i386-protos.h (x86_emit_floatuns): Declare.
[official-gcc.git] / gcc / unwind-dw2-fde.c
blobb1bd8c031115de717257ef1e0b223831e1ca49aa
1 /* Subroutines needed for unwinding stack frames for exception handling. */
2 /* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Jason Merrill <jason@cygnus.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
22 WARRANTY; without even the implied warranty of MERCHANTABILITY or
23 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
24 for more details.
26 You should have received a copy of the GNU General Public License
27 along with GCC; see the file COPYING. If not, write to the Free
28 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
29 02111-1307, USA. */
31 #ifndef _Unwind_Find_FDE
32 #include "tconfig.h"
33 #include "tsystem.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "dwarf2.h"
37 #include "unwind.h"
38 #define NO_BASE_OF_ENCODED_VALUE
39 #include "unwind-pe.h"
40 #include "unwind-dw2-fde.h"
41 #include "gthr.h"
42 #endif
44 /* The unseen_objects list contains objects that have been registered
45 but not yet categorized in any way. The seen_objects list has had
46 it's pc_begin and count fields initialized at minimum, and is sorted
47 by decreasing value of pc_begin. */
48 static struct object *unseen_objects;
49 static struct object *seen_objects;
51 #ifdef __GTHREAD_MUTEX_INIT
52 static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
53 #else
54 static __gthread_mutex_t object_mutex;
55 #endif
57 #ifdef __GTHREAD_MUTEX_INIT_FUNCTION
58 static void
59 init_object_mutex (void)
61 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
64 static void
65 init_object_mutex_once (void)
67 static __gthread_once_t once = __GTHREAD_ONCE_INIT;
68 __gthread_once (&once, init_object_mutex);
70 #else
71 #define init_object_mutex_once()
72 #endif
74 /* Called from crtbegin.o to register the unwind info for an object. */
76 void
77 __register_frame_info_bases (void *begin, struct object *ob,
78 void *tbase, void *dbase)
80 /* If .eh_frame is empty, don't register at all. */
81 if (*(uword *) begin == 0)
82 return;
84 ob->pc_begin = (void *)-1;
85 ob->tbase = tbase;
86 ob->dbase = dbase;
87 ob->u.single = begin;
88 ob->s.i = 0;
89 ob->s.b.encoding = DW_EH_PE_omit;
90 #ifdef DWARF2_OBJECT_END_PTR_EXTENSION
91 ob->fde_end = NULL;
92 #endif
94 init_object_mutex_once ();
95 __gthread_mutex_lock (&object_mutex);
97 ob->next = unseen_objects;
98 unseen_objects = ob;
100 __gthread_mutex_unlock (&object_mutex);
103 void
104 __register_frame_info (void *begin, struct object *ob)
106 __register_frame_info_bases (begin, ob, 0, 0);
109 void
110 __register_frame (void *begin)
112 struct object *ob;
114 /* If .eh_frame is empty, don't register at all. */
115 if (*(uword *) begin == 0)
116 return;
118 ob = (struct object *) malloc (sizeof (struct object));
119 __register_frame_info (begin, ob);
122 /* Similar, but BEGIN is actually a pointer to a table of unwind entries
123 for different translation units. Called from the file generated by
124 collect2. */
126 void
127 __register_frame_info_table_bases (void *begin, struct object *ob,
128 void *tbase, void *dbase)
130 ob->pc_begin = (void *)-1;
131 ob->tbase = tbase;
132 ob->dbase = dbase;
133 ob->u.array = begin;
134 ob->s.i = 0;
135 ob->s.b.from_array = 1;
136 ob->s.b.encoding = DW_EH_PE_omit;
138 init_object_mutex_once ();
139 __gthread_mutex_lock (&object_mutex);
141 ob->next = unseen_objects;
142 unseen_objects = ob;
144 __gthread_mutex_unlock (&object_mutex);
147 void
148 __register_frame_info_table (void *begin, struct object *ob)
150 __register_frame_info_table_bases (begin, ob, 0, 0);
153 void
154 __register_frame_table (void *begin)
156 struct object *ob = (struct object *) malloc (sizeof (struct object));
157 __register_frame_info_table (begin, ob);
160 /* Called from crtbegin.o to deregister the unwind info for an object. */
161 /* ??? Glibc has for a while now exported __register_frame_info and
162 __deregister_frame_info. If we call __register_frame_info_bases
163 from crtbegin (wherein it is declared weak), and this object does
164 not get pulled from libgcc.a for other reasons, then the
165 invocation of __deregister_frame_info will be resolved from glibc.
