1 //===-- tsan_interface_atomic.cc ------------------------------------------===//
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
6 //===----------------------------------------------------------------------===//
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //===----------------------------------------------------------------------===//
12 // ThreadSanitizer atomic operations are based on C++11/C1x standards.
13 // For background see C++11 standard. A slightly older, publicly
14 // available draft of the standard (not entirely up-to-date, but close enough
15 // for casual browsing) is available here:
16 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
17 // The following page contains more background information:
18 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
20 #include "sanitizer_common/sanitizer_placement_new.h"
21 #include "sanitizer_common/sanitizer_stacktrace.h"
22 #include "sanitizer_common/sanitizer_mutex.h"
23 #include "tsan_flags.h"
24 #include "tsan_interface.h"
27 using namespace __tsan
; // NOLINT
29 #if !SANITIZER_GO && __TSAN_HAS_INT128
30 // Protects emulation of 128-bit atomic operations.
31 static StaticSpinMutex mutex128
;
34 static bool IsLoadOrder(morder mo
) {
35 return mo
== mo_relaxed
|| mo
== mo_consume
36 || mo
== mo_acquire
|| mo
== mo_seq_cst
;
39 static bool IsStoreOrder(morder mo
) {
40 return mo
== mo_relaxed
|| mo
== mo_release
|| mo
== mo_seq_cst
;
43 static bool IsReleaseOrder(morder mo
) {
44 return mo
== mo_release
|| mo
== mo_acq_rel
|| mo
== mo_seq_cst
;
47 static bool IsAcquireOrder(morder mo
) {
48 return mo
== mo_consume
|| mo
== mo_acquire
49 || mo
== mo_acq_rel
|| mo
== mo_seq_cst
;
52 static bool IsAcqRelOrder(morder mo
) {
53 return mo
== mo_acq_rel
|| mo
== mo_seq_cst
;
56 template<typename T
> T
func_xchg(volatile T
*v
, T op
) {
57 T res
= __sync_lock_test_and_set(v
, op
);
58 // __sync_lock_test_and_set does not contain full barrier.
63 template<typename T
> T
func_add(volatile T
*v
, T op
) {
64 return __sync_fetch_and_add(v
, op
);
67 template<typename T
> T
func_sub(volatile T
*v
, T op
) {
68 return __sync_fetch_and_sub(v
, op
);
71 template<typename T
> T
func_and(volatile T
*v
, T op
) {
72 return __sync_fetch_and_and(v
, op
);
75 template<typename T
> T
func_or(volatile T
*v
, T op
) {
76 return __sync_fetch_and_or(v
, op
);
79 template<typename T
> T
func_xor(volatile T
*v
, T op
) {
80 return __sync_fetch_and_xor(v
, op
);
83 template<typename T
> T
func_nand(volatile T
*v
, T op
) {
84 // clang does not support __sync_fetch_and_nand.
88 T cur
= __sync_val_compare_and_swap(v
, cmp
, newv
);
95 template<typename T
> T
func_cas(volatile T
*v
, T cmp
, T xch
) {
96 return __sync_val_compare_and_swap(v
, cmp
, xch
);
99 // clang does not support 128-bit atomic ops.
100 // Atomic ops are executed under tsan internal mutex,
101 // here we assume that the atomic variables are not accessed
102 // from non-instrumented code.
103 #if !defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16) && !SANITIZER_GO \
105 a128
func_xchg(volatile a128
*v
, a128 op
) {
106 SpinMutexLock
lock(&mutex128
);
112 a128
func_add(volatile a128
*v
, a128 op
) {
113 SpinMutexLock
lock(&mutex128
);
119 a128
func_sub(volatile a128
*v
, a128 op
) {
120 SpinMutexLock
lock(&mutex128
);
126 a128
func_and(volatile a128
*v
, a128 op
) {
127 SpinMutexLock
lock(&mutex128
);
133 a128
func_or(volatile a128
*v
, a128 op
) {
134 SpinMutexLock
lock(&mutex128
);
140 a128
func_xor(volatile a128
*v
, a128 op
) {
141 SpinMutexLock
lock(&mutex128
);
147 a128
func_nand(volatile a128
*v
, a128 op
) {
148 SpinMutexLock
lock(&mutex128
);
154 a128
func_cas(volatile a128
*v
, a128 cmp
, a128 xch
) {
155 SpinMutexLock
lock(&mutex128
);
164 static int SizeLog() {
167 else if (sizeof(T
) <= 2)
169 else if (sizeof(T
) <= 4)
173 // For 16-byte atomics we also use 8-byte memory access,
174 // this leads to false negatives only in very obscure cases.
