1 /* Protoize program - Original version by Ron Guilmette (rfg@segfault.us.com).
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
27 #include "cppdefault.h"
31 #if ! defined( SIGCHLD ) && defined( SIGCLD )
32 # define SIGCHLD SIGCLD
40 /* Include getopt.h for the sake of getopt_long. */
43 /* Macro to see if the path elements match. */
44 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
45 #define IS_SAME_PATH_CHAR(a,b) (TOUPPER (a) == TOUPPER (b))
47 #define IS_SAME_PATH_CHAR(a,b) ((a) == (b))
50 /* Macro to see if the paths match. */
51 #define IS_SAME_PATH(a,b) (FILENAME_CMP (a, b) == 0)
53 /* Suffix for aux-info files. */
55 #define AUX_INFO_SUFFIX "X"
57 #define AUX_INFO_SUFFIX ".X"
60 /* Suffix for saved files. */
62 #define SAVE_SUFFIX "sav"
64 #define SAVE_SUFFIX ".save"
67 /* Suffix for renamed C++ files. */
68 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
69 #define CPLUS_FILE_SUFFIX "cc"
71 #define CPLUS_FILE_SUFFIX "C"
74 static void usage (void) ATTRIBUTE_NORETURN
;
75 static void aux_info_corrupted (void) ATTRIBUTE_NORETURN
;
76 static void declare_source_confusing (const char *) ATTRIBUTE_NORETURN
;
77 static const char *shortpath (const char *, const char *);
78 extern void fancy_abort (void) ATTRIBUTE_NORETURN
;
79 static void notice (const char *, ...) ATTRIBUTE_PRINTF_1
;
80 static char *savestring (const char *, unsigned int);
81 static char *dupnstr (const char *, size_t);
82 static int safe_read (int, void *, int);
83 static void safe_write (int, void *, int, const char *);
84 static void save_pointers (void);
85 static void restore_pointers (void);
86 static int is_id_char (int);
87 static int in_system_include_dir (const char *);
88 static int directory_specified_p (const char *);
89 static int file_excluded_p (const char *);
90 static char *unexpand_if_needed (const char *);
91 static char *abspath (const char *, const char *);
92 static void check_aux_info (int);
93 static const char *find_corresponding_lparen (const char *);
94 static int referenced_file_is_newer (const char *, time_t);
95 static void save_def_or_dec (const char *, int);
96 static void munge_compile_params (const char *);
97 static int gen_aux_info_file (const char *);
98 static void process_aux_info_file (const char *, int, int);
99 static int identify_lineno (const char *);
100 static void check_source (int, const char *);
101 static const char *seek_to_line (int);
102 static const char *forward_to_next_token_char (const char *);
103 static void output_bytes (const char *, size_t);
104 static void output_string (const char *);
105 static void output_up_to (const char *);
106 static int other_variable_style_function (const char *);
107 static const char *find_rightmost_formals_list (const char *);
108 static void do_cleaning (char *, const char *);
109 static const char *careful_find_l_paren (const char *);
110 static void do_processing (void);
112 /* Look for these where the `const' qualifier is intentionally cast aside. */
115 /* Define a default place to find the SYSCALLS.X file. */
119 #ifndef STANDARD_EXEC_PREFIX
120 #define STANDARD_EXEC_PREFIX "/usr/local/lib/gcc-lib/"
121 #endif /* !defined STANDARD_EXEC_PREFIX */
123 static const char * const standard_exec_prefix
= STANDARD_EXEC_PREFIX
;
124 static const char * const target_machine
= DEFAULT_TARGET_MACHINE
;
125 static const char * const target_version
= DEFAULT_TARGET_VERSION
;
127 #endif /* !defined (UNPROTOIZE) */
129 /* Suffix of aux_info files. */
131 static const char * const aux_info_suffix
= AUX_INFO_SUFFIX
;
133 /* String to attach to filenames for saved versions of original files. */
135 static const char * const save_suffix
= SAVE_SUFFIX
;
139 /* String to attach to C filenames renamed to C++. */
141 static const char * const cplus_suffix
= CPLUS_FILE_SUFFIX
;
143 /* File name of the file which contains descriptions of standard system
144 routines. Note that we never actually do anything with this file per se,
145 but we do read in its corresponding aux_info file. */
147 static const char syscalls_filename
[] = "SYSCALLS.c";
149 /* Default place to find the above file. */
151 static const char * default_syscalls_dir
;
153 /* Variable to hold the complete absolutized filename of the SYSCALLS.c.X
156 static char * syscalls_absolute_filename
;
158 #endif /* !defined (UNPROTOIZE) */
160 /* Type of the structure that holds information about macro unexpansions. */
162 struct unexpansion_struct
{
163 const char *const expanded
;
164 const char *const contracted
;
166 typedef struct unexpansion_struct unexpansion
;
168 /* A table of conversions that may need to be made for some (stupid) older
169 operating systems where these types are preprocessor macros rather than
170 typedefs (as they really ought to be).
172 WARNING: The contracted forms must be as small (or smaller) as the
173 expanded forms, or else havoc will ensue. */
175 static const unexpansion unexpansions
[] = {
176 { "struct _iobuf", "FILE" },
180 /* The number of "primary" slots in the hash tables for filenames and for
181 function names. This can be as big or as small as you like, except that
182 it must be a power of two. */
184 #define HASH_TABLE_SIZE (1 << 9)
186 /* Bit mask to use when computing hash values. */
188 static const int hash_mask
= (HASH_TABLE_SIZE
- 1);
191 /* Datatype for lists of directories or filenames. */
195 struct string_list
*next
;
198 static struct string_list
*string_list_cons (const char *,
199 struct string_list
*);
201 /* List of directories in which files should be converted. */
203 struct string_list
*directory_list
;
205 /* List of file names which should not be converted.
206 A file is excluded if the end of its name, following a /,
207 matches one of the names in this list. */
209 struct string_list
*exclude_list
;
211 /* The name of the other style of variable-number-of-parameters functions
212 (i.e. the style that we want to leave unconverted because we don't yet
213 know how to convert them to this style. This string is used in warning
216 /* Also define here the string that we can search for in the parameter lists
217 taken from the .X files which will unambiguously indicate that we have
218 found a varargs style function. */
221 static const char * const other_var_style
= "stdarg";
222 #else /* !defined (UNPROTOIZE) */
223 static const char * const other_var_style
= "varargs";
224 static const char *varargs_style_indicator
= "va_alist";
225 #endif /* !defined (UNPROTOIZE) */
227 /* The following two types are used to create hash tables. In this program,
228 there are two hash tables which are used to store and quickly lookup two
229 different classes of strings. The first type of strings stored in the
230 first hash table are absolute filenames of files which protoize needs to
231 know about. The second type of strings (stored in the second hash table)
232 are function names. It is this second class of strings which really
233 inspired the use of the hash tables, because there may be a lot of them. */
235 typedef struct hash_table_entry_struct hash_table_entry
;
237 /* Do some typedefs so that we don't have to write "struct" so often. */
239 typedef struct def_dec_info_struct def_dec_info
;
240 typedef struct file_info_struct file_info
;
241 typedef struct f_list_chain_item_struct f_list_chain_item
;
244 static int is_syscalls_file (const file_info
*);
245 static void rename_c_file (const hash_table_entry
*);
246 static const def_dec_info
*find_extern_def (const def_dec_info
*,
247 const def_dec_info
*);
248 static const def_dec_info
*find_static_definition (const def_dec_info
*);
249 static void connect_defs_and_decs (const hash_table_entry
*);
250 static void add_local_decl (const def_dec_info
*, const char *);
251 static void add_global_decls (const file_info
*, const char *);
252 #endif /* ! UNPROTOIZE */
253 static int needs_to_be_converted (const file_info
*);
254 static void visit_each_hash_node (const hash_table_entry
*,
255 void (*)(const hash_table_entry
*));
256 static hash_table_entry
*add_symbol (hash_table_entry
*, const char *);
257 static hash_table_entry
*lookup (hash_table_entry
*, const char *);
258 static void free_def_dec (def_dec_info
*);
259 static file_info
*find_file (const char *, int);
260 static void reverse_def_dec_list (const hash_table_entry
*);
261 static void edit_fn_declaration (const def_dec_info
*, const char *);
262 static int edit_formals_lists (const char *, unsigned int,
263 const def_dec_info
*);
264 static void edit_fn_definition (const def_dec_info
*, const char *);
265 static void scan_for_missed_items (const file_info
*);
266 static void edit_file (const hash_table_entry
*);
268 /* In the struct below, note that the "_info" field has two different uses
269 depending on the type of hash table we are in (i.e. either the filenames
270 hash table or the function names hash table). In the filenames hash table
271 the info fields of the entries point to the file_info struct which is
272 associated with each filename (1 per filename). In the function names
273 hash table, the info field points to the head of a singly linked list of
274 def_dec_info entries which are all defs or decs of the function whose
275 name is pointed to by the "symbol" field. Keeping all of the defs/decs
276 for a given function name on a special list specifically for that function
277 name makes it quick and easy to find out all of the important information
278 about a given (named) function. */
280 struct hash_table_entry_struct
{
281 hash_table_entry
* hash_next
; /* -> to secondary entries */
282 const char * symbol
; /* -> to the hashed string */
284 const def_dec_info
* _ddip
;
288 #define ddip _info._ddip
289 #define fip _info._fip
291 /* Define a type specifically for our two hash tables. */
293 typedef hash_table_entry hash_table
[HASH_TABLE_SIZE
];
295 /* The following struct holds all of the important information about any
296 single filename (e.g. file) which we need to know about. */
298 struct file_info_struct
{
299 const hash_table_entry
* hash_entry
; /* -> to associated hash entry */
300 const def_dec_info
* defs_decs
; /* -> to chain of defs/decs */
301 time_t mtime
; /* Time of last modification. */
304 /* Due to the possibility that functions may return pointers to functions,
305 (which may themselves have their own parameter lists) and due to the
306 fact that returned pointers-to-functions may be of type "pointer-to-
307 function-returning-pointer-to-function" (ad nauseum) we have to keep
308 an entire chain of ANSI style formal parameter lists for each function.
310 Normally, for any given function, there will only be one formals list
311 on the chain, but you never know.
313 Note that the head of each chain of formals lists is pointed to by the
314 `f_list_chain' field of the corresponding def_dec_info record.
316 For any given chain, the item at the head of the chain is the *leftmost*
317 parameter list seen in the actual C language function declaration. If
318 there are other members of the chain, then these are linked in left-to-right
319 order from the head of the chain. */
321 struct f_list_chain_item_struct
{
322 const f_list_chain_item
* chain_next
; /* -> to next item on chain */
323 const char * formals_list
; /* -> to formals list string */
326 /* The following struct holds all of the important information about any
327 single function definition or declaration which we need to know about.
328 Note that for unprotoize we don't need to know very much because we
329 never even create records for stuff that we don't intend to convert
330 (like for instance defs and decs which are already in old K&R format
331 and "implicit" function declarations). */
333 struct def_dec_info_struct
{
334 const def_dec_info
* next_in_file
; /* -> to rest of chain for file */
335 file_info
* file
; /* -> file_info for containing file */
336 int line
; /* source line number of def/dec */
337 const char * ansi_decl
; /* -> left end of ansi decl */
338 hash_table_entry
* hash_entry
; /* -> hash entry for function name */
339 unsigned int is_func_def
; /* = 0 means this is a declaration */
340 const def_dec_info
* next_for_func
; /* -> to rest of chain for func name */
341 unsigned int f_list_count
; /* count of formals lists we expect */
342 char prototyped
; /* = 0 means already prototyped */
344 const f_list_chain_item
* f_list_chain
; /* -> chain of formals lists */
345 const def_dec_info
* definition
; /* -> def/dec containing related def */
346 char is_static
; /* = 0 means visibility is "extern" */
347 char is_implicit
; /* != 0 for implicit func decl's */
348 char written
; /* != 0 means written for implicit */
349 #else /* !defined (UNPROTOIZE) */
350 const char * formal_names
; /* -> to list of names of formals */
351 const char * formal_decls
; /* -> to string of formal declarations */
352 #endif /* !defined (UNPROTOIZE) */
355 /* Pointer to the tail component of the filename by which this program was
356 invoked. Used everywhere in error and warning messages. */
358 static const char *pname
;
360 /* Error counter. Will be nonzero if we should give up at the next convenient
363 static int errors
= 0;
366 /* ??? These comments should say what the flag mean as well as the options
369 /* File name to use for running gcc. Allows GCC 2 to be named
370 something other than gcc. */
371 static const char *compiler_file_name
= "gcc";
373 static int version_flag
= 0; /* Print our version number. */
374 static int quiet_flag
= 0; /* Don't print messages normally. */
375 static int nochange_flag
= 0; /* Don't convert, just say what files
376 we would have converted. */
377 static int nosave_flag
= 0; /* Don't save the old version. */
378 static int keep_flag
= 0; /* Don't delete the .X files. */
379 static const char ** compile_params
= 0; /* Option string for gcc. */
381 static const char *indent_string
= " "; /* Indentation for newly
382 inserted parm decls. */
383 #else /* !defined (UNPROTOIZE) */
384 static int local_flag
= 0; /* Insert new local decls (when?). */
385 static int global_flag
= 0; /* set by -g option */
386 static int cplusplus_flag
= 0; /* Rename converted files to *.C. */
387 static const char *nondefault_syscalls_dir
= 0; /* Dir to look for
389 #endif /* !defined (UNPROTOIZE) */
391 /* An index into the compile_params array where we should insert the source
392 file name when we are ready to exec the C compiler. A zero value indicates
393 that we have not yet called munge_compile_params. */
395 static int input_file_name_index
= 0;
397 /* An index into the compile_params array where we should insert the filename
398 for the aux info file, when we run the C compiler. */
399 static int aux_info_file_name_index
= 0;
401 /* Count of command line arguments which were "filename" arguments. */
403 static int n_base_source_files
= 0;
405 /* Points to a malloc'ed list of pointers to all of the filenames of base
406 source files which were specified on the command line. */
408 static const char **base_source_filenames
;
410 /* Line number of the line within the current aux_info file that we
411 are currently processing. Used for error messages in case the prototypes
412 info file is corrupted somehow. */
414 static int current_aux_info_lineno
;
416 /* Pointer to the name of the source file currently being converted. */
418 static const char *convert_filename
;
420 /* Pointer to relative root string (taken from aux_info file) which indicates
421 where directory the user was in when he did the compilation step that
422 produced the containing aux_info file. */
424 static const char *invocation_filename
;
426 /* Pointer to the base of the input buffer that holds the original text for the
427 source file currently being converted. */
429 static const char *orig_text_base
;
431 /* Pointer to the byte just beyond the end of the input buffer that holds the
432 original text for the source file currently being converted. */
434 static const char *orig_text_limit
;
436 /* Pointer to the base of the input buffer that holds the cleaned text for the
437 source file currently being converted. */
439 static const char *clean_text_base
;
441 /* Pointer to the byte just beyond the end of the input buffer that holds the
442 cleaned text for the source file currently being converted. */
444 static const char *clean_text_limit
;
446 /* Pointer to the last byte in the cleaned text buffer that we have already
447 (virtually) copied to the output buffer (or decided to ignore). */
449 static const char * clean_read_ptr
;
451 /* Pointer to the base of the output buffer that holds the replacement text
452 for the source file currently being converted. */
454 static char *repl_text_base
;
456 /* Pointer to the byte just beyond the end of the output buffer that holds the
457 replacement text for the source file currently being converted. */
459 static char *repl_text_limit
;
461 /* Pointer to the last byte which has been stored into the output buffer.
462 The next byte to be stored should be stored just past where this points
465 static char * repl_write_ptr
;
467 /* Pointer into the cleaned text buffer for the source file we are currently
468 converting. This points to the first character of the line that we last
469 did a "seek_to_line" to (see below). */
471 static const char *last_known_line_start
;
473 /* Number of the line (in the cleaned text buffer) that we last did a
474 "seek_to_line" to. Will be one if we just read a new source file
475 into the cleaned text buffer. */
477 static int last_known_line_number
;
479 /* The filenames hash table. */
481 static hash_table filename_primary
;
483 /* The function names hash table. */
485 static hash_table function_name_primary
;
487 /* The place to keep the recovery address which is used only in cases where
488 we get hopelessly confused by something in the cleaned original text. */
490 static jmp_buf source_confusion_recovery
;
492 /* A pointer to the current directory filename (used by abspath). */
494 static char *cwd_buffer
;
496 /* A place to save the read pointer until we are sure that an individual
497 attempt at editing will succeed. */
499 static const char * saved_clean_read_ptr
;
501 /* A place to save the write pointer until we are sure that an individual
502 attempt at editing will succeed. */
504 static char * saved_repl_write_ptr
;
506 /* Translate and output an error message. */
508 notice (const char *msgid
, ...)