166 Since the registration did not happen there, we'll abort.
168 Therefore, declare a new deregistration entry point that does the
169 exact same thing, but will resolve to the same library as
170 implements __register_frame_info_bases. */
172 void *
173 __deregister_frame_info_bases (void *begin)
175 struct object **p;
176 struct object *ob = 0;
178 /* If .eh_frame is empty, we haven't registered. */
179 if (*(uword *) begin == 0)
180 return ob;
182 init_object_mutex_once ();
183 __gthread_mutex_lock (&object_mutex);
185 for (p = &unseen_objects; *p ; p = &(*p)->next)
186 if ((*p)->u.single == begin)
188 ob = *p;
189 *p = ob->next;
190 goto out;
193 for (p = &seen_objects; *p ; p = &(*p)->next)
194 if ((*p)->s.b.sorted)
196 if ((*p)->u.sort->orig_data == begin)
198 ob = *p;
199 *p = ob->next;
200 free (ob->u.sort);
201 goto out;
204 else
206 if ((*p)->u.single == begin)
208 ob = *p;
209 *p = ob->next;
210 goto out;
214 __gthread_mutex_unlock (&object_mutex);
215 abort ();
217 out:
218 __gthread_mutex_unlock (&object_mutex);
219 return (void *) ob;
222 void *
223 __deregister_frame_info (void *begin)
225 return __deregister_frame_info_bases (begin);
228 void
229 __deregister_frame (void *begin)
231 /* If .eh_frame is empty, we haven't registered. */
232 if (*(uword *) begin != 0)
233 free (__deregister_frame_info (begin));
237 /* Like base_of_encoded_value, but take the base from a struct object
238 instead of an _Unwind_Context. */
240 static _Unwind_Ptr
241 base_from_object (unsigned char encoding, struct object *ob)
243 if (encoding == DW_EH_PE_omit)
244 return 0;
246 switch (encoding & 0x70)
248 case DW_EH_PE_absptr:
249 case DW_EH_PE_pcrel:
250 case DW_EH_PE_aligned:
251 return 0;
253 case DW_EH_PE_textrel:
254 return (_Unwind_Ptr) ob->tbase;
255 case DW_EH_PE_datarel:
256 return (_Unwind_Ptr) ob->dbase;
258 abort ();
261 /* Return the FDE pointer encoding from the CIE. */
262 /* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
264 static int
265 get_cie_encoding (struct dwarf_cie *cie)
267 const unsigned char *aug, *p;
268 _Unwind_Ptr dummy;
269 _Unwind_Word utmp;
270 _Unwind_Sword stmp;
272 aug = cie->augmentation;
273 if (aug[0] != 'z')
274 return DW_EH_PE_absptr;
276 p = aug + strlen (aug) + 1; /* Skip the augmentation string. */
277 p = read_uleb128 (p, &utmp); /* Skip code alignment. */
278 p = read_sleb128 (p, &stmp); /* Skip data alignment. */
279 p++; /* Skip return address column. */
281 aug++; /* Skip 'z' */
282 p = read_uleb128 (p, &utmp); /* Skip augmentation length. */
283 while (1)
285 /* This is what we're looking for. */
286 if (*aug == 'R')
287 return *p;
288 /* Personality encoding and pointer. */
289 else if (*aug == 'P')
291 /* ??? Avoid dereferencing indirect pointers, since we're
292 faking the base address. Gotta keep DW_EH_PE_aligned
293 intact, however. */
294 p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy);
296 /* LSDA encoding. */
297 else if (*aug == 'L')
298 p++;
299 /* Otherwise end of string, or unknown augmentation. */
300 else
301 return DW_EH_PE_absptr;
302 aug++;
306 static inline int
307 get_fde_encoding (struct dwarf_fde *f)
309 return get_cie_encoding (get_cie (f));
313 /* Sorting an array of FDEs by address.
