i386-protos.h (x86_emit_floatuns): Declare.
[official-gcc.git] / gcc / stor-layout.c
blob8fd70adf143651d110df640ec6270ea3af73da92
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "toplev.h"
34 #include "ggc.h"
35 #include "target.h"
36 #include "langhooks.h"
38 /* Set to one when set_sizetype has been called. */
39 static int sizetype_set;
41 /* List of types created before set_sizetype has been called. We do not
42 make this a GGC root since we want these nodes to be reclaimed. */
43 static tree early_type_list;
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) TYPE_KIND_LAST];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment;
53 /* If nonzero, the alignment of a bitstring or (power-)set value, in bits.
54 May be overridden by front-ends. */
55 unsigned int set_alignment = 0;
57 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
58 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
59 called only by a front end. */
60 static int reference_types_internal = 0;
62 static void finalize_record_size PARAMS ((record_layout_info));
63 static void finalize_type_size PARAMS ((tree));
64 static void place_union_field PARAMS ((record_layout_info, tree));
65 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
66 static int excess_unit_span PARAMS ((HOST_WIDE_INT, HOST_WIDE_INT,
67 HOST_WIDE_INT, HOST_WIDE_INT,
68 tree));
69 #endif
70 static unsigned int update_alignment_for_field
71 PARAMS ((record_layout_info, tree,
72 unsigned int));
73 extern void debug_rli PARAMS ((record_layout_info));
75 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
77 static GTY(()) tree pending_sizes;
79 /* Nonzero means cannot safely call expand_expr now,
80 so put variable sizes onto `pending_sizes' instead. */
82 int immediate_size_expand;
84 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
85 by front end. */
87 void
88 internal_reference_types ()
90 reference_types_internal = 1;
93 /* Get a list of all the objects put on the pending sizes list. */
95 tree
96 get_pending_sizes ()
98 tree chain = pending_sizes;
99 tree t;
101 /* Put each SAVE_EXPR into the current function. */
102 for (t = chain; t; t = TREE_CHAIN (t))
103 SAVE_EXPR_CONTEXT (TREE_VALUE (t)) = current_function_decl;
105 pending_sizes = 0;
106 return chain;
109 /* Return nonzero if EXPR is present on the pending sizes list. */
112 is_pending_size (expr)
113 tree expr;
115 tree t;
117 for (t = pending_sizes; t; t = TREE_CHAIN (t))
118 if (TREE_VALUE (t) == expr)
119 return 1;
120 return 0;
123 /* Add EXPR to the pending sizes list. */
125 void
126 put_pending_size (expr)
127 tree expr;
129 /* Strip any simple arithmetic from EXPR to see if it has an underlying
130 SAVE_EXPR. */
131 while (TREE_CODE_CLASS (TREE_CODE (expr)) == '1'
132 || (TREE_CODE_CLASS (TREE_CODE (expr)) == '2'
133 && TREE_CONSTANT (TREE_OPERAND (expr, 1))))
134 expr = TREE_OPERAND (expr, 0);
136 if (TREE_CODE (expr) == SAVE_EXPR)
137 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
140 /* Put a chain of objects into the pending sizes list, which must be
141 empty. */
143 void
144 put_pending_sizes (chain)
145 tree chain;
147 if (pending_sizes)
148 abort ();
150 pending_sizes = chain;
153 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
154 to serve as the actual size-expression for a type or decl. */
156 tree
157 variable_size (size)
158 tree size;
160 /* If the language-processor is to take responsibility for variable-sized
161 items (e.g., languages which have elaboration procedures like Ada),
162 just return SIZE unchanged. Likewise for self-referential sizes and
163 constant sizes. */
164 if (TREE_CONSTANT (size)
165 || (*lang_hooks.decls.global_bindings_p) () < 0
166 || contains_placeholder_p (size))
167 return size;
169 size = save_expr (size);
171 /* If an array with a variable number of elements is declared, and
172 the elements require destruction, we will emit a cleanup for the
173 array. That cleanup is run both on normal exit from the block
174 and in the exception-handler for the block. Normally, when code
175 is used in both ordinary code and in an exception handler it is
176 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
177 not wish to do that here; the array-size is the same in both
178 places. */
179 if (TREE_CODE (size) == SAVE_EXPR)
180 SAVE_EXPR_PERSISTENT_P (size) = 1;
182 if ((*lang_hooks.decls.global_bindings_p) ())
184 if (TREE_CONSTANT (size))
185 error ("type size can't be explicitly evaluated");
186 else
187 error ("variable-size type declared outside of any function");
189 return size_one_node;
192 if (immediate_size_expand)
193 /* NULL_RTX is not defined; neither is the rtx type.
194 Also, we would like to pass const0_rtx here, but don't have it. */
195 expand_expr (size, expand_expr (integer_zero_node, NULL_RTX, VOIDmode, 0),
196 VOIDmode, 0);
197 else if (cfun != 0 && cfun->x_dont_save_pending_sizes_p)
198 /* The front-end doesn't want us to keep a list of the expressions
199 that determine sizes for variable size objects. */
201 else
202 put_pending_size (size);
204 return size;
207 #ifndef MAX_FIXED_MODE_SIZE
208 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
209 #endif
211 /* Return the machine mode to use for a nonscalar of SIZE bits.
212 The mode must be in class CLASS, and have exactly that many bits.
213 If LIMIT is nonzero, modes of wider than MAX_FIXED_MODE_SIZE will not
214 be used. */
216 enum machine_mode
217 mode_for_size (size, class, limit)
218 unsigned int size;
219 enum mode_class class;
220 int limit;
222 enum machine_mode mode;
224 if (limit && size > MAX_FIXED_MODE_SIZE)
225 return BLKmode;
227 /* Get the first mode which has this size, in the specified class. */
228 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
229 mode = GET_MODE_WIDER_MODE (mode))
230 if (GET_MODE_BITSIZE (mode) == size)
231 return mode;
233 return BLKmode;
236 /* Similar, except passed a tree node. */
238 enum machine_mode
239 mode_for_size_tree (size, class, limit)
240 tree size;
241 enum mode_class class;
242 int limit;
244 if (TREE_CODE (size) != INTEGER_CST
245 /* What we really want to say here is that the size can fit in a
246 host integer, but we know there's no way we'd find a mode for
247 this many bits, so there's no point in doing the precise test. */
248 || compare_tree_int (size, 1000) > 0)
249 return BLKmode;
250 else
251 return mode_for_size (TREE_INT_CST_LOW (size), class, limit);
254 /* Similar, but never return BLKmode; return the narrowest mode that
255 contains at least the requested number of bits. */
257 enum machine_mode
258 smallest_mode_for_size (size, class)
259 unsigned int size;
260 enum mode_class class;
262 enum machine_mode mode;
264 /* Get the first mode which has at least this size, in the
265 specified class. */
266 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
267 mode = GET_MODE_WIDER_MODE (mode))
268 if (GET_MODE_BITSIZE (mode) >= size)
269 return mode;
271 abort ();
274 /* Find an integer mode of the exact same size, or BLKmode on failure. */
276 enum machine_mode
277 int_mode_for_mode (mode)
278 enum machine_mode mode;
280 switch (GET_MODE_CLASS (mode))
282 case MODE_INT:
283 case MODE_PARTIAL_INT:
284 break;
286 case MODE_COMPLEX_INT:
287 case MODE_COMPLEX_FLOAT:
288 case MODE_FLOAT:
289 case MODE_VECTOR_INT:
290 case MODE_VECTOR_FLOAT:
291 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
292 break;
294 case MODE_RANDOM:
295 if (mode == BLKmode)
296 break;
298 /* ... fall through ... */
300 case MODE_CC:
301 default:
302 abort ();
305 return mode;
308 /* Return the alignment of MODE. This will be bounded by 1 and
309 BIGGEST_ALIGNMENT. */
311 unsigned int
312 get_mode_alignment (mode)
313 enum machine_mode mode;
315 unsigned int alignment;
317 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
318 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
319 alignment = GET_MODE_UNIT_SIZE (mode);
320 else
321 alignment = GET_MODE_SIZE (mode);
323 /* Extract the LSB of the size. */
324 alignment = alignment & -alignment;
325 alignment *= BITS_PER_UNIT;
327 alignment = MIN (BIGGEST_ALIGNMENT, MAX (1, alignment));
328 return alignment;
331 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
332 This can only be applied to objects of a sizetype. */
334 tree
335 round_up (value, divisor)
336 tree value;
337 int divisor;
339 tree arg = size_int_type (divisor, TREE_TYPE (value));
341 return size_binop (MULT_EXPR, size_binop (CEIL_DIV_EXPR, value, arg), arg);
344 /* Likewise, but round down. */
346 tree
347 round_down (value, divisor)
348 tree value;
349 int divisor;
351 tree arg = size_int_type (divisor, TREE_TYPE (value));
353 return size_binop (MULT_EXPR, size_binop (FLOOR_DIV_EXPR, value, arg), arg);
356 /* Set the size, mode and alignment of a ..._DECL node.
