Daily bump.
[official-gcc.git] / gcc / expmed.c
blobd5d2d528ca0a4d489231c91217442392cb825583
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
39 #include "df.h"
40 #include "target.h"
42 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
43 unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
46 unsigned HOST_WIDE_INT, rtx);
47 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
48 unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT, rtx, int);
51 static rtx mask_rtx (enum machine_mode, int, int, int);
52 static rtx lshift_value (enum machine_mode, rtx, int, int);
53 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT, int);
55 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
56 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
59 /* Test whether a value is zero of a power of two. */
60 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
62 /* Nonzero means divides or modulus operations are relatively cheap for
63 powers of two, so don't use branches; emit the operation instead.
64 Usually, this will mean that the MD file will emit non-branch
65 sequences. */
67 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
68 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
70 #ifndef SLOW_UNALIGNED_ACCESS
71 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
72 #endif
74 /* For compilers that support multiple targets with different word sizes,
75 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
76 is the H8/300(H) compiler. */
78 #ifndef MAX_BITS_PER_WORD
79 #define MAX_BITS_PER_WORD BITS_PER_WORD
80 #endif
82 /* Reduce conditional compilation elsewhere. */
83 #ifndef HAVE_insv
84 #define HAVE_insv 0
85 #define CODE_FOR_insv CODE_FOR_nothing
86 #define gen_insv(a,b,c,d) NULL_RTX
87 #endif
88 #ifndef HAVE_extv
89 #define HAVE_extv 0
90 #define CODE_FOR_extv CODE_FOR_nothing
91 #define gen_extv(a,b,c,d) NULL_RTX
92 #endif
93 #ifndef HAVE_extzv
94 #define HAVE_extzv 0
95 #define CODE_FOR_extzv CODE_FOR_nothing
96 #define gen_extzv(a,b,c,d) NULL_RTX
97 #endif
99 /* Cost of various pieces of RTL. Note that some of these are indexed by
100 shift count and some by mode. */
101 static int zero_cost;
102 static int add_cost[NUM_MACHINE_MODES];
103 static int neg_cost[NUM_MACHINE_MODES];
104 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
106 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
107 static int mul_cost[NUM_MACHINE_MODES];
108 static int sdiv_cost[NUM_MACHINE_MODES];
109 static int udiv_cost[NUM_MACHINE_MODES];
110 static int mul_widen_cost[NUM_MACHINE_MODES];
111 static int mul_highpart_cost[NUM_MACHINE_MODES];
113 void
114 init_expmed (void)
116 struct
118 struct rtx_def reg; rtunion reg_fld[2];
119 struct rtx_def plus; rtunion plus_fld1;
120 struct rtx_def neg;
121 struct rtx_def mult; rtunion mult_fld1;
122 struct rtx_def sdiv; rtunion sdiv_fld1;
123 struct rtx_def udiv; rtunion udiv_fld1;
124 struct rtx_def zext;
125 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
126 struct rtx_def smod_32; rtunion smod_32_fld1;
127 struct rtx_def wide_mult; rtunion wide_mult_fld1;
128 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
129 struct rtx_def wide_trunc;
130 struct rtx_def shift; rtunion shift_fld1;
131 struct rtx_def shift_mult; rtunion shift_mult_fld1;
132 struct rtx_def shift_add; rtunion shift_add_fld1;
133 struct rtx_def shift_sub; rtunion shift_sub_fld1;
134 } all;
136 rtx pow2[MAX_BITS_PER_WORD];
137 rtx cint[MAX_BITS_PER_WORD];
138 int m, n;
139 enum machine_mode mode, wider_mode;
141 zero_cost = rtx_cost (const0_rtx, 0);
143 for (m = 1; m < MAX_BITS_PER_WORD; m++)
145 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
146 cint[m] = GEN_INT (m);
149 memset (&all, 0, sizeof all);
151 PUT_CODE (&all.reg, REG);
152 /* Avoid using hard regs in ways which may be unsupported. */
153 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
155 PUT_CODE (&all.plus, PLUS);
156 XEXP (&all.plus, 0) = &all.reg;
157 XEXP (&all.plus, 1) = &all.reg;
159 PUT_CODE (&all.neg, NEG);
160 XEXP (&all.neg, 0) = &all.reg;
162 PUT_CODE (&all.mult, MULT);
163 XEXP (&all.mult, 0) = &all.reg;
164 XEXP (&all.mult, 1) = &all.reg;
166 PUT_CODE (&all.sdiv, DIV);
167 XEXP (&all.sdiv, 0) = &all.reg;
168 XEXP (&all.sdiv, 1) = &all.reg;
170 PUT_CODE (&all.udiv, UDIV);
171 XEXP (&all.udiv, 0) = &all.reg;
172 XEXP (&all.udiv, 1) = &all.reg;
174 PUT_CODE (&all.sdiv_32, DIV);
175 XEXP (&all.sdiv_32, 0) = &all.reg;
176 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
178 PUT_CODE (&all.smod_32, MOD);
179 XEXP (&all.smod_32, 0) = &all.reg;
180 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
182 PUT_CODE (&all.zext, ZERO_EXTEND);
183 XEXP (&all.zext, 0) = &all.reg;
185 PUT_CODE (&all.wide_mult, MULT);
186 XEXP (&all.wide_mult, 0) = &all.zext;
187 XEXP (&all.wide_mult, 1) = &all.zext;
189 PUT_CODE (&all.wide_lshr, LSHIFTRT);
190 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
192 PUT_CODE (&all.wide_trunc, TRUNCATE);
193 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
195 PUT_CODE (&all.shift, ASHIFT);
196 XEXP (&all.shift, 0) = &all.reg;
198 PUT_CODE (&all.shift_mult, MULT);
199 XEXP (&all.shift_mult, 0) = &all.reg;
201 PUT_CODE (&all.shift_add, PLUS);
202 XEXP (&all.shift_add, 0) = &all.shift_mult;
203 XEXP (&all.shift_add, 1) = &all.reg;
205 PUT_CODE (&all.shift_sub, MINUS);
206 XEXP (&all.shift_sub, 0) = &all.shift_mult;
207 XEXP (&all.shift_sub, 1) = &all.reg;
209 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
210 mode != VOIDmode;
211 mode = GET_MODE_WIDER_MODE (mode))
213 PUT_MODE (&all.reg, mode);
214 PUT_MODE (&all.plus, mode);
215 PUT_MODE (&all.neg, mode);
216 PUT_MODE (&all.mult, mode);
217 PUT_MODE (&all.sdiv, mode);
218 PUT_MODE (&all.udiv, mode);
219 PUT_MODE (&all.sdiv_32, mode);
220 PUT_MODE (&all.smod_32, mode);
221 PUT_MODE (&all.wide_trunc, mode);
222 PUT_MODE (&all.shift, mode);
223 PUT_MODE (&all.shift_mult, mode);
224 PUT_MODE (&all.shift_add, mode);
225 PUT_MODE (&all.shift_sub, mode);
227 add_cost[mode] = rtx_cost (&all.plus, SET);
228 neg_cost[mode] = rtx_cost (&all.neg, SET);
229 mul_cost[mode] = rtx_cost (&all.mult, SET);
230 sdiv_cost[mode] = rtx_cost (&all.sdiv, SET);
231 udiv_cost[mode] = rtx_cost (&all.udiv, SET);
233 sdiv_pow2_cheap[mode] = (rtx_cost (&all.sdiv_32, SET)
234 <= 2 * add_cost[mode]);
235 smod_pow2_cheap[mode] = (rtx_cost (&all.smod_32, SET)
236 <= 4 * add_cost[mode]);
238 wider_mode = GET_MODE_WIDER_MODE (mode);
239 if (wider_mode != VOIDmode)
241 PUT_MODE (&all.zext, wider_mode);
242 PUT_MODE (&all.wide_mult, wider_mode);
243 PUT_MODE (&all.wide_lshr, wider_mode);
244 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
246 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
247 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
250 shift_cost[mode][0] = 0;
251 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
253 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
254 for (m = 1; m < n; m++)
256 XEXP (&all.shift, 1) = cint[m];
257 XEXP (&all.shift_mult, 1) = pow2[m];
259 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
260 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
261 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
266 /* Return an rtx representing minus the value of X.
267 MODE is the intended mode of the result,
268 useful if X is a CONST_INT. */
271 negate_rtx (enum machine_mode mode, rtx x)
273 rtx result = simplify_unary_operation (NEG, mode, x, mode);
275 if (result == 0)
276 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
278 return result;
281 /* Report on the availability of insv/extv/extzv and the desired mode
282 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
283 is false; else the mode of the specified operand. If OPNO is -1,
284 all the caller cares about is whether the insn is available. */
285 enum machine_mode
286 mode_for_extraction (enum extraction_pattern pattern, int opno)
288 const struct insn_data *data;
290 switch (pattern)
292 case EP_insv:
293 if (HAVE_insv)
295 data = &insn_data[CODE_FOR_insv];
296 break;
298 return MAX_MACHINE_MODE;
300 case EP_extv:
301 if (HAVE_extv)
303 data = &insn_data[CODE_FOR_extv];
304 break;
306 return MAX_MACHINE_MODE;
308 case EP_extzv:
309 if (HAVE_extzv)
311 data = &insn_data[CODE_FOR_extzv];
312 break;
314 return MAX_MACHINE_MODE;
316 default:
317 gcc_unreachable ();
320 if (opno == -1)
321 return VOIDmode;
323 /* Everyone who uses this function used to follow it with
324 if (result == VOIDmode) result = word_mode; */
325 if (data->operand[opno].mode == VOIDmode)
326 return word_mode;
327 return data->operand[opno].mode;
330 /* Return true if X, of mode MODE, matches the predicate for operand
331 OPNO of instruction ICODE. Allow volatile memories, regardless of
332 the ambient volatile_ok setting. */
334 static bool
335 check_predicate_volatile_ok (enum insn_code icode, int opno,
336 rtx x, enum machine_mode mode)
338 bool save_volatile_ok, result;
340 save_volatile_ok = volatile_ok;
341 result = insn_data[(int) icode].operand[opno].predicate (x, mode);
342 volatile_ok = save_volatile_ok;
343 return result;
346 /* A subroutine of store_bit_field, with the same arguments. Return true
347 if the operation could be implemented.
349 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
350 no other way of implementing the operation. If FALLBACK_P is false,
351 return false instead. */
353 static bool
354 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
355 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
356 rtx value, bool fallback_p)
358 unsigned int unit
359 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
360 unsigned HOST_WIDE_INT offset, bitpos;
361 rtx op0 = str_rtx;
362 int byte_offset;
363 rtx orig_value;
365 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
367 while (GET_CODE (op0) == SUBREG)
369 /* The following line once was done only if WORDS_BIG_ENDIAN,
370 but I think that is a mistake. WORDS_BIG_ENDIAN is
371 meaningful at a much higher level; when structures are copied
372 between memory and regs, the higher-numbered regs
373 always get higher addresses. */
374 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
375 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
377 byte_offset = 0;
379 /* Paradoxical subregs need special handling on big endian machines. */
380 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
382 int difference = inner_mode_size - outer_mode_size;
384 if (WORDS_BIG_ENDIAN)
385 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
386 if (BYTES_BIG_ENDIAN)
387 byte_offset += difference % UNITS_PER_WORD;
389 else
390 byte_offset = SUBREG_BYTE (op0);
392 bitnum += byte_offset * BITS_PER_UNIT;
393 op0 = SUBREG_REG (op0);
396 /* No action is needed if the target is a register and if the field
397 lies completely outside that register. This can occur if the source
398 code contains an out-of-bounds access to a small array. */
399 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
400 return true;
402 /* Use vec_set patterns for inserting parts of vectors whenever
403 available. */
404 if (VECTOR_MODE_P (GET_MODE (op0))
405 && !MEM_P (op0)
406 && (optab_handler (vec_set_optab, GET_MODE (op0))->insn_code
407 != CODE_FOR_nothing)
408 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
409 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
410 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
412 enum machine_mode outermode = GET_MODE (op0);
413 enum machine_mode innermode = GET_MODE_INNER (outermode);
414 int icode = (int) optab_handler (vec_set_optab, outermode)->insn_code;
415 int pos = bitnum / GET_MODE_BITSIZE (innermode);
416 rtx rtxpos = GEN_INT (pos);
417 rtx src = value;
418 rtx dest = op0;
419 rtx pat, seq;
420 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
421 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
422 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
424 start_sequence ();
426 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
427 src = copy_to_mode_reg (mode1, src);
429 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
430 rtxpos = copy_to_mode_reg (mode1, rtxpos);
432 /* We could handle this, but we should always be called with a pseudo
433 for our targets and all insns should take them as outputs. */
434 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
435 && (*insn_data[icode].operand[1].predicate) (src, mode1)
436 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
437 pat = GEN_FCN (icode) (dest, src, rtxpos);
438 seq = get_insns ();
439 end_sequence ();
440 if (pat)
442 emit_insn (seq);
443 emit_insn (pat);
444 return true;
448 /* If the target is a register, overwriting the entire object, or storing
449 a full-word or multi-word field can be done with just a SUBREG.
451 If the target is memory, storing any naturally aligned field can be
452 done with a simple store. For targets that support fast unaligned
453 memory, any naturally sized, unit aligned field can be done directly. */
455 offset = bitnum / unit;
456 bitpos = bitnum % unit;
457 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
458 + (offset * UNITS_PER_WORD);
460 if (bitpos == 0
461 && bitsize == GET_MODE_BITSIZE (fieldmode)
462 && (!MEM_P (op0)
463 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
464 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
465 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
466 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
467 || (offset * BITS_PER_UNIT % bitsize == 0
468 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
470 if (MEM_P (op0))
471 op0 = adjust_address (op0, fieldmode, offset);
472 else if (GET_MODE (op0) != fieldmode)
473 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
474 byte_offset);
475 emit_move_insn (op0, value);
476 return true;
479 /* Make sure we are playing with integral modes. Pun with subregs
480 if we aren't. This must come after the entire register case above,
481 since that case is valid for any mode. The following cases are only
482 valid for integral modes. */
484 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
485 if (imode != GET_MODE (op0))
487 if (MEM_P (op0))
488 op0 = adjust_address (op0, imode, 0);
489 else
491 gcc_assert (imode != BLKmode);
492 op0 = gen_lowpart (imode, op0);
497 /* We may be accessing data outside the field, which means
498 we can alias adjacent data. */
499 if (MEM_P (op0))
501 op0 = shallow_copy_rtx (op0);
502 set_mem_alias_set (op0, 0);
503 set_mem_expr (op0, 0);
506 /* If OP0 is a register, BITPOS must count within a word.
507 But as we have it, it counts within whatever size OP0 now has.
508 On a bigendian machine, these are not the same, so convert. */
509 if (BYTES_BIG_ENDIAN
510 && !MEM_P (op0)
511 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
512 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
514 /* Storing an lsb-aligned field in a register
515 can be done with a movestrict instruction. */
517 if (!MEM_P (op0)
518 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
519 && bitsize == GET_MODE_BITSIZE (fieldmode)
520 && (optab_handler (movstrict_optab, fieldmode)->insn_code
521 != CODE_FOR_nothing))
523 int icode = optab_handler (movstrict_optab, fieldmode)->insn_code;
525 /* Get appropriate low part of the value being stored. */
526 if (GET_CODE (value) == CONST_INT || REG_P (value))
527 value = gen_lowpart (fieldmode, value);
528 else if (!(GET_CODE (value) == SYMBOL_REF
529 || GET_CODE (value) == LABEL_REF
530 || GET_CODE (value) == CONST))
531 value = convert_to_mode (fieldmode, value, 0);
533 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
534 value = copy_to_mode_reg (fieldmode, value);
536 if (GET_CODE (op0) == SUBREG)
538 /* Else we've got some float mode source being extracted into
539 a different float mode destination -- this combination of
540 subregs results in Severe Tire Damage. */
541 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
542 || GET_MODE_CLASS (fieldmode) == MODE_INT
543 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
544 op0 = SUBREG_REG (op0);
547 emit_insn (GEN_FCN (icode)
548 (gen_rtx_SUBREG (fieldmode, op0,
549 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
550 + (offset * UNITS_PER_WORD)),
551 value));
553 return true;
556 /* Handle fields bigger than a word. */
558 if (bitsize > BITS_PER_WORD)
560 /* Here we transfer the words of the field
561 in the order least significant first.
562 This is because the most significant word is the one which may
563 be less than full.
564 However, only do that if the value is not BLKmode. */
566 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
567 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
568 unsigned int i;
569 rtx last;
571 /* This is the mode we must force value to, so that there will be enough
572 subwords to extract. Note that fieldmode will often (always?) be
573 VOIDmode, because that is what store_field uses to indicate that this
574 is a bit field, but passing VOIDmode to operand_subword_force
575 is not allowed. */
576 fieldmode = GET_MODE (value);
577 if (fieldmode == VOIDmode)
578 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
580 last = get_last_insn ();
581 for (i = 0; i < nwords; i++)
583 /* If I is 0, use the low-order word in both field and target;
584 if I is 1, use the next to lowest word; and so on. */
585 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
586 unsigned int bit_offset = (backwards
587 ? MAX ((int) bitsize - ((int) i + 1)
588 * BITS_PER_WORD,
590 : (int) i * BITS_PER_WORD);
591 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
593 if (!store_bit_field_1 (op0, MIN (BITS_PER_WORD,
594 bitsize - i * BITS_PER_WORD),
595 bitnum + bit_offset, word_mode,
596 value_word, fallback_p))
598 delete_insns_since (last);
599 return false;
602 return true;
605 /* From here on we can assume that the field to be stored in is
606 a full-word (whatever type that is), since it is shorter than a word. */
608 /* OFFSET is the number of words or bytes (UNIT says which)
609 from STR_RTX to the first word or byte containing part of the field. */
611 if (!MEM_P (op0))
613 if (offset != 0
614 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
616 if (!REG_P (op0))
618 /* Since this is a destination (lvalue), we can't copy
619 it to a pseudo. We can remove a SUBREG that does not
620 change the size of the operand. Such a SUBREG may
621 have been added above. */
622 gcc_assert (GET_CODE (op0) == SUBREG
623 && (GET_MODE_SIZE (GET_MODE (op0))
624 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
625 op0 = SUBREG_REG (op0);
627 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
628 op0, (offset * UNITS_PER_WORD));
630 offset = 0;
633 /* If VALUE has a floating-point or complex mode, access it as an
634 integer of the corresponding size. This can occur on a machine
635 with 64 bit registers that uses SFmode for float. It can also
636 occur for unaligned float or complex fields. */
637 orig_value = value;
638 if (GET_MODE (value) != VOIDmode
639 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
640 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
642 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
643 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
646 /* Now OFFSET is nonzero only if OP0 is memory
647 and is therefore always measured in bytes. */
649 if (HAVE_insv
650 && GET_MODE (value) != BLKmode
651 && bitsize > 0
652 && GET_MODE_BITSIZE (op_mode) >= bitsize
653 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
654 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
655 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
656 VOIDmode)
657 && check_predicate_volatile_ok (CODE_FOR_insv, 0, op0, VOIDmode))
659 int xbitpos = bitpos;
660 rtx value1;
661 rtx xop0 = op0;
662 rtx last = get_last_insn ();
663 rtx pat;
665 /* Add OFFSET into OP0's address. */
666 if (MEM_P (xop0))
667 xop0 = adjust_address (xop0, byte_mode, offset);
669 /* If xop0 is a register, we need it in OP_MODE
670 to make it acceptable to the format of insv. */
671 if (GET_CODE (xop0) == SUBREG)
672 /* We can't just change the mode, because this might clobber op0,
673 and we will need the original value of op0 if insv fails. */
674 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
675 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
676 xop0 = gen_rtx_SUBREG (op_mode, xop0, 0);
678 /* On big-endian machines, we count bits from the most significant.
679 If the bit field insn does not, we must invert. */
681 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
682 xbitpos = unit - bitsize - xbitpos;
684 /* We have been counting XBITPOS within UNIT.
