1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
27 #include <isl/union_map.h>
28 #include <cloog/cloog.h>
29 #include <cloog/isl/domain.h>
33 #include "coretypes.h"
34 #include "tree-flow.h"
36 #include "tree-chrec.h"
37 #include "tree-data-ref.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-pass.h"
43 #include "graphite-poly.h"
44 #include "graphite-scop-detection.h"
46 /* Forward declarations. */
47 static void make_close_phi_nodes_unique (basic_block
);
49 /* The type of the analyzed basic block. */
51 typedef enum gbb_type
{
53 GBB_LOOP_SING_EXIT_HEADER
,
54 GBB_LOOP_MULT_EXIT_HEADER
,
61 /* Detect the type of BB. Loop headers are only marked, if they are
62 new. This means their loop_father is different to LAST_LOOP.
63 Otherwise they are treated like any other bb and their type can be
67 get_bb_type (basic_block bb
, struct loop
*last_loop
)
69 VEC (basic_block
, heap
) *dom
;
71 struct loop
*loop
= bb
->loop_father
;
73 /* Check, if we entry into a new loop. */
74 if (loop
!= last_loop
)
76 if (single_exit (loop
) != NULL
)
77 return GBB_LOOP_SING_EXIT_HEADER
;
78 else if (loop
->num
!= 0)
79 return GBB_LOOP_MULT_EXIT_HEADER
;
81 return GBB_COND_HEADER
;
84 dom
= get_dominated_by (CDI_DOMINATORS
, bb
);
85 nb_dom
= VEC_length (basic_block
, dom
);
86 VEC_free (basic_block
, heap
, dom
);
91 if (nb_dom
== 1 && single_succ_p (bb
))
94 return GBB_COND_HEADER
;
97 /* A SCoP detection region, defined using bbs as borders.
99 All control flow touching this region, comes in passing basic_block
100 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
101 edges for the borders we are able to represent also regions that do
102 not have a single entry or exit edge.
104 But as they have a single entry basic_block and a single exit
105 basic_block, we are able to generate for every sd_region a single
113 / \ This region contains: {3, 4, 5, 6, 7, 8}
121 typedef struct sd_region_p
123 /* The entry bb dominates all bbs in the sd_region. It is part of
127 /* The exit bb postdominates all bbs in the sd_region, but is not
128 part of the region. */
132 DEF_VEC_O(sd_region
);
133 DEF_VEC_ALLOC_O(sd_region
, heap
);
136 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
139 move_sd_regions (VEC (sd_region
, heap
) **source
,
140 VEC (sd_region
, heap
) **target
)
145 FOR_EACH_VEC_ELT (sd_region
, *source
, i
, s
)
146 VEC_safe_push (sd_region
, heap
, *target
, *s
);
148 VEC_free (sd_region
, heap
, *source
);
151 /* Something like "n * m" is not allowed. */
154 graphite_can_represent_init (tree e
)
156 switch (TREE_CODE (e
))
158 case POLYNOMIAL_CHREC
:
159 return graphite_can_represent_init (CHREC_LEFT (e
))
160 && graphite_can_represent_init (CHREC_RIGHT (e
));
163 if (chrec_contains_symbols (TREE_OPERAND (e
, 0)))
164 return graphite_can_represent_init (TREE_OPERAND (e
, 0))
165 && host_integerp (TREE_OPERAND (e
, 1), 0);
167 return graphite_can_represent_init (TREE_OPERAND (e
, 1))
168 && host_integerp (TREE_OPERAND (e
, 0), 0);
171 case POINTER_PLUS_EXPR
:
173 return graphite_can_represent_init (TREE_OPERAND (e
, 0))
174 && graphite_can_represent_init (TREE_OPERAND (e
, 1));
179 case NON_LVALUE_EXPR
:
180 return graphite_can_represent_init (TREE_OPERAND (e
, 0));
189 /* Return true when SCEV can be represented in the polyhedral model.
191 An expression can be represented, if it can be expressed as an
192 affine expression. For loops (i, j) and parameters (m, n) all
193 affine expressions are of the form:
195 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
197 1 i + 20 j + (-2) m + 25
199 Something like "i * n" or "n * m" is not allowed. */
202 graphite_can_represent_scev (tree scev
)
204 if (chrec_contains_undetermined (scev
))
207 switch (TREE_CODE (scev
))
211 return graphite_can_represent_scev (TREE_OPERAND (scev
, 0))
212 && graphite_can_represent_scev (TREE_OPERAND (scev
, 1));
215 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev
, 0)))
216 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev
, 1)))
217 && !(chrec_contains_symbols (TREE_OPERAND (scev
, 0))
218 && chrec_contains_symbols (TREE_OPERAND (scev
, 1)))
219 && graphite_can_represent_init (scev
)
220 && graphite_can_represent_scev (TREE_OPERAND (scev
, 0))
221 && graphite_can_represent_scev (TREE_OPERAND (scev
, 1));
223 case POLYNOMIAL_CHREC
:
224 /* Check for constant strides. With a non constant stride of
225 'n' we would have a value of 'iv * n'. Also check that the
226 initial value can represented: for example 'n * m' cannot be
228 if (!evolution_function_right_is_integer_cst (scev
)
229 || !graphite_can_represent_init (scev
))
236 /* Only affine functions can be represented. */
237 if (!scev_is_linear_expression (scev
))
244 /* Return true when EXPR can be represented in the polyhedral model.