357 TYPE_DECL does need this for C++.
358 Note that LABEL_DECL and CONST_DECL nodes do not need this,
359 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
360 Don't call layout_decl for them.
362 KNOWN_ALIGN is the amount of alignment we can assume this
363 decl has with no special effort. It is relevant only for FIELD_DECLs
364 and depends on the previous fields.
365 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
366 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
367 the record will be aligned to suit. */
369 void
370 layout_decl (decl, known_align)
371 tree decl;
372 unsigned int known_align;
374 tree type = TREE_TYPE (decl);
375 enum tree_code code = TREE_CODE (decl);
377 if (code == CONST_DECL)
378 return;
379 else if (code != VAR_DECL && code != PARM_DECL && code != RESULT_DECL
380 && code != TYPE_DECL && code != FIELD_DECL)
381 abort ();
383 if (type == error_mark_node)
384 type = void_type_node;
386 /* Usually the size and mode come from the data type without change,
387 however, the front-end may set the explicit width of the field, so its
388 size may not be the same as the size of its type. This happens with
389 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
390 also happens with other fields. For example, the C++ front-end creates
391 zero-sized fields corresponding to empty base classes, and depends on
392 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
393 size in bytes from the size in bits. If we have already set the mode,
394 don't set it again since we can be called twice for FIELD_DECLs. */
396 TREE_UNSIGNED (decl) = TREE_UNSIGNED (type);
397 if (DECL_MODE (decl) == VOIDmode)
398 DECL_MODE (decl) = TYPE_MODE (type);
400 if (DECL_SIZE (decl) == 0)
402 DECL_SIZE (decl) = TYPE_SIZE (type);
403 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
405 else
406 DECL_SIZE_UNIT (decl)
407 = convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
408 bitsize_unit_node));
410 /* Force alignment required for the data type.
411 But if the decl itself wants greater alignment, don't override that.
412 Likewise, if the decl is packed, don't override it. */
413 if (! (code == FIELD_DECL && DECL_BIT_FIELD (decl))
414 && (DECL_ALIGN (decl) == 0
415 || (! (code == FIELD_DECL && DECL_PACKED (decl))
416 && TYPE_ALIGN (type) > DECL_ALIGN (decl))))
418 DECL_ALIGN (decl) = TYPE_ALIGN (type);
419 DECL_USER_ALIGN (decl) = 0;
422 /* For fields, set the bit field type and update the alignment. */
423 if (code == FIELD_DECL)
425 DECL_BIT_FIELD_TYPE (decl) = DECL_BIT_FIELD (decl) ? type : 0;
426 if (maximum_field_alignment != 0)
427 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
429 /* If the field is of variable size, we can't misalign it since we
430 have no way to make a temporary to align the result. But this
431 isn't an issue if the decl is not addressable. Likewise if it
432 is of unknown size. */
433 else if (DECL_PACKED (decl)
434 && (DECL_NONADDRESSABLE_P (decl)
435 || DECL_SIZE_UNIT (decl) == 0
436 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
438 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
439 DECL_USER_ALIGN (decl) = 0;
443 /* See if we can use an ordinary integer mode for a bit-field.
444 Conditions are: a fixed size that is correct for another mode
445 and occupying a complete byte or bytes on proper boundary. */
446 if (code == FIELD_DECL && DECL_BIT_FIELD (decl)
447 && TYPE_SIZE (type) != 0
448 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
449 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
451 enum machine_mode xmode
452 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
454 if (xmode != BLKmode && known_align >= GET_MODE_ALIGNMENT (xmode))
456 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
457 DECL_ALIGN (decl));
458 DECL_MODE (decl) = xmode;
459 DECL_BIT_FIELD (decl) = 0;
463 /* Turn off DECL_BIT_FIELD if we won't need it set. */
464 if (code == FIELD_DECL && DECL_BIT_FIELD (decl)
465 && TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
466 && known_align >= TYPE_ALIGN (type)
467 && DECL_ALIGN (decl) >= TYPE_ALIGN (type)
468 && DECL_SIZE_UNIT (decl) != 0)
469 DECL_BIT_FIELD (decl) = 0;
471 /* Evaluate nonconstant size only once, either now or as soon as safe. */
472 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
473 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
474 if (DECL_SIZE_UNIT (decl) != 0
475 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
476 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
478 /* If requested, warn about definitions of large data objects. */
479 if (warn_larger_than
480 && (code == VAR_DECL || code == PARM_DECL)
481 && ! DECL_EXTERNAL (decl))
483 tree size = DECL_SIZE_UNIT (decl);
485 if (size != 0 && TREE_CODE (size) == INTEGER_CST
486 && compare_tree_int (size, larger_than_size) > 0)
488 unsigned int size_as_int = TREE_INT_CST_LOW (size);
490 if (compare_tree_int (size, size_as_int) == 0)
491 warning_with_decl (decl, "size of `%s' is %d bytes", size_as_int);
492 else
493 warning_with_decl (decl, "size of `%s' is larger than %d bytes",
494 larger_than_size);
499 /* Hook for a front-end function that can modify the record layout as needed
500 immediately before it is finalized. */
502 void (*lang_adjust_rli) PARAMS ((record_layout_info)) = 0;
504 void
505 set_lang_adjust_rli (f)
506 void (*f) PARAMS ((record_layout_info));
508 lang_adjust_rli = f;
511 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
512 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
513 is to be passed to all other layout functions for this record. It is the
514 responsibility of the caller to call `free' for the storage returned.