685 Count instead within the size of the register. */
686 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
687 xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
689 unit = GET_MODE_BITSIZE (op_mode);
691 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
692 value1 = value;
693 if (GET_MODE (value) != op_mode)
695 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
697 /* Optimization: Don't bother really extending VALUE
698 if it has all the bits we will actually use. However,
699 if we must narrow it, be sure we do it correctly. */
701 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
703 rtx tmp;
705 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
706 if (! tmp)
707 tmp = simplify_gen_subreg (op_mode,
708 force_reg (GET_MODE (value),
709 value1),
710 GET_MODE (value), 0);
711 value1 = tmp;
713 else
714 value1 = gen_lowpart (op_mode, value1);
716 else if (GET_CODE (value) == CONST_INT)
717 value1 = gen_int_mode (INTVAL (value), op_mode);
718 else
719 /* Parse phase is supposed to make VALUE's data type
720 match that of the component reference, which is a type
721 at least as wide as the field; so VALUE should have
722 a mode that corresponds to that type. */
723 gcc_assert (CONSTANT_P (value));
726 /* If this machine's insv insists on a register,
727 get VALUE1 into a register. */
728 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
729 (value1, op_mode)))
730 value1 = force_reg (op_mode, value1);
732 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
733 if (pat)
735 emit_insn (pat);
736 return true;
738 delete_insns_since (last);
741 /* If OP0 is a memory, try copying it to a register and seeing if a
742 cheap register alternative is available. */
743 if (HAVE_insv && MEM_P (op0))
745 enum machine_mode bestmode;
747 /* Get the mode to use for inserting into this field. If OP0 is
748 BLKmode, get the smallest mode consistent with the alignment. If
749 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
750 mode. Otherwise, use the smallest mode containing the field. */
752 if (GET_MODE (op0) == BLKmode
753 || (op_mode != MAX_MACHINE_MODE
754 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
755 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
756 (op_mode == MAX_MACHINE_MODE
757 ? VOIDmode : op_mode),
758 MEM_VOLATILE_P (op0));
759 else
760 bestmode = GET_MODE (op0);
762 if (bestmode != VOIDmode
763 && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
764 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
765 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
767 rtx last, tempreg, xop0;
768 unsigned HOST_WIDE_INT xoffset, xbitpos;
770 last = get_last_insn ();
772 /* Adjust address to point to the containing unit of
773 that mode. Compute the offset as a multiple of this unit,
774 counting in bytes. */
775 unit = GET_MODE_BITSIZE (bestmode);
776 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
777 xbitpos = bitnum % unit;
778 xop0 = adjust_address (op0, bestmode, xoffset);
780 /* Fetch that unit, store the bitfield in it, then store
781 the unit. */
782 tempreg = copy_to_reg (xop0);
783 if (store_bit_field_1 (tempreg, bitsize, xbitpos,
784 fieldmode, orig_value, false))
786 emit_move_insn (xop0, tempreg);
787 return true;
789 delete_insns_since (last);
793 if (!fallback_p)
794 return false;
796 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
797 return true;
800 /* Generate code to store value from rtx VALUE
801 into a bit-field within structure STR_RTX
802 containing BITSIZE bits starting at bit BITNUM.
803 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
805 void
806 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
807 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
808 rtx value)
810 if (!store_bit_field_1 (str_rtx, bitsize, bitnum, fieldmode, value, true))
811 gcc_unreachable ();
814 /* Use shifts and boolean operations to store VALUE
815 into a bit field of width BITSIZE
816 in a memory location specified by OP0 except offset by OFFSET bytes.
817 (OFFSET must be 0 if OP0 is a register.)
818 The field starts at position BITPOS within the byte.
819 (If OP0 is a register, it may be a full word or a narrower mode,
820 but BITPOS still counts within a full word,
821 which is significant on bigendian machines.) */
823 static void
824 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
825 unsigned HOST_WIDE_INT bitsize,
826 unsigned HOST_WIDE_INT bitpos, rtx value)
828 enum machine_mode mode;
829 unsigned int total_bits = BITS_PER_WORD;
830 rtx temp;
831 int all_zero = 0;
832 int all_one = 0;
834 /* There is a case not handled here:
835 a structure with a known alignment of just a halfword
836 and a field split across two aligned halfwords within the structure.
837 Or likewise a structure with a known alignment of just a byte
838 and a field split across two bytes.
839 Such cases are not supposed to be able to occur. */
841 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
843 gcc_assert (!offset);
844 /* Special treatment for a bit field split across two registers. */
845 if (bitsize + bitpos > BITS_PER_WORD)
847 store_split_bit_field (op0, bitsize, bitpos, value);
848 return;
851 else
853 /* Get the proper mode to use for this field. We want a mode that
854 includes the entire field. If such a mode would be larger than
855 a word, we won't be doing the extraction the normal way.
856 We don't want a mode bigger than the destination. */
858 mode = GET_MODE (op0);
859 if (GET_MODE_BITSIZE (mode) == 0
860 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
861 mode = word_mode;
862 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
863 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
865 if (mode == VOIDmode)
867 /* The only way this should occur is if the field spans word
868 boundaries. */
869 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
870 value);
871 return;
874 total_bits = GET_MODE_BITSIZE (mode);
876 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
877 be in the range 0 to total_bits-1, and put any excess bytes in
878 OFFSET. */
879 if (bitpos >= total_bits)
881 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
882 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
883 * BITS_PER_UNIT);
886 /* Get ref to an aligned byte, halfword, or word containing the field.
887 Adjust BITPOS to be position within a word,
888 and OFFSET to be the offset of that word.
889 Then alter OP0 to refer to that word. */
890 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
891 offset -= (offset % (total_bits / BITS_PER_UNIT));
892 op0 = adjust_address (op0, mode, offset);
895 mode = GET_MODE (op0);
897 /* Now MODE is either some integral mode for a MEM as OP0,
898 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
899 The bit field is contained entirely within OP0.
900 BITPOS is the starting bit number within OP0.
901 (OP0's mode may actually be narrower than MODE.) */
903 if (BYTES_BIG_ENDIAN)
904 /* BITPOS is the distance between our msb
905 and that of the containing datum.
906 Convert it to the distance from the lsb. */
907 bitpos = total_bits - bitsize - bitpos;
909 /* Now BITPOS is always the distance between our lsb
910 and that of OP0. */
912 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
913 we must first convert its mode to MODE. */
915 if (GET_CODE (value) == CONST_INT)
917 HOST_WIDE_INT v = INTVAL (value);
919 if (bitsize < HOST_BITS_PER_WIDE_INT)
920 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
922 if (v == 0)
923 all_zero = 1;
924 else if ((bitsize < HOST_BITS_PER_WIDE_INT
925 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
926 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
927 all_one = 1;
929 value = lshift_value (mode, value, bitpos, bitsize);
931 else
933 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
934 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
936 if (GET_MODE (value) != mode)
938 if ((REG_P (value) || GET_CODE (value) == SUBREG)
939 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
940 value = gen_lowpart (mode, value);
941 else
942 value = convert_to_mode (mode, value, 1);
945 if (must_and)
946 value = expand_binop (mode, and_optab, value,
947 mask_rtx (mode, 0, bitsize, 0),
948 NULL_RTX, 1, OPTAB_LIB_WIDEN);
949 if (bitpos > 0)
950 value = expand_shift (LSHIFT_EXPR, mode, value,
951 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
954 /* Now clear the chosen bits in OP0,
955 except that if VALUE is -1 we need not bother. */
956 /* We keep the intermediates in registers to allow CSE to combine
957 consecutive bitfield assignments. */
959 temp = force_reg (mode, op0);
961 if (! all_one)
963 temp = expand_binop (mode, and_optab, temp,
964 mask_rtx (mode, bitpos, bitsize, 1),
965 NULL_RTX, 1, OPTAB_LIB_WIDEN);
966 temp = force_reg (mode, temp);
969 /* Now logical-or VALUE into OP0, unless it is zero. */
971 if (! all_zero)
973 temp = expand_binop (mode, ior_optab, temp, value,
974 NULL_RTX, 1, OPTAB_LIB_WIDEN);
975 temp = force_reg (mode, temp);
978 if (op0 != temp)
979 emit_move_insn (op0, temp);
982 /* Store a bit field that is split across multiple accessible memory objects.
984 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
985 BITSIZE is the field width; BITPOS the position of its first bit
986 (within the word).
987 VALUE is the value to store.
989 This does not yet handle fields wider than BITS_PER_WORD. */
991 static void
992 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
993 unsigned HOST_WIDE_INT bitpos, rtx value)
995 unsigned int unit;
996 unsigned int bitsdone = 0;
998 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
999 much at a time. */
1000 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1001 unit = BITS_PER_WORD;
1002 else
1003 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1005 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1006 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1007 that VALUE might be a floating-point constant. */
1008 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
1010 rtx word = gen_lowpart_common (word_mode, value);
1012 if (word && (value != word))
1013 value = word;
1014 else
1015 value = gen_lowpart_common (word_mode,
1016 force_reg (GET_MODE (value) != VOIDmode
1017 ? GET_MODE (value)
1018 : word_mode, value));
1021 while (bitsdone < bitsize)
1023 unsigned HOST_WIDE_INT thissize;
1024 rtx part, word;
1025 unsigned HOST_WIDE_INT thispos;
1026 unsigned HOST_WIDE_INT offset;
1028 offset = (bitpos + bitsdone) / unit;
1029 thispos = (bitpos + bitsdone) % unit;
1031 /* THISSIZE must not overrun a word boundary. Otherwise,
1032 store_fixed_bit_field will call us again, and we will mutually
1033 recurse forever. */
1034 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1035 thissize = MIN (thissize, unit - thispos);
1037 if (BYTES_BIG_ENDIAN)
1039 int total_bits;
1041 /* We must do an endian conversion exactly the same way as it is
1042 done in extract_bit_field, so that the two calls to
1043 extract_fixed_bit_field will have comparable arguments. */
1044 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1045 total_bits = BITS_PER_WORD;
1046 else
1047 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1049 /* Fetch successively less significant portions. */
1050 if (GET_CODE (value) == CONST_INT)
1051 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1052 >> (bitsize - bitsdone - thissize))
1053 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1054 else
1055 /* The args are chosen so that the last part includes the
1056 lsb. Give extract_bit_field the value it needs (with
1057 endianness compensation) to fetch the piece we want. */
1058 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1059 total_bits - bitsize + bitsdone,
1060 NULL_RTX, 1);
1062 else
1064 /* Fetch successively more significant portions. */
1065 if (GET_CODE (value) == CONST_INT)
1066 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1067 >> bitsdone)
1068 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1069 else
1070 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1071 bitsdone, NULL_RTX, 1);
1074 /* If OP0 is a register, then handle OFFSET here.
1076 When handling multiword bitfields, extract_bit_field may pass
1077 down a word_mode SUBREG of a larger REG for a bitfield that actually
1078 crosses a word boundary. Thus, for a SUBREG, we must find
1079 the current word starting from the base register. */
1080 if (GET_CODE (op0) == SUBREG)
1082 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1083 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1084 GET_MODE (SUBREG_REG (op0)));
1085 offset = 0;
1087 else if (REG_P (op0))
1089 word = operand_subword_force (op0, offset, GET_MODE (op0));
1090 offset = 0;
1092 else
1093 word = op0;
1095 /* OFFSET is in UNITs, and UNIT is in bits.
1096 store_fixed_bit_field wants offset in bytes. */
1097 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1098 thispos, part);
1099 bitsdone += thissize;
1103 /* A subroutine of extract_bit_field_1 that converts return value X
1104 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1105 to extract_bit_field. */
1107 static rtx
1108 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1109 enum machine_mode tmode, bool unsignedp)
1111 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1112 return x;
1114 /* If the x mode is not a scalar integral, first convert to the
1115 integer mode of that size and then access it as a floating-point
1116 value via a SUBREG. */
1117 if (!SCALAR_INT_MODE_P (tmode))
1119 enum machine_mode smode;
1121 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1122 x = convert_to_mode (smode, x, unsignedp);
1123 x = force_reg (smode, x);
1124 return gen_lowpart (tmode, x);
1127 return convert_to_mode (tmode, x, unsignedp);
1130 /* A subroutine of extract_bit_field, with the same arguments.
1131 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1132 if we can find no other means of implementing the operation.
1133 if FALLBACK_P is false, return NULL instead. */
1135 static rtx
1136 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1137 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1138 enum machine_mode mode, enum machine_mode tmode,
1139 bool fallback_p)
1141 unsigned int unit
1142 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1143 unsigned HOST_WIDE_INT offset, bitpos;
1144 rtx op0 = str_rtx;
1145 enum machine_mode int_mode;
1146 enum machine_mode ext_mode;
1147 enum machine_mode mode1;
1148 enum insn_code icode;
1149 int byte_offset;
1151 if (tmode == VOIDmode)
1152 tmode = mode;
1154 while (GET_CODE (op0) == SUBREG)
1156 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1157 op0 = SUBREG_REG (op0);
1160 /* If we have an out-of-bounds access to a register, just return an
1161 uninitialized register of the required mode. This can occur if the
1162 source code contains an out-of-bounds access to a small array. */
1163 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1164 return gen_reg_rtx (tmode);
1166 if (REG_P (op0)
1167 && mode == GET_MODE (op0)
1168 && bitnum == 0
1169 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1171 /* We're trying to extract a full register from itself. */
1172 return op0;
1175 /* See if we can get a better vector mode before extracting. */
1176 if (VECTOR_MODE_P (GET_MODE (op0))
1177 && !MEM_P (op0)
1178 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1180 enum machine_mode new_mode;
1181 int nunits = GET_MODE_NUNITS (GET_MODE (op0));
1183 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1184 new_mode = MIN_MODE_VECTOR_FLOAT;
1185 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1186 new_mode = MIN_MODE_VECTOR_FRACT;
1187 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1188 new_mode = MIN_MODE_VECTOR_UFRACT;
1189 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1190 new_mode = MIN_MODE_VECTOR_ACCUM;
1191 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1192 new_mode = MIN_MODE_VECTOR_UACCUM;
1193 else
1194 new_mode = MIN_MODE_VECTOR_INT;
1196 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1197 if (GET_MODE_NUNITS (new_mode) == nunits
1198 && GET_MODE_INNER (new_mode) == tmode
1199 && targetm.vector_mode_supported_p (new_mode))
1200 break;
1201 if (new_mode != VOIDmode)
1202 op0 = gen_lowpart (new_mode, op0);
1205 /* Use vec_extract patterns for extracting parts of vectors whenever
1206 available. */
1207 if (VECTOR_MODE_P (GET_MODE (op0))
1208 && !MEM_P (op0)
1209 && (optab_handler (vec_extract_optab, GET_MODE (op0))->insn_code
1210 != CODE_FOR_nothing)
1211 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1212 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1214 enum machine_mode outermode = GET_MODE (op0);
1215 enum machine_mode innermode = GET_MODE_INNER (outermode);
1216 int icode = (int) optab_handler (vec_extract_optab, outermode)->insn_code;
1217 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1218 rtx rtxpos = GEN_INT (pos);
1219 rtx src = op0;
1220 rtx dest = NULL, pat, seq;
1221 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1222 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1223 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1225 if (innermode == tmode || innermode == mode)
1226 dest = target;
1228 if (!dest)
1229 dest = gen_reg_rtx (innermode);
1231 start_sequence ();
1233 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1234 dest = copy_to_mode_reg (mode0, dest);
1236 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1237 src = copy_to_mode_reg (mode1, src);
1239 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1240 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1242 /* We could handle this, but we should always be called with a pseudo
1243 for our targets and all insns should take them as outputs. */
1244 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1245 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1246 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1248 pat = GEN_FCN (icode) (dest, src, rtxpos);
1249 seq = get_insns ();
1250 end_sequence ();
1251 if (pat)
1253 emit_insn (seq);
1254 emit_insn (pat);
1255 if (mode0 != mode)
1256 return gen_lowpart (tmode, dest);
1257 return dest;
1261 /* Make sure we are playing with integral modes. Pun with subregs
1262 if we aren't. */
1264 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1265 if (imode != GET_MODE (op0))
1267 if (MEM_P (op0))
1268 op0 = adjust_address (op0, imode, 0);
1269 else
1271 gcc_assert (imode != BLKmode);
1272 op0 = gen_lowpart (imode, op0);
1274 /* If we got a SUBREG, force it into a register since we
1275 aren't going to be able to do another SUBREG on it. */
1276 if (GET_CODE (op0) == SUBREG)
1277 op0 = force_reg (imode, op0);
1282 /* We may be accessing data outside the field, which means
1283 we can alias adjacent data. */
1284 if (MEM_P (op0))
1286 op0 = shallow_copy_rtx (op0);
1287 set_mem_alias_set (op0, 0);
1288 set_mem_expr (op0, 0);
1291 /* Extraction of a full-word or multi-word value from a structure
1292 in a register or aligned memory can be done with just a SUBREG.
1293 A subword value in the least significant part of a register
1294 can also be extracted with a SUBREG. For this, we need the
1295 byte offset of the value in op0. */
1297 bitpos = bitnum % unit;
1298 offset = bitnum / unit;
1299 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1301 /* If OP0 is a register, BITPOS must count within a word.
1302 But as we have it, it counts within whatever size OP0 now has.
1303 On a bigendian machine, these are not the same, so convert. */
1304 if (BYTES_BIG_ENDIAN
1305 && !MEM_P (op0)
1306 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1307 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1309 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1310 If that's wrong, the solution is to test for it and set TARGET to 0
1311 if needed. */
1313 /* Only scalar integer modes can be converted via subregs. There is an
1314 additional problem for FP modes here in that they can have a precision
1315 which is different from the size. mode_for_size uses precision, but
1316 we want a mode based on the size, so we must avoid calling it for FP
1317 modes. */
1318 mode1 = (SCALAR_INT_MODE_P (tmode)
1319 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1320 : mode);
1322 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1323 && bitpos % BITS_PER_WORD == 0)
1324 || (mode1 != BLKmode
1325 /* ??? The big endian test here is wrong. This is correct
1326 if the value is in a register, and if mode_for_size is not
1327 the same mode as op0. This causes us to get unnecessarily
1328 inefficient code from the Thumb port when -mbig-endian. */
1329 && (BYTES_BIG_ENDIAN
1330 ? bitpos + bitsize == BITS_PER_WORD
1331 : bitpos == 0)))
1332 && ((!MEM_P (op0)
1333 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1334 GET_MODE_BITSIZE (GET_MODE (op0)))
1335 && GET_MODE_SIZE (mode1) != 0
1336 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1337 || (MEM_P (op0)
1338 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1339 || (offset * BITS_PER_UNIT % bitsize == 0
1340 && MEM_ALIGN (op0) % bitsize == 0)))))
1342 if (MEM_P (op0))
1343 op0 = adjust_address (op0, mode1, offset);
1344 else if (mode1 != GET_MODE (op0))
1346 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1347 byte_offset);
1348 if (sub == NULL)
1349 goto no_subreg_mode_swap;
1350 op0 = sub;
1352 if (mode1 != mode)
1353 return convert_to_mode (tmode, op0, unsignedp);
1354 return op0;
1356 no_subreg_mode_swap:
1358 /* Handle fields bigger than a word. */
1360 if (bitsize > BITS_PER_WORD)
1362 /* Here we transfer the words of the field
1363 in the order least significant first.
