1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
43 #include "coretypes.h"
53 #include "hard-reg-set.h"
54 #include "insn-config.h"
57 #include "basic-block.h"
62 #include "integrate.h"
63 #include "langhooks.h"
65 #ifndef TRAMPOLINE_ALIGNMENT
66 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
69 #ifndef LOCAL_ALIGNMENT
70 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
78 #define NAME__MAIN "__main"
81 /* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86 /* Similar, but round to the next highest integer that meets the
88 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
91 during rtl generation. If they are different register numbers, this is
92 always true. It may also be true if
93 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
94 generation. See fix_lexical_addr for details. */
96 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
97 #define NEED_SEPARATE_AP
100 /* Nonzero if function being compiled doesn't contain any calls
101 (ignoring the prologue and epilogue). This is set prior to
102 local register allocation and is valid for the remaining
104 int current_function_is_leaf
;
106 /* Nonzero if function being compiled doesn't contain any instructions
107 that can throw an exception. This is set prior to final. */
109 int current_function_nothrow
;
111 /* Nonzero if function being compiled doesn't modify the stack pointer
112 (ignoring the prologue and epilogue). This is only valid after
113 life_analysis has run. */
114 int current_function_sp_is_unchanging
;
116 /* Nonzero if the function being compiled is a leaf function which only
117 uses leaf registers. This is valid after reload (specifically after
118 sched2) and is useful only if the port defines LEAF_REGISTERS. */
119 int current_function_uses_only_leaf_regs
;
121 /* Nonzero once virtual register instantiation has been done.
122 assign_stack_local uses frame_pointer_rtx when this is nonzero.
123 calls.c:emit_library_call_value_1 uses it to set up
124 post-instantiation libcalls. */
125 int virtuals_instantiated
;
127 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
128 static GTY(()) int funcdef_no
;
130 /* These variables hold pointers to functions to create and destroy
131 target specific, per-function data structures. */
132 struct machine_function
* (*init_machine_status
) PARAMS ((void));
134 /* The FUNCTION_DECL for an inline function currently being expanded. */
135 tree inline_function_decl
;
137 /* The currently compiled function. */
138 struct function
*cfun
= 0;
140 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
141 static GTY(()) varray_type prologue
;
142 static GTY(()) varray_type epilogue
;
144 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
146 static GTY(()) varray_type sibcall_epilogue
;
148 /* In order to evaluate some expressions, such as function calls returning
149 structures in memory, we need to temporarily allocate stack locations.
150 We record each allocated temporary in the following structure.
152 Associated with each temporary slot is a nesting level. When we pop up
153 one level, all temporaries associated with the previous level are freed.
154 Normally, all temporaries are freed after the execution of the statement
155 in which they were created. However, if we are inside a ({...}) grouping,
156 the result may be in a temporary and hence must be preserved. If the
157 result could be in a temporary, we preserve it if we can determine which
158 one it is in. If we cannot determine which temporary may contain the
159 result, all temporaries are preserved. A temporary is preserved by
160 pretending it was allocated at the previous nesting level.
162 Automatic variables are also assigned temporary slots, at the nesting
163 level where they are defined. They are marked a "kept" so that
164 free_temp_slots will not free them. */
166 struct temp_slot
GTY(())
168 /* Points to next temporary slot. */
169 struct temp_slot
*next
;
170 /* The rtx to used to reference the slot. */
172 /* The rtx used to represent the address if not the address of the
173 slot above. May be an EXPR_LIST if multiple addresses exist. */
175 /* The alignment (in bits) of the slot. */
177 /* The size, in units, of the slot. */
179 /* The type of the object in the slot, or zero if it doesn't correspond
180 to a type. We use this to determine whether a slot can be reused.
181 It can be reused if objects of the type of the new slot will always
182 conflict with objects of the type of the old slot. */
184 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
186 /* Nonzero if this temporary is currently in use. */
188 /* Nonzero if this temporary has its address taken. */
190 /* Nesting level at which this slot is being used. */
192 /* Nonzero if this should survive a call to free_temp_slots. */
194 /* The offset of the slot from the frame_pointer, including extra space
195 for alignment. This info is for combine_temp_slots. */
196 HOST_WIDE_INT base_offset
;
197 /* The size of the slot, including extra space for alignment. This
198 info is for combine_temp_slots. */
199 HOST_WIDE_INT full_size
;
202 /* This structure is used to record MEMs or pseudos used to replace VAR, any
203 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
204 maintain this list in case two operands of an insn were required to match;
205 in that case we must ensure we use the same replacement. */
207 struct fixup_replacement
GTY(())
211 struct fixup_replacement
*next
;
214 struct insns_for_mem_entry
218 /* These are the INSNs which reference the MEM. */
222 /* Forward declarations. */
224 static rtx assign_stack_local_1
PARAMS ((enum machine_mode
, HOST_WIDE_INT
,
225 int, struct function
*));
226 static struct temp_slot
*find_temp_slot_from_address
PARAMS ((rtx
));
227 static void put_reg_into_stack
PARAMS ((struct function
*, rtx
, tree
,
228 enum machine_mode
, enum machine_mode
,
229 int, unsigned int, int,
231 static void schedule_fixup_var_refs
PARAMS ((struct function
*, rtx
, tree
,
234 static void fixup_var_refs
PARAMS ((rtx
, enum machine_mode
, int, rtx
,
236 static struct fixup_replacement
237 *find_fixup_replacement
PARAMS ((struct fixup_replacement
**, rtx
));
238 static void fixup_var_refs_insns
PARAMS ((rtx
, rtx
, enum machine_mode
,
240 static void fixup_var_refs_insns_with_hash
241 PARAMS ((htab_t
, rtx
,
242 enum machine_mode
, int, rtx
));
243 static void fixup_var_refs_insn
PARAMS ((rtx
, rtx
, enum machine_mode
,
245 static void fixup_var_refs_1
PARAMS ((rtx
, enum machine_mode
, rtx
*, rtx
,
246 struct fixup_replacement
**, rtx
));
247 static rtx fixup_memory_subreg
PARAMS ((rtx
, rtx
, enum machine_mode
, int));
248 static rtx walk_fixup_memory_subreg
PARAMS ((rtx
, rtx
, enum machine_mode
,
250 static rtx fixup_stack_1
PARAMS ((rtx
, rtx
));
251 static void optimize_bit_field
PARAMS ((rtx
, rtx
, rtx
*));
252 static void instantiate_decls
PARAMS ((tree
, int));
253 static void instantiate_decls_1
PARAMS ((tree
, int));
254 static void instantiate_decl
PARAMS ((rtx
, HOST_WIDE_INT
, int));
255 static rtx instantiate_new_reg
PARAMS ((rtx
, HOST_WIDE_INT
*));
256 static int instantiate_virtual_regs_1
PARAMS ((rtx
*, rtx
, int));
257 static void delete_handlers
PARAMS ((void));
258 static void pad_to_arg_alignment
PARAMS ((struct args_size
*, int,
259 struct args_size
*));
260 static void pad_below
PARAMS ((struct args_size
*, enum machine_mode
,
262 static rtx round_trampoline_addr
PARAMS ((rtx
));
263 static rtx adjust_trampoline_addr
PARAMS ((rtx
));
264 static tree
*identify_blocks_1
PARAMS ((rtx
, tree
*, tree
*, tree
*));
265 static void reorder_blocks_0
PARAMS ((tree
));
266 static void reorder_blocks_1
PARAMS ((rtx
, tree
, varray_type
*));
267 static void reorder_fix_fragments
PARAMS ((tree
));
268 static tree blocks_nreverse
PARAMS ((tree
));
269 static int all_blocks
PARAMS ((tree
, tree
*));
270 static tree
*get_block_vector
PARAMS ((tree
, int *));
271 extern tree debug_find_var_in_block_tree
PARAMS ((tree
, tree
));
272 /* We always define `record_insns' even if its not used so that we
273 can always export `prologue_epilogue_contains'. */
274 static void record_insns
PARAMS ((rtx
, varray_type
*)) ATTRIBUTE_UNUSED
;
275 static int contains
PARAMS ((rtx
, varray_type
));
277 static void emit_return_into_block
PARAMS ((basic_block
, rtx
));
279 static void put_addressof_into_stack
PARAMS ((rtx
, htab_t
));
280 static bool purge_addressof_1
PARAMS ((rtx
*, rtx
, int, int,
282 static void purge_single_hard_subreg_set
PARAMS ((rtx
));
283 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
284 static rtx keep_stack_depressed
PARAMS ((rtx
));
286 static int is_addressof
PARAMS ((rtx
*, void *));
287 static hashval_t insns_for_mem_hash
PARAMS ((const void *));
288 static int insns_for_mem_comp
PARAMS ((const void *, const void *));
289 static int insns_for_mem_walk
PARAMS ((rtx
*, void *));
290 static void compute_insns_for_mem
PARAMS ((rtx
, rtx
, htab_t
));
291 static void prepare_function_start
PARAMS ((void));
292 static void do_clobber_return_reg
PARAMS ((rtx
, void *));
293 static void do_use_return_reg
PARAMS ((rtx
, void *));
295 /* Pointer to chain of `struct function' for containing functions. */
296 static GTY(()) struct function
*outer_function_chain
;
298 /* Given a function decl for a containing function,
299 return the `struct function' for it. */
302 find_function_data (decl
)
307 for (p
= outer_function_chain
; p
; p
= p
->outer
)
314 /* Save the current context for compilation of a nested function.
315 This is called from language-specific code. The caller should use
316 the enter_nested langhook to save any language-specific state,
317 since this function knows only about language-independent
321 push_function_context_to (context
)
328 if (context
== current_function_decl
)
329 cfun
->contains_functions
= 1;
332 struct function
*containing
= find_function_data (context
);
333 containing
->contains_functions
= 1;
338 init_dummy_function_start ();
341 p
->outer
= outer_function_chain
;
342 outer_function_chain
= p
;
343 p
->fixup_var_refs_queue
= 0;
345 (*lang_hooks
.function
.enter_nested
) (p
);
351 push_function_context ()
353 push_function_context_to (current_function_decl
);
356 /* Restore the last saved context, at the end of a nested function.
357 This function is called from language-specific code. */
360 pop_function_context_from (context
)
361 tree context ATTRIBUTE_UNUSED
;
363 struct function
*p
= outer_function_chain
;
364 struct var_refs_queue
*queue
;
367 outer_function_chain
= p
->outer
;
369 current_function_decl
= p
->decl
;
372 restore_emit_status (p
);
374 (*lang_hooks
.function
.leave_nested
) (p
);
376 /* Finish doing put_var_into_stack for any of our variables which became
377 addressable during the nested function. If only one entry has to be
378 fixed up, just do that one. Otherwise, first make a list of MEMs that
379 are not to be unshared. */
380 if (p
->fixup_var_refs_queue
== 0)
382 else if (p
->fixup_var_refs_queue
->next
== 0)
383 fixup_var_refs (p
->fixup_var_refs_queue
->modified
,
384 p
->fixup_var_refs_queue
->promoted_mode
,
385 p
->fixup_var_refs_queue
->unsignedp
,
386 p
->fixup_var_refs_queue
->modified
, 0);
391 for (queue
= p
->fixup_var_refs_queue
; queue
; queue
= queue
->next
)
392 list
= gen_rtx_EXPR_LIST (VOIDmode
, queue
->modified
, list
);
394 for (queue
= p
->fixup_var_refs_queue
; queue
; queue
= queue
->next
)
395 fixup_var_refs (queue
->modified
, queue
->promoted_mode
,
396 queue
->unsignedp
, list
, 0);
400 p
->fixup_var_refs_queue
= 0;
402 /* Reset variables that have known state during rtx generation. */
403 rtx_equal_function_value_matters
= 1;
404 virtuals_instantiated
= 0;
405 generating_concat_p
= 1;
409 pop_function_context ()
411 pop_function_context_from (current_function_decl
);
414 /* Clear out all parts of the state in F that can safely be discarded
415 after the function has been parsed, but not compiled, to let
416 garbage collection reclaim the memory. */
419 free_after_parsing (f
)
422 /* f->expr->forced_labels is used by code generation. */
423 /* f->emit->regno_reg_rtx is used by code generation. */
424 /* f->varasm is used by code generation. */
425 /* f->eh->eh_return_stub_label is used by code generation. */
427 (*lang_hooks
.function
.final
) (f
);
431 /* Clear out all parts of the state in F that can safely be discarded
432 after the function has been compiled, to let garbage collection
433 reclaim the memory. */
436 free_after_compilation (f
)
445 f
->x_temp_slots
= NULL
;
446 f
->arg_offset_rtx
= NULL
;
447 f
->return_rtx
= NULL
;
448 f
->internal_arg_pointer
= NULL
;
449 f
->x_nonlocal_labels
= NULL
;
450 f
->x_nonlocal_goto_handler_slots
= NULL
;
451 f
->x_nonlocal_goto_handler_labels
= NULL
;
452 f
->x_nonlocal_goto_stack_level
= NULL
;
453 f
->x_cleanup_label
= NULL
;
454 f
->x_return_label
= NULL
;
455 f
->x_save_expr_regs
= NULL
;
456 f
->x_stack_slot_list
= NULL
;
457 f
->x_rtl_expr_chain
= NULL
;
458 f
->x_tail_recursion_label
= NULL
;
459 f
->x_tail_recursion_reentry
= NULL
;
460 f
->x_arg_pointer_save_area
= NULL
;
461 f
->x_clobber_return_insn
= NULL
;
462 f
->x_context_display
= NULL
;
463 f
->x_trampoline_list
= NULL
;
464 f
->x_parm_birth_insn
= NULL
;
465 f
->x_last_parm_insn
= NULL
;
466 f
->x_parm_reg_stack_loc
= NULL
;
467 f
->fixup_var_refs_queue
= NULL
;
468 f
->original_arg_vector
= NULL
;
469 f
->original_decl_initial
= NULL
;
470 f
->inl_last_parm_insn
= NULL
;
471 f
->epilogue_delay_list
= NULL
;
474 /* Allocate fixed slots in the stack frame of the current function. */
476 /* Return size needed for stack frame based on slots so far allocated in
478 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
479 the caller may have to do that. */
482 get_func_frame_size (f
)
485 #ifdef FRAME_GROWS_DOWNWARD
486 return -f
->x_frame_offset
;
488 return f
->x_frame_offset
;
492 /* Return size needed for stack frame based on slots so far allocated.
493 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
494 the caller may have to do that. */
498 return get_func_frame_size (cfun
);
501 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
502 with machine mode MODE.
504 ALIGN controls the amount of alignment for the address of the slot:
505 0 means according to MODE,
506 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
507 positive specifies alignment boundary in bits.
509 We do not round to stack_boundary here.
511 FUNCTION specifies the function to allocate in. */
514 assign_stack_local_1 (mode
, size
, align
, function
)
515 enum machine_mode mode
;
518 struct function
*function
;
521 int bigend_correction
= 0;
523 int frame_off
, frame_alignment
, frame_phase
;
530 alignment
= BIGGEST_ALIGNMENT
;
532 alignment
= GET_MODE_ALIGNMENT (mode
);
534 /* Allow the target to (possibly) increase the alignment of this
536 type
= (*lang_hooks
.types
.type_for_mode
) (mode
, 0);
538 alignment
= LOCAL_ALIGNMENT (type
, alignment
);
540 alignment
/= BITS_PER_UNIT
;
542 else if (align
== -1)
544 alignment
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
545 size
= CEIL_ROUND (size
, alignment
);
548 alignment
= align
/ BITS_PER_UNIT
;
550 #ifdef FRAME_GROWS_DOWNWARD
551 function
->x_frame_offset
-= size
;
554 /* Ignore alignment we can't do with expected alignment of the boundary. */
555 if (alignment
* BITS_PER_UNIT
> PREFERRED_STACK_BOUNDARY
)
556 alignment
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
558 if (function
->stack_alignment_needed
< alignment
* BITS_PER_UNIT
)
559 function
->stack_alignment_needed
= alignment
* BITS_PER_UNIT
;
561 /* Calculate how many bytes the start of local variables is off from
563 frame_alignment
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
564 frame_off
= STARTING_FRAME_OFFSET
% frame_alignment
;
565 frame_phase
= frame_off
? frame_alignment
- frame_off
: 0;
567 /* Round frame offset to that alignment.
568 We must be careful here, since FRAME_OFFSET might be negative and
569 division with a negative dividend isn't as well defined as we might
570 like. So we instead assume that ALIGNMENT is a power of two and
571 use logical operations which are unambiguous. */
572 #ifdef FRAME_GROWS_DOWNWARD
573 function
->x_frame_offset
= FLOOR_ROUND (function
->x_frame_offset
- frame_phase
, alignment
) + frame_phase
;
575 function
->x_frame_offset
= CEIL_ROUND (function
->x_frame_offset
- frame_phase
, alignment
) + frame_phase
;
578 /* On a big-endian machine, if we are allocating more space than we will use,
579 use the least significant bytes of those that are allocated. */
580 if (BYTES_BIG_ENDIAN
&& mode
!= BLKmode
)
581 bigend_correction
= size
- GET_MODE_SIZE (mode
);
583 /* If we have already instantiated virtual registers, return the actual
584 address relative to the frame pointer. */
585 if (function
== cfun
&& virtuals_instantiated
)
586 addr
= plus_constant (frame_pointer_rtx
,
587 (frame_offset
+ bigend_correction
588 + STARTING_FRAME_OFFSET
));
590 addr
= plus_constant (virtual_stack_vars_rtx
,
591 function
->x_frame_offset
+ bigend_correction
);
593 #ifndef FRAME_GROWS_DOWNWARD
594 function
->x_frame_offset
+= size
;
597 x
= gen_rtx_MEM (mode
, addr
);
599 function
->x_stack_slot_list
600 = gen_rtx_EXPR_LIST (VOIDmode
, x
, function
->x_stack_slot_list
);
605 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
609 assign_stack_local (mode
, size
, align
)
610 enum machine_mode mode
;
614 return assign_stack_local_1 (mode
, size
, align
, cfun
);
617 /* Allocate a temporary stack slot and record it for possible later
620 MODE is the machine mode to be given to the returned rtx.
622 SIZE is the size in units of the space required. We do no rounding here
623 since assign_stack_local will do any required rounding.
625 KEEP is 1 if this slot is to be retained after a call to
626 free_temp_slots. Automatic variables for a block are allocated
627 with this flag. KEEP is 2 if we allocate a longer term temporary,
628 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
629 if we are to allocate something at an inner level to be treated as
630 a variable in the block (e.g., a SAVE_EXPR).
632 TYPE is the type that will be used for the stack slot. */
635 assign_stack_temp_for_type (mode
, size
, keep
, type
)
636 enum machine_mode mode
;
642 struct temp_slot
*p
, *best_p
= 0;
645 /* If SIZE is -1 it means that somebody tried to allocate a temporary
646 of a variable size. */
651 align
= BIGGEST_ALIGNMENT
;
653 align
= GET_MODE_ALIGNMENT (mode
);
656 type
= (*lang_hooks
.types
.type_for_mode
) (mode
, 0);
659 align
= LOCAL_ALIGNMENT (type
, align
);
661 /* Try to find an available, already-allocated temporary of the proper
662 mode which meets the size and alignment requirements. Choose the
663 smallest one with the closest alignment. */
664 for (p
= temp_slots
; p
; p
= p
->next
)
665 if (p
->align
>= align
&& p
->size
>= size
&& GET_MODE (p
->slot
) == mode
667 && objects_must_conflict_p (p
->type
, type
)
668 && (best_p
== 0 || best_p
->size
> p
->size
669 || (best_p
->size
== p
->size
&& best_p
->align
> p
->align
)))
671 if (p
->align
== align
&& p
->size
== size
)
679 /* Make our best, if any, the one to use. */
682 /* If there are enough aligned bytes left over, make them into a new
683 temp_slot so that the extra bytes don't get wasted. Do this only
684 for BLKmode slots, so that we can be sure of the alignment. */
685 if (GET_MODE (best_p
->slot
) == BLKmode
)
687 int alignment
= best_p
->align
/ BITS_PER_UNIT
;
688 HOST_WIDE_INT rounded_size
= CEIL_ROUND (size
, alignment
);
690 if (best_p
->size
- rounded_size
>= alignment
)
692 p
= (struct temp_slot
*) ggc_alloc (sizeof (struct temp_slot
));
693 p
->in_use
= p
->addr_taken
= 0;
694 p
->size
= best_p
->size
- rounded_size
;
695 p
->base_offset
= best_p
->base_offset
+ rounded_size
;
696 p
->full_size
= best_p
->full_size
- rounded_size
;
697 p
->slot
= gen_rtx_MEM (BLKmode
,
698 plus_constant (XEXP (best_p
->slot
, 0),
700 p
->align
= best_p
->align
;
703 p
->type
= best_p
->type
;
704 p
->next
= temp_slots
;
707 stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode
, p
->slot
,
710 best_p
->size
= rounded_size
;
711 best_p
->full_size
= rounded_size
;
718 /* If we still didn't find one, make a new temporary. */
721 HOST_WIDE_INT frame_offset_old
= frame_offset
;
723 p
= (struct temp_slot
*) ggc_alloc (sizeof (struct temp_slot
));
725 /* We are passing an explicit alignment request to assign_stack_local.
726 One side effect of that is assign_stack_local will not round SIZE
727 to ensure the frame offset remains suitably aligned.
729 So for requests which depended on the rounding of SIZE, we go ahead
730 and round it now. We also make sure ALIGNMENT is at least
731 BIGGEST_ALIGNMENT. */
732 if (mode
== BLKmode
&& align
< BIGGEST_ALIGNMENT
)
734 p
->slot
= assign_stack_local (mode
,
736 ? CEIL_ROUND (size
, (int) align
/ BITS_PER_UNIT
)
742 /* The following slot size computation is necessary because we don't
743 know the actual size of the temporary slot until assign_stack_local
744 has performed all the frame alignment and size rounding for the
745 requested temporary. Note that extra space added for alignment
746 can be either above or below this stack slot depending on which
747 way the frame grows. We include the extra space if and only if it
748 is above this slot. */
749 #ifdef FRAME_GROWS_DOWNWARD
750 p
->size
= frame_offset_old
- frame_offset
;
755 /* Now define the fields used by combine_temp_slots. */
756 #ifdef FRAME_GROWS_DOWNWARD
757 p
->base_offset
= frame_offset
;
758 p
->full_size
= frame_offset_old
- frame_offset
;
760 p
->base_offset
= frame_offset_old
;
761 p
->full_size
= frame_offset
- frame_offset_old
;
764 p
->next
= temp_slots
;
770 p
->rtl_expr
= seq_rtl_expr
;
775 p
->level
= target_temp_slot_level
;
780 p
->level
= var_temp_slot_level
;
785 p
->level
= temp_slot_level
;
790 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
791 slot
= gen_rtx_MEM (mode
, XEXP (p
->slot
, 0));
792 stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode
, slot
, stack_slot_list
);
794 /* If we know the alias set for the memory that will be used, use
795 it. If there's no TYPE, then we don't know anything about the
796 alias set for the memory. */
797 set_mem_alias_set (slot
, type
? get_alias_set (type
) : 0);
798 set_mem_align (slot
, align
);
800 /* If a type is specified, set the relevant flags. */
803 RTX_UNCHANGING_P (slot
) = (lang_hooks
.honor_readonly
804 && TYPE_READONLY (type
));
805 MEM_VOLATILE_P (slot
) = TYPE_VOLATILE (type
);
806 MEM_SET_IN_STRUCT_P (slot
, AGGREGATE_TYPE_P (type
));
812 /* Allocate a temporary stack slot and record it for possible later
813 reuse. First three arguments are same as in preceding function. */
816 assign_stack_temp (mode
, size
, keep
)
817 enum machine_mode mode
;
821 return assign_stack_temp_for_type (mode
, size
, keep
, NULL_TREE
);
824 /* Assign a temporary.
825 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
826 and so that should be used in error messages. In either case, we
827 allocate of the given type.
828 KEEP is as for assign_stack_temp.
829 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
830 it is 0 if a register is OK.