515 Note that garbage collection is not permitted until we finish laying
516 out the record. */
518 record_layout_info
519 start_record_layout (t)
520 tree t;
522 record_layout_info rli
523 = (record_layout_info) xmalloc (sizeof (struct record_layout_info_s));
525 rli->t = t;
527 /* If the type has a minimum specified alignment (via an attribute
528 declaration, for example) use it -- otherwise, start with a
529 one-byte alignment. */
530 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
531 rli->unpacked_align = rli->unpadded_align = rli->record_align;
532 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
534 #ifdef STRUCTURE_SIZE_BOUNDARY
535 /* Packed structures don't need to have minimum size. */
536 if (! TYPE_PACKED (t))
537 rli->record_align = MAX (rli->record_align, (unsigned) STRUCTURE_SIZE_BOUNDARY);
538 #endif
540 rli->offset = size_zero_node;
541 rli->bitpos = bitsize_zero_node;
542 rli->prev_field = 0;
543 rli->pending_statics = 0;
544 rli->packed_maybe_necessary = 0;
546 return rli;
549 /* These four routines perform computations that convert between
550 the offset/bitpos forms and byte and bit offsets. */
552 tree
553 bit_from_pos (offset, bitpos)
554 tree offset, bitpos;
556 return size_binop (PLUS_EXPR, bitpos,
557 size_binop (MULT_EXPR, convert (bitsizetype, offset),
558 bitsize_unit_node));
561 tree
562 byte_from_pos (offset, bitpos)
563 tree offset, bitpos;
565 return size_binop (PLUS_EXPR, offset,
566 convert (sizetype,
567 size_binop (TRUNC_DIV_EXPR, bitpos,
568 bitsize_unit_node)));
571 void
572 pos_from_bit (poffset, pbitpos, off_align, pos)
573 tree *poffset, *pbitpos;
574 unsigned int off_align;
575 tree pos;
577 *poffset = size_binop (MULT_EXPR,
578 convert (sizetype,
579 size_binop (FLOOR_DIV_EXPR, pos,
580 bitsize_int (off_align))),
581 size_int (off_align / BITS_PER_UNIT));
582 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
585 /* Given a pointer to bit and byte offsets and an offset alignment,
586 normalize the offsets so they are within the alignment. */
588 void
589 normalize_offset (poffset, pbitpos, off_align)
590 tree *poffset, *pbitpos;
591 unsigned int off_align;
593 /* If the bit position is now larger than it should be, adjust it
594 downwards. */
595 if (compare_tree_int (*pbitpos, off_align) >= 0)
597 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
598 bitsize_int (off_align));
600 *poffset
601 = size_binop (PLUS_EXPR, *poffset,
602 size_binop (MULT_EXPR, convert (sizetype, extra_aligns),
603 size_int (off_align / BITS_PER_UNIT)));
605 *pbitpos
606 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
610 /* Print debugging information about the information in RLI. */
612 void
613 debug_rli (rli)
614 record_layout_info rli;
616 print_node_brief (stderr, "type", rli->t, 0);
617 print_node_brief (stderr, "\noffset", rli->offset, 0);
618 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
620 fprintf (stderr, "\naligns: rec = %u, unpack = %u, unpad = %u, off = %u\n",
621 rli->record_align, rli->unpacked_align, rli->unpadded_align,
622 rli->offset_align);
623 if (rli->packed_maybe_necessary)
624 fprintf (stderr, "packed may be necessary\n");
626 if (rli->pending_statics)
628 fprintf (stderr, "pending statics:\n");
629 debug_tree (rli->pending_statics);
633 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
634 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
636 void
637 normalize_rli (rli)
638 record_layout_info rli;
640 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
643 /* Returns the size in bytes allocated so far. */
645 tree
646 rli_size_unit_so_far (rli)
647 record_layout_info rli;
649 return byte_from_pos (rli->offset, rli->bitpos);
652 /* Returns the size in bits allocated so far. */
654 tree
655 rli_size_so_far (rli)
656 record_layout_info rli;
658 return bit_from_pos (rli->offset, rli->bitpos);
661 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
662 the next available location is given by KNOWN_ALIGN. Update the
663 variable alignment fields in RLI, and return the alignment to give
664 the FIELD. */
666 static unsigned int
667 update_alignment_for_field (rli, field, known_align)
668 record_layout_info rli;
669 tree field;
670 unsigned int known_align;
672 /* The alignment required for FIELD. */
673 unsigned int desired_align;
674 /* The type of this field. */
675 tree type = TREE_TYPE (field);
676 /* True if the field was explicitly aligned by the user. */
677 bool user_align;
679 /* Lay out the field so we know what alignment it needs. For a
680 packed field, use the alignment as specified, disregarding what
681 the type would want. */
682 desired_align = DECL_ALIGN (field);
683 user_align = DECL_USER_ALIGN (field);
684 layout_decl (field, known_align);
685 if (! DECL_PACKED (field))
687 desired_align = DECL_ALIGN (field);
688 user_align = DECL_USER_ALIGN (field);
691 /* Some targets (i.e. i386, VMS) limit struct field alignment
692 to a lower boundary than alignment of variables unless
693 it was overridden by attribute aligned. */
694 #ifdef BIGGEST_FIELD_ALIGNMENT
695 if (!user_align)
696 desired_align
697 = MIN (desired_align, (unsigned) BIGGEST_FIELD_ALIGNMENT);
698 #endif
700 #ifdef ADJUST_FIELD_ALIGN
701 if (!user_align)
702 desired_align = ADJUST_FIELD_ALIGN (field, desired_align);
703 #endif
705 /* Record must have at least as much alignment as any field.
706 Otherwise, the alignment of the field within the record is
707 meaningless. */
708 if ((* targetm.ms_bitfield_layout_p) (rli->t)
709 && type != error_mark_node
710 && DECL_BIT_FIELD_TYPE (field)
711 && ! integer_zerop (TYPE_SIZE (type)))
713 /* Here, the alignment of the underlying type of a bitfield can
714 affect the alignment of a record; even a zero-sized field
715 can do this. The alignment should be to the alignment of
716 the type, except that for zero-size bitfields this only
717 applies if there was an immediately prior, nonzero-size
718 bitfield. (That's the way it is, experimentally.) */
719 if (! integer_zerop (DECL_SIZE (field))
720 ? ! DECL_PACKED (field)
721 : (rli->prev_field
722 && DECL_BIT_FIELD_TYPE (rli->prev_field)
723 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
725 unsigned int type_align = TYPE_ALIGN (type);
726 type_align = MAX (type_align, desired_align);
727 if (maximum_field_alignment != 0)
728 type_align = MIN (type_align, maximum_field_alignment);
729 rli->record_align = MAX (rli->record_align, type_align);
730 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
731 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
733 else
734 desired_align = 1;
736 else
737 #ifdef PCC_BITFIELD_TYPE_MATTERS
738 if (PCC_BITFIELD_TYPE_MATTERS && type != error_mark_node
739 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
740 && DECL_BIT_FIELD_TYPE (field)
741 && ! integer_zerop (TYPE_SIZE (type)))
743 /* A zero-length bit-field affects the alignment of the next
744 field. */
745 if (!DECL_PACKED (field) && integer_zerop (DECL_SIZE (field)))
747 desired_align = TYPE_ALIGN (type);
748 #ifdef ADJUST_FIELD_ALIGN
749 desired_align = ADJUST_FIELD_ALIGN (field, desired_align);
750 #endif
753 /* Named bit-fields cause the entire structure to have the
754 alignment implied by their type. */
755 if (DECL_NAME (field) != 0)
757 unsigned int type_align = TYPE_ALIGN (type);
759 #ifdef ADJUST_FIELD_ALIGN
760 if (! TYPE_USER_ALIGN (type))
761 type_align = ADJUST_FIELD_ALIGN (field, type_align);
762 #endif
764 if (maximum_field_alignment != 0)
765 type_align = MIN (type_align, maximum_field_alignment);
766 else if (DECL_PACKED (field))
767 type_align = MIN (type_align, BITS_PER_UNIT);
769 /* The alignment of the record is increased to the maximum
770 of the current alignment, the alignment indicated on the
771 field (i.e., the alignment specified by an __aligned__
772 attribute), and the alignment indicated by the type of
773 the field. */
774 rli->record_align = MAX (rli->record_align, desired_align);
775 rli->record_align = MAX (rli->record_align, type_align);
777 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
778 if (warn_packed)
779 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
780 user_align |= TYPE_USER_ALIGN (type);
783 else
784 #endif
786 rli->record_align = MAX (rli->record_align, desired_align);
787 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
788 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
791 TYPE_USER_ALIGN (rli->t) |= user_align;
793 return desired_align;
796 /* Called from place_field to handle unions. */
798 static void
799 place_union_field (rli, field)
800 record_layout_info rli;
801 tree field;
803 update_alignment_for_field (rli, field, /*known_align=*/0);
805 DECL_FIELD_OFFSET (field) = size_zero_node;
806 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
807 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
809 /* We assume the union's size will be a multiple of a byte so we don't
810 bother with BITPOS. */
811 if (TREE_CODE (rli->t) == UNION_TYPE)
812 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
813 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
814 rli->offset = fold (build (COND_EXPR, sizetype,
815 DECL_QUALIFIER (field),
816 DECL_SIZE_UNIT (field), rli->offset));
819 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
820 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
821 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
822 units of alignment than the underlying TYPE. */
823 static int
824 excess_unit_span (byte_offset, bit_offset, size, align, type)
825 HOST_WIDE_INT byte_offset, bit_offset, size, align;
826 tree type;
828 /* Note that the calculation of OFFSET might overflow; we calculate it so
829 that we still get the right result as long as ALIGN is a power of two. */
830 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
832 offset = offset % align;
833 return ((offset + size + align - 1) / align
834 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
835 / align));
837 #endif
839 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
840 is a FIELD_DECL to be added after those fields already present in
841 T. (FIELD is not actually added to the TYPE_FIELDS list here;
842 callers that desire that behavior must manually perform that step.) */
844 void
845 place_field (rli, field)
846 record_layout_info rli;
847 tree field;
849 /* The alignment required for FIELD. */
850 unsigned int desired_align;
851 /* The alignment FIELD would have if we just dropped it into the
852 record as it presently stands. */
853 unsigned int known_align;
854 unsigned int actual_align;
855 /* The type of this field. */
856 tree type = TREE_TYPE (field);
858 if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
859 return;
861 /* If FIELD is static, then treat it like a separate variable, not
862 really like a structure field. If it is a FUNCTION_DECL, it's a
863 method. In both cases, all we do is lay out the decl, and we do
864 it *after* the record is laid out. */
865 if (TREE_CODE (field) == VAR_DECL)
867 rli->pending_statics = tree_cons (NULL_TREE, field,
868 rli->pending_statics);
869 return;
872 /* Enumerators and enum types which are local to this class need not
873 be laid out. Likewise for initialized constant fields. */
874 else if (TREE_CODE (field) != FIELD_DECL)
875 return;
877 /* Unions are laid out very differently than records, so split
878 that code off to another function. */
879 else if (TREE_CODE (rli->t) != RECORD_TYPE)
881 place_union_field (rli, field);
882 return;
885 /* Work out the known alignment so far. Note that A & (-A) is the
886 value of the least-significant bit in A that is one. */
887 if (! integer_zerop (rli->bitpos))
888 known_align = (tree_low_cst (rli->bitpos, 1)
889 & - tree_low_cst (rli->bitpos, 1));
890 else if (integer_zerop (rli->offset))
891 known_align = BIGGEST_ALIGNMENT;
892 else if (host_integerp (rli->offset, 1))
893 known_align = (BITS_PER_UNIT
894 * (tree_low_cst (rli->offset, 1)
895 & - tree_low_cst (rli->offset, 1)));
896 else
897 known_align = rli->offset_align;
899 desired_align = update_alignment_for_field (rli, field, known_align);
901 if (warn_packed && DECL_PACKED (field))
903 if (known_align > TYPE_ALIGN (type))
905 if (TYPE_ALIGN (type) > desired_align)
907 if (STRICT_ALIGNMENT)
908 warning_with_decl (field, "packed attribute causes inefficient alignment for `%s'");
909 else
910 warning_with_decl (field, "packed attribute is unnecessary for `%s'");
913 else
914 rli->packed_maybe_necessary = 1;
917 /* Does this field automatically have alignment it needs by virtue
918 of the fields that precede it and the record's own alignment? */
919 if (known_align < desired_align)
921 /* No, we need to skip space before this field.
