1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
39 #include "langhooks.h"
41 static rtx
break_out_memory_refs (rtx
);
42 static void emit_stack_probe (rtx
);
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
48 trunc_int_for_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
50 int width
= GET_MODE_BITSIZE (mode
);
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode
))
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
58 return c
& 1 ? STORE_FLAG_VALUE
: 0;
60 /* Sign-extend for the requested mode. */
62 if (width
< HOST_BITS_PER_WIDE_INT
)
64 HOST_WIDE_INT sign
= 1;
74 /* Return an rtx for the sum of X and the integer C.
76 This function should be used via the `plus_constant' macro. */
79 plus_constant_wide (rtx x
, HOST_WIDE_INT c
)
83 enum machine_mode mode
;
99 return GEN_INT (INTVAL (x
) + c
);
103 unsigned HOST_WIDE_INT l1
= CONST_DOUBLE_LOW (x
);
104 HOST_WIDE_INT h1
= CONST_DOUBLE_HIGH (x
);
105 unsigned HOST_WIDE_INT l2
= c
;
106 HOST_WIDE_INT h2
= c
< 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv
;
110 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
112 return immed_double_const (lv
, hv
, VOIDmode
);
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
123 = force_const_mem (GET_MODE (x
),
124 plus_constant (get_pool_constant (XEXP (x
, 0)),
126 if (memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
156 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
158 c
+= INTVAL (XEXP (x
, 1));
160 if (GET_MODE (x
) != VOIDmode
)
161 c
= trunc_int_for_mode (c
, GET_MODE (x
));
166 else if (CONSTANT_P (XEXP (x
, 1)))
168 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), plus_constant (XEXP (x
, 1), c
));
171 else if (find_constant_term_loc (&y
))
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy
= copy_rtx (x
);
176 rtx
*const_loc
= find_constant_term_loc (©
);
178 *const_loc
= plus_constant (*const_loc
, c
);
189 x
= gen_rtx_PLUS (mode
, x
, GEN_INT (c
));
191 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
193 else if (all_constant
)
194 return gen_rtx_CONST (mode
, x
);
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
205 eliminate_constant_term (rtx x
, rtx
*constptr
)
210 if (GET_CODE (x
) != PLUS
)
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
215 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
217 && GET_CODE (tem
) == CONST_INT
)
220 return eliminate_constant_term (XEXP (x
, 0), constptr
);
224 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
225 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
226 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
227 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
229 && GET_CODE (tem
) == CONST_INT
)
232 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
238 /* Return an rtx for the size in bytes of the value of EXP. */
243 tree size
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks
.expr_size (exp
), exp
);
245 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), 0);
248 /* Return a wide integer for the size in bytes of the value of EXP, or -1
249 if the size can vary or is larger than an integer. */
252 int_expr_size (tree exp
)
254 tree t
= lang_hooks
.expr_size (exp
);
257 || TREE_CODE (t
) != INTEGER_CST
259 || TREE_INT_CST_HIGH (t
) != 0
260 /* If the result would appear negative, it's too big to represent. */
261 || (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0)
264 return TREE_INT_CST_LOW (t
);
267 /* Return a copy of X in which all memory references
268 and all constants that involve symbol refs
269 have been replaced with new temporary registers.
270 Also emit code to load the memory locations and constants
271 into those registers.
273 If X contains no such constants or memory references,
274 X itself (not a copy) is returned.
276 If a constant is found in the address that is not a legitimate constant
277 in an insn, it is left alone in the hope that it might be valid in the
280 X may contain no arithmetic except addition, subtraction and multiplication.
281 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
284 break_out_memory_refs (rtx x
)
286 if (GET_CODE (x
) == MEM
287 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
288 && GET_MODE (x
) != VOIDmode
))
289 x
= force_reg (GET_MODE (x
), x
);
290 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
291 || GET_CODE (x
) == MULT
)
293 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
294 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
296 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
297 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
303 /* Given X, a memory address in ptr_mode, convert it to an address
304 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
305 the fact that pointers are not allowed to overflow by commuting arithmetic
306 operations over conversions so that address arithmetic insns can be
310 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED
,
313 #ifndef POINTERS_EXTEND_UNSIGNED
315 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
316 enum machine_mode from_mode
;
320 /* If X already has the right mode, just return it. */
321 if (GET_MODE (x
) == to_mode
)
324 from_mode
= to_mode
== ptr_mode
? Pmode
: ptr_mode
;
326 /* Here we handle some special cases. If none of them apply, fall through
327 to the default case. */
328 switch (GET_CODE (x
))
332 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
))
334 else if (POINTERS_EXTEND_UNSIGNED
< 0)
336 else if (POINTERS_EXTEND_UNSIGNED
> 0)
340 temp
= simplify_unary_operation (code
, to_mode
, x
, from_mode
);
346 if ((SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
347 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
348 return SUBREG_REG (x
);
352 temp
= gen_rtx_LABEL_REF (to_mode
, XEXP (x
, 0));
353 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
358 temp
= shallow_copy_rtx (x
);
359 PUT_MODE (temp
, to_mode
);
364 return gen_rtx_CONST (to_mode
,
365 convert_memory_address (to_mode
, XEXP (x
, 0)));
370 /* For addition we can safely permute the conversion and addition
371 operation if one operand is a constant and converting the constant
372 does not change it. We can always safely permute them if we are
373 making the address narrower. */
374 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
375 || (GET_CODE (x
) == PLUS
376 && GET_CODE (XEXP (x
, 1)) == CONST_INT
377 && XEXP (x
, 1) == convert_memory_address (to_mode
, XEXP (x
, 1))))
378 return gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
379 convert_memory_address (to_mode
, XEXP (x
, 0)),
387 return convert_modes (to_mode
, from_mode
,
388 x
, POINTERS_EXTEND_UNSIGNED
);
389 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
392 /* Given a memory address or facsimile X, construct a new address,
393 currently equivalent, that is stable: future stores won't change it.
