910 rtx link;
1912 if (note == NULL_RTX)
1913 return;
1915 if (REG_NOTES (insn) == note)
1916 REG_NOTES (insn) = XEXP (note, 1);
1917 else
1918 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1919 if (XEXP (link, 1) == note)
1921 XEXP (link, 1) = XEXP (note, 1);
1922 break;
1925 switch (REG_NOTE_KIND (note))
1927 case REG_EQUAL:
1928 case REG_EQUIV:
1929 df_notes_rescan (insn);
1930 break;
1931 default:
1932 break;
1936 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1938 void
1939 remove_reg_equal_equiv_notes (rtx insn)
1941 rtx *loc;
1943 loc = &REG_NOTES (insn);
1944 while (*loc)
1946 enum reg_note kind = REG_NOTE_KIND (*loc);
1947 if (kind == REG_EQUAL || kind == REG_EQUIV)
1948 *loc = XEXP (*loc, 1);
1949 else
1950 loc = &XEXP (*loc, 1);
1954 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1955 return 1 if it is found. A simple equality test is used to determine if
1956 NODE matches. */
1959 in_expr_list_p (const_rtx listp, const_rtx node)
1961 const_rtx x;
1963 for (x = listp; x; x = XEXP (x, 1))
1964 if (node == XEXP (x, 0))
1965 return 1;
1967 return 0;
1970 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1971 remove that entry from the list if it is found.
1973 A simple equality test is used to determine if NODE matches. */
1975 void
1976 remove_node_from_expr_list (const_rtx node, rtx *listp)
1978 rtx temp = *listp;
1979 rtx prev = NULL_RTX;
1981 while (temp)
1983 if (node == XEXP (temp, 0))
1985 /* Splice the node out of the list. */
1986 if (prev)
1987 XEXP (prev, 1) = XEXP (temp, 1);
1988 else
1989 *listp = XEXP (temp, 1);
1991 return;
1994 prev = temp;
1995 temp = XEXP (temp, 1);
1999 /* Nonzero if X contains any volatile instructions. These are instructions
2000 which may cause unpredictable machine state instructions, and thus no
2001 instructions should be moved or combined across them. This includes
2002 only volatile asms and UNSPEC_VOLATILE instructions. */
2005 volatile_insn_p (const_rtx x)
2007 const RTX_CODE code = GET_CODE (x);
2008 switch (code)
2010 case LABEL_REF:
2011 case SYMBOL_REF:
2012 case CONST_INT:
2013 case CONST:
2014 case CONST_DOUBLE:
2015 case CONST_FIXED:
2016 case CONST_VECTOR:
2017 case CC0:
2018 case PC:
2019 case REG:
2020 case SCRATCH:
2021 case CLOBBER:
2022 case ADDR_VEC:
2023 case ADDR_DIFF_VEC:
2024 case CALL:
2025 case MEM:
2026 return 0;
2028 case UNSPEC_VOLATILE:
2029 /* case TRAP_IF: This isn't clear yet. */
2030 return 1;
2032 case ASM_INPUT:
2033 case ASM_OPERANDS:
2034 if (MEM_VOLATILE_P (x))
2035 return 1;
2037 default:
2038 break;
2041 /* Recursively scan the operands of this expression. */
2044 const char *const fmt = GET_RTX_FORMAT (code);
2045 int i;
2047 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2049 if (fmt[i] == 'e')
2051 if (volatile_insn_p (XEXP (x, i)))
2052 return 1;
2054 else if (fmt[i] == 'E')
2056 int j;
2057 for (j = 0; j < XVECLEN (x, i); j++)
2058 if (volatile_insn_p (XVECEXP (x, i, j)))
2059 return 1;
2063 return 0;
2066 /* Nonzero if X contains any volatile memory references
2067 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2070 volatile_refs_p (const_rtx x)
2072 const RTX_CODE code = GET_CODE (x);
2073 switch (code)
2075 case LABEL_REF:
2076 case SYMBOL_REF:
2077 case CONST_INT:
2078 case CONST:
2079 case CONST_DOUBLE:
2080 case CONST_FIXED:
2081 case CONST_VECTOR:
2082 case CC0:
2083 case PC:
2084 case REG:
2085 case SCRATCH:
2086 case CLOBBER:
2087 case ADDR_VEC:
2088 case ADDR_DIFF_VEC:
2089 return 0;
2091 case UNSPEC_VOLATILE:
2092 return 1;
2094 case MEM:
2095 case ASM_INPUT:
2096 case ASM_OPERANDS:
2097 if (MEM_VOLATILE_P (x))
2098 return 1;
2100 default:
2101 break;
2104 /* Recursively scan the operands of this expression. */
2107 const char *const fmt = GET_RTX_FORMAT (code);
2108 int i;
2110 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2112 if (fmt[i] == 'e')
2114 if (volatile_refs_p (XEXP (x, i)))
2115 return 1;
2117 else if (fmt[i] == 'E')
2119 int j;
2120 for (j = 0; j < XVECLEN (x, i); j++)
2121 if (volatile_refs_p (XVECEXP (x, i, j)))
2122 return 1;
2126 return 0;
2129 /* Similar to above, except that it also rejects register pre- and post-
2130 incrementing. */
2133 side_effects_p (const_rtx x)
2135 const RTX_CODE code = GET_CODE (x);
2136 switch (code)
2138 case LABEL_REF:
2139 case SYMBOL_REF:
2140 case CONST_INT:
2141 case CONST:
2142 case CONST_DOUBLE:
2143 case CONST_FIXED:
2144 case CONST_VECTOR:
2145 case CC0:
2146 case PC:
2147 case REG:
2148 case SCRATCH:
2149 case ADDR_VEC:
2150 case ADDR_DIFF_VEC:
2151 case VAR_LOCATION:
2152 return 0;
2154 case CLOBBER:
2155 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2156 when some combination can't be done. If we see one, don't think
2157 that we can simplify the expression. */
2158 return (GET_MODE (x) != VOIDmode);
2160 case PRE_INC:
2161 case PRE_DEC:
2162 case POST_INC:
2163 case POST_DEC:
2164 case PRE_MODIFY:
2165 case POST_MODIFY:
2166 case CALL:
2167 case UNSPEC_VOLATILE:
2168 /* case TRAP_IF: This isn't clear yet. */
2169 return 1;
2171 case MEM:
2172 case ASM_INPUT:
2173 case ASM_OPERANDS:
2174 if (MEM_VOLATILE_P (x))
2175 return 1;
2177 default:
2178 break;
2181 /* Recursively scan the operands of this expression. */
2184 const char *fmt = GET_RTX_FORMAT (code);
2185 int i;
2187 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2189 if (fmt[i] == 'e')
2191 if (side_effects_p (XEXP (x, i)))
2192 return 1;
2194 else if (fmt[i] == 'E')
2196 int j;
2197 for (j = 0; j < XVECLEN (x, i); j++)
2198 if (side_effects_p (XVECEXP (x, i, j)))
2199 return 1;
2203 return 0;
2206 /* Return nonzero if evaluating rtx X might cause a trap.
2207 FLAGS controls how to consider MEMs. A nonzero means the context
2208 of the access may have changed from the original, such that the
2209 address may have become invalid. */
2212 may_trap_p_1 (const_rtx x, unsigned flags)
2214 int i;
2215 enum rtx_code code;
2216 const char *fmt;
2218 /* We make no distinction currently, but this function is part of
2219 the internal target-hooks ABI so we keep the parameter as
2220 "unsigned flags". */
2221 bool code_changed = flags != 0;
2223 if (x == 0)
2224 return 0;
2225 code = GET_CODE (x);
2226 switch (code)
2228 /* Handle these cases quickly. */
2229 case CONST_INT:
2230 case CONST_DOUBLE:
2231 case CONST_FIXED:
2232 case CONST_VECTOR:
2233 case SYMBOL_REF:
2234 case LABEL_REF:
2235 case CONST:
2236 case PC:
2237 case CC0:
2238 case REG:
2239 case SCRATCH:
2240 return 0;
2242 case UNSPEC:
2243 case UNSPEC_VOLATILE:
2244 return targetm.unspec_may_trap_p (x, flags);
2246 case ASM_INPUT:
2247 case TRAP_IF:
2248 return 1;
2250 case ASM_OPERANDS:
2251 return MEM_VOLATILE_P (x);
2253 /* Memory ref can trap unless it's a static var or a stack slot. */
2254 case MEM:
2255 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2256 reference; moving it out of context such as when moving code
2257 when optimizing, might cause its address to become invalid. */
2258 code_changed
2259 || !MEM_NOTRAP_P (x))
2261 HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
2262 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2263 GET_MODE (x), code_changed);
2266 return 0;
2268 /* Division by a non-constant might trap. */
2269 case DIV:
2270 case MOD:
2271 case UDIV:
2272 case UMOD:
2273 if (HONOR_SNANS (GET_MODE (x)))
2274 return 1;
2275 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2276 return flag_trapping_math;
2277 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2278 return 1;
2279 break;
2281 case EXPR_LIST:
2282 /* An EXPR_LIST is used to represent a function call. This
2283 certainly may trap. */
2284 return 1;
2286 case GE:
2287 case GT:
2288 case LE:
2289 case LT:
2290 case LTGT:
2291 case COMPARE:
2292 /* Some floating point comparisons may trap. */
2293 if (!flag_trapping_math)
2294 break;
2295 /* ??? There is no machine independent way to check for tests that trap
2296 when COMPARE is used, though many targets do make this distinction.