1364 This is because the most significant word is the one which may
1365 be less than full. */
1367 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1368 unsigned int i;
1370 if (target == 0 || !REG_P (target))
1371 target = gen_reg_rtx (mode);
1373 /* Indicate for flow that the entire target reg is being set. */
1374 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1376 for (i = 0; i < nwords; i++)
1378 /* If I is 0, use the low-order word in both field and target;
1379 if I is 1, use the next to lowest word; and so on. */
1380 /* Word number in TARGET to use. */
1381 unsigned int wordnum
1382 = (WORDS_BIG_ENDIAN
1383 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1384 : i);
1385 /* Offset from start of field in OP0. */
1386 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1387 ? MAX (0, ((int) bitsize - ((int) i + 1)
1388 * (int) BITS_PER_WORD))
1389 : (int) i * BITS_PER_WORD);
1390 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1391 rtx result_part
1392 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1393 bitsize - i * BITS_PER_WORD),
1394 bitnum + bit_offset, 1, target_part, mode,
1395 word_mode);
1397 gcc_assert (target_part);
1399 if (result_part != target_part)
1400 emit_move_insn (target_part, result_part);
1403 if (unsignedp)
1405 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1406 need to be zero'd out. */
1407 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1409 unsigned int i, total_words;
1411 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1412 for (i = nwords; i < total_words; i++)
1413 emit_move_insn
1414 (operand_subword (target,
1415 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1416 1, VOIDmode),
1417 const0_rtx);
1419 return target;
1422 /* Signed bit field: sign-extend with two arithmetic shifts. */
1423 target = expand_shift (LSHIFT_EXPR, mode, target,
1424 build_int_cst (NULL_TREE,
1425 GET_MODE_BITSIZE (mode) - bitsize),
1426 NULL_RTX, 0);
1427 return expand_shift (RSHIFT_EXPR, mode, target,
1428 build_int_cst (NULL_TREE,
1429 GET_MODE_BITSIZE (mode) - bitsize),
1430 NULL_RTX, 0);
1433 /* From here on we know the desired field is smaller than a word. */
1435 /* Check if there is a correspondingly-sized integer field, so we can
1436 safely extract it as one size of integer, if necessary; then
1437 truncate or extend to the size that is wanted; then use SUBREGs or
1438 convert_to_mode to get one of the modes we really wanted. */
1440 int_mode = int_mode_for_mode (tmode);
1441 if (int_mode == BLKmode)
1442 int_mode = int_mode_for_mode (mode);
1443 /* Should probably push op0 out to memory and then do a load. */
1444 gcc_assert (int_mode != BLKmode);
1446 /* OFFSET is the number of words or bytes (UNIT says which)
1447 from STR_RTX to the first word or byte containing part of the field. */
1448 if (!MEM_P (op0))
1450 if (offset != 0
1451 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1453 if (!REG_P (op0))
1454 op0 = copy_to_reg (op0);
1455 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1456 op0, (offset * UNITS_PER_WORD));
1458 offset = 0;
1461 /* Now OFFSET is nonzero only for memory operands. */
1462 ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
1463 icode = unsignedp ? CODE_FOR_extzv : CODE_FOR_extv;
1464 if (ext_mode != MAX_MACHINE_MODE
1465 && bitsize > 0
1466 && GET_MODE_BITSIZE (ext_mode) >= bitsize
1467 /* If op0 is a register, we need it in EXT_MODE to make it
1468 acceptable to the format of ext(z)v. */
1469 && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1470 && !((REG_P (op0) || GET_CODE (op0) == SUBREG)
1471 && (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode)))
1472 && check_predicate_volatile_ok (icode, 1, op0, GET_MODE (op0)))
1474 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1475 rtx bitsize_rtx, bitpos_rtx;
1476 rtx last = get_last_insn ();
1477 rtx xop0 = op0;
1478 rtx xtarget = target;
1479 rtx xspec_target = target;
1480 rtx xspec_target_subreg = 0;
1481 rtx pat;
1483 /* If op0 is a register, we need it in EXT_MODE to make it
1484 acceptable to the format of ext(z)v. */
1485 if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
1486 xop0 = gen_rtx_SUBREG (ext_mode, xop0, 0);
1487 if (MEM_P (xop0))
1488 /* Get ref to first byte containing part of the field. */
1489 xop0 = adjust_address (xop0, byte_mode, xoffset);
1491 /* On big-endian machines, we count bits from the most significant.
1492 If the bit field insn does not, we must invert. */
1493 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1494 xbitpos = unit - bitsize - xbitpos;
1496 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1497 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1498 xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
1500 unit = GET_MODE_BITSIZE (ext_mode);
1502 if (xtarget == 0)
1503 xtarget = xspec_target = gen_reg_rtx (tmode);
1505 if (GET_MODE (xtarget) != ext_mode)
1507 if (REG_P (xtarget))
1509 xtarget = gen_lowpart (ext_mode, xtarget);
1510 if (GET_MODE_SIZE (ext_mode)
1511 > GET_MODE_SIZE (GET_MODE (xspec_target)))
1512 xspec_target_subreg = xtarget;
1514 else
1515 xtarget = gen_reg_rtx (ext_mode);
1518 /* If this machine's ext(z)v insists on a register target,
1519 make sure we have one. */
1520 if (!insn_data[(int) icode].operand[0].predicate (xtarget, ext_mode))
1521 xtarget = gen_reg_rtx (ext_mode);
1523 bitsize_rtx = GEN_INT (bitsize);
1524 bitpos_rtx = GEN_INT (xbitpos);
1526 pat = (unsignedp
1527 ? gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx)
1528 : gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx));
1529 if (pat)
1531 emit_insn (pat);
1532 if (xtarget == xspec_target)
1533 return xtarget;
1534 if (xtarget == xspec_target_subreg)
1535 return xspec_target;
1536 return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
1538 delete_insns_since (last);
1541 /* If OP0 is a memory, try copying it to a register and seeing if a
1542 cheap register alternative is available. */
1543 if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
1545 enum machine_mode bestmode;
1547 /* Get the mode to use for inserting into this field. If
1548 OP0 is BLKmode, get the smallest mode consistent with the
1549 alignment. If OP0 is a non-BLKmode object that is no
1550 wider than EXT_MODE, use its mode. Otherwise, use the
1551 smallest mode containing the field. */
1553 if (GET_MODE (op0) == BLKmode
1554 || (ext_mode != MAX_MACHINE_MODE
1555 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
1556 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
1557 (ext_mode == MAX_MACHINE_MODE
1558 ? VOIDmode : ext_mode),
1559 MEM_VOLATILE_P (op0));
1560 else
1561 bestmode = GET_MODE (op0);
1563 if (bestmode != VOIDmode
1564 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
1565 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
1567 unsigned HOST_WIDE_INT xoffset, xbitpos;
1569 /* Compute the offset as a multiple of this unit,
1570 counting in bytes. */
1571 unit = GET_MODE_BITSIZE (bestmode);
1572 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1573 xbitpos = bitnum % unit;
1575 /* Make sure the register is big enough for the whole field. */
1576 if (xoffset * BITS_PER_UNIT + unit
1577 >= offset * BITS_PER_UNIT + bitsize)
1579 rtx last, result, xop0;
1581 last = get_last_insn ();
1583 /* Fetch it to a register in that size. */
1584 xop0 = adjust_address (op0, bestmode, xoffset);
1585 xop0 = force_reg (bestmode, xop0);
1586 result = extract_bit_field_1 (xop0, bitsize, xbitpos,
1587 unsignedp, target,
1588 mode, tmode, false);
1589 if (result)
1590 return result;
1592 delete_insns_since (last);
1597 if (!fallback_p)
1598 return NULL;
1600 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1601 bitpos, target, unsignedp);
1602 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1605 /* Generate code to extract a byte-field from STR_RTX
1606 containing BITSIZE bits, starting at BITNUM,
1607 and put it in TARGET if possible (if TARGET is nonzero).
1608 Regardless of TARGET, we return the rtx for where the value is placed.
1610 STR_RTX is the structure containing the byte (a REG or MEM).
1611 UNSIGNEDP is nonzero if this is an unsigned bit field.
1612 MODE is the natural mode of the field value once extracted.
1613 TMODE is the mode the caller would like the value to have;
1614 but the value may be returned with type MODE instead.
1616 If a TARGET is specified and we can store in it at no extra cost,
1617 we do so, and return TARGET.
1618 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1619 if they are equally easy. */
1622 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1623 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1624 enum machine_mode mode, enum machine_mode tmode)
1626 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1627 target, mode, tmode, true);
1630 /* Extract a bit field using shifts and boolean operations
1631 Returns an rtx to represent the value.
1632 OP0 addresses a register (word) or memory (byte).
1633 BITPOS says which bit within the word or byte the bit field starts in.
1634 OFFSET says how many bytes farther the bit field starts;
1635 it is 0 if OP0 is a register.
1636 BITSIZE says how many bits long the bit field is.
1637 (If OP0 is a register, it may be narrower than a full word,
1638 but BITPOS still counts within a full word,
1639 which is significant on bigendian machines.)
1641 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1642 If TARGET is nonzero, attempts to store the value there
1643 and return TARGET, but this is not guaranteed.
1644 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1646 static rtx
1647 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1648 unsigned HOST_WIDE_INT offset,
1649 unsigned HOST_WIDE_INT bitsize,
1650 unsigned HOST_WIDE_INT bitpos, rtx target,
1651 int unsignedp)
1653 unsigned int total_bits = BITS_PER_WORD;
1654 enum machine_mode mode;
1656 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1658 /* Special treatment for a bit field split across two registers. */
1659 if (bitsize + bitpos > BITS_PER_WORD)
1660 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1662 else
1664 /* Get the proper mode to use for this field. We want a mode that
1665 includes the entire field. If such a mode would be larger than
1666 a word, we won't be doing the extraction the normal way. */
1668 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1669 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1671 if (mode == VOIDmode)
1672 /* The only way this should occur is if the field spans word
1673 boundaries. */
1674 return extract_split_bit_field (op0, bitsize,
1675 bitpos + offset * BITS_PER_UNIT,
1676 unsignedp);
1678 total_bits = GET_MODE_BITSIZE (mode);
1680 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1681 be in the range 0 to total_bits-1, and put any excess bytes in
1682 OFFSET. */
1683 if (bitpos >= total_bits)
1685 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1686 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1687 * BITS_PER_UNIT);
1690 /* Get ref to an aligned byte, halfword, or word containing the field.
1691 Adjust BITPOS to be position within a word,
1692 and OFFSET to be the offset of that word.
1693 Then alter OP0 to refer to that word. */
1694 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1695 offset -= (offset % (total_bits / BITS_PER_UNIT));
1696 op0 = adjust_address (op0, mode, offset);
1699 mode = GET_MODE (op0);
1701 if (BYTES_BIG_ENDIAN)
1702 /* BITPOS is the distance between our msb and that of OP0.
1703 Convert it to the distance from the lsb. */
1704 bitpos = total_bits - bitsize - bitpos;
1706 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1707 We have reduced the big-endian case to the little-endian case. */
1709 if (unsignedp)
1711 if (bitpos)
1713 /* If the field does not already start at the lsb,
1714 shift it so it does. */
1715 tree amount = build_int_cst (NULL_TREE, bitpos);
1716 /* Maybe propagate the target for the shift. */
1717 /* But not if we will return it--could confuse integrate.c. */
1718 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1719 if (tmode != mode) subtarget = 0;
1720 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1722 /* Convert the value to the desired mode. */
1723 if (mode != tmode)
1724 op0 = convert_to_mode (tmode, op0, 1);
1726 /* Unless the msb of the field used to be the msb when we shifted,
1727 mask out the upper bits. */
1729 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1730 return expand_binop (GET_MODE (op0), and_optab, op0,
1731 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1732 target, 1, OPTAB_LIB_WIDEN);
1733 return op0;
1736 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1737 then arithmetic-shift its lsb to the lsb of the word. */
1738 op0 = force_reg (mode, op0);
1739 if (mode != tmode)
1740 target = 0;
1742 /* Find the narrowest integer mode that contains the field. */
1744 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1745 mode = GET_MODE_WIDER_MODE (mode))
1746 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1748 op0 = convert_to_mode (mode, op0, 0);
1749 break;
1752 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1754 tree amount
1755 = build_int_cst (NULL_TREE,
1756 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1757 /* Maybe propagate the target for the shift. */
1758 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1759 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1762 return expand_shift (RSHIFT_EXPR, mode, op0,
1763 build_int_cst (NULL_TREE,
1764 GET_MODE_BITSIZE (mode) - bitsize),
1765 target, 0);
1768 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1769 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1770 complement of that if COMPLEMENT. The mask is truncated if
1771 necessary to the width of mode MODE. The mask is zero-extended if
1772 BITSIZE+BITPOS is too small for MODE. */
1774 static rtx
1775 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1777 HOST_WIDE_INT masklow, maskhigh;
1779 if (bitsize == 0)
1780 masklow = 0;
1781 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1782 masklow = (HOST_WIDE_INT) -1 << bitpos;
1783 else
1784 masklow = 0;
1786 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1787 masklow &= ((unsigned HOST_WIDE_INT) -1
1788 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1790 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1791 maskhigh = -1;
1792 else
1793 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1795 if (bitsize == 0)
1796 maskhigh = 0;
1797 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1798 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1799 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1800 else
1801 maskhigh = 0;
1803 if (complement)
1805 maskhigh = ~maskhigh;
1806 masklow = ~masklow;
1809 return immed_double_const (masklow, maskhigh, mode);
1812 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1813 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1815 static rtx
1816 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1818 unsigned HOST_WIDE_INT v = INTVAL (value);
1819 HOST_WIDE_INT low, high;
1821 if (bitsize < HOST_BITS_PER_WIDE_INT)
1822 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1824 if (bitpos < HOST_BITS_PER_WIDE_INT)
1826 low = v << bitpos;
1827 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1829 else
1831 low = 0;
1832 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1835 return immed_double_const (low, high, mode);
1838 /* Extract a bit field that is split across two words
1839 and return an RTX for the result.
1841 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1842 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1843 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1845 static rtx
1846 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1847 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1849 unsigned int unit;
1850 unsigned int bitsdone = 0;
1851 rtx result = NULL_RTX;
1852 int first = 1;
1854 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1855 much at a time. */
1856 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1857 unit = BITS_PER_WORD;
1858 else
1859 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1861 while (bitsdone < bitsize)
1863 unsigned HOST_WIDE_INT thissize;
1864 rtx part, word;
1865 unsigned HOST_WIDE_INT thispos;
1866 unsigned HOST_WIDE_INT offset;
1868 offset = (bitpos + bitsdone) / unit;
1869 thispos = (bitpos + bitsdone) % unit;
1871 /* THISSIZE must not overrun a word boundary. Otherwise,
1872 extract_fixed_bit_field will call us again, and we will mutually
1873 recurse forever. */
1874 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1875 thissize = MIN (thissize, unit - thispos);
1877 /* If OP0 is a register, then handle OFFSET here.
1879 When handling multiword bitfields, extract_bit_field may pass
1880 down a word_mode SUBREG of a larger REG for a bitfield that actually
1881 crosses a word boundary. Thus, for a SUBREG, we must find
1882 the current word starting from the base register. */
1883 if (GET_CODE (op0) == SUBREG)
1885 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1886 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1887 GET_MODE (SUBREG_REG (op0)));
1888 offset = 0;
1890 else if (REG_P (op0))
1892 word = operand_subword_force (op0, offset, GET_MODE (op0));
1893 offset = 0;
1895 else
1896 word = op0;
1898 /* Extract the parts in bit-counting order,
1899 whose meaning is determined by BYTES_PER_UNIT.
1900 OFFSET is in UNITs, and UNIT is in bits.
1901 extract_fixed_bit_field wants offset in bytes. */
1902 part = extract_fixed_bit_field (word_mode, word,
1903 offset * unit / BITS_PER_UNIT,
1904 thissize, thispos, 0, 1);
1905 bitsdone += thissize;
1907 /* Shift this part into place for the result. */
1908 if (BYTES_BIG_ENDIAN)
1910 if (bitsize != bitsdone)
1911 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1912 build_int_cst (NULL_TREE, bitsize - bitsdone),
1913 0, 1);
1915 else
1917 if (bitsdone != thissize)
1918 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1919 build_int_cst (NULL_TREE,
1920 bitsdone - thissize), 0, 1);
1923 if (first)
1924 result = part;
1925 else
1926 /* Combine the parts with bitwise or. This works
1927 because we extracted each part as an unsigned bit field. */
1928 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
1929 OPTAB_LIB_WIDEN);
1931 first = 0;
1934 /* Unsigned bit field: we are done. */
1935 if (unsignedp)
1936 return result;
1937 /* Signed bit field: sign-extend with two arithmetic shifts. */
1938 result = expand_shift (LSHIFT_EXPR, word_mode, result,
1939 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1940 NULL_RTX, 0);
1941 return expand_shift (RSHIFT_EXPR, word_mode, result,
1942 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1943 NULL_RTX, 0);
1946 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1947 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1948 MODE, fill the upper bits with zeros. Fail if the layout of either
1949 mode is unknown (as for CC modes) or if the extraction would involve
1950 unprofitable mode punning. Return the value on success, otherwise
1951 return null.
1953 This is different from gen_lowpart* in these respects:
1955 - the returned value must always be considered an rvalue
1957 - when MODE is wider than SRC_MODE, the extraction involves
1958 a zero extension
1960 - when MODE is smaller than SRC_MODE, the extraction involves
1961 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
1963 In other words, this routine performs a computation, whereas the
1964 gen_lowpart* routines are conceptually lvalue or rvalue subreg
1965 operations. */
1968 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
1970 enum machine_mode int_mode, src_int_mode;
1972 if (mode == src_mode)
1973 return src;
1975 if (CONSTANT_P (src))
1976 return simplify_gen_subreg (mode, src, src_mode,
1977 subreg_lowpart_offset (mode, src_mode));
1979 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
1980 return NULL_RTX;
1982 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
1983 && MODES_TIEABLE_P (mode, src_mode))
1985 rtx x = gen_lowpart_common (mode, src);
1986 if (x)
1987 return x;
1990 src_int_mode = int_mode_for_mode (src_mode);
1991 int_mode = int_mode_for_mode (mode);
1992 if (src_int_mode == BLKmode || int_mode == BLKmode)
1993 return NULL_RTX;
1995 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
1996 return NULL_RTX;
1997 if (!MODES_TIEABLE_P (int_mode, mode))
1998 return NULL_RTX;
2000 src = gen_lowpart (src_int_mode, src);
2001 src = convert_modes (int_mode, src_int_mode, src, true);
2002 src = gen_lowpart (mode, src);
2003 return src;
2006 /* Add INC into TARGET. */
2008 void
2009 expand_inc (rtx target, rtx inc)
2011 rtx value = expand_binop (GET_MODE (target), add_optab,
2012 target, inc,
2013 target, 0, OPTAB_LIB_WIDEN);
2014 if (value != target)
2015 emit_move_insn (target, value);
2018 /* Subtract DEC from TARGET. */
2020 void
2021 expand_dec (rtx target, rtx dec)
2023 rtx value = expand_binop (GET_MODE (target), sub_optab,
2024 target, dec,
2025 target, 0, OPTAB_LIB_WIDEN);
2026 if (value != target)
2027 emit_move_insn (target, value);
2030 /* Output a shift instruction for expression code CODE,
2031 with SHIFTED being the rtx for the value to shift,
2032 and AMOUNT the tree for the amount to shift by.
2033 Store the result in the rtx TARGET, if that is convenient.
2034 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2035 Return the rtx for where the value is. */
2038 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2039 tree amount, rtx target, int unsignedp)
2041 rtx op1, temp = 0;
2042 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2043 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2044 int try;
2046 /* Previously detected shift-counts computed by NEGATE_EXPR
2047 and shifted in the other direction; but that does not work
2048 on all machines. */
2050 op1 = expand_normal (amount);
2052 if (SHIFT_COUNT_TRUNCATED)
2054 if (GET_CODE (op1) == CONST_INT
2055 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2056 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2057 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2058 % GET_MODE_BITSIZE (mode));
2059 else if (GET_CODE (op1) == SUBREG
2060 && subreg_lowpart_p (op1))
2061 op1 = SUBREG_REG (op1);
2064 if (op1 == const0_rtx)
2065 return shifted;
2067 /* Check whether its cheaper to implement a left shift by a constant
2068 bit count by a sequence of additions. */
2069 if (code == LSHIFT_EXPR
2070 && GET_CODE (op1) == CONST_INT
2071 && INTVAL (op1) > 0
2072 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2073 && INTVAL (op1) < MAX_BITS_PER_WORD
2074 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode]
2075 && shift_cost[mode][INTVAL (op1)] != MAX_COST)
2077 int i;
2078 for (i = 0; i < INTVAL (op1); i++)
2080 temp = force_reg (mode, shifted);
2081 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2082 unsignedp, OPTAB_LIB_WIDEN);
2084 return shifted;
2087 for (try = 0; temp == 0 && try < 3; try++)
2089 enum optab_methods methods;
2091 if (try == 0)
2092 methods = OPTAB_DIRECT;
2093 else if (try == 1)
2094 methods = OPTAB_WIDEN;
2095 else
2096 methods = OPTAB_LIB_WIDEN;
2098 if (rotate)
2100 /* Widening does not work for rotation. */
2101 if (methods == OPTAB_WIDEN)
2102 continue;
2103 else if (methods == OPTAB_LIB_WIDEN)
2105 /* If we have been unable to open-code this by a rotation,
2106 do it as the IOR of two shifts. I.e., to rotate A
2107 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2108 where C is the bitsize of A.