395 X must be composed of constants, register and memory references
396 combined with addition, subtraction and multiplication:
397 in other words, just what you can get from expand_expr if sum_ok is 1.
399 Works by making copies of all regs and memory locations used
400 by X and combining them the same way X does.
401 You could also stabilize the reference to this address
402 by copying the address to a register with copy_to_reg;
403 but then you wouldn't get indexed addressing in the reference. */
406 copy_all_regs (rtx x
)
408 if (GET_CODE (x
) == REG
)
410 if (REGNO (x
) != FRAME_POINTER_REGNUM
411 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
412 && REGNO (x
) != HARD_FRAME_POINTER_REGNUM
417 else if (GET_CODE (x
) == MEM
)
419 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
420 || GET_CODE (x
) == MULT
)
422 rtx op0
= copy_all_regs (XEXP (x
, 0));
423 rtx op1
= copy_all_regs (XEXP (x
, 1));
424 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
425 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
430 /* Return something equivalent to X but valid as a memory address
431 for something of mode MODE. When X is not itself valid, this
432 works by copying X or subexpressions of it into registers. */
435 memory_address (enum machine_mode mode
, rtx x
)
439 if (GET_CODE (x
) == ADDRESSOF
)
442 x
= convert_memory_address (Pmode
, x
);
444 /* By passing constant addresses through registers
445 we get a chance to cse them. */
446 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
447 x
= force_reg (Pmode
, x
);
449 /* Accept a QUEUED that refers to a REG
450 even though that isn't a valid address.
451 On attempting to put this in an insn we will call protect_from_queue
452 which will turn it into a REG, which is valid. */
453 else if (GET_CODE (x
) == QUEUED
454 && GET_CODE (QUEUED_VAR (x
)) == REG
)
457 /* We get better cse by rejecting indirect addressing at this stage.
458 Let the combiner create indirect addresses where appropriate.
459 For now, generate the code so that the subexpressions useful to share
460 are visible. But not if cse won't be done! */
463 if (! cse_not_expected
&& GET_CODE (x
) != REG
)
464 x
= break_out_memory_refs (x
);
466 /* At this point, any valid address is accepted. */
467 GO_IF_LEGITIMATE_ADDRESS (mode
, x
, win
);
469 /* If it was valid before but breaking out memory refs invalidated it,
470 use it the old way. */
471 if (memory_address_p (mode
, oldx
))
474 /* Perform machine-dependent transformations on X
475 in certain cases. This is not necessary since the code
476 below can handle all possible cases, but machine-dependent
477 transformations can make better code. */
478 LEGITIMIZE_ADDRESS (x
, oldx
, mode
, win
);
480 /* PLUS and MULT can appear in special ways
481 as the result of attempts to make an address usable for indexing.
482 Usually they are dealt with by calling force_operand, below.
483 But a sum containing constant terms is special
484 if removing them makes the sum a valid address:
485 then we generate that address in a register
486 and index off of it. We do this because it often makes
487 shorter code, and because the addresses thus generated
488 in registers often become common subexpressions. */
489 if (GET_CODE (x
) == PLUS
)
491 rtx constant_term
= const0_rtx
;
492 rtx y
= eliminate_constant_term (x
, &constant_term
);
493 if (constant_term
== const0_rtx
494 || ! memory_address_p (mode
, y
))
495 x
= force_operand (x
, NULL_RTX
);
498 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
499 if (! memory_address_p (mode
, y
))
500 x
= force_operand (x
, NULL_RTX
);
506 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
507 x
= force_operand (x
, NULL_RTX
);
509 /* If we have a register that's an invalid address,
510 it must be a hard reg of the wrong class. Copy it to a pseudo. */
511 else if (GET_CODE (x
) == REG
)
514 /* Last resort: copy the value to a register, since
515 the register is a valid address. */
517 x
= force_reg (Pmode
, x
);
524 if (flag_force_addr
&& ! cse_not_expected
&& GET_CODE (x
) != REG
525 /* Don't copy an addr via a reg if it is one of our stack slots. */
526 && ! (GET_CODE (x
) == PLUS
527 && (XEXP (x
, 0) == virtual_stack_vars_rtx
528 || XEXP (x
, 0) == virtual_incoming_args_rtx
)))
530 if (general_operand (x
, Pmode
))
531 x
= force_reg (Pmode
, x
);
533 x
= force_operand (x
, NULL_RTX
);
539 /* If we didn't change the address, we are done. Otherwise, mark
540 a reg as a pointer if we have REG or REG + CONST_INT. */
543 else if (GET_CODE (x
) == REG
)
544 mark_reg_pointer (x
, BITS_PER_UNIT
);
545 else if (GET_CODE (x
) == PLUS
546 && GET_CODE (XEXP (x
, 0)) == REG
547 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
548 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
550 /* OLDX may have been the address on a temporary. Update the address
551 to indicate that X is now used. */
552 update_temp_slot_address (oldx
, x
);
557 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
560 memory_address_noforce (enum machine_mode mode
, rtx x
)
562 int ambient_force_addr
= flag_force_addr
;
566 val
= memory_address (mode
, x
);
567 flag_force_addr
= ambient_force_addr
;
571 /* Convert a mem ref into one with a valid memory address.