314 (Ideally we would have the linker sort the FDEs so we don't have to do
315 it at run time. But the linkers are not yet prepared for this.) */
317 /* Comparison routines. Three variants of increasing complexity. */
319 static int
320 fde_unencoded_compare (struct object *ob __attribute__((unused)),
321 fde *x, fde *y)
323 _Unwind_Ptr x_ptr = *(_Unwind_Ptr *) x->pc_begin;
324 _Unwind_Ptr y_ptr = *(_Unwind_Ptr *) y->pc_begin;
326 if (x_ptr > y_ptr)
327 return 1;
328 if (x_ptr < y_ptr)
329 return -1;
330 return 0;
333 static int
334 fde_single_encoding_compare (struct object *ob, fde *x, fde *y)
336 _Unwind_Ptr base, x_ptr, y_ptr;
338 base = base_from_object (ob->s.b.encoding, ob);
339 read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr);
340 read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr);
342 if (x_ptr > y_ptr)
343 return 1;
344 if (x_ptr < y_ptr)
345 return -1;
346 return 0;
349 static int
350 fde_mixed_encoding_compare (struct object *ob, fde *x, fde *y)
352 int x_encoding, y_encoding;
353 _Unwind_Ptr x_ptr, y_ptr;
355 x_encoding = get_fde_encoding (x);
356 read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob),
357 x->pc_begin, &x_ptr);
359 y_encoding = get_fde_encoding (y);
360 read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob),
361 y->pc_begin, &y_ptr);
363 if (x_ptr > y_ptr)
364 return 1;
365 if (x_ptr < y_ptr)
366 return -1;
367 return 0;
370 typedef int (*fde_compare_t) (struct object *, fde *, fde *);
373 /* This is a special mix of insertion sort and heap sort, optimized for
374 the data sets that actually occur. They look like
375 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
376 I.e. a linearly increasing sequence (coming from functions in the text
377 section), with additionally a few unordered elements (coming from functions
378 in gnu_linkonce sections) whose values are higher than the values in the
379 surrounding linear sequence (but not necessarily higher than the values
380 at the end of the linear sequence!).
381 The worst-case total run time is O(N) + O(n log (n)), where N is the
382 total number of FDEs and n is the number of erratic ones. */
384 struct fde_accumulator
386 struct fde_vector *linear;
387 struct fde_vector *erratic;
390 static inline int
391 start_fde_sort (struct fde_accumulator *accu, size_t count)
393 size_t size;
394 if (! count)
395 return 0;
397 size = sizeof (struct fde_vector) + sizeof (fde *) * count;
398 if ((accu->linear = (struct fde_vector *) malloc (size)))
400 accu->linear->count = 0;
401 if ((accu->erratic = (struct fde_vector *) malloc (size)))
402 accu->erratic->count = 0;
403 return 1;
405 else
406 return 0;
409 static inline void
410 fde_insert (struct fde_accumulator *accu, fde *this_fde)
412 if (accu->linear)
413 accu->linear->array[accu->linear->count++] = this_fde;
416 /* Split LINEAR into a linear sequence with low values and an erratic
417 sequence with high values, put the linear one (of longest possible
418 length) into LINEAR and the erratic one into ERRATIC. This is O(N).
420 Because the longest linear sequence we are trying to locate within the
421 incoming LINEAR array can be interspersed with (high valued) erratic
422 entries. We construct a chain indicating the sequenced entries.