2297 For instance, sparc uses CCFPE for compares which generate exceptions
2298 and CCFP for compares which do not generate exceptions. */
2299 if (HONOR_NANS (GET_MODE (x)))
2300 return 1;
2301 /* But often the compare has some CC mode, so check operand
2302 modes as well. */
2303 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2304 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2305 return 1;
2306 break;
2308 case EQ:
2309 case NE:
2310 if (HONOR_SNANS (GET_MODE (x)))
2311 return 1;
2312 /* Often comparison is CC mode, so check operand modes. */
2313 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2314 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2315 return 1;
2316 break;
2318 case FIX:
2319 /* Conversion of floating point might trap. */
2320 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2321 return 1;
2322 break;
2324 case NEG:
2325 case ABS:
2326 case SUBREG:
2327 /* These operations don't trap even with floating point. */
2328 break;
2330 default:
2331 /* Any floating arithmetic may trap. */
2332 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2333 && flag_trapping_math)
2334 return 1;
2337 fmt = GET_RTX_FORMAT (code);
2338 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2340 if (fmt[i] == 'e')
2342 if (may_trap_p_1 (XEXP (x, i), flags))
2343 return 1;
2345 else if (fmt[i] == 'E')
2347 int j;
2348 for (j = 0; j < XVECLEN (x, i); j++)
2349 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2350 return 1;
2353 return 0;
2356 /* Return nonzero if evaluating rtx X might cause a trap. */
2359 may_trap_p (const_rtx x)
2361 return may_trap_p_1 (x, 0);
2364 /* Same as above, but additionally return nonzero if evaluating rtx X might
2365 cause a fault. We define a fault for the purpose of this function as a
2366 erroneous execution condition that cannot be encountered during the normal
2367 execution of a valid program; the typical example is an unaligned memory
2368 access on a strict alignment machine. The compiler guarantees that it
2369 doesn't generate code that will fault from a valid program, but this
2370 guarantee doesn't mean anything for individual instructions. Consider
2371 the following example:
2373 struct S { int d; union { char *cp; int *ip; }; };
2375 int foo(struct S *s)
2377 if (s->d == 1)
2378 return *s->ip;
2379 else
2380 return *s->cp;
2383 on a strict alignment machine. In a valid program, foo will never be
2384 invoked on a structure for which d is equal to 1 and the underlying
2385 unique field of the union not aligned on a 4-byte boundary, but the
2386 expression *s->ip might cause a fault if considered individually.
2388 At the RTL level, potentially problematic expressions will almost always
2389 verify may_trap_p; for example, the above dereference can be emitted as
2390 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2391 However, suppose that foo is inlined in a caller that causes s->cp to
2392 point to a local character variable and guarantees that s->d is not set
2393 to 1; foo may have been effectively translated into pseudo-RTL as:
2395 if ((reg:SI) == 1)
2396 (set (reg:SI) (mem:SI (%fp - 7)))
2397 else
2398 (set (reg:QI) (mem:QI (%fp - 7)))
2400 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2401 memory reference to a stack slot, but it will certainly cause a fault
2402 on a strict alignment machine. */
2405 may_trap_or_fault_p (const_rtx x)
2407 return may_trap_p_1 (x, 1);
2410 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2411 i.e., an inequality. */
2414 inequality_comparisons_p (const_rtx x)
2416 const char *fmt;
2417 int len, i;
2418 const enum rtx_code code = GET_CODE (x);
2420 switch (code)
2422 case REG:
2423 case SCRATCH:
2424 case PC:
2425 case CC0:
2426 case CONST_INT:
2427 case CONST_DOUBLE:
2428 case CONST_FIXED:
2429 case CONST_VECTOR:
2430 case CONST:
2431 case LABEL_REF:
2432 case SYMBOL_REF:
2433 return 0;
2435 case LT:
2436 case LTU:
2437 case GT:
2438 case GTU:
2439 case LE:
2440 case LEU:
2441 case GE:
2442 case GEU:
2443 return 1;
2445 default:
2446 break;
2449 len = GET_RTX_LENGTH (code);
2450 fmt = GET_RTX_FORMAT (code);
2452 for (i = 0; i < len; i++)
2454 if (fmt[i] == 'e')
2456 if (inequality_comparisons_p (XEXP (x, i)))
2457 return 1;
2459 else if (fmt[i] == 'E')
2461 int j;
2462 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2463 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2464 return 1;
2468 return 0;
2471 /* Replace any occurrence of FROM in X with TO. The function does
2472 not enter into CONST_DOUBLE for the replace.
2474 Note that copying is not done so X must not be shared unless all copies
2475 are to be modified. */
2478 replace_rtx (rtx x, rtx from, rtx to)
2480 int i, j;
2481 const char *fmt;
2483 /* The following prevents loops occurrence when we change MEM in
2484 CONST_DOUBLE onto the same CONST_DOUBLE. */
2485 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2486 return x;
2488 if (x == from)
2489 return to;
2491 /* Allow this function to make replacements in EXPR_LISTs. */
2492 if (x == 0)
2493 return 0;
2495 if (GET_CODE (x) == SUBREG)
2497 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2499 if (CONST_INT_P (new_rtx))
2501 x = simplify_subreg (GET_MODE (x), new_rtx,
2502 GET_MODE (SUBREG_REG (x)),
2503 SUBREG_BYTE (x));
2504 gcc_assert (x);
2506 else
2507 SUBREG_REG (x) = new_rtx;
2509 return x;
2511 else if (GET_CODE (x) == ZERO_EXTEND)
2513 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2515 if (CONST_INT_P (new_rtx))
2517 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2518 new_rtx, GET_MODE (XEXP (x, 0)));
2519 gcc_assert (x);
2521 else
2522 XEXP (x, 0) = new_rtx;
2524 return x;
2527 fmt = GET_RTX_FORMAT (GET_CODE (x));
2528 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2530 if (fmt[i] == 'e')
2531 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2532 else if (fmt[i] == 'E')
2533 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2534 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2537 return x;
2540 /* Replace occurrences of the old label in *X with the new one.
2541 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2544 replace_label (rtx *x, void *data)
2546 rtx l = *x;
2547 rtx old_label = ((replace_label_data *) data)->r1;
2548 rtx new_label = ((replace_label_data *) data)->r2;
2549 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2551 if (l == NULL_RTX)
2552 return 0;
2554 if (GET_CODE (l) == SYMBOL_REF
2555 && CONSTANT_POOL_ADDRESS_P (l))
2557 rtx c = get_pool_constant (l);
2558 if (rtx_referenced_p (old_label, c))
2560 rtx new_c, new_l;
2561 replace_label_data *d = (replace_label_data *) data;
2563 /* Create a copy of constant C; replace the label inside
2564 but do not update LABEL_NUSES because uses in constant pool
2565 are not counted. */
2566 new_c = copy_rtx (c);
2567 d->update_label_nuses = false;
2568 for_each_rtx (&new_c, replace_label, data);
2569 d->update_label_nuses = update_label_nuses;
2571 /* Add the new constant NEW_C to constant pool and replace
2572 the old reference to constant by new reference. */
2573 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2574 *x = replace_rtx (l, l, new_l);
2576 return 0;
2579 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2580 field. This is not handled by for_each_rtx because it doesn't
2581 handle unprinted ('0') fields. */
2582 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2583 JUMP_LABEL (l) = new_label;
2585 if ((GET_CODE (l) == LABEL_REF
2586 || GET_CODE (l) == INSN_LIST)
2587 && XEXP (l, 0) == old_label)
2589 XEXP (l, 0) = new_label;
2590 if (update_label_nuses)
2592 ++LABEL_NUSES (new_label);
2593 --LABEL_NUSES (old_label);
2595 return 0;
2598 return 0;
2601 /* When *BODY is equal to X or X is directly referenced by *BODY
2602 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2603 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2605 static int
2606 rtx_referenced_p_1 (rtx *body, void *x)
2608 rtx y = (rtx) x;
2610 if (*body == NULL_RTX)
2611 return y == NULL_RTX;
2613 /* Return true if a label_ref *BODY refers to label Y. */
2614 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2615 return XEXP (*body, 0) == y;
2617 /* If *BODY is a reference to pool constant traverse the constant. */
2618 if (GET_CODE (*body) == SYMBOL_REF
2619 && CONSTANT_POOL_ADDRESS_P (*body))
2620 return rtx_referenced_p (y, get_pool_constant (*body));
2622 /* By default, compare the RTL expressions. */
2623 return rtx_equal_p (*body, y);
2626 /* Return true if X is referenced in BODY. */
2629 rtx_referenced_p (rtx x, rtx body)
2631 return for_each_rtx (&body, rtx_referenced_p_1, x);
2634 /* If INSN is a tablejump return true and store the label (before jump table) to
2635 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2637 bool
2638 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2640 rtx label, table;
2642 if (JUMP_P (insn)
2643 && (label = JUMP_LABEL (insn)) != NULL_RTX
2644 && (table = next_active_insn (label)) != NULL_RTX
2645 && JUMP_TABLE_DATA_P (table))
2647 if (labelp)
2648 *labelp = label;
2649 if (tablep)
2650 *tablep = table;
2651 return true;
2653 return false;
2656 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2657 constant that is not in the constant pool and not in the condition
2658 of an IF_THEN_ELSE. */
2660 static int
2661 computed_jump_p_1 (const_rtx x)
2663 const enum rtx_code code = GET_CODE (x);
2664 int i, j;
2665 const char *fmt;
2667 switch (code)
2669 case LABEL_REF:
2670 case PC:
2671 return 0;
2673 case CONST:
2674 case CONST_INT:
2675 case CONST_DOUBLE:
2676 case CONST_FIXED:
2677 case CONST_VECTOR:
2678 case SYMBOL_REF:
2679 case REG:
2680 return 1;
2682 case MEM:
2683 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2684 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2686 case IF_THEN_ELSE:
2687 return (computed_jump_p_1 (XEXP (x, 1))
2688 || computed_jump_p_1 (XEXP (x, 2)));
2690 default:
2691 break;
2694 fmt = GET_RTX_FORMAT (code);
2695 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2697 if (fmt[i] == 'e'
2698 && computed_jump_p_1 (XEXP (x, i)))
2699 return 1;
2701 else if (fmt[i] == 'E')
2702 for (j = 0; j < XVECLEN (x, i); j++)
2703 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2704 return 1;
2707 return 0;
2710 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2712 Tablejumps and casesi insns are not considered indirect jumps;
2713 we can recognize them by a (use (label_ref)). */
2716 computed_jump_p (const_rtx insn)
2718 int i;
2719 if (JUMP_P (insn))
2721 rtx pat = PATTERN (insn);
2723 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2724 if (JUMP_LABEL (insn) != NULL)
2725 return 0;
2727 if (GET_CODE (pat) == PARALLEL)
2729 int len = XVECLEN (pat, 0);
2730 int has_use_labelref = 0;
2732 for (i = len - 1; i >= 0; i--)
2733 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2734 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2735 == LABEL_REF))
2736 has_use_labelref = 1;
2738 if (! has_use_labelref)
2739 for (i = len - 1; i >= 0; i--)
2740 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2741 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2742 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2743 return 1;
2745 else if (GET_CODE (pat) == SET
2746 && SET_DEST (pat) == pc_rtx
2747 && computed_jump_p_1 (SET_SRC (pat)))
2748 return 1;
2750 return 0;
2753 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2754 calls. Processes the subexpressions of EXP and passes them to F. */
2755 static int
2756 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2758 int result, i, j;
2759 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2760 rtx *x;
2762 for (; format[n] != '\0'; n++)
2764 switch (format[n])
2766 case 'e':
2767 /* Call F on X. */
2768 x = &XEXP (exp, n);
2769 result = (*f) (x, data);
2770 if (result == -1)
2771 /* Do not traverse sub-expressions. */
2772 continue;
2773 else if (result != 0)
2774 /* Stop the traversal. */
2775 return result;
2777 if (*x == NULL_RTX)
2778 /* There are no sub-expressions. */
2779 continue;
2781 i = non_rtx_starting_operands[GET_CODE (*x)];
2782 if (i >= 0)
2784 result = for_each_rtx_1 (*x, i, f, data);
2785 if (result != 0)
2786 return result;
2788 break;
2790 case 'V':
2791 case 'E':
2792 if (XVEC (exp, n) == 0)
2793 continue;
2794 for (j = 0; j < XVECLEN (exp, n); ++j)
2796 /* Call F on X. */
2797 x = &XVECEXP (exp, n, j);
2798 result = (*f) (x, data);
2799 if (result == -1)
2800 /* Do not traverse sub-expressions. */
2801 continue;
2802 else if (result != 0)
2803 /* Stop the traversal. */
2804 return result;
2806 if (*x == NULL_RTX)
2807 /* There are no sub-expressions. */
2808 continue;
2810 i = non_rtx_starting_operands[GET_CODE (*x)];
2811 if (i >= 0)
2813 result = for_each_rtx_1 (*x, i, f, data);
2814 if (result != 0)
2815 return result;
2818 break;
2820 default:
2821 /* Nothing to do. */
2822 break;
2826 return 0;
2829 /* Traverse X via depth-first search, calling F for each
2830 sub-expression (including X itself). F is also passed the DATA.