572 Pass through anything else unchanged. */
575 validize_mem (rtx ref
)
577 if (GET_CODE (ref
) != MEM
)
579 if (! (flag_force_addr
&& CONSTANT_ADDRESS_P (XEXP (ref
, 0)))
580 && memory_address_p (GET_MODE (ref
), XEXP (ref
, 0)))
583 /* Don't alter REF itself, since that is probably a stack slot. */
584 return replace_equiv_address (ref
, XEXP (ref
, 0));
587 /* Given REF, either a MEM or a REG, and T, either the type of X or
588 the expression corresponding to REF, set RTX_UNCHANGING_P if
592 maybe_set_unchanging (rtx ref
, tree t
)
594 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
595 initialization is only executed once, or whose initializer always
596 has the same value. Currently we simplify this to PARM_DECLs in the
597 first case, and decls with TREE_CONSTANT initializers in the second.
599 We cannot do this for non-static aggregates, because of the double
600 writes that can be generated by store_constructor, depending on the
601 contents of the initializer. Yes, this does eliminate a good fraction
602 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
603 It also eliminates a good quantity of bugs. Let this be incentive to
604 eliminate RTX_UNCHANGING_P entirely in favor of a more reliable
605 solution, perhaps based on alias sets. */
607 if ((TREE_READONLY (t
) && DECL_P (t
)
608 && (TREE_STATIC (t
) || ! AGGREGATE_TYPE_P (TREE_TYPE (t
)))
609 && (TREE_CODE (t
) == PARM_DECL
610 || (DECL_INITIAL (t
) && TREE_CONSTANT (DECL_INITIAL (t
)))))
611 || TREE_CODE_CLASS (TREE_CODE (t
)) == 'c')
612 RTX_UNCHANGING_P (ref
) = 1;
615 /* Return a modified copy of X with its memory address copied
616 into a temporary register to protect it from side effects.
617 If X is not a MEM, it is returned unchanged (and not copied).
618 Perhaps even if it is a MEM, if there is no need to change it. */
623 if (GET_CODE (x
) != MEM
624 || ! rtx_unstable_p (XEXP (x
, 0)))
628 replace_equiv_address (x
, force_reg (Pmode
, copy_all_regs (XEXP (x
, 0))));
631 /* Copy the value or contents of X to a new temp reg and return that reg. */
636 rtx temp
= gen_reg_rtx (GET_MODE (x
));
638 /* If not an operand, must be an address with PLUS and MULT so
639 do the computation. */
640 if (! general_operand (x
, VOIDmode
))
641 x
= force_operand (x
, temp
);
644 emit_move_insn (temp
, x
);
649 /* Like copy_to_reg but always give the new register mode Pmode
650 in case X is a constant. */
653 copy_addr_to_reg (rtx x
)
655 return copy_to_mode_reg (Pmode
, x
);
658 /* Like copy_to_reg but always give the new register mode MODE
659 in case X is a constant. */
662 copy_to_mode_reg (enum machine_mode mode
, rtx x
)
664 rtx temp
= gen_reg_rtx (mode
);
666 /* If not an operand, must be an address with PLUS and MULT so
667 do the computation. */
668 if (! general_operand (x
, VOIDmode
))
669 x
= force_operand (x
, temp
);
671 if (GET_MODE (x
) != mode
&& GET_MODE (x
) != VOIDmode
)
674 emit_move_insn (temp
, x
);
678 /* Load X into a register if it is not already one.
679 Use mode MODE for the register.
680 X should be valid for mode MODE, but it may be a constant which
681 is valid for all integer modes; that's why caller must specify MODE.