246 This means an expression can be represented, if it is linear with
247 respect to the loops and the strides are non parametric.
248 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
249 entry of the region we analyse. */
252 graphite_can_represent_expr (basic_block scop_entry
, loop_p loop
,
255 tree scev
= analyze_scalar_evolution (loop
, expr
);
257 scev
= instantiate_scev (scop_entry
, loop
, scev
);
259 return graphite_can_represent_scev (scev
);
262 /* Return true if the data references of STMT can be represented by
266 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED
,
273 VEC (data_reference_p
, heap
) *drs
= NULL
;
276 for (outer
= loop_containing_stmt (stmt
); outer
; outer
= loop_outer (outer
))
278 graphite_find_data_references_in_stmt (outer
,
279 loop_containing_stmt (stmt
),
282 FOR_EACH_VEC_ELT (data_reference_p
, drs
, j
, dr
)
283 for (i
= 0; i
< DR_NUM_DIMENSIONS (dr
); i
++)
284 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr
, i
)))
290 free_data_refs (drs
);
295 free_data_refs (drs
);
299 /* Return true only when STMT is simple enough for being handled by
300 Graphite. This depends on SCOP_ENTRY, as the parameters are
301 initialized relatively to this basic block, the linear functions
302 are initialized to OUTERMOST_LOOP and BB is the place where we try
303 to evaluate the STMT. */
306 stmt_simple_for_scop_p (basic_block scop_entry
, loop_p outermost_loop
,
307 gimple stmt
, basic_block bb
)
309 loop_p loop
= bb
->loop_father
;
311 gcc_assert (scop_entry
);
313 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
314 Calls have side-effects, except those to const or pure
316 if (gimple_has_volatile_ops (stmt
)
317 || (gimple_code (stmt
) == GIMPLE_CALL
318 && !(gimple_call_flags (stmt
) & (ECF_CONST
| ECF_PURE
)))
319 || (gimple_code (stmt
) == GIMPLE_ASM
))
322 if (is_gimple_debug (stmt
))
325 if (!stmt_has_simple_data_refs_p (outermost_loop
, stmt
))
328 switch (gimple_code (stmt
))
338 enum tree_code code
= gimple_cond_code (stmt
);
340 /* We can handle all binary comparisons. Inequalities are
341 also supported as they can be represented with union of
343 if (!(code
== LT_EXPR
351 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, op_iter
, SSA_OP_ALL_USES
)
352 if (!graphite_can_represent_expr (scop_entry
, loop
, op
)
353 /* We can not handle REAL_TYPE. Failed for pr39260. */
354 || TREE_CODE (TREE_TYPE (op
)) == REAL_TYPE
)
365 /* These nodes cut a new scope. */
372 /* Returns the statement of BB that contains a harmful operation: that
373 can be a function call with side effects, the induction variables
374 are not linear with respect to SCOP_ENTRY, etc. The current open
375 scop should end before this statement. The evaluation is limited using
376 OUTERMOST_LOOP as outermost loop that may change. */
379 harmful_stmt_in_bb (basic_block scop_entry
, loop_p outer_loop
, basic_block bb
)
381 gimple_stmt_iterator gsi
;
383 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
384 if (!stmt_simple_for_scop_p (scop_entry
, outer_loop
, gsi_stmt (gsi
), bb
))
385 return gsi_stmt (gsi
);
390 /* Return true if LOOP can be represented in the polyhedral
391 representation. This is evaluated taking SCOP_ENTRY and
392 OUTERMOST_LOOP in mind. */
395 graphite_can_represent_loop (basic_block scop_entry
, loop_p loop
)
398 struct tree_niter_desc niter_desc
;
400 /* FIXME: For the moment, graphite cannot be used on loops that
401 iterate using induction variables that wrap. */
403 return number_of_iterations_exit (loop
, single_exit (loop
), &niter_desc
, false)