2110 It is theoretically possible that the target machine might
2111 not be able to perform either shift and hence we would
2112 be making two libcalls rather than just the one for the
2113 shift (similarly if IOR could not be done). We will allow
2114 this extremely unlikely lossage to avoid complicating the
2115 code below. */
2117 rtx subtarget = target == shifted ? 0 : target;
2118 tree new_amount, other_amount;
2119 rtx temp1;
2120 tree type = TREE_TYPE (amount);
2121 if (GET_MODE (op1) != TYPE_MODE (type)
2122 && GET_MODE (op1) != VOIDmode)
2123 op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2124 new_amount = make_tree (type, op1);
2125 other_amount
2126 = fold_build2 (MINUS_EXPR, type,
2127 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2128 new_amount);
2130 shifted = force_reg (mode, shifted);
2132 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2133 mode, shifted, new_amount, 0, 1);
2134 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2135 mode, shifted, other_amount, subtarget, 1);
2136 return expand_binop (mode, ior_optab, temp, temp1, target,
2137 unsignedp, methods);
2140 temp = expand_binop (mode,
2141 left ? rotl_optab : rotr_optab,
2142 shifted, op1, target, unsignedp, methods);
2144 else if (unsignedp)
2145 temp = expand_binop (mode,
2146 left ? ashl_optab : lshr_optab,
2147 shifted, op1, target, unsignedp, methods);
2149 /* Do arithmetic shifts.
2150 Also, if we are going to widen the operand, we can just as well
2151 use an arithmetic right-shift instead of a logical one. */
2152 if (temp == 0 && ! rotate
2153 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2155 enum optab_methods methods1 = methods;
2157 /* If trying to widen a log shift to an arithmetic shift,
2158 don't accept an arithmetic shift of the same size. */
2159 if (unsignedp)
2160 methods1 = OPTAB_MUST_WIDEN;
2162 /* Arithmetic shift */
2164 temp = expand_binop (mode,
2165 left ? ashl_optab : ashr_optab,
2166 shifted, op1, target, unsignedp, methods1);
2169 /* We used to try extzv here for logical right shifts, but that was
2170 only useful for one machine, the VAX, and caused poor code
2171 generation there for lshrdi3, so the code was deleted and a
2172 define_expand for lshrsi3 was added to vax.md. */
2175 gcc_assert (temp);
2176 return temp;
2179 enum alg_code {
2180 alg_unknown,
2181 alg_zero,
2182 alg_m, alg_shift,
2183 alg_add_t_m2,
2184 alg_sub_t_m2,
2185 alg_add_factor,
2186 alg_sub_factor,
2187 alg_add_t2_m,
2188 alg_sub_t2_m,
2189 alg_impossible
2192 /* This structure holds the "cost" of a multiply sequence. The
2193 "cost" field holds the total rtx_cost of every operator in the
2194 synthetic multiplication sequence, hence cost(a op b) is defined
2195 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2196 The "latency" field holds the minimum possible latency of the
2197 synthetic multiply, on a hypothetical infinitely parallel CPU.
2198 This is the critical path, or the maximum height, of the expression
2199 tree which is the sum of rtx_costs on the most expensive path from
2200 any leaf to the root. Hence latency(a op b) is defined as zero for
2201 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2203 struct mult_cost {
2204 short cost; /* Total rtx_cost of the multiplication sequence. */
2205 short latency; /* The latency of the multiplication sequence. */
2208 /* This macro is used to compare a pointer to a mult_cost against an
2209 single integer "rtx_cost" value. This is equivalent to the macro
2210 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2211 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2212 || ((X)->cost == (Y) && (X)->latency < (Y)))
2214 /* This macro is used to compare two pointers to mult_costs against
2215 each other. The macro returns true if X is cheaper than Y.
2216 Currently, the cheaper of two mult_costs is the one with the
2217 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2218 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2219 || ((X)->cost == (Y)->cost \
2220 && (X)->latency < (Y)->latency))
2222 /* This structure records a sequence of operations.
2223 `ops' is the number of operations recorded.
2224 `cost' is their total cost.
2225 The operations are stored in `op' and the corresponding
2226 logarithms of the integer coefficients in `log'.
2228 These are the operations:
2229 alg_zero total := 0;
2230 alg_m total := multiplicand;
2231 alg_shift total := total * coeff
2232 alg_add_t_m2 total := total + multiplicand * coeff;
2233 alg_sub_t_m2 total := total - multiplicand * coeff;
2234 alg_add_factor total := total * coeff + total;
2235 alg_sub_factor total := total * coeff - total;
2236 alg_add_t2_m total := total * coeff + multiplicand;
2237 alg_sub_t2_m total := total * coeff - multiplicand;
2239 The first operand must be either alg_zero or alg_m. */
2241 struct algorithm
2243 struct mult_cost cost;
2244 short ops;
2245 /* The size of the OP and LOG fields are not directly related to the
2246 word size, but the worst-case algorithms will be if we have few
2247 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2248 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2249 in total wordsize operations. */
2250 enum alg_code op[MAX_BITS_PER_WORD];
2251 char log[MAX_BITS_PER_WORD];
2254 /* The entry for our multiplication cache/hash table. */
2255 struct alg_hash_entry {
2256 /* The number we are multiplying by. */
2257 unsigned HOST_WIDE_INT t;
2259 /* The mode in which we are multiplying something by T. */
2260 enum machine_mode mode;
2262 /* The best multiplication algorithm for t. */
2263 enum alg_code alg;
2265 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2266 Otherwise, the cost within which multiplication by T is
2267 impossible. */
2268 struct mult_cost cost;
2271 /* The number of cache/hash entries. */
2272 #if HOST_BITS_PER_WIDE_INT == 64
2273 #define NUM_ALG_HASH_ENTRIES 1031
2274 #else
2275 #define NUM_ALG_HASH_ENTRIES 307
2276 #endif
2278 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2279 actually a hash table. If we have a collision, that the older
2280 entry is kicked out. */
2281 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2283 /* Indicates the type of fixup needed after a constant multiplication.
2284 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2285 the result should be negated, and ADD_VARIANT means that the
2286 multiplicand should be added to the result. */
2287 enum mult_variant {basic_variant, negate_variant, add_variant};
2289 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2290 const struct mult_cost *, enum machine_mode mode);
2291 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2292 struct algorithm *, enum mult_variant *, int);
2293 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2294 const struct algorithm *, enum mult_variant);
2295 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2296 int, rtx *, int *, int *);
2297 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2298 static rtx extract_high_half (enum machine_mode, rtx);
2299 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2300 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2301 int, int);
2302 /* Compute and return the best algorithm for multiplying by T.
2303 The algorithm must cost less than cost_limit
2304 If retval.cost >= COST_LIMIT, no algorithm was found and all
2305 other field of the returned struct are undefined.
2306 MODE is the machine mode of the multiplication. */
2308 static void
2309 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2310 const struct mult_cost *cost_limit, enum machine_mode mode)
2312 int m;
2313 struct algorithm *alg_in, *best_alg;
2314 struct mult_cost best_cost;
2315 struct mult_cost new_limit;
2316 int op_cost, op_latency;
2317 unsigned HOST_WIDE_INT q;
2318 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2319 int hash_index;
2320 bool cache_hit = false;
2321 enum alg_code cache_alg = alg_zero;
2323 /* Indicate that no algorithm is yet found. If no algorithm
2324 is found, this value will be returned and indicate failure. */
2325 alg_out->cost.cost = cost_limit->cost + 1;
2326 alg_out->cost.latency = cost_limit->latency + 1;
2328 if (cost_limit->cost < 0
2329 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2330 return;
2332 /* Restrict the bits of "t" to the multiplication's mode. */
2333 t &= GET_MODE_MASK (mode);
2335 /* t == 1 can be done in zero cost. */
2336 if (t == 1)
2338 alg_out->ops = 1;
2339 alg_out->cost.cost = 0;
2340 alg_out->cost.latency = 0;
2341 alg_out->op[0] = alg_m;
2342 return;
2345 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2346 fail now. */
2347 if (t == 0)
2349 if (MULT_COST_LESS (cost_limit, zero_cost))
2350 return;
2351 else
2353 alg_out->ops = 1;
2354 alg_out->cost.cost = zero_cost;
2355 alg_out->cost.latency = zero_cost;
2356 alg_out->op[0] = alg_zero;
2357 return;
2361 /* We'll be needing a couple extra algorithm structures now. */
2363 alg_in = alloca (sizeof (struct algorithm));
2364 best_alg = alloca (sizeof (struct algorithm));
2365 best_cost = *cost_limit;
2367 /* Compute the hash index. */
2368 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2370 /* See if we already know what to do for T. */
2371 if (alg_hash[hash_index].t == t
2372 && alg_hash[hash_index].mode == mode
2373 && alg_hash[hash_index].alg != alg_unknown)
2375 cache_alg = alg_hash[hash_index].alg;
2377 if (cache_alg == alg_impossible)
2379 /* The cache tells us that it's impossible to synthesize
2380 multiplication by T within alg_hash[hash_index].cost. */
2381 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2382 /* COST_LIMIT is at least as restrictive as the one
2383 recorded in the hash table, in which case we have no
2384 hope of synthesizing a multiplication. Just
2385 return. */
2386 return;
2388 /* If we get here, COST_LIMIT is less restrictive than the
2389 one recorded in the hash table, so we may be able to
2390 synthesize a multiplication. Proceed as if we didn't
2391 have the cache entry. */
2393 else
2395 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2396 /* The cached algorithm shows that this multiplication
2397 requires more cost than COST_LIMIT. Just return. This
2398 way, we don't clobber this cache entry with
2399 alg_impossible but retain useful information. */
2400 return;
2402 cache_hit = true;
2404 switch (cache_alg)
2406 case alg_shift:
2407 goto do_alg_shift;
2409 case alg_add_t_m2:
2410 case alg_sub_t_m2:
2411 goto do_alg_addsub_t_m2;
2413 case alg_add_factor:
2414 case alg_sub_factor:
2415 goto do_alg_addsub_factor;
2417 case alg_add_t2_m:
2418 goto do_alg_add_t2_m;
2420 case alg_sub_t2_m:
2421 goto do_alg_sub_t2_m;
2423 default:
2424 gcc_unreachable ();
2429 /* If we have a group of zero bits at the low-order part of T, try
2430 multiplying by the remaining bits and then doing a shift. */
2432 if ((t & 1) == 0)
2434 do_alg_shift:
2435 m = floor_log2 (t & -t); /* m = number of low zero bits */
2436 if (m < maxm)
2438 q = t >> m;
2439 /* The function expand_shift will choose between a shift and
2440 a sequence of additions, so the observed cost is given as
2441 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2442 op_cost = m * add_cost[mode];
2443 if (shift_cost[mode][m] < op_cost)
2444 op_cost = shift_cost[mode][m];
2445 new_limit.cost = best_cost.cost - op_cost;
2446 new_limit.latency = best_cost.latency - op_cost;
2447 synth_mult (alg_in, q, &new_limit, mode);
2449 alg_in->cost.cost += op_cost;
2450 alg_in->cost.latency += op_cost;
2451 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2453 struct algorithm *x;
2454 best_cost = alg_in->cost;
2455 x = alg_in, alg_in = best_alg, best_alg = x;
2456 best_alg->log[best_alg->ops] = m;
2457 best_alg->op[best_alg->ops] = alg_shift;
2460 if (cache_hit)
2461 goto done;
2464 /* If we have an odd number, add or subtract one. */
2465 if ((t & 1) != 0)
2467 unsigned HOST_WIDE_INT w;
2469 do_alg_addsub_t_m2:
2470 for (w = 1; (w & t) != 0; w <<= 1)
2472 /* If T was -1, then W will be zero after the loop. This is another
2473 case where T ends with ...111. Handling this with (T + 1) and
2474 subtract 1 produces slightly better code and results in algorithm
2475 selection much faster than treating it like the ...0111 case
2476 below. */
2477 if (w == 0
2478 || (w > 2
2479 /* Reject the case where t is 3.
2480 Thus we prefer addition in that case. */
2481 && t != 3))
2483 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2485 op_cost = add_cost[mode];
2486 new_limit.cost = best_cost.cost - op_cost;
2487 new_limit.latency = best_cost.latency - op_cost;
2488 synth_mult (alg_in, t + 1, &new_limit, mode);
2490 alg_in->cost.cost += op_cost;
2491 alg_in->cost.latency += op_cost;
2492 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2494 struct algorithm *x;
2495 best_cost = alg_in->cost;
2496 x = alg_in, alg_in = best_alg, best_alg = x;
2497 best_alg->log[best_alg->ops] = 0;
2498 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2501 else
2503 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2505 op_cost = add_cost[mode];
2506 new_limit.cost = best_cost.cost - op_cost;
2507 new_limit.latency = best_cost.latency - op_cost;
2508 synth_mult (alg_in, t - 1, &new_limit, mode);
2510 alg_in->cost.cost += op_cost;
2511 alg_in->cost.latency += op_cost;
2512 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2514 struct algorithm *x;
2515 best_cost = alg_in->cost;
2516 x = alg_in, alg_in = best_alg, best_alg = x;
2517 best_alg->log[best_alg->ops] = 0;
2518 best_alg->op[best_alg->ops] = alg_add_t_m2;
2521 if (cache_hit)
2522 goto done;
2525 /* Look for factors of t of the form
2526 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2527 If we find such a factor, we can multiply by t using an algorithm that
2528 multiplies by q, shift the result by m and add/subtract it to itself.
2530 We search for large factors first and loop down, even if large factors
2531 are less probable than small; if we find a large factor we will find a
2532 good sequence quickly, and therefore be able to prune (by decreasing
2533 COST_LIMIT) the search. */
2535 do_alg_addsub_factor:
2536 for (m = floor_log2 (t - 1); m >= 2; m--)
2538 unsigned HOST_WIDE_INT d;
2540 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2541 if (t % d == 0 && t > d && m < maxm
2542 && (!cache_hit || cache_alg == alg_add_factor))
2544 /* If the target has a cheap shift-and-add instruction use
2545 that in preference to a shift insn followed by an add insn.
2546 Assume that the shift-and-add is "atomic" with a latency
2547 equal to its cost, otherwise assume that on superscalar
2548 hardware the shift may be executed concurrently with the
2549 earlier steps in the algorithm. */
2550 op_cost = add_cost[mode] + shift_cost[mode][m];
2551 if (shiftadd_cost[mode][m] < op_cost)
2553 op_cost = shiftadd_cost[mode][m];
2554 op_latency = op_cost;
2556 else
2557 op_latency = add_cost[mode];
2559 new_limit.cost = best_cost.cost - op_cost;
2560 new_limit.latency = best_cost.latency - op_latency;
2561 synth_mult (alg_in, t / d, &new_limit, mode);
2563 alg_in->cost.cost += op_cost;
2564 alg_in->cost.latency += op_latency;
2565 if (alg_in->cost.latency < op_cost)
2566 alg_in->cost.latency = op_cost;
2567 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2569 struct algorithm *x;
2570 best_cost = alg_in->cost;
2571 x = alg_in, alg_in = best_alg, best_alg = x;
2572 best_alg->log[best_alg->ops] = m;
2573 best_alg->op[best_alg->ops] = alg_add_factor;
2575 /* Other factors will have been taken care of in the recursion. */
2576 break;
2579 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2580 if (t % d == 0 && t > d && m < maxm
2581 && (!cache_hit || cache_alg == alg_sub_factor))
2583 /* If the target has a cheap shift-and-subtract insn use
2584 that in preference to a shift insn followed by a sub insn.
2585 Assume that the shift-and-sub is "atomic" with a latency
2586 equal to it's cost, otherwise assume that on superscalar
2587 hardware the shift may be executed concurrently with the
2588 earlier steps in the algorithm. */
2589 op_cost = add_cost[mode] + shift_cost[mode][m];
2590 if (shiftsub_cost[mode][m] < op_cost)
2592 op_cost = shiftsub_cost[mode][m];
2593 op_latency = op_cost;
2595 else
2596 op_latency = add_cost[mode];
2598 new_limit.cost = best_cost.cost - op_cost;
2599 new_limit.latency = best_cost.latency - op_latency;
2600 synth_mult (alg_in, t / d, &new_limit, mode);
2602 alg_in->cost.cost += op_cost;
2603 alg_in->cost.latency += op_latency;
2604 if (alg_in->cost.latency < op_cost)
2605 alg_in->cost.latency = op_cost;
2606 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2608 struct algorithm *x;
2609 best_cost = alg_in->cost;
2610 x = alg_in, alg_in = best_alg, best_alg = x;
2611 best_alg->log[best_alg->ops] = m;
2612 best_alg->op[best_alg->ops] = alg_sub_factor;
2614 break;
2617 if (cache_hit)
2618 goto done;
2620 /* Try shift-and-add (load effective address) instructions,
2621 i.e. do a*3, a*5, a*9. */
2622 if ((t & 1) != 0)
2624 do_alg_add_t2_m:
2625 q = t - 1;
2626 q = q & -q;
2627 m = exact_log2 (q);
2628 if (m >= 0 && m < maxm)
2630 op_cost = shiftadd_cost[mode][m];
2631 new_limit.cost = best_cost.cost - op_cost;
2632 new_limit.latency = best_cost.latency - op_cost;
2633 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2635 alg_in->cost.cost += op_cost;
2636 alg_in->cost.latency += op_cost;
2637 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2639 struct algorithm *x;
2640 best_cost = alg_in->cost;
2641 x = alg_in, alg_in = best_alg, best_alg = x;
2642 best_alg->log[best_alg->ops] = m;
2643 best_alg->op[best_alg->ops] = alg_add_t2_m;
2646 if (cache_hit)
2647 goto done;
2649 do_alg_sub_t2_m:
2650 q = t + 1;
2651 q = q & -q;
2652 m = exact_log2 (q);
2653 if (m >= 0 && m < maxm)
2655 op_cost = shiftsub_cost[mode][m];
2656 new_limit.cost = best_cost.cost - op_cost;
2657 new_limit.latency = best_cost.latency - op_cost;
2658 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2660 alg_in->cost.cost += op_cost;
2661 alg_in->cost.latency += op_cost;
2662 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2664 struct algorithm *x;
2665 best_cost = alg_in->cost;
2666 x = alg_in, alg_in = best_alg, best_alg = x;
2667 best_alg->log[best_alg->ops] = m;
2668 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2671 if (cache_hit)
2672 goto done;
2675 done:
2676 /* If best_cost has not decreased, we have not found any algorithm. */
2677 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2679 /* We failed to find an algorithm. Record alg_impossible for
2680 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2681 we are asked to find an algorithm for T within the same or
2682 lower COST_LIMIT, we can immediately return to the
2683 caller. */
2684 alg_hash[hash_index].t = t;
2685 alg_hash[hash_index].mode = mode;
2686 alg_hash[hash_index].alg = alg_impossible;
2687 alg_hash[hash_index].cost = *cost_limit;
2688 return;
2691 /* Cache the result. */
2692 if (!cache_hit)
2694 alg_hash[hash_index].t = t;
2695 alg_hash[hash_index].mode = mode;
2696 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2697 alg_hash[hash_index].cost.cost = best_cost.cost;
2698 alg_hash[hash_index].cost.latency = best_cost.latency;
2701 /* If we are getting a too long sequence for `struct algorithm'
2702 to record, make this search fail. */
2703 if (best_alg->ops == MAX_BITS_PER_WORD)
2704 return;
2706 /* Copy the algorithm from temporary space to the space at alg_out.
2707 We avoid using structure assignment because the majority of
2708 best_alg is normally undefined, and this is a critical function. */
2709 alg_out->ops = best_alg->ops + 1;
2710 alg_out->cost = best_cost;
2711 memcpy (alg_out->op, best_alg->op,
2712 alg_out->ops * sizeof *alg_out->op);
2713 memcpy (alg_out->log, best_alg->log,
2714 alg_out->ops * sizeof *alg_out->log);
2717 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2718 Try three variations:
2720 - a shift/add sequence based on VAL itself
2721 - a shift/add sequence based on -VAL, followed by a negation
2722 - a shift/add sequence based on VAL - 1, followed by an addition.