2831 If F returns -1, do not traverse sub-expressions, but continue
2832 traversing the rest of the tree. If F ever returns any other
2833 nonzero value, stop the traversal, and return the value returned
2834 by F. Otherwise, return 0. This function does not traverse inside
2835 tree structure that contains RTX_EXPRs, or into sub-expressions
2836 whose format code is `0' since it is not known whether or not those
2837 codes are actually RTL.
2839 This routine is very general, and could (should?) be used to
2840 implement many of the other routines in this file. */
2843 for_each_rtx (rtx *x, rtx_function f, void *data)
2845 int result;
2846 int i;
2848 /* Call F on X. */
2849 result = (*f) (x, data);
2850 if (result == -1)
2851 /* Do not traverse sub-expressions. */
2852 return 0;
2853 else if (result != 0)
2854 /* Stop the traversal. */
2855 return result;
2857 if (*x == NULL_RTX)
2858 /* There are no sub-expressions. */
2859 return 0;
2861 i = non_rtx_starting_operands[GET_CODE (*x)];
2862 if (i < 0)
2863 return 0;
2865 return for_each_rtx_1 (*x, i, f, data);
2869 /* Searches X for any reference to REGNO, returning the rtx of the
2870 reference found if any. Otherwise, returns NULL_RTX. */
2873 regno_use_in (unsigned int regno, rtx x)
2875 const char *fmt;
2876 int i, j;
2877 rtx tem;
2879 if (REG_P (x) && REGNO (x) == regno)
2880 return x;
2882 fmt = GET_RTX_FORMAT (GET_CODE (x));
2883 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2885 if (fmt[i] == 'e')
2887 if ((tem = regno_use_in (regno, XEXP (x, i))))
2888 return tem;
2890 else if (fmt[i] == 'E')
2891 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2892 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2893 return tem;
2896 return NULL_RTX;
2899 /* Return a value indicating whether OP, an operand of a commutative
2900 operation, is preferred as the first or second operand. The higher
2901 the value, the stronger the preference for being the first operand.
2902 We use negative values to indicate a preference for the first operand
2903 and positive values for the second operand. */
2906 commutative_operand_precedence (rtx op)
2908 enum rtx_code code = GET_CODE (op);
2910 /* Constants always come the second operand. Prefer "nice" constants. */
2911 if (code == CONST_INT)
2912 return -8;
2913 if (code == CONST_DOUBLE)
2914 return -7;
2915 if (code == CONST_FIXED)
2916 return -7;
2917 op = avoid_constant_pool_reference (op);
2918 code = GET_CODE (op);
2920 switch (GET_RTX_CLASS (code))
2922 case RTX_CONST_OBJ:
2923 if (code == CONST_INT)
2924 return -6;
2925 if (code == CONST_DOUBLE)
2926 return -5;
2927 if (code == CONST_FIXED)
2928 return -5;
2929 return -4;
2931 case RTX_EXTRA:
2932 /* SUBREGs of objects should come second. */
2933 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2934 return -3;
2935 return 0;
2937 case RTX_OBJ:
2938 /* Complex expressions should be the first, so decrease priority
2939 of objects. Prefer pointer objects over non pointer objects. */
2940 if ((REG_P (op) && REG_POINTER (op))
2941 || (MEM_P (op) && MEM_POINTER (op)))
2942 return -1;
2943 return -2;
2945 case RTX_COMM_ARITH:
2946 /* Prefer operands that are themselves commutative to be first.
2947 This helps to make things linear. In particular,
2948 (and (and (reg) (reg)) (not (reg))) is canonical. */
2949 return 4;
2951 case RTX_BIN_ARITH:
2952 /* If only one operand is a binary expression, it will be the first
2953 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2954 is canonical, although it will usually be further simplified. */
2955 return 2;
2957 case RTX_UNARY:
2958 /* Then prefer NEG and NOT. */
2959 if (code == NEG || code == NOT)
2960 return 1;
2962 default:
2963 return 0;
2967 /* Return 1 iff it is necessary to swap operands of commutative operation
2968 in order to canonicalize expression. */
2970 bool
2971 swap_commutative_operands_p (rtx x, rtx y)
2973 return (commutative_operand_precedence (x)
2974 < commutative_operand_precedence (y));
2977 /* Return 1 if X is an autoincrement side effect and the register is
2978 not the stack pointer. */
2980 auto_inc_p (const_rtx x)
2982 switch (GET_CODE (x))
2984 case PRE_INC:
2985 case POST_INC:
2986 case PRE_DEC:
2987 case POST_DEC:
2988 case PRE_MODIFY:
2989 case POST_MODIFY:
2990 /* There are no REG_INC notes for SP. */
2991 if (XEXP (x, 0) != stack_pointer_rtx)
2992 return 1;
2993 default:
2994 break;
2996 return 0;
2999 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3001 loc_mentioned_in_p (rtx *loc, const_rtx in)
3003 enum rtx_code code;
3004 const char *fmt;
3005 int i, j;
3007 if (!in)
3008 return 0;
3010 code = GET_CODE (in);
3011 fmt = GET_RTX_FORMAT (code);
3012 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3014 if (fmt[i] == 'e')
3016 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3017 return 1;
3019 else if (fmt[i] == 'E')
3020 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3021 if (loc == &XVECEXP (in, i, j)
3022 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3023 return 1;
3025 return 0;
3028 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3029 and SUBREG_BYTE, return the bit offset where the subreg begins
3030 (counting from the least significant bit of the operand). */
3032 unsigned int
3033 subreg_lsb_1 (enum machine_mode outer_mode,
3034 enum machine_mode inner_mode,
3035 unsigned int subreg_byte)
3037 unsigned int bitpos;
3038 unsigned int byte;
3039 unsigned int word;
3041 /* A paradoxical subreg begins at bit position 0. */
3042 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3043 return 0;
3045 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3046 /* If the subreg crosses a word boundary ensure that
3047 it also begins and ends on a word boundary. */
3048 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3049 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3050 && (subreg_byte % UNITS_PER_WORD
3051 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3053 if (WORDS_BIG_ENDIAN)
3054 word = (GET_MODE_SIZE (inner_mode)
3055 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3056 else
3057 word = subreg_byte / UNITS_PER_WORD;
3058 bitpos = word * BITS_PER_WORD;
3060 if (BYTES_BIG_ENDIAN)
3061 byte = (GET_MODE_SIZE (inner_mode)
3062 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3063 else
3064 byte = subreg_byte % UNITS_PER_WORD;
3065 bitpos += byte * BITS_PER_UNIT;
3067 return bitpos;
3070 /* Given a subreg X, return the bit offset where the subreg begins
3071 (counting from the least significant bit of the reg). */
3073 unsigned int
3074 subreg_lsb (const_rtx x)
3076 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3077 SUBREG_BYTE (x));
3080 /* Fill in information about a subreg of a hard register.
3081 xregno - A regno of an inner hard subreg_reg (or what will become one).
3082 xmode - The mode of xregno.
3083 offset - The byte offset.
3084 ymode - The mode of a top level SUBREG (or what may become one).
3085 info - Pointer to structure to fill in. */
3086 void
3087 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3088 unsigned int offset, enum machine_mode ymode,
3089 struct subreg_info *info)
3091 int nregs_xmode, nregs_ymode;
3092 int mode_multiple, nregs_multiple;
3093 int offset_adj, y_offset, y_offset_adj;
3094 int regsize_xmode, regsize_ymode;
3095 bool rknown;
3097 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3099 rknown = false;
3101 /* If there are holes in a non-scalar mode in registers, we expect
3102 that it is made up of its units concatenated together. */
3103 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3105 enum machine_mode xmode_unit;
3107 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3108 if (GET_MODE_INNER (xmode) == VOIDmode)
3109 xmode_unit = xmode;
3110 else
3111 xmode_unit = GET_MODE_INNER (xmode);
3112 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3113 gcc_assert (nregs_xmode
3114 == (GET_MODE_NUNITS (xmode)
3115 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3116 gcc_assert (hard_regno_nregs[xregno][xmode]
3117 == (hard_regno_nregs[xregno][xmode_unit]
3118 * GET_MODE_NUNITS (xmode)));
3120 /* You can only ask for a SUBREG of a value with holes in the middle
3121 if you don't cross the holes. (Such a SUBREG should be done by
3122 picking a different register class, or doing it in memory if
3123 necessary.) An example of a value with holes is XCmode on 32-bit
3124 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3125 3 for each part, but in memory it's two 128-bit parts.