178 static atomic_uint8_t
*to_atomic(const volatile a8
*a
) {
179 return reinterpret_cast<atomic_uint8_t
*>(const_cast<a8
*>(a
));
182 static atomic_uint16_t
*to_atomic(const volatile a16
*a
) {
183 return reinterpret_cast<atomic_uint16_t
*>(const_cast<a16
*>(a
));
187 static atomic_uint32_t
*to_atomic(const volatile a32
*a
) {
188 return reinterpret_cast<atomic_uint32_t
*>(const_cast<a32
*>(a
));
191 static atomic_uint64_t
*to_atomic(const volatile a64
*a
) {
192 return reinterpret_cast<atomic_uint64_t
*>(const_cast<a64
*>(a
));
195 static memory_order
to_mo(morder mo
) {
197 case mo_relaxed
: return memory_order_relaxed
;
198 case mo_consume
: return memory_order_consume
;
199 case mo_acquire
: return memory_order_acquire
;
200 case mo_release
: return memory_order_release
;
201 case mo_acq_rel
: return memory_order_acq_rel
;
202 case mo_seq_cst
: return memory_order_seq_cst
;
205 return memory_order_seq_cst
;
209 static T
NoTsanAtomicLoad(const volatile T
*a
, morder mo
) {
210 return atomic_load(to_atomic(a
), to_mo(mo
));
213 #if __TSAN_HAS_INT128 && !SANITIZER_GO
214 static a128
NoTsanAtomicLoad(const volatile a128
*a
, morder mo
) {
215 SpinMutexLock
lock(&mutex128
);
221 static T
AtomicLoad(ThreadState
*thr
, uptr pc
, const volatile T
*a
, morder mo
) {
222 CHECK(IsLoadOrder(mo
));
223 // This fast-path is critical for performance.
224 // Assume the access is atomic.
225 if (!IsAcquireOrder(mo
)) {
226 MemoryReadAtomic(thr
, pc
, (uptr
)a
, SizeLog
<T
>());
227 return NoTsanAtomicLoad(a
, mo
);
229 // Don't create sync object if it does not exist yet. For example, an atomic
230 // pointer is initialized to nullptr and then periodically acquire-loaded.
231 T v
= NoTsanAtomicLoad(a
, mo
);
232 SyncVar
*s
= ctx
->metamap
.GetIfExistsAndLock((uptr
)a
, false);
234 AcquireImpl(thr
, pc
, &s
->clock
);
235 // Re-read under sync mutex because we need a consistent snapshot
236 // of the value and the clock we acquire.
237 v
= NoTsanAtomicLoad(a
, mo
);
240 MemoryReadAtomic(thr
, pc
, (uptr
)a
, SizeLog
<T
>());
245 static void NoTsanAtomicStore(volatile T
*a
, T v
, morder mo
) {
246 atomic_store(to_atomic(a
), v
, to_mo(mo
));
249 #if __TSAN_HAS_INT128 && !SANITIZER_GO
250 static void NoTsanAtomicStore(volatile a128
*a
, a128 v
, morder mo
) {
251 SpinMutexLock
lock(&mutex128
);
257 static void AtomicStore(ThreadState
*thr
, uptr pc
, volatile T
*a
, T v
,
259 CHECK(IsStoreOrder(mo
));
260 MemoryWriteAtomic(thr
, pc
, (uptr
)a
, SizeLog
<T
>());
261 // This fast-path is critical for performance.
262 // Assume the access is atomic.
263 // Strictly saying even relaxed store cuts off release sequence,
264 // so must reset the clock.
265 if (!IsReleaseOrder(mo
)) {
266 NoTsanAtomicStore(a
, v
, mo
);
269 __sync_synchronize();
270 SyncVar
*s
= ctx
->metamap
.GetOrCreateAndLock(thr
, pc
, (uptr
)a
, true);
271 thr
->fast_state
.IncrementEpoch();
272 // Can't increment epoch w/o writing to the trace as well.
273 TraceAddEvent(thr
, thr
->fast_state
, EventTypeMop
, 0);
274 ReleaseStoreImpl(thr
, pc
, &s
->clock
);
275 NoTsanAtomicStore(a
, v
, mo
);
279 template<typename T
, T (*F
)(volatile T
*v
, T op
)>
280 static T
AtomicRMW(ThreadState
*thr
, uptr pc
, volatile T
*a
, T v
, morder mo
) {
281 MemoryWriteAtomic(thr
, pc
, (uptr
)a
, SizeLog
<T
>());
283 if (mo
!= mo_relaxed
) {
284 s
= ctx
->metamap
.GetOrCreateAndLock(thr
, pc
, (uptr
)a
, true);
285 thr
->fast_state
.IncrementEpoch();
286 // Can't increment epoch w/o writing to the trace as well.