2724 Return true if the cheapest of these cost less than MULT_COST,
2725 describing the algorithm in *ALG and final fixup in *VARIANT. */
2727 static bool
2728 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2729 struct algorithm *alg, enum mult_variant *variant,
2730 int mult_cost)
2732 struct algorithm alg2;
2733 struct mult_cost limit;
2734 int op_cost;
2736 /* Fail quickly for impossible bounds. */
2737 if (mult_cost < 0)
2738 return false;
2740 /* Ensure that mult_cost provides a reasonable upper bound.
2741 Any constant multiplication can be performed with less
2742 than 2 * bits additions. */
2743 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[mode];
2744 if (mult_cost > op_cost)
2745 mult_cost = op_cost;
2747 *variant = basic_variant;
2748 limit.cost = mult_cost;
2749 limit.latency = mult_cost;
2750 synth_mult (alg, val, &limit, mode);
2752 /* This works only if the inverted value actually fits in an
2753 `unsigned int' */
2754 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2756 op_cost = neg_cost[mode];
2757 if (MULT_COST_LESS (&alg->cost, mult_cost))
2759 limit.cost = alg->cost.cost - op_cost;
2760 limit.latency = alg->cost.latency - op_cost;
2762 else
2764 limit.cost = mult_cost - op_cost;
2765 limit.latency = mult_cost - op_cost;
2768 synth_mult (&alg2, -val, &limit, mode);
2769 alg2.cost.cost += op_cost;
2770 alg2.cost.latency += op_cost;
2771 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2772 *alg = alg2, *variant = negate_variant;
2775 /* This proves very useful for division-by-constant. */
2776 op_cost = add_cost[mode];
2777 if (MULT_COST_LESS (&alg->cost, mult_cost))
2779 limit.cost = alg->cost.cost - op_cost;
2780 limit.latency = alg->cost.latency - op_cost;
2782 else
2784 limit.cost = mult_cost - op_cost;
2785 limit.latency = mult_cost - op_cost;
2788 synth_mult (&alg2, val - 1, &limit, mode);
2789 alg2.cost.cost += op_cost;
2790 alg2.cost.latency += op_cost;
2791 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2792 *alg = alg2, *variant = add_variant;
2794 return MULT_COST_LESS (&alg->cost, mult_cost);
2797 /* A subroutine of expand_mult, used for constant multiplications.
2798 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2799 convenient. Use the shift/add sequence described by ALG and apply
2800 the final fixup specified by VARIANT. */
2802 static rtx
2803 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2804 rtx target, const struct algorithm *alg,
2805 enum mult_variant variant)
2807 HOST_WIDE_INT val_so_far;
2808 rtx insn, accum, tem;
2809 int opno;
2810 enum machine_mode nmode;
2812 /* Avoid referencing memory over and over and invalid sharing
2813 on SUBREGs. */
2814 op0 = force_reg (mode, op0);
2816 /* ACCUM starts out either as OP0 or as a zero, depending on
2817 the first operation. */
2819 if (alg->op[0] == alg_zero)
2821 accum = copy_to_mode_reg (mode, const0_rtx);
2822 val_so_far = 0;
2824 else if (alg->op[0] == alg_m)
2826 accum = copy_to_mode_reg (mode, op0);
2827 val_so_far = 1;
2829 else
2830 gcc_unreachable ();
2832 for (opno = 1; opno < alg->ops; opno++)
2834 int log = alg->log[opno];
2835 rtx shift_subtarget = optimize ? 0 : accum;
2836 rtx add_target
2837 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2838 && !optimize)
2839 ? target : 0;
2840 rtx accum_target = optimize ? 0 : accum;
2842 switch (alg->op[opno])
2844 case alg_shift:
2845 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2846 build_int_cst (NULL_TREE, log),
2847 NULL_RTX, 0);
2848 val_so_far <<= log;
2849 break;
2851 case alg_add_t_m2:
2852 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2853 build_int_cst (NULL_TREE, log),
2854 NULL_RTX, 0);
2855 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2856 add_target ? add_target : accum_target);
2857 val_so_far += (HOST_WIDE_INT) 1 << log;
2858 break;
2860 case alg_sub_t_m2:
2861 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2862 build_int_cst (NULL_TREE, log),
2863 NULL_RTX, 0);
2864 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2865 add_target ? add_target : accum_target);
2866 val_so_far -= (HOST_WIDE_INT) 1 << log;
2867 break;
2869 case alg_add_t2_m:
2870 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2871 build_int_cst (NULL_TREE, log),
2872 shift_subtarget,
2874 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2875 add_target ? add_target : accum_target);
2876 val_so_far = (val_so_far << log) + 1;
2877 break;
2879 case alg_sub_t2_m:
2880 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2881 build_int_cst (NULL_TREE, log),
2882 shift_subtarget, 0);
2883 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2884 add_target ? add_target : accum_target);
2885 val_so_far = (val_so_far << log) - 1;
2886 break;
2888 case alg_add_factor:
2889 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2890 build_int_cst (NULL_TREE, log),
2891 NULL_RTX, 0);
2892 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2893 add_target ? add_target : accum_target);
2894 val_so_far += val_so_far << log;
2895 break;
2897 case alg_sub_factor:
2898 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2899 build_int_cst (NULL_TREE, log),
2900 NULL_RTX, 0);
2901 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2902 (add_target
2903 ? add_target : (optimize ? 0 : tem)));
2904 val_so_far = (val_so_far << log) - val_so_far;
2905 break;
2907 default:
2908 gcc_unreachable ();
2911 /* Write a REG_EQUAL note on the last insn so that we can cse
2912 multiplication sequences. Note that if ACCUM is a SUBREG,
2913 we've set the inner register and must properly indicate
2914 that. */
2916 tem = op0, nmode = mode;
2917 if (GET_CODE (accum) == SUBREG)
2919 nmode = GET_MODE (SUBREG_REG (accum));
2920 tem = gen_lowpart (nmode, op0);
2923 insn = get_last_insn ();
2924 set_unique_reg_note (insn, REG_EQUAL,
2925 gen_rtx_MULT (nmode, tem,
2926 GEN_INT (val_so_far)));
2929 if (variant == negate_variant)
2931 val_so_far = -val_so_far;
2932 accum = expand_unop (mode, neg_optab, accum, target, 0);
2934 else if (variant == add_variant)
2936 val_so_far = val_so_far + 1;
2937 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
2940 /* Compare only the bits of val and val_so_far that are significant
2941 in the result mode, to avoid sign-/zero-extension confusion. */
2942 val &= GET_MODE_MASK (mode);
2943 val_so_far &= GET_MODE_MASK (mode);
2944 gcc_assert (val == val_so_far);
2946 return accum;
2949 /* Perform a multiplication and return an rtx for the result.
2950 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
2951 TARGET is a suggestion for where to store the result (an rtx).
2953 We check specially for a constant integer as OP1.
2954 If you want this check for OP0 as well, then before calling
2955 you should swap the two operands if OP0 would be constant. */
2958 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
2959 int unsignedp)
2961 enum mult_variant variant;
2962 struct algorithm algorithm;
2963 int max_cost;
2965 /* Handling const0_rtx here allows us to use zero as a rogue value for
2966 coeff below. */
2967 if (op1 == const0_rtx)
2968 return const0_rtx;
2969 if (op1 == const1_rtx)
2970 return op0;
2971 if (op1 == constm1_rtx)
2972 return expand_unop (mode,
2973 GET_MODE_CLASS (mode) == MODE_INT
2974 && !unsignedp && flag_trapv
2975 ? negv_optab : neg_optab,
2976 op0, target, 0);
2978 /* These are the operations that are potentially turned into a sequence
2979 of shifts and additions. */
2980 if (SCALAR_INT_MODE_P (mode)
2981 && (unsignedp || !flag_trapv))
2983 HOST_WIDE_INT coeff = 0;
2984 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
2986 /* synth_mult does an `unsigned int' multiply. As long as the mode is
2987 less than or equal in size to `unsigned int' this doesn't matter.
2988 If the mode is larger than `unsigned int', then synth_mult works
2989 only if the constant value exactly fits in an `unsigned int' without
2990 any truncation. This means that multiplying by negative values does
2991 not work; results are off by 2^32 on a 32 bit machine. */
2993 if (GET_CODE (op1) == CONST_INT)
2995 /* Attempt to handle multiplication of DImode values by negative
2996 coefficients, by performing the multiplication by a positive
2997 multiplier and then inverting the result. */
2998 if (INTVAL (op1) < 0
2999 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3001 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3002 result is interpreted as an unsigned coefficient.
3003 Exclude cost of op0 from max_cost to match the cost
3004 calculation of the synth_mult. */
3005 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET)
3006 - neg_cost[mode];
3007 if (max_cost > 0
3008 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3009 &variant, max_cost))
3011 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3012 NULL_RTX, &algorithm,
3013 variant);
3014 return expand_unop (mode, neg_optab, temp, target, 0);
3017 else coeff = INTVAL (op1);
3019 else if (GET_CODE (op1) == CONST_DOUBLE)
3021 /* If we are multiplying in DImode, it may still be a win
3022 to try to work with shifts and adds. */
3023 if (CONST_DOUBLE_HIGH (op1) == 0)
3024 coeff = CONST_DOUBLE_LOW (op1);
3025 else if (CONST_DOUBLE_LOW (op1) == 0
3026 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3028 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3029 + HOST_BITS_PER_WIDE_INT;
3030 return expand_shift (LSHIFT_EXPR, mode, op0,
3031 build_int_cst (NULL_TREE, shift),
3032 target, unsignedp);
3036 /* We used to test optimize here, on the grounds that it's better to
3037 produce a smaller program when -O is not used. But this causes
3038 such a terrible slowdown sometimes that it seems better to always
3039 use synth_mult. */
3040 if (coeff != 0)
3042 /* Special case powers of two. */
3043 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3044 return expand_shift (LSHIFT_EXPR, mode, op0,
3045 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3046 target, unsignedp);
3048 /* Exclude cost of op0 from max_cost to match the cost
3049 calculation of the synth_mult. */
3050 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET);
3051 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3052 max_cost))
3053 return expand_mult_const (mode, op0, coeff, target,
3054 &algorithm, variant);
3058 if (GET_CODE (op0) == CONST_DOUBLE)
3060 rtx temp = op0;
3061 op0 = op1;
3062 op1 = temp;
3065 /* Expand x*2.0 as x+x. */
3066 if (GET_CODE (op1) == CONST_DOUBLE
3067 && SCALAR_FLOAT_MODE_P (mode))
3069 REAL_VALUE_TYPE d;
3070 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3072 if (REAL_VALUES_EQUAL (d, dconst2))
3074 op0 = force_reg (GET_MODE (op0), op0);
3075 return expand_binop (mode, add_optab, op0, op0,
3076 target, unsignedp, OPTAB_LIB_WIDEN);
3080 /* This used to use umul_optab if unsigned, but for non-widening multiply
3081 there is no difference between signed and unsigned. */
3082 op0 = expand_binop (mode,
3083 ! unsignedp
3084 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3085 ? smulv_optab : smul_optab,
3086 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3087 gcc_assert (op0);
3088 return op0;
3091 /* Return the smallest n such that 2**n >= X. */
3094 ceil_log2 (unsigned HOST_WIDE_INT x)
3096 return floor_log2 (x - 1) + 1;
3099 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3100 replace division by D, and put the least significant N bits of the result
3101 in *MULTIPLIER_PTR and return the most significant bit.
3103 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3104 needed precision is in PRECISION (should be <= N).
3106 PRECISION should be as small as possible so this function can choose
3107 multiplier more freely.
3109 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3110 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3112 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3113 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3115 static
3116 unsigned HOST_WIDE_INT
3117 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3118 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3120 HOST_WIDE_INT mhigh_hi, mlow_hi;
3121 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3122 int lgup, post_shift;
3123 int pow, pow2;
3124 unsigned HOST_WIDE_INT nl, dummy1;
3125 HOST_WIDE_INT nh, dummy2;
3127 /* lgup = ceil(log2(divisor)); */
3128 lgup = ceil_log2 (d);
3130 gcc_assert (lgup <= n);
3132 pow = n + lgup;
3133 pow2 = n + lgup - precision;
3135 /* We could handle this with some effort, but this case is much
3136 better handled directly with a scc insn, so rely on caller using
3137 that. */
3138 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3140 /* mlow = 2^(N + lgup)/d */
3141 if (pow >= HOST_BITS_PER_WIDE_INT)
3143 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3144 nl = 0;
3146 else
3148 nh = 0;
3149 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3151 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3152 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3154 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3155 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3156 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3157 else
3158 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3159 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3160 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3162 gcc_assert (!mhigh_hi || nh - d < d);
3163 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3164 /* Assert that mlow < mhigh. */
3165 gcc_assert (mlow_hi < mhigh_hi
3166 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3168 /* If precision == N, then mlow, mhigh exceed 2^N
3169 (but they do not exceed 2^(N+1)). */
3171 /* Reduce to lowest terms. */
3172 for (post_shift = lgup; post_shift > 0; post_shift--)
3174 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3175 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3176 if (ml_lo >= mh_lo)
3177 break;
3179 mlow_hi = 0;
3180 mlow_lo = ml_lo;
3181 mhigh_hi = 0;
3182 mhigh_lo = mh_lo;
3185 *post_shift_ptr = post_shift;
3186 *lgup_ptr = lgup;
3187 if (n < HOST_BITS_PER_WIDE_INT)
3189 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3190 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3191 return mhigh_lo >= mask;
3193 else
3195 *multiplier_ptr = GEN_INT (mhigh_lo);
3196 return mhigh_hi;
3200 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3201 congruent to 1 (mod 2**N). */
3203 static unsigned HOST_WIDE_INT
3204 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3206 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3208 /* The algorithm notes that the choice y = x satisfies
3209 x*y == 1 mod 2^3, since x is assumed odd.
3210 Each iteration doubles the number of bits of significance in y. */
3212 unsigned HOST_WIDE_INT mask;
3213 unsigned HOST_WIDE_INT y = x;
3214 int nbit = 3;
3216 mask = (n == HOST_BITS_PER_WIDE_INT
3217 ? ~(unsigned HOST_WIDE_INT) 0
3218 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3220 while (nbit < n)
3222 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3223 nbit *= 2;
3225 return y;
3228 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3229 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3230 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3231 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3232 become signed.
3234 The result is put in TARGET if that is convenient.
3236 MODE is the mode of operation. */
3239 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3240 rtx op1, rtx target, int unsignedp)
3242 rtx tem;
3243 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3245 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3246 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3247 NULL_RTX, 0);
3248 tem = expand_and (mode, tem, op1, NULL_RTX);
3249 adj_operand
3250 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3251 adj_operand);
3253 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3254 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3255 NULL_RTX, 0);
3256 tem = expand_and (mode, tem, op0, NULL_RTX);
3257 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3258 target);
3260 return target;
3263 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3265 static rtx
3266 extract_high_half (enum machine_mode mode, rtx op)
3268 enum machine_mode wider_mode;
3270 if (mode == word_mode)
3271 return gen_highpart (mode, op);
3273 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3275 wider_mode = GET_MODE_WIDER_MODE (mode);
3276 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3277 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3278 return convert_modes (mode, wider_mode, op, 0);
3281 /* Like expand_mult_highpart, but only consider using a multiplication
3282 optab. OP1 is an rtx for the constant operand. */
3284 static rtx
3285 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3286 rtx target, int unsignedp, int max_cost)
3288 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3289 enum machine_mode wider_mode;
3290 optab moptab;
3291 rtx tem;
3292 int size;
3294 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3296 wider_mode = GET_MODE_WIDER_MODE (mode);
3297 size = GET_MODE_BITSIZE (mode);
3299 /* Firstly, try using a multiplication insn that only generates the needed
3300 high part of the product, and in the sign flavor of unsignedp. */
3301 if (mul_highpart_cost[mode] < max_cost)
3303 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3304 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3305 unsignedp, OPTAB_DIRECT);
3306 if (tem)
3307 return tem;
3310 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3311 Need to adjust the result after the multiplication. */
3312 if (size - 1 < BITS_PER_WORD
3313 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3314 + 4 * add_cost[mode] < max_cost))
3316 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3317 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3318 unsignedp, OPTAB_DIRECT);
3319 if (tem)
3320 /* We used the wrong signedness. Adjust the result. */
3321 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3322 tem, unsignedp);
3325 /* Try widening multiplication. */
3326 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3327 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3328 && mul_widen_cost[wider_mode] < max_cost)
3330 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3331 unsignedp, OPTAB_WIDEN);
3332 if (tem)
3333 return extract_high_half (mode, tem);
3336 /* Try widening the mode and perform a non-widening multiplication. */
3337 if (optab_handler (smul_optab, wider_mode)->insn_code != CODE_FOR_nothing
3338 && size - 1 < BITS_PER_WORD
3339 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3341 rtx insns, wop0, wop1;
3343 /* We need to widen the operands, for example to ensure the
3344 constant multiplier is correctly sign or zero extended.
3345 Use a sequence to clean-up any instructions emitted by
3346 the conversions if things don't work out. */
3347 start_sequence ();
3348 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3349 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3350 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3351 unsignedp, OPTAB_WIDEN);
3352 insns = get_insns ();
3353 end_sequence ();
3355 if (tem)
3357 emit_insn (insns);
3358 return extract_high_half (mode, tem);
3362 /* Try widening multiplication of opposite signedness, and adjust. */
3363 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3364 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3365 && size - 1 < BITS_PER_WORD
3366 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3367 + 4 * add_cost[mode] < max_cost))
3369 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3370 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3371 if (tem != 0)
3373 tem = extract_high_half (mode, tem);
3374 /* We used the wrong signedness. Adjust the result. */
3375 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3376 target, unsignedp);
3380 return 0;
3383 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3384 putting the high half of the result in TARGET if that is convenient,
3385 and return where the result is. If the operation can not be performed,
3386 0 is returned.
3388 MODE is the mode of operation and result.
3390 UNSIGNEDP nonzero means unsigned multiply.
3392 MAX_COST is the total allowed cost for the expanded RTL. */
3394 static rtx
3395 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3396 rtx target, int unsignedp, int max_cost)
3398 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3399 unsigned HOST_WIDE_INT cnst1;
3400 int extra_cost;
3401 bool sign_adjust = false;
3402 enum mult_variant variant;
3403 struct algorithm alg;
3404 rtx tem;
3406 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3407 /* We can't support modes wider than HOST_BITS_PER_INT. */
3408 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3410 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3412 /* We can't optimize modes wider than BITS_PER_WORD.