512 va_start (ap
, msgid
);
513 vfprintf (stderr
, _(msgid
), ap
);
518 /* Make a copy of a string INPUT with size SIZE. */
521 savestring (const char *input
, unsigned int size
)
523 char *output
= xmalloc (size
+ 1);
524 strcpy (output
, input
);
528 /* More 'friendly' abort that prints the line and file.
529 config.h can #define abort fancy_abort if you like that sort of thing. */
534 notice ("%s: internal abort\n", pname
);
535 exit (FATAL_EXIT_CODE
);
538 /* Make a duplicate of the first N bytes of a given string in a newly
542 dupnstr (const char *s
, size_t n
)
544 char *ret_val
= xmalloc (n
+ 1);
546 strncpy (ret_val
, s
, n
);
551 /* Read LEN bytes at PTR from descriptor DESC, for file FILENAME,
552 retrying if necessary. Return the actual number of bytes read. */
555 safe_read (int desc
, void *ptr
, int len
)
559 int nchars
= read (desc
, ptr
, left
);
570 /* Arithmetic on void pointers is a gcc extension. */
571 ptr
= (char *) ptr
+ nchars
;
577 /* Write LEN bytes at PTR to descriptor DESC,
578 retrying if necessary, and treating any real error as fatal. */
581 safe_write (int desc
, void *ptr
, int len
, const char *out_fname
)
584 int written
= write (desc
, ptr
, len
);
587 int errno_val
= errno
;
589 if (errno_val
== EINTR
)
592 notice ("%s: error writing file `%s': %s\n",
593 pname
, shortpath (NULL
, out_fname
), xstrerror (errno_val
));
596 /* Arithmetic on void pointers is a gcc extension. */
597 ptr
= (char *) ptr
+ written
;
602 /* Get setup to recover in case the edit we are about to do goes awry. */
607 saved_clean_read_ptr
= clean_read_ptr
;
608 saved_repl_write_ptr
= repl_write_ptr
;
611 /* Call this routine to recover our previous state whenever something looks
612 too confusing in the source code we are trying to edit. */
615 restore_pointers (void)
617 clean_read_ptr
= saved_clean_read_ptr
;
618 repl_write_ptr
= saved_repl_write_ptr
;
621 /* Return true if the given character is a valid identifier character. */
626 return (ISIDNUM (ch
) || (ch
== '$'));
629 /* Give a message indicating the proper way to invoke this program and then
630 exit with nonzero status. */
636 notice ("%s: usage '%s [ -VqfnkN ] [ -i <istring> ] [ filename ... ]'\n",
638 #else /* !defined (UNPROTOIZE) */
639 notice ("%s: usage '%s [ -VqfnkNlgC ] [ -B <dirname> ] [ filename ... ]'\n",
641 #endif /* !defined (UNPROTOIZE) */
642 exit (FATAL_EXIT_CODE
);
645 /* Return true if the given filename (assumed to be an absolute filename)
646 designates a file residing anywhere beneath any one of the "system"
647 include directories. */
650 in_system_include_dir (const char *path
)
652 const struct default_include
*p
;
654 if (! IS_ABSOLUTE_PATH (path
))
655 abort (); /* Must be an absolutized filename. */
657 for (p
= cpp_include_defaults
; p
->fname
; p
++)
658 if (!strncmp (path
, p
->fname
, strlen (p
->fname
))
659 && IS_DIR_SEPARATOR (path
[strlen (p
->fname
)]))
665 /* Return true if the given filename designates a file that the user has
666 read access to and for which the user has write access to the containing
670 file_could_be_converted (const char *path
)
672 char *const dir_name
= alloca (strlen (path
) + 1);
674 if (access (path
, R_OK
))
678 char *dir_last_slash
;
680 strcpy (dir_name
, path
);
681 dir_last_slash
= strrchr (dir_name
, DIR_SEPARATOR
);
682 #ifdef DIR_SEPARATOR_2
686 slash
= strrchr (dir_last_slash
? dir_last_slash
: dir_name
,
689 dir_last_slash
= slash
;
693 *dir_last_slash
= '\0';
695 abort (); /* Should have been an absolutized filename. */
698 if (access (path
, W_OK
))
704 /* Return true if the given filename designates a file that we are allowed
705 to modify. Files which we should not attempt to modify are (a) "system"
706 include files, and (b) files which the user doesn't have write access to,
707 and (c) files which reside in directories which the user doesn't have
708 write access to. Unless requested to be quiet, give warnings about
709 files that we will not try to convert for one reason or another. An
710 exception is made for "system" include files, which we never try to
711 convert and for which we don't issue the usual warnings. */
714 file_normally_convertible (const char *path
)
716 char *const dir_name
= alloca (strlen (path
) + 1);
718 if (in_system_include_dir (path
))
722 char *dir_last_slash
;
724 strcpy (dir_name
, path
);
725 dir_last_slash
= strrchr (dir_name
, DIR_SEPARATOR
);
726 #ifdef DIR_SEPARATOR_2
730 slash
= strrchr (dir_last_slash
? dir_last_slash
: dir_name
,
733 dir_last_slash
= slash
;
737 *dir_last_slash
= '\0';
739 abort (); /* Should have been an absolutized filename. */
742 if (access (path
, R_OK
))
745 notice ("%s: warning: no read access for file `%s'\n",
746 pname
, shortpath (NULL
, path
));
750 if (access (path
, W_OK
))
753 notice ("%s: warning: no write access for file `%s'\n",
754 pname
, shortpath (NULL
, path
));
758 if (access (dir_name
, W_OK
))
761 notice ("%s: warning: no write access for dir containing `%s'\n",
762 pname
, shortpath (NULL
, path
));
772 /* Return true if the given file_info struct refers to the special SYSCALLS.c.X
773 file. Return false otherwise. */
776 is_syscalls_file (const file_info
*fi_p
)
778 char const *f
= fi_p
->hash_entry
->symbol
;
779 size_t fl
= strlen (f
), sysl
= sizeof (syscalls_filename
) - 1;
780 return sysl
<= fl
&& strcmp (f
+ fl
- sysl
, syscalls_filename
) == 0;
783 #endif /* !defined (UNPROTOIZE) */
785 /* Check to see if this file will need to have anything done to it on this
786 run. If there is nothing in the given file which both needs conversion
787 and for which we have the necessary stuff to do the conversion, return
788 false. Otherwise, return true.
790 Note that (for protoize) it is only valid to call this function *after*
791 the connections between declarations and definitions have all been made
792 by connect_defs_and_decs. */
795 needs_to_be_converted (const file_info
*file_p
)
797 const def_dec_info
*ddp
;
801 if (is_syscalls_file (file_p
))
804 #endif /* !defined (UNPROTOIZE) */
806 for (ddp
= file_p
->defs_decs
; ddp
; ddp
= ddp
->next_in_file
)
812 /* ... and if we a protoizing and this function is in old style ... */
814 /* ... and if this a definition or is a decl with an associated def ... */
815 && (ddp
->is_func_def
|| (!ddp
->is_func_def
&& ddp
->definition
))
817 #else /* defined (UNPROTOIZE) */
819 /* ... and if we are unprotoizing and this function is in new style ... */
822 #endif /* defined (UNPROTOIZE) */
824 /* ... then the containing file needs converting. */
829 /* Return 1 if the file name NAME is in a directory
830 that should be converted. */
833 directory_specified_p (const char *name
)
835 struct string_list
*p
;
837 for (p
= directory_list
; p
; p
= p
->next
)
838 if (!strncmp (name
, p
->name
, strlen (p
->name
))
839 && IS_DIR_SEPARATOR (name
[strlen (p
->name
)]))
841 const char *q
= name
+ strlen (p
->name
) + 1;
843 /* If there are more slashes, it's in a subdir, so
844 this match doesn't count. */
846 if (IS_DIR_SEPARATOR (*(q
-1)))
856 /* Return 1 if the file named NAME should be excluded from conversion. */
859 file_excluded_p (const char *name
)
861 struct string_list
*p
;
862 int len
= strlen (name
);
864 for (p
= exclude_list
; p
; p
= p
->next
)
865 if (!strcmp (name
+ len
- strlen (p
->name
), p
->name
)
866 && IS_DIR_SEPARATOR (name
[len
- strlen (p
->name
) - 1]))
872 /* Construct a new element of a string_list.
873 STRING is the new element value, and REST holds the remaining elements. */
875 static struct string_list
*
876 string_list_cons (const char *string
, struct string_list
*rest
)
878 struct string_list
*temp
= xmalloc (sizeof (struct string_list
));
885 /* ??? The GNU convention for mentioning function args in its comments
886 is to capitalize them. So change "hash_tab_p" to HASH_TAB_P below.
887 Likewise for all the other functions. */
889 /* Given a hash table, apply some function to each node in the table. The
890 table to traverse is given as the "hash_tab_p" argument, and the
891 function to be applied to each node in the table is given as "func"
895 visit_each_hash_node (const hash_table_entry
*hash_tab_p
,
896 void (*func
) (const hash_table_entry
*))
898 const hash_table_entry
*primary
;
900 for (primary
= hash_tab_p
; primary
< &hash_tab_p
[HASH_TABLE_SIZE
]; primary
++)
903 hash_table_entry
*second
;
906 for (second
= primary
->hash_next
; second
; second
= second
->hash_next
)
911 /* Initialize all of the fields of a new hash table entry, pointed
912 to by the "p" parameter. Note that the space to hold the entry
913 is assumed to have already been allocated before this routine is
916 static hash_table_entry
*
917 add_symbol (hash_table_entry
*p
, const char *s
)
920 p
->symbol
= xstrdup (s
);
926 /* Look for a particular function name or filename in the particular
927 hash table indicated by "hash_tab_p". If the name is not in the
928 given hash table, add it. Either way, return a pointer to the
929 hash table entry for the given name. */
931 static hash_table_entry
*
932 lookup (hash_table_entry
*hash_tab_p
, const char *search_symbol
)
935 const char *search_symbol_char_p
= search_symbol
;
938 while (*search_symbol_char_p
)
939 hash_value
+= *search_symbol_char_p
++;
940 hash_value
&= hash_mask
;
941 p
= &hash_tab_p
[hash_value
];
943 return add_symbol (p
, search_symbol
);
944 if (!strcmp (p
->symbol
, search_symbol
))
949 if (!strcmp (p
->symbol
, search_symbol
))
952 p
->hash_next
= xmalloc (sizeof (hash_table_entry
));
954 return add_symbol (p
, search_symbol
);
957 /* Throw a def/dec record on the junk heap.
959 Also, since we are not using this record anymore, free up all of the
960 stuff it pointed to. */
963 free_def_dec (def_dec_info
*p
)
965 free ((NONCONST
void *) p
->ansi_decl
);
969 const f_list_chain_item
* curr
;
970 const f_list_chain_item
* next
;
972 for (curr
= p
->f_list_chain
; curr
; curr
= next
)
974 next
= curr
->chain_next
;
975 free ((NONCONST
void *) curr
);
978 #endif /* !defined (UNPROTOIZE) */
983 /* Unexpand as many macro symbol as we can find.
985 If the given line must be unexpanded, make a copy of it in the heap and
986 return a pointer to the unexpanded copy. Otherwise return NULL. */
989 unexpand_if_needed (const char *aux_info_line
)
991 static char *line_buf
= 0;
992 static int line_buf_size
= 0;
993 const unexpansion
*unexp_p
;
994 int got_unexpanded
= 0;
996 char *copy_p
= line_buf
;
1000 line_buf_size
= 1024;
1001 line_buf
= xmalloc (line_buf_size
);
1006 /* Make a copy of the input string in line_buf, expanding as necessary. */
1008 for (s
= aux_info_line
; *s
!= '\n'; )
1010 for (unexp_p
= unexpansions
; unexp_p
->expanded
; unexp_p
++)
1012 const char *in_p
= unexp_p
->expanded
;
1013 size_t len
= strlen (in_p
);
1015 if (*s
== *in_p
&& !strncmp (s
, in_p
, len
) && !is_id_char (s
[len
]))
1017 int size
= strlen (unexp_p
->contracted
);
1019 if (copy_p
+ size
- line_buf
>= line_buf_size
)
1021 int offset
= copy_p
- line_buf
;
1023 line_buf_size
+= size
;
1024 line_buf
= xrealloc (line_buf
, line_buf_size
);
1025 copy_p
= line_buf
+ offset
;
1027 strcpy (copy_p
, unexp_p
->contracted
);
1030 /* Assume that there will not be another replacement required
1031 within the text just replaced. */
1034 goto continue_outer
;
1037 if (copy_p
- line_buf
== line_buf_size
)
1039 int offset
= copy_p
- line_buf
;
1041 line_buf
= xrealloc (line_buf
, line_buf_size
);
1042 copy_p
= line_buf
+ offset
;
1047 if (copy_p
+ 2 - line_buf
>= line_buf_size
)
1049 int offset
= copy_p
- line_buf
;
1051 line_buf
= xrealloc (line_buf
, line_buf_size
);
1052 copy_p
= line_buf
+ offset
;
1057 return (got_unexpanded
? savestring (line_buf
, copy_p
- line_buf
) : 0);
1060 /* Return the absolutized filename for the given relative
1061 filename. Note that if that filename is already absolute, it may
1062 still be returned in a modified form because this routine also
1063 eliminates redundant slashes and single dots and eliminates double
1064 dots to get a shortest possible filename from the given input
1065 filename. The absolutization of relative filenames is made by
1066 assuming that the given filename is to be taken as relative to
1067 the first argument (cwd) or to the current directory if cwd is
1071 abspath (const char *cwd
, const char *rel_filename
)
1073 /* Setup the current working directory as needed. */
1074 const char *const cwd2
= (cwd
) ? cwd
: cwd_buffer
;
1075 char *const abs_buffer
= alloca (strlen (cwd2
) + strlen (rel_filename
) + 2);
1076 char *endp
= abs_buffer
;
1079 /* Copy the filename (possibly preceded by the current working
1080 directory name) into the absolutization buffer. */
1085 if (! IS_ABSOLUTE_PATH (rel_filename
))
1088 while ((*endp
++ = *src_p
++))
1090 *(endp
-1) = DIR_SEPARATOR
; /* overwrite null */
1092 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
1093 else if (IS_DIR_SEPARATOR (rel_filename
[0]))
1095 /* A path starting with a directory separator is considered absolute
1096 for dos based filesystems, but it's really not -- it's just the
1097 convention used throughout GCC and it works. However, in this
1098 case, we still need to prepend the drive spec from cwd_buffer. */
1103 src_p
= rel_filename
;
1104 while ((*endp
++ = *src_p
++))
1108 /* Now make a copy of abs_buffer into abs_buffer, shortening the
1109 filename (by taking out slashes and dots) as we go. */
1111 outp
= inp
= abs_buffer
;
1112 *outp
++ = *inp
++; /* copy first slash */
1113 #if defined (apollo) || defined (_WIN32) || defined (__INTERIX)
1114 if (IS_DIR_SEPARATOR (inp
[0]))
1115 *outp
++ = *inp
++; /* copy second slash */
1121 else if (IS_DIR_SEPARATOR (inp
[0]) && IS_DIR_SEPARATOR (outp
[-1]))
1126 else if (inp
[0] == '.' && IS_DIR_SEPARATOR (outp
[-1]))
1130 else if (IS_DIR_SEPARATOR (inp
[1]))
1135 else if ((inp
[1] == '.') && (inp
[2] == 0
1136 || IS_DIR_SEPARATOR (inp
[2])))
1138 inp
+= (IS_DIR_SEPARATOR (inp
[2])) ? 3 : 2;
1140 while (outp
>= abs_buffer
&& ! IS_DIR_SEPARATOR (*outp
))
1142 if (outp
< abs_buffer
)
1144 /* Catch cases like /.. where we try to backup to a
1145 point above the absolute root of the logical file
1148 notice ("%s: invalid file name: %s\n",
1149 pname
, rel_filename
);
1150 exit (FATAL_EXIT_CODE
);
1159 /* On exit, make sure that there is a trailing null, and make sure that
1160 the last character of the returned string is *not* a slash. */
1163 if (IS_DIR_SEPARATOR (outp
[-1]))
1166 /* Make a copy (in the heap) of the stuff left in the absolutization
1167 buffer and return a pointer to the copy. */
1169 return savestring (abs_buffer
, outp
- abs_buffer
);
1172 /* Given a filename (and possibly a directory name from which the filename
1173 is relative) return a string which is the shortest possible
1174 equivalent for the corresponding full (absolutized) filename. The
1175 shortest possible equivalent may be constructed by converting the
1176 absolutized filename to be a relative filename (i.e. relative to
1177 the actual current working directory). However if a relative filename
1178 is longer, then the full absolute filename is returned.