423 To avoid having to allocate this chain, we overlay it onto the space of
424 the ERRATIC array during construction. A final pass iterates over the
425 chain to determine what should be placed in the ERRATIC array, and
426 what is the linear sequence. This overlay is safe from aliasing. */
428 static inline void
429 fde_split (struct object *ob, fde_compare_t fde_compare,
430 struct fde_vector *linear, struct fde_vector *erratic)
432 static fde *marker;
433 size_t count = linear->count;
434 fde **chain_end = &marker;
435 size_t i, j, k;
437 /* This should optimize out, but it is wise to make sure this assumption
438 is correct. Should these have different sizes, we cannot cast between
439 them and the overlaying onto ERRATIC will not work. */
440 if (sizeof (fde *) != sizeof (fde **))
441 abort ();
443 for (i = 0; i < count; i++)
445 fde **probe;
447 for (probe = chain_end;
448 probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0;
449 probe = chain_end)
451 chain_end = (fde **) erratic->array[probe - linear->array];
452 erratic->array[probe - linear->array] = NULL;
454 erratic->array[i] = (fde *) chain_end;
455 chain_end = &linear->array[i];
458 /* Each entry in LINEAR which is part of the linear sequence we have
459 discovered will correspond to a non-NULL entry in the chain we built in
460 the ERRATIC array. */
461 for (i = j = k = 0; i < count; i++)
462 if (erratic->array[i])
463 linear->array[j++] = linear->array[i];
464 else
465 erratic->array[k++] = linear->array[i];
466 linear->count = j;
467 erratic->count = k;
470 #define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0)
472 /* Convert a semi-heap to a heap. A semi-heap is a heap except possibly
473 for the first (root) node; push it down to its rightful place. */
475 static void
476 frame_downheap (struct object *ob, fde_compare_t fde_compare, fde **a,
477 int lo, int hi)
479 int i, j;
481 for (i = lo, j = 2*i+1;
482 j < hi;
483 j = 2*i+1)
485 if (j+1 < hi && fde_compare (ob, a[j], a[j+1]) < 0)
486 ++j;
488 if (fde_compare (ob, a[i], a[j]) < 0)
490 SWAP (a[i], a[j]);
491 i = j;
493 else
494 break;
498 /* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
499 use a name that does not conflict. */
501 static void
502 frame_heapsort (struct object *ob, fde_compare_t fde_compare,
503 struct fde_vector *erratic)
505 /* For a description of this algorithm, see:
506 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
507 p. 60-61. */
508 fde ** a = erratic->array;
509 /* A portion of the array is called a "heap" if for all i>=0:
510 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
511 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
512 size_t n = erratic->count;
513 int m;
515 /* Expand our heap incrementally from the end of the array, heapifying
516 each resulting semi-heap as we go. After each step, a[m] is the top
517 of a heap. */
518 for (m = n/2-1; m >= 0; --m)
519 frame_downheap (ob, fde_compare, a, m, n);
521 /* Shrink our heap incrementally from the end of the array, first
522 swapping out the largest element a[0] and then re-heapifying the
523 resulting semi-heap. After each step, a[0..m) is a heap. */
524 for (m = n-1; m >= 1; --m)
526 SWAP (a[0], a[m]);
527 frame_downheap (ob, fde_compare, a, 0, m);
529 #undef SWAP
532 /* Merge V1 and V2, both sorted, and put the result into V1. */
533 static inline void
534 fde_merge (struct object *ob, fde_compare_t fde_compare,
535 struct fde_vector *v1, struct fde_vector *v2)
537 size_t i1, i2;
538 fde * fde2;
540 i2 = v2->count;
541 if (i2 > 0)
543 i1 = v1->count;
546 i2--;
547 fde2 = v2->array[i2];