3126 Padding is assumed to be at the end (not necessarily the 'high part')
3127 of each unit. */
3128 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3129 < GET_MODE_NUNITS (xmode))
3130 && (offset / GET_MODE_SIZE (xmode_unit)
3131 != ((offset + GET_MODE_SIZE (ymode) - 1)
3132 / GET_MODE_SIZE (xmode_unit))))
3134 info->representable_p = false;
3135 rknown = true;
3138 else
3139 nregs_xmode = hard_regno_nregs[xregno][xmode];
3141 nregs_ymode = hard_regno_nregs[xregno][ymode];
3143 /* Paradoxical subregs are otherwise valid. */
3144 if (!rknown
3145 && offset == 0
3146 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3148 info->representable_p = true;
3149 /* If this is a big endian paradoxical subreg, which uses more
3150 actual hard registers than the original register, we must
3151 return a negative offset so that we find the proper highpart
3152 of the register. */
3153 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3154 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3155 info->offset = nregs_xmode - nregs_ymode;
3156 else
3157 info->offset = 0;
3158 info->nregs = nregs_ymode;
3159 return;
3162 /* If registers store different numbers of bits in the different
3163 modes, we cannot generally form this subreg. */
3164 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3165 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3166 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3167 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3169 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3170 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3171 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3173 info->representable_p = false;
3174 info->nregs
3175 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3176 info->offset = offset / regsize_xmode;
3177 return;
3179 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3181 info->representable_p = false;
3182 info->nregs
3183 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3184 info->offset = offset / regsize_xmode;
3185 return;
3189 /* Lowpart subregs are otherwise valid. */
3190 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3192 info->representable_p = true;
3193 rknown = true;
3195 if (offset == 0 || nregs_xmode == nregs_ymode)
3197 info->offset = 0;
3198 info->nregs = nregs_ymode;
3199 return;
3203 /* This should always pass, otherwise we don't know how to verify
3204 the constraint. These conditions may be relaxed but
3205 subreg_regno_offset would need to be redesigned. */
3206 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3207 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3209 /* The XMODE value can be seen as a vector of NREGS_XMODE
3210 values. The subreg must represent a lowpart of given field.
3211 Compute what field it is. */
3212 offset_adj = offset;
3213 offset_adj -= subreg_lowpart_offset (ymode,
3214 mode_for_size (GET_MODE_BITSIZE (xmode)
3215 / nregs_xmode,
3216 MODE_INT, 0));
3218 /* Size of ymode must not be greater than the size of xmode. */
3219 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3220 gcc_assert (mode_multiple != 0);
3222 y_offset = offset / GET_MODE_SIZE (ymode);
3223 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3224 nregs_multiple = nregs_xmode / nregs_ymode;
3226 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3227 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3229 if (!rknown)
3231 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3232 rknown = true;
3234 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3235 info->nregs = nregs_ymode;
3238 /* This function returns the regno offset of a subreg expression.
3239 xregno - A regno of an inner hard subreg_reg (or what will become one).
3240 xmode - The mode of xregno.
3241 offset - The byte offset.
3242 ymode - The mode of a top level SUBREG (or what may become one).
3243 RETURN - The regno offset which would be used. */
3244 unsigned int
3245 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3246 unsigned int offset, enum machine_mode ymode)
3248 struct subreg_info info;
3249 subreg_get_info (xregno, xmode, offset, ymode, &info);
3250 return info.offset;
3253 /* This function returns true when the offset is representable via
3254 subreg_offset in the given regno.
3255 xregno - A regno of an inner hard subreg_reg (or what will become one).
3256 xmode - The mode of xregno.
3257 offset - The byte offset.
3258 ymode - The mode of a top level SUBREG (or what may become one).
3259 RETURN - Whether the offset is representable. */
3260 bool
3261 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3262 unsigned int offset, enum machine_mode ymode)
3264 struct subreg_info info;
3265 subreg_get_info (xregno, xmode, offset, ymode, &info);
3266 return info.representable_p;
3269 /* Return the number of a YMODE register to which
3271 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3273 can be simplified. Return -1 if the subreg can't be simplified.
3275 XREGNO is a hard register number. */
3278 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3279 unsigned int offset, enum machine_mode ymode)
3281 struct subreg_info info;
3282 unsigned int yregno;
3284 #ifdef CANNOT_CHANGE_MODE_CLASS
3285 /* Give the backend a chance to disallow the mode change. */
3286 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3287 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3288 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3289 return -1;
3290 #endif
3292 /* We shouldn't simplify stack-related registers. */
3293 if ((!reload_completed || frame_pointer_needed)
3294 && (xregno == FRAME_POINTER_REGNUM
3295 || xregno == HARD_FRAME_POINTER_REGNUM))
3296 return -1;
3298 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3299 && xregno == ARG_POINTER_REGNUM)
3300 return -1;
3302 if (xregno == STACK_POINTER_REGNUM)
3303 return -1;
3305 /* Try to get the register offset. */
3306 subreg_get_info (xregno, xmode, offset, ymode, &info);
3307 if (!info.representable_p)
3308 return -1;
3310 /* Make sure that the offsetted register value is in range. */
3311 yregno = xregno + info.offset;
3312 if (!HARD_REGISTER_NUM_P (yregno))
3313 return -1;
3315 /* See whether (reg:YMODE YREGNO) is valid.
3317 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3318 This is a kludge to work around how float/complex arguments are passed
3319 on 32-bit SPARC and should be fixed. */
3320 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3321 && HARD_REGNO_MODE_OK (xregno, xmode))
3322 return -1;
3324 return (int) yregno;
3327 /* Return the final regno that a subreg expression refers to. */
3328 unsigned int
3329 subreg_regno (const_rtx x)
3331 unsigned int ret;
3332 rtx subreg = SUBREG_REG (x);
3333 int regno = REGNO (subreg);
3335 ret = regno + subreg_regno_offset (regno,
3336 GET_MODE (subreg),
3337 SUBREG_BYTE (x),
3338 GET_MODE (x));
3339 return ret;
3343 /* Return the number of registers that a subreg expression refers
3344 to. */
3345 unsigned int
3346 subreg_nregs (const_rtx x)
3348 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3351 /* Return the number of registers that a subreg REG with REGNO
3352 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3353 changed so that the regno can be passed in. */
3355 unsigned int
3356 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3358 struct subreg_info info;
3359 rtx subreg = SUBREG_REG (x);
3361 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3362 &info);
3363 return info.nregs;
3367 struct parms_set_data
3369 int nregs;
3370 HARD_REG_SET regs;
3373 /* Helper function for noticing stores to parameter registers. */
3374 static void
3375 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3377 struct parms_set_data *const d = (struct parms_set_data *) data;
3378 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3379 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3381 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3382 d->nregs--;
3386 /* Look backward for first parameter to be loaded.
3387 Note that loads of all parameters will not necessarily be
3388 found if CSE has eliminated some of them (e.g., an argument
3389 to the outer function is passed down as a parameter).
3390 Do not skip BOUNDARY. */
3392 find_first_parameter_load (rtx call_insn, rtx boundary)
3394 struct parms_set_data parm;
3395 rtx p, before, first_set;
3397 /* Since different machines initialize their parameter registers
3398 in different orders, assume nothing. Collect the set of all
3399 parameter registers. */
3400 CLEAR_HARD_REG_SET (parm.regs);
3401 parm.nregs = 0;
3402 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3403 if (GET_CODE (XEXP (p, 0)) == USE
3404 && REG_P (XEXP (XEXP (p, 0), 0)))
3406 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3408 /* We only care about registers which can hold function
3409 arguments. */
3410 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3411 continue;
3413 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3414 parm.nregs++;
3416 before = call_insn;
3417 first_set = call_insn;
3419 /* Search backward for the first set of a register in this set. */
3420 while (parm.nregs && before != boundary)
3422 before = PREV_INSN (before);
3424 /* It is possible that some loads got CSEed from one call to
3425 another. Stop in that case. */
3426 if (CALL_P (before))
3427 break;
3429 /* Our caller needs either ensure that we will find all sets
3430 (in case code has not been optimized yet), or take care
3431 for possible labels in a way by setting boundary to preceding
3432 CODE_LABEL. */
3433 if (LABEL_P (before))
3435 gcc_assert (before == boundary);
3436 break;
3439 if (INSN_P (before))
3441 int nregs_old = parm.nregs;
3442 note_stores (PATTERN (before), parms_set, &parm);
3443 /* If we found something that did not set a parameter reg,
3444 we're done. Do not keep going, as that might result
3445 in hoisting an insn before the setting of a pseudo
3446 that is used by the hoisted insn. */
3447 if (nregs_old != parm.nregs)
3448 first_set = before;
3449 else
3450 break;
3453 return first_set;
3456 /* Return true if we should avoid inserting code between INSN and preceding
3457 call instruction. */
3459 bool
3460 keep_with_call_p (const_rtx insn)
3462 rtx set;
3464 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3466 if (REG_P (SET_DEST (set))
3467 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3468 && fixed_regs[REGNO (SET_DEST (set))]
3469 && general_operand (SET_SRC (set), VOIDmode))
3470 return true;
3471 if (REG_P (SET_SRC (set))
3472 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3473 && REG_P (SET_DEST (set))
3474 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3475 return true;
3476 /* There may be a stack pop just after the call and before the store
3477 of the return register. Search for the actual store when deciding
3478 if we can break or not. */
3479 if (SET_DEST (set) == stack_pointer_rtx)
3481 /* This CONST_CAST is okay because next_nonnote_insn just
3482 returns its argument and we assign it to a const_rtx
3483 variable. */
3484 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3485 if (i2 && keep_with_call_p (i2))
3486 return true;
3489 return false;
3492 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3493 to non-complex jumps. That is, direct unconditional, conditional,
3494 and tablejumps, but not computed jumps or returns. It also does
3495 not apply to the fallthru case of a conditional jump. */
3497 bool
3498 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3500 rtx tmp = JUMP_LABEL (jump_insn);
3502 if (label == tmp)
3503 return true;
3505 if (tablejump_p (jump_insn, NULL, &tmp))
3507 rtvec vec = XVEC (PATTERN (tmp),
3508 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3509 int i, veclen = GET_NUM_ELEM (vec);
3511 for (i = 0; i < veclen; ++i)
3512 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3513 return true;
3516 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3517 return true;
3519 return false;
3523 /* Return an estimate of the cost of computing rtx X.
3524 One use is in cse, to decide which expression to keep in the hash table.
3525 Another is in rtl generation, to pick the cheapest way to multiply.
3526 Other uses like the latter are expected in the future.
3528 SPEED parameter specify whether costs optimized for speed or size should
3529 be returned. */
3532 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
3534 int i, j;
3535 enum rtx_code code;
3536 const char *fmt;
3537 int total;
3539 if (x == 0)
3540 return 0;
3542 /* Compute the default costs of certain things.