922 Bump the cumulative size to multiple of field alignment. */
924 if (warn_padded)
925 warning_with_decl (field, "padding struct to align `%s'");
927 /* If the alignment is still within offset_align, just align
928 the bit position. */
929 if (desired_align < rli->offset_align)
930 rli->bitpos = round_up (rli->bitpos, desired_align);
931 else
933 /* First adjust OFFSET by the partial bits, then align. */
934 rli->offset
935 = size_binop (PLUS_EXPR, rli->offset,
936 convert (sizetype,
937 size_binop (CEIL_DIV_EXPR, rli->bitpos,
938 bitsize_unit_node)));
939 rli->bitpos = bitsize_zero_node;
941 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
944 if (! TREE_CONSTANT (rli->offset))
945 rli->offset_align = desired_align;
949 /* Handle compatibility with PCC. Note that if the record has any
950 variable-sized fields, we need not worry about compatibility. */
951 #ifdef PCC_BITFIELD_TYPE_MATTERS
952 if (PCC_BITFIELD_TYPE_MATTERS
953 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
954 && TREE_CODE (field) == FIELD_DECL
955 && type != error_mark_node
956 && DECL_BIT_FIELD (field)
957 && ! DECL_PACKED (field)
958 && maximum_field_alignment == 0
959 && ! integer_zerop (DECL_SIZE (field))
960 && host_integerp (DECL_SIZE (field), 1)
961 && host_integerp (rli->offset, 1)
962 && host_integerp (TYPE_SIZE (type), 1))
964 unsigned int type_align = TYPE_ALIGN (type);
965 tree dsize = DECL_SIZE (field);
966 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
967 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
968 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
970 #ifdef ADJUST_FIELD_ALIGN
971 if (! TYPE_USER_ALIGN (type))
972 type_align = ADJUST_FIELD_ALIGN (field, type_align);
973 #endif
975 /* A bit field may not span more units of alignment of its type
976 than its type itself. Advance to next boundary if necessary. */
977 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
978 rli->bitpos = round_up (rli->bitpos, type_align);
980 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
982 #endif
984 #ifdef BITFIELD_NBYTES_LIMITED
985 if (BITFIELD_NBYTES_LIMITED
986 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
987 && TREE_CODE (field) == FIELD_DECL
988 && type != error_mark_node
989 && DECL_BIT_FIELD_TYPE (field)
990 && ! DECL_PACKED (field)
991 && ! integer_zerop (DECL_SIZE (field))
992 && host_integerp (DECL_SIZE (field), 1)
993 && host_integerp (rli->offset, 1)
994 && host_integerp (TYPE_SIZE (type), 1))
996 unsigned int type_align = TYPE_ALIGN (type);
997 tree dsize = DECL_SIZE (field);
998 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
999 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1000 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1002 #ifdef ADJUST_FIELD_ALIGN
1003 if (! TYPE_USER_ALIGN (type))
1004 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1005 #endif
1007 if (maximum_field_alignment != 0)
1008 type_align = MIN (type_align, maximum_field_alignment);
1009 /* ??? This test is opposite the test in the containing if
1010 statement, so this code is unreachable currently. */
1011 else if (DECL_PACKED (field))
1012 type_align = MIN (type_align, BITS_PER_UNIT);
1014 /* A bit field may not span the unit of alignment of its type.
1015 Advance to next boundary if necessary. */
1016 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1017 rli->bitpos = round_up (rli->bitpos, type_align);
1019 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1021 #endif
1023 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1024 A subtlety:
1025 When a bit field is inserted into a packed record, the whole
1026 size of the underlying type is used by one or more same-size
1027 adjacent bitfields. (That is, if its long:3, 32 bits is
1028 used in the record, and any additional adjacent long bitfields are
1029 packed into the same chunk of 32 bits. However, if the size
1030 changes, a new field of that size is allocated.) In an unpacked
1031 record, this is the same as using alignment, but not equivalent
1032 when packing.
1034 Note: for compatibility, we use the type size, not the type alignment
1035 to determine alignment, since that matches the documentation */
1037 if ((* targetm.ms_bitfield_layout_p) (rli->t)
1038 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
1039 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
1041 /* At this point, either the prior or current are bitfields,
1042 (possibly both), and we're dealing with MS packing. */
1043 tree prev_saved = rli->prev_field;
1045 /* Is the prior field a bitfield? If so, handle "runs" of same
1046 type size fields. */
1047 if (rli->prev_field /* necessarily a bitfield if it exists. */)
1049 /* If both are bitfields, nonzero, and the same size, this is
1050 the middle of a run. Zero declared size fields are special
1051 and handled as "end of run". (Note: it's nonzero declared
1052 size, but equal type sizes!) (Since we know that both
1053 the current and previous fields are bitfields by the
1054 time we check it, DECL_SIZE must be present for both.) */
1055 if (DECL_BIT_FIELD_TYPE (field)
1056 && !integer_zerop (DECL_SIZE (field))
1057 && !integer_zerop (DECL_SIZE (rli->prev_field))
1058 && simple_cst_equal (TYPE_SIZE (type),
1059 TYPE_SIZE (TREE_TYPE (rli->prev_field))) )
1061 /* We're in the middle of a run of equal type size fields; make
1062 sure we realign if we run out of bits. (Not decl size,
1063 type size!) */
1064 int bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
1065 tree type_size = TYPE_SIZE(TREE_TYPE(rli->prev_field));
1067 if (rli->remaining_in_alignment < bitsize)
1069 /* out of bits; bump up to next 'word'. */
1070 rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
1071 rli->bitpos = size_binop (PLUS_EXPR,
1072 type_size,
1073 DECL_FIELD_BIT_OFFSET(rli->prev_field));
1074 rli->prev_field = field;
1075 rli->remaining_in_alignment = TREE_INT_CST_LOW (type_size);
1077 rli->remaining_in_alignment -= bitsize;
1079 else
1081 /* End of a run: if leaving a run of bitfields of the same type
1082 size, we have to "use up" the rest of the bits of the type
1083 size.
1085 Compute the new position as the sum of the size for the prior
1086 type and where we first started working on that type.