287 TraceAddEvent(thr
, thr
->fast_state
, EventTypeMop
, 0);
288 if (IsAcqRelOrder(mo
))
289 AcquireReleaseImpl(thr
, pc
, &s
->clock
);
290 else if (IsReleaseOrder(mo
))
291 ReleaseImpl(thr
, pc
, &s
->clock
);
292 else if (IsAcquireOrder(mo
))
293 AcquireImpl(thr
, pc
, &s
->clock
);
302 static T
NoTsanAtomicExchange(volatile T
*a
, T v
, morder mo
) {
303 return func_xchg(a
, v
);
307 static T
NoTsanAtomicFetchAdd(volatile T
*a
, T v
, morder mo
) {
308 return func_add(a
, v
);
312 static T
NoTsanAtomicFetchSub(volatile T
*a
, T v
, morder mo
) {
313 return func_sub(a
, v
);
317 static T
NoTsanAtomicFetchAnd(volatile T
*a
, T v
, morder mo
) {
318 return func_and(a
, v
);
322 static T
NoTsanAtomicFetchOr(volatile T
*a
, T v
, morder mo
) {
323 return func_or(a
, v
);
327 static T
NoTsanAtomicFetchXor(volatile T
*a
, T v
, morder mo
) {
328 return func_xor(a
, v
);
332 static T
NoTsanAtomicFetchNand(volatile T
*a
, T v
, morder mo
) {
333 return func_nand(a
, v
);
337 static T
AtomicExchange(ThreadState
*thr
, uptr pc
, volatile T
*a
, T v
,
339 return AtomicRMW
<T
, func_xchg
>(thr
, pc
, a
, v
, mo
);
343 static T
AtomicFetchAdd(ThreadState
*thr
, uptr pc
, volatile T
*a
, T v
,
345 return AtomicRMW
<T
, func_add
>(thr
, pc
, a
, v
, mo
);
349 static T
AtomicFetchSub(ThreadState
*thr
, uptr pc
, volatile T
*a
, T v
,
351 return AtomicRMW
<T
, func_sub
>(thr
, pc
, a
, v
, mo
);
355 static T
AtomicFetchAnd(ThreadState
*thr
, uptr pc
, volatile T
*a
, T v
,
357 return AtomicRMW
<T
, func_and
>(thr
, pc
, a
, v
, mo
);
361 static T
AtomicFetchOr(ThreadState
*thr
, uptr pc
, volatile T
*a
, T v
,
363 return AtomicRMW
<T
, func_or
>(thr
, pc
, a
, v
, mo
);
367 static T
AtomicFetchXor(ThreadState
*thr
, uptr pc
, volatile T
*a
, T v
,
369 return AtomicRMW
<T
, func_xor
>(thr
, pc
, a
, v
, mo
);
373 static T
AtomicFetchNand(ThreadState
*thr
, uptr pc
, volatile T
*a
, T v
,
375 return AtomicRMW
<T
, func_nand
>(thr
, pc
, a
, v
, mo
);
379 static bool NoTsanAtomicCAS(volatile T
*a
, T
*c
, T v
, morder mo
, morder fmo
) {
380 return atomic_compare_exchange_strong(to_atomic(a
), c
, v
, to_mo(mo
));
383 #if __TSAN_HAS_INT128
384 static bool NoTsanAtomicCAS(volatile a128
*a
, a128
*c
, a128 v
,
385 morder mo
, morder fmo
) {
387 a128 cur
= func_cas(a
, old
, v
);
396 static T
NoTsanAtomicCAS(volatile T
*a
, T c
, T v
, morder mo
, morder fmo
) {
397 NoTsanAtomicCAS(a
, &c
, v
, mo
, fmo
);
402 static bool AtomicCAS(ThreadState
*thr
, uptr pc
,
403 volatile T
*a
, T
*c
, T v
, morder mo
, morder fmo
) {
404 (void)fmo
; // Unused because llvm does not pass it yet.
405 MemoryWriteAtomic(thr
, pc
, (uptr
)a
, SizeLog
<T
>());
407 bool write_lock
= mo
!= mo_acquire
&& mo
!= mo_consume
;
408 if (mo
!= mo_relaxed
) {
409 s
= ctx
->metamap
.GetOrCreateAndLock(thr
, pc
, (uptr
)a
, write_lock
);
410 thr
->fast_state
.IncrementEpoch();
411 // Can't increment epoch w/o writing to the trace as well.