3543 Note that targetm.rtx_costs can override the defaults. */
3545 code = GET_CODE (x);
3546 switch (code)
3548 case MULT:
3549 total = COSTS_N_INSNS (5);
3550 break;
3551 case DIV:
3552 case UDIV:
3553 case MOD:
3554 case UMOD:
3555 total = COSTS_N_INSNS (7);
3556 break;
3557 case USE:
3558 /* Used in combine.c as a marker. */
3559 total = 0;
3560 break;
3561 default:
3562 total = COSTS_N_INSNS (1);
3565 switch (code)
3567 case REG:
3568 return 0;
3570 case SUBREG:
3571 total = 0;
3572 /* If we can't tie these modes, make this expensive. The larger
3573 the mode, the more expensive it is. */
3574 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3575 return COSTS_N_INSNS (2
3576 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3577 break;
3579 default:
3580 if (targetm.rtx_costs (x, code, outer_code, &total, speed))
3581 return total;
3582 break;
3585 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3586 which is already in total. */
3588 fmt = GET_RTX_FORMAT (code);
3589 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3590 if (fmt[i] == 'e')
3591 total += rtx_cost (XEXP (x, i), code, speed);
3592 else if (fmt[i] == 'E')
3593 for (j = 0; j < XVECLEN (x, i); j++)
3594 total += rtx_cost (XVECEXP (x, i, j), code, speed);
3596 return total;
3599 /* Return cost of address expression X.
3600 Expect that X is properly formed address reference.
3602 SPEED parameter specify whether costs optimized for speed or size should
3603 be returned. */
3606 address_cost (rtx x, enum machine_mode mode, bool speed)
3608 /* We may be asked for cost of various unusual addresses, such as operands
3609 of push instruction. It is not worthwhile to complicate writing
3610 of the target hook by such cases. */
3612 if (!memory_address_p (mode, x))
3613 return 1000;
3615 return targetm.address_cost (x, speed);
3618 /* If the target doesn't override, compute the cost as with arithmetic. */
3621 default_address_cost (rtx x, bool speed)
3623 return rtx_cost (x, MEM, speed);
3627 unsigned HOST_WIDE_INT
3628 nonzero_bits (const_rtx x, enum machine_mode mode)
3630 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3633 unsigned int
3634 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3636 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3639 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3640 It avoids exponential behavior in nonzero_bits1 when X has
3641 identical subexpressions on the first or the second level. */
3643 static unsigned HOST_WIDE_INT
3644 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3645 enum machine_mode known_mode,
3646 unsigned HOST_WIDE_INT known_ret)
3648 if (x == known_x && mode == known_mode)
3649 return known_ret;
3651 /* Try to find identical subexpressions. If found call
3652 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3653 precomputed value for the subexpression as KNOWN_RET. */
3655 if (ARITHMETIC_P (x))
3657 rtx x0 = XEXP (x, 0);
3658 rtx x1 = XEXP (x, 1);
3660 /* Check the first level. */
3661 if (x0 == x1)
3662 return nonzero_bits1 (x, mode, x0, mode,
3663 cached_nonzero_bits (x0, mode, known_x,
3664 known_mode, known_ret));
3666 /* Check the second level. */
3667 if (ARITHMETIC_P (x0)
3668 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3669 return nonzero_bits1 (x, mode, x1, mode,
3670 cached_nonzero_bits (x1, mode, known_x,
3671 known_mode, known_ret));
3673 if (ARITHMETIC_P (x1)
3674 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3675 return nonzero_bits1 (x, mode, x0, mode,
3676 cached_nonzero_bits (x0, mode, known_x,
3677 known_mode, known_ret));
3680 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3683 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3684 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3685 is less useful. We can't allow both, because that results in exponential
3686 run time recursion. There is a nullstone testcase that triggered
3687 this. This macro avoids accidental uses of num_sign_bit_copies. */
3688 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3690 /* Given an expression, X, compute which bits in X can be nonzero.
3691 We don't care about bits outside of those defined in MODE.
3693 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3694 an arithmetic operation, we can do better. */
3696 static unsigned HOST_WIDE_INT
3697 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3698 enum machine_mode known_mode,
3699 unsigned HOST_WIDE_INT known_ret)
3701 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3702 unsigned HOST_WIDE_INT inner_nz;
3703 enum rtx_code code;
3704 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3706 /* For floating-point and vector values, assume all bits are needed. */
3707 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3708 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3709 return nonzero;
3711 /* If X is wider than MODE, use its mode instead. */
3712 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3714 mode = GET_MODE (x);
3715 nonzero = GET_MODE_MASK (mode);
3716 mode_width = GET_MODE_BITSIZE (mode);
3719 if (mode_width > HOST_BITS_PER_WIDE_INT)
3720 /* Our only callers in this case look for single bit values. So
3721 just return the mode mask. Those tests will then be false. */
3722 return nonzero;
3724 #ifndef WORD_REGISTER_OPERATIONS
3725 /* If MODE is wider than X, but both are a single word for both the host
3726 and target machines, we can compute this from which bits of the
3727 object might be nonzero in its own mode, taking into account the fact
3728 that on many CISC machines, accessing an object in a wider mode
3729 causes the high-order bits to become undefined. So they are
3730 not known to be zero. */
3732 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3733 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3734 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3735 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3737 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3738 known_x, known_mode, known_ret);
3739 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3740 return nonzero;
3742 #endif
3744 code = GET_CODE (x);
3745 switch (code)
3747 case REG:
3748 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3749 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3750 all the bits above ptr_mode are known to be zero. */
3751 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3752 && REG_POINTER (x))
3753 nonzero &= GET_MODE_MASK (ptr_mode);
3754 #endif
3756 /* Include declared information about alignment of pointers. */
3757 /* ??? We don't properly preserve REG_POINTER changes across
3758 pointer-to-integer casts, so we can't trust it except for
3759 things that we know must be pointers. See execute/960116-1.c. */
3760 if ((x == stack_pointer_rtx
3761 || x == frame_pointer_rtx
3762 || x == arg_pointer_rtx)
3763 && REGNO_POINTER_ALIGN (REGNO (x)))
3765 unsigned HOST_WIDE_INT alignment
3766 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3768 #ifdef PUSH_ROUNDING
3769 /* If PUSH_ROUNDING is defined, it is possible for the
3770 stack to be momentarily aligned only to that amount,
3771 so we pick the least alignment. */
3772 if (x == stack_pointer_rtx && PUSH_ARGS)
3773 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3774 alignment);
3775 #endif
3777 nonzero &= ~(alignment - 1);
3781 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3782 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3783 known_mode, known_ret,
3784 &nonzero_for_hook);
3786 if (new_rtx)
3787 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3788 known_mode, known_ret);
3790 return nonzero_for_hook;
3793 case CONST_INT:
3794 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3795 /* If X is negative in MODE, sign-extend the value. */
3796 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3797 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3798 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3799 #endif
3801 return INTVAL (x);
3803 case MEM:
3804 #ifdef LOAD_EXTEND_OP
3805 /* In many, if not most, RISC machines, reading a byte from memory
3806 zeros the rest of the register. Noticing that fact saves a lot
3807 of extra zero-extends. */
3808 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3809 nonzero &= GET_MODE_MASK (GET_MODE (x));
3810 #endif
3811 break;
3813 case EQ: case NE:
3814 case UNEQ: case LTGT:
3815 case GT: case GTU: case UNGT:
3816 case LT: case LTU: case UNLT:
3817 case GE: case GEU: case UNGE:
3818 case LE: case LEU: case UNLE:
3819 case UNORDERED: case ORDERED:
3820 /* If this produces an integer result, we know which bits are set.
3821 Code here used to clear bits outside the mode of X, but that is
3822 now done above. */
3823 /* Mind that MODE is the mode the caller wants to look at this
3824 operation in, and not the actual operation mode. We can wind
3825 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3826 that describes the results of a vector compare. */
3827 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3828 && mode_width <= HOST_BITS_PER_WIDE_INT)
3829 nonzero = STORE_FLAG_VALUE;
3830 break;
3832 case NEG:
3833 #if 0
3834 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3835 and num_sign_bit_copies. */
3836 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3837 == GET_MODE_BITSIZE (GET_MODE (x)))
3838 nonzero = 1;
3839 #endif
3841 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3842 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3843 break;
3845 case ABS:
3846 #if 0
3847 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3848 and num_sign_bit_copies. */
3849 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3850 == GET_MODE_BITSIZE (GET_MODE (x)))
3851 nonzero = 1;
3852 #endif
3853 break;
3855 case TRUNCATE:
3856 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3857 known_x, known_mode, known_ret)
3858 & GET_MODE_MASK (mode));
3859 break;
3861 case ZERO_EXTEND:
3862 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3863 known_x, known_mode, known_ret);
3864 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3865 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3866 break;
3868 case SIGN_EXTEND:
3869 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3870 Otherwise, show all the bits in the outer mode but not the inner
3871 may be nonzero. */
3872 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3873 known_x, known_mode, known_ret);
3874 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3876 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3877 if (inner_nz
3878 & (((HOST_WIDE_INT) 1
3879 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3880 inner_nz |= (GET_MODE_MASK (mode)
3881 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3884 nonzero &= inner_nz;
3885 break;
3887 case AND:
3888 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3889 known_x, known_mode, known_ret)
3890 & cached_nonzero_bits (XEXP (x, 1), mode,
3891 known_x, known_mode, known_ret);
3892 break;
3894 case XOR: case IOR:
3895 case UMIN: case UMAX: case SMIN: case SMAX:
3897 unsigned HOST_WIDE_INT nonzero0 =
3898 cached_nonzero_bits (XEXP (x, 0), mode,
3899 known_x, known_mode, known_ret);
3901 /* Don't call nonzero_bits for the second time if it cannot change
3902 anything. */
3903 if ((nonzero & nonzero0) != nonzero)
3904 nonzero &= nonzero0
3905 | cached_nonzero_bits (XEXP (x, 1), mode,
3906 known_x, known_mode, known_ret);
3908 break;
3910 case PLUS: case MINUS:
3911 case MULT:
3912 case DIV: case UDIV:
3913 case MOD: case UMOD:
3914 /* We can apply the rules of arithmetic to compute the number of
3915 high- and low-order zero bits of these operations. We start by
3916 computing the width (position of the highest-order nonzero bit)
3917 and the number of low-order zero bits for each value. */