1182 Note that "simple-minded" conversion of any given type of filename (either
1183 relative or absolute) may not result in a valid equivalent filename if any
1184 subpart of the original filename is actually a symbolic link. */
1187 shortpath (const char *cwd
, const char *filename
)
1191 char *cwd_p
= cwd_buffer
;
1193 int unmatched_slash_count
= 0;
1194 size_t filename_len
= strlen (filename
);
1196 path_p
= abspath (cwd
, filename
);
1197 rel_buf_p
= rel_buffer
= xmalloc (filename_len
);
1199 while (*cwd_p
&& IS_SAME_PATH_CHAR (*cwd_p
, *path_p
))
1204 if (!*cwd_p
&& (!*path_p
|| IS_DIR_SEPARATOR (*path_p
)))
1206 /* whole pwd matched */
1207 if (!*path_p
) /* input *is* the current path! */
1218 while (! IS_DIR_SEPARATOR (*cwd_p
)) /* backup to last slash */
1225 unmatched_slash_count
++;
1228 /* Find out how many directory levels in cwd were *not* matched. */
1230 if (IS_DIR_SEPARATOR (*(cwd_p
-1)))
1231 unmatched_slash_count
++;
1233 /* Now we know how long the "short name" will be.
1234 Reject it if longer than the input. */
1235 if (unmatched_slash_count
* 3 + strlen (path_p
) >= filename_len
)
1238 /* For each of them, put a `../' at the beginning of the short name. */
1239 while (unmatched_slash_count
--)
1241 /* Give up if the result gets to be longer
1242 than the absolute path name. */
1243 if (rel_buffer
+ filename_len
<= rel_buf_p
+ 3)
1247 *rel_buf_p
++ = DIR_SEPARATOR
;
1250 /* Then tack on the unmatched part of the desired file's name. */
1253 if (rel_buffer
+ filename_len
<= rel_buf_p
)
1256 while ((*rel_buf_p
++ = *path_p
++));
1259 if (IS_DIR_SEPARATOR (*(rel_buf_p
-1)))
1260 *--rel_buf_p
= '\0';
1265 /* Lookup the given filename in the hash table for filenames. If it is a
1266 new one, then the hash table info pointer will be null. In this case,
1267 we create a new file_info record to go with the filename, and we initialize
1268 that record with some reasonable values. */
1270 /* FILENAME was const, but that causes a warning on AIX when calling stat.
1271 That is probably a bug in AIX, but might as well avoid the warning. */
1274 find_file (const char *filename
, int do_not_stat
)
1276 hash_table_entry
*hash_entry_p
;
1278 hash_entry_p
= lookup (filename_primary
, filename
);
1279 if (hash_entry_p
->fip
)
1280 return hash_entry_p
->fip
;
1283 struct stat stat_buf
;
1284 file_info
*file_p
= xmalloc (sizeof (file_info
));
1286 /* If we cannot get status on any given source file, give a warning
1287 and then just set its time of last modification to infinity. */
1290 stat_buf
.st_mtime
= (time_t) 0;
1293 if (stat (filename
, &stat_buf
) == -1)
1295 int errno_val
= errno
;
1296 notice ("%s: %s: can't get status: %s\n",
1297 pname
, shortpath (NULL
, filename
),
1298 xstrerror (errno_val
));
1299 stat_buf
.st_mtime
= (time_t) -1;
1303 hash_entry_p
->fip
= file_p
;
1304 file_p
->hash_entry
= hash_entry_p
;
1305 file_p
->defs_decs
= NULL
;
1306 file_p
->mtime
= stat_buf
.st_mtime
;
1311 /* Generate a fatal error because some part of the aux_info file is
1315 aux_info_corrupted (void)
1317 notice ("\n%s: fatal error: aux info file corrupted at line %d\n",
1318 pname
, current_aux_info_lineno
);
1319 exit (FATAL_EXIT_CODE
);
1322 /* ??? This comment is vague. Say what the condition is for. */
1323 /* Check to see that a condition is true. This is kind of like an assert. */
1326 check_aux_info (int cond
)
1329 aux_info_corrupted ();
1332 /* Given a pointer to the closing right parenthesis for a particular formals
1333 list (in an aux_info file) find the corresponding left parenthesis and
1334 return a pointer to it. */
1337 find_corresponding_lparen (const char *p
)
1342 for (paren_depth
= 1, q
= p
-1; paren_depth
; q
--)
1357 /* Given a line from an aux info file, and a time at which the aux info
1358 file it came from was created, check to see if the item described in
1359 the line comes from a file which has been modified since the aux info
1360 file was created. If so, return nonzero, else return zero. */
1363 referenced_file_is_newer (const char *l
, time_t aux_info_mtime
)
1369 check_aux_info (l
[0] == '/');
1370 check_aux_info (l
[1] == '*');
1371 check_aux_info (l
[2] == ' ');
1374 const char *filename_start
= p
= l
+ 3;
1377 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
1378 || (*p
== ':' && *p
&& *(p
+1) && IS_DIR_SEPARATOR (*(p
+1)))
1382 filename
= alloca ((size_t) (p
- filename_start
) + 1);
1383 strncpy (filename
, filename_start
, (size_t) (p
- filename_start
));
1384 filename
[p
-filename_start
] = '\0';
1387 /* Call find_file to find the file_info record associated with the file
1388 which contained this particular def or dec item. Note that this call
1389 may cause a new file_info record to be created if this is the first time
1390 that we have ever known about this particular file. */
1392 fi_p
= find_file (abspath (invocation_filename
, filename
), 0);
1394 return (fi_p
->mtime
> aux_info_mtime
);
1397 /* Given a line of info from the aux_info file, create a new
1398 def_dec_info record to remember all of the important information about
1399 a function definition or declaration.
1401 Link this record onto the list of such records for the particular file in
1402 which it occurred in proper (descending) line number order (for now).
1404 If there is an identical record already on the list for the file, throw
1405 this one away. Doing so takes care of the (useless and troublesome)
1406 duplicates which are bound to crop up due to multiple inclusions of any
1407 given individual header file.
1409 Finally, link the new def_dec record onto the list of such records
1410 pertaining to this particular function name. */
1413 save_def_or_dec (const char *l
, int is_syscalls
)
1416 const char *semicolon_p
;
1417 def_dec_info
*def_dec_p
= xmalloc (sizeof (def_dec_info
));
1420 def_dec_p
->written
= 0;
1421 #endif /* !defined (UNPROTOIZE) */
1423 /* Start processing the line by picking off 5 pieces of information from
1424 the left hand end of the line. These are filename, line number,
1425 new/old/implicit flag (new = ANSI prototype format), definition or
1426 declaration flag, and extern/static flag). */
1428 check_aux_info (l
[0] == '/');
1429 check_aux_info (l
[1] == '*');
1430 check_aux_info (l
[2] == ' ');
1433 const char *filename_start
= p
= l
+ 3;
1437 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
1438 || (*p
== ':' && *p
&& *(p
+1) && IS_DIR_SEPARATOR (*(p
+1)))
1442 filename
= alloca ((size_t) (p
- filename_start
) + 1);
1443 strncpy (filename
, filename_start
, (size_t) (p
- filename_start
));
1444 filename
[p
-filename_start
] = '\0';
1446 /* Call find_file to find the file_info record associated with the file
1447 which contained this particular def or dec item. Note that this call
1448 may cause a new file_info record to be created if this is the first time
1449 that we have ever known about this particular file.
1451 Note that we started out by forcing all of the base source file names
1452 (i.e. the names of the aux_info files with the .X stripped off) into the
1453 filenames hash table, and we simultaneously setup file_info records for
1454 all of these base file names (even if they may be useless later).
1455 The file_info records for all of these "base" file names (properly)
1456 act as file_info records for the "original" (i.e. un-included) files
1457 which were submitted to gcc for compilation (when the -aux-info
1458 option was used). */
1460 def_dec_p
->file
= find_file (abspath (invocation_filename
, filename
), is_syscalls
);
1464 const char *line_number_start
= ++p
;
1465 char line_number
[10];
1468 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
1469 || (*p
== ':' && *p
&& *(p
+1) && IS_DIR_SEPARATOR (*(p
+1)))
1473 strncpy (line_number
, line_number_start
, (size_t) (p
- line_number_start
));
1474 line_number
[p
-line_number_start
] = '\0';
1475 def_dec_p
->line
= atoi (line_number
);
1478 /* Check that this record describes a new-style, old-style, or implicit
1479 definition or declaration. */
1481 p
++; /* Skip over the `:'. */
1482 check_aux_info ((*p
== 'N') || (*p
== 'O') || (*p
== 'I'));
1484 /* Is this a new style (ANSI prototyped) definition or declaration? */
1486 def_dec_p
->prototyped
= (*p
== 'N');
1490 /* Is this an implicit declaration? */
1492 def_dec_p
->is_implicit
= (*p
== 'I');
1494 #endif /* !defined (UNPROTOIZE) */
1498 check_aux_info ((*p
== 'C') || (*p
== 'F'));
1500 /* Is this item a function definition (F) or a declaration (C). Note that
1501 we treat item taken from the syscalls file as though they were function
1502 definitions regardless of what the stuff in the file says. */
1504 def_dec_p
->is_func_def
= ((*p
++ == 'F') || is_syscalls
);
1507 def_dec_p
->definition
= 0; /* Fill this in later if protoizing. */
1508 #endif /* !defined (UNPROTOIZE) */
1510 check_aux_info (*p
++ == ' ');
1511 check_aux_info (*p
++ == '*');
1512 check_aux_info (*p
++ == '/');
1513 check_aux_info (*p
++ == ' ');
1516 check_aux_info ((!strncmp (p
, "static", 6)) || (!strncmp (p
, "extern", 6)));
1517 #else /* !defined (UNPROTOIZE) */
1518 if (!strncmp (p
, "static", 6))
1519 def_dec_p
->is_static
= -1;
1520 else if (!strncmp (p
, "extern", 6))
1521 def_dec_p
->is_static
= 0;
1523 check_aux_info (0); /* Didn't find either `extern' or `static'. */
1524 #endif /* !defined (UNPROTOIZE) */
1527 const char *ansi_start
= p
;
1529 p
+= 6; /* Pass over the "static" or "extern". */
1531 /* We are now past the initial stuff. Search forward from here to find
1532 the terminating semicolon that should immediately follow the entire
1533 ANSI format function declaration. */
1540 /* Make a copy of the ansi declaration part of the line from the aux_info
1543 def_dec_p
->ansi_decl
1544 = dupnstr (ansi_start
, (size_t) ((semicolon_p
+1) - ansi_start
));
1546 /* Backup and point at the final right paren of the final argument list. */
1551 def_dec_p
->f_list_chain
= NULL
;
1552 #endif /* !defined (UNPROTOIZE) */
1554 while (p
!= ansi_start
&& (p
[-1] == ' ' || p
[-1] == '\t')) p
--;
1557 free_def_dec (def_dec_p
);
1562 /* Now isolate a whole set of formal argument lists, one-by-one. Normally,
1563 there will only be one list to isolate, but there could be more. */
1565 def_dec_p
->f_list_count
= 0;
1569 const char *left_paren_p
= find_corresponding_lparen (p
);
1572 f_list_chain_item
*cip
= xmalloc (sizeof (f_list_chain_item
));
1575 = dupnstr (left_paren_p
+ 1, (size_t) (p
- (left_paren_p
+1)));
1577 /* Add the new chain item at the head of the current list. */
1579 cip
->chain_next
= def_dec_p
->f_list_chain
;
1580 def_dec_p
->f_list_chain
= cip
;
1582 #endif /* !defined (UNPROTOIZE) */
1583 def_dec_p
->f_list_count
++;
1585 p
= left_paren_p
- 2;
1587 /* p must now point either to another right paren, or to the last
1588 character of the name of the function that was declared/defined.
1589 If p points to another right paren, then this indicates that we
1590 are dealing with multiple formals lists. In that case, there
1591 really should be another right paren preceding this right paren. */
1596 check_aux_info (*--p
== ')');
1601 const char *past_fn
= p
+ 1;
1603 check_aux_info (*past_fn
== ' ');
1605 /* Scan leftwards over the identifier that names the function. */
1607 while (is_id_char (*p
))
1611 /* p now points to the leftmost character of the function name. */
1614 char *fn_string
= alloca (past_fn
- p
+ 1);
1616 strncpy (fn_string
, p
, (size_t) (past_fn
- p
));
1617 fn_string
[past_fn
-p
] = '\0';
1618 def_dec_p
->hash_entry
= lookup (function_name_primary
, fn_string
);
1622 /* Look at all of the defs and decs for this function name that we have
1623 collected so far. If there is already one which is at the same
1624 line number in the same file, then we can discard this new def_dec_info
1627 As an extra assurance that any such pair of (nominally) identical
1628 function declarations are in fact identical, we also compare the
1629 ansi_decl parts of the lines from the aux_info files just to be on
1632 This comparison will fail if (for instance) the user was playing
1633 messy games with the preprocessor which ultimately causes one
1634 function declaration in one header file to look differently when
1635 that file is included by two (or more) other files. */
1638 const def_dec_info
*other
;
1640 for (other
= def_dec_p
->hash_entry
->ddip
; other
; other
= other
->next_for_func
)
1642 if (def_dec_p
->line
== other
->line
&& def_dec_p
->file
== other
->file
)
1644 if (strcmp (def_dec_p
->ansi_decl
, other
->ansi_decl
))
1646 notice ("%s:%d: declaration of function `%s' takes different forms\n",
1647 def_dec_p
->file
->hash_entry
->symbol
,
1649 def_dec_p
->hash_entry
->symbol
);
1650 exit (FATAL_EXIT_CODE
);
1652 free_def_dec (def_dec_p
);
1660 /* If we are doing unprotoizing, we must now setup the pointers that will
1661 point to the K&R name list and to the K&R argument declarations list.
1663 Note that if this is only a function declaration, then we should not
1664 expect to find any K&R style formals list following the ANSI-style
1665 formals list. This is because GCC knows that such information is
1666 useless in the case of function declarations (function definitions
1667 are a different story however).
1669 Since we are unprotoizing, we don't need any such lists anyway.
1670 All we plan to do is to delete all characters between ()'s in any
1673 def_dec_p
->formal_names
= NULL
;
1674 def_dec_p
->formal_decls
= NULL
;
1676 if (def_dec_p
->is_func_def
)
1679 check_aux_info (*++p
== ' ');
1680 check_aux_info (*++p
== '/');
1681 check_aux_info (*++p
== '*');
1682 check_aux_info (*++p
== ' ');
1683 check_aux_info (*++p
== '(');
1686 const char *kr_names_start
= ++p
; /* Point just inside '('. */
1690 p
--; /* point to closing right paren */
1692 /* Make a copy of the K&R parameter names list. */
1694 def_dec_p
->formal_names
1695 = dupnstr (kr_names_start
, (size_t) (p
- kr_names_start
));
1698 check_aux_info (*++p
== ' ');
1701 /* p now points to the first character of the K&R style declarations
1702 list (if there is one) or to the star-slash combination that ends
1703 the comment in which such lists get embedded. */
1705 /* Make a copy of the K&R formal decls list and set the def_dec record
1708 if (*p
== '*') /* Are there no K&R declarations? */
1710 check_aux_info (*++p
== '/');
1711 def_dec_p
->formal_decls
= "";
1715 const char *kr_decls_start
= p
;
1717 while (p
[0] != '*' || p
[1] != '/')
1721 check_aux_info (*p
== ' ');
1723 def_dec_p
->formal_decls
1724 = dupnstr (kr_decls_start
, (size_t) (p
- kr_decls_start
));
1727 /* Handle a special case. If we have a function definition marked as
1728 being in "old" style, and if its formal names list is empty, then
1729 it may actually have the string "void" in its real formals list
1730 in the original source code. Just to make sure, we will get setup
1731 to convert such things anyway.