831 DONT_PROMOTE is 1 if we should not promote values in register
835 assign_temp (type_or_decl
, keep
, memory_required
, dont_promote
)
839 int dont_promote ATTRIBUTE_UNUSED
;
842 enum machine_mode mode
;
843 #ifndef PROMOTE_FOR_CALL_ONLY
847 if (DECL_P (type_or_decl
))
848 decl
= type_or_decl
, type
= TREE_TYPE (decl
);
850 decl
= NULL
, type
= type_or_decl
;
852 mode
= TYPE_MODE (type
);
853 #ifndef PROMOTE_FOR_CALL_ONLY
854 unsignedp
= TREE_UNSIGNED (type
);
857 if (mode
== BLKmode
|| memory_required
)
859 HOST_WIDE_INT size
= int_size_in_bytes (type
);
862 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
863 problems with allocating the stack space. */
867 /* Unfortunately, we don't yet know how to allocate variable-sized
868 temporaries. However, sometimes we have a fixed upper limit on
869 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
870 instead. This is the case for Chill variable-sized strings. */
871 if (size
== -1 && TREE_CODE (type
) == ARRAY_TYPE
872 && TYPE_ARRAY_MAX_SIZE (type
) != NULL_TREE
873 && host_integerp (TYPE_ARRAY_MAX_SIZE (type
), 1))
874 size
= tree_low_cst (TYPE_ARRAY_MAX_SIZE (type
), 1);
876 /* The size of the temporary may be too large to fit into an integer. */
877 /* ??? Not sure this should happen except for user silliness, so limit
878 this to things that aren't compiler-generated temporaries. The
879 rest of the time we'll abort in assign_stack_temp_for_type. */
880 if (decl
&& size
== -1
881 && TREE_CODE (TYPE_SIZE_UNIT (type
)) == INTEGER_CST
)
883 error_with_decl (decl
, "size of variable `%s' is too large");
887 tmp
= assign_stack_temp_for_type (mode
, size
, keep
, type
);
891 #ifndef PROMOTE_FOR_CALL_ONLY
893 mode
= promote_mode (type
, mode
, &unsignedp
, 0);
896 return gen_reg_rtx (mode
);
899 /* Combine temporary stack slots which are adjacent on the stack.
901 This allows for better use of already allocated stack space. This is only
902 done for BLKmode slots because we can be sure that we won't have alignment
903 problems in this case. */
906 combine_temp_slots ()
908 struct temp_slot
*p
, *q
;
909 struct temp_slot
*prev_p
, *prev_q
;
912 /* We can't combine slots, because the information about which slot
913 is in which alias set will be lost. */
914 if (flag_strict_aliasing
)
917 /* If there are a lot of temp slots, don't do anything unless
918 high levels of optimization. */
919 if (! flag_expensive_optimizations
)
920 for (p
= temp_slots
, num_slots
= 0; p
; p
= p
->next
, num_slots
++)
921 if (num_slots
> 100 || (num_slots
> 10 && optimize
== 0))
924 for (p
= temp_slots
, prev_p
= 0; p
; p
= prev_p
? prev_p
->next
: temp_slots
)
928 if (! p
->in_use
&& GET_MODE (p
->slot
) == BLKmode
)
929 for (q
= p
->next
, prev_q
= p
; q
; q
= prev_q
->next
)
932 if (! q
->in_use
&& GET_MODE (q
->slot
) == BLKmode
)
934 if (p
->base_offset
+ p
->full_size
== q
->base_offset
)
936 /* Q comes after P; combine Q into P. */
938 p
->full_size
+= q
->full_size
;
941 else if (q
->base_offset
+ q
->full_size
== p
->base_offset
)
943 /* P comes after Q; combine P into Q. */
945 q
->full_size
+= p
->full_size
;
950 /* Either delete Q or advance past it. */
952 prev_q
->next
= q
->next
;
956 /* Either delete P or advance past it. */
960 prev_p
->next
= p
->next
;
962 temp_slots
= p
->next
;
969 /* Find the temp slot corresponding to the object at address X. */
971 static struct temp_slot
*
972 find_temp_slot_from_address (x
)
978 for (p
= temp_slots
; p
; p
= p
->next
)
983 else if (XEXP (p
->slot
, 0) == x
985 || (GET_CODE (x
) == PLUS
986 && XEXP (x
, 0) == virtual_stack_vars_rtx
987 && GET_CODE (XEXP (x
, 1)) == CONST_INT
988 && INTVAL (XEXP (x
, 1)) >= p
->base_offset
989 && INTVAL (XEXP (x
, 1)) < p
->base_offset
+ p
->full_size
))
992 else if (p
->address
!= 0 && GET_CODE (p
->address
) == EXPR_LIST
)
993 for (next
= p
->address
; next
; next
= XEXP (next
, 1))
994 if (XEXP (next
, 0) == x
)
998 /* If we have a sum involving a register, see if it points to a temp
1000 if (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 0)) == REG
1001 && (p
= find_temp_slot_from_address (XEXP (x
, 0))) != 0)
1003 else if (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 1)) == REG
1004 && (p
= find_temp_slot_from_address (XEXP (x
, 1))) != 0)
1010 /* Indicate that NEW is an alternate way of referring to the temp slot
1011 that previously was known by OLD. */
1014 update_temp_slot_address (old
, new)
1017 struct temp_slot
*p
;
1019 if (rtx_equal_p (old
, new))
1022 p
= find_temp_slot_from_address (old
);
1024 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1025 is a register, see if one operand of the PLUS is a temporary
1026 location. If so, NEW points into it. Otherwise, if both OLD and
1027 NEW are a PLUS and if there is a register in common between them.
1028 If so, try a recursive call on those values. */
1031 if (GET_CODE (old
) != PLUS
)
1034 if (GET_CODE (new) == REG
)
1036 update_temp_slot_address (XEXP (old
, 0), new);
1037 update_temp_slot_address (XEXP (old
, 1), new);
1040 else if (GET_CODE (new) != PLUS
)
1043 if (rtx_equal_p (XEXP (old
, 0), XEXP (new, 0)))
1044 update_temp_slot_address (XEXP (old
, 1), XEXP (new, 1));
1045 else if (rtx_equal_p (XEXP (old
, 1), XEXP (new, 0)))
1046 update_temp_slot_address (XEXP (old
, 0), XEXP (new, 1));
1047 else if (rtx_equal_p (XEXP (old
, 0), XEXP (new, 1)))
1048 update_temp_slot_address (XEXP (old
, 1), XEXP (new, 0));
1049 else if (rtx_equal_p (XEXP (old
, 1), XEXP (new, 1)))
1050 update_temp_slot_address (XEXP (old
, 0), XEXP (new, 0));
1055 /* Otherwise add an alias for the temp's address. */
1056 else if (p
->address
== 0)
1060 if (GET_CODE (p
->address
) != EXPR_LIST
)
1061 p
->address
= gen_rtx_EXPR_LIST (VOIDmode
, p
->address
, NULL_RTX
);
1063 p
->address
= gen_rtx_EXPR_LIST (VOIDmode
, new, p
->address
);
1067 /* If X could be a reference to a temporary slot, mark the fact that its
1068 address was taken. */
1071 mark_temp_addr_taken (x
)
1074 struct temp_slot
*p
;
1079 /* If X is not in memory or is at a constant address, it cannot be in
1080 a temporary slot. */
1081 if (GET_CODE (x
) != MEM
|| CONSTANT_P (XEXP (x
, 0)))
1084 p
= find_temp_slot_from_address (XEXP (x
, 0));
1089 /* If X could be a reference to a temporary slot, mark that slot as
1090 belonging to the to one level higher than the current level. If X
1091 matched one of our slots, just mark that one. Otherwise, we can't
1092 easily predict which it is, so upgrade all of them. Kept slots
1093 need not be touched.
1095 This is called when an ({...}) construct occurs and a statement
1096 returns a value in memory. */
1099 preserve_temp_slots (x
)
1102 struct temp_slot
*p
= 0;
1104 /* If there is no result, we still might have some objects whose address
1105 were taken, so we need to make sure they stay around. */
1108 for (p
= temp_slots
; p
; p
= p
->next
)
1109 if (p
->in_use
&& p
->level
== temp_slot_level
&& p
->addr_taken
)
1115 /* If X is a register that is being used as a pointer, see if we have
1116 a temporary slot we know it points to. To be consistent with
1117 the code below, we really should preserve all non-kept slots
1118 if we can't find a match, but that seems to be much too costly. */
1119 if (GET_CODE (x
) == REG
&& REG_POINTER (x
))
1120 p
= find_temp_slot_from_address (x
);
1122 /* If X is not in memory or is at a constant address, it cannot be in
1123 a temporary slot, but it can contain something whose address was
1125 if (p
== 0 && (GET_CODE (x
) != MEM
|| CONSTANT_P (XEXP (x
, 0))))
1127 for (p
= temp_slots
; p
; p
= p
->next
)
1128 if (p
->in_use
&& p
->level
== temp_slot_level
&& p
->addr_taken
)
1134 /* First see if we can find a match. */
1136 p
= find_temp_slot_from_address (XEXP (x
, 0));
1140 /* Move everything at our level whose address was taken to our new
1141 level in case we used its address. */
1142 struct temp_slot
*q
;
1144 if (p
->level
== temp_slot_level
)
1146 for (q
= temp_slots
; q
; q
= q
->next
)
1147 if (q
!= p
&& q
->addr_taken
&& q
->level
== p
->level
)
1156 /* Otherwise, preserve all non-kept slots at this level. */
1157 for (p
= temp_slots
; p
; p
= p
->next
)
1158 if (p
->in_use
&& p
->level
== temp_slot_level
&& ! p
->keep
)
1162 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1163 with that RTL_EXPR, promote it into a temporary slot at the present
1164 level so it will not be freed when we free slots made in the
1168 preserve_rtl_expr_result (x
)
1171 struct temp_slot
*p
;
1173 /* If X is not in memory or is at a constant address, it cannot be in
1174 a temporary slot. */
1175 if (x
== 0 || GET_CODE (x
) != MEM
|| CONSTANT_P (XEXP (x
, 0)))
1178 /* If we can find a match, move it to our level unless it is already at
1180 p
= find_temp_slot_from_address (XEXP (x
, 0));
1183 p
->level
= MIN (p
->level
, temp_slot_level
);
1190 /* Free all temporaries used so far. This is normally called at the end
1191 of generating code for a statement. Don't free any temporaries
1192 currently in use for an RTL_EXPR that hasn't yet been emitted.
1193 We could eventually do better than this since it can be reused while
1194 generating the same RTL_EXPR, but this is complex and probably not
1200 struct temp_slot
*p
;
1202 for (p
= temp_slots
; p
; p
= p
->next
)
1203 if (p
->in_use
&& p
->level
== temp_slot_level
&& ! p
->keep
1204 && p
->rtl_expr
== 0)
1207 combine_temp_slots ();
1210 /* Free all temporary slots used in T, an RTL_EXPR node. */
1213 free_temps_for_rtl_expr (t
)
1216 struct temp_slot
*p
;
1218 for (p
= temp_slots
; p
; p
= p
->next
)
1219 if (p
->rtl_expr
== t
)
1221 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1222 needs to be preserved. This can happen if a temporary in
1223 the RTL_EXPR was addressed; preserve_temp_slots will move
1224 the temporary into a higher level. */
1225 if (temp_slot_level
<= p
->level
)
1228 p
->rtl_expr
= NULL_TREE
;
1231 combine_temp_slots ();
1234 /* Mark all temporaries ever allocated in this function as not suitable
1235 for reuse until the current level is exited. */
1238 mark_all_temps_used ()
1240 struct temp_slot
*p
;
1242 for (p
= temp_slots
; p
; p
= p
->next
)
1244 p
->in_use
= p
->keep
= 1;
1245 p
->level
= MIN (p
->level
, temp_slot_level
);
1249 /* Push deeper into the nesting level for stack temporaries. */
1257 /* Pop a temporary nesting level. All slots in use in the current level
1263 struct temp_slot
*p
;
1265 for (p
= temp_slots
; p
; p
= p
->next
)
1266 if (p
->in_use
&& p
->level
== temp_slot_level
&& p
->rtl_expr
== 0)
1269 combine_temp_slots ();
1274 /* Initialize temporary slots. */
1279 /* We have not allocated any temporaries yet. */
1281 temp_slot_level
= 0;
1282 var_temp_slot_level
= 0;
1283 target_temp_slot_level
= 0;
1286 /* Retroactively move an auto variable from a register to a stack slot.
1287 This is done when an address-reference to the variable is seen. */
1290 put_var_into_stack (decl
)
1294 enum machine_mode promoted_mode
, decl_mode
;
1295 struct function
*function
= 0;
1297 int can_use_addressof
;
1298 int volatilep
= TREE_CODE (decl
) != SAVE_EXPR
&& TREE_THIS_VOLATILE (decl
);
1299 int usedp
= (TREE_USED (decl
)
1300 || (TREE_CODE (decl
) != SAVE_EXPR
&& DECL_INITIAL (decl
) != 0));
1302 context
= decl_function_context (decl
);
1304 /* Get the current rtl used for this object and its original mode. */
1305 reg
= (TREE_CODE (decl
) == SAVE_EXPR
1306 ? SAVE_EXPR_RTL (decl
)
1307 : DECL_RTL_IF_SET (decl
));
1309 /* No need to do anything if decl has no rtx yet
1310 since in that case caller is setting TREE_ADDRESSABLE
1311 and a stack slot will be assigned when the rtl is made. */
1315 /* Get the declared mode for this object. */
1316 decl_mode
= (TREE_CODE (decl
) == SAVE_EXPR
? TYPE_MODE (TREE_TYPE (decl
))
1317 : DECL_MODE (decl
));
1318 /* Get the mode it's actually stored in. */
1319 promoted_mode
= GET_MODE (reg
);
1321 /* If this variable comes from an outer function, find that
1322 function's saved context. Don't use find_function_data here,
1323 because it might not be in any active function.
1324 FIXME: Is that really supposed to happen?
1325 It does in ObjC at least. */
1326 if (context
!= current_function_decl
&& context
!= inline_function_decl
)
1327 for (function
= outer_function_chain
; function
; function
= function
->outer
)
1328 if (function
->decl
== context
)
1331 /* If this is a variable-size object with a pseudo to address it,
1332 put that pseudo into the stack, if the var is nonlocal. */
1333 if (TREE_CODE (decl
) != SAVE_EXPR
&& DECL_NONLOCAL (decl
)
1334 && GET_CODE (reg
) == MEM
1335 && GET_CODE (XEXP (reg
, 0)) == REG
1336 && REGNO (XEXP (reg
, 0)) > LAST_VIRTUAL_REGISTER
)
1338 reg
= XEXP (reg
, 0);
1339 decl_mode
= promoted_mode
= GET_MODE (reg
);
1345 /* FIXME make it work for promoted modes too */
1346 && decl_mode
== promoted_mode
1347 #ifdef NON_SAVING_SETJMP
1348 && ! (NON_SAVING_SETJMP
&& current_function_calls_setjmp
)
1352 /* If we can't use ADDRESSOF, make sure we see through one we already
1354 if (! can_use_addressof
&& GET_CODE (reg
) == MEM
1355 && GET_CODE (XEXP (reg
, 0)) == ADDRESSOF
)
1356 reg
= XEXP (XEXP (reg
, 0), 0);
1358 /* Now we should have a value that resides in one or more pseudo regs. */
1360 if (GET_CODE (reg
) == REG
)
1362 /* If this variable lives in the current function and we don't need
1363 to put things in the stack for the sake of setjmp, try to keep it
1364 in a register until we know we actually need the address. */
1365 if (can_use_addressof
)
1366 gen_mem_addressof (reg
, decl
);
1368 put_reg_into_stack (function
, reg
, TREE_TYPE (decl
), promoted_mode
,
1369 decl_mode
, volatilep
, 0, usedp
, 0);
1371 else if (GET_CODE (reg
) == CONCAT
)
1373 /* A CONCAT contains two pseudos; put them both in the stack.
1374 We do it so they end up consecutive.
1375 We fixup references to the parts only after we fixup references
1376 to the whole CONCAT, lest we do double fixups for the latter
1378 enum machine_mode part_mode
= GET_MODE (XEXP (reg
, 0));
1379 tree part_type
= (*lang_hooks
.types
.type_for_mode
) (part_mode
, 0);
1380 rtx lopart
= XEXP (reg
, 0);
1381 rtx hipart
= XEXP (reg
, 1);
1382 #ifdef FRAME_GROWS_DOWNWARD
1383 /* Since part 0 should have a lower address, do it second. */
1384 put_reg_into_stack (function
, hipart
, part_type
, part_mode
,
1385 part_mode
, volatilep
, 0, 0, 0);
1386 put_reg_into_stack (function
, lopart
, part_type
, part_mode
,
1387 part_mode
, volatilep
, 0, 0, 0);
1389 put_reg_into_stack (function
, lopart
, part_type
, part_mode
,
1390 part_mode
, volatilep
, 0, 0, 0);
1391 put_reg_into_stack (function
, hipart
, part_type
, part_mode
,
1392 part_mode
, volatilep
, 0, 0, 0);
1395 /* Change the CONCAT into a combined MEM for both parts. */
1396 PUT_CODE (reg
, MEM
);
1397 MEM_ATTRS (reg
) = 0;
1399 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1400 already computed alias sets. Here we want to re-generate. */
1402 SET_DECL_RTL (decl
, NULL
);
1403 set_mem_attributes (reg
, decl
, 1);
1405 SET_DECL_RTL (decl
, reg
);
1407 /* The two parts are in memory order already.
1408 Use the lower parts address as ours. */
1409 XEXP (reg
, 0) = XEXP (XEXP (reg
, 0), 0);
1410 /* Prevent sharing of rtl that might lose. */
1411 if (GET_CODE (XEXP (reg
, 0)) == PLUS
)
1412 XEXP (reg
, 0) = copy_rtx (XEXP (reg
, 0));
1415 schedule_fixup_var_refs (function
, reg
, TREE_TYPE (decl
),
1417 schedule_fixup_var_refs (function
, lopart
, part_type
, part_mode
, 0);
1418 schedule_fixup_var_refs (function
, hipart
, part_type
, part_mode
, 0);
1425 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1426 into the stack frame of FUNCTION (0 means the current function).
1427 DECL_MODE is the machine mode of the user-level data type.
1428 PROMOTED_MODE is the machine mode of the register.
1429 VOLATILE_P is nonzero if this is for a "volatile" decl.
1430 USED_P is nonzero if this reg might have already been used in an insn. */
1433 put_reg_into_stack (function
, reg
, type
, promoted_mode
, decl_mode
, volatile_p
,
1434 original_regno
, used_p
, ht
)
1435 struct function
*function
;
1438 enum machine_mode promoted_mode
, decl_mode
;
1440 unsigned int original_regno
;
1444 struct function
*func
= function
? function
: cfun
;
1446 unsigned int regno
= original_regno
;
1449 regno
= REGNO (reg
);
1451 if (regno
< func
->x_max_parm_reg
)
1452 new = func
->x_parm_reg_stack_loc
[regno
];
1455 new = assign_stack_local_1 (decl_mode
, GET_MODE_SIZE (decl_mode
), 0, func
);
1457 PUT_CODE (reg
, MEM
);
1458 PUT_MODE (reg
, decl_mode
);
1459 XEXP (reg
, 0) = XEXP (new, 0);
1460 MEM_ATTRS (reg
) = 0;
1461 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1462 MEM_VOLATILE_P (reg
) = volatile_p
;
1464 /* If this is a memory ref that contains aggregate components,
1465 mark it as such for cse and loop optimize. If we are reusing a
1466 previously generated stack slot, then we need to copy the bit in
1467 case it was set for other reasons. For instance, it is set for
1468 __builtin_va_alist. */
1471 MEM_SET_IN_STRUCT_P (reg
,
1472 AGGREGATE_TYPE_P (type
) || MEM_IN_STRUCT_P (new));
1473 set_mem_alias_set (reg
, get_alias_set (type
));
1477 schedule_fixup_var_refs (function
, reg
, type
, promoted_mode
, ht
);
1480 /* Make sure that all refs to the variable, previously made
1481 when it was a register, are fixed up to be valid again.
1482 See function above for meaning of arguments. */
1485 schedule_fixup_var_refs (function
, reg
, type
, promoted_mode
, ht
)
1486 struct function
*function
;
1489 enum machine_mode promoted_mode
;
1492 int unsigned_p
= type
? TREE_UNSIGNED (type
) : 0;
1496 struct var_refs_queue
*temp
;
1499 = (struct var_refs_queue
*) ggc_alloc (sizeof (struct var_refs_queue
));
1500 temp
->modified
= reg
;
1501 temp
->promoted_mode
= promoted_mode
;
1502 temp
->unsignedp
= unsigned_p
;
1503 temp
->next
= function
->fixup_var_refs_queue
;
1504 function
->fixup_var_refs_queue
= temp
;
1507 /* Variable is local; fix it up now. */
1508 fixup_var_refs (reg
, promoted_mode
, unsigned_p
, reg
, ht
);
1512 fixup_var_refs (var
, promoted_mode
, unsignedp
, may_share
, ht
)
1514 enum machine_mode promoted_mode
;
1520 rtx first_insn
= get_insns ();
1521 struct sequence_stack
*stack
= seq_stack
;
1522 tree rtl_exps
= rtl_expr_chain
;
1524 /* If there's a hash table, it must record all uses of VAR. */
1529 fixup_var_refs_insns_with_hash (ht
, var
, promoted_mode
, unsignedp
,
1534 fixup_var_refs_insns (first_insn
, var
, promoted_mode
, unsignedp
,
1535 stack
== 0, may_share
);
1537 /* Scan all pending sequences too. */
1538 for (; stack
; stack
= stack
->next
)
1540 push_to_full_sequence (stack
->first
, stack
->last
);
1541 fixup_var_refs_insns (stack
->first
, var
, promoted_mode
, unsignedp
,
1542 stack
->next
!= 0, may_share
);
1543 /* Update remembered end of sequence
1544 in case we added an insn at the end. */
1545 stack
->last
= get_last_insn ();
1549 /* Scan all waiting RTL_EXPRs too. */
1550 for (pending
= rtl_exps
; pending
; pending
= TREE_CHAIN (pending
))
1552 rtx seq
= RTL_EXPR_SEQUENCE (TREE_VALUE (pending
));
1553 if (seq
!= const0_rtx
&& seq
!= 0)
1555 push_to_sequence (seq
);
1556 fixup_var_refs_insns (seq
, var
, promoted_mode
, unsignedp
, 0,
1563 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1564 some part of an insn. Return a struct fixup_replacement whose OLD
1565 value is equal to X. Allocate a new structure if no such entry exists. */
1567 static struct fixup_replacement
*
1568 find_fixup_replacement (replacements
, x
)
1569 struct fixup_replacement
**replacements
;
1572 struct fixup_replacement
*p
;
1574 /* See if we have already replaced this. */
1575 for (p
= *replacements
; p
!= 0 && ! rtx_equal_p (p
->old
, x
); p
= p
->next
)
1580 p
= (struct fixup_replacement
*) xmalloc (sizeof (struct fixup_replacement
));
1583 p
->next
= *replacements
;
1590 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1591 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1592 for the current function. MAY_SHARE is either a MEM that is not
1593 to be unshared or a list of them. */
1596 fixup_var_refs_insns (insn
, var
, promoted_mode
, unsignedp
, toplevel
, may_share
)
1599 enum machine_mode promoted_mode
;
1606 /* fixup_var_refs_insn might modify insn, so save its next
1608 rtx next
= NEXT_INSN (insn
);
1610 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1611 the three sequences they (potentially) contain, and process
1612 them recursively. The CALL_INSN itself is not interesting. */
1614 if (GET_CODE (insn
) == CALL_INSN
1615 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
1619 /* Look at the Normal call, sibling call and tail recursion
1620 sequences attached to the CALL_PLACEHOLDER. */
1621 for (i
= 0; i
< 3; i
++)
1623 rtx seq
= XEXP (PATTERN (insn
), i
);
1626 push_to_sequence (seq
);
1627 fixup_var_refs_insns (seq
, var
, promoted_mode
, unsignedp
, 0,
1629 XEXP (PATTERN (insn
), i
) = get_insns ();
1635 else if (INSN_P (insn
))
1636 fixup_var_refs_insn (insn
, var
, promoted_mode
, unsignedp
, toplevel
,
1643 /* Look up the insns which reference VAR in HT and fix them up. Other
1644 arguments are the same as fixup_var_refs_insns.
1646 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1647 because the hash table will point straight to the interesting insn
1648 (inside the CALL_PLACEHOLDER). */
1651 fixup_var_refs_insns_with_hash (ht
, var
, promoted_mode
, unsignedp
, may_share
)
1654 enum machine_mode promoted_mode
;
1658 struct insns_for_mem_entry tmp
;
1659 struct insns_for_mem_entry
*ime
;
1663 ime
= (struct insns_for_mem_entry
*) htab_find (ht
, &tmp
);
1664 for (insn_list
= ime
->insns
; insn_list
!= 0; insn_list
= XEXP (insn_list
, 1))
1665 if (INSN_P (XEXP (insn_list
, 0)))
1666 fixup_var_refs_insn (XEXP (insn_list
, 0), var
, promoted_mode
,
1667 unsignedp
, 1, may_share
);
1671 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1672 the insn under examination, VAR is the variable to fix up
1673 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1674 TOPLEVEL is nonzero if this is the main insn chain for this
1678 fixup_var_refs_insn (insn
, var
, promoted_mode
, unsignedp
, toplevel
, no_share
)
1681 enum machine_mode promoted_mode
;
1687 rtx set
, prev
, prev_set
;
1690 /* Remember the notes in case we delete the insn. */
1691 note
= REG_NOTES (insn
);
1693 /* If this is a CLOBBER of VAR, delete it.