3919 unsigned HOST_WIDE_INT nz0 =
3920 cached_nonzero_bits (XEXP (x, 0), mode,
3921 known_x, known_mode, known_ret);
3922 unsigned HOST_WIDE_INT nz1 =
3923 cached_nonzero_bits (XEXP (x, 1), mode,
3924 known_x, known_mode, known_ret);
3925 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3926 int width0 = floor_log2 (nz0) + 1;
3927 int width1 = floor_log2 (nz1) + 1;
3928 int low0 = floor_log2 (nz0 & -nz0);
3929 int low1 = floor_log2 (nz1 & -nz1);
3930 HOST_WIDE_INT op0_maybe_minusp
3931 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3932 HOST_WIDE_INT op1_maybe_minusp
3933 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3934 unsigned int result_width = mode_width;
3935 int result_low = 0;
3937 switch (code)
3939 case PLUS:
3940 result_width = MAX (width0, width1) + 1;
3941 result_low = MIN (low0, low1);
3942 break;
3943 case MINUS:
3944 result_low = MIN (low0, low1);
3945 break;
3946 case MULT:
3947 result_width = width0 + width1;
3948 result_low = low0 + low1;
3949 break;
3950 case DIV:
3951 if (width1 == 0)
3952 break;
3953 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3954 result_width = width0;
3955 break;
3956 case UDIV:
3957 if (width1 == 0)
3958 break;
3959 result_width = width0;
3960 break;
3961 case MOD:
3962 if (width1 == 0)
3963 break;
3964 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3965 result_width = MIN (width0, width1);
3966 result_low = MIN (low0, low1);
3967 break;
3968 case UMOD:
3969 if (width1 == 0)
3970 break;
3971 result_width = MIN (width0, width1);
3972 result_low = MIN (low0, low1);
3973 break;
3974 default:
3975 gcc_unreachable ();
3978 if (result_width < mode_width)
3979 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3981 if (result_low > 0)
3982 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3984 #ifdef POINTERS_EXTEND_UNSIGNED
3985 /* If pointers extend unsigned and this is an addition or subtraction
3986 to a pointer in Pmode, all the bits above ptr_mode are known to be
3987 zero. */
3988 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3989 && (code == PLUS || code == MINUS)
3990 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3991 nonzero &= GET_MODE_MASK (ptr_mode);
3992 #endif
3994 break;
3996 case ZERO_EXTRACT:
3997 if (CONST_INT_P (XEXP (x, 1))
3998 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3999 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4000 break;
4002 case SUBREG:
4003 /* If this is a SUBREG formed for a promoted variable that has
4004 been zero-extended, we know that at least the high-order bits
4005 are zero, though others might be too. */
4007 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4008 nonzero = GET_MODE_MASK (GET_MODE (x))
4009 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4010 known_x, known_mode, known_ret);
4012 /* If the inner mode is a single word for both the host and target
4013 machines, we can compute this from which bits of the inner
4014 object might be nonzero. */
4015 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4016 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4017 <= HOST_BITS_PER_WIDE_INT))
4019 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4020 known_x, known_mode, known_ret);
4022 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4023 /* If this is a typical RISC machine, we only have to worry
4024 about the way loads are extended. */
4025 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4026 ? (((nonzero
4027 & (((unsigned HOST_WIDE_INT) 1
4028 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4029 != 0))
4030 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4031 || !MEM_P (SUBREG_REG (x)))
4032 #endif
4034 /* On many CISC machines, accessing an object in a wider mode
4035 causes the high-order bits to become undefined. So they are
4036 not known to be zero. */
4037 if (GET_MODE_SIZE (GET_MODE (x))
4038 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4039 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4040 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4043 break;
4045 case ASHIFTRT:
4046 case LSHIFTRT:
4047 case ASHIFT:
4048 case ROTATE:
4049 /* The nonzero bits are in two classes: any bits within MODE
4050 that aren't in GET_MODE (x) are always significant. The rest of the
4051 nonzero bits are those that are significant in the operand of
4052 the shift when shifted the appropriate number of bits. This
4053 shows that high-order bits are cleared by the right shift and
4054 low-order bits by left shifts. */
4055 if (CONST_INT_P (XEXP (x, 1))
4056 && INTVAL (XEXP (x, 1)) >= 0
4057 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4058 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4060 enum machine_mode inner_mode = GET_MODE (x);
4061 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4062 int count = INTVAL (XEXP (x, 1));
4063 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4064 unsigned HOST_WIDE_INT op_nonzero =
4065 cached_nonzero_bits (XEXP (x, 0), mode,
4066 known_x, known_mode, known_ret);
4067 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4068 unsigned HOST_WIDE_INT outer = 0;
4070 if (mode_width > width)
4071 outer = (op_nonzero & nonzero & ~mode_mask);
4073 if (code == LSHIFTRT)
4074 inner >>= count;
4075 else if (code == ASHIFTRT)
4077 inner >>= count;
4079 /* If the sign bit may have been nonzero before the shift, we
4080 need to mark all the places it could have been copied to
4081 by the shift as possibly nonzero. */
4082 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
4083 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
4085 else if (code == ASHIFT)
4086 inner <<= count;
4087 else
4088 inner = ((inner << (count % width)
4089 | (inner >> (width - (count % width)))) & mode_mask);
4091 nonzero &= (outer | inner);
4093 break;
4095 case FFS:
4096 case POPCOUNT:
4097 /* This is at most the number of bits in the mode. */
4098 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4099 break;
4101 case CLZ:
4102 /* If CLZ has a known value at zero, then the nonzero bits are
4103 that value, plus the number of bits in the mode minus one. */
4104 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4105 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4106 else
4107 nonzero = -1;
4108 break;
4110 case CTZ:
4111 /* If CTZ has a known value at zero, then the nonzero bits are
4112 that value, plus the number of bits in the mode minus one. */
4113 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4114 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4115 else
4116 nonzero = -1;
4117 break;
4119 case PARITY:
4120 nonzero = 1;
4121 break;
4123 case IF_THEN_ELSE:
4125 unsigned HOST_WIDE_INT nonzero_true =
4126 cached_nonzero_bits (XEXP (x, 1), mode,
4127 known_x, known_mode, known_ret);
4129 /* Don't call nonzero_bits for the second time if it cannot change
4130 anything. */
4131 if ((nonzero & nonzero_true) != nonzero)
4132 nonzero &= nonzero_true
4133 | cached_nonzero_bits (XEXP (x, 2), mode,
4134 known_x, known_mode, known_ret);
4136 break;
4138 default:
4139 break;
4142 return nonzero;
4145 /* See the macro definition above. */
4146 #undef cached_num_sign_bit_copies
4149 /* The function cached_num_sign_bit_copies is a wrapper around
4150 num_sign_bit_copies1. It avoids exponential behavior in
4151 num_sign_bit_copies1 when X has identical subexpressions on the
4152 first or the second level. */
4154 static unsigned int
4155 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4156 enum machine_mode known_mode,
4157 unsigned int known_ret)
4159 if (x == known_x && mode == known_mode)
4160 return known_ret;
4162 /* Try to find identical subexpressions. If found call
4163 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4164 the precomputed value for the subexpression as KNOWN_RET. */
4166 if (ARITHMETIC_P (x))
4168 rtx x0 = XEXP (x, 0);
4169 rtx x1 = XEXP (x, 1);
4171 /* Check the first level. */
4172 if (x0 == x1)
4173 return
4174 num_sign_bit_copies1 (x, mode, x0, mode,
4175 cached_num_sign_bit_copies (x0, mode, known_x,
4176 known_mode,
4177 known_ret));
4179 /* Check the second level. */
4180 if (ARITHMETIC_P (x0)
4181 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4182 return
4183 num_sign_bit_copies1 (x, mode, x1, mode,
4184 cached_num_sign_bit_copies (x1, mode, known_x,
4185 known_mode,
4186 known_ret));
4188 if (ARITHMETIC_P (x1)
4189 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4190 return
4191 num_sign_bit_copies1 (x, mode, x0, mode,
4192 cached_num_sign_bit_copies (x0, mode, known_x,
4193 known_mode,
4194 known_ret));
4197 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4200 /* Return the number of bits at the high-order end of X that are known to
4201 be equal to the sign bit. X will be used in mode MODE; if MODE is
4202 VOIDmode, X will be used in its own mode. The returned value will always
4203 be between 1 and the number of bits in MODE. */
4205 static unsigned int
4206 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4207 enum machine_mode known_mode,
4208 unsigned int known_ret)
4210 enum rtx_code code = GET_CODE (x);
4211 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4212 int num0, num1, result;
4213 unsigned HOST_WIDE_INT nonzero;
4215 /* If we weren't given a mode, use the mode of X. If the mode is still
4216 VOIDmode, we don't know anything. Likewise if one of the modes is
4217 floating-point. */
4219 if (mode == VOIDmode)
4220 mode = GET_MODE (x);
4222 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4223 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4224 return 1;
4226 /* For a smaller object, just ignore the high bits. */
4227 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4229 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4230 known_x, known_mode, known_ret);
4231 return MAX (1,
4232 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4235 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4237 #ifndef WORD_REGISTER_OPERATIONS
4238 /* If this machine does not do all register operations on the entire
4239 register and MODE is wider than the mode of X, we can say nothing
4240 at all about the high-order bits. */
4241 return 1;
4242 #else
4243 /* Likewise on machines that do, if the mode of the object is smaller
4244 than a word and loads of that size don't sign extend, we can say
4245 nothing about the high order bits. */
4246 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4247 #ifdef LOAD_EXTEND_OP
4248 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4249 #endif
4251 return 1;
4252 #endif
4255 switch (code)
4257 case REG:
4259 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4260 /* If pointers extend signed and this is a pointer in Pmode, say that
4261 all the bits above ptr_mode are known to be sign bit copies. */
4262 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4263 && REG_POINTER (x))
4264 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4265 #endif
4268 unsigned int copies_for_hook = 1, copies = 1;
4269 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4270 known_mode, known_ret,
4271 &copies_for_hook);
4273 if (new_rtx)
4274 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4275 known_mode, known_ret);
4277 if (copies > 1 || copies_for_hook > 1)
4278 return MAX (copies, copies_for_hook);
4280 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4282 break;
4284 case MEM:
4285 #ifdef LOAD_EXTEND_OP
4286 /* Some RISC machines sign-extend all loads of smaller than a word. */
4287 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4288 return MAX (1, ((int) bitwidth
4289 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4290 #endif
4291 break;
4293 case CONST_INT:
4294 /* If the constant is negative, take its 1's complement and remask.