404 && niter_desc
.control
.no_overflow
405 && (niter
= number_of_latch_executions (loop
))
406 && !chrec_contains_undetermined (niter
)
407 && graphite_can_represent_expr (scop_entry
, loop
, niter
);
410 /* Store information needed by scopdet_* functions. */
414 /* Exit of the open scop would stop if the current BB is harmful. */
417 /* Where the next scop would start if the current BB is harmful. */
420 /* The bb or one of its children contains open loop exits. That means
421 loop exit nodes that are not surrounded by a loop dominated by bb. */
424 /* The bb or one of its children contains only structures we can handle. */
428 static struct scopdet_info
build_scops_1 (basic_block
, loop_p
,
429 VEC (sd_region
, heap
) **, loop_p
);
431 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
432 to SCOPS. TYPE is the gbb_type of BB. */
434 static struct scopdet_info
435 scopdet_basic_block_info (basic_block bb
, loop_p outermost_loop
,
436 VEC (sd_region
, heap
) **scops
, gbb_type type
)
438 loop_p loop
= bb
->loop_father
;
439 struct scopdet_info result
;
442 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
443 basic_block entry_block
= ENTRY_BLOCK_PTR
;
444 stmt
= harmful_stmt_in_bb (entry_block
, outermost_loop
, bb
);
445 result
.difficult
= (stmt
!= NULL
);
452 result
.exits
= false;
454 /* Mark bbs terminating a SESE region difficult, if they start
456 if (!single_succ_p (bb
))
457 result
.difficult
= true;
459 result
.exit
= single_succ (bb
);
464 result
.next
= single_succ (bb
);
465 result
.exits
= false;
466 result
.exit
= single_succ (bb
);
469 case GBB_LOOP_SING_EXIT_HEADER
:
471 VEC (sd_region
, heap
) *regions
= VEC_alloc (sd_region
, heap
, 3);
472 struct scopdet_info sinfo
;
473 edge exit_e
= single_exit (loop
);
475 sinfo
= build_scops_1 (bb
, outermost_loop
, ®ions
, loop
);
477 if (!graphite_can_represent_loop (entry_block
, loop
))
478 result
.difficult
= true;
480 result
.difficult
|= sinfo
.difficult
;
482 /* Try again with another loop level. */
484 && loop_depth (outermost_loop
) + 1 == loop_depth (loop
))
486 outermost_loop
= loop
;
488 VEC_free (sd_region
, heap
, regions
);
489 regions
= VEC_alloc (sd_region
, heap
, 3);
491 sinfo
= scopdet_basic_block_info (bb
, outermost_loop
, scops
, type
);
494 result
.difficult
= true;
497 move_sd_regions (®ions
, scops
);
501 open_scop
.entry
= bb
;
502 open_scop
.exit
= exit_e
->dest
;
503 VEC_safe_push (sd_region
, heap
, *scops
, open_scop
);
504 VEC_free (sd_region
, heap
, regions
);
509 result
.exit
= exit_e
->dest
;
510 result
.next
= exit_e
->dest
;
512 /* If we do not dominate result.next, remove it. It's either
513 the EXIT_BLOCK_PTR, or another bb dominates it and will
514 call the scop detection for this bb. */
515 if (!dominated_by_p (CDI_DOMINATORS
, result
.next
, bb
))
518 if (exit_e
->src
->loop_father
!= loop
)
521 result
.exits
= false;
523 if (result
.difficult
)
524 move_sd_regions (®ions
, scops
);
526 VEC_free (sd_region
, heap
, regions
);
532 case GBB_LOOP_MULT_EXIT_HEADER
:
534 /* XXX: For now we just do not join loops with multiple exits. If the
535 exits lead to the same bb it may be possible to join the loop. */
536 VEC (sd_region
, heap
) *regions
= VEC_alloc (sd_region
, heap
, 3);
537 VEC (edge
, heap
) *exits
= get_loop_exit_edges (loop
);
540 build_scops_1 (bb
, loop
, ®ions
, loop
);
542 /* Scan the code dominated by this loop. This means all bbs, that are
543 are dominated by a bb in this loop, but are not part of this loop.
546 - The loop exit destination is dominated by the exit sources.