1087 Note: since the beginning of the field was aligned then
1088 of course the end will be too. No round needed. */
1090 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1092 tree type_size = TYPE_SIZE(TREE_TYPE(rli->prev_field));
1093 rli->bitpos = size_binop (PLUS_EXPR,
1094 type_size,
1095 DECL_FIELD_BIT_OFFSET(rli->prev_field));
1097 else
1099 /* We "use up" size zero fields; the code below should behave
1100 as if the prior field was not a bitfield. */
1101 prev_saved = NULL;
1104 /* Cause a new bitfield to be captured, either this time (if
1105 currently a bitfield) or next time we see one. */
1106 if (!DECL_BIT_FIELD_TYPE(field)
1107 || integer_zerop (DECL_SIZE (field)))
1109 rli->prev_field = NULL;
1112 normalize_rli (rli);
1115 /* If we're starting a new run of same size type bitfields
1116 (or a run of non-bitfields), set up the "first of the run"
1117 fields.
1119 That is, if the current field is not a bitfield, or if there
1120 was a prior bitfield the type sizes differ, or if there wasn't
1121 a prior bitfield the size of the current field is nonzero.
1123 Note: we must be sure to test ONLY the type size if there was
1124 a prior bitfield and ONLY for the current field being zero if
1125 there wasn't. */
1127 if (!DECL_BIT_FIELD_TYPE (field)
1128 || ( prev_saved != NULL
1129 ? !simple_cst_equal (TYPE_SIZE (type),
1130 TYPE_SIZE (TREE_TYPE (prev_saved)))
1131 : !integer_zerop (DECL_SIZE (field)) ))
1133 unsigned int type_align = 8; /* Never below 8 for compatibility */
1135 /* (When not a bitfield), we could be seeing a flex array (with
1136 no DECL_SIZE). Since we won't be using remaining_in_alignment
1137 until we see a bitfield (and come by here again) we just skip
1138 calculating it. */
1140 if (DECL_SIZE (field) != NULL)
1141 rli->remaining_in_alignment
1142 = TREE_INT_CST_LOW (TYPE_SIZE(TREE_TYPE(field)))
1143 - TREE_INT_CST_LOW (DECL_SIZE (field));
1145 /* Now align (conventionally) for the new type. */
1146 if (!DECL_PACKED(field))
1147 type_align = MAX(TYPE_ALIGN (type), type_align);
1149 if (prev_saved
1150 && DECL_BIT_FIELD_TYPE (prev_saved)
1151 /* If the previous bit-field is zero-sized, we've already
1152 accounted for its alignment needs (or ignored it, if
1153 appropriate) while placing it. */
1154 && ! integer_zerop (DECL_SIZE (prev_saved)))
1155 type_align = MAX (type_align,
1156 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1158 if (maximum_field_alignment != 0)
1159 type_align = MIN (type_align, maximum_field_alignment);
1161 rli->bitpos = round_up (rli->bitpos, type_align);
1162 /* If we really aligned, don't allow subsequent bitfields
1163 to undo that. */
1164 rli->prev_field = NULL;
1168 /* Offset so far becomes the position of this field after normalizing. */
1169 normalize_rli (rli);
1170 DECL_FIELD_OFFSET (field) = rli->offset;
1171 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1172 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1174 /* If this field ended up more aligned than we thought it would be (we
1175 approximate this by seeing if its position changed), lay out the field
1176 again; perhaps we can use an integral mode for it now. */
1177 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1178 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1179 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1180 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1181 actual_align = BIGGEST_ALIGNMENT;
1182 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1183 actual_align = (BITS_PER_UNIT
1184 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1185 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1186 else
1187 actual_align = DECL_OFFSET_ALIGN (field);
1189 if (known_align != actual_align)
1190 layout_decl (field, actual_align);
1192 /* Only the MS bitfields use this. */
1193 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE(field))
1194 rli->prev_field = field;
1196 /* Now add size of this field to the size of the record. If the size is
1197 not constant, treat the field as being a multiple of bytes and just
1198 adjust the offset, resetting the bit position. Otherwise, apportion the
1199 size amongst the bit position and offset. First handle the case of an
1200 unspecified size, which can happen when we have an invalid nested struct
1201 definition, such as struct j { struct j { int i; } }. The error message
1202 is printed in finish_struct. */
1203 if (DECL_SIZE (field) == 0)
1204 /* Do nothing. */;
1205 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1206 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1208 rli->offset
1209 = size_binop (PLUS_EXPR, rli->offset,
1210 convert (sizetype,
1211 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1212 bitsize_unit_node)));
1213 rli->offset
1214 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1215 rli->bitpos = bitsize_zero_node;
1216 rli->offset_align = MIN (rli->offset_align, DECL_ALIGN (field));
1218 else
1220 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1221 normalize_rli (rli);
1225 /* Assuming that all the fields have been laid out, this function uses
1226 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1227 indicated by RLI. */
1229 static void
1230 finalize_record_size (rli)
1231 record_layout_info rli;
1233 tree unpadded_size, unpadded_size_unit;
1235 /* Now we want just byte and bit offsets, so set the offset alignment
1236 to be a byte and then normalize. */
1237 rli->offset_align = BITS_PER_UNIT;
1238 normalize_rli (rli);
1240 /* Determine the desired alignment. */
1241 #ifdef ROUND_TYPE_ALIGN
1242 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1243 rli->record_align);
1244 #else
1245 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1246 #endif
1248 /* Compute the size so far. Be sure to allow for extra bits in the
1249 size in bytes. We have guaranteed above that it will be no more
1250 than a single byte. */
1251 unpadded_size = rli_size_so_far (rli);
1252 unpadded_size_unit = rli_size_unit_so_far (rli);
1253 if (! integer_zerop (rli->bitpos))
1254 unpadded_size_unit
1255 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1257 /* Round the size up to be a multiple of the required alignment */
1258 #ifdef ROUND_TYPE_SIZE
1259 TYPE_SIZE (rli->t) = ROUND_TYPE_SIZE (rli->t, unpadded_size,
1260 TYPE_ALIGN (rli->t));
1261 TYPE_SIZE_UNIT (rli->t)
1262 = ROUND_TYPE_SIZE_UNIT (rli->t, unpadded_size_unit,
1263 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1264 #else
1265 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1266 TYPE_SIZE_UNIT (rli->t) = round_up (unpadded_size_unit,
1267 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1268 #endif
1270 if (warn_padded && TREE_CONSTANT (unpadded_size)
1271 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1272 warning ("padding struct size to alignment boundary");
1274 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1275 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1276 && TREE_CONSTANT (unpadded_size))
1278 tree unpacked_size;
1280 #ifdef ROUND_TYPE_ALIGN
1281 rli->unpacked_align
1282 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1283 #else
1284 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1285 #endif
1287 #ifdef ROUND_TYPE_SIZE
1288 unpacked_size = ROUND_TYPE_SIZE (rli->t, TYPE_SIZE (rli->t),
1289 rli->unpacked_align);
1290 #else
1291 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1292 #endif
1294 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1296 TYPE_PACKED (rli->t) = 0;
1298 if (TYPE_NAME (rli->t))
1300 const char *name;
1302 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1303 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1304 else
1305 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1307 if (STRICT_ALIGNMENT)
1308 warning ("packed attribute causes inefficient alignment for `%s'", name);
1309 else
1310 warning ("packed attribute is unnecessary for `%s'", name);
1312 else
1314 if (STRICT_ALIGNMENT)
1315 warning ("packed attribute causes inefficient alignment");
1316 else
1317 warning ("packed attribute is unnecessary");
1323 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1325 void
1326 compute_record_mode (type)
1327 tree type;
1329 tree field;
1330 enum machine_mode mode = VOIDmode;
1332 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1333 However, if possible, we use a mode that fits in a register
1334 instead, in order to allow for better optimization down the
1335 line. */
1336 TYPE_MODE (type) = BLKmode;
1338 if (! host_integerp (TYPE_SIZE (type), 1))
1339 return;
1341 /* A record which has any BLKmode members must itself be
1342 BLKmode; it can't go in a register. Unless the member is
1343 BLKmode only because it isn't aligned. */
1344 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1346 unsigned HOST_WIDE_INT bitpos;
1348 if (TREE_CODE (field) != FIELD_DECL)
1349 continue;
1351 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1352 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1353 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field)))
1354 || ! host_integerp (bit_position (field), 1)
1355 || DECL_SIZE (field) == 0
1356 || ! host_integerp (DECL_SIZE (field), 1))
1357 return;
1359 bitpos = int_bit_position (field);
1361 /* Must be BLKmode if any field crosses a word boundary,
1362 since extract_bit_field can't handle that in registers. */
1363 if (bitpos / BITS_PER_WORD
1364 != ((tree_low_cst (DECL_SIZE (field), 1) + bitpos - 1)
1365 / BITS_PER_WORD)
1366 /* But there is no problem if the field is entire words. */
1367 && tree_low_cst (DECL_SIZE (field), 1) % BITS_PER_WORD != 0)
1368 return;
1370 /* If this field is the whole struct, remember its mode so
1371 that, say, we can put a double in a class into a DF
1372 register instead of forcing it to live in the stack. */
1373 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1374 mode = DECL_MODE (field);
1376 #ifdef MEMBER_TYPE_FORCES_BLK
1377 /* With some targets, eg. c4x, it is sub-optimal
1378 to access an aligned BLKmode structure as a scalar. */
1380 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1381 return;
1382 #endif /* MEMBER_TYPE_FORCES_BLK */
1385 /* If we only have one real field; use its mode. This only applies to
1386 RECORD_TYPE. This does not apply to unions. */
1387 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode)
1388 TYPE_MODE (type) = mode;
1389 else
1390 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1392 /* If structure's known alignment is less than what the scalar
1393 mode would need, and it matters, then stick with BLKmode. */
1394 if (TYPE_MODE (type) != BLKmode
1395 && STRICT_ALIGNMENT
1396 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1397 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1399 /* If this is the only reason this type is BLKmode, then
1400 don't force containing types to be BLKmode. */
1401 TYPE_NO_FORCE_BLK (type) = 1;
1402 TYPE_MODE (type) = BLKmode;
1406 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1407 out. */
1409 static void
1410 finalize_type_size (type)
1411 tree type;
1413 /* Normally, use the alignment corresponding to the mode chosen.