548 while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0)
550 v1->array[i1+i2] = v1->array[i1-1];
551 i1--;
553 v1->array[i1+i2] = fde2;
555 while (i2 > 0);
556 v1->count += v2->count;
560 static inline void
561 end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count)
563 fde_compare_t fde_compare;
565 if (accu->linear && accu->linear->count != count)
566 abort ();
568 if (ob->s.b.mixed_encoding)
569 fde_compare = fde_mixed_encoding_compare;
570 else if (ob->s.b.encoding == DW_EH_PE_absptr)
571 fde_compare = fde_unencoded_compare;
572 else
573 fde_compare = fde_single_encoding_compare;
575 if (accu->erratic)
577 fde_split (ob, fde_compare, accu->linear, accu->erratic);
578 if (accu->linear->count + accu->erratic->count != count)
579 abort ();
580 frame_heapsort (ob, fde_compare, accu->erratic);
581 fde_merge (ob, fde_compare, accu->linear, accu->erratic);
582 free (accu->erratic);
584 else
586 /* We've not managed to malloc an erratic array,
587 so heap sort in the linear one. */
588 frame_heapsort (ob, fde_compare, accu->linear);
593 /* Update encoding, mixed_encoding, and pc_begin for OB for the
594 fde array beginning at THIS_FDE. Return the number of fdes
595 encountered along the way. */
597 static size_t
598 classify_object_over_fdes (struct object *ob, fde *this_fde)
600 struct dwarf_cie *last_cie = 0;
601 size_t count = 0;
602 int encoding = DW_EH_PE_absptr;
603 _Unwind_Ptr base = 0;
605 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
607 struct dwarf_cie *this_cie;
608 _Unwind_Ptr mask, pc_begin;
610 /* Skip CIEs. */
611 if (this_fde->CIE_delta == 0)
612 continue;
614 /* Determine the encoding for this FDE. Note mixed encoded
615 objects for later. */
616 this_cie = get_cie (this_fde);
617 if (this_cie != last_cie)
619 last_cie = this_cie;
620 encoding = get_cie_encoding (this_cie);
621 base = base_from_object (encoding, ob);
622 if (ob->s.b.encoding == DW_EH_PE_omit)
623 ob->s.b.encoding = encoding;
624 else if (ob->s.b.encoding != encoding)
625 ob->s.b.mixed_encoding = 1;
628 read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
629 &pc_begin);
631 /* Take care to ignore link-once functions that were removed.
632 In these cases, the function address will be NULL, but if
633 the encoding is smaller than a pointer a true NULL may not
634 be representable. Assume 0 in the representable bits is NULL. */
635 mask = size_of_encoded_value (encoding);
636 if (mask < sizeof (void *))
637 mask = (1L << (mask << 3)) - 1;
638 else
639 mask = -1;
641 if ((pc_begin & mask) == 0)
642 continue;
644 count += 1;
645 if ((void *) pc_begin < ob->pc_begin)
646 ob->pc_begin = (void *) pc_begin;
649 return count;
652 static void
653 add_fdes (struct object *ob, struct fde_accumulator *accu, fde *this_fde)
655 struct dwarf_cie *last_cie = 0;
656 int encoding = ob->s.b.encoding;
657 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
659 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
661 struct dwarf_cie *this_cie;
663 /* Skip CIEs. */
664 if (this_fde->CIE_delta == 0)
665 continue;
667 if (ob->s.b.mixed_encoding)
669 /* Determine the encoding for this FDE. Note mixed encoded
670 objects for later. */
671 this_cie = get_cie (this_fde);
672 if (this_cie != last_cie)
674 last_cie = this_cie;
675 encoding = get_cie_encoding (this_cie);
676 base = base_from_object (encoding, ob);
680 if (encoding == DW_EH_PE_absptr)
682 if (*(_Unwind_Ptr *) this_fde->pc_begin == 0)
683 continue;
685 else
687 _Unwind_Ptr pc_begin, mask;
689 read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
690 &pc_begin);
692 /* Take care to ignore link-once functions that were removed.