4295 Then see how many zero bits we have. */
4296 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4297 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4298 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4299 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4301 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4303 case SUBREG:
4304 /* If this is a SUBREG for a promoted object that is sign-extended
4305 and we are looking at it in a wider mode, we know that at least the
4306 high-order bits are known to be sign bit copies. */
4308 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4310 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4311 known_x, known_mode, known_ret);
4312 return MAX ((int) bitwidth
4313 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4314 num0);
4317 /* For a smaller object, just ignore the high bits. */
4318 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4320 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4321 known_x, known_mode, known_ret);
4322 return MAX (1, (num0
4323 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4324 - bitwidth)));
4327 #ifdef WORD_REGISTER_OPERATIONS
4328 #ifdef LOAD_EXTEND_OP
4329 /* For paradoxical SUBREGs on machines where all register operations
4330 affect the entire register, just look inside. Note that we are
4331 passing MODE to the recursive call, so the number of sign bit copies
4332 will remain relative to that mode, not the inner mode. */
4334 /* This works only if loads sign extend. Otherwise, if we get a
4335 reload for the inner part, it may be loaded from the stack, and
4336 then we lose all sign bit copies that existed before the store
4337 to the stack. */
4339 if ((GET_MODE_SIZE (GET_MODE (x))
4340 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4341 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4342 && MEM_P (SUBREG_REG (x)))
4343 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4344 known_x, known_mode, known_ret);
4345 #endif
4346 #endif
4347 break;
4349 case SIGN_EXTRACT:
4350 if (CONST_INT_P (XEXP (x, 1)))
4351 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4352 break;
4354 case SIGN_EXTEND:
4355 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4356 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4357 known_x, known_mode, known_ret));
4359 case TRUNCATE:
4360 /* For a smaller object, just ignore the high bits. */
4361 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4362 known_x, known_mode, known_ret);
4363 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4364 - bitwidth)));
4366 case NOT:
4367 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4368 known_x, known_mode, known_ret);
4370 case ROTATE: case ROTATERT:
4371 /* If we are rotating left by a number of bits less than the number
4372 of sign bit copies, we can just subtract that amount from the
4373 number. */
4374 if (CONST_INT_P (XEXP (x, 1))
4375 && INTVAL (XEXP (x, 1)) >= 0
4376 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4378 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4379 known_x, known_mode, known_ret);
4380 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4381 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4383 break;
4385 case NEG:
4386 /* In general, this subtracts one sign bit copy. But if the value
4387 is known to be positive, the number of sign bit copies is the
4388 same as that of the input. Finally, if the input has just one bit
4389 that might be nonzero, all the bits are copies of the sign bit. */
4390 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4391 known_x, known_mode, known_ret);
4392 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4393 return num0 > 1 ? num0 - 1 : 1;
4395 nonzero = nonzero_bits (XEXP (x, 0), mode);
4396 if (nonzero == 1)
4397 return bitwidth;
4399 if (num0 > 1
4400 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4401 num0--;
4403 return num0;
4405 case IOR: case AND: case XOR:
4406 case SMIN: case SMAX: case UMIN: case UMAX:
4407 /* Logical operations will preserve the number of sign-bit copies.
4408 MIN and MAX operations always return one of the operands. */
4409 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4410 known_x, known_mode, known_ret);
4411 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4412 known_x, known_mode, known_ret);
4414 /* If num1 is clearing some of the top bits then regardless of
4415 the other term, we are guaranteed to have at least that many
4416 high-order zero bits. */
4417 if (code == AND
4418 && num1 > 1
4419 && bitwidth <= HOST_BITS_PER_WIDE_INT
4420 && CONST_INT_P (XEXP (x, 1))
4421 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4422 return num1;
4424 /* Similarly for IOR when setting high-order bits. */
4425 if (code == IOR
4426 && num1 > 1
4427 && bitwidth <= HOST_BITS_PER_WIDE_INT
4428 && CONST_INT_P (XEXP (x, 1))
4429 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4430 return num1;
4432 return MIN (num0, num1);
4434 case PLUS: case MINUS:
4435 /* For addition and subtraction, we can have a 1-bit carry. However,
4436 if we are subtracting 1 from a positive number, there will not
4437 be such a carry. Furthermore, if the positive number is known to
4438 be 0 or 1, we know the result is either -1 or 0. */
4440 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4441 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4443 nonzero = nonzero_bits (XEXP (x, 0), mode);
4444 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4445 return (nonzero == 1 || nonzero == 0 ? bitwidth
4446 : bitwidth - floor_log2 (nonzero) - 1);
4449 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4450 known_x, known_mode, known_ret);
4451 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4452 known_x, known_mode, known_ret);
4453 result = MAX (1, MIN (num0, num1) - 1);
4455 #ifdef POINTERS_EXTEND_UNSIGNED
4456 /* If pointers extend signed and this is an addition or subtraction
4457 to a pointer in Pmode, all the bits above ptr_mode are known to be
4458 sign bit copies. */
4459 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4460 && (code == PLUS || code == MINUS)
4461 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4462 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4463 - GET_MODE_BITSIZE (ptr_mode) + 1),
4464 result);
4465 #endif
4466 return result;
4468 case MULT:
4469 /* The number of bits of the product is the sum of the number of
4470 bits of both terms. However, unless one of the terms if known
4471 to be positive, we must allow for an additional bit since negating
4472 a negative number can remove one sign bit copy. */
4474 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4475 known_x, known_mode, known_ret);
4476 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4477 known_x, known_mode, known_ret);
4479 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4480 if (result > 0
4481 && (bitwidth > HOST_BITS_PER_WIDE_INT
4482 || (((nonzero_bits (XEXP (x, 0), mode)
4483 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4484 && ((nonzero_bits (XEXP (x, 1), mode)
4485 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4486 result--;
4488 return MAX (1, result);
4490 case UDIV:
4491 /* The result must be <= the first operand. If the first operand
4492 has the high bit set, we know nothing about the number of sign
4493 bit copies. */
4494 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4495 return 1;
4496 else if ((nonzero_bits (XEXP (x, 0), mode)
4497 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4498 return 1;
4499 else
4500 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4501 known_x, known_mode, known_ret);
4503 case UMOD:
4504 /* The result must be <= the second operand. */
4505 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4506 known_x, known_mode, known_ret);
4508 case DIV:
4509 /* Similar to unsigned division, except that we have to worry about
4510 the case where the divisor is negative, in which case we have
4511 to add 1. */
4512 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4513 known_x, known_mode, known_ret);
4514 if (result > 1
4515 && (bitwidth > HOST_BITS_PER_WIDE_INT
4516 || (nonzero_bits (XEXP (x, 1), mode)
4517 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4518 result--;
4520 return result;
4522 case MOD:
4523 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4524 known_x, known_mode, known_ret);
4525 if (result > 1
4526 && (bitwidth > HOST_BITS_PER_WIDE_INT
4527 || (nonzero_bits (XEXP (x, 1), mode)
4528 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4529 result--;
4531 return result;
4533 case ASHIFTRT:
4534 /* Shifts by a constant add to the number of bits equal to the
4535 sign bit. */
4536 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4537 known_x, known_mode, known_ret);
4538 if (CONST_INT_P (XEXP (x, 1))
4539 && INTVAL (XEXP (x, 1)) > 0
4540 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4541 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4543 return num0;
4545 case ASHIFT:
4546 /* Left shifts destroy copies. */
4547 if (!CONST_INT_P (XEXP (x, 1))
4548 || INTVAL (XEXP (x, 1)) < 0
4549 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4550 || INTVAL (XEXP (x, 1)) >= GET_MODE_BITSIZE (GET_MODE (x)))
4551 return 1;
4553 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4554 known_x, known_mode, known_ret);
4555 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4557 case IF_THEN_ELSE:
4558 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4559 known_x, known_mode, known_ret);
4560 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4561 known_x, known_mode, known_ret);
4562 return MIN (num0, num1);
4564 case EQ: case NE: case GE: case GT: case LE: case LT:
4565 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4566 case GEU: case GTU: case LEU: case LTU:
4567 case UNORDERED: case ORDERED:
4568 /* If the constant is negative, take its 1's complement and remask.
4569 Then see how many zero bits we have. */
4570 nonzero = STORE_FLAG_VALUE;
4571 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4572 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4573 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4575 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4577 default:
4578 break;
4581 /* If we haven't been able to figure it out by one of the above rules,
4582 see if some of the high-order bits are known to be zero. If so,
4583 count those bits and return one less than that amount. If we can't
4584 safely compute the mask for this mode, always return BITWIDTH. */
4586 bitwidth = GET_MODE_BITSIZE (mode);
4587 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4588 return 1;
4590 nonzero = nonzero_bits (x, mode);
4591 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4592 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4595 /* Calculate the rtx_cost of a single instruction. A return value of
4596 zero indicates an instruction pattern without a known cost. */
4599 insn_rtx_cost (rtx pat, bool speed)
4601 int i, cost;
4602 rtx set;
4604 /* Extract the single set rtx from the instruction pattern.
4605 We can't use single_set since we only have the pattern. */
4606 if (GET_CODE (pat) == SET)
4607 set = pat;
4608 else if (GET_CODE (pat) == PARALLEL)
4610 set = NULL_RTX;
4611 for (i = 0; i < XVECLEN (pat, 0); i++)
4613 rtx x = XVECEXP (pat, 0, i);
4614 if (GET_CODE (x) == SET)
4616 if (set)
4617 return 0;
4618 set = x;
4621 if (!set)
4622 return 0;
4624 else
4625 return 0;
4627 cost = rtx_cost (SET_SRC (set), SET, speed);
4628 return cost > 0 ? cost : COSTS_N_INSNS (1);
4631 /* Given an insn INSN and condition COND, return the condition in a
4632 canonical form to simplify testing by callers. Specifically:
4634 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4635 (2) Both operands will be machine operands; (cc0) will have been replaced.
4636 (3) If an operand is a constant, it will be the second operand.
4637 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4638 for GE, GEU, and LEU.
4640 If the condition cannot be understood, or is an inequality floating-point
4641 comparison which needs to be reversed, 0 will be returned.
4643 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4645 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4646 insn used in locating the condition was found. If a replacement test
4647 of the condition is desired, it should be placed in front of that
4648 insn and we will be sure that the inputs are still valid.
4650 If WANT_REG is nonzero, we wish the condition to be relative to that
4651 register, if possible. Therefore, do not canonicalize the condition
4652 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4653 to be a compare to a CC mode register.