1733 This kludge only needs to be here because of an insurmountable
1734 problem with generating .X files. */
1736 if (!def_dec_p
->prototyped
&& !*def_dec_p
->formal_names
)
1737 def_dec_p
->prototyped
= 1;
1740 /* Since we are unprotoizing, if this item is already in old (K&R) style,
1741 we can just ignore it. If that is true, throw away the itme now. */
1743 if (!def_dec_p
->prototyped
)
1745 free_def_dec (def_dec_p
);
1749 #endif /* defined (UNPROTOIZE) */
1751 /* Add this record to the head of the list of records pertaining to this
1752 particular function name. */
1754 def_dec_p
->next_for_func
= def_dec_p
->hash_entry
->ddip
;
1755 def_dec_p
->hash_entry
->ddip
= def_dec_p
;
1757 /* Add this new def_dec_info record to the sorted list of def_dec_info
1758 records for this file. Note that we don't have to worry about duplicates
1759 (caused by multiple inclusions of header files) here because we have
1760 already eliminated duplicates above. */
1762 if (!def_dec_p
->file
->defs_decs
)
1764 def_dec_p
->file
->defs_decs
= def_dec_p
;
1765 def_dec_p
->next_in_file
= NULL
;
1769 int line
= def_dec_p
->line
;
1770 const def_dec_info
*prev
= NULL
;
1771 const def_dec_info
*curr
= def_dec_p
->file
->defs_decs
;
1772 const def_dec_info
*next
= curr
->next_in_file
;
1774 while (next
&& (line
< curr
->line
))
1778 next
= next
->next_in_file
;
1780 if (line
>= curr
->line
)
1782 def_dec_p
->next_in_file
= curr
;
1784 ((NONCONST def_dec_info
*) prev
)->next_in_file
= def_dec_p
;
1786 def_dec_p
->file
->defs_decs
= def_dec_p
;
1788 else /* assert (next == NULL); */
1790 ((NONCONST def_dec_info
*) curr
)->next_in_file
= def_dec_p
;
1791 /* assert (next == NULL); */
1792 def_dec_p
->next_in_file
= next
;
1797 /* Set up the vector COMPILE_PARAMS which is the argument list for running GCC.
1798 Also set input_file_name_index and aux_info_file_name_index
1799 to the indices of the slots where the file names should go. */
1801 /* We initialize the vector by removing -g, -O, -S, -c, and -o options,
1802 and adding '-aux-info AUXFILE -S -o /dev/null INFILE' at the end. */
1805 munge_compile_params (const char *params_list
)
1807 /* Build up the contents in a temporary vector
1808 that is so big that to has to be big enough. */
1809 const char **temp_params
1810 = alloca ((strlen (params_list
) + 8) * sizeof (char *));
1811 int param_count
= 0;
1815 temp_params
[param_count
++] = compiler_file_name
;
1818 while (ISSPACE ((const unsigned char)*params_list
))
1822 param
= params_list
;
1823 while (*params_list
&& !ISSPACE ((const unsigned char)*params_list
))
1825 if (param
[0] != '-')
1826 temp_params
[param_count
++]
1827 = dupnstr (param
, (size_t) (params_list
- param
));
1836 break; /* Don't copy these. */
1838 while (ISSPACE ((const unsigned char)*params_list
))
1841 && !ISSPACE ((const unsigned char)*params_list
))
1845 temp_params
[param_count
++]
1846 = dupnstr (param
, (size_t) (params_list
- param
));
1852 temp_params
[param_count
++] = "-aux-info";
1854 /* Leave room for the aux-info file name argument. */
1855 aux_info_file_name_index
= param_count
;
1856 temp_params
[param_count
++] = NULL
;
1858 temp_params
[param_count
++] = "-S";
1859 temp_params
[param_count
++] = "-o";
1861 if ((stat (HOST_BIT_BUCKET
, &st
) == 0)
1862 && (!S_ISDIR (st
.st_mode
))
1863 && (access (HOST_BIT_BUCKET
, W_OK
) == 0))
1864 temp_params
[param_count
++] = HOST_BIT_BUCKET
;
1866 /* FIXME: This is hardly likely to be right, if HOST_BIT_BUCKET is not
1867 writable. But until this is rejigged to use make_temp_file(), this
1868 is the best we can do. */
1869 temp_params
[param_count
++] = "/dev/null";
1871 /* Leave room for the input file name argument. */
1872 input_file_name_index
= param_count
;
1873 temp_params
[param_count
++] = NULL
;
1874 /* Terminate the list. */
1875 temp_params
[param_count
++] = NULL
;
1877 /* Make a copy of the compile_params in heap space. */
1879 compile_params
= xmalloc (sizeof (char *) * (param_count
+1));
1880 memcpy (compile_params
, temp_params
, sizeof (char *) * param_count
);
1883 /* Do a recompilation for the express purpose of generating a new aux_info
1884 file to go with a specific base source file.
1886 The result is a boolean indicating success. */
1889 gen_aux_info_file (const char *base_filename
)
1891 if (!input_file_name_index
)
1892 munge_compile_params ("");
1894 /* Store the full source file name in the argument vector. */
1895 compile_params
[input_file_name_index
] = shortpath (NULL
, base_filename
);
1896 /* Add .X to source file name to get aux-info file name. */
1897 compile_params
[aux_info_file_name_index
] =
1898 concat (compile_params
[input_file_name_index
], aux_info_suffix
, NULL
);
1901 notice ("%s: compiling `%s'\n",
1902 pname
, compile_params
[input_file_name_index
]);
1905 char *errmsg_fmt
, *errmsg_arg
;
1906 int wait_status
, pid
;
1908 pid
= pexecute (compile_params
[0], (char * const *) compile_params
,
1909 pname
, NULL
, &errmsg_fmt
, &errmsg_arg
,
1910 PEXECUTE_FIRST
| PEXECUTE_LAST
| PEXECUTE_SEARCH
);
1914 int errno_val
= errno
;
1915 fprintf (stderr
, "%s: ", pname
);
1916 fprintf (stderr
, errmsg_fmt
, errmsg_arg
);
1917 fprintf (stderr
, ": %s\n", xstrerror (errno_val
));
1921 pid
= pwait (pid
, &wait_status
, 0);
1924 notice ("%s: wait: %s\n", pname
, xstrerror (errno
));
1927 if (WIFSIGNALED (wait_status
))
1929 notice ("%s: subprocess got fatal signal %d\n",
1930 pname
, WTERMSIG (wait_status
));
1933 if (WIFEXITED (wait_status
))
1935 if (WEXITSTATUS (wait_status
) != 0)
1937 notice ("%s: %s exited with status %d\n",
1938 pname
, compile_params
[0], WEXITSTATUS (wait_status
));
1947 /* Read in all of the information contained in a single aux_info file.
1948 Save all of the important stuff for later. */
1951 process_aux_info_file (const char *base_source_filename
, int keep_it
,
1954 size_t base_len
= strlen (base_source_filename
);
1955 char * aux_info_filename
= alloca (base_len
+ strlen (aux_info_suffix
) + 1);
1956 char *aux_info_base
;
1957 char *aux_info_limit
;
1958 char *aux_info_relocated_name
;
1959 const char *aux_info_second_line
;
1960 time_t aux_info_mtime
;
1961 size_t aux_info_size
;
1964 /* Construct the aux_info filename from the base source filename. */
1966 strcpy (aux_info_filename
, base_source_filename
);
1967 strcat (aux_info_filename
, aux_info_suffix
);
1969 /* Check that the aux_info file exists and is readable. If it does not
1970 exist, try to create it (once only). */
1972 /* If file doesn't exist, set must_create.
1973 Likewise if it exists and we can read it but it is obsolete.
1974 Otherwise, report an error. */
1977 /* Come here with must_create set to 1 if file is out of date. */
1980 if (access (aux_info_filename
, R_OK
) == -1)
1982 if (errno
== ENOENT
)
1986 notice ("%s: warning: missing SYSCALLS file `%s'\n",
1987 pname
, aux_info_filename
);
1994 int errno_val
= errno
;
1995 notice ("%s: can't read aux info file `%s': %s\n",
1996 pname
, shortpath (NULL
, aux_info_filename
),
1997 xstrerror (errno_val
));
2002 #if 0 /* There is code farther down to take care of this. */
2006 stat (aux_info_file_name
, &s1
);
2007 stat (base_source_file_name
, &s2
);
2008 if (s2
.st_mtime
> s1
.st_mtime
)
2013 /* If we need a .X file, create it, and verify we can read it. */
2016 if (!gen_aux_info_file (base_source_filename
))
2021 if (access (aux_info_filename
, R_OK
) == -1)
2023 int errno_val
= errno
;
2024 notice ("%s: can't read aux info file `%s': %s\n",
2025 pname
, shortpath (NULL
, aux_info_filename
),
2026 xstrerror (errno_val
));
2033 struct stat stat_buf
;
2035 /* Get some status information about this aux_info file. */
2037 if (stat (aux_info_filename
, &stat_buf
) == -1)
2039 int errno_val
= errno
;
2040 notice ("%s: can't get status of aux info file `%s': %s\n",
2041 pname
, shortpath (NULL
, aux_info_filename
),
2042 xstrerror (errno_val
));
2047 /* Check on whether or not this aux_info file is zero length. If it is,
2048 then just ignore it and return. */
2050 if ((aux_info_size
= stat_buf
.st_size
) == 0)
2053 /* Get the date/time of last modification for this aux_info file and
2054 remember it. We will have to check that any source files that it
2055 contains information about are at least this old or older. */
2057 aux_info_mtime
= stat_buf
.st_mtime
;
2061 /* Compare mod time with the .c file; update .X file if obsolete.
2062 The code later on can fail to check the .c file
2063 if it did not directly define any functions. */
2065 if (stat (base_source_filename
, &stat_buf
) == -1)
2067 int errno_val
= errno
;
2068 notice ("%s: can't get status of aux info file `%s': %s\n",
2069 pname
, shortpath (NULL
, base_source_filename
),
2070 xstrerror (errno_val
));
2074 if (stat_buf
.st_mtime
> aux_info_mtime
)
2086 /* Open the aux_info file. */
2088 fd_flags
= O_RDONLY
;
2090 /* Use binary mode to avoid having to deal with different EOL characters. */
2091 fd_flags
|= O_BINARY
;
2093 if ((aux_info_file
= open (aux_info_filename
, fd_flags
, 0444 )) == -1)
2095 int errno_val
= errno
;
2096 notice ("%s: can't open aux info file `%s' for reading: %s\n",
2097 pname
, shortpath (NULL
, aux_info_filename
),
2098 xstrerror (errno_val
));
2102 /* Allocate space to hold the aux_info file in memory. */
2104 aux_info_base
= xmalloc (aux_info_size
+ 1);
2105 aux_info_limit
= aux_info_base
+ aux_info_size
;
2106 *aux_info_limit
= '\0';
2108 /* Read the aux_info file into memory. */
2110 if (safe_read (aux_info_file
, aux_info_base
, aux_info_size
) !=
2111 (int) aux_info_size
)
2113 int errno_val
= errno
;
2114 notice ("%s: error reading aux info file `%s': %s\n",
2115 pname
, shortpath (NULL
, aux_info_filename
),
2116 xstrerror (errno_val
));
2117 free (aux_info_base
);
2118 close (aux_info_file
);
2122 /* Close the aux info file. */
2124 if (close (aux_info_file
))
2126 int errno_val
= errno
;
2127 notice ("%s: error closing aux info file `%s': %s\n",
2128 pname
, shortpath (NULL
, aux_info_filename
),
2129 xstrerror (errno_val
));
2130 free (aux_info_base
);
2131 close (aux_info_file
);
2136 /* Delete the aux_info file (unless requested not to). If the deletion
2137 fails for some reason, don't even worry about it. */
2139 if (must_create
&& !keep_it
)
2140 if (unlink (aux_info_filename
) == -1)
2142 int errno_val
= errno
;
2143 notice ("%s: can't delete aux info file `%s': %s\n",
2144 pname
, shortpath (NULL
, aux_info_filename
),
2145 xstrerror (errno_val
));
2148 /* Save a pointer into the first line of the aux_info file which
2149 contains the filename of the directory from which the compiler
2150 was invoked when the associated source file was compiled.
2151 This information is used later to help create complete
2152 filenames out of the (potentially) relative filenames in
2153 the aux_info file. */
2156 char *p
= aux_info_base
;
2159 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
2160 || (*p
== ':' && *p
&& *(p
+1) && IS_DIR_SEPARATOR (*(p
+1)))
2167 invocation_filename
= p
; /* Save a pointer to first byte of path. */
2170 *p
++ = DIR_SEPARATOR
;
2172 while (*p
++ != '\n')
2174 aux_info_second_line
= p
;
2175 aux_info_relocated_name
= 0;
2176 if (! IS_ABSOLUTE_PATH (invocation_filename
))
2178 /* INVOCATION_FILENAME is relative;
2179 append it to BASE_SOURCE_FILENAME's dir. */
2181 aux_info_relocated_name
= xmalloc (base_len
+ (p
-invocation_filename
));
2182 strcpy (aux_info_relocated_name
, base_source_filename
);
2183 dir_end
= strrchr (aux_info_relocated_name
, DIR_SEPARATOR
);
2184 #ifdef DIR_SEPARATOR_2
2188 slash
= strrchr (dir_end
? dir_end
: aux_info_relocated_name
,
2197 dir_end
= aux_info_relocated_name
;
2198 strcpy (dir_end
, invocation_filename
);
2199 invocation_filename
= aux_info_relocated_name
;
2205 const char *aux_info_p
;
2207 /* Do a pre-pass on the lines in the aux_info file, making sure that all
2208 of the source files referenced in there are at least as old as this
2209 aux_info file itself. If not, go back and regenerate the aux_info
2210 file anew. Don't do any of this for the syscalls file. */
2214 current_aux_info_lineno
= 2;
2216 for (aux_info_p
= aux_info_second_line
; *aux_info_p
; )
2218 if (referenced_file_is_newer (aux_info_p
, aux_info_mtime
))
2220 free (aux_info_base
);
2221 free (aux_info_relocated_name
);
2222 if (keep_it
&& unlink (aux_info_filename
) == -1)
2224 int errno_val
= errno
;
2225 notice ("%s: can't delete file `%s': %s\n",
2226 pname
, shortpath (NULL
, aux_info_filename
),
2227 xstrerror (errno_val
));
2234 /* Skip over the rest of this line to start of next line. */
2236 while (*aux_info_p
!= '\n')
2239 current_aux_info_lineno
++;
2243 /* Now do the real pass on the aux_info lines. Save their information in
2244 the in-core data base. */
2246 current_aux_info_lineno
= 2;
2248 for (aux_info_p
= aux_info_second_line
; *aux_info_p
;)
2250 char *unexpanded_line
= unexpand_if_needed (aux_info_p
);
2252 if (unexpanded_line
)
2254 save_def_or_dec (unexpanded_line
, is_syscalls
);
2255 free (unexpanded_line
);
2258 save_def_or_dec (aux_info_p
, is_syscalls
);
2260 /* Skip over the rest of this line and get to start of next line. */
2262 while (*aux_info_p
!= '\n')
2265 current_aux_info_lineno
++;
2269 free (aux_info_base
);
2270 free (aux_info_relocated_name
);
2275 /* Check an individual filename for a .c suffix. If the filename has this
2276 suffix, rename the file such that its suffix is changed to .C. This
2277 function implements the -C option. */
2280 rename_c_file (const hash_table_entry
*hp
)
2282 const char *filename
= hp
->symbol
;
2283 int last_char_index
= strlen (filename
) - 1;
2284 char *const new_filename
= alloca (strlen (filename
)
2285 + strlen (cplus_suffix
) + 1);
2287 /* Note that we don't care here if the given file was converted or not. It
2288 is possible that the given file was *not* converted, simply because there
2289 was nothing in it which actually required conversion. Even in this case,
2290 we want to do the renaming. Note that we only rename files with the .c
2291 suffix (except for the syscalls file, which is left alone). */
2293 if (filename
[last_char_index
] != 'c' || filename
[last_char_index
-1] != '.'
2294 || IS_SAME_PATH (syscalls_absolute_filename
, filename
))
2297 strcpy (new_filename
, filename
);
2298 strcpy (&new_filename
[last_char_index
], cplus_suffix
);
2300 if (rename (filename
, new_filename
) == -1)
2302 int errno_val
= errno
;
2303 notice ("%s: warning: can't rename file `%s' to `%s': %s\n",
2304 pname
, shortpath (NULL
, filename
),
2305 shortpath (NULL
, new_filename
), xstrerror (errno_val
));
2311 #endif /* !defined (UNPROTOIZE) */
2313 /* Take the list of definitions and declarations attached to a particular
2314 file_info node and reverse the order of the list. This should get the
2315 list into an order such that the item with the lowest associated line
2316 number is nearest the head of the list. When these lists are originally
2317 built, they are in the opposite order. We want to traverse them in
2318 normal line number order later (i.e. lowest to highest) so reverse the
2322 reverse_def_dec_list (const hash_table_entry
*hp
)
2324 file_info
*file_p
= hp
->fip
;
2325 def_dec_info
*prev
= NULL
;
2326 def_dec_info
*current
= (def_dec_info
*) file_p
->defs_decs
;
2329 return; /* no list to reverse */
2332 if (! (current
= (def_dec_info
*) current
->next_in_file
))
2333 return; /* can't reverse a single list element */
2335 prev
->next_in_file
= NULL
;
2339 def_dec_info
*next
= (def_dec_info
*) current
->next_in_file
;
2341 current
->next_in_file
= prev
;
2346 file_p
->defs_decs
= prev
;
2351 /* Find the (only?) extern definition for a particular function name, starting
2352 from the head of the linked list of entries for the given name. If we
2353 cannot find an extern definition for the given function name, issue a
2354 warning and scrounge around for the next best thing, i.e. an extern
2355 function declaration with a prototype attached to it. Note that we only
2356 allow such substitutions for extern declarations and never for static
2357 declarations. That's because the only reason we allow them at all is
2358 to let un-prototyped function declarations for system-supplied library
2359 functions get their prototypes from our own extra SYSCALLS.c.X file which
2360 contains all of the correct prototypes for system functions. */
2362 static const def_dec_info
*
2363 find_extern_def (const def_dec_info
*head
, const def_dec_info
*user
)
2365 const def_dec_info
*dd_p
;
2366 const def_dec_info
*extern_def_p
= NULL
;
2367 int conflict_noted
= 0;
2369 /* Don't act too stupid here. Somebody may try to convert an entire system
2370 in one swell fwoop (rather than one program at a time, as should be done)
2371 and in that case, we may find that there are multiple extern definitions
2372 of a given function name in the entire set of source files that we are
2373 converting. If however one of these definitions resides in exactly the
2374 same source file as the reference we are trying to satisfy then in that
2375 case it would be stupid for us to fail to realize that this one definition
2376 *must* be the precise one we are looking for.