1695 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1696 and REG_RETVAL notes too. */
1697 if (GET_CODE (PATTERN (insn
)) == CLOBBER
1698 && (XEXP (PATTERN (insn
), 0) == var
1699 || (GET_CODE (XEXP (PATTERN (insn
), 0)) == CONCAT
1700 && (XEXP (XEXP (PATTERN (insn
), 0), 0) == var
1701 || XEXP (XEXP (PATTERN (insn
), 0), 1) == var
))))
1703 if ((note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)) != 0)
1704 /* The REG_LIBCALL note will go away since we are going to
1705 turn INSN into a NOTE, so just delete the
1706 corresponding REG_RETVAL note. */
1707 remove_note (XEXP (note
, 0),
1708 find_reg_note (XEXP (note
, 0), REG_RETVAL
,
1714 /* The insn to load VAR from a home in the arglist
1715 is now a no-op. When we see it, just delete it.
1716 Similarly if this is storing VAR from a register from which
1717 it was loaded in the previous insn. This will occur
1718 when an ADDRESSOF was made for an arglist slot. */
1720 && (set
= single_set (insn
)) != 0
1721 && SET_DEST (set
) == var
1722 /* If this represents the result of an insn group,
1723 don't delete the insn. */
1724 && find_reg_note (insn
, REG_RETVAL
, NULL_RTX
) == 0
1725 && (rtx_equal_p (SET_SRC (set
), var
)
1726 || (GET_CODE (SET_SRC (set
)) == REG
1727 && (prev
= prev_nonnote_insn (insn
)) != 0
1728 && (prev_set
= single_set (prev
)) != 0
1729 && SET_DEST (prev_set
) == SET_SRC (set
)
1730 && rtx_equal_p (SET_SRC (prev_set
), var
))))
1736 struct fixup_replacement
*replacements
= 0;
1737 rtx next_insn
= NEXT_INSN (insn
);
1739 if (SMALL_REGISTER_CLASSES
)
1741 /* If the insn that copies the results of a CALL_INSN
1742 into a pseudo now references VAR, we have to use an
1743 intermediate pseudo since we want the life of the
1744 return value register to be only a single insn.
1746 If we don't use an intermediate pseudo, such things as
1747 address computations to make the address of VAR valid
1748 if it is not can be placed between the CALL_INSN and INSN.
1750 To make sure this doesn't happen, we record the destination
1751 of the CALL_INSN and see if the next insn uses both that
1754 if (call_dest
!= 0 && GET_CODE (insn
) == INSN
1755 && reg_mentioned_p (var
, PATTERN (insn
))
1756 && reg_mentioned_p (call_dest
, PATTERN (insn
)))
1758 rtx temp
= gen_reg_rtx (GET_MODE (call_dest
));
1760 emit_insn_before (gen_move_insn (temp
, call_dest
), insn
);
1762 PATTERN (insn
) = replace_rtx (PATTERN (insn
),
1766 if (GET_CODE (insn
) == CALL_INSN
1767 && GET_CODE (PATTERN (insn
)) == SET
)
1768 call_dest
= SET_DEST (PATTERN (insn
));
1769 else if (GET_CODE (insn
) == CALL_INSN
1770 && GET_CODE (PATTERN (insn
)) == PARALLEL
1771 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1772 call_dest
= SET_DEST (XVECEXP (PATTERN (insn
), 0, 0));
1777 /* See if we have to do anything to INSN now that VAR is in
1778 memory. If it needs to be loaded into a pseudo, use a single
1779 pseudo for the entire insn in case there is a MATCH_DUP
1780 between two operands. We pass a pointer to the head of
1781 a list of struct fixup_replacements. If fixup_var_refs_1
1782 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1783 it will record them in this list.
1785 If it allocated a pseudo for any replacement, we copy into
1788 fixup_var_refs_1 (var
, promoted_mode
, &PATTERN (insn
), insn
,
1789 &replacements
, no_share
);
1791 /* If this is last_parm_insn, and any instructions were output
1792 after it to fix it up, then we must set last_parm_insn to
1793 the last such instruction emitted. */
1794 if (insn
== last_parm_insn
)
1795 last_parm_insn
= PREV_INSN (next_insn
);
1797 while (replacements
)
1799 struct fixup_replacement
*next
;
1801 if (GET_CODE (replacements
->new) == REG
)
1806 /* OLD might be a (subreg (mem)). */
1807 if (GET_CODE (replacements
->old
) == SUBREG
)
1809 = fixup_memory_subreg (replacements
->old
, insn
,
1813 = fixup_stack_1 (replacements
->old
, insn
);
1815 insert_before
= insn
;
1817 /* If we are changing the mode, do a conversion.
1818 This might be wasteful, but combine.c will
1819 eliminate much of the waste. */
1821 if (GET_MODE (replacements
->new)
1822 != GET_MODE (replacements
->old
))
1825 convert_move (replacements
->new,
1826 replacements
->old
, unsignedp
);
1831 seq
= gen_move_insn (replacements
->new,
1834 emit_insn_before (seq
, insert_before
);
1837 next
= replacements
->next
;
1838 free (replacements
);
1839 replacements
= next
;
1843 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1844 But don't touch other insns referred to by reg-notes;
1845 we will get them elsewhere. */
1848 if (GET_CODE (note
) != INSN_LIST
)
1850 = walk_fixup_memory_subreg (XEXP (note
, 0), insn
,
1852 note
= XEXP (note
, 1);
1856 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1857 See if the rtx expression at *LOC in INSN needs to be changed.
1859 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1860 contain a list of original rtx's and replacements. If we find that we need
1861 to modify this insn by replacing a memory reference with a pseudo or by
1862 making a new MEM to implement a SUBREG, we consult that list to see if
1863 we have already chosen a replacement. If none has already been allocated,
1864 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1865 or the SUBREG, as appropriate, to the pseudo. */
1868 fixup_var_refs_1 (var
, promoted_mode
, loc
, insn
, replacements
, no_share
)
1870 enum machine_mode promoted_mode
;
1873 struct fixup_replacement
**replacements
;
1878 RTX_CODE code
= GET_CODE (x
);
1881 struct fixup_replacement
*replacement
;
1886 if (XEXP (x
, 0) == var
)
1888 /* Prevent sharing of rtl that might lose. */
1889 rtx sub
= copy_rtx (XEXP (var
, 0));
1891 if (! validate_change (insn
, loc
, sub
, 0))
1893 rtx y
= gen_reg_rtx (GET_MODE (sub
));
1896 /* We should be able to replace with a register or all is lost.
1897 Note that we can't use validate_change to verify this, since
1898 we're not caring for replacing all dups simultaneously. */
1899 if (! validate_replace_rtx (*loc
, y
, insn
))
1902 /* Careful! First try to recognize a direct move of the
1903 value, mimicking how things are done in gen_reload wrt
1904 PLUS. Consider what happens when insn is a conditional
1905 move instruction and addsi3 clobbers flags. */
1908 new_insn
= emit_insn (gen_rtx_SET (VOIDmode
, y
, sub
));
1912 if (recog_memoized (new_insn
) < 0)
1914 /* That failed. Fall back on force_operand and hope. */
1917 sub
= force_operand (sub
, y
);
1919 emit_insn (gen_move_insn (y
, sub
));
1925 /* Don't separate setter from user. */
1926 if (PREV_INSN (insn
) && sets_cc0_p (PREV_INSN (insn
)))
1927 insn
= PREV_INSN (insn
);
1930 emit_insn_before (seq
, insn
);
1938 /* If we already have a replacement, use it. Otherwise,
1939 try to fix up this address in case it is invalid. */
1941 replacement
= find_fixup_replacement (replacements
, var
);
1942 if (replacement
->new)
1944 *loc
= replacement
->new;
1948 *loc
= replacement
->new = x
= fixup_stack_1 (x
, insn
);
1950 /* Unless we are forcing memory to register or we changed the mode,
1951 we can leave things the way they are if the insn is valid. */
1953 INSN_CODE (insn
) = -1;
1954 if (! flag_force_mem
&& GET_MODE (x
) == promoted_mode
1955 && recog_memoized (insn
) >= 0)
1958 *loc
= replacement
->new = gen_reg_rtx (promoted_mode
);
1962 /* If X contains VAR, we need to unshare it here so that we update
1963 each occurrence separately. But all identical MEMs in one insn
1964 must be replaced with the same rtx because of the possibility of
1967 if (reg_mentioned_p (var
, x
))
1969 replacement
= find_fixup_replacement (replacements
, x
);
1970 if (replacement
->new == 0)
1971 replacement
->new = copy_most_rtx (x
, no_share
);
1973 *loc
= x
= replacement
->new;
1974 code
= GET_CODE (x
);
1991 /* Note that in some cases those types of expressions are altered
1992 by optimize_bit_field, and do not survive to get here. */
1993 if (XEXP (x
, 0) == var
1994 || (GET_CODE (XEXP (x
, 0)) == SUBREG
1995 && SUBREG_REG (XEXP (x
, 0)) == var
))
1997 /* Get TEM as a valid MEM in the mode presently in the insn.
1999 We don't worry about the possibility of MATCH_DUP here; it
2000 is highly unlikely and would be tricky to handle. */
2003 if (GET_CODE (tem
) == SUBREG
)
2005 if (GET_MODE_BITSIZE (GET_MODE (tem
))
2006 > GET_MODE_BITSIZE (GET_MODE (var
)))
2008 replacement
= find_fixup_replacement (replacements
, var
);
2009 if (replacement
->new == 0)
2010 replacement
->new = gen_reg_rtx (GET_MODE (var
));
2011 SUBREG_REG (tem
) = replacement
->new;
2013 /* The following code works only if we have a MEM, so we
2014 need to handle the subreg here. We directly substitute
2015 it assuming that a subreg must be OK here. We already
2016 scheduled a replacement to copy the mem into the
2022 tem
= fixup_memory_subreg (tem
, insn
, promoted_mode
, 0);
2025 tem
= fixup_stack_1 (tem
, insn
);
2027 /* Unless we want to load from memory, get TEM into the proper mode
2028 for an extract from memory. This can only be done if the
2029 extract is at a constant position and length. */
2031 if (! flag_force_mem
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
2032 && GET_CODE (XEXP (x
, 2)) == CONST_INT
2033 && ! mode_dependent_address_p (XEXP (tem
, 0))
2034 && ! MEM_VOLATILE_P (tem
))
2036 enum machine_mode wanted_mode
= VOIDmode
;
2037 enum machine_mode is_mode
= GET_MODE (tem
);
2038 HOST_WIDE_INT pos
= INTVAL (XEXP (x
, 2));
2040 if (GET_CODE (x
) == ZERO_EXTRACT
)
2042 enum machine_mode new_mode
2043 = mode_for_extraction (EP_extzv
, 1);
2044 if (new_mode
!= MAX_MACHINE_MODE
)
2045 wanted_mode
= new_mode
;
2047 else if (GET_CODE (x
) == SIGN_EXTRACT
)
2049 enum machine_mode new_mode
2050 = mode_for_extraction (EP_extv
, 1);
2051 if (new_mode
!= MAX_MACHINE_MODE
)
2052 wanted_mode
= new_mode
;
2055 /* If we have a narrower mode, we can do something. */
2056 if (wanted_mode
!= VOIDmode
2057 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
2059 HOST_WIDE_INT offset
= pos
/ BITS_PER_UNIT
;
2060 rtx old_pos
= XEXP (x
, 2);
2063 /* If the bytes and bits are counted differently, we
2064 must adjust the offset. */
2065 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
2066 offset
= (GET_MODE_SIZE (is_mode
)
2067 - GET_MODE_SIZE (wanted_mode
) - offset
);
2069 pos
%= GET_MODE_BITSIZE (wanted_mode
);
2071 newmem
= adjust_address_nv (tem
, wanted_mode
, offset
);
2073 /* Make the change and see if the insn remains valid. */
2074 INSN_CODE (insn
) = -1;
2075 XEXP (x
, 0) = newmem
;
2076 XEXP (x
, 2) = GEN_INT (pos
);
2078 if (recog_memoized (insn
) >= 0)
2081 /* Otherwise, restore old position. XEXP (x, 0) will be
2083 XEXP (x
, 2) = old_pos
;
2087 /* If we get here, the bitfield extract insn can't accept a memory
2088 reference. Copy the input into a register. */
2090 tem1
= gen_reg_rtx (GET_MODE (tem
));
2091 emit_insn_before (gen_move_insn (tem1
, tem
), insn
);
2098 if (SUBREG_REG (x
) == var
)
2100 /* If this is a special SUBREG made because VAR was promoted
2101 from a wider mode, replace it with VAR and call ourself
2102 recursively, this time saying that the object previously
2103 had its current mode (by virtue of the SUBREG). */
2105 if (SUBREG_PROMOTED_VAR_P (x
))
2108 fixup_var_refs_1 (var
, GET_MODE (var
), loc
, insn
, replacements
,
2113 /* If this SUBREG makes VAR wider, it has become a paradoxical
2114 SUBREG with VAR in memory, but these aren't allowed at this
2115 stage of the compilation. So load VAR into a pseudo and take
2116 a SUBREG of that pseudo. */
2117 if (GET_MODE_SIZE (GET_MODE (x
)) > GET_MODE_SIZE (GET_MODE (var
)))
2119 replacement
= find_fixup_replacement (replacements
, var
);
2120 if (replacement
->new == 0)
2121 replacement
->new = gen_reg_rtx (promoted_mode
);
2122 SUBREG_REG (x
) = replacement
->new;
2126 /* See if we have already found a replacement for this SUBREG.
2127 If so, use it. Otherwise, make a MEM and see if the insn
2128 is recognized. If not, or if we should force MEM into a register,
2129 make a pseudo for this SUBREG. */
2130 replacement
= find_fixup_replacement (replacements
, x
);
2131 if (replacement
->new)
2133 *loc
= replacement
->new;
2137 replacement
->new = *loc
= fixup_memory_subreg (x
, insn
,
2140 INSN_CODE (insn
) = -1;
2141 if (! flag_force_mem
&& recog_memoized (insn
) >= 0)
2144 *loc
= replacement
->new = gen_reg_rtx (GET_MODE (x
));
2150 /* First do special simplification of bit-field references. */
2151 if (GET_CODE (SET_DEST (x
)) == SIGN_EXTRACT
2152 || GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
)
2153 optimize_bit_field (x
, insn
, 0);
2154 if (GET_CODE (SET_SRC (x
)) == SIGN_EXTRACT
2155 || GET_CODE (SET_SRC (x
)) == ZERO_EXTRACT
)
2156 optimize_bit_field (x
, insn
, 0);
2158 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2159 into a register and then store it back out. */
2160 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
2161 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
2162 && SUBREG_REG (XEXP (SET_DEST (x
), 0)) == var
2163 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x
), 0)))
2164 > GET_MODE_SIZE (GET_MODE (var
))))
2166 replacement
= find_fixup_replacement (replacements
, var
);
2167 if (replacement
->new == 0)
2168 replacement
->new = gen_reg_rtx (GET_MODE (var
));
2170 SUBREG_REG (XEXP (SET_DEST (x
), 0)) = replacement
->new;
2171 emit_insn_after (gen_move_insn (var
, replacement
->new), insn
);
2174 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2175 insn into a pseudo and store the low part of the pseudo into VAR. */
2176 if (GET_CODE (SET_DEST (x
)) == SUBREG
2177 && SUBREG_REG (SET_DEST (x
)) == var
2178 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
2179 > GET_MODE_SIZE (GET_MODE (var
))))
2181 SET_DEST (x
) = tem
= gen_reg_rtx (GET_MODE (SET_DEST (x
)));
2182 emit_insn_after (gen_move_insn (var
, gen_lowpart (GET_MODE (var
),
2189 rtx dest
= SET_DEST (x
);
2190 rtx src
= SET_SRC (x
);
2191 rtx outerdest
= dest
;
2193 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
2194 || GET_CODE (dest
) == SIGN_EXTRACT
2195 || GET_CODE (dest
) == ZERO_EXTRACT
)
2196 dest
= XEXP (dest
, 0);
2198 if (GET_CODE (src
) == SUBREG
)
2199 src
= SUBREG_REG (src
);
2201 /* If VAR does not appear at the top level of the SET
2202 just scan the lower levels of the tree. */
2204 if (src
!= var
&& dest
!= var
)
2207 /* We will need to rerecognize this insn. */
2208 INSN_CODE (insn
) = -1;
2210 if (GET_CODE (outerdest
) == ZERO_EXTRACT
&& dest
== var
2211 && mode_for_extraction (EP_insv
, -1) != MAX_MACHINE_MODE
)
2213 /* Since this case will return, ensure we fixup all the
2215 fixup_var_refs_1 (var
, promoted_mode
, &XEXP (outerdest
, 1),
2216 insn
, replacements
, no_share
);
2217 fixup_var_refs_1 (var
, promoted_mode
, &XEXP (outerdest
, 2),
2218 insn
, replacements
, no_share
);
2219 fixup_var_refs_1 (var
, promoted_mode
, &SET_SRC (x
),
2220 insn
, replacements
, no_share
);
2222 tem
= XEXP (outerdest
, 0);
2224 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2225 that may appear inside a ZERO_EXTRACT.
2226 This was legitimate when the MEM was a REG. */
2227 if (GET_CODE (tem
) == SUBREG
2228 && SUBREG_REG (tem
) == var
)
2229 tem
= fixup_memory_subreg (tem
, insn
, promoted_mode
, 0);
2231 tem
= fixup_stack_1 (tem
, insn
);
2233 if (GET_CODE (XEXP (outerdest
, 1)) == CONST_INT
2234 && GET_CODE (XEXP (outerdest
, 2)) == CONST_INT
2235 && ! mode_dependent_address_p (XEXP (tem
, 0))
2236 && ! MEM_VOLATILE_P (tem
))
2238 enum machine_mode wanted_mode
;
2239 enum machine_mode is_mode
= GET_MODE (tem
);
2240 HOST_WIDE_INT pos
= INTVAL (XEXP (outerdest
, 2));
2242 wanted_mode
= mode_for_extraction (EP_insv
, 0);
2244 /* If we have a narrower mode, we can do something. */
2245 if (GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
2247 HOST_WIDE_INT offset
= pos
/ BITS_PER_UNIT
;
2248 rtx old_pos
= XEXP (outerdest
, 2);
2251 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
2252 offset
= (GET_MODE_SIZE (is_mode
)
2253 - GET_MODE_SIZE (wanted_mode
) - offset
);
2255 pos
%= GET_MODE_BITSIZE (wanted_mode
);
2257 newmem
= adjust_address_nv (tem
, wanted_mode
, offset
);
2259 /* Make the change and see if the insn remains valid. */
2260 INSN_CODE (insn
) = -1;
2261 XEXP (outerdest
, 0) = newmem
;
2262 XEXP (outerdest
, 2) = GEN_INT (pos
);
2264 if (recog_memoized (insn
) >= 0)
2267 /* Otherwise, restore old position. XEXP (x, 0) will be
2269 XEXP (outerdest
, 2) = old_pos
;
2273 /* If we get here, the bit-field store doesn't allow memory
2274 or isn't located at a constant position. Load the value into
2275 a register, do the store, and put it back into memory. */
2277 tem1
= gen_reg_rtx (GET_MODE (tem
));
2278 emit_insn_before (gen_move_insn (tem1
, tem
), insn
);
2279 emit_insn_after (gen_move_insn (tem
, tem1
), insn
);
2280 XEXP (outerdest
, 0) = tem1
;
2284 /* STRICT_LOW_PART is a no-op on memory references
2285 and it can cause combinations to be unrecognizable,
2288 if (dest
== var
&& GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
)
2289 SET_DEST (x
) = XEXP (SET_DEST (x
), 0);
2291 /* A valid insn to copy VAR into or out of a register
2292 must be left alone, to avoid an infinite loop here.
2293 If the reference to VAR is by a subreg, fix that up,
2294 since SUBREG is not valid for a memref.
2295 Also fix up the address of the stack slot.
2297 Note that we must not try to recognize the insn until
2298 after we know that we have valid addresses and no
2299 (subreg (mem ...) ...) constructs, since these interfere
2300 with determining the validity of the insn. */
2302 if ((SET_SRC (x
) == var
2303 || (GET_CODE (SET_SRC (x
)) == SUBREG
2304 && SUBREG_REG (SET_SRC (x
)) == var
))
2305 && (GET_CODE (SET_DEST (x
)) == REG
2306 || (GET_CODE (SET_DEST (x
)) == SUBREG
2307 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
))
2308 && GET_MODE (var
) == promoted_mode
2309 && x
== single_set (insn
))
2313 if (GET_CODE (SET_SRC (x
)) == SUBREG
2314 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x
)))
2315 > GET_MODE_SIZE (GET_MODE (var
))))
2317 /* This (subreg VAR) is now a paradoxical subreg. We need
2318 to replace VAR instead of the subreg. */
2319 replacement
= find_fixup_replacement (replacements
, var
);
2320 if (replacement
->new == NULL_RTX
)
2321 replacement
->new = gen_reg_rtx (GET_MODE (var
));
2322 SUBREG_REG (SET_SRC (x
)) = replacement
->new;
2326 replacement
= find_fixup_replacement (replacements
, SET_SRC (x
));
2327 if (replacement
->new)
2328 SET_SRC (x
) = replacement
->new;
2329 else if (GET_CODE (SET_SRC (x
)) == SUBREG
)
2330 SET_SRC (x
) = replacement
->new
2331 = fixup_memory_subreg (SET_SRC (x
), insn
, promoted_mode
,
2334 SET_SRC (x
) = replacement
->new
2335 = fixup_stack_1 (SET_SRC (x
), insn
);
2338 if (recog_memoized (insn
) >= 0)
2341 /* INSN is not valid, but we know that we want to
2342 copy SET_SRC (x) to SET_DEST (x) in some way. So
2343 we generate the move and see whether it requires more
2344 than one insn. If it does, we emit those insns and
2345 delete INSN. Otherwise, we can just replace the pattern
2346 of INSN; we have already verified above that INSN has
2347 no other function that to do X. */
2349 pat
= gen_move_insn (SET_DEST (x
), SET_SRC (x
));
2350 if (NEXT_INSN (pat
) != NULL_RTX
)
2352 last
= emit_insn_before (pat
, insn
);
2354 /* INSN might have REG_RETVAL or other important notes, so
2355 we need to store the pattern of the last insn in the
2356 sequence into INSN similarly to the normal case. LAST
2357 should not have REG_NOTES, but we allow them if INSN has
2359 if (REG_NOTES (last
) && REG_NOTES (insn
))
2361 if (REG_NOTES (last
))
2362 REG_NOTES (insn
) = REG_NOTES (last
);
2363 PATTERN (insn
) = PATTERN (last
);
2368 PATTERN (insn
) = PATTERN (pat
);
2373 if ((SET_DEST (x
) == var
2374 || (GET_CODE (SET_DEST (x
)) == SUBREG
2375 && SUBREG_REG (SET_DEST (x
)) == var
))
2376 && (GET_CODE (SET_SRC (x
)) == REG
2377 || (GET_CODE (SET_SRC (x
)) == SUBREG
2378 && GET_CODE (SUBREG_REG (SET_SRC (x
))) == REG
))
2379 && GET_MODE (var
) == promoted_mode
2380 && x
== single_set (insn
))
2384 if (GET_CODE (SET_DEST (x
)) == SUBREG
)
2385 SET_DEST (x
) = fixup_memory_subreg (SET_DEST (x
), insn
,
2388 SET_DEST (x
) = fixup_stack_1 (SET_DEST (x
), insn
);
2390 if (recog_memoized (insn
) >= 0)
2393 pat
= gen_move_insn (SET_DEST (x
), SET_SRC (x
));
2394 if (NEXT_INSN (pat
) != NULL_RTX
)
2396 last
= emit_insn_before (pat
, insn
);
2398 /* INSN might have REG_RETVAL or other important notes, so
2399 we need to store the pattern of the last insn in the
2400 sequence into INSN similarly to the normal case. LAST
2401 should not have REG_NOTES, but we allow them if INSN has
2403 if (REG_NOTES (last
) && REG_NOTES (insn
))
2405 if (REG_NOTES (last
))
2406 REG_NOTES (insn
) = REG_NOTES (last
);
2407 PATTERN (insn
) = PATTERN (last
);
2412 PATTERN (insn
) = PATTERN (pat
);
2417 /* Otherwise, storing into VAR must be handled specially
2418 by storing into a temporary and copying that into VAR
2419 with a new insn after this one. Note that this case
2420 will be used when storing into a promoted scalar since
2421 the insn will now have different modes on the input
2422 and output and hence will be invalid (except for the case
2423 of setting it to a constant, which does not need any
2424 change if it is valid). We generate extra code in that case,
2425 but combine.c will eliminate it. */
2430 rtx fixeddest
= SET_DEST (x
);
2431 enum machine_mode temp_mode
;
2433 /* STRICT_LOW_PART can be discarded, around a MEM. */
2434 if (GET_CODE (fixeddest
) == STRICT_LOW_PART
)
2435 fixeddest
= XEXP (fixeddest
, 0);
2436 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2437 if (GET_CODE (fixeddest
) == SUBREG
)
2439 fixeddest
= fixup_memory_subreg (fixeddest
, insn
,
2441 temp_mode
= GET_MODE (fixeddest
);
2445 fixeddest
= fixup_stack_1 (fixeddest
, insn
);
2446 temp_mode
= promoted_mode
;
2449 temp
= gen_reg_rtx (temp_mode
);
2451 emit_insn_after (gen_move_insn (fixeddest
,
2452 gen_lowpart (GET_MODE (fixeddest
),
2456 SET_DEST (x
) = temp
;
2464 /* Nothing special about this RTX; fix its operands. */
2466 fmt
= GET_RTX_FORMAT (code
);
2467 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2470 fixup_var_refs_1 (var
, promoted_mode
, &XEXP (x
, i
), insn
, replacements
,
2472 else if (fmt
[i
] == 'E')
2475 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2476 fixup_var_refs_1 (var
, promoted_mode
, &XVECEXP (x
, i
, j
),
2477 insn
, replacements
, no_share
);
2482 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2483 The REG was placed on the stack, so X now has the form (SUBREG:m1
2486 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2487 must be emitted to compute NEWADDR, put them before INSN.