548 TODO: We miss here the more complex cases:
549 - The exit destinations are dominated by another bb inside
551 - The loop dominates bbs, that are not exit destinations. */
552 FOR_EACH_VEC_ELT (edge
, exits
, i
, e
)
553 if (e
->src
->loop_father
== loop
554 && dominated_by_p (CDI_DOMINATORS
, e
->dest
, e
->src
))
556 if (loop_outer (outermost_loop
))
557 outermost_loop
= loop_outer (outermost_loop
);
559 /* Pass loop_outer to recognize e->dest as loop header in
561 if (e
->dest
->loop_father
->header
== e
->dest
)
562 build_scops_1 (e
->dest
, outermost_loop
, ®ions
,
563 loop_outer (e
->dest
->loop_father
));
565 build_scops_1 (e
->dest
, outermost_loop
, ®ions
,
566 e
->dest
->loop_father
);
571 result
.difficult
= true;
572 result
.exits
= false;
573 move_sd_regions (®ions
, scops
);
574 VEC_free (edge
, heap
, exits
);
577 case GBB_COND_HEADER
:
579 VEC (sd_region
, heap
) *regions
= VEC_alloc (sd_region
, heap
, 3);
580 struct scopdet_info sinfo
;
581 VEC (basic_block
, heap
) *dominated
;
584 basic_block last_exit
= NULL
;
586 result
.exits
= false;
588 /* First check the successors of BB, and check if it is
589 possible to join the different branches. */
590 FOR_EACH_VEC_ELT (edge
, bb
->succs
, i
, e
)
592 /* Ignore loop exits. They will be handled after the loop
594 if (loop_exits_to_bb_p (loop
, e
->dest
))
600 /* Do not follow edges that lead to the end of the
601 conditions block. For example, in
611 the edge from 0 => 6. Only check if all paths lead to
614 if (!single_pred_p (e
->dest
))
616 /* Check, if edge leads directly to the end of this
621 if (e
->dest
!= last_exit
)
622 result
.difficult
= true;
627 if (!dominated_by_p (CDI_DOMINATORS
, e
->dest
, bb
))
629 result
.difficult
= true;
633 sinfo
= build_scops_1 (e
->dest
, outermost_loop
, ®ions
, loop
);
635 result
.exits
|= sinfo
.exits
;
636 result
.difficult
|= sinfo
.difficult
;
638 /* Checks, if all branches end at the same point.
639 If that is true, the condition stays joinable.
640 Have a look at the example above. */
644 last_exit
= sinfo
.exit
;
646 if (sinfo
.exit
!= last_exit
)
647 result
.difficult
= true;
650 result
.difficult
= true;
654 result
.difficult
= true;
656 /* Join the branches of the condition if possible. */
657 if (!result
.exits
&& !result
.difficult
)
659 /* Only return a next pointer if we dominate this pointer.
660 Otherwise it will be handled by the bb dominating it. */
661 if (dominated_by_p (CDI_DOMINATORS
, last_exit
, bb
)
663 result
.next
= last_exit
;
667 result
.exit
= last_exit
;
669 VEC_free (sd_region
, heap
, regions
);
673 /* Scan remaining bbs dominated by BB. */
674 dominated
= get_dominated_by (CDI_DOMINATORS
, bb
);
676 FOR_EACH_VEC_ELT (basic_block
, dominated
, i
, dom_bb
)
678 /* Ignore loop exits: they will be handled after the loop body. */
679 if (loop_depth (find_common_loop (loop
, dom_bb
->loop_father
))
686 /* Ignore the bbs processed above. */
687 if (single_pred_p (dom_bb
) && single_pred (dom_bb
) == bb
)
690 if (loop_depth (loop
) > loop_depth (dom_bb
->loop_father
))
691 sinfo
= build_scops_1 (dom_bb
, outermost_loop
, ®ions
,
694 sinfo
= build_scops_1 (dom_bb
, outermost_loop
, ®ions
, loop
);
696 result
.exits
|= sinfo
.exits
;
697 result
.difficult
= true;
701 VEC_free (basic_block
, heap
, dominated
);
704 move_sd_regions (®ions
, scops
);
716 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
717 SCOPS. The analyse if a sd_region can be handled is based on the value
718 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
719 is the loop in which CURRENT is handled.
721 TODO: These functions got a little bit big. They definitely should be cleaned
724 static struct scopdet_info
725 build_scops_1 (basic_block current
, loop_p outermost_loop
,
726 VEC (sd_region
, heap
) **scops
, loop_p loop
)
728 bool in_scop
= false;
730 struct scopdet_info sinfo
;
732 /* Initialize result. */
733 struct scopdet_info result
;
734 result
.exits
= false;
735 result
.difficult
= false;
738 open_scop
.entry
= NULL
;
739 open_scop
.exit
= NULL
;
742 /* Loop over the dominance tree. If we meet a difficult bb, close
743 the current SCoP. Loop and condition header start a new layer,
744 and can only be added if all bbs in deeper layers are simple. */
745 while (current
!= NULL
)
747 sinfo
= scopdet_basic_block_info (current
, outermost_loop
, scops
,
748 get_bb_type (current
, loop
));
750 if (!in_scop
&& !(sinfo
.exits
|| sinfo
.difficult
))
752 open_scop
.entry
= current
;
753 open_scop
.exit
= NULL
;
756 else if (in_scop
&& (sinfo
.exits
|| sinfo
.difficult
))
758 open_scop
.exit
= current
;
759 VEC_safe_push (sd_region
, heap
, *scops
, open_scop
);
763 result
.difficult
|= sinfo
.difficult
;
764 result
.exits
|= sinfo
.exits
;
766 current
= sinfo
.next
;
769 /* Try to close open_scop, if we are still in an open SCoP. */
772 open_scop
.exit
= sinfo
.exit
;
773 gcc_assert (open_scop
.exit
);
774 VEC_safe_push (sd_region
, heap
, *scops
, open_scop
);
777 result
.exit
= sinfo
.exit
;
781 /* Checks if a bb is contained in REGION. */
784 bb_in_sd_region (basic_block bb
, sd_region
*region
)
786 return bb_in_region (bb
, region
->entry
, region
->exit
);
789 /* Returns the single entry edge of REGION, if it does not exits NULL. */
792 find_single_entry_edge (sd_region
*region
)
798 FOR_EACH_EDGE (e
, ei
, region
->entry
->preds
)
799 if (!bb_in_sd_region (e
->src
, region
))
814 /* Returns the single exit edge of REGION, if it does not exits NULL. */
817 find_single_exit_edge (sd_region
*region
)
823 FOR_EACH_EDGE (e
, ei
, region
->exit
->preds
)
824 if (bb_in_sd_region (e
->src
, region
))
839 /* Create a single entry edge for REGION. */
842 create_single_entry_edge (sd_region
*region
)
844 if (find_single_entry_edge (region
))
847 /* There are multiple predecessors for bb_3
860 There are two edges (1->3, 2->3), that point from outside into the region,
861 and another one (5->3), a loop latch, lead to bb_3.