683 The caller must not alter the value in the register we return,
684 since we mark it as a "constant" register. */
687 force_reg (enum machine_mode mode
, rtx x
)
691 if (GET_CODE (x
) == REG
)
694 if (general_operand (x
, mode
))
696 temp
= gen_reg_rtx (mode
);
697 insn
= emit_move_insn (temp
, x
);
701 temp
= force_operand (x
, NULL_RTX
);
702 if (GET_CODE (temp
) == REG
)
703 insn
= get_last_insn ();
706 rtx temp2
= gen_reg_rtx (mode
);
707 insn
= emit_move_insn (temp2
, temp
);
712 /* Let optimizers know that TEMP's value never changes
713 and that X can be substituted for it. Don't get confused
714 if INSN set something else (such as a SUBREG of TEMP). */
716 && (set
= single_set (insn
)) != 0
717 && SET_DEST (set
) == temp
718 && ! rtx_equal_p (x
, SET_SRC (set
)))
719 set_unique_reg_note (insn
, REG_EQUAL
, x
);
721 /* Let optimizers know that TEMP is a pointer, and if so, the
722 known alignment of that pointer. */
725 if (GET_CODE (x
) == SYMBOL_REF
)
727 align
= BITS_PER_UNIT
;
728 if (SYMBOL_REF_DECL (x
) && DECL_P (SYMBOL_REF_DECL (x
)))
729 align
= DECL_ALIGN (SYMBOL_REF_DECL (x
));
731 else if (GET_CODE (x
) == LABEL_REF
)
732 align
= BITS_PER_UNIT
;
733 else if (GET_CODE (x
) == CONST
734 && GET_CODE (XEXP (x
, 0)) == PLUS
735 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
736 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
738 rtx s
= XEXP (XEXP (x
, 0), 0);
739 rtx c
= XEXP (XEXP (x
, 0), 1);
743 if (SYMBOL_REF_DECL (s
) && DECL_P (SYMBOL_REF_DECL (s
)))
744 sa
= DECL_ALIGN (SYMBOL_REF_DECL (s
));
746 ca
= exact_log2 (INTVAL (c
) & -INTVAL (c
)) * BITS_PER_UNIT
;
748 align
= MIN (sa
, ca
);
752 mark_reg_pointer (temp
, align
);
758 /* If X is a memory ref, copy its contents to a new temp reg and return
759 that reg. Otherwise, return X. */
762 force_not_mem (rtx x
)
766 if (GET_CODE (x
) != MEM
|| GET_MODE (x
) == BLKmode
)
769 temp
= gen_reg_rtx (GET_MODE (x
));
772 REG_POINTER (temp
) = 1;
774 emit_move_insn (temp
, x
);
778 /* Copy X to TARGET (if it's nonzero and a reg)
779 or to a new temp reg and return that reg.
780 MODE is the mode to use for X in case it is a constant. */
783 copy_to_suggested_reg (rtx x
, rtx target
, enum machine_mode mode
)
787 if (target
&& GET_CODE (target
) == REG
)
790 temp
= gen_reg_rtx (mode
);
792 emit_move_insn (temp
, x
);
796 /* Return the mode to use to store a scalar of TYPE and MODE.
797 PUNSIGNEDP points to the signedness of the type and may be adjusted
798 to show what signedness to use on extension operations.
800 FOR_CALL is nonzero if this call is promoting args for a call. */
802 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
803 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
807 promote_mode (tree type
, enum machine_mode mode
, int *punsignedp
,
808 int for_call ATTRIBUTE_UNUSED
)
810 enum tree_code code
= TREE_CODE (type
);
811 int unsignedp
= *punsignedp
;
820 #ifdef PROMOTE_FUNCTION_MODE
821 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
822 case CHAR_TYPE
: case REAL_TYPE
: case OFFSET_TYPE
:
827 PROMOTE_FUNCTION_MODE (mode
, unsignedp
, type
);
832 PROMOTE_MODE (mode
, unsignedp
, type
);
838 #ifdef POINTERS_EXTEND_UNSIGNED
842 unsignedp
= POINTERS_EXTEND_UNSIGNED
;
850 *punsignedp
= unsignedp
;
854 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
855 This pops when ADJUST is positive. ADJUST need not be constant. */
858 adjust_stack (rtx adjust
)
861 adjust
= protect_from_queue (adjust
, 0);
863 if (adjust
== const0_rtx
)
866 /* We expect all variable sized adjustments to be multiple of
867 PREFERRED_STACK_BOUNDARY. */
868 if (GET_CODE (adjust
) == CONST_INT
)
869 stack_pointer_delta
-= INTVAL (adjust
);
871 temp
= expand_binop (Pmode
,
872 #ifdef STACK_GROWS_DOWNWARD
877 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
880 if (temp
!= stack_pointer_rtx
)
881 emit_move_insn (stack_pointer_rtx
, temp
);
884 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
885 This pushes when ADJUST is positive. ADJUST need not be constant. */
888 anti_adjust_stack (rtx adjust
)
891 adjust
= protect_from_queue (adjust
, 0);
893 if (adjust
== const0_rtx
)
896 /* We expect all variable sized adjustments to be multiple of
897 PREFERRED_STACK_BOUNDARY. */
898 if (GET_CODE (adjust
) == CONST_INT
)
899 stack_pointer_delta
+= INTVAL (adjust
);
901 temp
= expand_binop (Pmode
,
902 #ifdef STACK_GROWS_DOWNWARD
907 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
910 if (temp
!= stack_pointer_rtx
)
911 emit_move_insn (stack_pointer_rtx
, temp
);
914 /* Round the size of a block to be pushed up to the boundary required
915 by this machine. SIZE is the desired size, which need not be constant. */
918 round_push (rtx size
)
920 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
925 if (GET_CODE (size
) == CONST_INT
)
927 HOST_WIDE_INT
new = (INTVAL (size
) + align
- 1) / align
* align
;
929 if (INTVAL (size
) != new)
930 size
= GEN_INT (new);
934 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
935 but we know it can't. So add ourselves and then do
937 size
= expand_binop (Pmode
, add_optab
, size
, GEN_INT (align
- 1),
938 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
939 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, GEN_INT (align
),
941 size
= expand_mult (Pmode
, size
, GEN_INT (align
), NULL_RTX
, 1);
947 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
948 to a previously-created save area. If no save area has been allocated,
949 this function will allocate one. If a save area is specified, it
950 must be of the proper mode.