2489 UNCRITICAL nonzero means accept paradoxical subregs.
2490 This is used for subregs found inside REG_NOTES. */
2493 fixup_memory_subreg (x
, insn
, promoted_mode
, uncritical
)
2496 enum machine_mode promoted_mode
;
2500 rtx mem
= SUBREG_REG (x
);
2501 rtx addr
= XEXP (mem
, 0);
2502 enum machine_mode mode
= GET_MODE (x
);
2505 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2506 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (mem
)) && ! uncritical
)
2509 offset
= SUBREG_BYTE (x
);
2510 if (BYTES_BIG_ENDIAN
)
2511 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2512 the offset so that it points to the right location within the
2514 offset
-= (GET_MODE_SIZE (promoted_mode
) - GET_MODE_SIZE (GET_MODE (mem
)));
2516 if (!flag_force_addr
2517 && memory_address_p (mode
, plus_constant (addr
, offset
)))
2518 /* Shortcut if no insns need be emitted. */
2519 return adjust_address (mem
, mode
, offset
);
2522 result
= adjust_address (mem
, mode
, offset
);
2526 emit_insn_before (seq
, insn
);
2530 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2531 Replace subexpressions of X in place.
2532 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2533 Otherwise return X, with its contents possibly altered.
2535 INSN, PROMOTED_MODE and UNCRITICAL are as for
2536 fixup_memory_subreg. */
2539 walk_fixup_memory_subreg (x
, insn
, promoted_mode
, uncritical
)
2542 enum machine_mode promoted_mode
;
2552 code
= GET_CODE (x
);
2554 if (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == MEM
)
2555 return fixup_memory_subreg (x
, insn
, promoted_mode
, uncritical
);
2557 /* Nothing special about this RTX; fix its operands. */
2559 fmt
= GET_RTX_FORMAT (code
);
2560 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2563 XEXP (x
, i
) = walk_fixup_memory_subreg (XEXP (x
, i
), insn
,
2564 promoted_mode
, uncritical
);
2565 else if (fmt
[i
] == 'E')
2568 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2570 = walk_fixup_memory_subreg (XVECEXP (x
, i
, j
), insn
,
2571 promoted_mode
, uncritical
);
2577 /* For each memory ref within X, if it refers to a stack slot
2578 with an out of range displacement, put the address in a temp register
2579 (emitting new insns before INSN to load these registers)
2580 and alter the memory ref to use that register.
2581 Replace each such MEM rtx with a copy, to avoid clobberage. */
2584 fixup_stack_1 (x
, insn
)
2589 RTX_CODE code
= GET_CODE (x
);
2594 rtx ad
= XEXP (x
, 0);
2595 /* If we have address of a stack slot but it's not valid
2596 (displacement is too large), compute the sum in a register. */
2597 if (GET_CODE (ad
) == PLUS
2598 && GET_CODE (XEXP (ad
, 0)) == REG
2599 && ((REGNO (XEXP (ad
, 0)) >= FIRST_VIRTUAL_REGISTER
2600 && REGNO (XEXP (ad
, 0)) <= LAST_VIRTUAL_REGISTER
)
2601 || REGNO (XEXP (ad
, 0)) == FRAME_POINTER_REGNUM
2602 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2603 || REGNO (XEXP (ad
, 0)) == HARD_FRAME_POINTER_REGNUM
2605 || REGNO (XEXP (ad
, 0)) == STACK_POINTER_REGNUM
2606 || REGNO (XEXP (ad
, 0)) == ARG_POINTER_REGNUM
2607 || XEXP (ad
, 0) == current_function_internal_arg_pointer
)
2608 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
)
2611 if (memory_address_p (GET_MODE (x
), ad
))
2615 temp
= copy_to_reg (ad
);
2618 emit_insn_before (seq
, insn
);
2619 return replace_equiv_address (x
, temp
);
2624 fmt
= GET_RTX_FORMAT (code
);
2625 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2628 XEXP (x
, i
) = fixup_stack_1 (XEXP (x
, i
), insn
);
2629 else if (fmt
[i
] == 'E')
2632 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2633 XVECEXP (x
, i
, j
) = fixup_stack_1 (XVECEXP (x
, i
, j
), insn
);
2639 /* Optimization: a bit-field instruction whose field
2640 happens to be a byte or halfword in memory
2641 can be changed to a move instruction.
2643 We call here when INSN is an insn to examine or store into a bit-field.
2644 BODY is the SET-rtx to be altered.
2646 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2647 (Currently this is called only from function.c, and EQUIV_MEM
2651 optimize_bit_field (body
, insn
, equiv_mem
)
2659 enum machine_mode mode
;
2661 if (GET_CODE (SET_DEST (body
)) == SIGN_EXTRACT
2662 || GET_CODE (SET_DEST (body
)) == ZERO_EXTRACT
)
2663 bitfield
= SET_DEST (body
), destflag
= 1;
2665 bitfield
= SET_SRC (body
), destflag
= 0;
2667 /* First check that the field being stored has constant size and position
2668 and is in fact a byte or halfword suitably aligned. */
2670 if (GET_CODE (XEXP (bitfield
, 1)) == CONST_INT
2671 && GET_CODE (XEXP (bitfield
, 2)) == CONST_INT
2672 && ((mode
= mode_for_size (INTVAL (XEXP (bitfield
, 1)), MODE_INT
, 1))
2674 && INTVAL (XEXP (bitfield
, 2)) % INTVAL (XEXP (bitfield
, 1)) == 0)
2678 /* Now check that the containing word is memory, not a register,
2679 and that it is safe to change the machine mode. */
2681 if (GET_CODE (XEXP (bitfield
, 0)) == MEM
)
2682 memref
= XEXP (bitfield
, 0);
2683 else if (GET_CODE (XEXP (bitfield
, 0)) == REG
2685 memref
= equiv_mem
[REGNO (XEXP (bitfield
, 0))];
2686 else if (GET_CODE (XEXP (bitfield
, 0)) == SUBREG
2687 && GET_CODE (SUBREG_REG (XEXP (bitfield
, 0))) == MEM
)
2688 memref
= SUBREG_REG (XEXP (bitfield
, 0));
2689 else if (GET_CODE (XEXP (bitfield
, 0)) == SUBREG
2691 && GET_CODE (SUBREG_REG (XEXP (bitfield
, 0))) == REG
)
2692 memref
= equiv_mem
[REGNO (SUBREG_REG (XEXP (bitfield
, 0)))];
2695 && ! mode_dependent_address_p (XEXP (memref
, 0))
2696 && ! MEM_VOLATILE_P (memref
))
2698 /* Now adjust the address, first for any subreg'ing
2699 that we are now getting rid of,
2700 and then for which byte of the word is wanted. */
2702 HOST_WIDE_INT offset
= INTVAL (XEXP (bitfield
, 2));
2705 /* Adjust OFFSET to count bits from low-address byte. */
2706 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
2707 offset
= (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield
, 0)))
2708 - offset
- INTVAL (XEXP (bitfield
, 1)));
2710 /* Adjust OFFSET to count bytes from low-address byte. */
2711 offset
/= BITS_PER_UNIT
;
2712 if (GET_CODE (XEXP (bitfield
, 0)) == SUBREG
)
2714 offset
+= (SUBREG_BYTE (XEXP (bitfield
, 0))
2715 / UNITS_PER_WORD
) * UNITS_PER_WORD
;
2716 if (BYTES_BIG_ENDIAN
)
2717 offset
-= (MIN (UNITS_PER_WORD
,
2718 GET_MODE_SIZE (GET_MODE (XEXP (bitfield
, 0))))
2719 - MIN (UNITS_PER_WORD
,
2720 GET_MODE_SIZE (GET_MODE (memref
))));
2724 memref
= adjust_address (memref
, mode
, offset
);
2725 insns
= get_insns ();
2727 emit_insn_before (insns
, insn
);
2729 /* Store this memory reference where
2730 we found the bit field reference. */
2734 validate_change (insn
, &SET_DEST (body
), memref
, 1);
2735 if (! CONSTANT_ADDRESS_P (SET_SRC (body
)))
2737 rtx src
= SET_SRC (body
);
2738 while (GET_CODE (src
) == SUBREG
2739 && SUBREG_BYTE (src
) == 0)
2740 src
= SUBREG_REG (src
);
2741 if (GET_MODE (src
) != GET_MODE (memref
))
2742 src
= gen_lowpart (GET_MODE (memref
), SET_SRC (body
));
2743 validate_change (insn
, &SET_SRC (body
), src
, 1);
2745 else if (GET_MODE (SET_SRC (body
)) != VOIDmode
2746 && GET_MODE (SET_SRC (body
)) != GET_MODE (memref
))
2747 /* This shouldn't happen because anything that didn't have
2748 one of these modes should have got converted explicitly
2749 and then referenced through a subreg.
2750 This is so because the original bit-field was
2751 handled by agg_mode and so its tree structure had
2752 the same mode that memref now has. */
2757 rtx dest
= SET_DEST (body
);
2759 while (GET_CODE (dest
) == SUBREG
2760 && SUBREG_BYTE (dest
) == 0
2761 && (GET_MODE_CLASS (GET_MODE (dest
))
2762 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest
))))
2763 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
2765 dest
= SUBREG_REG (dest
);
2767 validate_change (insn
, &SET_DEST (body
), dest
, 1);
2769 if (GET_MODE (dest
) == GET_MODE (memref
))
2770 validate_change (insn
, &SET_SRC (body
), memref
, 1);
2773 /* Convert the mem ref to the destination mode. */
2774 rtx newreg
= gen_reg_rtx (GET_MODE (dest
));
2777 convert_move (newreg
, memref
,
2778 GET_CODE (SET_SRC (body
)) == ZERO_EXTRACT
);
2782 validate_change (insn
, &SET_SRC (body
), newreg
, 1);
2786 /* See if we can convert this extraction or insertion into
2787 a simple move insn. We might not be able to do so if this
2788 was, for example, part of a PARALLEL.
2790 If we succeed, write out any needed conversions. If we fail,
2791 it is hard to guess why we failed, so don't do anything
2792 special; just let the optimization be suppressed. */
2794 if (apply_change_group () && seq
)
2795 emit_insn_before (seq
, insn
);
2800 /* These routines are responsible for converting virtual register references
2801 to the actual hard register references once RTL generation is complete.
2803 The following four variables are used for communication between the
2804 routines. They contain the offsets of the virtual registers from their
2805 respective hard registers. */
2807 static int in_arg_offset
;
2808 static int var_offset
;
2809 static int dynamic_offset
;
2810 static int out_arg_offset
;
2811 static int cfa_offset
;
2813 /* In most machines, the stack pointer register is equivalent to the bottom
2816 #ifndef STACK_POINTER_OFFSET
2817 #define STACK_POINTER_OFFSET 0
2820 /* If not defined, pick an appropriate default for the offset of dynamically
2821 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2822 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2824 #ifndef STACK_DYNAMIC_OFFSET
2826 /* The bottom of the stack points to the actual arguments. If
2827 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2828 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2829 stack space for register parameters is not pushed by the caller, but
2830 rather part of the fixed stack areas and hence not included in
2831 `current_function_outgoing_args_size'. Nevertheless, we must allow
2832 for it when allocating stack dynamic objects. */
2834 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2835 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2836 ((ACCUMULATE_OUTGOING_ARGS \
2837 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2838 + (STACK_POINTER_OFFSET)) \
2841 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2842 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2843 + (STACK_POINTER_OFFSET))
2847 /* On most machines, the CFA coincides with the first incoming parm. */
2849 #ifndef ARG_POINTER_CFA_OFFSET
2850 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2853 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had its
2854 address taken. DECL is the decl or SAVE_EXPR for the object stored in the
2855 register, for later use if we do need to force REG into the stack. REG is
2856 overwritten by the MEM like in put_reg_into_stack. */
2859 gen_mem_addressof (reg
, decl
)
2863 rtx r
= gen_rtx_ADDRESSOF (Pmode
, gen_reg_rtx (GET_MODE (reg
)),
2866 /* Calculate this before we start messing with decl's RTL. */
2867 HOST_WIDE_INT set
= decl
? get_alias_set (decl
) : 0;
2869 /* If the original REG was a user-variable, then so is the REG whose
2870 address is being taken. Likewise for unchanging. */
2871 REG_USERVAR_P (XEXP (r
, 0)) = REG_USERVAR_P (reg
);
2872 RTX_UNCHANGING_P (XEXP (r
, 0)) = RTX_UNCHANGING_P (reg
);
2874 PUT_CODE (reg
, MEM
);
2875 MEM_ATTRS (reg
) = 0;
2880 tree type
= TREE_TYPE (decl
);
2881 enum machine_mode decl_mode
2882 = (DECL_P (decl
) ? DECL_MODE (decl
) : TYPE_MODE (TREE_TYPE (decl
)));
2883 rtx decl_rtl
= (TREE_CODE (decl
) == SAVE_EXPR
? SAVE_EXPR_RTL (decl
)
2884 : DECL_RTL_IF_SET (decl
));
2886 PUT_MODE (reg
, decl_mode
);
2888 /* Clear DECL_RTL momentarily so functions below will work
2889 properly, then set it again. */
2890 if (DECL_P (decl
) && decl_rtl
== reg
)
2891 SET_DECL_RTL (decl
, 0);
2893 set_mem_attributes (reg
, decl
, 1);
2894 set_mem_alias_set (reg
, set
);
2896 if (DECL_P (decl
) && decl_rtl
== reg
)
2897 SET_DECL_RTL (decl
, reg
);
2899 if (TREE_USED (decl
) || (DECL_P (decl
) && DECL_INITIAL (decl
) != 0))
2900 fixup_var_refs (reg
, GET_MODE (reg
), TREE_UNSIGNED (type
), reg
, 0);
2903 fixup_var_refs (reg
, GET_MODE (reg
), 0, reg
, 0);
2908 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2911 flush_addressof (decl
)
2914 if ((TREE_CODE (decl
) == PARM_DECL
|| TREE_CODE (decl
) == VAR_DECL
)
2915 && DECL_RTL (decl
) != 0
2916 && GET_CODE (DECL_RTL (decl
)) == MEM
2917 && GET_CODE (XEXP (DECL_RTL (decl
), 0)) == ADDRESSOF
2918 && GET_CODE (XEXP (XEXP (DECL_RTL (decl
), 0), 0)) == REG
)
2919 put_addressof_into_stack (XEXP (DECL_RTL (decl
), 0), 0);
2922 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2925 put_addressof_into_stack (r
, ht
)
2930 int volatile_p
, used_p
;
2932 rtx reg
= XEXP (r
, 0);
2934 if (GET_CODE (reg
) != REG
)
2937 decl
= ADDRESSOF_DECL (r
);
2940 type
= TREE_TYPE (decl
);
2941 volatile_p
= (TREE_CODE (decl
) != SAVE_EXPR
2942 && TREE_THIS_VOLATILE (decl
));
2943 used_p
= (TREE_USED (decl
)
2944 || (DECL_P (decl
) && DECL_INITIAL (decl
) != 0));
2953 put_reg_into_stack (0, reg
, type
, GET_MODE (reg
), GET_MODE (reg
),
2954 volatile_p
, ADDRESSOF_REGNO (r
), used_p
, ht
);
2957 /* List of replacements made below in purge_addressof_1 when creating
2958 bitfield insertions. */
2959 static rtx purge_bitfield_addressof_replacements
;
2961 /* List of replacements made below in purge_addressof_1 for patterns
2962 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2963 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2964 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2965 enough in complex cases, e.g. when some field values can be
2966 extracted by usage MEM with narrower mode. */
2967 static rtx purge_addressof_replacements
;
2969 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2970 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2971 the stack. If the function returns FALSE then the replacement could not
2975 purge_addressof_1 (loc
, insn
, force
, store
, ht
)
2987 /* Re-start here to avoid recursion in common cases. */
2994 code
= GET_CODE (x
);
2996 /* If we don't return in any of the cases below, we will recurse inside
2997 the RTX, which will normally result in any ADDRESSOF being forced into
3001 result
= purge_addressof_1 (&SET_DEST (x
), insn
, force
, 1, ht
);
3002 result
&= purge_addressof_1 (&SET_SRC (x
), insn
, force
, 0, ht
);
3005 else if (code
== ADDRESSOF
)
3009 if (GET_CODE (XEXP (x
, 0)) != MEM
)
3010 put_addressof_into_stack (x
, ht
);
3012 /* We must create a copy of the rtx because it was created by
3013 overwriting a REG rtx which is always shared. */
3014 sub
= copy_rtx (XEXP (XEXP (x
, 0), 0));
3015 if (validate_change (insn
, loc
, sub
, 0)
3016 || validate_replace_rtx (x
, sub
, insn
))
3020 sub
= force_operand (sub
, NULL_RTX
);
3021 if (! validate_change (insn
, loc
, sub
, 0)
3022 && ! validate_replace_rtx (x
, sub
, insn
))
3025 insns
= get_insns ();
3027 emit_insn_before (insns
, insn
);
3031 else if (code
== MEM
&& GET_CODE (XEXP (x
, 0)) == ADDRESSOF
&& ! force
)
3033 rtx sub
= XEXP (XEXP (x
, 0), 0);
3035 if (GET_CODE (sub
) == MEM
)
3036 sub
= adjust_address_nv (sub
, GET_MODE (x
), 0);
3037 else if (GET_CODE (sub
) == REG
3038 && (MEM_VOLATILE_P (x
) || GET_MODE (x
) == BLKmode
))
3040 else if (GET_CODE (sub
) == REG
&& GET_MODE (x
) != GET_MODE (sub
))
3042 int size_x
, size_sub
;
3046 /* When processing REG_NOTES look at the list of
3047 replacements done on the insn to find the register that X
3051 for (tem
= purge_bitfield_addressof_replacements
;
3053 tem
= XEXP (XEXP (tem
, 1), 1))
3054 if (rtx_equal_p (x
, XEXP (tem
, 0)))
3056 *loc
= XEXP (XEXP (tem
, 1), 0);
3060 /* See comment for purge_addressof_replacements. */
3061 for (tem
= purge_addressof_replacements
;
3063 tem
= XEXP (XEXP (tem
, 1), 1))
3064 if (rtx_equal_p (XEXP (x
, 0), XEXP (tem
, 0)))
3066 rtx z
= XEXP (XEXP (tem
, 1), 0);
3068 if (GET_MODE (x
) == GET_MODE (z
)
3069 || (GET_CODE (XEXP (XEXP (tem
, 1), 0)) != REG
3070 && GET_CODE (XEXP (XEXP (tem
, 1), 0)) != SUBREG
))
3073 /* It can happen that the note may speak of things
3074 in a wider (or just different) mode than the
3075 code did. This is especially true of
3078 if (GET_CODE (z
) == SUBREG
&& SUBREG_BYTE (z
) == 0)
3081 if (GET_MODE_SIZE (GET_MODE (x
)) > UNITS_PER_WORD
3082 && (GET_MODE_SIZE (GET_MODE (x
))
3083 > GET_MODE_SIZE (GET_MODE (z
))))
3085 /* This can occur as a result in invalid
3086 pointer casts, e.g. float f; ...
3087 *(long long int *)&f.
3088 ??? We could emit a warning here, but
3089 without a line number that wouldn't be
3091 z
= gen_rtx_SUBREG (GET_MODE (x
), z
, 0);
3094 z
= gen_lowpart (GET_MODE (x
), z
);
3100 /* Sometimes we may not be able to find the replacement. For
3101 example when the original insn was a MEM in a wider mode,
3102 and the note is part of a sign extension of a narrowed
3103 version of that MEM. Gcc testcase compile/990829-1.c can
3104 generate an example of this situation. Rather than complain
3105 we return false, which will prompt our caller to remove the
3110 size_x
= GET_MODE_BITSIZE (GET_MODE (x
));
3111 size_sub
= GET_MODE_BITSIZE (GET_MODE (sub
));
3113 /* Don't even consider working with paradoxical subregs,
3114 or the moral equivalent seen here. */
3115 if (size_x
<= size_sub
3116 && int_mode_for_mode (GET_MODE (sub
)) != BLKmode
)
3118 /* Do a bitfield insertion to mirror what would happen
3125 rtx p
= PREV_INSN (insn
);
3128 val
= gen_reg_rtx (GET_MODE (x
));
3129 if (! validate_change (insn
, loc
, val
, 0))
3131 /* Discard the current sequence and put the
3132 ADDRESSOF on stack. */
3138 emit_insn_before (seq
, insn
);
3139 compute_insns_for_mem (p
? NEXT_INSN (p
) : get_insns (),
3143 store_bit_field (sub
, size_x
, 0, GET_MODE (x
),
3144 val
, GET_MODE_SIZE (GET_MODE (sub
)));
3146 /* Make sure to unshare any shared rtl that store_bit_field
3147 might have created. */
3148 unshare_all_rtl_again (get_insns ());
3152 p
= emit_insn_after (seq
, insn
);
3153 if (NEXT_INSN (insn
))
3154 compute_insns_for_mem (NEXT_INSN (insn
),
3155 p
? NEXT_INSN (p
) : NULL_RTX
,
3160 rtx p
= PREV_INSN (insn
);
3163 val
= extract_bit_field (sub
, size_x
, 0, 1, NULL_RTX
,
3164 GET_MODE (x
), GET_MODE (x
),
3165 GET_MODE_SIZE (GET_MODE (sub
)));
3167 if (! validate_change (insn
, loc
, val
, 0))
3169 /* Discard the current sequence and put the
3170 ADDRESSOF on stack. */
3177 emit_insn_before (seq
, insn
);
3178 compute_insns_for_mem (p
? NEXT_INSN (p
) : get_insns (),
3182 /* Remember the replacement so that the same one can be done
3183 on the REG_NOTES. */
3184 purge_bitfield_addressof_replacements
3185 = gen_rtx_EXPR_LIST (VOIDmode
, x
,
3188 purge_bitfield_addressof_replacements
));
3190 /* We replaced with a reg -- all done. */
3195 else if (validate_change (insn
, loc
, sub
, 0))
3197 /* Remember the replacement so that the same one can be done
3198 on the REG_NOTES. */
3199 if (GET_CODE (sub
) == REG
|| GET_CODE (sub
) == SUBREG
)
3203 for (tem
= purge_addressof_replacements
;
3205 tem
= XEXP (XEXP (tem
, 1), 1))
3206 if (rtx_equal_p (XEXP (x
, 0), XEXP (tem
, 0)))
3208 XEXP (XEXP (tem
, 1), 0) = sub
;
3211 purge_addressof_replacements
3212 = gen_rtx (EXPR_LIST
, VOIDmode
, XEXP (x
, 0),
3213 gen_rtx_EXPR_LIST (VOIDmode
, sub
,
3214 purge_addressof_replacements
));
3222 /* Scan all subexpressions. */
3223 fmt
= GET_RTX_FORMAT (code
);
3224 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
3227 result
&= purge_addressof_1 (&XEXP (x
, i
), insn
, force
, 0, ht
);
3228 else if (*fmt
== 'E')
3229 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3230 result
&= purge_addressof_1 (&XVECEXP (x
, i
, j
), insn
, force
, 0, ht
);
3236 /* Return a hash value for K, a REG. */
3239 insns_for_mem_hash (k
)
3242 /* Use the address of the key for the hash value. */
3243 struct insns_for_mem_entry
*m
= (struct insns_for_mem_entry
*) k
;
3244 return htab_hash_pointer (m
->key
);
3247 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3250 insns_for_mem_comp (k1
, k2
)
3254 struct insns_for_mem_entry
*m1
= (struct insns_for_mem_entry
*) k1
;
3255 struct insns_for_mem_entry
*m2
= (struct insns_for_mem_entry
*) k2
;
3256 return m1
->key
== m2
->key
;
3259 struct insns_for_mem_walk_info
3261 /* The hash table that we are using to record which INSNs use which
3265 /* The INSN we are currently processing. */
3268 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3269 to find the insns that use the REGs in the ADDRESSOFs. */
3273 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3274 that might be used in an ADDRESSOF expression, record this INSN in
3275 the hash table given by DATA (which is really a pointer to an
3276 insns_for_mem_walk_info structure). */
3279 insns_for_mem_walk (r
, data
)
3283 struct insns_for_mem_walk_info
*ifmwi
3284 = (struct insns_for_mem_walk_info
*) data
;
3285 struct insns_for_mem_entry tmp
;
3286 tmp
.insns
= NULL_RTX
;
3288 if (ifmwi
->pass
== 0 && *r
&& GET_CODE (*r
) == ADDRESSOF
3289 && GET_CODE (XEXP (*r
, 0)) == REG
)
3292 tmp
.key
= XEXP (*r
, 0);
3293 e
= htab_find_slot (ifmwi
->ht
, &tmp
, INSERT
);
3296 *e
= ggc_alloc (sizeof (tmp
));
3297 memcpy (*e
, &tmp
, sizeof (tmp
));
3300 else if (ifmwi
->pass
== 1 && *r
&& GET_CODE (*r
) == REG
)
3302 struct insns_for_mem_entry
*ifme
;
3304 ifme
= (struct insns_for_mem_entry
*) htab_find (ifmwi
->ht
, &tmp
);
3306 /* If we have not already recorded this INSN, do so now. Since
3307 we process the INSNs in order, we know that if we have
3308 recorded it it must be at the front of the list. */
3309 if (ifme
&& (!ifme
->insns
|| XEXP (ifme
->insns
, 0) != ifmwi
->insn
))
3310 ifme
->insns
= gen_rtx_EXPR_LIST (VOIDmode
, ifmwi
->insn
,
3317 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3318 which REGs in HT. */
3321 compute_insns_for_mem (insns
, last_insn
, ht
)
3327 struct insns_for_mem_walk_info ifmwi
;
3330 for (ifmwi
.pass
= 0; ifmwi
.pass
< 2; ++ifmwi
.pass
)
3331 for (insn
= insns
; insn
!= last_insn
; insn
= NEXT_INSN (insn
))
3335 for_each_rtx (&insn
, insns_for_mem_walk
, &ifmwi
);
3339 /* Helper function for purge_addressof called through for_each_rtx.