693 In these cases, the function address will be NULL, but if
694 the encoding is smaller than a pointer a true NULL may not
695 be representable. Assume 0 in the representable bits is NULL. */
696 mask = size_of_encoded_value (encoding);
697 if (mask < sizeof (void *))
698 mask = (1L << (mask << 3)) - 1;
699 else
700 mask = -1;
702 if ((pc_begin & mask) == 0)
703 continue;
706 fde_insert (accu, this_fde);
710 /* Set up a sorted array of pointers to FDEs for a loaded object. We
711 count up the entries before allocating the array because it's likely to
712 be faster. We can be called multiple times, should we have failed to
713 allocate a sorted fde array on a previous occasion. */
715 static inline void
716 init_object (struct object* ob)
718 struct fde_accumulator accu;
719 size_t count;
721 count = ob->s.b.count;
722 if (count == 0)
724 if (ob->s.b.from_array)
726 fde **p = ob->u.array;
727 for (count = 0; *p; ++p)
728 count += classify_object_over_fdes (ob, *p);
730 else
731 count = classify_object_over_fdes (ob, ob->u.single);
733 /* The count field we have in the main struct object is somewhat
734 limited, but should suffice for virtually all cases. If the
735 counted value doesn't fit, re-write a zero. The worst that
736 happens is that we re-count next time -- admittedly non-trivial
737 in that this implies some 2M fdes, but at least we function. */
738 ob->s.b.count = count;
739 if (ob->s.b.count != count)
740 ob->s.b.count = 0;
743 if (!start_fde_sort (&accu, count))
744 return;
746 if (ob->s.b.from_array)
748 fde **p;
749 for (p = ob->u.array; *p; ++p)
750 add_fdes (ob, &accu, *p);
752 else
753 add_fdes (ob, &accu, ob->u.single);
755 end_fde_sort (ob, &accu, count);
757 /* Save the original fde pointer, since this is the key by which the
758 DSO will deregister the object. */
759 accu.linear->orig_data = ob->u.single;
760 ob->u.sort = accu.linear;
762 ob->s.b.sorted = 1;
765 /* A linear search through a set of FDEs for the given PC. This is
766 used when there was insufficient memory to allocate and sort an
767 array. */
769 static fde *
770 linear_search_fdes (struct object *ob, fde *this_fde, void *pc)
772 struct dwarf_cie *last_cie = 0;
773 int encoding = ob->s.b.encoding;
774 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
776 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
778 struct dwarf_cie *this_cie;
779 _Unwind_Ptr pc_begin, pc_range;
781 /* Skip CIEs. */
782 if (this_fde->CIE_delta == 0)
783 continue;
785 if (ob->s.b.mixed_encoding)
787 /* Determine the encoding for this FDE. Note mixed encoded
788 objects for later. */
789 this_cie = get_cie (this_fde);
790 if (this_cie != last_cie)
792 last_cie = this_cie;
793 encoding = get_cie_encoding (this_cie);
794 base = base_from_object (encoding, ob);
798 if (encoding == DW_EH_PE_absptr)
800 pc_begin = ((_Unwind_Ptr *) this_fde->pc_begin)[0];
801 pc_range = ((_Unwind_Ptr *) this_fde->pc_begin)[1];
802 if (pc_begin == 0)
803 continue;
805 else
807 _Unwind_Ptr mask;
808 const char *p;
810 p = read_encoded_value_with_base (encoding, base,
811 this_fde->pc_begin, &pc_begin);
812 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
814 /* Take care to ignore link-once functions that were removed.
815 In these cases, the function address will be NULL, but if
816 the encoding is smaller than a pointer a true NULL may not
817 be representable. Assume 0 in the representable bits is NULL. */
818 mask = size_of_encoded_value (encoding);
819 if (mask < sizeof (void *))
820 mask = (1L << (mask << 3)) - 1;
821 else
822 mask = -1;
824 if ((pc_begin & mask) == 0)
825 continue;
828 if ((_Unwind_Ptr) pc - pc_begin < pc_range)
829 return this_fde;
832 return NULL;
835 /* Binary search for an FDE containing the given PC. Here are three
836 implementations of increasing complexity. */
838 static inline fde *
839 binary_search_unencoded_fdes (struct object *ob, void *pc)
841 struct fde_vector *vec = ob->u.sort;
842 size_t lo, hi;
844 for (lo = 0, hi = vec->count; lo < hi; )
846 size_t i = (lo + hi) / 2;