952 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
953 are emitted at the current position. */
956 emit_stack_save (enum save_level save_level
, rtx
*psave
, rtx after
)
959 /* The default is that we use a move insn and save in a Pmode object. */
960 rtx (*fcn
) (rtx
, rtx
) = gen_move_insn
;
961 enum machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
963 /* See if this machine has anything special to do for this kind of save. */
966 #ifdef HAVE_save_stack_block
968 if (HAVE_save_stack_block
)
969 fcn
= gen_save_stack_block
;
972 #ifdef HAVE_save_stack_function
974 if (HAVE_save_stack_function
)
975 fcn
= gen_save_stack_function
;
978 #ifdef HAVE_save_stack_nonlocal
980 if (HAVE_save_stack_nonlocal
)
981 fcn
= gen_save_stack_nonlocal
;
988 /* If there is no save area and we have to allocate one, do so. Otherwise
989 verify the save area is the proper mode. */
993 if (mode
!= VOIDmode
)
995 if (save_level
== SAVE_NONLOCAL
)
996 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
998 *psave
= sa
= gen_reg_rtx (mode
);
1007 /* We must validize inside the sequence, to ensure that any instructions
1008 created by the validize call also get moved to the right place. */
1010 sa
= validize_mem (sa
);
1011 emit_insn (fcn (sa
, stack_pointer_rtx
));
1014 emit_insn_after (seq
, after
);
1019 sa
= validize_mem (sa
);
1020 emit_insn (fcn (sa
, stack_pointer_rtx
));
1024 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1025 area made by emit_stack_save. If it is zero, we have nothing to do.
1027 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1028 current position. */
1031 emit_stack_restore (enum save_level save_level
, rtx sa
, rtx after
)
1033 /* The default is that we use a move insn. */
1034 rtx (*fcn
) (rtx
, rtx
) = gen_move_insn
;
1036 /* See if this machine has anything special to do for this kind of save. */
1039 #ifdef HAVE_restore_stack_block
1041 if (HAVE_restore_stack_block
)
1042 fcn
= gen_restore_stack_block
;
1045 #ifdef HAVE_restore_stack_function
1047 if (HAVE_restore_stack_function
)
1048 fcn
= gen_restore_stack_function
;
1051 #ifdef HAVE_restore_stack_nonlocal
1053 if (HAVE_restore_stack_nonlocal
)
1054 fcn
= gen_restore_stack_nonlocal
;
1063 sa
= validize_mem (sa
);
1064 /* These clobbers prevent the scheduler from moving
1065 references to variable arrays below the code
1066 that deletes (pops) the arrays. */
1067 emit_insn (gen_rtx_CLOBBER (VOIDmode
,
1068 gen_rtx_MEM (BLKmode
,
1069 gen_rtx_SCRATCH (VOIDmode
))));
1070 emit_insn (gen_rtx_CLOBBER (VOIDmode
,
1071 gen_rtx_MEM (BLKmode
, stack_pointer_rtx
)));
1079 emit_insn (fcn (stack_pointer_rtx
, sa
));
1082 emit_insn_after (seq
, after
);
1085 emit_insn (fcn (stack_pointer_rtx
, sa
));
1088 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1089 function. This function should be called whenever we allocate or
1090 deallocate dynamic stack space. */
1093 update_nonlocal_goto_save_area (void)
1098 /* The nonlocal_goto_save_area object is an array of N pointers. The
1099 first one is used for the frame pointer save; the rest are sized by
1100 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1101 of the stack save area slots. */
1102 t_save
= build (ARRAY_REF
, ptr_type_node
, cfun
->nonlocal_goto_save_area
,
1104 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
1106 emit_stack_save (SAVE_NONLOCAL
, &r_save
, NULL_RTX
);
1109 #ifdef SETJMP_VIA_SAVE_AREA
1110 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1111 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1112 platforms, the dynamic stack space used can corrupt the original
1113 frame, thus causing a crash if a longjmp unwinds to it. */
1116 optimize_save_area_alloca (rtx insns
)
1120 for (insn
= insns
; insn
; insn
= NEXT_INSN(insn
))
1124 if (GET_CODE (insn
) != INSN
)
1127 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1129 if (REG_NOTE_KIND (note
) != REG_SAVE_AREA
)
1132 if (!current_function_calls_setjmp
)
1134 rtx pat
= PATTERN (insn
);
1136 /* If we do not see the note in a pattern matching
1137 these precise characteristics, we did something
1138 entirely wrong in allocate_dynamic_stack_space.