3340 Returns true iff the rtl is an ADDRESSOF. */
3343 is_addressof (rtl
, data
)
3345 void *data ATTRIBUTE_UNUSED
;
3347 return GET_CODE (*rtl
) == ADDRESSOF
;
3350 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3351 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3355 purge_addressof (insns
)
3361 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3362 requires a fixup pass over the instruction stream to correct
3363 INSNs that depended on the REG being a REG, and not a MEM. But,
3364 these fixup passes are slow. Furthermore, most MEMs are not
3365 mentioned in very many instructions. So, we speed up the process
3366 by pre-calculating which REGs occur in which INSNs; that allows
3367 us to perform the fixup passes much more quickly. */
3368 ht
= htab_create_ggc (1000, insns_for_mem_hash
, insns_for_mem_comp
, NULL
);
3369 compute_insns_for_mem (insns
, NULL_RTX
, ht
);
3371 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3374 if (! purge_addressof_1 (&PATTERN (insn
), insn
,
3375 asm_noperands (PATTERN (insn
)) > 0, 0, ht
))
3376 /* If we could not replace the ADDRESSOFs in the insn,
3377 something is wrong. */
3380 if (! purge_addressof_1 (®_NOTES (insn
), NULL_RTX
, 0, 0, ht
))
3382 /* If we could not replace the ADDRESSOFs in the insn's notes,
3383 we can just remove the offending notes instead. */
3386 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
3388 /* If we find a REG_RETVAL note then the insn is a libcall.
3389 Such insns must have REG_EQUAL notes as well, in order
3390 for later passes of the compiler to work. So it is not
3391 safe to delete the notes here, and instead we abort. */
3392 if (REG_NOTE_KIND (note
) == REG_RETVAL
)
3394 if (for_each_rtx (¬e
, is_addressof
, NULL
))
3395 remove_note (insn
, note
);
3401 purge_bitfield_addressof_replacements
= 0;
3402 purge_addressof_replacements
= 0;
3404 /* REGs are shared. purge_addressof will destructively replace a REG
3405 with a MEM, which creates shared MEMs.
3407 Unfortunately, the children of put_reg_into_stack assume that MEMs
3408 referring to the same stack slot are shared (fixup_var_refs and
3409 the associated hash table code).
3411 So, we have to do another unsharing pass after we have flushed any
3412 REGs that had their address taken into the stack.
3414 It may be worth tracking whether or not we converted any REGs into
3415 MEMs to avoid this overhead when it is not needed. */
3416 unshare_all_rtl_again (get_insns ());
3419 /* Convert a SET of a hard subreg to a set of the appropriate hard
3420 register. A subroutine of purge_hard_subreg_sets. */
3423 purge_single_hard_subreg_set (pattern
)
3426 rtx reg
= SET_DEST (pattern
);
3427 enum machine_mode mode
= GET_MODE (SET_DEST (pattern
));
3430 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SUBREG_REG (reg
)) == REG
3431 && REGNO (SUBREG_REG (reg
)) < FIRST_PSEUDO_REGISTER
)
3433 offset
= subreg_regno_offset (REGNO (SUBREG_REG (reg
)),
3434 GET_MODE (SUBREG_REG (reg
)),
3437 reg
= SUBREG_REG (reg
);
3441 if (GET_CODE (reg
) == REG
&& REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
3443 reg
= gen_rtx_REG (mode
, REGNO (reg
) + offset
);
3444 SET_DEST (pattern
) = reg
;
3448 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3449 only such SETs that we expect to see are those left in because
3450 integrate can't handle sets of parts of a return value register.
3452 We don't use alter_subreg because we only want to eliminate subregs
3453 of hard registers. */
3456 purge_hard_subreg_sets (insn
)
3459 for (; insn
; insn
= NEXT_INSN (insn
))
3463 rtx pattern
= PATTERN (insn
);
3464 switch (GET_CODE (pattern
))
3467 if (GET_CODE (SET_DEST (pattern
)) == SUBREG
)
3468 purge_single_hard_subreg_set (pattern
);
3473 for (j
= XVECLEN (pattern
, 0) - 1; j
>= 0; j
--)
3475 rtx inner_pattern
= XVECEXP (pattern
, 0, j
);
3476 if (GET_CODE (inner_pattern
) == SET
3477 && GET_CODE (SET_DEST (inner_pattern
)) == SUBREG
)
3478 purge_single_hard_subreg_set (inner_pattern
);
3489 /* Pass through the INSNS of function FNDECL and convert virtual register
3490 references to hard register references. */
3493 instantiate_virtual_regs (fndecl
, insns
)
3500 /* Compute the offsets to use for this function. */
3501 in_arg_offset
= FIRST_PARM_OFFSET (fndecl
);
3502 var_offset
= STARTING_FRAME_OFFSET
;
3503 dynamic_offset
= STACK_DYNAMIC_OFFSET (fndecl
);
3504 out_arg_offset
= STACK_POINTER_OFFSET
;
3505 cfa_offset
= ARG_POINTER_CFA_OFFSET (fndecl
);
3507 /* Scan all variables and parameters of this function. For each that is
3508 in memory, instantiate all virtual registers if the result is a valid
3509 address. If not, we do it later. That will handle most uses of virtual
3510 regs on many machines. */
3511 instantiate_decls (fndecl
, 1);
3513 /* Initialize recognition, indicating that volatile is OK. */
3516 /* Scan through all the insns, instantiating every virtual register still
3518 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3519 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == JUMP_INSN
3520 || GET_CODE (insn
) == CALL_INSN
)
3522 instantiate_virtual_regs_1 (&PATTERN (insn
), insn
, 1);
3523 instantiate_virtual_regs_1 (®_NOTES (insn
), NULL_RTX
, 0);
3524 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3525 if (GET_CODE (insn
) == CALL_INSN
)
3526 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn
),
3530 /* Instantiate the stack slots for the parm registers, for later use in
3531 addressof elimination. */
3532 for (i
= 0; i
< max_parm_reg
; ++i
)
3533 if (parm_reg_stack_loc
[i
])
3534 instantiate_virtual_regs_1 (&parm_reg_stack_loc
[i
], NULL_RTX
, 0);
3536 /* Now instantiate the remaining register equivalences for debugging info.
3537 These will not be valid addresses. */
3538 instantiate_decls (fndecl
, 0);
3540 /* Indicate that, from now on, assign_stack_local should use
3541 frame_pointer_rtx. */
3542 virtuals_instantiated
= 1;
3545 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3546 all virtual registers in their DECL_RTL's.
3548 If VALID_ONLY, do this only if the resulting address is still valid.
3549 Otherwise, always do it. */
3552 instantiate_decls (fndecl
, valid_only
)
3558 /* Process all parameters of the function. */
3559 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
3561 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (decl
));
3562 HOST_WIDE_INT size_rtl
;
3564 instantiate_decl (DECL_RTL (decl
), size
, valid_only
);
3566 /* If the parameter was promoted, then the incoming RTL mode may be
3567 larger than the declared type size. We must use the larger of
3569 size_rtl
= GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl
)));
3570 size
= MAX (size_rtl
, size
);
3571 instantiate_decl (DECL_INCOMING_RTL (decl
), size
, valid_only
);
3574 /* Now process all variables defined in the function or its subblocks. */
3575 instantiate_decls_1 (DECL_INITIAL (fndecl
), valid_only
);
3578 /* Subroutine of instantiate_decls: Process all decls in the given
3579 BLOCK node and all its subblocks. */
3582 instantiate_decls_1 (let
, valid_only
)
3588 for (t
= BLOCK_VARS (let
); t
; t
= TREE_CHAIN (t
))
3589 if (DECL_RTL_SET_P (t
))
3590 instantiate_decl (DECL_RTL (t
),
3591 int_size_in_bytes (TREE_TYPE (t
)),
3594 /* Process all subblocks. */
3595 for (t
= BLOCK_SUBBLOCKS (let
); t
; t
= TREE_CHAIN (t
))
3596 instantiate_decls_1 (t
, valid_only
);
3599 /* Subroutine of the preceding procedures: Given RTL representing a
3600 decl and the size of the object, do any instantiation required.
3602 If VALID_ONLY is nonzero, it means that the RTL should only be
3603 changed if the new address is valid. */
3606 instantiate_decl (x
, size
, valid_only
)
3611 enum machine_mode mode
;
3614 /* If this is not a MEM, no need to do anything. Similarly if the
3615 address is a constant or a register that is not a virtual register. */
3617 if (x
== 0 || GET_CODE (x
) != MEM
)
3621 if (CONSTANT_P (addr
)
3622 || (GET_CODE (addr
) == ADDRESSOF
&& GET_CODE (XEXP (addr
, 0)) == REG
)
3623 || (GET_CODE (addr
) == REG
3624 && (REGNO (addr
) < FIRST_VIRTUAL_REGISTER
3625 || REGNO (addr
) > LAST_VIRTUAL_REGISTER
)))
3628 /* If we should only do this if the address is valid, copy the address.
3629 We need to do this so we can undo any changes that might make the
3630 address invalid. This copy is unfortunate, but probably can't be
3634 addr
= copy_rtx (addr
);
3636 instantiate_virtual_regs_1 (&addr
, NULL_RTX
, 0);
3638 if (valid_only
&& size
>= 0)
3640 unsigned HOST_WIDE_INT decl_size
= size
;
3642 /* Now verify that the resulting address is valid for every integer or
3643 floating-point mode up to and including SIZE bytes long. We do this
3644 since the object might be accessed in any mode and frame addresses
3647 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
3648 mode
!= VOIDmode
&& GET_MODE_SIZE (mode
) <= decl_size
;
3649 mode
= GET_MODE_WIDER_MODE (mode
))
3650 if (! memory_address_p (mode
, addr
))
3653 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
3654 mode
!= VOIDmode
&& GET_MODE_SIZE (mode
) <= decl_size
;
3655 mode
= GET_MODE_WIDER_MODE (mode
))
3656 if (! memory_address_p (mode
, addr
))
3660 /* Put back the address now that we have updated it and we either know
3661 it is valid or we don't care whether it is valid. */
3666 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3667 is a virtual register, return the equivalent hard register and set the
3668 offset indirectly through the pointer. Otherwise, return 0. */
3671 instantiate_new_reg (x
, poffset
)
3673 HOST_WIDE_INT
*poffset
;
3676 HOST_WIDE_INT offset
;
3678 if (x
== virtual_incoming_args_rtx
)
3679 new = arg_pointer_rtx
, offset
= in_arg_offset
;
3680 else if (x
== virtual_stack_vars_rtx
)
3681 new = frame_pointer_rtx
, offset
= var_offset
;
3682 else if (x
== virtual_stack_dynamic_rtx
)
3683 new = stack_pointer_rtx
, offset
= dynamic_offset
;
3684 else if (x
== virtual_outgoing_args_rtx
)
3685 new = stack_pointer_rtx
, offset
= out_arg_offset
;
3686 else if (x
== virtual_cfa_rtx
)
3687 new = arg_pointer_rtx
, offset
= cfa_offset
;
3695 /* Given a pointer to a piece of rtx and an optional pointer to the
3696 containing object, instantiate any virtual registers present in it.
3698 If EXTRA_INSNS, we always do the replacement and generate
3699 any extra insns before OBJECT. If it zero, we do nothing if replacement
3702 Return 1 if we either had nothing to do or if we were able to do the
3703 needed replacement. Return 0 otherwise; we only return zero if
3704 EXTRA_INSNS is zero.
3706 We first try some simple transformations to avoid the creation of extra
3710 instantiate_virtual_regs_1 (loc
, object
, extra_insns
)
3718 HOST_WIDE_INT offset
= 0;
3724 /* Re-start here to avoid recursion in common cases. */
3731 code
= GET_CODE (x
);
3733 /* Check for some special cases. */
3751 /* We are allowed to set the virtual registers. This means that
3752 the actual register should receive the source minus the
3753 appropriate offset. This is used, for example, in the handling
3754 of non-local gotos. */
3755 if ((new = instantiate_new_reg (SET_DEST (x
), &offset
)) != 0)
3757 rtx src
= SET_SRC (x
);
3759 /* We are setting the register, not using it, so the relevant
3760 offset is the negative of the offset to use were we using
3763 instantiate_virtual_regs_1 (&src
, NULL_RTX
, 0);
3765 /* The only valid sources here are PLUS or REG. Just do
3766 the simplest possible thing to handle them. */
3767 if (GET_CODE (src
) != REG
&& GET_CODE (src
) != PLUS
)
3771 if (GET_CODE (src
) != REG
)
3772 temp
= force_operand (src
, NULL_RTX
);
3775 temp
= force_operand (plus_constant (temp
, offset
), NULL_RTX
);
3779 emit_insn_before (seq
, object
);
3782 if (! validate_change (object
, &SET_SRC (x
), temp
, 0)
3789 instantiate_virtual_regs_1 (&SET_DEST (x
), object
, extra_insns
);
3794 /* Handle special case of virtual register plus constant. */
3795 if (CONSTANT_P (XEXP (x
, 1)))
3797 rtx old
, new_offset
;
3799 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3800 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
3802 if ((new = instantiate_new_reg (XEXP (XEXP (x
, 0), 0), &offset
)))
3804 instantiate_virtual_regs_1 (&XEXP (XEXP (x
, 0), 1), object
,
3806 new = gen_rtx_PLUS (Pmode
, new, XEXP (XEXP (x
, 0), 1));
3815 #ifdef POINTERS_EXTEND_UNSIGNED
3816 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3817 we can commute the PLUS and SUBREG because pointers into the
3818 frame are well-behaved. */
3819 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
&& GET_MODE (x
) == ptr_mode
3820 && GET_CODE (XEXP (x
, 1)) == CONST_INT
3822 = instantiate_new_reg (SUBREG_REG (XEXP (x
, 0)),
3824 && validate_change (object
, loc
,
3825 plus_constant (gen_lowpart (ptr_mode
,
3828 + INTVAL (XEXP (x
, 1))),
3832 else if ((new = instantiate_new_reg (XEXP (x
, 0), &offset
)) == 0)
3834 /* We know the second operand is a constant. Unless the
3835 first operand is a REG (which has been already checked),
3836 it needs to be checked. */
3837 if (GET_CODE (XEXP (x
, 0)) != REG
)
3845 new_offset
= plus_constant (XEXP (x
, 1), offset
);
3847 /* If the new constant is zero, try to replace the sum with just
3849 if (new_offset
== const0_rtx
3850 && validate_change (object
, loc
, new, 0))
3853 /* Next try to replace the register and new offset.
3854 There are two changes to validate here and we can't assume that
3855 in the case of old offset equals new just changing the register
3856 will yield a valid insn. In the interests of a little efficiency,
3857 however, we only call validate change once (we don't queue up the
3858 changes and then call apply_change_group). */
3862 ? ! validate_change (object
, &XEXP (x
, 0), new, 0)
3863 : (XEXP (x
, 0) = new,
3864 ! validate_change (object
, &XEXP (x
, 1), new_offset
, 0)))
3872 /* Otherwise copy the new constant into a register and replace
3873 constant with that register. */
3874 temp
= gen_reg_rtx (Pmode
);
3876 if (validate_change (object
, &XEXP (x
, 1), temp
, 0))
3877 emit_insn_before (gen_move_insn (temp
, new_offset
), object
);
3880 /* If that didn't work, replace this expression with a
3881 register containing the sum. */
3884 new = gen_rtx_PLUS (Pmode
, new, new_offset
);
3887 temp
= force_operand (new, NULL_RTX
);
3891 emit_insn_before (seq
, object
);
3892 if (! validate_change (object
, loc
, temp
, 0)
3893 && ! validate_replace_rtx (x
, temp
, object
))
3901 /* Fall through to generic two-operand expression case. */
3907 case DIV
: case UDIV
:
3908 case MOD
: case UMOD
:
3909 case AND
: case IOR
: case XOR
:
3910 case ROTATERT
: case ROTATE
:
3911 case ASHIFTRT
: case LSHIFTRT
: case ASHIFT
:
3913 case GE
: case GT
: case GEU
: case GTU
:
3914 case LE
: case LT
: case LEU
: case LTU
:
3915 if (XEXP (x
, 1) && ! CONSTANT_P (XEXP (x
, 1)))
3916 instantiate_virtual_regs_1 (&XEXP (x
, 1), object
, extra_insns
);
3921 /* Most cases of MEM that convert to valid addresses have already been
3922 handled by our scan of decls. The only special handling we
3923 need here is to make a copy of the rtx to ensure it isn't being
3924 shared if we have to change it to a pseudo.
3926 If the rtx is a simple reference to an address via a virtual register,
3927 it can potentially be shared. In such cases, first try to make it
3928 a valid address, which can also be shared. Otherwise, copy it and
3931 First check for common cases that need no processing. These are
3932 usually due to instantiation already being done on a previous instance
3936 if (CONSTANT_ADDRESS_P (temp
)
3937 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3938 || temp
== arg_pointer_rtx
3940 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3941 || temp
== hard_frame_pointer_rtx
3943 || temp
== frame_pointer_rtx
)
3946 if (GET_CODE (temp
) == PLUS
3947 && CONSTANT_ADDRESS_P (XEXP (temp
, 1))
3948 && (XEXP (temp
, 0) == frame_pointer_rtx
3949 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3950 || XEXP (temp
, 0) == hard_frame_pointer_rtx
3952 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3953 || XEXP (temp
, 0) == arg_pointer_rtx
3958 if (temp
== virtual_stack_vars_rtx
3959 || temp
== virtual_incoming_args_rtx
3960 || (GET_CODE (temp
) == PLUS
3961 && CONSTANT_ADDRESS_P (XEXP (temp
, 1))
3962 && (XEXP (temp
, 0) == virtual_stack_vars_rtx
3963 || XEXP (temp
, 0) == virtual_incoming_args_rtx
)))
3965 /* This MEM may be shared. If the substitution can be done without
3966 the need to generate new pseudos, we want to do it in place
3967 so all copies of the shared rtx benefit. The call below will
3968 only make substitutions if the resulting address is still
3971 Note that we cannot pass X as the object in the recursive call
3972 since the insn being processed may not allow all valid
3973 addresses. However, if we were not passed on object, we can
3974 only modify X without copying it if X will have a valid
3977 ??? Also note that this can still lose if OBJECT is an insn that
3978 has less restrictions on an address that some other insn.
3979 In that case, we will modify the shared address. This case
3980 doesn't seem very likely, though. One case where this could
3981 happen is in the case of a USE or CLOBBER reference, but we
3982 take care of that below. */
3984 if (instantiate_virtual_regs_1 (&XEXP (x
, 0),
3985 object
? object
: x
, 0))
3988 /* Otherwise make a copy and process that copy. We copy the entire
3989 RTL expression since it might be a PLUS which could also be
3991 *loc
= x
= copy_rtx (x
);
3994 /* Fall through to generic unary operation case. */
3997 case STRICT_LOW_PART
:
3999 case PRE_DEC
: case PRE_INC
: case POST_DEC
: case POST_INC
:
4000 case SIGN_EXTEND
: case ZERO_EXTEND
:
4001 case TRUNCATE
: case FLOAT_EXTEND
: case FLOAT_TRUNCATE
:
4002 case FLOAT
: case FIX
:
4003 case UNSIGNED_FIX
: case UNSIGNED_FLOAT
:
4008 case POPCOUNT
: case PARITY
:
4009 /* These case either have just one operand or we know that we need not
4010 check the rest of the operands. */
4016 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4017 go ahead and make the invalid one, but do it to a copy. For a REG,
4018 just make the recursive call, since there's no chance of a problem. */
4020 if ((GET_CODE (XEXP (x
, 0)) == MEM
4021 && instantiate_virtual_regs_1 (&XEXP (XEXP (x
, 0), 0), XEXP (x
, 0),
4023 || (GET_CODE (XEXP (x
, 0)) == REG
4024 && instantiate_virtual_regs_1 (&XEXP (x
, 0), object
, 0)))
4027 XEXP (x
, 0) = copy_rtx (XEXP (x
, 0));
4032 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4033 in front of this insn and substitute the temporary. */
4034 if ((new = instantiate_new_reg (x
, &offset
)) != 0)
4036 temp
= plus_constant (new, offset
);
4037 if (!validate_change (object
, loc
, temp
, 0))
4043 temp
= force_operand (temp
, NULL_RTX
);
4047 emit_insn_before (seq
, object
);
4048 if (! validate_change (object
, loc
, temp
, 0)
4049 && ! validate_replace_rtx (x
, temp
, object
))
4057 if (GET_CODE (XEXP (x
, 0)) == REG
)
4060 else if (GET_CODE (XEXP (x
, 0)) == MEM
)
4062 /* If we have a (addressof (mem ..)), do any instantiation inside
4063 since we know we'll be making the inside valid when we finally
4064 remove the ADDRESSOF. */
4065 instantiate_virtual_regs_1 (&XEXP (XEXP (x
, 0), 0), NULL_RTX
, 0);
4074 /* Scan all subexpressions. */
4075 fmt
= GET_RTX_FORMAT (code
);
4076 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
4079 if (!instantiate_virtual_regs_1 (&XEXP (x
, i
), object
, extra_insns
))
4082 else if (*fmt
== 'E')
4083 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
4084 if (! instantiate_virtual_regs_1 (&XVECEXP (x
, i
, j
), object
,
4091 /* Optimization: assuming this function does not receive nonlocal gotos,
4092 delete the handlers for such, as well as the insns to establish
4093 and disestablish them. */
4099 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4101 /* Delete the handler by turning off the flag that would
4102 prevent jump_optimize from deleting it.