2378 To make sure that we don't miss an opportunity to make this "same file"
2379 leap of faith, we do a prescan of the list of records relating to the
2380 given function name, and we look (on this first scan) *only* for a
2381 definition of the function which is in the same file as the reference
2382 we are currently trying to satisfy. */
2384 for (dd_p
= head
; dd_p
; dd_p
= dd_p
->next_for_func
)
2385 if (dd_p
->is_func_def
&& !dd_p
->is_static
&& dd_p
->file
== user
->file
)
2388 /* Now, since we have not found a definition in the same file as the
2389 reference, we scan the list again and consider all possibilities from
2390 all files. Here we may get conflicts with the things listed in the
2391 SYSCALLS.c.X file, but if that happens it only means that the source
2392 code being converted contains its own definition of a function which
2393 could have been supplied by libc.a. In such cases, we should avoid
2394 issuing the normal warning, and defer to the definition given in the
2397 for (dd_p
= head
; dd_p
; dd_p
= dd_p
->next_for_func
)
2398 if (dd_p
->is_func_def
&& !dd_p
->is_static
)
2400 if (!extern_def_p
) /* Previous definition? */
2401 extern_def_p
= dd_p
; /* Remember the first definition found. */
2404 /* Ignore definition just found if it came from SYSCALLS.c.X. */
2406 if (is_syscalls_file (dd_p
->file
))
2409 /* Quietly replace the definition previously found with the one
2410 just found if the previous one was from SYSCALLS.c.X. */
2412 if (is_syscalls_file (extern_def_p
->file
))
2414 extern_def_p
= dd_p
;
2418 /* If we get here, then there is a conflict between two function
2419 declarations for the same function, both of which came from the
2422 if (!conflict_noted
) /* first time we noticed? */
2425 notice ("%s: conflicting extern definitions of '%s'\n",
2426 pname
, head
->hash_entry
->symbol
);
2429 notice ("%s: declarations of '%s' will not be converted\n",
2430 pname
, head
->hash_entry
->symbol
);
2431 notice ("%s: conflict list for '%s' follows:\n",
2432 pname
, head
->hash_entry
->symbol
);
2433 fprintf (stderr
, "%s: %s(%d): %s\n",
2435 shortpath (NULL
, extern_def_p
->file
->hash_entry
->symbol
),
2436 extern_def_p
->line
, extern_def_p
->ansi_decl
);
2440 fprintf (stderr
, "%s: %s(%d): %s\n",
2442 shortpath (NULL
, dd_p
->file
->hash_entry
->symbol
),
2443 dd_p
->line
, dd_p
->ansi_decl
);
2447 /* We want to err on the side of caution, so if we found multiple conflicting
2448 definitions for the same function, treat this as being that same as if we
2449 had found no definitions (i.e. return NULL). */
2456 /* We have no definitions for this function so do the next best thing.
2457 Search for an extern declaration already in prototype form. */
2459 for (dd_p
= head
; dd_p
; dd_p
= dd_p
->next_for_func
)
2460 if (!dd_p
->is_func_def
&& !dd_p
->is_static
&& dd_p
->prototyped
)
2462 extern_def_p
= dd_p
; /* save a pointer to the definition */
2464 notice ("%s: warning: using formals list from %s(%d) for function `%s'\n",
2466 shortpath (NULL
, dd_p
->file
->hash_entry
->symbol
),
2467 dd_p
->line
, dd_p
->hash_entry
->symbol
);
2471 /* Gripe about unprototyped function declarations that we found no
2472 corresponding definition (or other source of prototype information)
2475 Gripe even if the unprototyped declaration we are worried about
2476 exists in a file in one of the "system" include directories. We
2477 can gripe about these because we should have at least found a
2478 corresponding (pseudo) definition in the SYSCALLS.c.X file. If we
2479 didn't, then that means that the SYSCALLS.c.X file is missing some
2480 needed prototypes for this particular system. That is worth telling
2485 const char *file
= user
->file
->hash_entry
->symbol
;
2488 if (in_system_include_dir (file
))
2490 /* Why copy this string into `needed' at all?
2491 Why not just use user->ansi_decl without copying? */
2492 char *needed
= alloca (strlen (user
->ansi_decl
) + 1);
2495 strcpy (needed
, user
->ansi_decl
);
2496 p
= strstr (needed
, user
->hash_entry
->symbol
)
2497 + strlen (user
->hash_entry
->symbol
) + 2;
2498 /* Avoid having ??? in the string. */
2504 notice ("%s: %d: `%s' used but missing from SYSCALLS\n",
2505 shortpath (NULL
, file
), user
->line
,
2506 needed
+7); /* Don't print "extern " */
2510 notice ("%s: %d: warning: no extern definition for `%s'\n",
2511 shortpath (NULL
, file
), user
->line
,
2512 user
->hash_entry
->symbol
);
2516 return extern_def_p
;
2519 /* Find the (only?) static definition for a particular function name in a
2520 given file. Here we get the function-name and the file info indirectly
2521 from the def_dec_info record pointer which is passed in. */
2523 static const def_dec_info
*
2524 find_static_definition (const def_dec_info
*user
)
2526 const def_dec_info
*head
= user
->hash_entry
->ddip
;
2527 const def_dec_info
*dd_p
;
2528 int num_static_defs
= 0;
2529 const def_dec_info
*static_def_p
= NULL
;
2531 for (dd_p
= head
; dd_p
; dd_p
= dd_p
->next_for_func
)
2532 if (dd_p
->is_func_def
&& dd_p
->is_static
&& (dd_p
->file
== user
->file
))
2534 static_def_p
= dd_p
; /* save a pointer to the definition */
2537 if (num_static_defs
== 0)
2540 notice ("%s: warning: no static definition for `%s' in file `%s'\n",
2541 pname
, head
->hash_entry
->symbol
,
2542 shortpath (NULL
, user
->file
->hash_entry
->symbol
));
2544 else if (num_static_defs
> 1)
2546 notice ("%s: multiple static defs of `%s' in file `%s'\n",
2547 pname
, head
->hash_entry
->symbol
,
2548 shortpath (NULL
, user
->file
->hash_entry
->symbol
));
2551 return static_def_p
;
2554 /* Find good prototype style formal argument lists for all of the function
2555 declarations which didn't have them before now.
2557 To do this we consider each function name one at a time. For each function
2558 name, we look at the items on the linked list of def_dec_info records for
2559 that particular name.
2561 Somewhere on this list we should find one (and only one) def_dec_info
2562 record which represents the actual function definition, and this record
2563 should have a nice formal argument list already associated with it.
2565 Thus, all we have to do is to connect up all of the other def_dec_info
2566 records for this particular function name to the special one which has
2567 the full-blown formals list.
2569 Of course it is a little more complicated than just that. See below for
2573 connect_defs_and_decs (const hash_table_entry
*hp
)
2575 const def_dec_info
*dd_p
;
2576 const def_dec_info
*extern_def_p
= NULL
;
2577 int first_extern_reference
= 1;
2579 /* Traverse the list of definitions and declarations for this particular
2580 function name. For each item on the list, if it is a function
2581 definition (either old style or new style) then GCC has already been
2582 kind enough to produce a prototype for us, and it is associated with
2583 the item already, so declare the item as its own associated "definition".
2585 Also, for each item which is only a function declaration, but which
2586 nonetheless has its own prototype already (obviously supplied by the user)
2587 declare the item as its own definition.
2589 Note that when/if there are multiple user-supplied prototypes already
2590 present for multiple declarations of any given function, these multiple
2591 prototypes *should* all match exactly with one another and with the
2592 prototype for the actual function definition. We don't check for this
2593 here however, since we assume that the compiler must have already done
2594 this consistency checking when it was creating the .X files. */
2596 for (dd_p
= hp
->ddip
; dd_p
; dd_p
= dd_p
->next_for_func
)
2597 if (dd_p
->prototyped
)
2598 ((NONCONST def_dec_info
*) dd_p
)->definition
= dd_p
;
2600 /* Traverse the list of definitions and declarations for this particular
2601 function name. For each item on the list, if it is an extern function
2602 declaration and if it has no associated definition yet, go try to find
2603 the matching extern definition for the declaration.
2605 When looking for the matching function definition, warn the user if we
2608 If we find more that one function definition also issue a warning.
2610 Do the search for the matching definition only once per unique function
2611 name (and only when absolutely needed) so that we can avoid putting out
2612 redundant warning messages, and so that we will only put out warning
2613 messages when there is actually a reference (i.e. a declaration) for
2614 which we need to find a matching definition. */
2616 for (dd_p
= hp
->ddip
; dd_p
; dd_p
= dd_p
->next_for_func
)
2617 if (!dd_p
->is_func_def
&& !dd_p
->is_static
&& !dd_p
->definition
)
2619 if (first_extern_reference
)
2621 extern_def_p
= find_extern_def (hp
->ddip
, dd_p
);
2622 first_extern_reference
= 0;
2624 ((NONCONST def_dec_info
*) dd_p
)->definition
= extern_def_p
;
2627 /* Traverse the list of definitions and declarations for this particular
2628 function name. For each item on the list, if it is a static function
2629 declaration and if it has no associated definition yet, go try to find
2630 the matching static definition for the declaration within the same file.
2632 When looking for the matching function definition, warn the user if we
2633 fail to find one in the same file with the declaration, and refuse to
2634 convert this kind of cross-file static function declaration. After all,
2635 this is stupid practice and should be discouraged.
2637 We don't have to worry about the possibility that there is more than one
2638 matching function definition in the given file because that would have
2639 been flagged as an error by the compiler.
2641 Do the search for the matching definition only once per unique
2642 function-name/source-file pair (and only when absolutely needed) so that
2643 we can avoid putting out redundant warning messages, and so that we will
2644 only put out warning messages when there is actually a reference (i.e. a
2645 declaration) for which we actually need to find a matching definition. */
2647 for (dd_p
= hp
->ddip
; dd_p
; dd_p
= dd_p
->next_for_func
)
2648 if (!dd_p
->is_func_def
&& dd_p
->is_static
&& !dd_p
->definition
)
2650 const def_dec_info
*dd_p2
;
2651 const def_dec_info
*static_def
;
2653 /* We have now found a single static declaration for which we need to
2654 find a matching definition. We want to minimize the work (and the
2655 number of warnings), so we will find an appropriate (matching)
2656 static definition for this declaration, and then distribute it
2657 (as the definition for) any and all other static declarations
2658 for this function name which occur within the same file, and which
2659 do not already have definitions.
2661 Note that a trick is used here to prevent subsequent attempts to
2662 call find_static_definition for a given function-name & file
2663 if the first such call returns NULL. Essentially, we convert
2664 these NULL return values to -1, and put the -1 into the definition
2665 field for each other static declaration from the same file which
2666 does not already have an associated definition.
2667 This makes these other static declarations look like they are
2668 actually defined already when the outer loop here revisits them
2669 later on. Thus, the outer loop will skip over them. Later, we
2670 turn the -1's back to NULL's. */
2672 ((NONCONST def_dec_info
*) dd_p
)->definition
=
2673 (static_def
= find_static_definition (dd_p
))
2675 : (const def_dec_info
*) -1;
2677 for (dd_p2
= dd_p
->next_for_func
; dd_p2
; dd_p2
= dd_p2
->next_for_func
)
2678 if (!dd_p2
->is_func_def
&& dd_p2
->is_static
2679 && !dd_p2
->definition
&& (dd_p2
->file
== dd_p
->file
))
2680 ((NONCONST def_dec_info
*) dd_p2
)->definition
= dd_p
->definition
;
2683 /* Convert any dummy (-1) definitions we created in the step above back to
2684 NULL's (as they should be). */
2686 for (dd_p
= hp
->ddip
; dd_p
; dd_p
= dd_p
->next_for_func
)
2687 if (dd_p
->definition
== (def_dec_info
*) -1)
2688 ((NONCONST def_dec_info
*) dd_p
)->definition
= NULL
;
2691 #endif /* !defined (UNPROTOIZE) */
2693 /* Give a pointer into the clean text buffer, return a number which is the
2694 original source line number that the given pointer points into. */
2697 identify_lineno (const char *clean_p
)
2702 for (scan_p
= clean_text_base
; scan_p
<= clean_p
; scan_p
++)
2703 if (*scan_p
== '\n')
2708 /* Issue an error message and give up on doing this particular edit. */
2711 declare_source_confusing (const char *clean_p
)
2716 notice ("%s: %d: warning: source too confusing\n",
2717 shortpath (NULL
, convert_filename
), last_known_line_number
);
2719 notice ("%s: %d: warning: source too confusing\n",
2720 shortpath (NULL
, convert_filename
),
2721 identify_lineno (clean_p
));
2723 longjmp (source_confusion_recovery
, 1);
2726 /* Check that a condition which is expected to be true in the original source
2727 code is in fact true. If not, issue an error message and give up on
2728 converting this particular source file. */
2731 check_source (int cond
, const char *clean_p
)
2734 declare_source_confusing (clean_p
);
2737 /* If we think of the in-core cleaned text buffer as a memory mapped
2738 file (with the variable last_known_line_start acting as sort of a
2739 file pointer) then we can imagine doing "seeks" on the buffer. The
2740 following routine implements a kind of "seek" operation for the in-core
2741 (cleaned) copy of the source file. When finished, it returns a pointer to
2742 the start of a given (numbered) line in the cleaned text buffer.
2744 Note that protoize only has to "seek" in the forward direction on the
2745 in-core cleaned text file buffers, and it never needs to back up.
2747 This routine is made a little bit faster by remembering the line number
2748 (and pointer value) supplied (and returned) from the previous "seek".
2749 This prevents us from always having to start all over back at the top
2750 of the in-core cleaned buffer again. */
2753 seek_to_line (int n
)
2755 if (n
< last_known_line_number
)
2758 while (n
> last_known_line_number
)
2760 while (*last_known_line_start
!= '\n')
2761 check_source (++last_known_line_start
< clean_text_limit
, 0);
2762 last_known_line_start
++;
2763 last_known_line_number
++;
2765 return last_known_line_start
;
2768 /* Given a pointer to a character in the cleaned text buffer, return a pointer
2769 to the next non-whitespace character which follows it. */
2772 forward_to_next_token_char (const char *ptr
)
2774 for (++ptr
; ISSPACE ((const unsigned char)*ptr
);
2775 check_source (++ptr
< clean_text_limit
, 0))
2780 /* Copy a chunk of text of length `len' and starting at `str' to the current
2781 output buffer. Note that all attempts to add stuff to the current output
2782 buffer ultimately go through here. */
2785 output_bytes (const char *str
, size_t len
)
2787 if ((repl_write_ptr
+ 1) + len
>= repl_text_limit
)
2789 size_t new_size
= (repl_text_limit
- repl_text_base
) << 1;
2790 char *new_buf
= xrealloc (repl_text_base
, new_size
);
2792 repl_write_ptr
= new_buf
+ (repl_write_ptr
- repl_text_base
);
2793 repl_text_base
= new_buf
;
2794 repl_text_limit
= new_buf
+ new_size
;
2796 memcpy (repl_write_ptr
+ 1, str
, len
);
2797 repl_write_ptr
+= len
;
2800 /* Copy all bytes (except the trailing null) of a null terminated string to
2801 the current output buffer. */
2804 output_string (const char *str
)
2806 output_bytes (str
, strlen (str
));
2809 /* Copy some characters from the original text buffer to the current output
2812 This routine takes a pointer argument `p' which is assumed to be a pointer
2813 into the cleaned text buffer. The bytes which are copied are the `original'
2814 equivalents for the set of bytes between the last value of `clean_read_ptr'
2815 and the argument value `p'.