412 TraceAddEvent(thr
, thr
->fast_state
, EventTypeMop
, 0);
413 if (IsAcqRelOrder(mo
))
414 AcquireReleaseImpl(thr
, pc
, &s
->clock
);
415 else if (IsReleaseOrder(mo
))
416 ReleaseImpl(thr
, pc
, &s
->clock
);
417 else if (IsAcquireOrder(mo
))
418 AcquireImpl(thr
, pc
, &s
->clock
);
421 T pr
= func_cas(a
, cc
, v
);
435 static T
AtomicCAS(ThreadState
*thr
, uptr pc
,
436 volatile T
*a
, T c
, T v
, morder mo
, morder fmo
) {
437 AtomicCAS(thr
, pc
, a
, &c
, v
, mo
, fmo
);
442 static void NoTsanAtomicFence(morder mo
) {
443 __sync_synchronize();
446 static void AtomicFence(ThreadState
*thr
, uptr pc
, morder mo
) {
447 // FIXME(dvyukov): not implemented.
448 __sync_synchronize();
452 // Interface functions follow.
457 static morder
convert_morder(morder mo
) {
458 if (flags()->force_seq_cst_atomics
)
459 return (morder
)mo_seq_cst
;
461 // Filter out additional memory order flags:
462 // MEMMODEL_SYNC = 1 << 15
463 // __ATOMIC_HLE_ACQUIRE = 1 << 16
464 // __ATOMIC_HLE_RELEASE = 1 << 17
466 // HLE is an optimization, and we pretend that elision always fails.
467 // MEMMODEL_SYNC is used when lowering __sync_ atomics,
468 // since we use __sync_ atomics for actual atomic operations,
469 // we can safely ignore it as well. It also subtly affects semantics,
470 // but we don't model the difference.
471 return (morder
)(mo
& 0x7fff);
474 #define SCOPED_ATOMIC(func, ...) \
475 ThreadState *const thr = cur_thread(); \
476 if (thr->ignore_sync || thr->ignore_interceptors) { \
477 ProcessPendingSignals(thr); \
478 return NoTsanAtomic##func(__VA_ARGS__); \
480 const uptr callpc = (uptr)__builtin_return_address(0); \
481 uptr pc = StackTrace::GetCurrentPc(); \
482 mo = convert_morder(mo); \
483 AtomicStatInc(thr, sizeof(*a), mo, StatAtomic##func); \
484 ScopedAtomic sa(thr, callpc, a, mo, __func__); \
485 return Atomic##func(thr, pc, __VA_ARGS__); \
490 ScopedAtomic(ThreadState
*thr
, uptr pc
, const volatile void *a
,
491 morder mo
, const char *func
)
494 DPrintf("#%d: %s(%p, %d)\n", thr_
->tid
, func
, a
, mo
);
497 ProcessPendingSignals(thr_
);
504 static void AtomicStatInc(ThreadState
*thr
, uptr size
, morder mo
, StatType t
) {
505 StatInc(thr
, StatAtomic
);
507 StatInc(thr
, size
== 1 ? StatAtomic1
508 : size
== 2 ? StatAtomic2
509 : size
== 4 ? StatAtomic4
510 : size
== 8 ? StatAtomic8
512 StatInc(thr
, mo
== mo_relaxed
? StatAtomicRelaxed
513 : mo
== mo_consume
? StatAtomicConsume
514 : mo
== mo_acquire
? StatAtomicAcquire
515 : mo
== mo_release
? StatAtomicRelease
516 : mo
== mo_acq_rel
? StatAtomicAcq_Rel
517 : StatAtomicSeq_Cst
);
521 SANITIZER_INTERFACE_ATTRIBUTE
522 a8
__tsan_atomic8_load(const volatile a8
*a
, morder mo
) {
523 SCOPED_ATOMIC(Load
, a
, mo
);
526 SANITIZER_INTERFACE_ATTRIBUTE
527 a16
__tsan_atomic16_load(const volatile a16
*a
, morder mo
) {
528 SCOPED_ATOMIC(Load
, a
, mo
);
531 SANITIZER_INTERFACE_ATTRIBUTE
532 a32
__tsan_atomic32_load(const volatile a32
*a
, morder mo
) {
533 SCOPED_ATOMIC(Load
, a
, mo
);
536 SANITIZER_INTERFACE_ATTRIBUTE
537 a64
__tsan_atomic64_load(const volatile a64
*a