869 | |\ (3.0 -> 3.1) = single entry edge
878 If the loop is part of the SCoP, we have to redirect the loop latches.
884 | | (3.0 -> 3.1) = entry edge
893 if (region
->entry
->loop_father
->header
!= region
->entry
894 || dominated_by_p (CDI_DOMINATORS
,
895 loop_latch_edge (region
->entry
->loop_father
)->src
,
898 edge forwarder
= split_block_after_labels (region
->entry
);
899 region
->entry
= forwarder
->dest
;
902 /* This case is never executed, as the loop headers seem always to have a
903 single edge pointing from outside into the loop. */
906 gcc_checking_assert (find_single_entry_edge (region
));
909 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
912 sd_region_without_exit (edge e
)
914 sd_region
*r
= (sd_region
*) e
->aux
;
917 return r
->exit
== NULL
;
922 /* Create a single exit edge for REGION. */
925 create_single_exit_edge (sd_region
*region
)
929 edge forwarder
= NULL
;
932 /* We create a forwarder bb (5) for all edges leaving this region
933 (3->5, 4->5). All other edges leading to the same bb, are moved
934 to a new bb (6). If these edges where part of another region (2->5)
935 we update the region->exit pointer, of this region.
937 To identify which edge belongs to which region we depend on the e->aux
938 pointer in every edge. It points to the region of the edge or to NULL,
939 if the edge is not part of any region.
941 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
942 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
947 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
948 | | \/ 3->5 no region, 4->5 no region,
950 \| / 5->6 region->exit = 6
953 Now there is only a single exit edge (5->6). */
956 forwarder
= make_forwarder_block (exit
, &sd_region_without_exit
, NULL
);
958 /* Unmark the edges, that are no longer exit edges. */
959 FOR_EACH_EDGE (e
, ei
, forwarder
->src
->preds
)
963 /* Mark the new exit edge. */
964 single_succ_edge (forwarder
->src
)->aux
= region
;
966 /* Update the exit bb of all regions, where exit edges lead to
968 FOR_EACH_EDGE (e
, ei
, forwarder
->dest
->preds
)
970 ((sd_region
*) e
->aux
)->exit
= forwarder
->dest
;
972 gcc_checking_assert (find_single_exit_edge (region
));
975 /* Unmark the exit edges of all REGIONS.
976 See comment in "create_single_exit_edge". */
979 unmark_exit_edges (VEC (sd_region
, heap
) *regions
)
986 FOR_EACH_VEC_ELT (sd_region
, regions
, i
, s
)
987 FOR_EACH_EDGE (e
, ei
, s
->exit
->preds
)
992 /* Mark the exit edges of all REGIONS.