1414 However, where strict alignment is not required, avoid
1415 over-aligning structures, since most compilers do not do this
1416 alignment. */
1418 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1419 && (STRICT_ALIGNMENT
1420 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1421 && TREE_CODE (type) != QUAL_UNION_TYPE
1422 && TREE_CODE (type) != ARRAY_TYPE)))
1424 TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1425 TYPE_USER_ALIGN (type) = 0;
1428 /* Do machine-dependent extra alignment. */
1429 #ifdef ROUND_TYPE_ALIGN
1430 TYPE_ALIGN (type)
1431 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1432 #endif
1434 /* If we failed to find a simple way to calculate the unit size
1435 of the type, find it by division. */
1436 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1437 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1438 result will fit in sizetype. We will get more efficient code using
1439 sizetype, so we force a conversion. */
1440 TYPE_SIZE_UNIT (type)
1441 = convert (sizetype,
1442 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1443 bitsize_unit_node));
1445 if (TYPE_SIZE (type) != 0)
1447 #ifdef ROUND_TYPE_SIZE
1448 TYPE_SIZE (type)
1449 = ROUND_TYPE_SIZE (type, TYPE_SIZE (type), TYPE_ALIGN (type));
1450 TYPE_SIZE_UNIT (type)
1451 = ROUND_TYPE_SIZE_UNIT (type, TYPE_SIZE_UNIT (type),
1452 TYPE_ALIGN (type) / BITS_PER_UNIT);
1453 #else
1454 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1455 TYPE_SIZE_UNIT (type)
1456 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN (type) / BITS_PER_UNIT);
1457 #endif
1460 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1461 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1462 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1463 if (TYPE_SIZE_UNIT (type) != 0
1464 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1465 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1467 /* Also layout any other variants of the type. */
1468 if (TYPE_NEXT_VARIANT (type)
1469 || type != TYPE_MAIN_VARIANT (type))
1471 tree variant;
1472 /* Record layout info of this variant. */
1473 tree size = TYPE_SIZE (type);
1474 tree size_unit = TYPE_SIZE_UNIT (type);
1475 unsigned int align = TYPE_ALIGN (type);
1476 unsigned int user_align = TYPE_USER_ALIGN (type);
1477 enum machine_mode mode = TYPE_MODE (type);
1479 /* Copy it into all variants. */
1480 for (variant = TYPE_MAIN_VARIANT (type);
1481 variant != 0;
1482 variant = TYPE_NEXT_VARIANT (variant))
1484 TYPE_SIZE (variant) = size;
1485 TYPE_SIZE_UNIT (variant) = size_unit;
1486 TYPE_ALIGN (variant) = align;
1487 TYPE_USER_ALIGN (variant) = user_align;
1488 TYPE_MODE (variant) = mode;
1493 /* Do all of the work required to layout the type indicated by RLI,
1494 once the fields have been laid out. This function will call `free'
1495 for RLI, unless FREE_P is false. Passing a value other than false
1496 for FREE_P is bad practice; this option only exists to support the
1497 G++ 3.2 ABI. */
1499 void
1500 finish_record_layout (rli, free_p)
1501 record_layout_info rli;
1502 int free_p;
1504 /* Compute the final size. */
1505 finalize_record_size (rli);
1507 /* Compute the TYPE_MODE for the record. */
1508 compute_record_mode (rli->t);
1510 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1511 finalize_type_size (rli->t);
1513 /* Lay out any static members. This is done now because their type
1514 may use the record's type. */
1515 while (rli->pending_statics)
1517 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1518 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1521 /* Clean up. */
1522 if (free_p)
1523 free (rli);
1527 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1528 NAME, its fields are chained in reverse on FIELDS.
1530 If ALIGN_TYPE is non-null, it is given the same alignment as
1531 ALIGN_TYPE. */
1533 void
1534 finish_builtin_struct (type, name, fields, align_type)
1535 tree type;
1536 const char *name;
1537 tree fields;
1538 tree align_type;
1540 tree tail, next;
1542 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1544 DECL_FIELD_CONTEXT (fields) = type;
1545 next = TREE_CHAIN (fields);
1546 TREE_CHAIN (fields) = tail;
1548 TYPE_FIELDS (type) = tail;
1550 if (align_type)
1552 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1553 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1556 layout_type (type);
1557 #if 0 /* not yet, should get fixed properly later */
1558 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1559 #else
1560 TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
1561 #endif
1562 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1563 layout_decl (TYPE_NAME (type), 0);
1566 /* Calculate the mode, size, and alignment for TYPE.
1567 For an array type, calculate the element separation as well.
1568 Record TYPE on the chain of permanent or temporary types
1569 so that dbxout will find out about it.
1571 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1572 layout_type does nothing on such a type.