, morder mo
) {
538 SCOPED_ATOMIC(Load
, a
, mo
);
541 #if __TSAN_HAS_INT128
542 SANITIZER_INTERFACE_ATTRIBUTE
543 a128
__tsan_atomic128_load(const volatile a128
*a
, morder mo
) {
544 SCOPED_ATOMIC(Load
, a
, mo
);
548 SANITIZER_INTERFACE_ATTRIBUTE
549 void __tsan_atomic8_store(volatile a8
*a
, a8 v
, morder mo
) {
550 SCOPED_ATOMIC(Store
, a
, v
, mo
);
553 SANITIZER_INTERFACE_ATTRIBUTE
554 void __tsan_atomic16_store(volatile a16
*a
, a16 v
, morder mo
) {
555 SCOPED_ATOMIC(Store
, a
, v
, mo
);
558 SANITIZER_INTERFACE_ATTRIBUTE
559 void __tsan_atomic32_store(volatile a32
*a
, a32 v
, morder mo
) {
560 SCOPED_ATOMIC(Store
, a
, v
, mo
);
563 SANITIZER_INTERFACE_ATTRIBUTE
564 void __tsan_atomic64_store(volatile a64
*a
, a64 v
, morder mo
) {
565 SCOPED_ATOMIC(Store
, a
, v
, mo
);
568 #if __TSAN_HAS_INT128
569 SANITIZER_INTERFACE_ATTRIBUTE
570 void __tsan_atomic128_store(volatile a128
*a
, a128 v
, morder mo
) {
571 SCOPED_ATOMIC(Store
, a
, v
, mo
);
575 SANITIZER_INTERFACE_ATTRIBUTE
576 a8
__tsan_atomic8_exchange(volatile a8
*a
, a8 v
, morder mo
) {
577 SCOPED_ATOMIC(Exchange
, a
, v
, mo
);
580 SANITIZER_INTERFACE_ATTRIBUTE
581 a16
__tsan_atomic16_exchange(volatile a16
*a
, a16 v
, morder mo
) {
582 SCOPED_ATOMIC(Exchange
, a
, v
, mo
);
585 SANITIZER_INTERFACE_ATTRIBUTE
586 a32
__tsan_atomic32_exchange(volatile a32
*a
, a32 v
, morder mo
) {
587 SCOPED_ATOMIC(Exchange
, a
, v
, mo
);
590 SANITIZER_INTERFACE_ATTRIBUTE
591 a64
__tsan_atomic64_exchange(volatile a64
*a
, a64 v
, morder mo
) {
592 SCOPED_ATOMIC(Exchange
, a
, v
, mo
);
595 #if __TSAN_HAS_INT128
596 SANITIZER_INTERFACE_ATTRIBUTE
597 a128
__tsan_atomic128_exchange(volatile a128
*a
, a128 v
, morder mo
) {
598 SCOPED_ATOMIC(Exchange
, a
, v
, mo
);
602 SANITIZER_INTERFACE_ATTRIBUTE
603 a8
__tsan_atomic8_fetch_add(volatile a8
*a
, a8 v
, morder mo
) {
604 SCOPED_ATOMIC(FetchAdd
, a
, v
, mo
);
607 SANITIZER_INTERFACE_ATTRIBUTE
608 a16
__tsan_atomic16_fetch_add(volatile a16
*a
, a16 v
, morder mo
) {
609 SCOPED_ATOMIC(FetchAdd
, a
, v
, mo
);
612 SANITIZER_INTERFACE_ATTRIBUTE
613 a32
__tsan_atomic32_fetch_add(volatile a32
*a
, a32 v
, morder mo
) {
614 SCOPED_ATOMIC(FetchAdd
, a
, v
, mo
);
617 SANITIZER_INTERFACE_ATTRIBUTE
618 a64
__tsan_atomic64_fetch_add(volatile a64
*a
, a64 v
, morder mo
) {
619 SCOPED_ATOMIC(FetchAdd
, a
, v
, mo
);
622 #if __TSAN_HAS_INT128
623 SANITIZER_INTERFACE_ATTRIBUTE
624 a128
__tsan_atomic128_fetch_add(volatile a128
*a
, a128 v
, morder mo
) {
625 SCOPED_ATOMIC(FetchAdd
, a
, v
, mo
);
629 SANITIZER_INTERFACE_ATTRIBUTE
630 a8
__tsan_atomic8_fetch_sub(volatile a8
*a
, a8 v
, morder mo
) {
631 SCOPED_ATOMIC(FetchSub
, a
, v
, mo
);
634 SANITIZER_INTERFACE_ATTRIBUTE
635 a16
__tsan_atomic16_fetch_sub(volatile a16
*a
, a16 v
, morder mo
) {
636 SCOPED_ATOMIC(FetchSub
, a
, v
, mo
);
639 SANITIZER_INTERFACE_ATTRIBUTE
640 a32
__tsan_atomic32_fetch_sub(volatile a32
*a
, a32 v
, morder mo
) {
641 SCOPED_ATOMIC(FetchSub
, a
, v
, mo
);
644 SANITIZER_INTERFACE_ATTRIBUTE
645 a64
__tsan_atomic64_fetch_sub(volatile a64
*a
, a64 v
, morder mo
) {