993 See comment in "create_single_exit_edge". */
996 mark_exit_edges (VEC (sd_region
, heap
) *regions
)
1003 FOR_EACH_VEC_ELT (sd_region
, regions
, i
, s
)
1004 FOR_EACH_EDGE (e
, ei
, s
->exit
->preds
)
1005 if (bb_in_sd_region (e
->src
, s
))
1009 /* Create for all scop regions a single entry and a single exit edge. */
1012 create_sese_edges (VEC (sd_region
, heap
) *regions
)
1017 FOR_EACH_VEC_ELT (sd_region
, regions
, i
, s
)
1018 create_single_entry_edge (s
);
1020 mark_exit_edges (regions
);
1022 FOR_EACH_VEC_ELT (sd_region
, regions
, i
, s
)
1023 /* Don't handle multiple edges exiting the function. */
1024 if (!find_single_exit_edge (s
)
1025 && s
->exit
!= EXIT_BLOCK_PTR
)
1026 create_single_exit_edge (s
);
1028 unmark_exit_edges (regions
);
1030 calculate_dominance_info (CDI_DOMINATORS
);
1031 fix_loop_structure (NULL
);
1033 #ifdef ENABLE_CHECKING
1034 verify_loop_structure ();
1039 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1042 build_graphite_scops (VEC (sd_region
, heap
) *regions
,
1043 VEC (scop_p
, heap
) **scops
)
1048 FOR_EACH_VEC_ELT (sd_region
, regions
, i
, s
)
1050 edge entry
= find_single_entry_edge (s
);
1051 edge exit
= find_single_exit_edge (s
);
1057 scop
= new_scop (new_sese (entry
, exit
));
1058 VEC_safe_push (scop_p
, heap
, *scops
, scop
);
1060 /* Are there overlapping SCoPs? */
1061 #ifdef ENABLE_CHECKING
1066 FOR_EACH_VEC_ELT (sd_region
, regions
, j
, s2
)
1068 gcc_assert (!bb_in_sd_region (s
->entry
, s2
));
1074 /* Returns true when BB contains only close phi nodes. */
1077 contains_only_close_phi_nodes (basic_block bb
)
1079 gimple_stmt_iterator gsi
;
1081 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1082 if (gimple_code (gsi_stmt (gsi
)) != GIMPLE_LABEL
)
1088 /* Print statistics for SCOP to FILE. */
1091 print_graphite_scop_statistics (FILE* file
, scop_p scop
)
1096 long n_conditions
= 0;
1100 long n_p_conditions
= 0;
1106 gimple_stmt_iterator psi
;
1107 loop_p loop
= bb
->loop_father
;
1109 if (!bb_in_sese_p (bb
, SCOP_REGION (scop
)))
1113 n_p_bbs
+= bb
->count
;
1115 if (EDGE_COUNT (bb
->succs
) > 1)
1118 n_p_conditions
+= bb
->count
;
1121 for (psi
= gsi_start_bb (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
1124 n_p_stmts
+= bb
->count
;
1127 if (loop
->header
== bb
&& loop_in_sese_p (loop
, SCOP_REGION (scop
)))
1130 n_p_loops
+= bb
->count
;
1135 fprintf (file
, "\nBefore limit_scops SCoP statistics (");
1136 fprintf (file
, "BBS:%ld, ", n_bbs
);
1137 fprintf (file
, "LOOPS:%ld, ", n_loops
);
1138 fprintf (file
, "CONDITIONS:%ld, ", n_conditions
);
1139 fprintf (file
, "STMTS:%ld)\n", n_stmts
);
1140 fprintf (file
, "\nBefore limit_scops SCoP profiling statistics (");
1141 fprintf (file
, "BBS:%ld, ", n_p_bbs
);
1142 fprintf (file
, "LOOPS:%ld, ", n_p_loops
);
1143 fprintf (file
, "CONDITIONS:%ld, ", n_p_conditions
);
1144 fprintf (file
, "STMTS:%ld)\n", n_p_stmts
);
1147 /* Print statistics for SCOPS to FILE. */
1150 print_graphite_statistics (FILE* file
, VEC (scop_p
, heap
) *scops
)
1155 FOR_EACH_VEC_ELT (scop_p
, scops
, i
, scop
)
1156 print_graphite_scop_statistics (file
, scop
);
1159 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1169 * SCoP frontier, as this line is not surrounded by any loop. *
1173 This is necessary as scalar evolution and parameter detection need a
1174 outermost loop to initialize parameters correctly.