1574 If the type is incomplete, its TYPE_SIZE remains zero. */
1576 void
1577 layout_type (type)
1578 tree type;
1580 if (type == 0)
1581 abort ();
1583 /* Do nothing if type has been laid out before. */
1584 if (TYPE_SIZE (type))
1585 return;
1587 switch (TREE_CODE (type))
1589 case LANG_TYPE:
1590 /* This kind of type is the responsibility
1591 of the language-specific code. */
1592 abort ();
1594 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1595 if (TYPE_PRECISION (type) == 0)
1596 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1598 /* ... fall through ... */
1600 case INTEGER_TYPE:
1601 case ENUMERAL_TYPE:
1602 case CHAR_TYPE:
1603 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1604 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1605 TREE_UNSIGNED (type) = 1;
1607 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1608 MODE_INT);
1609 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1610 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1611 break;
1613 case REAL_TYPE:
1614 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1615 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1616 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1617 break;
1619 case COMPLEX_TYPE:
1620 TREE_UNSIGNED (type) = TREE_UNSIGNED (TREE_TYPE (type));
1621 TYPE_MODE (type)
1622 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1623 (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
1624 ? MODE_COMPLEX_INT : MODE_COMPLEX_FLOAT),
1626 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1627 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1628 break;
1630 case VECTOR_TYPE:
1632 tree subtype;
1634 subtype = TREE_TYPE (type);
1635 TREE_UNSIGNED (type) = TREE_UNSIGNED (subtype);
1636 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1637 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1639 break;
1641 case VOID_TYPE:
1642 /* This is an incomplete type and so doesn't have a size. */
1643 TYPE_ALIGN (type) = 1;
1644 TYPE_USER_ALIGN (type) = 0;
1645 TYPE_MODE (type) = VOIDmode;
1646 break;
1648 case OFFSET_TYPE:
1649 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1650 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1651 /* A pointer might be MODE_PARTIAL_INT,
1652 but ptrdiff_t must be integral. */
1653 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1654 break;
1656 case FUNCTION_TYPE:
1657 case METHOD_TYPE:
1658 TYPE_MODE (type) = mode_for_size (2 * POINTER_SIZE, MODE_INT, 0);
1659 TYPE_SIZE (type) = bitsize_int (2 * POINTER_SIZE);
1660 TYPE_SIZE_UNIT (type) = size_int ((2 * POINTER_SIZE) / BITS_PER_UNIT);
1661 break;
1663 case POINTER_TYPE:
1664 case REFERENCE_TYPE:
1667 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1668 && reference_types_internal)
1669 ? Pmode : TYPE_MODE (type));
1671 int nbits = GET_MODE_BITSIZE (mode);
1673 TYPE_SIZE (type) = bitsize_int (nbits);
1674 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1675 TREE_UNSIGNED (type) = 1;
1676 TYPE_PRECISION (type) = nbits;
1678 break;
1680 case ARRAY_TYPE:
1682 tree index = TYPE_DOMAIN (type);
1683 tree element = TREE_TYPE (type);
1685 build_pointer_type (element);
1687 /* We need to know both bounds in order to compute the size. */
1688 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1689 && TYPE_SIZE (element))
1691 tree ub = TYPE_MAX_VALUE (index);
1692 tree lb = TYPE_MIN_VALUE (index);
1693 tree length;
1694 tree element_size;
1696 /* The initial subtraction should happen in the original type so
1697 that (possible) negative values are handled appropriately. */
1698 length = size_binop (PLUS_EXPR, size_one_node,
1699 convert (sizetype,
1700 fold (build (MINUS_EXPR,
1701 TREE_TYPE (lb),
1702 ub, lb))));
1704 /* Special handling for arrays of bits (for Chill). */
1705 element_size = TYPE_SIZE (element);
1706 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1707 && (integer_zerop (TYPE_MAX_VALUE (element))
1708 || integer_onep (TYPE_MAX_VALUE (element)))
1709 && host_integerp (TYPE_MIN_VALUE (element), 1))
1711 HOST_WIDE_INT maxvalue
1712 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1713 HOST_WIDE_INT minvalue
1714 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1716 if (maxvalue - minvalue == 1
1717 && (maxvalue == 1 || maxvalue == 0))
1718 element_size = integer_one_node;
1721 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1722 convert (bitsizetype, length));
1724 /* If we know the size of the element, calculate the total
1725 size directly, rather than do some division thing below.
1726 This optimization helps Fortran assumed-size arrays
1727 (where the size of the array is determined at runtime)
1728 substantially.
1729 Note that we can't do this in the case where the size of
1730 the elements is one bit since TYPE_SIZE_UNIT cannot be
1731 set correctly in that case. */
1732 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1733 TYPE_SIZE_UNIT (type)
1734 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1737 /* Now round the alignment and size,
1738 using machine-dependent criteria if any. */
1740 #ifdef ROUND_TYPE_ALIGN
1741 TYPE_ALIGN (type)
1742 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1743 #else
1744 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1745 #endif
1746 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1748 #ifdef ROUND_TYPE_SIZE
1749 if (TYPE_SIZE (type) != 0)
1751 tree tmp
1752 = ROUND_TYPE_SIZE (type, TYPE_SIZE (type), TYPE_ALIGN (type));
1754 /* If the rounding changed the size of the type, remove any
1755 pre-calculated TYPE_SIZE_UNIT. */
1756 if (simple_cst_equal (TYPE_SIZE (type), tmp) != 1)
1757 TYPE_SIZE_UNIT (type) = NULL;
1759 TYPE_SIZE (type) = tmp;
1761 #endif
1763 TYPE_MODE (type) = BLKmode;
1764 if (TYPE_SIZE (type) != 0
1765 #ifdef MEMBER_TYPE_FORCES_BLK
1766 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1767 #endif
1768 /* BLKmode elements force BLKmode aggregate;
1769 else extract/store fields may lose. */
1770 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1771 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1773 /* One-element arrays get the component type's mode. */
1774 if (simple_cst_equal (TYPE_SIZE (type),
1775 TYPE_SIZE (TREE_TYPE (type))))
1776 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1777 else
1778 TYPE_MODE (type)
1779 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1781 if (TYPE_MODE (type) != BLKmode
1782 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1783 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1784 && TYPE_MODE (type) != BLKmode)
1786 TYPE_NO_FORCE_BLK (type) = 1;
1787 TYPE_MODE (type) = BLKmode;
1790 break;
1793 case RECORD_TYPE:
1794 case UNION_TYPE:
1795 case QUAL_UNION_TYPE:
1797 tree field;
1798 record_layout_info rli;
1800 /* Initialize the layout information. */
1801 rli = start_record_layout (type);
1803 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1804 in the reverse order in building the COND_EXPR that denotes
1805 its size. We reverse them again later. */
1806 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1807 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1809 /* Place all the fields. */
1810 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1811 place_field (rli, field);
1813 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1814 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1816 if (lang_adjust_rli)
1817 (*lang_adjust_rli) (rli);
1819 /* Finish laying out the record. */
1820 finish_record_layout (rli, /*free_p=*/true);
1822 break;
1824 case SET_TYPE: /* Used by Chill and Pascal. */
1825 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST
1826 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
1827 abort ();
1828 else
1830 #ifndef SET_WORD_SIZE
1831 #define SET_WORD_SIZE BITS_PER_WORD
1832 #endif
1833 unsigned int alignment
1834 = set_alignment ? set_alignment : SET_WORD_SIZE;
1835 int size_in_bits
1836 = (TREE_INT_CST_LOW (TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
1837 - TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) + 1);
1838 int rounded_size
1839 = ((size_in_bits + alignment - 1) / alignment) * alignment;
1841 if (rounded_size > (int) alignment)
1842 TYPE_MODE (type) = BLKmode;
1843 else
1844 TYPE_MODE (type) = mode_for_size (alignment, MODE_INT, 1);
1846 TYPE_SIZE (type) = bitsize_int (rounded_size);
1847 TYPE_SIZE_UNIT (type) = size_int (rounded_size / BITS_PER_UNIT);
1848 TYPE_ALIGN (type) = alignment;
1849 TYPE_USER_ALIGN (type) = 0;
1850 TYPE_PRECISION (type) = size_in_bits;
1852 break;
1854 case FILE_TYPE:
1855 /* The size may vary in different languages, so the language front end
1856 should fill in the size. */
1857 TYPE_ALIGN (type) = BIGGEST_ALIGNMENT;
1858 TYPE_USER_ALIGN (type) = 0;
1859 TYPE_MODE (type) = BLKmode;
1860 break;
1862 default:
1863 abort ();
1866 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1867 records and unions, finish_record_layout already called this
1868 function. */
1869 if (TREE_CODE (type) != RECORD_TYPE
1870 && TREE_CODE (type) != UNION_TYPE
1871 && TREE_CODE (type) != QUAL_UNION_TYPE)
1872 finalize_type_size (type);
1874 /* If this type is created before sizetype has been permanently set,
1875 record it so set_sizetype can fix it up. */
1876 if (! sizetype_set)
1877 early_type_list = tree_cons (NULL_TREE, type, early_type_list);
1879 /* If an alias set has been set for this aggregate when it was incomplete,
1880 force it into alias set 0.