646 SCOPED_ATOMIC(FetchSub
, a
, v
, mo
);
649 #if __TSAN_HAS_INT128
650 SANITIZER_INTERFACE_ATTRIBUTE
651 a128
__tsan_atomic128_fetch_sub(volatile a128
*a
, a128 v
, morder mo
) {
652 SCOPED_ATOMIC(FetchSub
, a
, v
, mo
);
656 SANITIZER_INTERFACE_ATTRIBUTE
657 a8
__tsan_atomic8_fetch_and(volatile a8
*a
, a8 v
, morder mo
) {
658 SCOPED_ATOMIC(FetchAnd
, a
, v
, mo
);
661 SANITIZER_INTERFACE_ATTRIBUTE
662 a16
__tsan_atomic16_fetch_and(volatile a16
*a
, a16 v
, morder mo
) {
663 SCOPED_ATOMIC(FetchAnd
, a
, v
, mo
);
666 SANITIZER_INTERFACE_ATTRIBUTE
667 a32
__tsan_atomic32_fetch_and(volatile a32
*a
, a32 v
, morder mo
) {
668 SCOPED_ATOMIC(FetchAnd
, a
, v
, mo
);
671 SANITIZER_INTERFACE_ATTRIBUTE
672 a64
__tsan_atomic64_fetch_and(volatile a64
*a
, a64 v
, morder mo
) {
673 SCOPED_ATOMIC(FetchAnd
, a
, v
, mo
);
676 #if __TSAN_HAS_INT128
677 SANITIZER_INTERFACE_ATTRIBUTE
678 a128
__tsan_atomic128_fetch_and(volatile a128
*a
, a128 v
, morder mo
) {
679 SCOPED_ATOMIC(FetchAnd
, a
, v
, mo
);
683 SANITIZER_INTERFACE_ATTRIBUTE
684 a8
__tsan_atomic8_fetch_or(volatile a8
*a
, a8 v
, morder mo
) {
685 SCOPED_ATOMIC(FetchOr
, a
, v
, mo
);
688 SANITIZER_INTERFACE_ATTRIBUTE
689 a16
__tsan_atomic16_fetch_or(volatile a16
*a
, a16 v
, morder mo
) {
690 SCOPED_ATOMIC(FetchOr
, a
, v
, mo
);
693 SANITIZER_INTERFACE_ATTRIBUTE
694 a32
__tsan_atomic32_fetch_or(volatile a32
*a
, a32 v
, morder mo
) {
695 SCOPED_ATOMIC(FetchOr
, a
, v
, mo
);
698 SANITIZER_INTERFACE_ATTRIBUTE
699 a64
__tsan_atomic64_fetch_or(volatile a64
*a
, a64 v
, morder mo
) {
700 SCOPED_ATOMIC(FetchOr
, a
, v
, mo
);
703 #if __TSAN_HAS_INT128
704 SANITIZER_INTERFACE_ATTRIBUTE
705 a128
__tsan_atomic128_fetch_or(volatile a128
*a
, a128 v
, morder mo
) {
706 SCOPED_ATOMIC(FetchOr
, a
, v
, mo
);
710 SANITIZER_INTERFACE_ATTRIBUTE
711 a8
__tsan_atomic8_fetch_xor(volatile a8
*a
, a8 v
, morder mo
) {
712 SCOPED_ATOMIC(FetchXor
, a
, v
, mo
);
715 SANITIZER_INTERFACE_ATTRIBUTE
716 a16
__tsan_atomic16_fetch_xor(volatile a16
*a
, a16 v
, morder mo
) {
717 SCOPED_ATOMIC(FetchXor
, a
, v
, mo
);
720 SANITIZER_INTERFACE_ATTRIBUTE
721 a32
__tsan_atomic32_fetch_xor(volatile a32
*a
, a32 v
, morder mo
) {
722 SCOPED_ATOMIC(FetchXor
, a
, v
, mo
);
725 SANITIZER_INTERFACE_ATTRIBUTE
726 a64
__tsan_atomic64_fetch_xor(volatile a64
*a
, a64 v
, morder mo
) {
727 SCOPED_ATOMIC(FetchXor
, a
, v
, mo
);
730 #if __TSAN_HAS_INT128
731 SANITIZER_INTERFACE_ATTRIBUTE
732 a128
__tsan_atomic128_fetch_xor(volatile a128
*a
, a128 v
, morder mo
) {
733 SCOPED_ATOMIC(FetchXor
, a
, v
, mo
);
737 SANITIZER_INTERFACE_ATTRIBUTE
738 a8
__tsan_atomic8_fetch_nand(volatile a8
*a
, a8 v
, morder mo
) {
739 SCOPED_ATOMIC(FetchNand
, a
, v
, mo
);
742 SANITIZER_INTERFACE_ATTRIBUTE
743 a16
__tsan_atomic16_fetch_nand(volatile a16
*a
, a16 v
, morder mo
) {
744 SCOPED_ATOMIC(FetchNand
, a
, v
, mo
);
747 SANITIZER_INTERFACE_ATTRIBUTE
748 a32
__tsan_atomic32_fetch_nand(volatile a32
*a
, a32 v
, morder mo
) {
749 SCOPED_ATOMIC(FetchNand
, a
, v
, mo
);
752 SANITIZER_INTERFACE_ATTRIBUTE
753 a64
__tsan_atomic64_fetch_nand(volatile a64
*a