2817 The set of bytes copied however, comes *not* from the cleaned text buffer,
2818 but rather from the direct counterparts of these bytes within the original
2821 Thus, when this function is called, some bytes from the original text
2822 buffer (which may include original comments and preprocessing directives)
2823 will be copied into the output buffer.
2825 Note that the request implied when this routine is called includes the
2826 byte pointed to by the argument pointer `p'. */
2829 output_up_to (const char *p
)
2831 size_t copy_length
= (size_t) (p
- clean_read_ptr
);
2832 const char *copy_start
= orig_text_base
+(clean_read_ptr
-clean_text_base
)+1;
2834 if (copy_length
== 0)
2837 output_bytes (copy_start
, copy_length
);
2841 /* Given a pointer to a def_dec_info record which represents some form of
2842 definition of a function (perhaps a real definition, or in lieu of that
2843 perhaps just a declaration with a full prototype) return true if this
2844 function is one which we should avoid converting. Return false
2848 other_variable_style_function (const char *ansi_header
)
2852 /* See if we have a stdarg function, or a function which has stdarg style
2853 parameters or a stdarg style return type. */
2855 return strstr (ansi_header
, "...") != 0;
2857 #else /* !defined (UNPROTOIZE) */
2859 /* See if we have a varargs function, or a function which has varargs style
2860 parameters or a varargs style return type. */
2863 int len
= strlen (varargs_style_indicator
);
2865 for (p
= ansi_header
; p
; )
2867 const char *candidate
;
2869 if ((candidate
= strstr (p
, varargs_style_indicator
)) == 0)
2872 if (!is_id_char (candidate
[-1]) && !is_id_char (candidate
[len
]))
2878 #endif /* !defined (UNPROTOIZE) */
2881 /* Do the editing operation specifically for a function "declaration". Note
2882 that editing for function "definitions" are handled in a separate routine
2886 edit_fn_declaration (const def_dec_info
*def_dec_p
,
2887 const char *volatile clean_text_p
)
2889 const char *start_formals
;
2890 const char *end_formals
;
2891 const char *function_to_edit
= def_dec_p
->hash_entry
->symbol
;
2892 size_t func_name_len
= strlen (function_to_edit
);
2893 const char *end_of_fn_name
;
2897 const f_list_chain_item
*this_f_list_chain_item
;
2898 const def_dec_info
*definition
= def_dec_p
->definition
;
2900 /* If we are protoizing, and if we found no corresponding definition for
2901 this particular function declaration, then just leave this declaration
2902 exactly as it is. */
2907 /* If we are protoizing, and if the corresponding definition that we found
2908 for this particular function declaration defined an old style varargs
2909 function, then we want to issue a warning and just leave this function
2910 declaration unconverted. */
2912 if (other_variable_style_function (definition
->ansi_decl
))
2915 notice ("%s: %d: warning: varargs function declaration not converted\n",
2916 shortpath (NULL
, def_dec_p
->file
->hash_entry
->symbol
),
2921 #endif /* !defined (UNPROTOIZE) */
2923 /* Setup here to recover from confusing source code detected during this
2924 particular "edit". */
2927 if (setjmp (source_confusion_recovery
))
2929 restore_pointers ();
2930 notice ("%s: declaration of function `%s' not converted\n",
2931 pname
, function_to_edit
);
2935 /* We are editing a function declaration. The line number we did a seek to
2936 contains the comma or semicolon which follows the declaration. Our job
2937 now is to scan backwards looking for the function name. This name *must*
2938 be followed by open paren (ignoring whitespace, of course). We need to
2939 replace everything between that open paren and the corresponding closing
2940 paren. If we are protoizing, we need to insert the prototype-style
2941 formals lists. If we are unprotoizing, we need to just delete everything
2942 between the pairs of opening and closing parens. */
2944 /* First move up to the end of the line. */
2946 while (*clean_text_p
!= '\n')
2947 check_source (++clean_text_p
< clean_text_limit
, 0);
2948 clean_text_p
--; /* Point to just before the newline character. */
2950 /* Now we can scan backwards for the function name. */
2956 /* Scan leftwards until we find some character which can be
2957 part of an identifier. */
2959 while (!is_id_char (*clean_text_p
))
2960 check_source (--clean_text_p
> clean_read_ptr
, 0);
2962 /* Scan backwards until we find a char that cannot be part of an
2965 while (is_id_char (*clean_text_p
))
2966 check_source (--clean_text_p
> clean_read_ptr
, 0);
2968 /* Having found an "id break", see if the following id is the one
2969 that we are looking for. If so, then exit from this loop. */
2971 if (!strncmp (clean_text_p
+1, function_to_edit
, func_name_len
))
2973 char ch
= *(clean_text_p
+ 1 + func_name_len
);
2975 /* Must also check to see that the name in the source text
2976 ends where it should (in order to prevent bogus matches
2977 on similar but longer identifiers. */
2979 if (! is_id_char (ch
))
2980 break; /* exit from loop */
2984 /* We have now found the first perfect match for the function name in
2985 our backward search. This may or may not be the actual function
2986 name at the start of the actual function declaration (i.e. we could
2987 have easily been mislead). We will try to avoid getting fooled too
2988 often by looking forward for the open paren which should follow the
2989 identifier we just found. We ignore whitespace while hunting. If
2990 the next non-whitespace byte we see is *not* an open left paren,
2991 then we must assume that we have been fooled and we start over
2992 again accordingly. Note that there is no guarantee, that even if
2993 we do see the open paren, that we are in the right place.
2994 Programmers do the strangest things sometimes! */
2996 end_of_fn_name
= clean_text_p
+ strlen (def_dec_p
->hash_entry
->symbol
);
2997 start_formals
= forward_to_next_token_char (end_of_fn_name
);
2999 while (*start_formals
!= '(');
3001 /* start_of_formals now points to the opening left paren which immediately
3002 follows the name of the function. */
3004 /* Note that there may be several formals lists which need to be modified
3005 due to the possibility that the return type of this function is a
3006 pointer-to-function type. If there are several formals lists, we
3007 convert them in left-to-right order here. */
3010 this_f_list_chain_item
= definition
->f_list_chain
;
3011 #endif /* !defined (UNPROTOIZE) */
3018 end_formals
= start_formals
+ 1;
3020 for (; depth
; check_source (++end_formals
< clean_text_limit
, 0))
3022 switch (*end_formals
)
3035 /* end_formals now points to the closing right paren of the formals
3036 list whose left paren is pointed to by start_formals. */
3038 /* Now, if we are protoizing, we insert the new ANSI-style formals list
3039 attached to the associated definition of this function. If however
3040 we are unprotoizing, then we simply delete any formals list which
3043 output_up_to (start_formals
);
3045 if (this_f_list_chain_item
)
3047 output_string (this_f_list_chain_item
->formals_list
);
3048 this_f_list_chain_item
= this_f_list_chain_item
->chain_next
;
3053 notice ("%s: warning: too many parameter lists in declaration of `%s'\n",
3054 pname
, def_dec_p
->hash_entry
->symbol
);
3055 check_source (0, end_formals
); /* leave the declaration intact */
3057 #endif /* !defined (UNPROTOIZE) */
3058 clean_read_ptr
= end_formals
- 1;
3060 /* Now see if it looks like there may be another formals list associated
3061 with the function declaration that we are converting (following the
3062 formals list that we just converted. */
3065 const char *another_r_paren
= forward_to_next_token_char (end_formals
);
3067 if ((*another_r_paren
!= ')')
3068 || (*(start_formals
= forward_to_next_token_char (another_r_paren
)) != '('))
3071 if (this_f_list_chain_item
)
3074 notice ("\n%s: warning: too few parameter lists in declaration of `%s'\n",
3075 pname
, def_dec_p
->hash_entry
->symbol
);
3076 check_source (0, start_formals
); /* leave the decl intact */
3078 #endif /* !defined (UNPROTOIZE) */
3084 /* There does appear to be yet another formals list, so loop around
3085 again, and convert it also. */
3089 /* Edit a whole group of formals lists, starting with the rightmost one
3090 from some set of formals lists. This routine is called once (from the
3091 outside) for each function declaration which is converted. It is
3092 recursive however, and it calls itself once for each remaining formal
3093 list that lies to the left of the one it was originally called to work
3094 on. Thus, a whole set gets done in right-to-left order.
3096 This routine returns nonzero if it thinks that it should not be trying
3097 to convert this particular function definition (because the name of the
3098 function doesn't match the one expected). */
3101 edit_formals_lists (const char *end_formals
, unsigned int f_list_count
,
3102 const def_dec_info
*def_dec_p
)
3104 const char *start_formals
;
3107 start_formals
= end_formals
- 1;
3109 for (; depth
; check_source (--start_formals
> clean_read_ptr
, 0))
3111 switch (*start_formals
)
3123 /* start_formals now points to the opening left paren of the formals list. */
3129 const char *next_end
;
3131 /* There should be more formal lists to the left of here. */
3133 next_end
= start_formals
- 1;
3134 check_source (next_end
> clean_read_ptr
, 0);
3135 while (ISSPACE ((const unsigned char)*next_end
))
3136 check_source (--next_end
> clean_read_ptr
, 0);
3137 check_source (*next_end
== ')', next_end
);
3138 check_source (--next_end
> clean_read_ptr
, 0);
3139 check_source (*next_end
== ')', next_end
);
3140 if (edit_formals_lists (next_end
, f_list_count
, def_dec_p
))
3144 /* Check that the function name in the header we are working on is the same
3145 as the one we would expect to find. If not, issue a warning and return
3148 if (f_list_count
== 0)
3150 const char *expected
= def_dec_p
->hash_entry
->symbol
;
3151 const char *func_name_start
;
3152 const char *func_name_limit
;
3153 size_t func_name_len
;
3155 for (func_name_limit
= start_formals
-1;
3156 ISSPACE ((const unsigned char)*func_name_limit
); )
3157 check_source (--func_name_limit
> clean_read_ptr
, 0);
3159 for (func_name_start
= func_name_limit
++;
3160 is_id_char (*func_name_start
);
3162 check_source (func_name_start
> clean_read_ptr
, 0);
3164 func_name_len
= func_name_limit
- func_name_start
;
3165 if (func_name_len
== 0)
3166 check_source (0, func_name_start
);
3167 if (func_name_len
!= strlen (expected
)
3168 || strncmp (func_name_start
, expected
, func_name_len
))
3170 notice ("%s: %d: warning: found `%s' but expected `%s'\n",
3171 shortpath (NULL
, def_dec_p
->file
->hash_entry
->symbol
),
3172 identify_lineno (func_name_start
),
3173 dupnstr (func_name_start
, func_name_len
),
3179 output_up_to (start_formals
);
3182 if (f_list_count
== 0)
3183 output_string (def_dec_p
->formal_names
);
3184 #else /* !defined (UNPROTOIZE) */
3186 unsigned f_list_depth
;
3187 const f_list_chain_item
*flci_p
= def_dec_p
->f_list_chain
;
3189 /* At this point, the current value of f_list count says how many
3190 links we have to follow through the f_list_chain to get to the
3191 particular formals list that we need to output next. */
3193 for (f_list_depth
= 0; f_list_depth
< f_list_count
; f_list_depth
++)
3194 flci_p
= flci_p
->chain_next
;
3195 output_string (flci_p
->formals_list
);
3197 #endif /* !defined (UNPROTOIZE) */
3199 clean_read_ptr
= end_formals
- 1;
3203 /* Given a pointer to a byte in the clean text buffer which points to
3204 the beginning of a line that contains a "follower" token for a
3205 function definition header, do whatever is necessary to find the
3206 right closing paren for the rightmost formals list of the function
3207 definition header. */
3210 find_rightmost_formals_list (const char *clean_text_p
)
3212 const char *end_formals
;
3214 /* We are editing a function definition. The line number we did a seek
3215 to contains the first token which immediately follows the entire set of
3216 formals lists which are part of this particular function definition
3219 Our job now is to scan leftwards in the clean text looking for the
3220 right-paren which is at the end of the function header's rightmost
3223 If we ignore whitespace, this right paren should be the first one we
3224 see which is (ignoring whitespace) immediately followed either by the
3225 open curly-brace beginning the function body or by an alphabetic
3226 character (in the case where the function definition is in old (K&R)
3227 style and there are some declarations of formal parameters). */
3229 /* It is possible that the right paren we are looking for is on the
3230 current line (together with its following token). Just in case that
3231 might be true, we start out here by skipping down to the right end of
3232 the current line before starting our scan. */
3234 for (end_formals
= clean_text_p
; *end_formals
!= '\n'; end_formals
++)
3240 /* Now scan backwards while looking for the right end of the rightmost
3241 formals list associated with this function definition. */
3245 const char *l_brace_p
;
3247 /* Look leftward and try to find a right-paren. */
3249 while (*end_formals
!= ')')
3251 if (ISSPACE ((unsigned char)*end_formals
))
3252 while (ISSPACE ((unsigned char)*end_formals
))
3253 check_source (--end_formals
> clean_read_ptr
, 0);
3255 check_source (--end_formals
> clean_read_ptr
, 0);
3258 ch
= *(l_brace_p
= forward_to_next_token_char (end_formals
));
3259 /* Since we are unprotoizing an ANSI-style (prototyped) function
3260 definition, there had better not be anything (except whitespace)
3261 between the end of the ANSI formals list and the beginning of the
3262 function body (i.e. the '{'). */
3264 check_source (ch
== '{', l_brace_p
);
3267 #else /* !defined (UNPROTOIZE) */
3269 /* Now scan backwards while looking for the right end of the rightmost
3270 formals list associated with this function definition. */
3275 const char *l_brace_p
;
3277 /* Look leftward and try to find a right-paren. */
3279 while (*end_formals
!= ')')
3281 if (ISSPACE ((const unsigned char)*end_formals
))
3282 while (ISSPACE ((const unsigned char)*end_formals
))
3283 check_source (--end_formals
> clean_read_ptr
, 0);
3285 check_source (--end_formals
> clean_read_ptr
, 0);
3288 ch
= *(l_brace_p
= forward_to_next_token_char (end_formals
));
3290 /* Since it is possible that we found a right paren before the starting
3291 '{' of the body which IS NOT the one at the end of the real K&R
3292 formals list (say for instance, we found one embedded inside one of
3293 the old K&R formal parameter declarations) we have to check to be
3294 sure that this is in fact the right paren that we were looking for.
3296 The one we were looking for *must* be followed by either a '{' or
3297 by an alphabetic character, while others *cannot* validly be followed
3298 by such characters. */
3300 if ((ch
== '{') || ISALPHA ((unsigned char) ch
))
3303 /* At this point, we have found a right paren, but we know that it is
3304 not the one we were looking for, so backup one character and keep
3307 check_source (--end_formals
> clean_read_ptr
, 0);
3310 #endif /* !defined (UNPROTOIZE) */
3317 /* Insert into the output file a totally new declaration for a function
3318 which (up until now) was being called from within the current block
3319 without having been declared at any point such that the declaration
3320 was visible (i.e. in scope) at the point of the call.
3322 We need to add in explicit declarations for all such function calls
3323 in order to get the full benefit of prototype-based function call
3324 parameter type checking. */
3327 add_local_decl (const def_dec_info
*def_dec_p
, const char *clean_text_p
)
3329 const char *start_of_block
;
3330 const char *function_to_edit
= def_dec_p
->hash_entry
->symbol
;
3332 /* Don't insert new local explicit declarations unless explicitly requested
3338 /* Setup here to recover from confusing source code detected during this
3339 particular "edit". */
3342 if (setjmp (source_confusion_recovery
))
3344 restore_pointers ();
3345 notice ("%s: local declaration for function `%s' not inserted\n",
3346 pname
, function_to_edit
);
3350 /* We have already done a seek to the start of the line which should
3351 contain *the* open curly brace which begins the block in which we need
3352 to insert an explicit function declaration (to replace the implicit one).
3354 Now we scan that line, starting from the left, until we find the
3355 open curly brace we are looking for. Note that there may actually be
3356 multiple open curly braces on the given line, but we will be happy
3357 with the leftmost one no matter what. */
3359 start_of_block
= clean_text_p
;
3360 while (*start_of_block
!= '{' && *start_of_block
!= '\n')
3361 check_source (++start_of_block
< clean_text_limit
, 0);
3363 /* Note that the line from the original source could possibly
3364 contain *no* open curly braces! This happens if the line contains
3365 a macro call which expands into a chunk of text which includes a
3366 block (and that block's associated open and close curly braces).
3367 In cases like this, we give up, issue a warning, and do nothing. */
3369 if (*start_of_block
!= '{')
3372 notice ("\n%s: %d: warning: can't add declaration of `%s' into macro call\n",
3373 def_dec_p
->file
->hash_entry
->symbol
, def_dec_p
->line
,
3374 def_dec_p
->hash_entry
->symbol
);
3378 /* Figure out what a nice (pretty) indentation would be for the new
3379 declaration we are adding. In order to do this, we must scan forward
3380 from the '{' until we find the first line which starts with some
3381 non-whitespace characters (i.e. real "token" material). */
3384 const char *ep
= forward_to_next_token_char (start_of_block
) - 1;
3387 /* Now we have ep pointing at the rightmost byte of some existing indent
3388 stuff. At least that is the hope.