4103 Also permit deletion of the nonlocal labels themselves
4104 if nothing local refers to them. */
4105 if (GET_CODE (insn
) == CODE_LABEL
)
4109 LABEL_PRESERVE_P (insn
) = 0;
4111 /* Remove it from the nonlocal_label list, to avoid confusing
4113 for (t
= nonlocal_labels
, last_t
= 0; t
;
4114 last_t
= t
, t
= TREE_CHAIN (t
))
4115 if (DECL_RTL (TREE_VALUE (t
)) == insn
)
4120 nonlocal_labels
= TREE_CHAIN (nonlocal_labels
);
4122 TREE_CHAIN (last_t
) = TREE_CHAIN (t
);
4125 if (GET_CODE (insn
) == INSN
)
4129 for (t
= nonlocal_goto_handler_slots
; t
!= 0; t
= XEXP (t
, 1))
4130 if (reg_mentioned_p (t
, PATTERN (insn
)))
4136 || (nonlocal_goto_stack_level
!= 0
4137 && reg_mentioned_p (nonlocal_goto_stack_level
,
4139 delete_related_insns (insn
);
4144 /* Return the first insn following those generated by `assign_parms'. */
4147 get_first_nonparm_insn ()
4150 return NEXT_INSN (last_parm_insn
);
4151 return get_insns ();
4154 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4155 This means a type for which function calls must pass an address to the
4156 function or get an address back from the function.
4157 EXP may be a type node or an expression (whose type is tested). */
4160 aggregate_value_p (exp
)
4163 int i
, regno
, nregs
;
4166 tree type
= (TYPE_P (exp
)) ? exp
: TREE_TYPE (exp
);
4168 if (TREE_CODE (type
) == VOID_TYPE
)
4170 if (RETURN_IN_MEMORY (type
))
4172 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4173 and thus can't be returned in registers. */
4174 if (TREE_ADDRESSABLE (type
))
4176 if (flag_pcc_struct_return
&& AGGREGATE_TYPE_P (type
))
4178 /* Make sure we have suitable call-clobbered regs to return
4179 the value in; if not, we must return it in memory. */
4180 reg
= hard_function_value (type
, 0, 0);
4182 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4184 if (GET_CODE (reg
) != REG
)
4187 regno
= REGNO (reg
);
4188 nregs
= HARD_REGNO_NREGS (regno
, TYPE_MODE (type
));
4189 for (i
= 0; i
< nregs
; i
++)
4190 if (! call_used_regs
[regno
+ i
])
4195 /* Assign RTL expressions to the function's parameters.
4196 This may involve copying them into registers and using
4197 those registers as the RTL for them. */
4200 assign_parms (fndecl
)
4206 CUMULATIVE_ARGS args_so_far
;
4207 enum machine_mode promoted_mode
, passed_mode
;
4208 enum machine_mode nominal_mode
, promoted_nominal_mode
;
4210 /* Total space needed so far for args on the stack,
4211 given as a constant and a tree-expression. */
4212 struct args_size stack_args_size
;
4213 tree fntype
= TREE_TYPE (fndecl
);
4214 tree fnargs
= DECL_ARGUMENTS (fndecl
);
4215 /* This is used for the arg pointer when referring to stack args. */
4216 rtx internal_arg_pointer
;
4217 /* This is a dummy PARM_DECL that we used for the function result if
4218 the function returns a structure. */
4219 tree function_result_decl
= 0;
4220 #ifdef SETUP_INCOMING_VARARGS
4221 int varargs_setup
= 0;
4223 rtx conversion_insns
= 0;
4224 struct args_size alignment_pad
;
4226 /* Nonzero if function takes extra anonymous args.
4227 This means the last named arg must be on the stack
4228 right before the anonymous ones. */
4230 = (TYPE_ARG_TYPES (fntype
) != 0
4231 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype
)))
4232 != void_type_node
));
4234 current_function_stdarg
= stdarg
;
4236 /* If the reg that the virtual arg pointer will be translated into is
4237 not a fixed reg or is the stack pointer, make a copy of the virtual
4238 arg pointer, and address parms via the copy. The frame pointer is
4239 considered fixed even though it is not marked as such.
4241 The second time through, simply use ap to avoid generating rtx. */
4243 if ((ARG_POINTER_REGNUM
== STACK_POINTER_REGNUM
4244 || ! (fixed_regs
[ARG_POINTER_REGNUM
]
4245 || ARG_POINTER_REGNUM
== FRAME_POINTER_REGNUM
)))
4246 internal_arg_pointer
= copy_to_reg (virtual_incoming_args_rtx
);
4248 internal_arg_pointer
= virtual_incoming_args_rtx
;
4249 current_function_internal_arg_pointer
= internal_arg_pointer
;
4251 stack_args_size
.constant
= 0;
4252 stack_args_size
.var
= 0;
4254 /* If struct value address is treated as the first argument, make it so. */
4255 if (aggregate_value_p (DECL_RESULT (fndecl
))
4256 && ! current_function_returns_pcc_struct
4257 && struct_value_incoming_rtx
== 0)
4259 tree type
= build_pointer_type (TREE_TYPE (fntype
));
4261 function_result_decl
= build_decl (PARM_DECL
, NULL_TREE
, type
);
4263 DECL_ARG_TYPE (function_result_decl
) = type
;
4264 TREE_CHAIN (function_result_decl
) = fnargs
;
4265 fnargs
= function_result_decl
;
4268 max_parm_reg
= LAST_VIRTUAL_REGISTER
+ 1;
4269 parm_reg_stack_loc
= (rtx
*) ggc_alloc_cleared (max_parm_reg
* sizeof (rtx
));
4271 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4272 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far
, fntype
, NULL_RTX
);
4274 INIT_CUMULATIVE_ARGS (args_so_far
, fntype
, NULL_RTX
, 0);
4277 /* We haven't yet found an argument that we must push and pretend the
4279 current_function_pretend_args_size
= 0;
4281 for (parm
= fnargs
; parm
; parm
= TREE_CHAIN (parm
))
4283 struct args_size stack_offset
;
4284 struct args_size arg_size
;
4285 int passed_pointer
= 0;
4286 int did_conversion
= 0;
4287 tree passed_type
= DECL_ARG_TYPE (parm
);
4288 tree nominal_type
= TREE_TYPE (parm
);
4290 int last_named
= 0, named_arg
;
4292 /* Set LAST_NAMED if this is last named arg before last
4298 for (tem
= TREE_CHAIN (parm
); tem
; tem
= TREE_CHAIN (tem
))
4299 if (DECL_NAME (tem
))
4305 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4306 most machines, if this is a varargs/stdarg function, then we treat
4307 the last named arg as if it were anonymous too. */
4308 named_arg
= STRICT_ARGUMENT_NAMING
? 1 : ! last_named
;
4310 if (TREE_TYPE (parm
) == error_mark_node
4311 /* This can happen after weird syntax errors
4312 or if an enum type is defined among the parms. */
4313 || TREE_CODE (parm
) != PARM_DECL
4314 || passed_type
== NULL
)
4316 SET_DECL_RTL (parm
, gen_rtx_MEM (BLKmode
, const0_rtx
));
4317 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
);
4318 TREE_USED (parm
) = 1;
4322 /* Find mode of arg as it is passed, and mode of arg
4323 as it should be during execution of this function. */
4324 passed_mode
= TYPE_MODE (passed_type
);
4325 nominal_mode
= TYPE_MODE (nominal_type
);
4327 /* If the parm's mode is VOID, its value doesn't matter,
4328 and avoid the usual things like emit_move_insn that could crash. */
4329 if (nominal_mode
== VOIDmode
)
4331 SET_DECL_RTL (parm
, const0_rtx
);
4332 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
);
4336 /* If the parm is to be passed as a transparent union, use the
4337 type of the first field for the tests below. We have already
4338 verified that the modes are the same. */
4339 if (DECL_TRANSPARENT_UNION (parm
)
4340 || (TREE_CODE (passed_type
) == UNION_TYPE
4341 && TYPE_TRANSPARENT_UNION (passed_type
)))
4342 passed_type
= TREE_TYPE (TYPE_FIELDS (passed_type
));
4344 /* See if this arg was passed by invisible reference. It is if
4345 it is an object whose size depends on the contents of the
4346 object itself or if the machine requires these objects be passed
4349 if ((TREE_CODE (TYPE_SIZE (passed_type
)) != INTEGER_CST
4350 && contains_placeholder_p (TYPE_SIZE (passed_type
)))
4351 || TREE_ADDRESSABLE (passed_type
)
4352 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4353 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far
, passed_mode
,
4354 passed_type
, named_arg
)
4358 passed_type
= nominal_type
= build_pointer_type (passed_type
);
4360 passed_mode
= nominal_mode
= Pmode
;
4362 /* See if the frontend wants to pass this by invisible reference. */
4363 else if (passed_type
!= nominal_type
4364 && POINTER_TYPE_P (passed_type
)
4365 && TREE_TYPE (passed_type
) == nominal_type
)
4367 nominal_type
= passed_type
;
4369 passed_mode
= nominal_mode
= Pmode
;
4372 promoted_mode
= passed_mode
;
4374 #ifdef PROMOTE_FUNCTION_ARGS
4375 /* Compute the mode in which the arg is actually extended to. */
4376 unsignedp
= TREE_UNSIGNED (passed_type
);
4377 promoted_mode
= promote_mode (passed_type
, promoted_mode
, &unsignedp
, 1);
4380 /* Let machine desc say which reg (if any) the parm arrives in.
4381 0 means it arrives on the stack. */
4382 #ifdef FUNCTION_INCOMING_ARG
4383 entry_parm
= FUNCTION_INCOMING_ARG (args_so_far
, promoted_mode
,
4384 passed_type
, named_arg
);
4386 entry_parm
= FUNCTION_ARG (args_so_far
, promoted_mode
,
4387 passed_type
, named_arg
);
4390 if (entry_parm
== 0)
4391 promoted_mode
= passed_mode
;
4393 #ifdef SETUP_INCOMING_VARARGS
4394 /* If this is the last named parameter, do any required setup for
4395 varargs or stdargs. We need to know about the case of this being an
4396 addressable type, in which case we skip the registers it
4397 would have arrived in.
4399 For stdargs, LAST_NAMED will be set for two parameters, the one that
4400 is actually the last named, and the dummy parameter. We only
4401 want to do this action once.
4403 Also, indicate when RTL generation is to be suppressed. */
4404 if (last_named
&& !varargs_setup
)
4406 SETUP_INCOMING_VARARGS (args_so_far
, promoted_mode
, passed_type
,
4407 current_function_pretend_args_size
, 0);
4412 /* Determine parm's home in the stack,
4413 in case it arrives in the stack or we should pretend it did.
4415 Compute the stack position and rtx where the argument arrives
4418 There is one complexity here: If this was a parameter that would
4419 have been passed in registers, but wasn't only because it is
4420 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4421 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4422 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4423 0 as it was the previous time. */
4425 pretend_named
= named_arg
|| PRETEND_OUTGOING_VARARGS_NAMED
;
4426 locate_and_pad_parm (promoted_mode
, passed_type
,
4427 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4430 #ifdef FUNCTION_INCOMING_ARG
4431 FUNCTION_INCOMING_ARG (args_so_far
, promoted_mode
,
4433 pretend_named
) != 0,
4435 FUNCTION_ARG (args_so_far
, promoted_mode
,
4437 pretend_named
) != 0,
4440 fndecl
, &stack_args_size
, &stack_offset
, &arg_size
,
4444 rtx offset_rtx
= ARGS_SIZE_RTX (stack_offset
);
4446 if (offset_rtx
== const0_rtx
)
4447 stack_parm
= gen_rtx_MEM (promoted_mode
, internal_arg_pointer
);
4449 stack_parm
= gen_rtx_MEM (promoted_mode
,
4450 gen_rtx_PLUS (Pmode
,
4451 internal_arg_pointer
,
4454 set_mem_attributes (stack_parm
, parm
, 1);
4457 /* If this parameter was passed both in registers and in the stack,
4458 use the copy on the stack. */
4459 if (MUST_PASS_IN_STACK (promoted_mode
, passed_type
))
4462 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4463 /* If this parm was passed part in regs and part in memory,
4464 pretend it arrived entirely in memory
4465 by pushing the register-part onto the stack.
4467 In the special case of a DImode or DFmode that is split,
4468 we could put it together in a pseudoreg directly,
4469 but for now that's not worth bothering with. */
4473 int nregs
= FUNCTION_ARG_PARTIAL_NREGS (args_so_far
, promoted_mode
,
4474 passed_type
, named_arg
);
4478 #if defined (REG_PARM_STACK_SPACE) && !defined (MAYBE_REG_PARM_STACK_SPACE)
4479 /* When REG_PARM_STACK_SPACE is nonzero, stack space for
4480 split parameters was allocated by our caller, so we
4481 won't be pushing it in the prolog. */
4482 if (REG_PARM_STACK_SPACE (fndecl
) == 0)
4484 current_function_pretend_args_size
4485 = (((nregs
* UNITS_PER_WORD
) + (PARM_BOUNDARY
/ BITS_PER_UNIT
) - 1)
4486 / (PARM_BOUNDARY
/ BITS_PER_UNIT
)
4487 * (PARM_BOUNDARY
/ BITS_PER_UNIT
));
4489 /* Handle calls that pass values in multiple non-contiguous
4490 locations. The Irix 6 ABI has examples of this. */
4491 if (GET_CODE (entry_parm
) == PARALLEL
)
4492 emit_group_store (validize_mem (stack_parm
), entry_parm
,
4493 int_size_in_bytes (TREE_TYPE (parm
)));
4496 move_block_from_reg (REGNO (entry_parm
),
4497 validize_mem (stack_parm
), nregs
,
4498 int_size_in_bytes (TREE_TYPE (parm
)));
4500 entry_parm
= stack_parm
;
4505 /* If we didn't decide this parm came in a register,
4506 by default it came on the stack. */
4507 if (entry_parm
== 0)
4508 entry_parm
= stack_parm
;
4510 /* Record permanently how this parm was passed. */
4511 DECL_INCOMING_RTL (parm
) = entry_parm
;
4513 /* If there is actually space on the stack for this parm,
4514 count it in stack_args_size; otherwise set stack_parm to 0
4515 to indicate there is no preallocated stack slot for the parm. */
4517 if (entry_parm
== stack_parm
4518 || (GET_CODE (entry_parm
) == PARALLEL
4519 && XEXP (XVECEXP (entry_parm
, 0, 0), 0) == NULL_RTX
)
4520 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4521 /* On some machines, even if a parm value arrives in a register
4522 there is still an (uninitialized) stack slot allocated for it.
4524 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4525 whether this parameter already has a stack slot allocated,
4526 because an arg block exists only if current_function_args_size
4527 is larger than some threshold, and we haven't calculated that
4528 yet. So, for now, we just assume that stack slots never exist
4530 || REG_PARM_STACK_SPACE (fndecl
) > 0
4534 stack_args_size
.constant
+= arg_size
.constant
;
4536 ADD_PARM_SIZE (stack_args_size
, arg_size
.var
);
4539 /* No stack slot was pushed for this parm. */
4542 /* Update info on where next arg arrives in registers. */
4544 FUNCTION_ARG_ADVANCE (args_so_far
, promoted_mode
,
4545 passed_type
, named_arg
);
4547 /* If we can't trust the parm stack slot to be aligned enough
4548 for its ultimate type, don't use that slot after entry.
4549 We'll make another stack slot, if we need one. */
4551 unsigned int thisparm_boundary
4552 = FUNCTION_ARG_BOUNDARY (promoted_mode
, passed_type
);
4554 if (GET_MODE_ALIGNMENT (nominal_mode
) > thisparm_boundary
)
4558 /* If parm was passed in memory, and we need to convert it on entry,
4559 don't store it back in that same slot. */
4561 && nominal_mode
!= BLKmode
&& nominal_mode
!= passed_mode
)
4564 /* When an argument is passed in multiple locations, we can't
4565 make use of this information, but we can save some copying if
4566 the whole argument is passed in a single register. */
4567 if (GET_CODE (entry_parm
) == PARALLEL
4568 && nominal_mode
!= BLKmode
&& passed_mode
!= BLKmode
)
4570 int i
, len
= XVECLEN (entry_parm
, 0);
4572 for (i
= 0; i
< len
; i
++)
4573 if (XEXP (XVECEXP (entry_parm
, 0, i
), 0) != NULL_RTX
4574 && GET_CODE (XEXP (XVECEXP (entry_parm
, 0, i
), 0)) == REG
4575 && (GET_MODE (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
4577 && INTVAL (XEXP (XVECEXP (entry_parm
, 0, i
), 1)) == 0)
4579 entry_parm
= XEXP (XVECEXP (entry_parm
, 0, i
), 0);
4580 DECL_INCOMING_RTL (parm
) = entry_parm
;
4585 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4586 in the mode in which it arrives.
4587 STACK_PARM is an RTX for a stack slot where the parameter can live
4588 during the function (in case we want to put it there).
4589 STACK_PARM is 0 if no stack slot was pushed for it.
4591 Now output code if necessary to convert ENTRY_PARM to
4592 the type in which this function declares it,
4593 and store that result in an appropriate place,
4594 which may be a pseudo reg, may be STACK_PARM,
4595 or may be a local stack slot if STACK_PARM is 0.
4597 Set DECL_RTL to that place. */
4599 if (nominal_mode
== BLKmode
|| GET_CODE (entry_parm
) == PARALLEL
)
4601 /* If a BLKmode arrives in registers, copy it to a stack slot.
4602 Handle calls that pass values in multiple non-contiguous
4603 locations. The Irix 6 ABI has examples of this. */
4604 if (GET_CODE (entry_parm
) == REG
4605 || GET_CODE (entry_parm
) == PARALLEL
)
4608 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm
)),
4611 /* Note that we will be storing an integral number of words.
4612 So we have to be careful to ensure that we allocate an
4613 integral number of words. We do this below in the
4614 assign_stack_local if space was not allocated in the argument
4615 list. If it was, this will not work if PARM_BOUNDARY is not
4616 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4617 if it becomes a problem. */
4619 if (stack_parm
== 0)
4622 = assign_stack_local (GET_MODE (entry_parm
),
4624 set_mem_attributes (stack_parm
, parm
, 1);
4627 else if (PARM_BOUNDARY
% BITS_PER_WORD
!= 0)
4630 /* Handle calls that pass values in multiple non-contiguous
4631 locations. The Irix 6 ABI has examples of this. */
4632 if (GET_CODE (entry_parm
) == PARALLEL
)
4633 emit_group_store (validize_mem (stack_parm
), entry_parm
,
4634 int_size_in_bytes (TREE_TYPE (parm
)));
4636 move_block_from_reg (REGNO (entry_parm
),
4637 validize_mem (stack_parm
),
4638 size_stored
/ UNITS_PER_WORD
,
4639 int_size_in_bytes (TREE_TYPE (parm
)));
4641 SET_DECL_RTL (parm
, stack_parm
);
4643 else if (! ((! optimize
4644 && ! DECL_REGISTER (parm
))
4645 || TREE_SIDE_EFFECTS (parm
)
4646 /* If -ffloat-store specified, don't put explicit
4647 float variables into registers. */
4648 || (flag_float_store
4649 && TREE_CODE (TREE_TYPE (parm
)) == REAL_TYPE
))
4650 /* Always assign pseudo to structure return or item passed
4651 by invisible reference. */
4652 || passed_pointer
|| parm
== function_result_decl
)
4654 /* Store the parm in a pseudoregister during the function, but we
4655 may need to do it in a wider mode. */
4658 unsigned int regno
, regnoi
= 0, regnor
= 0;
4660 unsignedp
= TREE_UNSIGNED (TREE_TYPE (parm
));
4662 promoted_nominal_mode
4663 = promote_mode (TREE_TYPE (parm
), nominal_mode
, &unsignedp
, 0);
4665 parmreg
= gen_reg_rtx (promoted_nominal_mode
);
4666 mark_user_reg (parmreg
);
4668 /* If this was an item that we received a pointer to, set DECL_RTL
4672 rtx x
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type
)),
4674 set_mem_attributes (x
, parm
, 1);
4675 SET_DECL_RTL (parm
, x
);
4679 SET_DECL_RTL (parm
, parmreg
);
4680 maybe_set_unchanging (DECL_RTL (parm
), parm
);
4683 /* Copy the value into the register. */
4684 if (nominal_mode
!= passed_mode
4685 || promoted_nominal_mode
!= promoted_mode
)
4688 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4689 mode, by the caller. We now have to convert it to
4690 NOMINAL_MODE, if different. However, PARMREG may be in
4691 a different mode than NOMINAL_MODE if it is being stored
4694 If ENTRY_PARM is a hard register, it might be in a register
4695 not valid for operating in its mode (e.g., an odd-numbered
4696 register for a DFmode). In that case, moves are the only
4697 thing valid, so we can't do a convert from there. This
4698 occurs when the calling sequence allow such misaligned
4701 In addition, the conversion may involve a call, which could
4702 clobber parameters which haven't been copied to pseudo
4703 registers yet. Therefore, we must first copy the parm to
4704 a pseudo reg here, and save the conversion until after all
4705 parameters have been moved. */
4707 rtx tempreg
= gen_reg_rtx (GET_MODE (entry_parm
));
4709 emit_move_insn (tempreg
, validize_mem (entry_parm
));
4711 push_to_sequence (conversion_insns
);
4712 tempreg
= convert_to_mode (nominal_mode
, tempreg
, unsignedp
);
4714 if (GET_CODE (tempreg
) == SUBREG
4715 && GET_MODE (tempreg
) == nominal_mode
4716 && GET_CODE (SUBREG_REG (tempreg
)) == REG
4717 && nominal_mode
== passed_mode
4718 && GET_MODE (SUBREG_REG (tempreg
)) == GET_MODE (entry_parm
)
4719 && GET_MODE_SIZE (GET_MODE (tempreg
))
4720 < GET_MODE_SIZE (GET_MODE (entry_parm
)))
4722 /* The argument is already sign/zero extended, so note it
4724 SUBREG_PROMOTED_VAR_P (tempreg
) = 1;
4725 SUBREG_PROMOTED_UNSIGNED_SET (tempreg
, unsignedp
);
4728 /* TREE_USED gets set erroneously during expand_assignment. */
4729 save_tree_used
= TREE_USED (parm
);
4730 expand_assignment (parm
,
4731 make_tree (nominal_type
, tempreg
), 0, 0);
4732 TREE_USED (parm
) = save_tree_used
;
4733 conversion_insns
= get_insns ();
4738 emit_move_insn (parmreg
, validize_mem (entry_parm
));
4740 /* If we were passed a pointer but the actual value
4741 can safely live in a register, put it in one. */
4742 if (passed_pointer
&& TYPE_MODE (TREE_TYPE (parm
)) != BLKmode
4743 /* If by-reference argument was promoted, demote it. */
4744 && (TYPE_MODE (TREE_TYPE (parm
)) != GET_MODE (DECL_RTL (parm
))
4746 && ! DECL_REGISTER (parm
))
4747 || TREE_SIDE_EFFECTS (parm
)
4748 /* If -ffloat-store specified, don't put explicit
4749 float variables into registers. */
4750 || (flag_float_store
4751 && TREE_CODE (TREE_TYPE (parm
)) == REAL_TYPE
))))
4753 /* We can't use nominal_mode, because it will have been set to
4754 Pmode above. We must use the actual mode of the parm. */
4755 parmreg
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm
)));
4756 mark_user_reg (parmreg
);
4757 if (GET_MODE (parmreg
) != GET_MODE (DECL_RTL (parm
)))
4759 rtx tempreg
= gen_reg_rtx (GET_MODE (DECL_RTL (parm
)));
4760 int unsigned_p
= TREE_UNSIGNED (TREE_TYPE (parm
));
4761 push_to_sequence (conversion_insns
);
4762 emit_move_insn (tempreg
, DECL_RTL (parm
));
4764 convert_to_mode (GET_MODE (parmreg
),
4767 emit_move_insn (parmreg
, DECL_RTL (parm
));
4768 conversion_insns
= get_insns();
4773 emit_move_insn (parmreg
, DECL_RTL (parm
));
4774 SET_DECL_RTL (parm
, parmreg
);
4775 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4779 #ifdef FUNCTION_ARG_CALLEE_COPIES
4780 /* If we are passed an arg by reference and it is our responsibility
4781 to make a copy, do it now.
4782 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4783 original argument, so we must recreate them in the call to
4784 FUNCTION_ARG_CALLEE_COPIES. */
4785 /* ??? Later add code to handle the case that if the argument isn't
4786 modified, don't do the copy. */
4788 else if (passed_pointer
4789 && FUNCTION_ARG_CALLEE_COPIES (args_so_far
,
4790 TYPE_MODE (DECL_ARG_TYPE (parm
)),
4791 DECL_ARG_TYPE (parm
),
4793 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm
)))
4796 tree type
= DECL_ARG_TYPE (parm
);
4798 /* This sequence may involve a library call perhaps clobbering
4799 registers that haven't been copied to pseudos yet. */
4801 push_to_sequence (conversion_insns
);
4803 if (!COMPLETE_TYPE_P (type
)
4804 || TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
4805 /* This is a variable sized object. */
4806 copy
= gen_rtx_MEM (BLKmode
,
4807 allocate_dynamic_stack_space
4808 (expr_size (parm
), NULL_RTX
,
4809 TYPE_ALIGN (type
)));
4811 copy
= assign_stack_temp (TYPE_MODE (type
),
4812 int_size_in_bytes (type
), 1);
4813 set_mem_attributes (copy
, parm
, 1);
4815 store_expr (parm
, copy
, 0);
4816 emit_move_insn (parmreg
, XEXP (copy
, 0));
4817 conversion_insns
= get_insns ();
4821 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4823 /* In any case, record the parm's desired stack location
4824 in case we later discover it must live in the stack.