1176 TODO: FIX scalar evolution and parameter detection to allow more flexible
1180 limit_scops (VEC (scop_p
, heap
) **scops
)
1182 VEC (sd_region
, heap
) *regions
= VEC_alloc (sd_region
, heap
, 3);
1187 FOR_EACH_VEC_ELT (scop_p
, *scops
, i
, scop
)
1191 sese region
= SCOP_REGION (scop
);
1192 build_sese_loop_nests (region
);
1194 FOR_EACH_VEC_ELT (loop_p
, SESE_LOOP_NEST (region
), j
, loop
)
1195 if (!loop_in_sese_p (loop_outer (loop
), region
)
1196 && single_exit (loop
))
1198 sd_region open_scop
;
1199 open_scop
.entry
= loop
->header
;
1200 open_scop
.exit
= single_exit (loop
)->dest
;
1202 /* This is a hack on top of the limit_scops hack. The
1203 limit_scops hack should disappear all together. */
1204 if (single_succ_p (open_scop
.exit
)
1205 && contains_only_close_phi_nodes (open_scop
.exit
))
1206 open_scop
.exit
= single_succ_edge (open_scop
.exit
)->dest
;
1208 VEC_safe_push (sd_region
, heap
, regions
, open_scop
);
1212 free_scops (*scops
);
1213 *scops
= VEC_alloc (scop_p
, heap
, 3);
1215 create_sese_edges (regions
);
1216 build_graphite_scops (regions
, scops
);
1217 VEC_free (sd_region
, heap
, regions
);
1220 /* Returns true when P1 and P2 are close phis with the same
1224 same_close_phi_node (gimple p1
, gimple p2
)
1226 return operand_equal_p (gimple_phi_arg_def (p1
, 0),
1227 gimple_phi_arg_def (p2
, 0), 0);
1230 /* Remove the close phi node at GSI and replace its rhs with the rhs
1234 remove_duplicate_close_phi (gimple phi
, gimple_stmt_iterator
*gsi
)
1237 use_operand_p use_p
;
1238 imm_use_iterator imm_iter
;
1239 tree res
= gimple_phi_result (phi
);
1240 tree def
= gimple_phi_result (gsi_stmt (*gsi
));
1242 gcc_assert (same_close_phi_node (phi
, gsi_stmt (*gsi
)));
1244 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, def
)
1246 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
1247 SET_USE (use_p
, res
);
1249 update_stmt (use_stmt
);
1251 /* It is possible that we just created a duplicate close-phi
1252 for an already-processed containing loop. Check for this
1253 case and clean it up. */
1254 if (gimple_code (use_stmt
) == GIMPLE_PHI
1255 && gimple_phi_num_args (use_stmt
) == 1)
1256 make_close_phi_nodes_unique (gimple_bb (use_stmt
));
1259 remove_phi_node (gsi
, true);
1262 /* Removes all the close phi duplicates from BB. */
1265 make_close_phi_nodes_unique (basic_block bb
)
1267 gimple_stmt_iterator psi
;
1269 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
1271 gimple_stmt_iterator gsi
= psi
;
1272 gimple phi
= gsi_stmt (psi
);
1274 /* At this point, PHI should be a close phi in normal form. */
1275 gcc_assert (gimple_phi_num_args (phi
) == 1);
1277 /* Iterate over the next phis and remove duplicates. */
1279 while (!gsi_end_p (gsi
))
1280 if (same_close_phi_node (phi
, gsi_stmt (gsi
)))
1281 remove_duplicate_close_phi (phi
, &gsi
);
1287 /* Transforms LOOP to the canonical loop closed SSA form. */
1290 canonicalize_loop_closed_ssa (loop_p loop
)
1292 edge e
= single_exit (loop
);
1295 if (!e
|| e
->flags
& EDGE_ABNORMAL
)
1300 if (single_pred_p (bb
))
1302 e
= split_block_after_labels (bb
);
1303 make_close_phi_nodes_unique (e
->src
);
1307 gimple_stmt_iterator psi
;
1308 basic_block close
= split_edge (e
);
1310 e
= single_succ_edge (close
);
1312 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
1314 gimple phi
= gsi_stmt (psi
);
1317 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1318 if (gimple_phi_arg_edge (phi
, i
) == e
)
1320 tree res
, arg
= gimple_phi_arg_def (phi
, i
);
1321 use_operand_p use_p
;
1324 if (TREE_CODE (arg
) != SSA_NAME
)
1327 close_phi
= create_phi_node (NULL_TREE
, close
);
1328 res
= create_new_def_for (arg
, close_phi
,
1329 gimple_phi_result_ptr (close_phi
));
1330 add_phi_arg (close_phi
, arg
,
1331 gimple_phi_arg_edge (close_phi
, 0),
1333 use_p
= gimple_phi_arg_imm_use_ptr (phi
, i
);
1334 replace_exp (use_p
, res
);
1339 make_close_phi_nodes_unique (close
);
1342 /* The code above does not properly handle changes in the post dominance
1343 information (yet). */
1344 free_dominance_info (CDI_POST_DOMINATORS
);
1347 /* Converts the current loop closed SSA form to a canonical form
1348 expected by the Graphite code generation.
1350 The loop closed SSA form has the following invariant: a variable
1351 defined in a loop that is used outside the loop appears only in the
1352 phi nodes in the destination of the loop exit. These phi nodes are
1353 called close phi nodes.
1355 The canonical loop closed SSA form contains the extra invariants:
1357 - when the loop contains only one exit, the close phi nodes contain
1358 only one argument. That implies that the basic block that contains
1359 the close phi nodes has only one predecessor, that is a basic block
1362 - the basic block containing the close phi nodes does not contain
1365 - there exist only one phi node per definition in the loop.