3390 We can now just scan backwards and find the left end of the existing
3391 indentation string, and then copy it to the output buffer. */
3393 for (sp
= ep
; ISSPACE ((const unsigned char)*sp
) && *sp
!= '\n'; sp
--)
3396 /* Now write out the open { which began this block, and any following
3397 trash up to and including the last byte of the existing indent that
3402 /* Now we go ahead and insert the new declaration at this point.
3404 If the definition of the given function is in the same file that we
3405 are currently editing, and if its full ANSI declaration normally
3406 would start with the keyword `extern', suppress the `extern'. */
3409 const char *decl
= def_dec_p
->definition
->ansi_decl
;
3411 if ((*decl
== 'e') && (def_dec_p
->file
== def_dec_p
->definition
->file
))
3413 output_string (decl
);
3416 /* Finally, write out a new indent string, just like the preceding one
3417 that we found. This will typically include a newline as the first
3418 character of the indent string. */
3420 output_bytes (sp
, (size_t) (ep
- sp
) + 1);
3424 /* Given a pointer to a file_info record, and a pointer to the beginning
3425 of a line (in the clean text buffer) which is assumed to contain the
3426 first "follower" token for the first function definition header in the
3427 given file, find a good place to insert some new global function
3428 declarations (which will replace scattered and imprecise implicit ones)
3429 and then insert the new explicit declaration at that point in the file. */
3432 add_global_decls (const file_info
*file_p
, const char *clean_text_p
)
3434 const def_dec_info
*dd_p
;
3437 /* Setup here to recover from confusing source code detected during this
3438 particular "edit". */
3441 if (setjmp (source_confusion_recovery
))
3443 restore_pointers ();
3444 notice ("%s: global declarations for file `%s' not inserted\n",
3445 pname
, shortpath (NULL
, file_p
->hash_entry
->symbol
));
3449 /* Start by finding a good location for adding the new explicit function
3450 declarations. To do this, we scan backwards, ignoring whitespace
3451 and comments and other junk until we find either a semicolon, or until
3452 we hit the beginning of the file. */
3454 scan_p
= find_rightmost_formals_list (clean_text_p
);
3457 if (scan_p
< clean_text_base
)
3459 check_source (scan_p
> clean_read_ptr
, 0);
3464 /* scan_p now points either to a semicolon, or to just before the start
3465 of the whole file. */
3467 /* Now scan forward for the first non-whitespace character. In theory,
3468 this should be the first character of the following function definition
3469 header. We will put in the added declarations just prior to that. */
3472 while (ISSPACE ((const unsigned char)*scan_p
))
3476 output_up_to (scan_p
);
3478 /* Now write out full prototypes for all of the things that had been
3479 implicitly declared in this file (but only those for which we were
3480 actually able to find unique matching definitions). Avoid duplicates
3481 by marking things that we write out as we go. */
3484 int some_decls_added
= 0;
3486 for (dd_p
= file_p
->defs_decs
; dd_p
; dd_p
= dd_p
->next_in_file
)
3487 if (dd_p
->is_implicit
&& dd_p
->definition
&& !dd_p
->definition
->written
)
3489 const char *decl
= dd_p
->definition
->ansi_decl
;
3491 /* If the function for which we are inserting a declaration is
3492 actually defined later in the same file, then suppress the
3493 leading `extern' keyword (if there is one). */
3495 if (*decl
== 'e' && (dd_p
->file
== dd_p
->definition
->file
))
3498 output_string ("\n");
3499 output_string (decl
);
3500 some_decls_added
= 1;
3501 ((NONCONST def_dec_info
*) dd_p
->definition
)->written
= 1;
3503 if (some_decls_added
)
3504 output_string ("\n\n");
3507 /* Unmark all of the definitions that we just marked. */
3509 for (dd_p
= file_p
->defs_decs
; dd_p
; dd_p
= dd_p
->next_in_file
)
3510 if (dd_p
->definition
)
3511 ((NONCONST def_dec_info
*) dd_p
->definition
)->written
= 0;
3514 #endif /* !defined (UNPROTOIZE) */
3516 /* Do the editing operation specifically for a function "definition". Note
3517 that editing operations for function "declarations" are handled by a
3518 separate routine above. */
3521 edit_fn_definition (const def_dec_info
*def_dec_p
, const char *clean_text_p
)
3523 const char *end_formals
;
3524 const char *function_to_edit
= def_dec_p
->hash_entry
->symbol
;
3526 /* Setup here to recover from confusing source code detected during this
3527 particular "edit". */
3530 if (setjmp (source_confusion_recovery
))
3532 restore_pointers ();
3533 notice ("%s: definition of function `%s' not converted\n",
3534 pname
, function_to_edit
);
3538 end_formals
= find_rightmost_formals_list (clean_text_p
);
3540 /* end_of_formals now points to the closing right paren of the rightmost
3541 formals list which is actually part of the `header' of the function
3542 definition that we are converting. */
3544 /* If the header of this function definition looks like it declares a
3545 function with a variable number of arguments, and if the way it does
3546 that is different from that way we would like it (i.e. varargs vs.
3547 stdarg) then issue a warning and leave the header unconverted. */
3549 if (other_variable_style_function (def_dec_p
->ansi_decl
))
3552 notice ("%s: %d: warning: definition of %s not converted\n",
3553 shortpath (NULL
, def_dec_p
->file
->hash_entry
->symbol
),
3554 identify_lineno (end_formals
),
3556 output_up_to (end_formals
);
3560 if (edit_formals_lists (end_formals
, def_dec_p
->f_list_count
, def_dec_p
))
3562 restore_pointers ();
3563 notice ("%s: definition of function `%s' not converted\n",
3564 pname
, function_to_edit
);
3568 /* Have to output the last right paren because this never gets flushed by
3569 edit_formals_list. */
3571 output_up_to (end_formals
);
3576 const char *semicolon_p
;
3577 const char *limit_p
;
3579 int had_newlines
= 0;
3581 /* Now write out the K&R style formal declarations, one per line. */
3583 decl_p
= def_dec_p
->formal_decls
;
3584 limit_p
= decl_p
+ strlen (decl_p
);
3585 for (;decl_p
< limit_p
; decl_p
= semicolon_p
+ 2)
3587 for (semicolon_p
= decl_p
; *semicolon_p
!= ';'; semicolon_p
++)
3589 output_string ("\n");
3590 output_string (indent_string
);
3591 output_bytes (decl_p
, (size_t) ((semicolon_p
+ 1) - decl_p
));
3594 /* If there are no newlines between the end of the formals list and the
3595 start of the body, we should insert one now. */
3597 for (scan_p
= end_formals
+1; *scan_p
!= '{'; )
3599 if (*scan_p
== '\n')
3604 check_source (++scan_p
< clean_text_limit
, 0);
3607 output_string ("\n");
3609 #else /* !defined (UNPROTOIZE) */
3610 /* If we are protoizing, there may be some flotsam & jetsam (like comments
3611 and preprocessing directives) after the old formals list but before
3612 the following { and we would like to preserve that stuff while effectively
3613 deleting the existing K&R formal parameter declarations. We do so here
3614 in a rather tricky way. Basically, we white out any stuff *except*
3615 the comments/pp-directives in the original text buffer, then, if there
3616 is anything in this area *other* than whitespace, we output it. */
3618 const char *end_formals_orig
;
3619 const char *start_body
;
3620 const char *start_body_orig
;
3622 const char *scan_orig
;
3623 int have_flotsam
= 0;
3624 int have_newlines
= 0;
3626 for (start_body
= end_formals
+ 1; *start_body
!= '{';)
3627 check_source (++start_body
< clean_text_limit
, 0);
3629 end_formals_orig
= orig_text_base
+ (end_formals
- clean_text_base
);
3630 start_body_orig
= orig_text_base
+ (start_body
- clean_text_base
);
3631 scan
= end_formals
+ 1;
3632 scan_orig
= end_formals_orig
+ 1;
3633 for (; scan
< start_body
; scan
++, scan_orig
++)
3635 if (*scan
== *scan_orig
)
3637 have_newlines
|= (*scan_orig
== '\n');
3638 /* Leave identical whitespace alone. */
3639 if (!ISSPACE ((const unsigned char)*scan_orig
))
3640 *((NONCONST
char *) scan_orig
) = ' '; /* identical - so whiteout */
3646 output_bytes (end_formals_orig
+ 1,
3647 (size_t) (start_body_orig
- end_formals_orig
) - 1);
3650 output_string ("\n");
3652 output_string (" ");
3653 clean_read_ptr
= start_body
- 1;
3655 #endif /* !defined (UNPROTOIZE) */
3658 /* Clean up the clean text buffer. Do this by converting comments and
3659 preprocessing directives into spaces. Also convert line continuations
3660 into whitespace. Also, whiteout string and character literals. */
3663 do_cleaning (char *new_clean_text_base
, const char *new_clean_text_limit
)
3666 int non_whitespace_since_newline
= 0;
3668 for (scan_p
= new_clean_text_base
; scan_p
< new_clean_text_limit
; scan_p
++)
3672 case '/': /* Handle comments. */
3673 if (scan_p
[1] != '*')
3675 non_whitespace_since_newline
= 1;
3679 while (scan_p
[1] != '/' || scan_p
[0] != '*')
3681 if (!ISSPACE ((const unsigned char)*scan_p
))
3683 if (++scan_p
>= new_clean_text_limit
)
3690 case '#': /* Handle pp directives. */
3691 if (non_whitespace_since_newline
)
3694 while (scan_p
[1] != '\n' || scan_p
[0] == '\\')
3696 if (!ISSPACE ((const unsigned char)*scan_p
))
3698 if (++scan_p
>= new_clean_text_limit
)
3704 case '\'': /* Handle character literals. */
3705 non_whitespace_since_newline
= 1;
3706 while (scan_p
[1] != '\'' || scan_p
[0] == '\\')
3708 if (scan_p
[0] == '\\'
3709 && !ISSPACE ((const unsigned char) scan_p
[1]))
3711 if (!ISSPACE ((const unsigned char)*scan_p
))
3713 if (++scan_p
>= new_clean_text_limit
)
3719 case '"': /* Handle string literals. */
3720 non_whitespace_since_newline
= 1;
3721 while (scan_p
[1] != '"' || scan_p
[0] == '\\')
3723 if (scan_p
[0] == '\\'
3724 && !ISSPACE ((const unsigned char) scan_p
[1]))
3726 if (!ISSPACE ((const unsigned char)*scan_p
))
3728 if (++scan_p
>= new_clean_text_limit
)
3731 if (!ISSPACE ((const unsigned char)*scan_p
))
3736 case '\\': /* Handle line continuations. */
3737 if (scan_p
[1] != '\n')
3743 non_whitespace_since_newline
= 0; /* Reset. */
3752 break; /* Whitespace characters. */
3756 non_whitespace_since_newline
= 1;
3762 /* Given a pointer to the closing right parenthesis for a particular formals
3763 list (in the clean text buffer) find the corresponding left parenthesis
3764 and return a pointer to it. */
3767 careful_find_l_paren (const char *p
)
3772 for (paren_depth
= 1, q
= p
-1; paren_depth
; check_source (--q
>= clean_text_base
, 0))
3787 /* Scan the clean text buffer for cases of function definitions that we
3788 don't really know about because they were preprocessed out when the
3789 aux info files were created.
3791 In this version of protoize/unprotoize we just give a warning for each
3792 one found. A later version may be able to at least unprotoize such
3795 Note that we may easily find all function definitions simply by
3796 looking for places where there is a left paren which is (ignoring
3797 whitespace) immediately followed by either a left-brace or by an
3798 upper or lower case letter. Whenever we find this combination, we
3799 have also found a function definition header.
3801 Finding function *declarations* using syntactic clues is much harder.
3802 I will probably try to do this in a later version though. */
3805 scan_for_missed_items (const file_info
*file_p
)
3807 static const char *scan_p
;
3808 const char *limit
= clean_text_limit
- 3;
3809 static const char *backup_limit
;
3811 backup_limit
= clean_text_base
- 1;
3813 for (scan_p
= clean_text_base
; scan_p
< limit
; scan_p
++)
3817 static const char *last_r_paren
;
3818 const char *ahead_p
;
3820 last_r_paren
= scan_p
;
3822 for (ahead_p
= scan_p
+ 1; ISSPACE ((const unsigned char)*ahead_p
); )
3823 check_source (++ahead_p
< limit
, limit
);
3825 scan_p
= ahead_p
- 1;
3827 if (ISALPHA ((const unsigned char)*ahead_p
) || *ahead_p
== '{')
3829 const char *last_l_paren
;
3830 const int lineno
= identify_lineno (ahead_p
);
3832 if (setjmp (source_confusion_recovery
))
3835 /* We know we have a function definition header. Now skip
3836 leftwards over all of its associated formals lists. */
3840 last_l_paren
= careful_find_l_paren (last_r_paren
);
3841 for (last_r_paren
= last_l_paren
-1;
3842 ISSPACE ((const unsigned char)*last_r_paren
); )
3843 check_source (--last_r_paren
>= backup_limit
, backup_limit
);
3845 while (*last_r_paren
== ')');
3847 if (is_id_char (*last_r_paren
))
3849 const char *id_limit
= last_r_paren
+ 1;
3850 const char *id_start
;
3852 const def_dec_info
*dd_p
;
3854 for (id_start
= id_limit
-1; is_id_char (*id_start
); )
3855 check_source (--id_start
>= backup_limit
, backup_limit
);
3857 backup_limit
= id_start
;
3858 if ((id_length
= (size_t) (id_limit
- id_start
)) == 0)
3862 char *func_name
= alloca (id_length
+ 1);
3863 static const char * const stmt_keywords
[]
3864 = { "if", "else", "do", "while", "for", "switch", "case", "return", 0 };
3865 const char * const *stmt_keyword
;
3867 strncpy (func_name
, id_start
, id_length
);
3868 func_name
[id_length
] = '\0';
3870 /* We must check here to see if we are actually looking at
3871 a statement rather than an actual function call. */
3873 for (stmt_keyword
= stmt_keywords
; *stmt_keyword
; stmt_keyword
++)
3874 if (!strcmp (func_name
, *stmt_keyword
))
3878 notice ("%s: found definition of `%s' at %s(%d)\n",
3881 shortpath (NULL
, file_p
->hash_entry
->symbol
),
3882 identify_lineno (id_start
));
3884 /* We really should check for a match of the function name
3885 here also, but why bother. */
3887 for (dd_p
= file_p
->defs_decs
; dd_p
; dd_p
= dd_p
->next_in_file
)
3888 if (dd_p
->is_func_def
&& dd_p
->line
== lineno
)
3891 /* If we make it here, then we did not know about this
3892 function definition. */
3894 notice ("%s: %d: warning: `%s' excluded by preprocessing\n",
3895 shortpath (NULL
, file_p
->hash_entry
->symbol
),
3896 identify_lineno (id_start
), func_name
);
3897 notice ("%s: function definition not converted\n",
3907 /* Do all editing operations for a single source file (either a "base" file
3908 or an "include" file). To do this we read the file into memory, keep a
3909 virgin copy there, make another cleaned in-core copy of the original file
3910 (i.e. one in which all of the comments and preprocessing directives have
3911 been replaced with whitespace), then use these two in-core copies of the
3912 file to make a new edited in-core copy of the file. Finally, rename the
3913 original file (as a way of saving it), and then write the edited version
3914 of the file from core to a disk file of the same name as the original.