4826 If it is a COMPLEX value, store the stack location for both
4829 if (GET_CODE (parmreg
) == CONCAT
)
4830 regno
= MAX (REGNO (XEXP (parmreg
, 0)), REGNO (XEXP (parmreg
, 1)));
4832 regno
= REGNO (parmreg
);
4834 if (regno
>= max_parm_reg
)
4837 int old_max_parm_reg
= max_parm_reg
;
4839 /* It's slow to expand this one register at a time,
4840 but it's also rare and we need max_parm_reg to be
4841 precisely correct. */
4842 max_parm_reg
= regno
+ 1;
4843 new = (rtx
*) ggc_realloc (parm_reg_stack_loc
,
4844 max_parm_reg
* sizeof (rtx
));
4845 memset ((char *) (new + old_max_parm_reg
), 0,
4846 (max_parm_reg
- old_max_parm_reg
) * sizeof (rtx
));
4847 parm_reg_stack_loc
= new;
4850 if (GET_CODE (parmreg
) == CONCAT
)
4852 enum machine_mode submode
= GET_MODE (XEXP (parmreg
, 0));
4854 regnor
= REGNO (gen_realpart (submode
, parmreg
));
4855 regnoi
= REGNO (gen_imagpart (submode
, parmreg
));
4857 if (stack_parm
!= 0)
4859 parm_reg_stack_loc
[regnor
]
4860 = gen_realpart (submode
, stack_parm
);
4861 parm_reg_stack_loc
[regnoi
]
4862 = gen_imagpart (submode
, stack_parm
);
4866 parm_reg_stack_loc
[regnor
] = 0;
4867 parm_reg_stack_loc
[regnoi
] = 0;
4871 parm_reg_stack_loc
[REGNO (parmreg
)] = stack_parm
;
4873 /* Mark the register as eliminable if we did no conversion
4874 and it was copied from memory at a fixed offset,
4875 and the arg pointer was not copied to a pseudo-reg.
4876 If the arg pointer is a pseudo reg or the offset formed
4877 an invalid address, such memory-equivalences
4878 as we make here would screw up life analysis for it. */
4879 if (nominal_mode
== passed_mode
4882 && GET_CODE (stack_parm
) == MEM
4883 && stack_offset
.var
== 0
4884 && reg_mentioned_p (virtual_incoming_args_rtx
,
4885 XEXP (stack_parm
, 0)))
4887 rtx linsn
= get_last_insn ();
4890 /* Mark complex types separately. */
4891 if (GET_CODE (parmreg
) == CONCAT
)
4892 /* Scan backwards for the set of the real and
4894 for (sinsn
= linsn
; sinsn
!= 0;
4895 sinsn
= prev_nonnote_insn (sinsn
))
4897 set
= single_set (sinsn
);
4899 && SET_DEST (set
) == regno_reg_rtx
[regnoi
])
4901 = gen_rtx_EXPR_LIST (REG_EQUIV
,
4902 parm_reg_stack_loc
[regnoi
],
4905 && SET_DEST (set
) == regno_reg_rtx
[regnor
])
4907 = gen_rtx_EXPR_LIST (REG_EQUIV
,
4908 parm_reg_stack_loc
[regnor
],
4911 else if ((set
= single_set (linsn
)) != 0
4912 && SET_DEST (set
) == parmreg
)
4914 = gen_rtx_EXPR_LIST (REG_EQUIV
,
4915 stack_parm
, REG_NOTES (linsn
));
4918 /* For pointer data type, suggest pointer register. */
4919 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
4920 mark_reg_pointer (parmreg
,
4921 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
4923 /* If something wants our address, try to use ADDRESSOF. */
4924 if (TREE_ADDRESSABLE (parm
))
4926 /* If we end up putting something into the stack,
4927 fixup_var_refs_insns will need to make a pass over
4928 all the instructions. It looks through the pending
4929 sequences -- but it can't see the ones in the
4930 CONVERSION_INSNS, if they're not on the sequence
4931 stack. So, we go back to that sequence, just so that
4932 the fixups will happen. */
4933 push_to_sequence (conversion_insns
);
4934 put_var_into_stack (parm
);
4935 conversion_insns
= get_insns ();
4941 /* Value must be stored in the stack slot STACK_PARM
4942 during function execution. */
4944 if (promoted_mode
!= nominal_mode
)
4946 /* Conversion is required. */
4947 rtx tempreg
= gen_reg_rtx (GET_MODE (entry_parm
));
4949 emit_move_insn (tempreg
, validize_mem (entry_parm
));
4951 push_to_sequence (conversion_insns
);
4952 entry_parm
= convert_to_mode (nominal_mode
, tempreg
,
4953 TREE_UNSIGNED (TREE_TYPE (parm
)));
4955 /* ??? This may need a big-endian conversion on sparc64. */
4956 stack_parm
= adjust_address (stack_parm
, nominal_mode
, 0);
4958 conversion_insns
= get_insns ();
4963 if (entry_parm
!= stack_parm
)
4965 if (stack_parm
== 0)
4968 = assign_stack_local (GET_MODE (entry_parm
),
4969 GET_MODE_SIZE (GET_MODE (entry_parm
)), 0);
4970 set_mem_attributes (stack_parm
, parm
, 1);
4973 if (promoted_mode
!= nominal_mode
)
4975 push_to_sequence (conversion_insns
);
4976 emit_move_insn (validize_mem (stack_parm
),
4977 validize_mem (entry_parm
));
4978 conversion_insns
= get_insns ();
4982 emit_move_insn (validize_mem (stack_parm
),
4983 validize_mem (entry_parm
));
4986 SET_DECL_RTL (parm
, stack_parm
);
4989 /* If this "parameter" was the place where we are receiving the
4990 function's incoming structure pointer, set up the result. */
4991 if (parm
== function_result_decl
)
4993 tree result
= DECL_RESULT (fndecl
);
4994 rtx addr
= DECL_RTL (parm
);
4997 #ifdef POINTERS_EXTEND_UNSIGNED
4998 if (GET_MODE (addr
) != Pmode
)
4999 addr
= convert_memory_address (Pmode
, addr
);
5002 x
= gen_rtx_MEM (DECL_MODE (result
), addr
);
5003 set_mem_attributes (x
, result
, 1);
5004 SET_DECL_RTL (result
, x
);
5008 /* Output all parameter conversion instructions (possibly including calls)
5009 now that all parameters have been copied out of hard registers. */
5010 emit_insn (conversion_insns
);
5012 last_parm_insn
= get_last_insn ();
5014 current_function_args_size
= stack_args_size
.constant
;
5016 /* Adjust function incoming argument size for alignment and
5019 #ifdef REG_PARM_STACK_SPACE
5020 #ifndef MAYBE_REG_PARM_STACK_SPACE
5021 current_function_args_size
= MAX (current_function_args_size
,
5022 REG_PARM_STACK_SPACE (fndecl
));
5026 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5028 current_function_args_size
5029 = ((current_function_args_size
+ STACK_BYTES
- 1)
5030 / STACK_BYTES
) * STACK_BYTES
;
5032 #ifdef ARGS_GROW_DOWNWARD
5033 current_function_arg_offset_rtx
5034 = (stack_args_size
.var
== 0 ? GEN_INT (-stack_args_size
.constant
)
5035 : expand_expr (size_diffop (stack_args_size
.var
,
5036 size_int (-stack_args_size
.constant
)),
5037 NULL_RTX
, VOIDmode
, 0));
5039 current_function_arg_offset_rtx
= ARGS_SIZE_RTX (stack_args_size
);
5042 /* See how many bytes, if any, of its args a function should try to pop
5045 current_function_pops_args
= RETURN_POPS_ARGS (fndecl
, TREE_TYPE (fndecl
),
5046 current_function_args_size
);
5048 /* For stdarg.h function, save info about
5049 regs and stack space used by the named args. */
5051 current_function_args_info
= args_so_far
;
5053 /* Set the rtx used for the function return value. Put this in its
5054 own variable so any optimizers that need this information don't have
5055 to include tree.h. Do this here so it gets done when an inlined
5056 function gets output. */
5058 current_function_return_rtx
5059 = (DECL_RTL_SET_P (DECL_RESULT (fndecl
))
5060 ? DECL_RTL (DECL_RESULT (fndecl
)) : NULL_RTX
);
5062 /* If scalar return value was computed in a pseudo-reg, or was a named
5063 return value that got dumped to the stack, copy that to the hard
5065 if (DECL_RTL_SET_P (DECL_RESULT (fndecl
)))
5067 tree decl_result
= DECL_RESULT (fndecl
);
5068 rtx decl_rtl
= DECL_RTL (decl_result
);
5070 if (REG_P (decl_rtl
)
5071 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
5072 : DECL_REGISTER (decl_result
))
5076 #ifdef FUNCTION_OUTGOING_VALUE
5077 real_decl_rtl
= FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result
),
5080 real_decl_rtl
= FUNCTION_VALUE (TREE_TYPE (decl_result
),
5083 REG_FUNCTION_VALUE_P (real_decl_rtl
) = 1;
5084 /* The delay slot scheduler assumes that current_function_return_rtx
5085 holds the hard register containing the return value, not a
5086 temporary pseudo. */
5087 current_function_return_rtx
= real_decl_rtl
;
5092 /* Indicate whether REGNO is an incoming argument to the current function
5093 that was promoted to a wider mode. If so, return the RTX for the
5094 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5095 that REGNO is promoted from and whether the promotion was signed or
5098 #ifdef PROMOTE_FUNCTION_ARGS
5101 promoted_input_arg (regno
, pmode
, punsignedp
)
5103 enum machine_mode
*pmode
;
5108 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
5109 arg
= TREE_CHAIN (arg
))
5110 if (GET_CODE (DECL_INCOMING_RTL (arg
)) == REG
5111 && REGNO (DECL_INCOMING_RTL (arg
)) == regno
5112 && TYPE_MODE (DECL_ARG_TYPE (arg
)) == TYPE_MODE (TREE_TYPE (arg
)))
5114 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (arg
));
5115 int unsignedp
= TREE_UNSIGNED (TREE_TYPE (arg
));
5117 mode
= promote_mode (TREE_TYPE (arg
), mode
, &unsignedp
, 1);
5118 if (mode
== GET_MODE (DECL_INCOMING_RTL (arg
))
5119 && mode
!= DECL_MODE (arg
))
5121 *pmode
= DECL_MODE (arg
);
5122 *punsignedp
= unsignedp
;
5123 return DECL_INCOMING_RTL (arg
);
5132 /* Compute the size and offset from the start of the stacked arguments for a
5133 parm passed in mode PASSED_MODE and with type TYPE.
5135 INITIAL_OFFSET_PTR points to the current offset into the stacked
5138 The starting offset and size for this parm are returned in *OFFSET_PTR
5139 and *ARG_SIZE_PTR, respectively.
5141 IN_REGS is nonzero if the argument will be passed in registers. It will
5142 never be set if REG_PARM_STACK_SPACE is not defined.
5144 FNDECL is the function in which the argument was defined.
5146 There are two types of rounding that are done. The first, controlled by
5147 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5148 list to be aligned to the specific boundary (in bits). This rounding
5149 affects the initial and starting offsets, but not the argument size.
5151 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5152 optionally rounds the size of the parm to PARM_BOUNDARY. The
5153 initial offset is not affected by this rounding, while the size always
5154 is and the starting offset may be. */
5156 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5157 initial_offset_ptr is positive because locate_and_pad_parm's
5158 callers pass in the total size of args so far as
5159 initial_offset_ptr. arg_size_ptr is always positive. */
5162 locate_and_pad_parm (passed_mode
, type
, in_regs
, fndecl
,
5163 initial_offset_ptr
, offset_ptr
, arg_size_ptr
,
5165 enum machine_mode passed_mode
;
5167 int in_regs ATTRIBUTE_UNUSED
;
5168 tree fndecl ATTRIBUTE_UNUSED
;
5169 struct args_size
*initial_offset_ptr
;
5170 struct args_size
*offset_ptr
;
5171 struct args_size
*arg_size_ptr
;
5172 struct args_size
*alignment_pad
;
5176 = type
? size_in_bytes (type
) : size_int (GET_MODE_SIZE (passed_mode
));
5177 enum direction where_pad
= FUNCTION_ARG_PADDING (passed_mode
, type
);
5178 int boundary
= FUNCTION_ARG_BOUNDARY (passed_mode
, type
);
5179 #ifdef ARGS_GROW_DOWNWARD
5183 #ifdef REG_PARM_STACK_SPACE
5184 /* If we have found a stack parm before we reach the end of the
5185 area reserved for registers, skip that area. */
5188 int reg_parm_stack_space
= 0;
5190 #ifdef MAYBE_REG_PARM_STACK_SPACE
5191 reg_parm_stack_space
= MAYBE_REG_PARM_STACK_SPACE
;
5193 reg_parm_stack_space
= REG_PARM_STACK_SPACE (fndecl
);
5195 if (reg_parm_stack_space
> 0)
5197 if (initial_offset_ptr
->var
)
5199 initial_offset_ptr
->var
5200 = size_binop (MAX_EXPR
, ARGS_SIZE_TREE (*initial_offset_ptr
),
5201 ssize_int (reg_parm_stack_space
));
5202 initial_offset_ptr
->constant
= 0;
5204 else if (initial_offset_ptr
->constant
< reg_parm_stack_space
)
5205 initial_offset_ptr
->constant
= reg_parm_stack_space
;
5208 #endif /* REG_PARM_STACK_SPACE */
5210 arg_size_ptr
->var
= 0;
5211 arg_size_ptr
->constant
= 0;
5212 alignment_pad
->var
= 0;
5213 alignment_pad
->constant
= 0;
5215 #ifdef ARGS_GROW_DOWNWARD
5216 if (initial_offset_ptr
->var
)
5218 offset_ptr
->constant
= 0;
5219 offset_ptr
->var
= size_binop (MINUS_EXPR
, ssize_int (0),
5220 initial_offset_ptr
->var
);
5224 offset_ptr
->constant
= -initial_offset_ptr
->constant
;
5225 offset_ptr
->var
= 0;
5228 if (where_pad
!= none
5229 && (!host_integerp (sizetree
, 1)
5230 || (tree_low_cst (sizetree
, 1) * BITS_PER_UNIT
) % PARM_BOUNDARY
))
5231 s2
= round_up (s2
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
5232 SUB_PARM_SIZE (*offset_ptr
, s2
);
5235 #ifdef REG_PARM_STACK_SPACE
5236 || REG_PARM_STACK_SPACE (fndecl
) > 0
5239 pad_to_arg_alignment (offset_ptr
, boundary
, alignment_pad
);
5241 if (initial_offset_ptr
->var
)
5242 arg_size_ptr
->var
= size_binop (MINUS_EXPR
,
5243 size_binop (MINUS_EXPR
,
5245 initial_offset_ptr
->var
),
5249 arg_size_ptr
->constant
= (-initial_offset_ptr
->constant
5250 - offset_ptr
->constant
);
5252 /* Pad_below needs the pre-rounded size to know how much to pad below.
5253 We only pad parameters which are not in registers as they have their
5254 padding done elsewhere. */
5255 if (where_pad
== downward
5257 pad_below (offset_ptr
, passed_mode
, sizetree
);
5259 #else /* !ARGS_GROW_DOWNWARD */
5261 #ifdef REG_PARM_STACK_SPACE
5262 || REG_PARM_STACK_SPACE (fndecl
) > 0
5265 pad_to_arg_alignment (initial_offset_ptr
, boundary
, alignment_pad
);
5266 *offset_ptr
= *initial_offset_ptr
;
5268 #ifdef PUSH_ROUNDING
5269 if (passed_mode
!= BLKmode
)
5270 sizetree
= size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree
)));
5273 /* Pad_below needs the pre-rounded size to know how much to pad below
5274 so this must be done before rounding up. */
5275 if (where_pad
== downward
5276 /* However, BLKmode args passed in regs have their padding done elsewhere.
5277 The stack slot must be able to hold the entire register. */
5278 && !(in_regs
&& passed_mode
== BLKmode
))
5279 pad_below (offset_ptr
, passed_mode
, sizetree
);
5281 if (where_pad
!= none
5282 && (!host_integerp (sizetree
, 1)
5283 || (tree_low_cst (sizetree
, 1) * BITS_PER_UNIT
) % PARM_BOUNDARY
))
5284 sizetree
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
5286 ADD_PARM_SIZE (*arg_size_ptr
, sizetree
);
5287 #endif /* ARGS_GROW_DOWNWARD */
5290 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5291 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5294 pad_to_arg_alignment (offset_ptr
, boundary
, alignment_pad
)
5295 struct args_size
*offset_ptr
;
5297 struct args_size
*alignment_pad
;
5299 tree save_var
= NULL_TREE
;
5300 HOST_WIDE_INT save_constant
= 0;
5302 int boundary_in_bytes
= boundary
/ BITS_PER_UNIT
;
5304 if (boundary
> PARM_BOUNDARY
&& boundary
> STACK_BOUNDARY
)
5306 save_var
= offset_ptr
->var
;
5307 save_constant
= offset_ptr
->constant
;
5310 alignment_pad
->var
= NULL_TREE
;
5311 alignment_pad
->constant
= 0;
5313 if (boundary
> BITS_PER_UNIT
)
5315 if (offset_ptr
->var
)
5318 #ifdef ARGS_GROW_DOWNWARD
5323 (ARGS_SIZE_TREE (*offset_ptr
),
5324 boundary
/ BITS_PER_UNIT
);
5325 offset_ptr
->constant
= 0; /*?*/
5326 if (boundary
> PARM_BOUNDARY
&& boundary
> STACK_BOUNDARY
)
5327 alignment_pad
->var
= size_binop (MINUS_EXPR
, offset_ptr
->var
,
5332 offset_ptr
->constant
=
5333 #ifdef ARGS_GROW_DOWNWARD
5334 FLOOR_ROUND (offset_ptr
->constant
, boundary_in_bytes
);
5336 CEIL_ROUND (offset_ptr
->constant
, boundary_in_bytes
);
5338 if (boundary
> PARM_BOUNDARY
&& boundary
> STACK_BOUNDARY
)
5339 alignment_pad
->constant
= offset_ptr
->constant
- save_constant
;
5345 pad_below (offset_ptr
, passed_mode
, sizetree
)
5346 struct args_size
*offset_ptr
;
5347 enum machine_mode passed_mode
;
5350 if (passed_mode
!= BLKmode
)
5352 if (GET_MODE_BITSIZE (passed_mode
) % PARM_BOUNDARY
)
5353 offset_ptr
->constant
5354 += (((GET_MODE_BITSIZE (passed_mode
) + PARM_BOUNDARY
- 1)
5355 / PARM_BOUNDARY
* PARM_BOUNDARY
/ BITS_PER_UNIT
)
5356 - GET_MODE_SIZE (passed_mode
));
5360 if (TREE_CODE (sizetree
) != INTEGER_CST
5361 || (TREE_INT_CST_LOW (sizetree
) * BITS_PER_UNIT
) % PARM_BOUNDARY
)
5363 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5364 tree s2
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
5366 ADD_PARM_SIZE (*offset_ptr
, s2
);
5367 SUB_PARM_SIZE (*offset_ptr
, sizetree
);
5372 /* Walk the tree of blocks describing the binding levels within a function
5373 and warn about uninitialized variables.
5374 This is done after calling flow_analysis and before global_alloc
5375 clobbers the pseudo-regs to hard regs. */
5378 uninitialized_vars_warning (block
)
5382 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
5384 if (warn_uninitialized
5385 && TREE_CODE (decl
) == VAR_DECL
5386 /* These warnings are unreliable for and aggregates
5387 because assigning the fields one by one can fail to convince
5388 flow.c that the entire aggregate was initialized.
5389 Unions are troublesome because members may be shorter. */
5390 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl
))
5391 && DECL_RTL (decl
) != 0
5392 && GET_CODE (DECL_RTL (decl
)) == REG
5393 /* Global optimizations can make it difficult to determine if a
5394 particular variable has been initialized. However, a VAR_DECL
5395 with a nonzero DECL_INITIAL had an initializer, so do not
5396 claim it is potentially uninitialized.
5398 We do not care about the actual value in DECL_INITIAL, so we do
5399 not worry that it may be a dangling pointer. */
5400 && DECL_INITIAL (decl
) == NULL_TREE
5401 && regno_uninitialized (REGNO (DECL_RTL (decl
))))
5402 warning_with_decl (decl
,
5403 "`%s' might be used uninitialized in this function");
5405 && TREE_CODE (decl
) == VAR_DECL
5406 && DECL_RTL (decl
) != 0
5407 && GET_CODE (DECL_RTL (decl
)) == REG
5408 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl
))))
5409 warning_with_decl (decl
,
5410 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5412 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= TREE_CHAIN (sub
))
5413 uninitialized_vars_warning (sub
);
5416 /* Do the appropriate part of uninitialized_vars_warning
5417 but for arguments instead of local variables. */
5420 setjmp_args_warning ()
5423 for (decl
= DECL_ARGUMENTS (current_function_decl
);
5424 decl
; decl
= TREE_CHAIN (decl
))
5425 if (DECL_RTL (decl
) != 0
5426 && GET_CODE (DECL_RTL (decl
)) == REG
5427 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl
))))
5428 warning_with_decl (decl
,
5429 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5432 /* If this function call setjmp, put all vars into the stack
5433 unless they were declared `register'. */
5436 setjmp_protect (block
)
5440 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
5441 if ((TREE_CODE (decl
) == VAR_DECL
5442 || TREE_CODE (decl
) == PARM_DECL
)
5443 && DECL_RTL (decl
) != 0
5444 && (GET_CODE (DECL_RTL (decl
)) == REG
5445 || (GET_CODE (DECL_RTL (decl
)) == MEM
5446 && GET_CODE (XEXP (DECL_RTL (decl
), 0)) == ADDRESSOF
))
5447 /* If this variable came from an inline function, it must be
5448 that its life doesn't overlap the setjmp. If there was a
5449 setjmp in the function, it would already be in memory. We
5450 must exclude such variable because their DECL_RTL might be
5451 set to strange things such as virtual_stack_vars_rtx. */
5452 && ! DECL_FROM_INLINE (decl
)
5454 #ifdef NON_SAVING_SETJMP
5455 /* If longjmp doesn't restore the registers,
5456 don't put anything in them. */
5460 ! DECL_REGISTER (decl
)))
5461 put_var_into_stack (decl
);
5462 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= TREE_CHAIN (sub
))
5463 setjmp_protect (sub
);
5466 /* Like the previous function, but for args instead of local variables. */
5469 setjmp_protect_args ()
5472 for (decl
= DECL_ARGUMENTS (current_function_decl
);
5473 decl
; decl
= TREE_CHAIN (decl
))
5474 if ((TREE_CODE (decl
) == VAR_DECL
5475 || TREE_CODE (decl
) == PARM_DECL
)
5476 && DECL_RTL (decl
) != 0
5477 && (GET_CODE (DECL_RTL (decl
)) == REG
5478 || (GET_CODE (DECL_RTL (decl
)) == MEM
5479 && GET_CODE (XEXP (DECL_RTL (decl
), 0)) == ADDRESSOF
))
5481 /* If longjmp doesn't restore the registers,
5482 don't put anything in them. */
5483 #ifdef NON_SAVING_SETJMP
5487 ! DECL_REGISTER (decl
)))
5488 put_var_into_stack (decl
);
5491 /* Return the context-pointer register corresponding to DECL,
5492 or 0 if it does not need one. */
5495 lookup_static_chain (decl
)
5498 tree context
= decl_function_context (decl
);
5502 || (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_NO_STATIC_CHAIN (decl
)))
5505 /* We treat inline_function_decl as an alias for the current function
5506 because that is the inline function whose vars, types, etc.
5507 are being merged into the current function.