3413 ??? We might be able to perform double-word arithmetic if
3414 mode == word_mode, however all the cost calculations in
3415 synth_mult etc. assume single-word operations. */
3416 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3417 return expand_mult_highpart_optab (mode, op0, op1, target,
3418 unsignedp, max_cost);
3420 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3422 /* Check whether we try to multiply by a negative constant. */
3423 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3425 sign_adjust = true;
3426 extra_cost += add_cost[mode];
3429 /* See whether shift/add multiplication is cheap enough. */
3430 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3431 max_cost - extra_cost))
3433 /* See whether the specialized multiplication optabs are
3434 cheaper than the shift/add version. */
3435 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3436 alg.cost.cost + extra_cost);
3437 if (tem)
3438 return tem;
3440 tem = convert_to_mode (wider_mode, op0, unsignedp);
3441 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3442 tem = extract_high_half (mode, tem);
3444 /* Adjust result for signedness. */
3445 if (sign_adjust)
3446 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3448 return tem;
3450 return expand_mult_highpart_optab (mode, op0, op1, target,
3451 unsignedp, max_cost);
3455 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3457 static rtx
3458 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3460 unsigned HOST_WIDE_INT masklow, maskhigh;
3461 rtx result, temp, shift, label;
3462 int logd;
3464 logd = floor_log2 (d);
3465 result = gen_reg_rtx (mode);
3467 /* Avoid conditional branches when they're expensive. */
3468 if (BRANCH_COST >= 2
3469 && !optimize_size)
3471 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3472 mode, 0, -1);
3473 if (signmask)
3475 signmask = force_reg (mode, signmask);
3476 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3477 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3479 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3480 which instruction sequence to use. If logical right shifts
3481 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3482 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3484 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3485 if (optab_handler (lshr_optab, mode)->insn_code == CODE_FOR_nothing
3486 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3488 temp = expand_binop (mode, xor_optab, op0, signmask,
3489 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3490 temp = expand_binop (mode, sub_optab, temp, signmask,
3491 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3492 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3493 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3494 temp = expand_binop (mode, xor_optab, temp, signmask,
3495 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3496 temp = expand_binop (mode, sub_optab, temp, signmask,
3497 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3499 else
3501 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3502 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3503 signmask = force_reg (mode, signmask);
3505 temp = expand_binop (mode, add_optab, op0, signmask,
3506 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3507 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3508 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3509 temp = expand_binop (mode, sub_optab, temp, signmask,
3510 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3512 return temp;
3516 /* Mask contains the mode's signbit and the significant bits of the
3517 modulus. By including the signbit in the operation, many targets
3518 can avoid an explicit compare operation in the following comparison
3519 against zero. */
3521 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3522 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3524 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3525 maskhigh = -1;
3527 else
3528 maskhigh = (HOST_WIDE_INT) -1
3529 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3531 temp = expand_binop (mode, and_optab, op0,
3532 immed_double_const (masklow, maskhigh, mode),
3533 result, 1, OPTAB_LIB_WIDEN);
3534 if (temp != result)
3535 emit_move_insn (result, temp);
3537 label = gen_label_rtx ();
3538 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3540 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3541 0, OPTAB_LIB_WIDEN);
3542 masklow = (HOST_WIDE_INT) -1 << logd;
3543 maskhigh = -1;
3544 temp = expand_binop (mode, ior_optab, temp,
3545 immed_double_const (masklow, maskhigh, mode),
3546 result, 1, OPTAB_LIB_WIDEN);
3547 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3548 0, OPTAB_LIB_WIDEN);
3549 if (temp != result)
3550 emit_move_insn (result, temp);
3551 emit_label (label);
3552 return result;
3555 /* Expand signed division of OP0 by a power of two D in mode MODE.
3556 This routine is only called for positive values of D. */
3558 static rtx
3559 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3561 rtx temp, label;
3562 tree shift;
3563 int logd;
3565 logd = floor_log2 (d);
3566 shift = build_int_cst (NULL_TREE, logd);
3568 if (d == 2 && BRANCH_COST >= 1)
3570 temp = gen_reg_rtx (mode);
3571 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3572 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3573 0, OPTAB_LIB_WIDEN);
3574 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3577 #ifdef HAVE_conditional_move
3578 if (BRANCH_COST >= 2)
3580 rtx temp2;
3582 /* ??? emit_conditional_move forces a stack adjustment via
3583 compare_from_rtx so, if the sequence is discarded, it will
3584 be lost. Do it now instead. */
3585 do_pending_stack_adjust ();
3587 start_sequence ();
3588 temp2 = copy_to_mode_reg (mode, op0);
3589 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3590 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3591 temp = force_reg (mode, temp);
3593 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3594 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3595 mode, temp, temp2, mode, 0);
3596 if (temp2)
3598 rtx seq = get_insns ();
3599 end_sequence ();
3600 emit_insn (seq);
3601 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3603 end_sequence ();
3605 #endif
3607 if (BRANCH_COST >= 2)
3609 int ushift = GET_MODE_BITSIZE (mode) - logd;
3611 temp = gen_reg_rtx (mode);
3612 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3613 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3614 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3615 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3616 else
3617 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3618 build_int_cst (NULL_TREE, ushift),
3619 NULL_RTX, 1);
3620 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3621 0, OPTAB_LIB_WIDEN);
3622 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3625 label = gen_label_rtx ();
3626 temp = copy_to_mode_reg (mode, op0);
3627 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3628 expand_inc (temp, GEN_INT (d - 1));
3629 emit_label (label);
3630 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3633 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3634 if that is convenient, and returning where the result is.
3635 You may request either the quotient or the remainder as the result;
3636 specify REM_FLAG nonzero to get the remainder.
3638 CODE is the expression code for which kind of division this is;
3639 it controls how rounding is done. MODE is the machine mode to use.
3640 UNSIGNEDP nonzero means do unsigned division. */
3642 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3643 and then correct it by or'ing in missing high bits
3644 if result of ANDI is nonzero.
3645 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3646 This could optimize to a bfexts instruction.
3647 But C doesn't use these operations, so their optimizations are
3648 left for later. */
3649 /* ??? For modulo, we don't actually need the highpart of the first product,
3650 the low part will do nicely. And for small divisors, the second multiply
3651 can also be a low-part only multiply or even be completely left out.
3652 E.g. to calculate the remainder of a division by 3 with a 32 bit
3653 multiply, multiply with 0x55555556 and extract the upper two bits;
3654 the result is exact for inputs up to 0x1fffffff.
3655 The input range can be reduced by using cross-sum rules.
3656 For odd divisors >= 3, the following table gives right shift counts
3657 so that if a number is shifted by an integer multiple of the given
3658 amount, the remainder stays the same:
3659 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3660 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3661 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3662 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3663 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3665 Cross-sum rules for even numbers can be derived by leaving as many bits
3666 to the right alone as the divisor has zeros to the right.
3667 E.g. if x is an unsigned 32 bit number:
3668 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3672 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3673 rtx op0, rtx op1, rtx target, int unsignedp)
3675 enum machine_mode compute_mode;
3676 rtx tquotient;
3677 rtx quotient = 0, remainder = 0;
3678 rtx last;
3679 int size;
3680 rtx insn, set;
3681 optab optab1, optab2;
3682 int op1_is_constant, op1_is_pow2 = 0;
3683 int max_cost, extra_cost;
3684 static HOST_WIDE_INT last_div_const = 0;
3685 static HOST_WIDE_INT ext_op1;
3687 op1_is_constant = GET_CODE (op1) == CONST_INT;
3688 if (op1_is_constant)
3690 ext_op1 = INTVAL (op1);
3691 if (unsignedp)
3692 ext_op1 &= GET_MODE_MASK (mode);
3693 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3694 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3698 This is the structure of expand_divmod:
3700 First comes code to fix up the operands so we can perform the operations
3701 correctly and efficiently.
3703 Second comes a switch statement with code specific for each rounding mode.
3704 For some special operands this code emits all RTL for the desired
3705 operation, for other cases, it generates only a quotient and stores it in
3706 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3707 to indicate that it has not done anything.
3709 Last comes code that finishes the operation. If QUOTIENT is set and
3710 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3711 QUOTIENT is not set, it is computed using trunc rounding.
3713 We try to generate special code for division and remainder when OP1 is a
3714 constant. If |OP1| = 2**n we can use shifts and some other fast
3715 operations. For other values of OP1, we compute a carefully selected
3716 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3717 by m.
3719 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3720 half of the product. Different strategies for generating the product are
3721 implemented in expand_mult_highpart.
3723 If what we actually want is the remainder, we generate that by another
3724 by-constant multiplication and a subtraction. */
3726 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3727 code below will malfunction if we are, so check here and handle
3728 the special case if so. */
3729 if (op1 == const1_rtx)
3730 return rem_flag ? const0_rtx : op0;
3732 /* When dividing by -1, we could get an overflow.
3733 negv_optab can handle overflows. */
3734 if (! unsignedp && op1 == constm1_rtx)
3736 if (rem_flag)
3737 return const0_rtx;
3738 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3739 ? negv_optab : neg_optab, op0, target, 0);
3742 if (target
3743 /* Don't use the function value register as a target
3744 since we have to read it as well as write it,
3745 and function-inlining gets confused by this. */
3746 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3747 /* Don't clobber an operand while doing a multi-step calculation. */
3748 || ((rem_flag || op1_is_constant)
3749 && (reg_mentioned_p (target, op0)
3750 || (MEM_P (op0) && MEM_P (target))))
3751 || reg_mentioned_p (target, op1)
3752 || (MEM_P (op1) && MEM_P (target))))
3753 target = 0;
3755 /* Get the mode in which to perform this computation. Normally it will
3756 be MODE, but sometimes we can't do the desired operation in MODE.
3757 If so, pick a wider mode in which we can do the operation. Convert
3758 to that mode at the start to avoid repeated conversions.
3760 First see what operations we need. These depend on the expression
3761 we are evaluating. (We assume that divxx3 insns exist under the
3762 same conditions that modxx3 insns and that these insns don't normally
3763 fail. If these assumptions are not correct, we may generate less
3764 efficient code in some cases.)
3766 Then see if we find a mode in which we can open-code that operation
3767 (either a division, modulus, or shift). Finally, check for the smallest
3768 mode for which we can do the operation with a library call. */
3770 /* We might want to refine this now that we have division-by-constant
3771 optimization. Since expand_mult_highpart tries so many variants, it is
3772 not straightforward to generalize this. Maybe we should make an array
3773 of possible modes in init_expmed? Save this for GCC 2.7. */
3775 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3776 ? (unsignedp ? lshr_optab : ashr_optab)
3777 : (unsignedp ? udiv_optab : sdiv_optab));
3778 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3779 ? optab1
3780 : (unsignedp ? udivmod_optab : sdivmod_optab));
3782 for (compute_mode = mode; compute_mode != VOIDmode;
3783 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3784 if (optab_handler (optab1, compute_mode)->insn_code != CODE_FOR_nothing
3785 || optab_handler (optab2, compute_mode)->insn_code != CODE_FOR_nothing)
3786 break;
3788 if (compute_mode == VOIDmode)
3789 for (compute_mode = mode; compute_mode != VOIDmode;
3790 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3791 if (optab_libfunc (optab1, compute_mode)
3792 || optab_libfunc (optab2, compute_mode))
3793 break;
3795 /* If we still couldn't find a mode, use MODE, but expand_binop will
3796 probably die. */
3797 if (compute_mode == VOIDmode)
3798 compute_mode = mode;
3800 if (target && GET_MODE (target) == compute_mode)
3801 tquotient = target;
3802 else
3803 tquotient = gen_reg_rtx (compute_mode);
3805 size = GET_MODE_BITSIZE (compute_mode);
3806 #if 0
3807 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3808 (mode), and thereby get better code when OP1 is a constant. Do that
3809 later. It will require going over all usages of SIZE below. */
3810 size = GET_MODE_BITSIZE (mode);
3811 #endif
3813 /* Only deduct something for a REM if the last divide done was
3814 for a different constant. Then set the constant of the last
3815 divide. */
3816 max_cost = unsignedp ? udiv_cost[compute_mode] : sdiv_cost[compute_mode];
3817 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3818 && INTVAL (op1) == last_div_const))
3819 max_cost -= mul_cost[compute_mode] + add_cost[compute_mode];
3821 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3823 /* Now convert to the best mode to use. */
3824 if (compute_mode != mode)
3826 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3827 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3829 /* convert_modes may have placed op1 into a register, so we
3830 must recompute the following. */
3831 op1_is_constant = GET_CODE (op1) == CONST_INT;
3832 op1_is_pow2 = (op1_is_constant
3833 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3834 || (! unsignedp
3835 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3838 /* If one of the operands is a volatile MEM, copy it into a register. */
3840 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3841 op0 = force_reg (compute_mode, op0);
3842 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3843 op1 = force_reg (compute_mode, op1);
3845 /* If we need the remainder or if OP1 is constant, we need to
3846 put OP0 in a register in case it has any queued subexpressions. */
3847 if (rem_flag || op1_is_constant)
3848 op0 = force_reg (compute_mode, op0);
3850 last = get_last_insn ();
3852 /* Promote floor rounding to trunc rounding for unsigned operations. */
3853 if (unsignedp)
3855 if (code == FLOOR_DIV_EXPR)
3856 code = TRUNC_DIV_EXPR;
3857 if (code == FLOOR_MOD_EXPR)
3858 code = TRUNC_MOD_EXPR;
3859 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3860 code = TRUNC_DIV_EXPR;
3863 if (op1 != const0_rtx)
3864 switch (code)
3866 case TRUNC_MOD_EXPR:
3867 case TRUNC_DIV_EXPR:
3868 if (op1_is_constant)
3870 if (unsignedp)
3872 unsigned HOST_WIDE_INT mh;
3873 int pre_shift, post_shift;
3874 int dummy;
3875 rtx ml;
3876 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3877 & GET_MODE_MASK (compute_mode));
3879 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3881 pre_shift = floor_log2 (d);
3882 if (rem_flag)
3884 remainder
3885 = expand_binop (compute_mode, and_optab, op0,
3886 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3887 remainder, 1,
3888 OPTAB_LIB_WIDEN);
3889 if (remainder)
3890 return gen_lowpart (mode, remainder);
3892 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3893 build_int_cst (NULL_TREE,
3894 pre_shift),
3895 tquotient, 1);
3897 else if (size <= HOST_BITS_PER_WIDE_INT)
3899 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3901 /* Most significant bit of divisor is set; emit an scc
3902 insn. */
3903 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3904 compute_mode, 1, 1);
3905 if (quotient == 0)
3906 goto fail1;
3908 else
3910 /* Find a suitable multiplier and right shift count
3911 instead of multiplying with D. */
3913 mh = choose_multiplier (d, size, size,
3914 &ml, &post_shift, &dummy);
3916 /* If the suggested multiplier is more than SIZE bits,
3917 we can do better for even divisors, using an
3918 initial right shift. */
3919 if (mh != 0 && (d & 1) == 0)
3921 pre_shift = floor_log2 (d & -d);
3922 mh = choose_multiplier (d >> pre_shift, size,
3923 size - pre_shift,
3924 &ml, &post_shift, &dummy);
3925 gcc_assert (!mh);
3927 else
3928 pre_shift = 0;
3930 if (mh != 0)
3932 rtx t1, t2, t3, t4;
3934 if (post_shift - 1 >= BITS_PER_WORD)
3935 goto fail1;
3937 extra_cost
3938 = (shift_cost[compute_mode][post_shift - 1]
3939 + shift_cost[compute_mode][1]
3940 + 2 * add_cost[compute_mode]);
3941 t1 = expand_mult_highpart (compute_mode, op0, ml,
3942 NULL_RTX, 1,
3943 max_cost - extra_cost);
3944 if (t1 == 0)
3945 goto fail1;
3946 t2 = force_operand (gen_rtx_MINUS (compute_mode,
3947 op0, t1),
3948 NULL_RTX);
3949 t3 = expand_shift
3950 (RSHIFT_EXPR, compute_mode, t2,
3951 build_int_cst (NULL_TREE, 1),
3952 NULL_RTX,1);
3953 t4 = force_operand (gen_rtx_PLUS (compute_mode,
3954 t1, t3),
3955 NULL_RTX);
3956 quotient = expand_shift
3957 (RSHIFT_EXPR, compute_mode, t4,
3958 build_int_cst (NULL_TREE, post_shift - 1),
3959 tquotient, 1);
3961 else
3963 rtx t1, t2;
3965 if (pre_shift >= BITS_PER_WORD
3966 || post_shift >= BITS_PER_WORD)
3967 goto fail1;
3969 t1 = expand_shift
3970 (RSHIFT_EXPR, compute_mode, op0,
3971 build_int_cst (NULL_TREE, pre_shift),
3972 NULL_RTX, 1);
3973 extra_cost
3974 = (shift_cost[compute_mode][pre_shift]
3975 + shift_cost[compute_mode][post_shift]);
3976 t2 = expand_mult_highpart (compute_mode, t1, ml,
3977 NULL_RTX, 1,
3978 max_cost - extra_cost);
3979 if (t2 == 0)
3980 goto fail1;
3981 quotient = expand_shift
3982 (RSHIFT_EXPR, compute_mode, t2,
3983 build_int_cst (NULL_TREE, post_shift),
3984 tquotient, 1);
3988 else /* Too wide mode to use tricky code */
3989 break;
3991 insn = get_last_insn ();
3992 if (insn != last
3993 && (set = single_set (insn)) != 0
3994 && SET_DEST (set) == quotient)
3995 set_unique_reg_note (insn,
3996 REG_EQUAL,
3997 gen_rtx_UDIV (compute_mode, op0, op1));
3999 else /* TRUNC_DIV, signed */
4001 unsigned HOST_WIDE_INT ml;
4002 int lgup, post_shift;
4003 rtx mlr;
4004 HOST_WIDE_INT d = INTVAL (op1);
4005 unsigned HOST_WIDE_INT abs_d;
4007 /* Since d might be INT_MIN, we have to cast to
4008 unsigned HOST_WIDE_INT before negating to avoid
4009 undefined signed overflow. */
4010 abs_d = (d >= 0
4011 ? (unsigned HOST_WIDE_INT) d
4012 : - (unsigned HOST_WIDE_INT) d);
4014 /* n rem d = n rem -d */
4015 if (rem_flag && d < 0)
4017 d = abs_d;
4018 op1 = gen_int_mode (abs_d, compute_mode);
4021 if (d == 1)
4022 quotient = op0;
4023 else if (d == -1)
4024 quotient = expand_unop (compute_mode, neg_optab, op0,
4025 tquotient, 0);
4026 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4028 /* This case is not handled correctly below. */
4029 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4030 compute_mode, 1, 1);
4031 if (quotient == 0)
4032 goto fail1;
4034 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4035 && (rem_flag ? smod_pow2_cheap[compute_mode]
4036 : sdiv_pow2_cheap[compute_mode])
4037 /* We assume that cheap metric is true if the
4038 optab has an expander for this mode. */
4039 && ((optab_handler ((rem_flag ? smod_optab
4040 : sdiv_optab),
4041 compute_mode)->insn_code
4042 != CODE_FOR_nothing)
4043 || (optab_handler(sdivmod_optab,
4044 compute_mode)
4045 ->insn_code != CODE_FOR_nothing)))
4047 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4049 if (rem_flag)
4051 remainder = expand_smod_pow2 (compute_mode, op0, d);
4052 if (remainder)
4053 return gen_lowpart (mode, remainder);
4056 if (sdiv_pow2_cheap[compute_mode]
4057 && ((optab_handler (sdiv_optab, compute_mode)->insn_code
4058 != CODE_FOR_nothing)
4059 || (optab_handler (sdivmod_optab, compute_mode)->insn_code
4060 != CODE_FOR_nothing)))
4061 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4062 compute_mode, op0,
4063 gen_int_mode (abs_d,
4064 compute_mode),
4065 NULL_RTX, 0);
4066 else
4067 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4069 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4070 negate the quotient. */
4071 if (d < 0)
4073 insn = get_last_insn ();
4074 if (insn != last
4075 && (set = single_set (insn)) != 0
4076 && SET_DEST (set) == quotient
4077 && abs_d < ((unsigned HOST_WIDE_INT) 1
4078 << (HOST_BITS_PER_WIDE_INT - 1)))
4079 set_unique_reg_note (insn,
4080 REG_EQUAL,
4081 gen_rtx_DIV (compute_mode,
4082 op0,
4083 GEN_INT
4084 (trunc_int_for_mode
4085 (abs_d,
4086 compute_mode))));
4088 quotient = expand_unop (compute_mode, neg_optab,
4089 quotient, quotient, 0);
4092 else if (size <= HOST_BITS_PER_WIDE_INT)
4094 choose_multiplier (abs_d, size, size - 1,
4095 &mlr, &post_shift, &lgup);
4096 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4097 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4099 rtx t1, t2, t3;
4101 if (post_shift >= BITS_PER_WORD
4102 || size - 1 >= BITS_PER_WORD)
4103 goto fail1;
4105 extra_cost = (shift_cost[compute_mode][post_shift]
4106 + shift_cost[compute_mode][size - 1]
4107 + add_cost[compute_mode]);
4108 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4109 NULL_RTX, 0,
4110 max_cost - extra_cost);
4111 if (t1 == 0)
4112 goto fail1;
4113 t2 = expand_shift
4114 (RSHIFT_EXPR, compute_mode, t1,
4115 build_int_cst (NULL_TREE, post_shift),
4116 NULL_RTX, 0);
4117 t3 = expand_shift
4118 (RSHIFT_EXPR, compute_mode, op0,
4119 build_int_cst (NULL_TREE, size - 1),
4120 NULL_RTX, 0);
4121 if (d < 0)
4122 quotient
4123 = force_operand (gen_rtx_MINUS (compute_mode,
4124 t3, t2),
4125 tquotient);
4126 else
4127 quotient
4128 = force_operand (gen_rtx_MINUS (compute_mode,
4129 t2, t3),
4130 tquotient);
4132 else
4134 rtx t1, t2, t3, t4;
4136 if (post_shift >= BITS_PER_WORD
4137 || size - 1 >= BITS_PER_WORD)
4138 goto fail1;
4140 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4141 mlr = gen_int_mode (ml, compute_mode);
4142 extra_cost = (shift_cost[compute_mode][post_shift]
4143 + shift_cost[compute_mode][size - 1]
4144 + 2 * add_cost[compute_mode]);
4145 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4146 NULL_RTX, 0,
4147 max_cost - extra_cost);
4148 if (t1 == 0)
4149 goto fail1;
4150 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4151 t1, op0),
4152 NULL_RTX);
4153 t3 = expand_shift
4154 (RSHIFT_EXPR, compute_mode, t2,
4155 build_int_cst (NULL_TREE, post_shift),
4156 NULL_RTX, 0);
4157 t4 = expand_shift
4158 (RSHIFT_EXPR, compute_mode, op0,
4159 build_int_cst (NULL_TREE, size - 1),
4160 NULL_RTX, 0);
4161 if (d < 0)
4162 quotient
4163 = force_operand (gen_rtx_MINUS (compute_mode,
4164 t4, t3),
4165 tquotient);
4166 else
4167 quotient
4168 = force_operand (gen_rtx_MINUS (compute_mode,
4169 t3, t4),
4170 tquotient);
4173 else /* Too wide mode to use tricky code */
4174 break;
4176 insn = get_last_insn ();
4177 if (insn != last
4178 && (set = single_set (insn)) != 0
4179 && SET_DEST (set) == quotient)
4180 set_unique_reg_note (insn,
4181 REG_EQUAL,
4182 gen_rtx_DIV (compute_mode, op0, op1));
4184 break;
4186 fail1:
4187 delete_insns_since (last);
4188 break;
4190 case FLOOR_DIV_EXPR:
4191 case FLOOR_MOD_EXPR:
4192 /* We will come here only for signed operations. */
4193 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4195 unsigned HOST_WIDE_INT mh;
4196 int pre_shift, lgup, post_shift;
4197 HOST_WIDE_INT d = INTVAL (op1);
4198 rtx ml;
4200 if (d > 0)
4202 /* We could just as easily deal with negative constants here,
4203 but it does not seem worth the trouble for GCC 2.6. */
4204 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4206 pre_shift = floor_log2 (d);
4207 if (rem_flag)
4209 remainder = expand_binop (compute_mode, and_optab, op0,
4210 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4211 remainder, 0, OPTAB_LIB_WIDEN);
4212 if (remainder)
4213 return gen_lowpart (mode, remainder);
4215 quotient = expand_shift
4216 (RSHIFT_EXPR, compute_mode, op0,
4217 build_int_cst (NULL_TREE, pre_shift),
4218 tquotient, 0);
4220 else
4222 rtx t1, t2, t3, t4;
4224 mh = choose_multiplier (d, size, size - 1,
4225 &ml, &post_shift, &lgup);
4226 gcc_assert (!mh);
4228 if (post_shift < BITS_PER_WORD
4229 && size - 1 < BITS_PER_WORD)
4231 t1 = expand_shift
4232 (RSHIFT_EXPR, compute_mode, op0,
4233 build_int_cst (NULL_TREE, size - 1),
4234 NULL_RTX, 0);
4235 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4236 NULL_RTX, 0, OPTAB_WIDEN);
4237 extra_cost = (shift_cost[compute_mode][post_shift]
4238 + shift_cost[compute_mode][size - 1]
4239 + 2 * add_cost[compute_mode]);
4240 t3 = expand_mult_highpart (compute_mode, t2, ml,
4241 NULL_RTX, 1,
4242 max_cost - extra_cost);
4243 if (t3 != 0)
4245 t4 = expand_shift
4246 (RSHIFT_EXPR, compute_mode, t3,
4247 build_int_cst (NULL_TREE, post_shift),
4248 NULL_RTX, 1);
4249 quotient = expand_binop (compute_mode, xor_optab,
4250 t4, t1, tquotient, 0,
4251 OPTAB_WIDEN);
4256 else
4258 rtx nsign, t1, t2, t3, t4;
4259 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4260 op0, constm1_rtx), NULL_RTX);
4261 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4262 0, OPTAB_WIDEN);
4263 nsign = expand_shift
4264 (RSHIFT_EXPR, compute_mode, t2,
4265 build_int_cst (NULL_TREE, size - 1),
4266 NULL_RTX, 0);
4267 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4268 NULL_RTX);
4269 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4270 NULL_RTX, 0);
4271 if (t4)
4273 rtx t5;
4274 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4275 NULL_RTX, 0);
4276 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4277 t4, t5),
4278 tquotient);
4283 if (quotient != 0)
4284 break;
4285 delete_insns_since (last);
4287 /* Try using an instruction that produces both the quotient and
4288 remainder, using truncation. We can easily compensate the quotient
4289 or remainder to get floor rounding, once we have the remainder.