, a64 v
, morder mo
) {
754 SCOPED_ATOMIC(FetchNand
, a
, v
, mo
);
757 #if __TSAN_HAS_INT128
758 SANITIZER_INTERFACE_ATTRIBUTE
759 a128
__tsan_atomic128_fetch_nand(volatile a128
*a
, a128 v
, morder mo
) {
760 SCOPED_ATOMIC(FetchNand
, a
, v
, mo
);
764 SANITIZER_INTERFACE_ATTRIBUTE
765 int __tsan_atomic8_compare_exchange_strong(volatile a8
*a
, a8
*c
, a8 v
,
766 morder mo
, morder fmo
) {
767 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
770 SANITIZER_INTERFACE_ATTRIBUTE
771 int __tsan_atomic16_compare_exchange_strong(volatile a16
*a
, a16
*c
, a16 v
,
772 morder mo
, morder fmo
) {
773 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
776 SANITIZER_INTERFACE_ATTRIBUTE
777 int __tsan_atomic32_compare_exchange_strong(volatile a32
*a
, a32
*c
, a32 v
,
778 morder mo
, morder fmo
) {
779 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
782 SANITIZER_INTERFACE_ATTRIBUTE
783 int __tsan_atomic64_compare_exchange_strong(volatile a64
*a
, a64
*c
, a64 v
,
784 morder mo
, morder fmo
) {
785 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
788 #if __TSAN_HAS_INT128
789 SANITIZER_INTERFACE_ATTRIBUTE
790 int __tsan_atomic128_compare_exchange_strong(volatile a128
*a
, a128
*c
, a128 v
,
791 morder mo
, morder fmo
) {
792 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
796 SANITIZER_INTERFACE_ATTRIBUTE
797 int __tsan_atomic8_compare_exchange_weak(volatile a8
*a
, a8
*c
, a8 v
,
798 morder mo
, morder fmo
) {
799 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
802 SANITIZER_INTERFACE_ATTRIBUTE
803 int __tsan_atomic16_compare_exchange_weak(volatile a16
*a
, a16
*c
, a16 v
,
804 morder mo
, morder fmo
) {
805 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
808 SANITIZER_INTERFACE_ATTRIBUTE
809 int __tsan_atomic32_compare_exchange_weak(volatile a32
*a
, a32
*c
, a32 v
,
810 morder mo
, morder fmo
) {
811 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
814 SANITIZER_INTERFACE_ATTRIBUTE
815 int __tsan_atomic64_compare_exchange_weak(volatile a64
*a
, a64
*c
, a64 v
,
816 morder mo
, morder fmo
) {
817 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
820 #if __TSAN_HAS_INT128
821 SANITIZER_INTERFACE_ATTRIBUTE
822 int __tsan_atomic128_compare_exchange_weak(volatile a128
*a
, a128
*c
, a128 v
,
823 morder mo
, morder fmo
) {
824 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
828 SANITIZER_INTERFACE_ATTRIBUTE
829 a8
__tsan_atomic8_compare_exchange_val(volatile a8
*a
, a8 c
, a8 v
,
830 morder mo
, morder fmo
) {
831 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
834 SANITIZER_INTERFACE_ATTRIBUTE
835 a16
__tsan_atomic16_compare_exchange_val(volatile a16
*a
, a16 c
, a16 v
,
836 morder mo
, morder fmo
) {
837 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
840 SANITIZER_INTERFACE_ATTRIBUTE
841 a32
__tsan_atomic32_compare_exchange_val(volatile a32
*a
, a32 c
, a32 v
,
842 morder mo
, morder fmo
) {
843 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
846 SANITIZER_INTERFACE_ATTRIBUTE
847 a64
__tsan_atomic64_compare_exchange_val(volatile a64
*a
, a64 c
, a64 v