1140 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1141 was defined on a machine where stacks grow towards higher
1144 Right now only supported port with stack that grow upward
1145 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1146 if (GET_CODE (pat
) != SET
1147 || SET_DEST (pat
) != stack_pointer_rtx
1148 || GET_CODE (SET_SRC (pat
)) != MINUS
1149 || XEXP (SET_SRC (pat
), 0) != stack_pointer_rtx
)
1152 /* This will now be transformed into a (set REG REG)
1153 so we can just blow away all the other notes. */
1154 XEXP (SET_SRC (pat
), 1) = XEXP (note
, 0);
1155 REG_NOTES (insn
) = NULL_RTX
;
1159 /* setjmp was called, we must remove the REG_SAVE_AREA
1160 note so that later passes do not get confused by its
1162 if (note
== REG_NOTES (insn
))
1164 REG_NOTES (insn
) = XEXP (note
, 1);
1170 for (srch
= REG_NOTES (insn
); srch
; srch
= XEXP (srch
, 1))
1171 if (XEXP (srch
, 1) == note
)
1174 if (srch
== NULL_RTX
)
1177 XEXP (srch
, 1) = XEXP (note
, 1);
1180 /* Once we've seen the note of interest, we need not look at
1181 the rest of them. */
1186 #endif /* SETJMP_VIA_SAVE_AREA */
1188 /* Return an rtx representing the address of an area of memory dynamically
1189 pushed on the stack. This region of memory is always aligned to
1190 a multiple of BIGGEST_ALIGNMENT.
1192 Any required stack pointer alignment is preserved.
1194 SIZE is an rtx representing the size of the area.
1195 TARGET is a place in which the address can be placed.
1197 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1200 allocate_dynamic_stack_space (rtx size
, rtx target
, int known_align
)
1202 #ifdef SETJMP_VIA_SAVE_AREA
1203 rtx setjmpless_size
= NULL_RTX
;
1206 /* If we're asking for zero bytes, it doesn't matter what we point
1207 to since we can't dereference it. But return a reasonable
1209 if (size
== const0_rtx
)
1210 return virtual_stack_dynamic_rtx
;
1212 /* Otherwise, show we're calling alloca or equivalent. */
1213 current_function_calls_alloca
= 1;
1215 /* Ensure the size is in the proper mode. */
1216 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1217 size
= convert_to_mode (Pmode
, size
, 1);
1219 /* We can't attempt to minimize alignment necessary, because we don't
1220 know the final value of preferred_stack_boundary yet while executing
1222 cfun
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1224 /* We will need to ensure that the address we return is aligned to
1225 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1226 always know its final value at this point in the compilation (it
1227 might depend on the size of the outgoing parameter lists, for
1228 example), so we must align the value to be returned in that case.
1229 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1230 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1231 We must also do an alignment operation on the returned value if
1232 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1234 If we have to align, we must leave space in SIZE for the hole
1235 that might result from the alignment operation. */
1237 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1238 #define MUST_ALIGN 1
1240 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1245 = force_operand (plus_constant (size
,
1246 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1249 #ifdef SETJMP_VIA_SAVE_AREA
1250 /* If setjmp restores regs from a save area in the stack frame,
1251 avoid clobbering the reg save area. Note that the offset of
1252 virtual_incoming_args_rtx includes the preallocated stack args space.
1253 It would be no problem to clobber that, but it's on the wrong side
1254 of the old save area. */
1257 = expand_binop (Pmode
, sub_optab
, virtual_stack_dynamic_rtx
,
1258 stack_pointer_rtx
, NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1260 if (!current_function_calls_setjmp
)
1262 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
1264 /* See optimize_save_area_alloca to understand what is being
1267 /* ??? Code below assumes that the save area needs maximal
1268 alignment. This constraint may be too strong. */
1269 if (PREFERRED_STACK_BOUNDARY
!= BIGGEST_ALIGNMENT
)
1272 if (GET_CODE (size
) == CONST_INT
)
1274 HOST_WIDE_INT
new = INTVAL (size
) / align
* align
;
1276 if (INTVAL (size
) != new)
1277 setjmpless_size
= GEN_INT (new);
1279 setjmpless_size
= size
;
1283 /* Since we know overflow is not possible, we avoid using
1284 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1285 setjmpless_size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
,
1286 GEN_INT (align
), NULL_RTX
, 1);
1287 setjmpless_size
= expand_mult (Pmode
, setjmpless_size
,
1288 GEN_INT (align
), NULL_RTX
, 1);
1290 /* Our optimization works based upon being able to perform a simple
1291 transformation of this RTL into a (set REG REG) so make sure things
1292 did in fact end up in a REG. */
1293 if (!register_operand (setjmpless_size
, Pmode
))
1294 setjmpless_size
= force_reg (Pmode
, setjmpless_size
);
1297 size
= expand_binop (Pmode
, add_optab
, size
, dynamic_offset
,
1298 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1300 #endif /* SETJMP_VIA_SAVE_AREA */
1302 /* Round the size to a multiple of the required stack alignment.
1303 Since the stack if presumed to be rounded before this allocation,
1304 this will maintain the required alignment.