4290 Notice that we compute also the final remainder value here,
4291 and return the result right away. */
4292 if (target == 0 || GET_MODE (target) != compute_mode)
4293 target = gen_reg_rtx (compute_mode);
4295 if (rem_flag)
4297 remainder
4298 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4299 quotient = gen_reg_rtx (compute_mode);
4301 else
4303 quotient
4304 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4305 remainder = gen_reg_rtx (compute_mode);
4308 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4309 quotient, remainder, 0))
4311 /* This could be computed with a branch-less sequence.
4312 Save that for later. */
4313 rtx tem;
4314 rtx label = gen_label_rtx ();
4315 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4316 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4317 NULL_RTX, 0, OPTAB_WIDEN);
4318 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4319 expand_dec (quotient, const1_rtx);
4320 expand_inc (remainder, op1);
4321 emit_label (label);
4322 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4325 /* No luck with division elimination or divmod. Have to do it
4326 by conditionally adjusting op0 *and* the result. */
4328 rtx label1, label2, label3, label4, label5;
4329 rtx adjusted_op0;
4330 rtx tem;
4332 quotient = gen_reg_rtx (compute_mode);
4333 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4334 label1 = gen_label_rtx ();
4335 label2 = gen_label_rtx ();
4336 label3 = gen_label_rtx ();
4337 label4 = gen_label_rtx ();
4338 label5 = gen_label_rtx ();
4339 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4340 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4341 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4342 quotient, 0, OPTAB_LIB_WIDEN);
4343 if (tem != quotient)
4344 emit_move_insn (quotient, tem);
4345 emit_jump_insn (gen_jump (label5));
4346 emit_barrier ();
4347 emit_label (label1);
4348 expand_inc (adjusted_op0, const1_rtx);
4349 emit_jump_insn (gen_jump (label4));
4350 emit_barrier ();
4351 emit_label (label2);
4352 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4353 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4354 quotient, 0, OPTAB_LIB_WIDEN);
4355 if (tem != quotient)
4356 emit_move_insn (quotient, tem);
4357 emit_jump_insn (gen_jump (label5));
4358 emit_barrier ();
4359 emit_label (label3);
4360 expand_dec (adjusted_op0, const1_rtx);
4361 emit_label (label4);
4362 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4363 quotient, 0, OPTAB_LIB_WIDEN);
4364 if (tem != quotient)
4365 emit_move_insn (quotient, tem);
4366 expand_dec (quotient, const1_rtx);
4367 emit_label (label5);
4369 break;
4371 case CEIL_DIV_EXPR:
4372 case CEIL_MOD_EXPR:
4373 if (unsignedp)
4375 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4377 rtx t1, t2, t3;
4378 unsigned HOST_WIDE_INT d = INTVAL (op1);
4379 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4380 build_int_cst (NULL_TREE, floor_log2 (d)),
4381 tquotient, 1);
4382 t2 = expand_binop (compute_mode, and_optab, op0,
4383 GEN_INT (d - 1),
4384 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4385 t3 = gen_reg_rtx (compute_mode);
4386 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4387 compute_mode, 1, 1);
4388 if (t3 == 0)
4390 rtx lab;
4391 lab = gen_label_rtx ();
4392 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4393 expand_inc (t1, const1_rtx);
4394 emit_label (lab);
4395 quotient = t1;
4397 else
4398 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4399 t1, t3),
4400 tquotient);
4401 break;
4404 /* Try using an instruction that produces both the quotient and
4405 remainder, using truncation. We can easily compensate the
4406 quotient or remainder to get ceiling rounding, once we have the
4407 remainder. Notice that we compute also the final remainder
4408 value here, and return the result right away. */
4409 if (target == 0 || GET_MODE (target) != compute_mode)
4410 target = gen_reg_rtx (compute_mode);
4412 if (rem_flag)
4414 remainder = (REG_P (target)
4415 ? target : gen_reg_rtx (compute_mode));
4416 quotient = gen_reg_rtx (compute_mode);
4418 else
4420 quotient = (REG_P (target)
4421 ? target : gen_reg_rtx (compute_mode));
4422 remainder = gen_reg_rtx (compute_mode);
4425 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4426 remainder, 1))
4428 /* This could be computed with a branch-less sequence.
4429 Save that for later. */
4430 rtx label = gen_label_rtx ();
4431 do_cmp_and_jump (remainder, const0_rtx, EQ,
4432 compute_mode, label);
4433 expand_inc (quotient, const1_rtx);
4434 expand_dec (remainder, op1);
4435 emit_label (label);
4436 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4439 /* No luck with division elimination or divmod. Have to do it
4440 by conditionally adjusting op0 *and* the result. */
4442 rtx label1, label2;
4443 rtx adjusted_op0, tem;
4445 quotient = gen_reg_rtx (compute_mode);
4446 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4447 label1 = gen_label_rtx ();
4448 label2 = gen_label_rtx ();
4449 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4450 compute_mode, label1);
4451 emit_move_insn (quotient, const0_rtx);
4452 emit_jump_insn (gen_jump (label2));
4453 emit_barrier ();
4454 emit_label (label1);
4455 expand_dec (adjusted_op0, const1_rtx);
4456 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4457 quotient, 1, OPTAB_LIB_WIDEN);
4458 if (tem != quotient)
4459 emit_move_insn (quotient, tem);
4460 expand_inc (quotient, const1_rtx);
4461 emit_label (label2);
4464 else /* signed */
4466 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4467 && INTVAL (op1) >= 0)
4469 /* This is extremely similar to the code for the unsigned case
4470 above. For 2.7 we should merge these variants, but for
4471 2.6.1 I don't want to touch the code for unsigned since that
4472 get used in C. The signed case will only be used by other
4473 languages (Ada). */
4475 rtx t1, t2, t3;
4476 unsigned HOST_WIDE_INT d = INTVAL (op1);
4477 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4478 build_int_cst (NULL_TREE, floor_log2 (d)),
4479 tquotient, 0);
4480 t2 = expand_binop (compute_mode, and_optab, op0,
4481 GEN_INT (d - 1),
4482 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4483 t3 = gen_reg_rtx (compute_mode);
4484 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4485 compute_mode, 1, 1);
4486 if (t3 == 0)
4488 rtx lab;
4489 lab = gen_label_rtx ();
4490 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4491 expand_inc (t1, const1_rtx);
4492 emit_label (lab);
4493 quotient = t1;
4495 else
4496 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4497 t1, t3),
4498 tquotient);
4499 break;
4502 /* Try using an instruction that produces both the quotient and
4503 remainder, using truncation. We can easily compensate the
4504 quotient or remainder to get ceiling rounding, once we have the
4505 remainder. Notice that we compute also the final remainder
4506 value here, and return the result right away. */
4507 if (target == 0 || GET_MODE (target) != compute_mode)
4508 target = gen_reg_rtx (compute_mode);
4509 if (rem_flag)
4511 remainder= (REG_P (target)
4512 ? target : gen_reg_rtx (compute_mode));
4513 quotient = gen_reg_rtx (compute_mode);
4515 else
4517 quotient = (REG_P (target)
4518 ? target : gen_reg_rtx (compute_mode));
4519 remainder = gen_reg_rtx (compute_mode);
4522 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4523 remainder, 0))
4525 /* This could be computed with a branch-less sequence.
4526 Save that for later. */
4527 rtx tem;
4528 rtx label = gen_label_rtx ();
4529 do_cmp_and_jump (remainder, const0_rtx, EQ,
4530 compute_mode, label);
4531 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4532 NULL_RTX, 0, OPTAB_WIDEN);
4533 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4534 expand_inc (quotient, const1_rtx);
4535 expand_dec (remainder, op1);
4536 emit_label (label);
4537 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4540 /* No luck with division elimination or divmod. Have to do it
4541 by conditionally adjusting op0 *and* the result. */
4543 rtx label1, label2, label3, label4, label5;
4544 rtx adjusted_op0;
4545 rtx tem;
4547 quotient = gen_reg_rtx (compute_mode);
4548 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4549 label1 = gen_label_rtx ();
4550 label2 = gen_label_rtx ();
4551 label3 = gen_label_rtx ();
4552 label4 = gen_label_rtx ();
4553 label5 = gen_label_rtx ();
4554 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4555 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4556 compute_mode, label1);
4557 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4558 quotient, 0, OPTAB_LIB_WIDEN);
4559 if (tem != quotient)
4560 emit_move_insn (quotient, tem);
4561 emit_jump_insn (gen_jump (label5));
4562 emit_barrier ();
4563 emit_label (label1);
4564 expand_dec (adjusted_op0, const1_rtx);
4565 emit_jump_insn (gen_jump (label4));
4566 emit_barrier ();
4567 emit_label (label2);
4568 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4569 compute_mode, label3);
4570 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4571 quotient, 0, OPTAB_LIB_WIDEN);
4572 if (tem != quotient)
4573 emit_move_insn (quotient, tem);
4574 emit_jump_insn (gen_jump (label5));
4575 emit_barrier ();
4576 emit_label (label3);
4577 expand_inc (adjusted_op0, const1_rtx);
4578 emit_label (label4);
4579 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4580 quotient, 0, OPTAB_LIB_WIDEN);
4581 if (tem != quotient)
4582 emit_move_insn (quotient, tem);
4583 expand_inc (quotient, const1_rtx);
4584 emit_label (label5);
4587 break;
4589 case EXACT_DIV_EXPR:
4590 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4592 HOST_WIDE_INT d = INTVAL (op1);
4593 unsigned HOST_WIDE_INT ml;
4594 int pre_shift;
4595 rtx t1;
4597 pre_shift = floor_log2 (d & -d);
4598 ml = invert_mod2n (d >> pre_shift, size);
4599 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4600 build_int_cst (NULL_TREE, pre_shift),
4601 NULL_RTX, unsignedp);
4602 quotient = expand_mult (compute_mode, t1,
4603 gen_int_mode (ml, compute_mode),
4604 NULL_RTX, 1);
4606 insn = get_last_insn ();
4607 set_unique_reg_note (insn,
4608 REG_EQUAL,
4609 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4610 compute_mode,
4611 op0, op1));
4613 break;
4615 case ROUND_DIV_EXPR:
4616 case ROUND_MOD_EXPR:
4617 if (unsignedp)
4619 rtx tem;
4620 rtx label;
4621 label = gen_label_rtx ();
4622 quotient = gen_reg_rtx (compute_mode);
4623 remainder = gen_reg_rtx (compute_mode);
4624 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4626 rtx tem;
4627 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4628 quotient, 1, OPTAB_LIB_WIDEN);
4629 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4630 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4631 remainder, 1, OPTAB_LIB_WIDEN);
4633 tem = plus_constant (op1, -1);
4634 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4635 build_int_cst (NULL_TREE, 1),
4636 NULL_RTX, 1);
4637 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4638 expand_inc (quotient, const1_rtx);
4639 expand_dec (remainder, op1);
4640 emit_label (label);
4642 else
4644 rtx abs_rem, abs_op1, tem, mask;
4645 rtx label;
4646 label = gen_label_rtx ();
4647 quotient = gen_reg_rtx (compute_mode);
4648 remainder = gen_reg_rtx (compute_mode);
4649 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4651 rtx tem;
4652 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4653 quotient, 0, OPTAB_LIB_WIDEN);
4654 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4655 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4656 remainder, 0, OPTAB_LIB_WIDEN);
4658 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4659 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4660 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4661 build_int_cst (NULL_TREE, 1),
4662 NULL_RTX, 1);
4663 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4664 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4665 NULL_RTX, 0, OPTAB_WIDEN);
4666 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4667 build_int_cst (NULL_TREE, size - 1),
4668 NULL_RTX, 0);
4669 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4670 NULL_RTX, 0, OPTAB_WIDEN);
4671 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4672 NULL_RTX, 0, OPTAB_WIDEN);
4673 expand_inc (quotient, tem);
4674 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4675 NULL_RTX, 0, OPTAB_WIDEN);
4676 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4677 NULL_RTX, 0, OPTAB_WIDEN);
4678 expand_dec (remainder, tem);
4679 emit_label (label);
4681 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4683 default:
4684 gcc_unreachable ();
4687 if (quotient == 0)
4689 if (target && GET_MODE (target) != compute_mode)
4690 target = 0;
4692 if (rem_flag)
4694 /* Try to produce the remainder without producing the quotient.
4695 If we seem to have a divmod pattern that does not require widening,
4696 don't try widening here. We should really have a WIDEN argument
4697 to expand_twoval_binop, since what we'd really like to do here is
4698 1) try a mod insn in compute_mode
4699 2) try a divmod insn in compute_mode
4700 3) try a div insn in compute_mode and multiply-subtract to get
4701 remainder
4702 4) try the same things with widening allowed. */
4703 remainder
4704 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4705 op0, op1, target,
4706 unsignedp,
4707 ((optab_handler (optab2, compute_mode)->insn_code
4708 != CODE_FOR_nothing)
4709 ? OPTAB_DIRECT : OPTAB_WIDEN));
4710 if (remainder == 0)
4712 /* No luck there. Can we do remainder and divide at once
4713 without a library call? */
4714 remainder = gen_reg_rtx (compute_mode);
4715 if (! expand_twoval_binop ((unsignedp
4716 ? udivmod_optab
4717 : sdivmod_optab),
4718 op0, op1,
4719 NULL_RTX, remainder, unsignedp))
4720 remainder = 0;
4723 if (remainder)
4724 return gen_lowpart (mode, remainder);
4727 /* Produce the quotient. Try a quotient insn, but not a library call.
4728 If we have a divmod in this mode, use it in preference to widening
4729 the div (for this test we assume it will not fail). Note that optab2
4730 is set to the one of the two optabs that the call below will use. */
4731 quotient
4732 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4733 op0, op1, rem_flag ? NULL_RTX : target,
4734 unsignedp,
4735 ((optab_handler (optab2, compute_mode)->insn_code
4736 != CODE_FOR_nothing)
4737 ? OPTAB_DIRECT : OPTAB_WIDEN));
4739 if (quotient == 0)
4741 /* No luck there. Try a quotient-and-remainder insn,
4742 keeping the quotient alone. */
4743 quotient = gen_reg_rtx (compute_mode);
4744 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4745 op0, op1,
4746 quotient, NULL_RTX, unsignedp))
4748 quotient = 0;
4749 if (! rem_flag)
4750 /* Still no luck. If we are not computing the remainder,
4751 use a library call for the quotient. */
4752 quotient = sign_expand_binop (compute_mode,
4753 udiv_optab, sdiv_optab,
4754 op0, op1, target,
4755 unsignedp, OPTAB_LIB_WIDEN);
4760 if (rem_flag)
4762 if (target && GET_MODE (target) != compute_mode)
4763 target = 0;
4765 if (quotient == 0)
4767 /* No divide instruction either. Use library for remainder. */
4768 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4769 op0, op1, target,
4770 unsignedp, OPTAB_LIB_WIDEN);
4771 /* No remainder function. Try a quotient-and-remainder
4772 function, keeping the remainder. */
4773 if (!remainder)
4775 remainder = gen_reg_rtx (compute_mode);
4776 if (!expand_twoval_binop_libfunc
4777 (unsignedp ? udivmod_optab : sdivmod_optab,
4778 op0, op1,
4779 NULL_RTX, remainder,
4780 unsignedp ? UMOD : MOD))
4781 remainder = NULL_RTX;
4784 else
4786 /* We divided. Now finish doing X - Y * (X / Y). */
4787 remainder = expand_mult (compute_mode, quotient, op1,
4788 NULL_RTX, unsignedp);
4789 remainder = expand_binop (compute_mode, sub_optab, op0,
4790 remainder, target, unsignedp,
4791 OPTAB_LIB_WIDEN);
4795 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4798 /* Return a tree node with data type TYPE, describing the value of X.