3916 Note that the trick of making a copy of the original sans comments &
3917 preprocessing directives make the editing a whole lot easier. */
3920 edit_file (const hash_table_entry
*hp
)
3922 struct stat stat_buf
;
3923 const file_info
*file_p
= hp
->fip
;
3924 char *new_orig_text_base
;
3925 char *new_orig_text_limit
;
3926 char *new_clean_text_base
;
3927 char *new_clean_text_limit
;
3930 int first_definition_in_file
;
3932 /* If we are not supposed to be converting this file, or if there is
3933 nothing in there which needs converting, just skip this file. */
3935 if (!needs_to_be_converted (file_p
))
3938 convert_filename
= file_p
->hash_entry
->symbol
;
3940 /* Convert a file if it is in a directory where we want conversion
3941 and the file is not excluded. */
3943 if (!directory_specified_p (convert_filename
)
3944 || file_excluded_p (convert_filename
))
3948 /* Don't even mention "system" include files unless we are
3949 protoizing. If we are protoizing, we mention these as a
3950 gentle way of prodding the user to convert his "system"
3951 include files to prototype format. */
3952 && !in_system_include_dir (convert_filename
)
3953 #endif /* defined (UNPROTOIZE) */
3955 notice ("%s: `%s' not converted\n",
3956 pname
, shortpath (NULL
, convert_filename
));
3960 /* Let the user know what we are up to. */
3963 notice ("%s: would convert file `%s'\n",
3964 pname
, shortpath (NULL
, convert_filename
));
3966 notice ("%s: converting file `%s'\n",
3967 pname
, shortpath (NULL
, convert_filename
));
3970 /* Find out the size (in bytes) of the original file. */
3972 /* The cast avoids an erroneous warning on AIX. */
3973 if (stat (convert_filename
, &stat_buf
) == -1)
3975 int errno_val
= errno
;
3976 notice ("%s: can't get status for file `%s': %s\n",
3977 pname
, shortpath (NULL
, convert_filename
),
3978 xstrerror (errno_val
));
3981 orig_size
= stat_buf
.st_size
;
3983 /* Allocate a buffer to hold the original text. */
3985 orig_text_base
= new_orig_text_base
= xmalloc (orig_size
+ 2);
3986 orig_text_limit
= new_orig_text_limit
= new_orig_text_base
+ orig_size
;
3988 /* Allocate a buffer to hold the cleaned-up version of the original text. */
3990 clean_text_base
= new_clean_text_base
= xmalloc (orig_size
+ 2);
3991 clean_text_limit
= new_clean_text_limit
= new_clean_text_base
+ orig_size
;
3992 clean_read_ptr
= clean_text_base
- 1;
3994 /* Allocate a buffer that will hopefully be large enough to hold the entire
3995 converted output text. As an initial guess for the maximum size of the
3996 output buffer, use 125% of the size of the original + some extra. This
3997 buffer can be expanded later as needed. */
3999 repl_size
= orig_size
+ (orig_size
>> 2) + 4096;
4000 repl_text_base
= xmalloc (repl_size
+ 2);
4001 repl_text_limit
= repl_text_base
+ repl_size
- 1;
4002 repl_write_ptr
= repl_text_base
- 1;
4008 /* Open the file to be converted in READ ONLY mode. */
4010 fd_flags
= O_RDONLY
;
4012 /* Use binary mode to avoid having to deal with different EOL characters. */
4013 fd_flags
|= O_BINARY
;
4015 if ((input_file
= open (convert_filename
, fd_flags
, 0444)) == -1)
4017 int errno_val
= errno
;
4018 notice ("%s: can't open file `%s' for reading: %s\n",
4019 pname
, shortpath (NULL
, convert_filename
),
4020 xstrerror (errno_val
));
4024 /* Read the entire original source text file into the original text buffer
4025 in one swell fwoop. Then figure out where the end of the text is and
4026 make sure that it ends with a newline followed by a null. */
4028 if (safe_read (input_file
, new_orig_text_base
, orig_size
) !=
4031 int errno_val
= errno
;
4033 notice ("\n%s: error reading input file `%s': %s\n",
4034 pname
, shortpath (NULL
, convert_filename
),
4035 xstrerror (errno_val
));
4042 if (orig_size
== 0 || orig_text_limit
[-1] != '\n')
4044 *new_orig_text_limit
++ = '\n';
4048 /* Create the cleaned up copy of the original text. */
4050 memcpy (new_clean_text_base
, orig_text_base
,
4051 (size_t) (orig_text_limit
- orig_text_base
));
4052 do_cleaning (new_clean_text_base
, new_clean_text_limit
);
4057 size_t clean_size
= orig_text_limit
- orig_text_base
;
4058 char *const clean_filename
= alloca (strlen (convert_filename
) + 6 + 1);
4060 /* Open (and create) the clean file. */
4062 strcpy (clean_filename
, convert_filename
);
4063 strcat (clean_filename
, ".clean");
4064 if ((clean_file
= creat (clean_filename
, 0666)) == -1)
4066 int errno_val
= errno
;
4067 notice ("%s: can't create/open clean file `%s': %s\n",
4068 pname
, shortpath (NULL
, clean_filename
),
4069 xstrerror (errno_val
));
4073 /* Write the clean file. */
4075 safe_write (clean_file
, new_clean_text_base
, clean_size
, clean_filename
);
4081 /* Do a simplified scan of the input looking for things that were not
4082 mentioned in the aux info files because of the fact that they were
4083 in a region of the source which was preprocessed-out (via #if or
4086 scan_for_missed_items (file_p
);
4088 /* Setup to do line-oriented forward seeking in the clean text buffer. */
4090 last_known_line_number
= 1;
4091 last_known_line_start
= clean_text_base
;
4093 /* Now get down to business and make all of the necessary edits. */
4096 const def_dec_info
*def_dec_p
;
4098 first_definition_in_file
= 1;
4099 def_dec_p
= file_p
->defs_decs
;
4100 for (; def_dec_p
; def_dec_p
= def_dec_p
->next_in_file
)
4102 const char *clean_text_p
= seek_to_line (def_dec_p
->line
);
4104 /* clean_text_p now points to the first character of the line which
4105 contains the `terminator' for the declaration or definition that
4106 we are about to process. */
4110 if (global_flag
&& def_dec_p
->is_func_def
&& first_definition_in_file
)
4112 add_global_decls (def_dec_p
->file
, clean_text_p
);
4113 first_definition_in_file
= 0;
4116 /* Don't edit this item if it is already in prototype format or if it
4117 is a function declaration and we have found no corresponding
4120 if (def_dec_p
->prototyped
4121 || (!def_dec_p
->is_func_def
&& !def_dec_p
->definition
))
4124 #endif /* !defined (UNPROTOIZE) */
4126 if (def_dec_p
->is_func_def
)
4127 edit_fn_definition (def_dec_p
, clean_text_p
);
4130 if (def_dec_p
->is_implicit
)
4131 add_local_decl (def_dec_p
, clean_text_p
);
4133 #endif /* !defined (UNPROTOIZE) */
4134 edit_fn_declaration (def_dec_p
, clean_text_p
);
4138 /* Finalize things. Output the last trailing part of the original text. */
4140 output_up_to (clean_text_limit
- 1);
4142 /* If this is just a test run, stop now and just deallocate the buffers. */
4146 free (new_orig_text_base
);
4147 free (new_clean_text_base
);
4148 free (repl_text_base
);
4152 /* Change the name of the original input file. This is just a quick way of
4153 saving the original file. */
4158 = xmalloc (strlen (convert_filename
) + strlen (save_suffix
) + 2);
4160 strcpy (new_filename
, convert_filename
);
4162 /* MSDOS filenames are restricted to 8.3 format, so we save `foo.c'
4163 as `foo.<save_suffix>'. */
4164 new_filename
[(strlen (convert_filename
) - 1] = '\0';
4166 strcat (new_filename
, save_suffix
);
4168 /* Don't overwrite existing file. */
4169 if (access (new_filename
, F_OK
) == 0)
4172 notice ("%s: warning: file `%s' already saved in `%s'\n",
4174 shortpath (NULL
, convert_filename
),
4175 shortpath (NULL
, new_filename
));
4177 else if (rename (convert_filename
, new_filename
) == -1)
4179 int errno_val
= errno
;
4180 notice ("%s: can't link file `%s' to `%s': %s\n",
4182 shortpath (NULL
, convert_filename
),
4183 shortpath (NULL
, new_filename
),
4184 xstrerror (errno_val
));
4189 if (unlink (convert_filename
) == -1)
4191 int errno_val
= errno
;
4192 /* The file may have already been renamed. */
4193 if (errno_val
!= ENOENT
)
4195 notice ("%s: can't delete file `%s': %s\n",
4196 pname
, shortpath (NULL
, convert_filename
),
4197 xstrerror (errno_val
));
4205 /* Open (and create) the output file. */
4207 if ((output_file
= creat (convert_filename
, 0666)) == -1)
4209 int errno_val
= errno
;
4210 notice ("%s: can't create/open output file `%s': %s\n",
4211 pname
, shortpath (NULL
, convert_filename
),
4212 xstrerror (errno_val
));
4216 /* Use binary mode to avoid changing the existing EOL character. */
4217 setmode (output_file
, O_BINARY
);
4220 /* Write the output file. */
4223 unsigned int out_size
= (repl_write_ptr
+ 1) - repl_text_base
;
4225 safe_write (output_file
, repl_text_base
, out_size
, convert_filename
);
4228 close (output_file
);
4231 /* Deallocate the conversion buffers. */
4233 free (new_orig_text_base
);
4234 free (new_clean_text_base
);
4235 free (repl_text_base
);
4237 /* Change the mode of the output file to match the original file. */
4239 /* The cast avoids an erroneous warning on AIX. */
4240 if (chmod (convert_filename
, stat_buf
.st_mode
) == -1)
4242 int errno_val
= errno
;
4243 notice ("%s: can't change mode of file `%s': %s\n",
4244 pname
, shortpath (NULL
, convert_filename
),
4245 xstrerror (errno_val
));
4248 /* Note: We would try to change the owner and group of the output file
4249 to match those of the input file here, except that may not be a good
4250 thing to do because it might be misleading. Also, it might not even
4251 be possible to do that (on BSD systems with quotas for instance). */
4254 /* Do all of the individual steps needed to do the protoization (or
4255 unprotoization) of the files referenced in the aux_info files given
4256 in the command line. */
4259 do_processing (void)
4261 const char * const *base_pp
;
4262 const char * const * const end_pps
4263 = &base_source_filenames
[n_base_source_files
];
4267 #endif /* !defined (UNPROTOIZE) */
4269 /* One-by-one, check (and create if necessary), open, and read all of the
4270 stuff in each aux_info file. After reading each aux_info file, the
4271 aux_info_file just read will be automatically deleted unless the
4272 keep_flag is set. */
4274 for (base_pp
= base_source_filenames
; base_pp
< end_pps
; base_pp
++)
4275 process_aux_info_file (*base_pp
, keep_flag
, 0);
4279 /* Also open and read the special SYSCALLS.c aux_info file which gives us
4280 the prototypes for all of the standard system-supplied functions. */
4282 if (nondefault_syscalls_dir
)
4284 syscalls_absolute_filename
4285 = xmalloc (strlen (nondefault_syscalls_dir
) + 1
4286 + sizeof (syscalls_filename
));
4287 strcpy (syscalls_absolute_filename
, nondefault_syscalls_dir
);
4291 GET_ENVIRONMENT (default_syscalls_dir
, "GCC_EXEC_PREFIX");
4292 if (!default_syscalls_dir
)
4294 default_syscalls_dir
= standard_exec_prefix
;
4296 syscalls_absolute_filename
4297 = xmalloc (strlen (default_syscalls_dir
) + 0
4298 + strlen (target_machine
) + 1
4299 + strlen (target_version
) + 1
4300 + sizeof (syscalls_filename
));
4301 strcpy (syscalls_absolute_filename
, default_syscalls_dir
);
4302 strcat (syscalls_absolute_filename
, target_machine
);
4303 strcat (syscalls_absolute_filename
, "/");
4304 strcat (syscalls_absolute_filename
, target_version
);
4305 strcat (syscalls_absolute_filename
, "/");
4308 syscalls_len
= strlen (syscalls_absolute_filename
);
4309 if (! IS_DIR_SEPARATOR (*(syscalls_absolute_filename
+ syscalls_len
- 1)))
4311 *(syscalls_absolute_filename
+ syscalls_len
++) = DIR_SEPARATOR
;
4312 *(syscalls_absolute_filename
+ syscalls_len
) = '\0';
4314 strcat (syscalls_absolute_filename
, syscalls_filename
);
4316 /* Call process_aux_info_file in such a way that it does not try to
4317 delete the SYSCALLS aux_info file. */
4319 process_aux_info_file (syscalls_absolute_filename
, 1, 1);
4321 #endif /* !defined (UNPROTOIZE) */
4323 /* When we first read in all of the information from the aux_info files
4324 we saved in it descending line number order, because that was likely to
4325 be faster. Now however, we want the chains of def & dec records to
4326 appear in ascending line number order as we get further away from the
4327 file_info record that they hang from. The following line causes all of
4328 these lists to be rearranged into ascending line number order. */
4330 visit_each_hash_node (filename_primary
, reverse_def_dec_list
);
4334 /* Now do the "real" work. The following line causes each declaration record
4335 to be "visited". For each of these nodes, an attempt is made to match
4336 up the function declaration with a corresponding function definition,
4337 which should have a full prototype-format formals list with it. Once
4338 these match-ups are made, the conversion of the function declarations
4339 to prototype format can be made. */
4341 visit_each_hash_node (function_name_primary
, connect_defs_and_decs
);
4343 #endif /* !defined (UNPROTOIZE) */
4345 /* Now convert each file that can be converted (and needs to be). */
4347 visit_each_hash_node (filename_primary
, edit_file
);
4351 /* If we are working in cplusplus mode, try to rename all .c files to .C
4352 files. Don't panic if some of the renames don't work. */
4354 if (cplusplus_flag
&& !nochange_flag
)
4355 visit_each_hash_node (filename_primary
, rename_c_file
);
4357 #endif /* !defined (UNPROTOIZE) */
4360 static const struct option longopts
[] =
4362 {"version", 0, 0, 'V'},
4363 {"file_name", 0, 0, 'p'},
4364 {"quiet", 0, 0, 'q'},
4365 {"silent", 0, 0, 'q'},
4366 {"force", 0, 0, 'f'},
4367 {"keep", 0, 0, 'k'},
4368 {"nosave", 0, 0, 'N'},
4369 {"nochange", 0, 0, 'n'},
4370 {"compiler-options", 1, 0, 'c'},
4371 {"exclude", 1, 0, 'x'},
4372 {"directory", 1, 0, 'd'},
4374 {"indent", 1, 0, 'i'},
4376 {"local", 0, 0, 'l'},
4377 {"global", 0, 0, 'g'},
4379 {"syscalls-dir", 1, 0, 'B'},
4384 extern int main (int, char **const);
4387 main (int argc
, char **const argv
)
4391 const char *params
= "";
4393 pname
= strrchr (argv
[0], DIR_SEPARATOR
);
4394 #ifdef DIR_SEPARATOR_2
4398 slash
= strrchr (pname
? pname
: argv
[0], DIR_SEPARATOR_2
);
4403 pname
= pname
? pname
+1 : argv
[0];
4406 /* We *MUST* set SIGCHLD to SIG_DFL so that the wait4() call will
4407 receive the signal. A different setting is inheritable */
4408 signal (SIGCHLD
, SIG_DFL
);
4411 gcc_init_libintl ();
4413 cwd_buffer
= getpwd ();
4416 notice ("%s: cannot get working directory: %s\n",
4417 pname
, xstrerror(errno
));
4418 return (FATAL_EXIT_CODE
);
4421 /* By default, convert the files in the current directory. */
4422 directory_list
= string_list_cons (cwd_buffer
, NULL
);
4424 while ((c
= getopt_long (argc
, argv
,
4428 "B:c:Cd:gklnNp:qvVx:",
4430 longopts
, &longind
)) != EOF
)
4432 if (c
== 0) /* Long option. */
4433 c
= longopts
[longind
].val
;
4437 compiler_file_name
= optarg
;
4441 = string_list_cons (abspath (NULL
, optarg
), directory_list
);
4444 exclude_list
= string_list_cons (optarg
, exclude_list
);
4474 indent_string
= optarg
;
4476 #else /* !defined (UNPROTOIZE) */
4487 nondefault_syscalls_dir
= optarg
;
4489 #endif /* !defined (UNPROTOIZE) */
4495 /* Set up compile_params based on -p and -c options. */
4496 munge_compile_params (params
);
4498 n_base_source_files
= argc
- optind
;
4500 /* Now actually make a list of the base source filenames. */
4502 base_source_filenames
4503 = xmalloc ((n_base_source_files
+ 1) * sizeof (char *));
4504 n_base_source_files
= 0;
4505 for (; optind
< argc
; optind
++)
4507 const char *path
= abspath (NULL
, argv
[optind
]);
4508 int len
= strlen (path
);
4510 if (path
[len
-1] == 'c' && path
[len
-2] == '.')
4511 base_source_filenames
[n_base_source_files
++] = path
;
4514 notice ("%s: input file names must have .c suffixes: %s\n",
4515 pname
, shortpath (NULL
, path
));
4521 /* We are only interested in the very first identifier token in the
4522 definition of `va_list', so if there is more junk after that first
4523 identifier token, delete it from the `varargs_style_indicator'. */
4527 for (cp
= varargs_style_indicator
; ISIDNUM (*cp
); cp
++)
4530 varargs_style_indicator
= savestring (varargs_style_indicator
,
4531 cp
- varargs_style_indicator
);
4533 #endif /* !defined (UNPROTOIZE) */
4540 fprintf (stderr
, "%s: %s\n", pname
, version_string
);
4544 return (errors
? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);