,
848 morder mo
, morder fmo
) {
849 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
852 #if __TSAN_HAS_INT128
853 SANITIZER_INTERFACE_ATTRIBUTE
854 a128
__tsan_atomic128_compare_exchange_val(volatile a128
*a
, a128 c
, a128 v
,
855 morder mo
, morder fmo
) {
856 SCOPED_ATOMIC(CAS
, a
, c
, v
, mo
, fmo
);
860 SANITIZER_INTERFACE_ATTRIBUTE
861 void __tsan_atomic_thread_fence(morder mo
) {
863 SCOPED_ATOMIC(Fence
, mo
);
866 SANITIZER_INTERFACE_ATTRIBUTE
867 void __tsan_atomic_signal_fence(morder mo
) {
871 #else // #if !SANITIZER_GO
875 #define ATOMIC(func, ...) \
876 if (thr->ignore_sync) { \
877 NoTsanAtomic##func(__VA_ARGS__); \
879 FuncEntry(thr, cpc); \
880 Atomic##func(thr, pc, __VA_ARGS__); \
885 #define ATOMIC_RET(func, ret, ...) \
886 if (thr->ignore_sync) { \
887 (ret) = NoTsanAtomic##func(__VA_ARGS__); \
889 FuncEntry(thr, cpc); \
890 (ret) = Atomic##func(thr, pc, __VA_ARGS__); \
896 SANITIZER_INTERFACE_ATTRIBUTE
897 void __tsan_go_atomic32_load(ThreadState
*thr
, uptr cpc
, uptr pc
, u8
*a
) {
898 ATOMIC_RET(Load
, *(a32
*)(a
+8), *(a32
**)a
, mo_acquire
);
901 SANITIZER_INTERFACE_ATTRIBUTE
902 void __tsan_go_atomic64_load(ThreadState
*thr
, uptr cpc
, uptr pc
, u8
*a
) {
903 ATOMIC_RET(Load
, *(a64
*)(a
+8), *(a64
**)a
, mo_acquire
);
906 SANITIZER_INTERFACE_ATTRIBUTE
907 void __tsan_go_atomic32_store(ThreadState
*thr
, uptr cpc
, uptr pc
, u8
*a
) {
908 ATOMIC(Store
, *(a32
**)a
, *(a32
*)(a
+8), mo_release
);
911 SANITIZER_INTERFACE_ATTRIBUTE
912 void __tsan_go_atomic64_store(ThreadState
*thr
, uptr cpc
, uptr pc
, u8
*a
) {
913 ATOMIC(Store
, *(a64
**)a
, *(a64
*)(a
+8), mo_release
);
916 SANITIZER_INTERFACE_ATTRIBUTE
917 void __tsan_go_atomic32_fetch_add(ThreadState
*thr
, uptr cpc
, uptr pc
, u8
*a
) {
918 ATOMIC_RET(FetchAdd
, *(a32
*)(a
+16), *(a32
**)a
, *(a32
*)(a
+8), mo_acq_rel
);
921 SANITIZER_INTERFACE_ATTRIBUTE
922 void __tsan_go_atomic64_fetch_add(ThreadState
*thr
, uptr cpc
, uptr pc
, u8
*a
) {
923 ATOMIC_RET(FetchAdd
, *(a64
*)(a
+16), *(a64
**)a
, *(a64
*)(a
+8), mo_acq_rel
);
926 SANITIZER_INTERFACE_ATTRIBUTE
927 void __tsan_go_atomic32_exchange(ThreadState
*thr
, uptr cpc
, uptr pc
, u8
*a
) {
928 ATOMIC_RET(Exchange
, *(a32
*)(a
+16), *(a32
**)a
, *(a32
*)(a
+8), mo_acq_rel
);
931 SANITIZER_INTERFACE_ATTRIBUTE
932 void __tsan_go_atomic64_exchange(ThreadState
*thr
, uptr cpc
, uptr pc
, u8
*a
) {
933 ATOMIC_RET(Exchange
, *(a64
*)(a
+16), *(a64
**)a
, *(a64
*)(a
+8), mo_acq_rel
);
936 SANITIZER_INTERFACE_ATTRIBUTE
937 void __tsan_go_atomic32_compare_exchange(
938 ThreadState
*thr
, uptr cpc
, uptr pc
, u8
*a
) {
940 a32 cmp
= *(a32
*)(a
+8);
941 ATOMIC_RET(CAS
, cur
, *(a32
**)a
, cmp
, *(a32
*)(a
+12), mo_acq_rel
, mo_acquire
);
942 *(bool*)(a
+16) = (cur
== cmp
);
945 SANITIZER_INTERFACE_ATTRIBUTE
946 void __tsan_go_atomic64_compare_exchange(
947 ThreadState
*thr
, uptr cpc
, uptr pc
, u8
*a
) {
949 a64 cmp
= *(a64
*)(a
+8);
950 ATOMIC_RET(CAS
, cur
, *(a64
**)a
, cmp
, *(a64
*)(a
+16), mo_acq_rel
, mo_acquire
);
951 *(bool*)(a
+24) = (cur
== cmp
);
954 #endif // #if !SANITIZER_GO