4799 Usually this is an VAR_DECL, if there is no obvious better choice.
4800 X may be an expression, however we only support those expressions
4801 generated by loop.c. */
4803 tree
4804 make_tree (tree type, rtx x)
4806 tree t;
4808 switch (GET_CODE (x))
4810 case CONST_INT:
4812 HOST_WIDE_INT hi = 0;
4814 if (INTVAL (x) < 0
4815 && !(TYPE_UNSIGNED (type)
4816 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4817 < HOST_BITS_PER_WIDE_INT)))
4818 hi = -1;
4820 t = build_int_cst_wide (type, INTVAL (x), hi);
4822 return t;
4825 case CONST_DOUBLE:
4826 if (GET_MODE (x) == VOIDmode)
4827 t = build_int_cst_wide (type,
4828 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4829 else
4831 REAL_VALUE_TYPE d;
4833 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4834 t = build_real (type, d);
4837 return t;
4839 case CONST_VECTOR:
4841 int units = CONST_VECTOR_NUNITS (x);
4842 tree itype = TREE_TYPE (type);
4843 tree t = NULL_TREE;
4844 int i;
4847 /* Build a tree with vector elements. */
4848 for (i = units - 1; i >= 0; --i)
4850 rtx elt = CONST_VECTOR_ELT (x, i);
4851 t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
4854 return build_vector (type, t);
4857 case PLUS:
4858 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4859 make_tree (type, XEXP (x, 1)));
4861 case MINUS:
4862 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4863 make_tree (type, XEXP (x, 1)));
4865 case NEG:
4866 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
4868 case MULT:
4869 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4870 make_tree (type, XEXP (x, 1)));
4872 case ASHIFT:
4873 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4874 make_tree (type, XEXP (x, 1)));
4876 case LSHIFTRT:
4877 t = unsigned_type_for (type);
4878 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4879 make_tree (t, XEXP (x, 0)),
4880 make_tree (type, XEXP (x, 1))));
4882 case ASHIFTRT:
4883 t = signed_type_for (type);
4884 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4885 make_tree (t, XEXP (x, 0)),
4886 make_tree (type, XEXP (x, 1))));
4888 case DIV:
4889 if (TREE_CODE (type) != REAL_TYPE)
4890 t = signed_type_for (type);
4891 else
4892 t = type;
4894 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4895 make_tree (t, XEXP (x, 0)),
4896 make_tree (t, XEXP (x, 1))));
4897 case UDIV:
4898 t = unsigned_type_for (type);
4899 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4900 make_tree (t, XEXP (x, 0)),
4901 make_tree (t, XEXP (x, 1))));
4903 case SIGN_EXTEND:
4904 case ZERO_EXTEND:
4905 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
4906 GET_CODE (x) == ZERO_EXTEND);
4907 return fold_convert (type, make_tree (t, XEXP (x, 0)));
4909 case CONST:
4910 return make_tree (type, XEXP (x, 0));
4912 case SYMBOL_REF:
4913 t = SYMBOL_REF_DECL (x);
4914 if (t)
4915 return fold_convert (type, build_fold_addr_expr (t));
4916 /* else fall through. */
4918 default:
4919 t = build_decl (VAR_DECL, NULL_TREE, type);
4921 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4922 ptr_mode. So convert. */
4923 if (POINTER_TYPE_P (type))
4924 x = convert_memory_address (TYPE_MODE (type), x);
4926 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4927 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4928 t->decl_with_rtl.rtl = x;
4930 return t;
4934 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
4935 and returning TARGET.
4937 If TARGET is 0, a pseudo-register or constant is returned. */
4940 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
4942 rtx tem = 0;
4944 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
4945 tem = simplify_binary_operation (AND, mode, op0, op1);
4946 if (tem == 0)
4947 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
4949 if (target == 0)
4950 target = tem;
4951 else if (tem != target)
4952 emit_move_insn (target, tem);
4953 return target;
4956 /* Helper function for emit_store_flag. */
4957 static rtx
4958 emit_store_flag_1 (rtx target, rtx subtarget, enum machine_mode mode,
4959 int normalizep)
4961 rtx op0;
4962 enum machine_mode target_mode = GET_MODE (target);
4964 /* If we are converting to a wider mode, first convert to
4965 TARGET_MODE, then normalize. This produces better combining
4966 opportunities on machines that have a SIGN_EXTRACT when we are
4967 testing a single bit. This mostly benefits the 68k.
4969 If STORE_FLAG_VALUE does not have the sign bit set when
4970 interpreted in MODE, we can do this conversion as unsigned, which
4971 is usually more efficient. */
4972 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
4974 convert_move (target, subtarget,
4975 (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4976 && 0 == (STORE_FLAG_VALUE
4977 & ((HOST_WIDE_INT) 1
4978 << (GET_MODE_BITSIZE (mode) -1))));
4979 op0 = target;
4980 mode = target_mode;
4982 else
4983 op0 = subtarget;
4985 /* If we want to keep subexpressions around, don't reuse our last
4986 target. */
4987 if (optimize)
4988 subtarget = 0;
4990 /* Now normalize to the proper value in MODE. Sometimes we don't
4991 have to do anything. */
4992 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
4994 /* STORE_FLAG_VALUE might be the most negative number, so write
4995 the comparison this way to avoid a compiler-time warning. */
4996 else if (- normalizep == STORE_FLAG_VALUE)
4997 op0 = expand_unop (mode, neg_optab, op0, subtarget, 0);
4999 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5000 it hard to use a value of just the sign bit due to ANSI integer
5001 constant typing rules. */
5002 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5003 && (STORE_FLAG_VALUE
5004 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))))
5005 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5006 size_int (GET_MODE_BITSIZE (mode) - 1), subtarget,
5007 normalizep == 1);
5008 else
5010 gcc_assert (STORE_FLAG_VALUE & 1);
5012 op0 = expand_and (mode, op0, const1_rtx, subtarget);
5013 if (normalizep == -1)
5014 op0 = expand_unop (mode, neg_optab, op0, op0, 0);
5017 /* If we were converting to a smaller mode, do the conversion now. */
5018 if (target_mode != mode)
5020 convert_move (target, op0, 0);
5021 return target;
5023 else
5024 return op0;
5027 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5028 and storing in TARGET. Normally return TARGET.
5029 Return 0 if that cannot be done.
5031 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5032 it is VOIDmode, they cannot both be CONST_INT.
5034 UNSIGNEDP is for the case where we have to widen the operands
5035 to perform the operation. It says to use zero-extension.
5037 NORMALIZEP is 1 if we should convert the result to be either zero
5038 or one. Normalize is -1 if we should convert the result to be
5039 either zero or -1. If NORMALIZEP is zero, the result will be left
5040 "raw" out of the scc insn. */
5043 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5044 enum machine_mode mode, int unsignedp, int normalizep)
5046 rtx subtarget;
5047 enum insn_code icode;
5048 enum machine_mode compare_mode;
5049 enum machine_mode target_mode = GET_MODE (target);
5050 rtx tem;
5051 rtx last = get_last_insn ();
5052 rtx pattern, comparison;
5054 if (unsignedp)
5055 code = unsigned_condition (code);
5057 /* If one operand is constant, make it the second one. Only do this
5058 if the other operand is not constant as well. */
5060 if (swap_commutative_operands_p (op0, op1))
5062 tem = op0;
5063 op0 = op1;
5064 op1 = tem;
5065 code = swap_condition (code);
5068 if (mode == VOIDmode)
5069 mode = GET_MODE (op0);
5071 /* For some comparisons with 1 and -1, we can convert this to
5072 comparisons with zero. This will often produce more opportunities for
5073 store-flag insns. */
5075 switch (code)
5077 case LT:
5078 if (op1 == const1_rtx)
5079 op1 = const0_rtx, code = LE;
5080 break;
5081 case LE:
5082 if (op1 == constm1_rtx)
5083 op1 = const0_rtx, code = LT;
5084 break;
5085 case GE:
5086 if (op1 == const1_rtx)
5087 op1 = const0_rtx, code = GT;
5088 break;
5089 case GT:
5090 if (op1 == constm1_rtx)
5091 op1 = const0_rtx, code = GE;
5092 break;
5093 case GEU:
5094 if (op1 == const1_rtx)
5095 op1 = const0_rtx, code = NE;
5096 break;
5097 case LTU:
5098 if (op1 == const1_rtx)
5099 op1 = const0_rtx, code = EQ;
5100 break;
5101 default:
5102 break;
5105 /* If we are comparing a double-word integer with zero or -1, we can
5106 convert the comparison into one involving a single word. */
5107 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5108 && GET_MODE_CLASS (mode) == MODE_INT
5109 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5111 if ((code == EQ || code == NE)
5112 && (op1 == const0_rtx || op1 == constm1_rtx))
5114 rtx op00, op01, op0both;
5116 /* Do a logical OR or AND of the two words and compare the
5117 result. */
5118 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5119 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5120 op0both = expand_binop (word_mode,
5121 op1 == const0_rtx ? ior_optab : and_optab,
5122 op00, op01, NULL_RTX, unsignedp,
5123 OPTAB_DIRECT);
5125 if (op0both != 0)
5126 return emit_store_flag (target, code, op0both, op1, word_mode,
5127 unsignedp, normalizep);
5129 else if ((code == LT || code == GE) && op1 == const0_rtx)
5131 rtx op0h;
5133 /* If testing the sign bit, can just test on high word. */
5134 op0h = simplify_gen_subreg (word_mode, op0, mode,
5135 subreg_highpart_offset (word_mode,
5136 mode));
5137 return emit_store_flag (target, code, op0h, op1, word_mode,
5138 unsignedp, normalizep);
5142 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5143 complement of A (for GE) and shifting the sign bit to the low bit. */
5144 if (op1 == const0_rtx && (code == LT || code == GE)
5145 && GET_MODE_CLASS (mode) == MODE_INT
5146 && (normalizep || STORE_FLAG_VALUE == 1
5147 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5148 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5149 == ((unsigned HOST_WIDE_INT) 1
5150 << (GET_MODE_BITSIZE (mode) - 1))))))
5152 subtarget = target;
5154 /* If the result is to be wider than OP0, it is best to convert it
5155 first. If it is to be narrower, it is *incorrect* to convert it
5156 first. */
5157 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5159 op0 = convert_modes (target_mode, mode, op0, 0);
5160 mode = target_mode;
5163 if (target_mode != mode)
5164 subtarget = 0;
5166 if (code == GE)
5167 op0 = expand_unop (mode, one_cmpl_optab, op0,
5168 ((STORE_FLAG_VALUE == 1 || normalizep)
5169 ? 0 : subtarget), 0);
5171 if (STORE_FLAG_VALUE == 1 || normalizep)
5172 /* If we are supposed to produce a 0/1 value, we want to do
5173 a logical shift from the sign bit to the low-order bit; for
5174 a -1/0 value, we do an arithmetic shift. */
5175 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5176 size_int (GET_MODE_BITSIZE (mode) - 1),
5177 subtarget, normalizep != -1);
5179 if (mode != target_mode)
5180 op0 = convert_modes (target_mode, mode, op0, 0);
5182 return op0;
5185 icode = setcc_gen_code[(int) code];
5187 if (icode != CODE_FOR_nothing)
5189 insn_operand_predicate_fn pred;
5191 /* We think we may be able to do this with a scc insn. Emit the
5192 comparison and then the scc insn. */
5194 do_pending_stack_adjust ();
5195 last = get_last_insn ();
5197 comparison
5198 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5199 if (CONSTANT_P (comparison))
5201 switch (GET_CODE (comparison))
5203 case CONST_INT:
5204 if (comparison == const0_rtx)
5205 return const0_rtx;
5206 break;
5208 #ifdef FLOAT_STORE_FLAG_VALUE
5209 case CONST_DOUBLE:
5210 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5211 return const0_rtx;
5212 break;
5213 #endif
5214 default:
5215 gcc_unreachable ();
5218 if (normalizep == 1)
5219 return const1_rtx;
5220 if (normalizep == -1)
5221 return constm1_rtx;
5222 return const_true_rtx;
5225 /* The code of COMPARISON may not match CODE if compare_from_rtx
5226 decided to swap its operands and reverse the original code.
5228 We know that compare_from_rtx returns either a CONST_INT or
5229 a new comparison code, so it is safe to just extract the
5230 code from COMPARISON. */
5231 code = GET_CODE (comparison);
5233 /* Get a reference to the target in the proper mode for this insn. */
5234 compare_mode = insn_data[(int) icode].operand[0].mode;
5235 subtarget = target;
5236 pred = insn_data[(int) icode].operand[0].predicate;
5237 if (optimize || ! (*pred) (subtarget, compare_mode))
5238 subtarget = gen_reg_rtx (compare_mode);
5240 pattern = GEN_FCN (icode) (subtarget);
5241 if (pattern)
5243 emit_insn (pattern);
5244 return emit_store_flag_1 (target, subtarget, compare_mode,
5245 normalizep);
5248 else
5250 /* We don't have an scc insn, so try a cstore insn. */
5252 for (compare_mode = mode; compare_mode != VOIDmode;
5253 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5255 icode = optab_handler (cstore_optab, compare_mode)->insn_code;
5256 if (icode != CODE_FOR_nothing)
5257 break;
5260 if (icode != CODE_FOR_nothing)
5262 enum machine_mode result_mode
5263 = insn_data[(int) icode].operand[0].mode;
5264 rtx cstore_op0 = op0;
5265 rtx cstore_op1 = op1;
5267 do_pending_stack_adjust ();
5268 last = get_last_insn ();
5270 if (compare_mode != mode)
5272 cstore_op0 = convert_modes (compare_mode, mode, cstore_op0,
5273 unsignedp);
5274 cstore_op1 = convert_modes (compare_mode, mode, cstore_op1,
5275 unsignedp);
5278 if (!insn_data[(int) icode].operand[2].predicate (cstore_op0,
5279 compare_mode))
5280 cstore_op0 = copy_to_mode_reg (compare_mode, cstore_op0);
5282 if (!insn_data[(int) icode].operand[3].predicate (cstore_op1,
5283 compare_mode))
5284 cstore_op1 = copy_to_mode_reg (compare_mode, cstore_op1);
5286 comparison = gen_rtx_fmt_ee (code, result_mode, cstore_op0,
5287 cstore_op1);
5288 subtarget = target;
5290 if (optimize || !(insn_data[(int) icode].operand[0].predicate
5291 (subtarget, result_mode)))
5292 subtarget = gen_reg_rtx (result_mode);
5294 pattern = GEN_FCN (icode) (subtarget, comparison, cstore_op0,
5295 cstore_op1);
5297 if (pattern)
5299 emit_insn (pattern);
5300 return emit_store_flag_1 (target, subtarget, result_mode,
5301 normalizep);
5306 delete_insns_since (last);
5308 /* If optimizing, use different pseudo registers for each insn, instead
5309 of reusing the same pseudo. This leads to better CSE, but slows
5310 down the compiler, since there are more pseudos */
5311 subtarget = (!optimize
5312 && (target_mode == mode)) ? target : NULL_RTX;
5314 /* If we reached here, we can't do this with a scc insn. However, there
5315 are some comparisons that can be done directly. For example, if
5316 this is an equality comparison of integers, we can try to exclusive-or
5317 (or subtract) the two operands and use a recursive call to try the
5318 comparison with zero. Don't do any of these cases if branches are
5319 very cheap. */
5321 if (BRANCH_COST > 0
5322 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5323 && op1 != const0_rtx)
5325 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5326 OPTAB_WIDEN);
5328 if (tem == 0)
5329 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5330 OPTAB_WIDEN);
5331 if (tem != 0)
5332 tem = emit_store_flag (target, code, tem, const0_rtx,
5333 mode, unsignedp, normalizep);
5334 if (tem == 0)
5335 delete_insns_since (last);
5336 return tem;
5339 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5340 the constant zero. Reject all other comparisons at this point. Only
5341 do LE and GT if branches are expensive since they are expensive on
5342 2-operand machines. */
5344 if (BRANCH_COST == 0
5345 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5346 || (code != EQ && code != NE
5347 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5348 return 0;
5350 /* See what we need to return. We can only return a 1, -1, or the
5351 sign bit. */
5353 if (normalizep == 0)
5355 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5356 normalizep = STORE_FLAG_VALUE;
5358 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5359 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5360 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5362 else
5363 return 0;
5366 /* Try to put the result of the comparison in the sign bit. Assume we can't
5367 do the necessary operation below. */
5369 tem = 0;
5371 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5372 the sign bit set. */
5374 if (code == LE)
5376 /* This is destructive, so SUBTARGET can't be OP0. */
5377 if (rtx_equal_p (subtarget, op0))
5378 subtarget = 0;
5380 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5381 OPTAB_WIDEN);
5382 if (tem)
5383 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5384 OPTAB_WIDEN);
5387 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5388 number of bits in the mode of OP0, minus one. */
5390 if (code == GT)
5392 if (rtx_equal_p (subtarget, op0))
5393 subtarget = 0;
5395 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5396 size_int (GET_MODE_BITSIZE (mode) - 1),
5397 subtarget, 0);
5398 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5399 OPTAB_WIDEN);
5402 if (code == EQ || code == NE)
5404 /* For EQ or NE, one way to do the comparison is to apply an operation
5405 that converts the operand into a positive number if it is nonzero
5406 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5407 for NE we negate. This puts the result in the sign bit. Then we
5408 normalize with a shift, if needed.
5410 Two operations that can do the above actions are ABS and FFS, so try
5411 them. If that doesn't work, and MODE is smaller than a full word,
5412 we can use zero-extension to the wider mode (an unsigned conversion)
5413 as the operation. */
5415 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5416 that is compensated by the subsequent overflow when subtracting
5417 one / negating. */
5419 if (optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)
5420 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5421 else if (optab_handler (ffs_optab, mode)->insn_code != CODE_FOR_nothing)
5422 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5423 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5425 tem = convert_modes (word_mode, mode, op0, 1);
5426 mode = word_mode;
5429 if (tem != 0)
5431 if (code == EQ)
5432 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5433 0, OPTAB_WIDEN);
5434 else
5435 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5438 /* If we couldn't do it that way, for NE we can "or" the two's complement
5439 of the value with itself. For EQ, we take the one's complement of
5440 that "or", which is an extra insn, so we only handle EQ if branches
5441 are expensive. */
5443 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5445 if (rtx_equal_p (subtarget, op0))
5446 subtarget = 0;
5448 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5449 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5450 OPTAB_WIDEN);
5452 if (tem && code == EQ)
5453 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5457 if (tem && normalizep)
5458 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5459 size_int (GET_MODE_BITSIZE (mode) - 1),
5460 subtarget, normalizep == 1);
5462 if (tem)
5464 if (GET_MODE (tem) != target_mode)
5466 convert_move (target, tem, 0);
5467 tem = target;
5469 else if (!subtarget)
5471 emit_move_insn (target, tem);
5472 tem = target;
5475 else
5476 delete_insns_since (last);
5478 return tem;
5481 /* Like emit_store_flag, but always succeeds. */
5484 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5485 enum machine_mode mode, int unsignedp, int normalizep)
5487 rtx tem, label;
5489 /* First see if emit_store_flag can do the job. */
5490 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5491 if (tem != 0)
5492 return tem;
5494 if (normalizep == 0)
5495 normalizep = 1;
5497 /* If this failed, we have to do this with set/compare/jump/set code. */
5499 if (!REG_P (target)
5500 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5501 target = gen_reg_rtx (GET_MODE (target));
5503 emit_move_insn (target, const1_rtx);
5504 label = gen_label_rtx ();
5505 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5506 NULL_RTX, label);
5508 emit_move_insn (target, const0_rtx);
5509 emit_label (label);
5511 return target;
5514 /* Perform possibly multi-word comparison and conditional jump to LABEL
5515 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5516 now a thin wrapper around do_compare_rtx_and_jump. */
5518 static void
5519 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5520 rtx label)
5522 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5523 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5524 NULL_RTX, NULL_RTX, label);