1881 This is too conservative, but we cannot call record_component_aliases
1882 here because some frontends still change the aggregates after
1883 layout_type. */
1884 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1885 TYPE_ALIAS_SET (type) = 0;
1888 /* Create and return a type for signed integers of PRECISION bits. */
1890 tree
1891 make_signed_type (precision)
1892 int precision;
1894 tree type = make_node (INTEGER_TYPE);
1896 TYPE_PRECISION (type) = precision;
1898 fixup_signed_type (type);
1899 return type;
1902 /* Create and return a type for unsigned integers of PRECISION bits. */
1904 tree
1905 make_unsigned_type (precision)
1906 int precision;
1908 tree type = make_node (INTEGER_TYPE);
1910 TYPE_PRECISION (type) = precision;
1912 fixup_unsigned_type (type);
1913 return type;
1916 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1917 value to enable integer types to be created. */
1919 void
1920 initialize_sizetypes ()
1922 tree t = make_node (INTEGER_TYPE);
1924 /* Set this so we do something reasonable for the build_int_2 calls
1925 below. */
1926 integer_type_node = t;
1928 TYPE_MODE (t) = SImode;
1929 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1930 TYPE_USER_ALIGN (t) = 0;
1931 TYPE_SIZE (t) = build_int_2 (GET_MODE_BITSIZE (SImode), 0);
1932 TYPE_SIZE_UNIT (t) = build_int_2 (GET_MODE_SIZE (SImode), 0);
1933 TREE_UNSIGNED (t) = 1;
1934 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1935 TYPE_MIN_VALUE (t) = build_int_2 (0, 0);
1936 TYPE_IS_SIZETYPE (t) = 1;
1938 /* 1000 avoids problems with possible overflow and is certainly
1939 larger than any size value we'd want to be storing. */
1940 TYPE_MAX_VALUE (t) = build_int_2 (1000, 0);
1942 /* These two must be different nodes because of the caching done in
1943 size_int_wide. */
1944 sizetype = t;
1945 bitsizetype = copy_node (t);
1946 integer_type_node = 0;
1949 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1950 Also update the type of any standard type's sizes made so far. */
1952 void
1953 set_sizetype (type)
1954 tree type;
1956 int oprecision = TYPE_PRECISION (type);
1957 /* The *bitsizetype types use a precision that avoids overflows when
1958 calculating signed sizes / offsets in bits. However, when
1959 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1960 precision. */
1961 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1962 2 * HOST_BITS_PER_WIDE_INT);
1963 unsigned int i;
1964 tree t;
1966 if (sizetype_set)
1967 abort ();
1969 /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE. */
1970 sizetype = copy_node (type);
1971 TYPE_DOMAIN (sizetype) = type;
1972 TYPE_IS_SIZETYPE (sizetype) = 1;
1973 bitsizetype = make_node (INTEGER_TYPE);
1974 TYPE_NAME (bitsizetype) = TYPE_NAME (type);
1975 TYPE_PRECISION (bitsizetype) = precision;
1976 TYPE_IS_SIZETYPE (bitsizetype) = 1;
1978 if (TREE_UNSIGNED (type))
1979 fixup_unsigned_type (bitsizetype);
1980 else
1981 fixup_signed_type (bitsizetype);
1983 layout_type (bitsizetype);
1985 if (TREE_UNSIGNED (type))
1987 usizetype = sizetype;
1988 ubitsizetype = bitsizetype;
1989 ssizetype = copy_node (make_signed_type (oprecision));
1990 sbitsizetype = copy_node (make_signed_type (precision));
1992 else
1994 ssizetype = sizetype;
1995 sbitsizetype = bitsizetype;
1996 usizetype = copy_node (make_unsigned_type (oprecision));
1997 ubitsizetype = copy_node (make_unsigned_type (precision));
2000 TYPE_NAME (bitsizetype) = get_identifier ("bit_size_type");
2002 /* Show is a sizetype, is a main type, and has no pointers to it. */
2003 for (i = 0; i < ARRAY_SIZE (sizetype_tab); i++)
2005 TYPE_IS_SIZETYPE (sizetype_tab[i]) = 1;
2006 TYPE_MAIN_VARIANT (sizetype_tab[i]) = sizetype_tab[i];
2007 TYPE_NEXT_VARIANT (sizetype_tab[i]) = 0;
2008 TYPE_POINTER_TO (sizetype_tab[i]) = 0;
2009 TYPE_REFERENCE_TO (sizetype_tab[i]) = 0;
2012 /* Go down each of the types we already made and set the proper type
2013 for the sizes in them. */
2014 for (t = early_type_list; t != 0; t = TREE_CHAIN (t))
2016 if (TREE_CODE (TREE_VALUE (t)) != INTEGER_TYPE)
2017 abort ();
2019 TREE_TYPE (TYPE_SIZE (TREE_VALUE (t))) = bitsizetype;
2020 TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t))) = sizetype;
2023 early_type_list = 0;
2024 sizetype_set = 1;
2027 /* Set the extreme values of TYPE based on its precision in bits,
2028 then lay it out. Used when make_signed_type won't do
2029 because the tree code is not INTEGER_TYPE.
2030 E.g. for Pascal, when the -fsigned-char option is given. */
2032 void
2033 fixup_signed_type (type)
2034 tree type;
2036 int precision = TYPE_PRECISION (type);
2038 /* We can not represent properly constants greater then
2039 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2040 as they are used by i386 vector extensions and friends. */
2041 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2042 precision = HOST_BITS_PER_WIDE_INT * 2;
2044 TYPE_MIN_VALUE (type)
2045 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
2046 ? 0 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2047 (((HOST_WIDE_INT) (-1)
2048 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2049 ? precision - HOST_BITS_PER_WIDE_INT - 1
2050 : 0))));
2051 TYPE_MAX_VALUE (type)
2052 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
2053 ? -1 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2054 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2055 ? (((HOST_WIDE_INT) 1
2056 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2057 : 0));
2059 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
2060 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
2062 /* Lay out the type: set its alignment, size, etc. */
2063 layout_type (type);
2066 /* Set the extreme values of TYPE based on its precision in bits,
2067 then lay it out. This is used both in `make_unsigned_type'
2068 and for enumeral types. */
2070 void
2071 fixup_unsigned_type (type)
2072 tree type;
2074 int precision = TYPE_PRECISION (type);
2076 /* We can not represent properly constants greater then
2077 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2078 as they are used by i386 vector extensions and friends. */
2079 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2080 precision = HOST_BITS_PER_WIDE_INT * 2;
2082 TYPE_MIN_VALUE (type) = build_int_2 (0, 0);
2083 TYPE_MAX_VALUE (type)
2084 = build_int_2 (precision - HOST_BITS_PER_WIDE_INT >= 0
2085 ? -1 : ((HOST_WIDE_INT) 1 << precision) - 1,
2086 precision - HOST_BITS_PER_WIDE_INT > 0
2087 ? ((unsigned HOST_WIDE_INT) ~0
2088 >> (HOST_BITS_PER_WIDE_INT
2089 - (precision - HOST_BITS_PER_WIDE_INT)))
2090 : 0);
2091 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
2092 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
2094 /* Lay out the type: set its alignment, size, etc. */
2095 layout_type (type);
2098 /* Find the best machine mode to use when referencing a bit field of length
2099 BITSIZE bits starting at BITPOS.
2101 The underlying object is known to be aligned to a boundary of ALIGN bits.
2102 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2103 larger than LARGEST_MODE (usually SImode).
2105 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2106 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2107 mode meeting these conditions.
2109 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2110 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2111 all the conditions. */
2113 enum machine_mode
2114 get_best_mode (bitsize, bitpos, align, largest_mode, volatilep)
2115 int bitsize, bitpos;
2116 unsigned int align;
2117 enum machine_mode largest_mode;
2118 int volatilep;
2120 enum machine_mode mode;
2121 unsigned int unit = 0;
2123 /* Find the narrowest integer mode that contains the bit field. */
2124 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2125 mode = GET_MODE_WIDER_MODE (mode))
2127 unit = GET_MODE_BITSIZE (mode);
2128 if ((bitpos % unit) + bitsize <= unit)
2129 break;
2132 if (mode == VOIDmode
2133 /* It is tempting to omit the following line
2134 if STRICT_ALIGNMENT is true.
2135 But that is incorrect, since if the bitfield uses part of 3 bytes
2136 and we use a 4-byte mode, we could get a spurious segv
2137 if the extra 4th byte is past the end of memory.
2138 (Though at least one Unix compiler ignores this problem:
2139 that on the Sequent 386 machine. */
2140 || MIN (unit, BIGGEST_ALIGNMENT) > align
2141 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2142 return VOIDmode;
2144 if (SLOW_BYTE_ACCESS && ! volatilep)
2146 enum machine_mode wide_mode = VOIDmode, tmode;
2148 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2149 tmode = GET_MODE_WIDER_MODE (tmode))
2151 unit = GET_MODE_BITSIZE (tmode);
2152 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2153 && unit <= BITS_PER_WORD
2154 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2155 && (largest_mode == VOIDmode
2156 || unit <= GET_MODE_BITSIZE (largest_mode)))
2157 wide_mode = tmode;
2160 if (wide_mode != VOIDmode)
2161 return wide_mode;
2164 return mode;
2167 #include "gt-stor-layout.h"