4655 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4656 and at INSN. */
4659 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4660 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4662 enum rtx_code code;
4663 rtx prev = insn;
4664 const_rtx set;
4665 rtx tem;
4666 rtx op0, op1;
4667 int reverse_code = 0;
4668 enum machine_mode mode;
4669 basic_block bb = BLOCK_FOR_INSN (insn);
4671 code = GET_CODE (cond);
4672 mode = GET_MODE (cond);
4673 op0 = XEXP (cond, 0);
4674 op1 = XEXP (cond, 1);
4676 if (reverse)
4677 code = reversed_comparison_code (cond, insn);
4678 if (code == UNKNOWN)
4679 return 0;
4681 if (earliest)
4682 *earliest = insn;
4684 /* If we are comparing a register with zero, see if the register is set
4685 in the previous insn to a COMPARE or a comparison operation. Perform
4686 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4687 in cse.c */
4689 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4690 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4691 && op1 == CONST0_RTX (GET_MODE (op0))
4692 && op0 != want_reg)
4694 /* Set nonzero when we find something of interest. */
4695 rtx x = 0;
4697 #ifdef HAVE_cc0
4698 /* If comparison with cc0, import actual comparison from compare
4699 insn. */
4700 if (op0 == cc0_rtx)
4702 if ((prev = prev_nonnote_insn (prev)) == 0
4703 || !NONJUMP_INSN_P (prev)
4704 || (set = single_set (prev)) == 0
4705 || SET_DEST (set) != cc0_rtx)
4706 return 0;
4708 op0 = SET_SRC (set);
4709 op1 = CONST0_RTX (GET_MODE (op0));
4710 if (earliest)
4711 *earliest = prev;
4713 #endif
4715 /* If this is a COMPARE, pick up the two things being compared. */
4716 if (GET_CODE (op0) == COMPARE)
4718 op1 = XEXP (op0, 1);
4719 op0 = XEXP (op0, 0);
4720 continue;
4722 else if (!REG_P (op0))
4723 break;
4725 /* Go back to the previous insn. Stop if it is not an INSN. We also
4726 stop if it isn't a single set or if it has a REG_INC note because
4727 we don't want to bother dealing with it. */
4730 prev = prev_nonnote_insn (prev);
4731 while (prev && DEBUG_INSN_P (prev));
4733 if (prev == 0
4734 || !NONJUMP_INSN_P (prev)
4735 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4736 /* In cfglayout mode, there do not have to be labels at the
4737 beginning of a block, or jumps at the end, so the previous
4738 conditions would not stop us when we reach bb boundary. */
4739 || BLOCK_FOR_INSN (prev) != bb)
4740 break;
4742 set = set_of (op0, prev);
4744 if (set
4745 && (GET_CODE (set) != SET
4746 || !rtx_equal_p (SET_DEST (set), op0)))
4747 break;
4749 /* If this is setting OP0, get what it sets it to if it looks
4750 relevant. */
4751 if (set)
4753 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4754 #ifdef FLOAT_STORE_FLAG_VALUE
4755 REAL_VALUE_TYPE fsfv;
4756 #endif
4758 /* ??? We may not combine comparisons done in a CCmode with
4759 comparisons not done in a CCmode. This is to aid targets
4760 like Alpha that have an IEEE compliant EQ instruction, and
4761 a non-IEEE compliant BEQ instruction. The use of CCmode is
4762 actually artificial, simply to prevent the combination, but
4763 should not affect other platforms.
4765 However, we must allow VOIDmode comparisons to match either
4766 CCmode or non-CCmode comparison, because some ports have
4767 modeless comparisons inside branch patterns.
4769 ??? This mode check should perhaps look more like the mode check
4770 in simplify_comparison in combine. */
4772 if ((GET_CODE (SET_SRC (set)) == COMPARE
4773 || (((code == NE
4774 || (code == LT
4775 && GET_MODE_CLASS (inner_mode) == MODE_INT
4776 && (GET_MODE_BITSIZE (inner_mode)
4777 <= HOST_BITS_PER_WIDE_INT)
4778 && (STORE_FLAG_VALUE
4779 & ((HOST_WIDE_INT) 1
4780 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4781 #ifdef FLOAT_STORE_FLAG_VALUE
4782 || (code == LT
4783 && SCALAR_FLOAT_MODE_P (inner_mode)
4784 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4785 REAL_VALUE_NEGATIVE (fsfv)))
4786 #endif
4788 && COMPARISON_P (SET_SRC (set))))
4789 && (((GET_MODE_CLASS (mode) == MODE_CC)
4790 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4791 || mode == VOIDmode || inner_mode == VOIDmode))
4792 x = SET_SRC (set);
4793 else if (((code == EQ
4794 || (code == GE
4795 && (GET_MODE_BITSIZE (inner_mode)
4796 <= HOST_BITS_PER_WIDE_INT)
4797 && GET_MODE_CLASS (inner_mode) == MODE_INT
4798 && (STORE_FLAG_VALUE
4799 & ((HOST_WIDE_INT) 1
4800 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4801 #ifdef FLOAT_STORE_FLAG_VALUE
4802 || (code == GE
4803 && SCALAR_FLOAT_MODE_P (inner_mode)
4804 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4805 REAL_VALUE_NEGATIVE (fsfv)))
4806 #endif
4808 && COMPARISON_P (SET_SRC (set))
4809 && (((GET_MODE_CLASS (mode) == MODE_CC)
4810 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4811 || mode == VOIDmode || inner_mode == VOIDmode))
4814 reverse_code = 1;
4815 x = SET_SRC (set);
4817 else
4818 break;
4821 else if (reg_set_p (op0, prev))
4822 /* If this sets OP0, but not directly, we have to give up. */
4823 break;
4825 if (x)
4827 /* If the caller is expecting the condition to be valid at INSN,
4828 make sure X doesn't change before INSN. */
4829 if (valid_at_insn_p)
4830 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4831 break;
4832 if (COMPARISON_P (x))
4833 code = GET_CODE (x);
4834 if (reverse_code)
4836 code = reversed_comparison_code (x, prev);
4837 if (code == UNKNOWN)
4838 return 0;
4839 reverse_code = 0;
4842 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4843 if (earliest)
4844 *earliest = prev;
4848 /* If constant is first, put it last. */
4849 if (CONSTANT_P (op0))
4850 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4852 /* If OP0 is the result of a comparison, we weren't able to find what
4853 was really being compared, so fail. */
4854 if (!allow_cc_mode
4855 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4856 return 0;
4858 /* Canonicalize any ordered comparison with integers involving equality
4859 if we can do computations in the relevant mode and we do not
4860 overflow. */
4862 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4863 && CONST_INT_P (op1)
4864 && GET_MODE (op0) != VOIDmode
4865 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4867 HOST_WIDE_INT const_val = INTVAL (op1);
4868 unsigned HOST_WIDE_INT uconst_val = const_val;
4869 unsigned HOST_WIDE_INT max_val
4870 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4872 switch (code)
4874 case LE:
4875 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4876 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4877 break;
4879 /* When cross-compiling, const_val might be sign-extended from
4880 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4881 case GE:
4882 if ((HOST_WIDE_INT) (const_val & max_val)
4883 != (((HOST_WIDE_INT) 1
4884 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4885 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4886 break;
4888 case LEU:
4889 if (uconst_val < max_val)
4890 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4891 break;
4893 case GEU:
4894 if (uconst_val != 0)
4895 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4896 break;
4898 default:
4899 break;
4903 /* Never return CC0; return zero instead. */
4904 if (CC0_P (op0))
4905 return 0;
4907 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4910 /* Given a jump insn JUMP, return the condition that will cause it to branch
4911 to its JUMP_LABEL. If the condition cannot be understood, or is an
4912 inequality floating-point comparison which needs to be reversed, 0 will
4913 be returned.
4915 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4916 insn used in locating the condition was found. If a replacement test
4917 of the condition is desired, it should be placed in front of that
4918 insn and we will be sure that the inputs are still valid. If EARLIEST
4919 is null, the returned condition will be valid at INSN.
4921 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4922 compare CC mode register.
4924 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4927 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4929 rtx cond;
4930 int reverse;
4931 rtx set;
4933 /* If this is not a standard conditional jump, we can't parse it. */
4934 if (!JUMP_P (jump)
4935 || ! any_condjump_p (jump))
4936 return 0;
4937 set = pc_set (jump);
4939 cond = XEXP (SET_SRC (set), 0);
4941 /* If this branches to JUMP_LABEL when the condition is false, reverse
4942 the condition. */
4943 reverse
4944 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4945 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4947 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4948 allow_cc_mode, valid_at_insn_p);
4951 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4952 TARGET_MODE_REP_EXTENDED.
4954 Note that we assume that the property of
4955 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4956 narrower than mode B. I.e., if A is a mode narrower than B then in
4957 order to be able to operate on it in mode B, mode A needs to
4958 satisfy the requirements set by the representation of mode B. */
4960 static void
4961 init_num_sign_bit_copies_in_rep (void)
4963 enum machine_mode mode, in_mode;
4965 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4966 in_mode = GET_MODE_WIDER_MODE (mode))
4967 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4968 mode = GET_MODE_WIDER_MODE (mode))
4970 enum machine_mode i;
4972 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4973 extends to the next widest mode. */
4974 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4975 || GET_MODE_WIDER_MODE (mode) == in_mode);
4977 /* We are in in_mode. Count how many bits outside of mode
4978 have to be copies of the sign-bit. */
4979 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4981 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4983 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4984 /* We can only check sign-bit copies starting from the
4985 top-bit. In order to be able to check the bits we
4986 have already seen we pretend that subsequent bits
4987 have to be sign-bit copies too. */
4988 || num_sign_bit_copies_in_rep [in_mode][mode])
4989 num_sign_bit_copies_in_rep [in_mode][mode]
4990 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4995 /* Suppose that truncation from the machine mode of X to MODE is not a
4996 no-op. See if there is anything special about X so that we can
4997 assume it already contains a truncated value of MODE. */
4999 bool
5000 truncated_to_mode (enum machine_mode mode, const_rtx x)
5002 /* This register has already been used in MODE without explicit
5003 truncation. */
5004 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5005 return true;
5007 /* See if we already satisfy the requirements of MODE. If yes we
5008 can just switch to MODE. */
5009 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5010 && (num_sign_bit_copies (x, GET_MODE (x))
5011 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5012 return true;
5014 return false;
5017 /* Initialize non_rtx_starting_operands, which is used to speed up
5018 for_each_rtx. */
5019 void
5020 init_rtlanal (void)
5022 int i;
5023 for (i = 0; i < NUM_RTX_CODE; i++)
5025 const char *format = GET_RTX_FORMAT (i);
5026 const char *first = strpbrk (format, "eEV");
5027 non_rtx_starting_operands[i] = first ? first - format : -1;
5030 init_num_sign_bit_copies_in_rep ();
5033 /* Check whether this is a constant pool constant. */
5034 bool
5035 constant_pool_constant_p (rtx x)
5037 x = avoid_constant_pool_reference (x);
5038 return GET_CODE (x) == CONST_DOUBLE;
5041 /* If M is a bitmask that selects a field of low-order bits within an item but
5042 not the entire word, return the length of the field. Return -1 otherwise.
5043 M is used in machine mode MODE. */
5046 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5048 if (mode != VOIDmode)
5050 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
5051 return -1;
5052 m &= GET_MODE_MASK (mode);
5055 return exact_log2 (m + 1);