1306 If the stack grows downward, we could save an insn by subtracting
1307 SIZE from the stack pointer and then aligning the stack pointer.
1308 The problem with this is that the stack pointer may be unaligned
1309 between the execution of the subtraction and alignment insns and
1310 some machines do not allow this. Even on those that do, some
1311 signal handlers malfunction if a signal should occur between those
1312 insns. Since this is an extremely rare event, we have no reliable
1313 way of knowing which systems have this problem. So we avoid even
1314 momentarily mis-aligning the stack. */
1316 /* If we added a variable amount to SIZE,
1317 we can no longer assume it is aligned. */
1318 #if !defined (SETJMP_VIA_SAVE_AREA)
1319 if (MUST_ALIGN
|| known_align
% PREFERRED_STACK_BOUNDARY
!= 0)
1321 size
= round_push (size
);
1323 do_pending_stack_adjust ();
1325 /* We ought to be called always on the toplevel and stack ought to be aligned
1327 if (stack_pointer_delta
% (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
))
1330 /* If needed, check that we have the required amount of stack. Take into
1331 account what has already been checked. */
1332 if (flag_stack_check
&& ! STACK_CHECK_BUILTIN
)
1333 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE
+ STACK_CHECK_PROTECT
, size
);
1335 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1336 if (target
== 0 || GET_CODE (target
) != REG
1337 || REGNO (target
) < FIRST_PSEUDO_REGISTER
1338 || GET_MODE (target
) != Pmode
)
1339 target
= gen_reg_rtx (Pmode
);
1341 mark_reg_pointer (target
, known_align
);
1343 /* Perform the required allocation from the stack. Some systems do
1344 this differently than simply incrementing/decrementing from the
1345 stack pointer, such as acquiring the space by calling malloc(). */
1346 #ifdef HAVE_allocate_stack
1347 if (HAVE_allocate_stack
)
1349 enum machine_mode mode
= STACK_SIZE_MODE
;
1350 insn_operand_predicate_fn pred
;
1352 /* We don't have to check against the predicate for operand 0 since
1353 TARGET is known to be a pseudo of the proper mode, which must
1354 be valid for the operand. For operand 1, convert to the
1355 proper mode and validate. */
1356 if (mode
== VOIDmode
)
1357 mode
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].mode
;
1359 pred
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].predicate
;
1360 if (pred
&& ! ((*pred
) (size
, mode
)))
1361 size
= copy_to_mode_reg (mode
, convert_to_mode (mode
, size
, 1));
1363 emit_insn (gen_allocate_stack (target
, size
));
1368 #ifndef STACK_GROWS_DOWNWARD
1369 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1372 /* Check stack bounds if necessary. */
1373 if (current_function_limit_stack
)
1376 rtx space_available
= gen_label_rtx ();
1377 #ifdef STACK_GROWS_DOWNWARD
1378 available
= expand_binop (Pmode
, sub_optab
,
1379 stack_pointer_rtx
, stack_limit_rtx
,
1380 NULL_RTX
, 1, OPTAB_WIDEN
);
1382 available
= expand_binop (Pmode
, sub_optab
,
1383 stack_limit_rtx
, stack_pointer_rtx
,
1384 NULL_RTX
, 1, OPTAB_WIDEN
);
1386 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1390 emit_insn (gen_trap ());
1393 error ("stack limits not supported on this target");
1395 emit_label (space_available
);
1398 anti_adjust_stack (size
);
1399 #ifdef SETJMP_VIA_SAVE_AREA
1400 if (setjmpless_size
!= NULL_RTX
)
1402 rtx note_target
= get_last_insn ();
1404 REG_NOTES (note_target
)
1405 = gen_rtx_EXPR_LIST (REG_SAVE_AREA
, setjmpless_size
,
1406 REG_NOTES (note_target
));
1408 #endif /* SETJMP_VIA_SAVE_AREA */
1410 #ifdef STACK_GROWS_DOWNWARD
1411 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1417 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1418 but we know it can't. So add ourselves and then do
1420 target
= expand_binop (Pmode
, add_optab
, target
,
1421 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1422 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1423 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1424 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1426 target
= expand_mult (Pmode
, target
,
1427 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1431 /* Record the new stack level for nonlocal gotos. */
1432 if (cfun
->nonlocal_goto_save_area
!= 0)
1433 update_nonlocal_goto_save_area ();
1438 /* A front end may want to override GCC's stack checking by providing a
1439 run-time routine to call to check the stack, so provide a mechanism for
1440 calling that routine. */
1442 static GTY(()) rtx stack_check_libfunc
;
1445 set_stack_check_libfunc (rtx libfunc
)
1447 stack_check_libfunc
= libfunc
;
1450 /* Emit one stack probe at ADDRESS, an address within the stack. */
1453 emit_stack_probe (rtx address
)
1455 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1457 MEM_VOLATILE_P (memref
) = 1;
1459 if (STACK_CHECK_PROBE_LOAD
)
1460 emit_move_insn (gen_reg_rtx (word_mode
), memref
);
1462 emit_move_insn (memref
, const0_rtx
);
1465 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1466 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1467 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1468 subtract from the stack. If SIZE is constant, this is done