847 fde *f = vec->array[i];
848 void *pc_begin;
849 uaddr pc_range;
851 pc_begin = ((void **) f->pc_begin)[0];
852 pc_range = ((uaddr *) f->pc_begin)[1];
854 if (pc < pc_begin)
855 hi = i;
856 else if (pc >= pc_begin + pc_range)
857 lo = i + 1;
858 else
859 return f;
862 return NULL;
865 static inline fde *
866 binary_search_single_encoding_fdes (struct object *ob, void *pc)
868 struct fde_vector *vec = ob->u.sort;
869 int encoding = ob->s.b.encoding;
870 _Unwind_Ptr base = base_from_object (encoding, ob);
871 size_t lo, hi;
873 for (lo = 0, hi = vec->count; lo < hi; )
875 size_t i = (lo + hi) / 2;
876 fde *f = vec->array[i];
877 _Unwind_Ptr pc_begin, pc_range;
878 const char *p;
880 p = read_encoded_value_with_base (encoding, base, f->pc_begin,
881 &pc_begin);
882 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
884 if ((_Unwind_Ptr) pc < pc_begin)
885 hi = i;
886 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
887 lo = i + 1;
888 else
889 return f;
892 return NULL;
895 static inline fde *
896 binary_search_mixed_encoding_fdes (struct object *ob, void *pc)
898 struct fde_vector *vec = ob->u.sort;
899 size_t lo, hi;
901 for (lo = 0, hi = vec->count; lo < hi; )
903 size_t i = (lo + hi) / 2;
904 fde *f = vec->array[i];
905 _Unwind_Ptr pc_begin, pc_range;
906 const char *p;
907 int encoding;
909 encoding = get_fde_encoding (f);
910 p = read_encoded_value_with_base (encoding,
911 base_from_object (encoding, ob),
912 f->pc_begin, &pc_begin);
913 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
915 if ((_Unwind_Ptr) pc < pc_begin)
916 hi = i;
917 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
918 lo = i + 1;
919 else
920 return f;
923 return NULL;
926 static fde *
927 search_object (struct object* ob, void *pc)
929 /* If the data hasn't been sorted, try to do this now. We may have
930 more memory available than last time we tried. */
931 if (! ob->s.b.sorted)
933 init_object (ob);
935 /* Despite the above comment, the normal reason to get here is
936 that we've not processed this object before. A quick range
937 check is in order. */
938 if (pc < ob->pc_begin)
939 return NULL;
942 if (ob->s.b.sorted)
944 if (ob->s.b.mixed_encoding)
945 return binary_search_mixed_encoding_fdes (ob, pc);
946 else if (ob->s.b.encoding == DW_EH_PE_absptr)
947 return binary_search_unencoded_fdes (ob, pc);
948 else
949 return binary_search_single_encoding_fdes (ob, pc);
951 else
953 /* Long slow labourious linear search, cos we've no memory. */
954 if (ob->s.b.from_array)
956 fde **p;
957 for (p = ob->u.array; *p ; p++)
959 fde *f = linear_search_fdes (ob, *p, pc);
960 if (f)
961 return f;
963 return NULL;
965 else
966 return linear_search_fdes (ob, ob->u.single, pc);
970 fde *
971 _Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
973 struct object *ob;
974 fde *f = NULL;
976 init_object_mutex_once ();
977 __gthread_mutex_lock (&object_mutex);
979 /* Linear search through the classified objects, to find the one
980 containing the pc. Note that pc_begin is sorted descending, and
981 we expect objects to be non-overlapping. */
982 for (ob = seen_objects; ob; ob = ob->next)
983 if (pc >= ob->pc_begin)
985 f = search_object (ob, pc);
986 if (f)
987 goto fini;
988 break;
991 /* Classify and search the objects we've not yet processed. */
992 while ((ob = unseen_objects))
994 struct object **p;
996 unseen_objects = ob->next;
997 f = search_object (ob, pc);
999 /* Insert the object into the classified list. */
1000 for (p = &seen_objects; *p ; p = &(*p)->next)
1001 if ((*p)->pc_begin < ob->pc_begin)
1002 break;
1003 ob->next = *p;
1004 *p = ob;
1006 if (f)
1007 goto fini;
1010 fini:
1011 __gthread_mutex_unlock (&object_mutex);
1013 if (f)
1015 int encoding;
1017 bases->tbase = ob->tbase;
1018 bases->dbase = ob->dbase;
1020 encoding = ob->s.b.encoding;
1021 if (ob->s.b.mixed_encoding)
1022 encoding = get_fde_encoding (f);
1023 read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
1024 f->pc_begin, (_Unwind_Ptr *)&bases->func);
1027 return f;