1369 canonicalize_loop_closed_ssa_form (void)
1374 #ifdef ENABLE_CHECKING
1375 verify_loop_closed_ssa (true);
1378 FOR_EACH_LOOP (li
, loop
, 0)
1379 canonicalize_loop_closed_ssa (loop
);
1381 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
1382 update_ssa (TODO_update_ssa
);
1384 #ifdef ENABLE_CHECKING
1385 verify_loop_closed_ssa (true);
1389 /* Find Static Control Parts (SCoP) in the current function and pushes
1393 build_scops (VEC (scop_p
, heap
) **scops
)
1395 struct loop
*loop
= current_loops
->tree_root
;
1396 VEC (sd_region
, heap
) *regions
= VEC_alloc (sd_region
, heap
, 3);
1398 canonicalize_loop_closed_ssa_form ();
1399 build_scops_1 (single_succ (ENTRY_BLOCK_PTR
), ENTRY_BLOCK_PTR
->loop_father
,
1401 create_sese_edges (regions
);
1402 build_graphite_scops (regions
, scops
);
1404 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1405 print_graphite_statistics (dump_file
, *scops
);
1407 limit_scops (scops
);
1408 VEC_free (sd_region
, heap
, regions
);
1410 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1411 fprintf (dump_file
, "\nnumber of SCoPs: %d\n",
1412 VEC_length (scop_p
, *scops
));
1415 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1416 different colors. If there are not enough colors, paint the
1417 remaining SCoPs in gray.
1420 - "*" after the node number denotes the entry of a SCoP,
1421 - "#" after the node number denotes the exit of a SCoP,
1422 - "()" around the node number denotes the entry or the
1423 exit nodes of the SCOP. These are not part of SCoP. */
1426 dot_all_scops_1 (FILE *file
, VEC (scop_p
, heap
) *scops
)
1435 /* Disable debugging while printing graph. */
1436 int tmp_dump_flags
= dump_flags
;
1439 fprintf (file
, "digraph all {\n");
1443 int part_of_scop
= false;
1445 /* Use HTML for every bb label. So we are able to print bbs
1446 which are part of two different SCoPs, with two different
1447 background colors. */
1448 fprintf (file
, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1450 fprintf (file
, "CELLSPACING=\"0\">\n");
1452 /* Select color for SCoP. */
1453 FOR_EACH_VEC_ELT (scop_p
, scops
, i
, scop
)
1455 sese region
= SCOP_REGION (scop
);
1456 if (bb_in_sese_p (bb
, region
)
1457 || (SESE_EXIT_BB (region
) == bb
)
1458 || (SESE_ENTRY_BB (region
) == bb
))
1471 case 3: /* purple */
1474 case 4: /* orange */
1477 case 5: /* yellow */
1517 fprintf (file
, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color
);
1519 if (!bb_in_sese_p (bb
, region
))
1520 fprintf (file
, " (");
1522 if (bb
== SESE_ENTRY_BB (region
)
1523 && bb
== SESE_EXIT_BB (region
))
1524 fprintf (file
, " %d*# ", bb
->index
);
1525 else if (bb
== SESE_ENTRY_BB (region
))
1526 fprintf (file
, " %d* ", bb
->index
);
1527 else if (bb
== SESE_EXIT_BB (region
))
1528 fprintf (file
, " %d# ", bb
->index
);
1530 fprintf (file
, " %d ", bb
->index
);
1532 if (!bb_in_sese_p (bb
,region
))
1533 fprintf (file
, ")");
1535 fprintf (file
, "</TD></TR>\n");
1536 part_of_scop
= true;
1542 fprintf (file
, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1543 fprintf (file
, " %d </TD></TR>\n", bb
->index
);
1545 fprintf (file
, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1550 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1551 fprintf (file
, "%d -> %d;\n", bb
->index
, e
->dest
->index
);
1554 fputs ("}\n\n", file
);
1556 /* Enable debugging again. */
1557 dump_flags
= tmp_dump_flags
;
1560 /* Display all SCoPs using dotty. */
1563 dot_all_scops (VEC (scop_p
, heap
) *scops
)
1565 /* When debugging, enable the following code. This cannot be used
1566 in production compilers because it calls "system". */
1569 FILE *stream
= fopen ("/tmp/allscops.dot", "w");
1570 gcc_assert (stream
);
1572 dot_all_scops_1 (stream
, scops
);
1575 x
= system ("dotty /tmp/allscops.dot &");
1577 dot_all_scops_1 (stderr
, scops
);
1581 /* Display all SCoPs using dotty. */
1584 dot_scop (scop_p scop
)
1586 VEC (scop_p
, heap
) *scops
= NULL
;
1589 VEC_safe_push (scop_p
, heap
, scops
, scop
);
1591 /* When debugging, enable the following code. This cannot be used
1592 in production compilers because it calls "system". */
1596 FILE *stream
= fopen ("/tmp/allscops.dot", "w");
1597 gcc_assert (stream
);
1599 dot_all_scops_1 (stream
, scops
);
1601 x
= system ("dotty /tmp/allscops.dot &");
1604 dot_all_scops_1 (stderr
, scops
);
1607 VEC_free (scop_p
, heap
, scops
);