1469 with a fixed number of probes. Otherwise, we must make a loop. */
1471 #ifdef STACK_GROWS_DOWNWARD
1472 #define STACK_GROW_OP MINUS
1474 #define STACK_GROW_OP PLUS
1478 probe_stack_range (HOST_WIDE_INT first
, rtx size
)
1480 /* First ensure SIZE is Pmode. */
1481 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1482 size
= convert_to_mode (Pmode
, size
, 1);
1484 /* Next see if the front end has set up a function for us to call to
1486 if (stack_check_libfunc
!= 0)
1488 rtx addr
= memory_address (QImode
,
1489 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1491 plus_constant (size
, first
)));
1493 addr
= convert_memory_address (ptr_mode
, addr
);
1494 emit_library_call (stack_check_libfunc
, LCT_NORMAL
, VOIDmode
, 1, addr
,
1498 /* Next see if we have an insn to check the stack. Use it if so. */
1499 #ifdef HAVE_check_stack
1500 else if (HAVE_check_stack
)
1502 insn_operand_predicate_fn pred
;
1504 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1506 plus_constant (size
, first
)),
1509 pred
= insn_data
[(int) CODE_FOR_check_stack
].operand
[0].predicate
;
1510 if (pred
&& ! ((*pred
) (last_addr
, Pmode
)))
1511 last_addr
= copy_to_mode_reg (Pmode
, last_addr
);
1513 emit_insn (gen_check_stack (last_addr
));
1517 /* If we have to generate explicit probes, see if we have a constant
1518 small number of them to generate. If so, that's the easy case. */
1519 else if (GET_CODE (size
) == CONST_INT
1520 && INTVAL (size
) < 10 * STACK_CHECK_PROBE_INTERVAL
)
1522 HOST_WIDE_INT offset
;
1524 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1525 for values of N from 1 until it exceeds LAST. If only one
1526 probe is needed, this will not generate any code. Then probe
1528 for (offset
= first
+ STACK_CHECK_PROBE_INTERVAL
;
1529 offset
< INTVAL (size
);
1530 offset
= offset
+ STACK_CHECK_PROBE_INTERVAL
)
1531 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1535 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1537 plus_constant (size
, first
)));
1540 /* In the variable case, do the same as above, but in a loop. We emit loop
1541 notes so that loop optimization can be done. */
1545 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1547 GEN_INT (first
+ STACK_CHECK_PROBE_INTERVAL
)),
1550 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1552 plus_constant (size
, first
)),
1554 rtx incr
= GEN_INT (STACK_CHECK_PROBE_INTERVAL
);
1555 rtx loop_lab
= gen_label_rtx ();
1556 rtx test_lab
= gen_label_rtx ();
1557 rtx end_lab
= gen_label_rtx ();
1560 if (GET_CODE (test_addr
) != REG
1561 || REGNO (test_addr
) < FIRST_PSEUDO_REGISTER
)
1562 test_addr
= force_reg (Pmode
, test_addr
);
1564 emit_jump (test_lab
);
1566 emit_label (loop_lab
);
1567 emit_stack_probe (test_addr
);
1569 #ifdef STACK_GROWS_DOWNWARD
1570 #define CMP_OPCODE GTU
1571 temp
= expand_binop (Pmode
, sub_optab
, test_addr
, incr
, test_addr
,
1574 #define CMP_OPCODE LTU
1575 temp
= expand_binop (Pmode
, add_optab
, test_addr
, incr
, test_addr
,
1579 if (temp
!= test_addr
)
1582 emit_label (test_lab
);
1583 emit_cmp_and_jump_insns (test_addr
, last_addr
, CMP_OPCODE
,
1584 NULL_RTX
, Pmode
, 1, loop_lab
);
1585 emit_jump (end_lab
);
1586 emit_label (end_lab
);
1588 emit_stack_probe (last_addr
);
1592 /* Return an rtx representing the register or memory location
1593 in which a scalar value of data type VALTYPE
1594 was returned by a function call to function FUNC.
1595 FUNC is a FUNCTION_DECL node if the precise function is known,
1597 OUTGOING is 1 if on a machine with register windows this function
1598 should return the register in which the function will put its result
1602 hard_function_value (tree valtype
, tree func ATTRIBUTE_UNUSED
,
1603 int outgoing ATTRIBUTE_UNUSED
)
1607 #ifdef FUNCTION_OUTGOING_VALUE
1609 val
= FUNCTION_OUTGOING_VALUE (valtype
, func
);
1612 val
= FUNCTION_VALUE (valtype
, func
);
1614 if (GET_CODE (val
) == REG
1615 && GET_MODE (val
) == BLKmode
)
1617 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1618 enum machine_mode tmpmode
;
1620 /* int_size_in_bytes can return -1. We don't need a check here
1621 since the value of bytes will be large enough that no mode
1622 will match and we will abort later in this function. */
1624 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1625 tmpmode
!= VOIDmode
;
1626 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1628 /* Have we found a large enough mode? */
1629 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1633 /* No suitable mode found. */
1634 if (tmpmode
== VOIDmode
)
1637 PUT_MODE (val
, tmpmode
);
1642 /* Return an rtx representing the register or memory location
1643 in which a scalar value of mode MODE was returned by a library call. */
1646 hard_libcall_value (enum machine_mode mode
)
1648 return LIBCALL_VALUE (mode
);
1651 /* Look up the tree code for a given rtx code
1652 to provide the arithmetic operation for REAL_ARITHMETIC.
1653 The function returns an int because the caller may not know
1654 what `enum tree_code' means. */
1657 rtx_to_tree_code (enum rtx_code code
)
1659 enum tree_code tcode
;
1682 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1685 return ((int) tcode
);
1688 #include "gt-explow.h"