5508 See expand_inline_function. */
5509 if (context
== current_function_decl
|| context
== inline_function_decl
)
5510 return virtual_stack_vars_rtx
;
5512 for (link
= context_display
; link
; link
= TREE_CHAIN (link
))
5513 if (TREE_PURPOSE (link
) == context
)
5514 return RTL_EXPR_RTL (TREE_VALUE (link
));
5519 /* Convert a stack slot address ADDR for variable VAR
5520 (from a containing function)
5521 into an address valid in this function (using a static chain). */
5524 fix_lexical_addr (addr
, var
)
5529 HOST_WIDE_INT displacement
;
5530 tree context
= decl_function_context (var
);
5531 struct function
*fp
;
5534 /* If this is the present function, we need not do anything. */
5535 if (context
== current_function_decl
|| context
== inline_function_decl
)
5538 fp
= find_function_data (context
);
5540 if (GET_CODE (addr
) == ADDRESSOF
&& GET_CODE (XEXP (addr
, 0)) == MEM
)
5541 addr
= XEXP (XEXP (addr
, 0), 0);
5543 /* Decode given address as base reg plus displacement. */
5544 if (GET_CODE (addr
) == REG
)
5545 basereg
= addr
, displacement
= 0;
5546 else if (GET_CODE (addr
) == PLUS
&& GET_CODE (XEXP (addr
, 1)) == CONST_INT
)
5547 basereg
= XEXP (addr
, 0), displacement
= INTVAL (XEXP (addr
, 1));
5551 /* We accept vars reached via the containing function's
5552 incoming arg pointer and via its stack variables pointer. */
5553 if (basereg
== fp
->internal_arg_pointer
)
5555 /* If reached via arg pointer, get the arg pointer value
5556 out of that function's stack frame.
5558 There are two cases: If a separate ap is needed, allocate a
5559 slot in the outer function for it and dereference it that way.
5560 This is correct even if the real ap is actually a pseudo.
5561 Otherwise, just adjust the offset from the frame pointer to
5564 #ifdef NEED_SEPARATE_AP
5567 addr
= get_arg_pointer_save_area (fp
);
5568 addr
= fix_lexical_addr (XEXP (addr
, 0), var
);
5569 addr
= memory_address (Pmode
, addr
);
5571 base
= gen_rtx_MEM (Pmode
, addr
);
5572 set_mem_alias_set (base
, get_frame_alias_set ());
5573 base
= copy_to_reg (base
);
5575 displacement
+= (FIRST_PARM_OFFSET (context
) - STARTING_FRAME_OFFSET
);
5576 base
= lookup_static_chain (var
);
5580 else if (basereg
== virtual_stack_vars_rtx
)
5582 /* This is the same code as lookup_static_chain, duplicated here to
5583 avoid an extra call to decl_function_context. */
5586 for (link
= context_display
; link
; link
= TREE_CHAIN (link
))
5587 if (TREE_PURPOSE (link
) == context
)
5589 base
= RTL_EXPR_RTL (TREE_VALUE (link
));
5597 /* Use same offset, relative to appropriate static chain or argument
5599 return plus_constant (base
, displacement
);
5602 /* Return the address of the trampoline for entering nested fn FUNCTION.
5603 If necessary, allocate a trampoline (in the stack frame)
5604 and emit rtl to initialize its contents (at entry to this function). */
5607 trampoline_address (function
)
5613 struct function
*fp
;
5616 /* Find an existing trampoline and return it. */
5617 for (link
= trampoline_list
; link
; link
= TREE_CHAIN (link
))
5618 if (TREE_PURPOSE (link
) == function
)
5620 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link
)), 0));
5622 for (fp
= outer_function_chain
; fp
; fp
= fp
->outer
)
5623 for (link
= fp
->x_trampoline_list
; link
; link
= TREE_CHAIN (link
))
5624 if (TREE_PURPOSE (link
) == function
)
5626 tramp
= fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link
)), 0),
5628 return adjust_trampoline_addr (tramp
);
5631 /* None exists; we must make one. */
5633 /* Find the `struct function' for the function containing FUNCTION. */
5635 fn_context
= decl_function_context (function
);
5636 if (fn_context
!= current_function_decl
5637 && fn_context
!= inline_function_decl
)
5638 fp
= find_function_data (fn_context
);
5640 /* Allocate run-time space for this trampoline
5641 (usually in the defining function's stack frame). */
5642 #ifdef ALLOCATE_TRAMPOLINE
5643 tramp
= ALLOCATE_TRAMPOLINE (fp
);
5645 /* If rounding needed, allocate extra space
5646 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5647 #define TRAMPOLINE_REAL_SIZE \
5648 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5649 tramp
= assign_stack_local_1 (BLKmode
, TRAMPOLINE_REAL_SIZE
, 0,
5653 /* Record the trampoline for reuse and note it for later initialization
5654 by expand_function_end. */
5657 rtlexp
= make_node (RTL_EXPR
);
5658 RTL_EXPR_RTL (rtlexp
) = tramp
;
5659 fp
->x_trampoline_list
= tree_cons (function
, rtlexp
,
5660 fp
->x_trampoline_list
);
5664 /* Make the RTL_EXPR node temporary, not momentary, so that the
5665 trampoline_list doesn't become garbage. */
5666 rtlexp
= make_node (RTL_EXPR
);
5668 RTL_EXPR_RTL (rtlexp
) = tramp
;
5669 trampoline_list
= tree_cons (function
, rtlexp
, trampoline_list
);
5672 tramp
= fix_lexical_addr (XEXP (tramp
, 0), function
);
5673 return adjust_trampoline_addr (tramp
);
5676 /* Given a trampoline address,
5677 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5680 round_trampoline_addr (tramp
)
5683 /* Round address up to desired boundary. */
5684 rtx temp
= gen_reg_rtx (Pmode
);
5685 rtx addend
= GEN_INT (TRAMPOLINE_ALIGNMENT
/ BITS_PER_UNIT
- 1);
5686 rtx mask
= GEN_INT (-TRAMPOLINE_ALIGNMENT
/ BITS_PER_UNIT
);
5688 temp
= expand_simple_binop (Pmode
, PLUS
, tramp
, addend
,
5689 temp
, 0, OPTAB_LIB_WIDEN
);
5690 tramp
= expand_simple_binop (Pmode
, AND
, temp
, mask
,
5691 temp
, 0, OPTAB_LIB_WIDEN
);
5696 /* Given a trampoline address, round it then apply any
5697 platform-specific adjustments so that the result can be used for a
5701 adjust_trampoline_addr (tramp
)
5704 tramp
= round_trampoline_addr (tramp
);
5705 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5706 TRAMPOLINE_ADJUST_ADDRESS (tramp
);
5711 /* Put all this function's BLOCK nodes including those that are chained
5712 onto the first block into a vector, and return it.
5713 Also store in each NOTE for the beginning or end of a block
5714 the index of that block in the vector.
5715 The arguments are BLOCK, the chain of top-level blocks of the function,
5716 and INSNS, the insn chain of the function. */
5722 tree
*block_vector
, *last_block_vector
;
5724 tree block
= DECL_INITIAL (current_function_decl
);
5729 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5730 depth-first order. */
5731 block_vector
= get_block_vector (block
, &n_blocks
);
5732 block_stack
= (tree
*) xmalloc (n_blocks
* sizeof (tree
));
5734 last_block_vector
= identify_blocks_1 (get_insns (),
5736 block_vector
+ n_blocks
,
5739 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5740 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5741 if (0 && last_block_vector
!= block_vector
+ n_blocks
)
5744 free (block_vector
);
5748 /* Subroutine of identify_blocks. Do the block substitution on the
5749 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5751 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5752 BLOCK_VECTOR is incremented for each block seen. */
5755 identify_blocks_1 (insns
, block_vector
, end_block_vector
, orig_block_stack
)
5758 tree
*end_block_vector
;
5759 tree
*orig_block_stack
;
5762 tree
*block_stack
= orig_block_stack
;
5764 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
5766 if (GET_CODE (insn
) == NOTE
)
5768 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
)
5772 /* If there are more block notes than BLOCKs, something
5774 if (block_vector
== end_block_vector
)
5777 b
= *block_vector
++;
5778 NOTE_BLOCK (insn
) = b
;
5781 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
)
5783 /* If there are more NOTE_INSN_BLOCK_ENDs than
5784 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5785 if (block_stack
== orig_block_stack
)
5788 NOTE_BLOCK (insn
) = *--block_stack
;
5791 else if (GET_CODE (insn
) == CALL_INSN
5792 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
5794 rtx cp
= PATTERN (insn
);
5796 block_vector
= identify_blocks_1 (XEXP (cp
, 0), block_vector
,
5797 end_block_vector
, block_stack
);
5799 block_vector
= identify_blocks_1 (XEXP (cp
, 1), block_vector
,
5800 end_block_vector
, block_stack
);
5802 block_vector
= identify_blocks_1 (XEXP (cp
, 2), block_vector
,
5803 end_block_vector
, block_stack
);
5807 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5808 something is badly wrong. */
5809 if (block_stack
!= orig_block_stack
)
5812 return block_vector
;
5815 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
5816 and create duplicate blocks. */
5817 /* ??? Need an option to either create block fragments or to create
5818 abstract origin duplicates of a source block. It really depends
5819 on what optimization has been performed. */
5824 tree block
= DECL_INITIAL (current_function_decl
);
5825 varray_type block_stack
;
5827 if (block
== NULL_TREE
)
5830 VARRAY_TREE_INIT (block_stack
, 10, "block_stack");
5832 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
5833 reorder_blocks_0 (block
);
5835 /* Prune the old trees away, so that they don't get in the way. */
5836 BLOCK_SUBBLOCKS (block
) = NULL_TREE
;
5837 BLOCK_CHAIN (block
) = NULL_TREE
;
5839 /* Recreate the block tree from the note nesting. */
5840 reorder_blocks_1 (get_insns (), block
, &block_stack
);
5841 BLOCK_SUBBLOCKS (block
) = blocks_nreverse (BLOCK_SUBBLOCKS (block
));
5843 /* Remove deleted blocks from the block fragment chains. */
5844 reorder_fix_fragments (block
);
5847 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
5850 reorder_blocks_0 (block
)
5855 TREE_ASM_WRITTEN (block
) = 0;
5856 reorder_blocks_0 (BLOCK_SUBBLOCKS (block
));
5857 block
= BLOCK_CHAIN (block
);
5862 reorder_blocks_1 (insns
, current_block
, p_block_stack
)
5865 varray_type
*p_block_stack
;
5869 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
5871 if (GET_CODE (insn
) == NOTE
)
5873 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
)
5875 tree block
= NOTE_BLOCK (insn
);
5877 /* If we have seen this block before, that means it now
5878 spans multiple address regions. Create a new fragment. */
5879 if (TREE_ASM_WRITTEN (block
))
5881 tree new_block
= copy_node (block
);
5884 origin
= (BLOCK_FRAGMENT_ORIGIN (block
)
5885 ? BLOCK_FRAGMENT_ORIGIN (block
)
5887 BLOCK_FRAGMENT_ORIGIN (new_block
) = origin
;
5888 BLOCK_FRAGMENT_CHAIN (new_block
)
5889 = BLOCK_FRAGMENT_CHAIN (origin
);
5890 BLOCK_FRAGMENT_CHAIN (origin
) = new_block
;
5892 NOTE_BLOCK (insn
) = new_block
;
5896 BLOCK_SUBBLOCKS (block
) = 0;
5897 TREE_ASM_WRITTEN (block
) = 1;
5898 BLOCK_SUPERCONTEXT (block
) = current_block
;
5899 BLOCK_CHAIN (block
) = BLOCK_SUBBLOCKS (current_block
);
5900 BLOCK_SUBBLOCKS (current_block
) = block
;
5901 current_block
= block
;
5902 VARRAY_PUSH_TREE (*p_block_stack
, block
);
5904 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
)
5906 NOTE_BLOCK (insn
) = VARRAY_TOP_TREE (*p_block_stack
);
5907 VARRAY_POP (*p_block_stack
);
5908 BLOCK_SUBBLOCKS (current_block
)
5909 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block
));
5910 current_block
= BLOCK_SUPERCONTEXT (current_block
);
5913 else if (GET_CODE (insn
) == CALL_INSN
5914 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
5916 rtx cp
= PATTERN (insn
);
5917 reorder_blocks_1 (XEXP (cp
, 0), current_block
, p_block_stack
);
5919 reorder_blocks_1 (XEXP (cp
, 1), current_block
, p_block_stack
);
5921 reorder_blocks_1 (XEXP (cp
, 2), current_block
, p_block_stack
);
5926 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
5927 appears in the block tree, select one of the fragments to become
5928 the new origin block. */
5931 reorder_fix_fragments (block
)
5936 tree dup_origin
= BLOCK_FRAGMENT_ORIGIN (block
);
5937 tree new_origin
= NULL_TREE
;
5941 if (! TREE_ASM_WRITTEN (dup_origin
))
5943 new_origin
= BLOCK_FRAGMENT_CHAIN (dup_origin
);
5945 /* Find the first of the remaining fragments. There must
5946 be at least one -- the current block. */
5947 while (! TREE_ASM_WRITTEN (new_origin
))
5948 new_origin
= BLOCK_FRAGMENT_CHAIN (new_origin
);
5949 BLOCK_FRAGMENT_ORIGIN (new_origin
) = NULL_TREE
;
5952 else if (! dup_origin
)
5955 /* Re-root the rest of the fragments to the new origin. In the
5956 case that DUP_ORIGIN was null, that means BLOCK was the origin
5957 of a chain of fragments and we want to remove those fragments
5958 that didn't make it to the output. */
5961 tree
*pp
= &BLOCK_FRAGMENT_CHAIN (new_origin
);
5966 if (TREE_ASM_WRITTEN (chain
))
5968 BLOCK_FRAGMENT_ORIGIN (chain
) = new_origin
;
5970 pp
= &BLOCK_FRAGMENT_CHAIN (chain
);
5972 chain
= BLOCK_FRAGMENT_CHAIN (chain
);
5977 reorder_fix_fragments (BLOCK_SUBBLOCKS (block
));
5978 block
= BLOCK_CHAIN (block
);
5982 /* Reverse the order of elements in the chain T of blocks,
5983 and return the new head of the chain (old last element). */
5989 tree prev
= 0, decl
, next
;
5990 for (decl
= t
; decl
; decl
= next
)
5992 next
= BLOCK_CHAIN (decl
);
5993 BLOCK_CHAIN (decl
) = prev
;
5999 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6000 non-NULL, list them all into VECTOR, in a depth-first preorder
6001 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6005 all_blocks (block
, vector
)
6013 TREE_ASM_WRITTEN (block
) = 0;
6015 /* Record this block. */
6017 vector
[n_blocks
] = block
;
6021 /* Record the subblocks, and their subblocks... */
6022 n_blocks
+= all_blocks (BLOCK_SUBBLOCKS (block
),
6023 vector
? vector
+ n_blocks
: 0);
6024 block
= BLOCK_CHAIN (block
);
6030 /* Return a vector containing all the blocks rooted at BLOCK. The
6031 number of elements in the vector is stored in N_BLOCKS_P. The
6032 vector is dynamically allocated; it is the caller's responsibility
6033 to call `free' on the pointer returned. */
6036 get_block_vector (block
, n_blocks_p
)
6042 *n_blocks_p
= all_blocks (block
, NULL
);
6043 block_vector
= (tree
*) xmalloc (*n_blocks_p
* sizeof (tree
));
6044 all_blocks (block
, block_vector
);
6046 return block_vector
;
6049 static int next_block_index
= 2;
6051 /* Set BLOCK_NUMBER for all the blocks in FN. */
6061 /* For SDB and XCOFF debugging output, we start numbering the blocks
6062 from 1 within each function, rather than keeping a running
6064 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6065 if (write_symbols
== SDB_DEBUG
|| write_symbols
== XCOFF_DEBUG
)
6066 next_block_index
= 1;
6069 block_vector
= get_block_vector (DECL_INITIAL (fn
), &n_blocks
);
6071 /* The top-level BLOCK isn't numbered at all. */
6072 for (i
= 1; i
< n_blocks
; ++i
)
6073 /* We number the blocks from two. */
6074 BLOCK_NUMBER (block_vector
[i
]) = next_block_index
++;
6076 free (block_vector
);
6081 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6084 debug_find_var_in_block_tree (var
, block
)
6090 for (t
= BLOCK_VARS (block
); t
; t
= TREE_CHAIN (t
))
6094 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= TREE_CHAIN (t
))
6096 tree ret
= debug_find_var_in_block_tree (var
, t
);
6104 /* Allocate a function structure and reset its contents to the defaults. */
6107 prepare_function_start ()
6109 cfun
= (struct function
*) ggc_alloc_cleared (sizeof (struct function
));
6111 init_stmt_for_function ();
6112 init_eh_for_function ();
6114 cse_not_expected
= ! optimize
;
6116 /* Caller save not needed yet. */
6117 caller_save_needed
= 0;
6119 /* No stack slots have been made yet. */
6120 stack_slot_list
= 0;
6122 current_function_has_nonlocal_label
= 0;
6123 current_function_has_nonlocal_goto
= 0;
6125 /* There is no stack slot for handling nonlocal gotos. */
6126 nonlocal_goto_handler_slots
= 0;
6127 nonlocal_goto_stack_level
= 0;
6129 /* No labels have been declared for nonlocal use. */
6130 nonlocal_labels
= 0;
6131 nonlocal_goto_handler_labels
= 0;
6133 /* No function calls so far in this function. */
6134 function_call_count
= 0;
6136 /* No parm regs have been allocated.
6137 (This is important for output_inline_function.) */
6138 max_parm_reg
= LAST_VIRTUAL_REGISTER
+ 1;
6140 /* Initialize the RTL mechanism. */
6143 /* Initialize the queue of pending postincrement and postdecrements,
6144 and some other info in expr.c. */
6147 /* We haven't done register allocation yet. */
6150 init_varasm_status (cfun
);
6152 /* Clear out data used for inlining. */
6153 cfun
->inlinable
= 0;
6154 cfun
->original_decl_initial
= 0;
6155 cfun
->original_arg_vector
= 0;
6157 cfun
->stack_alignment_needed
= STACK_BOUNDARY
;
6158 cfun
->preferred_stack_boundary
= STACK_BOUNDARY
;
6160 /* Set if a call to setjmp is seen. */
6161 current_function_calls_setjmp
= 0;
6163 /* Set if a call to longjmp is seen. */
6164 current_function_calls_longjmp
= 0;
6166 current_function_calls_alloca
= 0;
6167 current_function_calls_eh_return
= 0;
6168 current_function_calls_constant_p
= 0;
6169 current_function_contains_functions
= 0;
6170 current_function_is_leaf
= 0;
6171 current_function_nothrow
= 0;
6172 current_function_sp_is_unchanging
= 0;
6173 current_function_uses_only_leaf_regs
= 0;
6174 current_function_has_computed_jump
= 0;
6175 current_function_is_thunk
= 0;
6177 current_function_returns_pcc_struct
= 0;
6178 current_function_returns_struct
= 0;
6179 current_function_epilogue_delay_list
= 0;
6180 current_function_uses_const_pool
= 0;
6181 current_function_uses_pic_offset_table
= 0;
6182 current_function_cannot_inline
= 0;
6184 /* We have not yet needed to make a label to jump to for tail-recursion. */
6185 tail_recursion_label
= 0;
6187 /* We haven't had a need to make a save area for ap yet. */
6188 arg_pointer_save_area
= 0;
6190 /* No stack slots allocated yet. */
6193 /* No SAVE_EXPRs in this function yet. */
6196 /* No RTL_EXPRs in this function yet. */
6199 /* Set up to allocate temporaries. */
6202 /* Indicate that we need to distinguish between the return value of the
6203 present function and the return value of a function being called. */
6204 rtx_equal_function_value_matters
= 1;
6206 /* Indicate that we have not instantiated virtual registers yet. */
6207 virtuals_instantiated
= 0;
6209 /* Indicate that we want CONCATs now. */
6210 generating_concat_p
= 1;
6212 /* Indicate we have no need of a frame pointer yet. */
6213 frame_pointer_needed
= 0;
6215 /* By default assume not stdarg. */
6216 current_function_stdarg
= 0;
6218 /* We haven't made any trampolines for this function yet. */
6219 trampoline_list
= 0;
6221 init_pending_stack_adjust ();
6222 inhibit_defer_pop
= 0;
6224 current_function_outgoing_args_size
= 0;
6226 current_function_funcdef_no
= funcdef_no
++;
6228 cfun
->arc_profile
= profile_arc_flag
|| flag_test_coverage
;
6230 cfun
->function_frequency
= FUNCTION_FREQUENCY_NORMAL
;
6232 cfun
->max_jumptable_ents
= 0;
6234 (*lang_hooks
.function
.init
) (cfun
);
6235 if (init_machine_status
)
6236 cfun
->machine
= (*init_machine_status
) ();
6239 /* Initialize the rtl expansion mechanism so that we can do simple things
6240 like generate sequences. This is used to provide a context during global
6241 initialization of some passes. */
6243 init_dummy_function_start ()
6245 prepare_function_start ();
6248 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6249 and initialize static variables for generating RTL for the statements
6253 init_function_start (subr
, filename
, line
)
6255 const char *filename
;
6258 prepare_function_start ();
6260 current_function_name
= (*lang_hooks
.decl_printable_name
) (subr
, 2);
6263 /* Nonzero if this is a nested function that uses a static chain. */
6265 current_function_needs_context
6266 = (decl_function_context (current_function_decl
) != 0
6267 && ! DECL_NO_STATIC_CHAIN (current_function_decl
));
6269 /* Within function body, compute a type's size as soon it is laid out. */
6270 immediate_size_expand
++;
6272 /* Prevent ever trying to delete the first instruction of a function.
6273 Also tell final how to output a linenum before the function prologue.
6274 Note linenums could be missing, e.g. when compiling a Java .class file. */
6276 emit_line_note (filename
, line
);
6278 /* Make sure first insn is a note even if we don't want linenums.
6279 This makes sure the first insn will never be deleted.
6280 Also, final expects a note to appear there. */
6281 emit_note (NULL
, NOTE_INSN_DELETED
);
6283 /* Set flags used by final.c. */
6284 if (aggregate_value_p (DECL_RESULT (subr
)))
6286 #ifdef PCC_STATIC_STRUCT_RETURN
6287 current_function_returns_pcc_struct
= 1;
6289 current_function_returns_struct
= 1;
6292 /* Warn if this value is an aggregate type,
6293 regardless of which calling convention we are using for it. */
6294 if (warn_aggregate_return
6295 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr
))))
6296 warning ("function returns an aggregate");
6298 current_function_returns_pointer
6299 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr
)));
6302 /* Make sure all values used by the optimization passes have sane
6305 init_function_for_compilation ()
6309 /* No prologue/epilogue insns yet. */
6310 VARRAY_GROW (prologue
, 0);
6311 VARRAY_GROW (epilogue
, 0);
6312 VARRAY_GROW (sibcall_epilogue
, 0);
6315 /* Expand a call to __main at the beginning of a possible main function. */
6317 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6318 #undef HAS_INIT_SECTION
6319 #define HAS_INIT_SECTION
6323 expand_main_function ()
6325 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6326 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
)
6328 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
6332 /* Forcibly align the stack. */
6333 #ifdef STACK_GROWS_DOWNWARD
6334 tmp
= expand_simple_binop (Pmode
, AND
, stack_pointer_rtx
, GEN_INT(-align
),
6335 stack_pointer_rtx
, 1, OPTAB_WIDEN
);
6337 tmp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
6338 GEN_INT (align
- 1), NULL_RTX
, 1, OPTAB_WIDEN
);
6339 tmp
= expand_simple_binop (Pmode
, AND
, tmp
, GEN_INT (-align
),
6340 stack_pointer_rtx
, 1, OPTAB_WIDEN
);
6342 if (tmp
!= stack_pointer_rtx
)
6343 emit_move_insn (stack_pointer_rtx
, tmp
);
6345 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6346 tmp
= force_reg (Pmode
, const0_rtx
);
6347 allocate_dynamic_stack_space (tmp
, NULL_RTX
, BIGGEST_ALIGNMENT
);
6351 for (tmp
= get_last_insn (); tmp
; tmp
= PREV_INSN (tmp
))
6352 if (NOTE_P (tmp
) && NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_FUNCTION_BEG
)
6355 emit_insn_before (seq
, tmp
);
6361 #ifndef HAS_INIT_SECTION
6362 emit_library_call (gen_rtx_SYMBOL_REF (Pmode
, NAME__MAIN
), LCT_NORMAL
,
6367 /* The PENDING_SIZES represent the sizes of variable-sized types.
6368 Create RTL for the various sizes now (using temporary variables),
6369 so that we can refer to the sizes from the RTL we are generating
6370 for the current function. The PENDING_SIZES are a TREE_LIST. The
6371 TREE_VALUE of each node is a SAVE_EXPR. */
6374 expand_pending_sizes (pending_sizes
)
6379 /* Evaluate now the sizes of any types declared among the arguments. */
6380 for (tem
= pending_sizes
; tem
; tem
= TREE_CHAIN (tem
))
6382 expand_expr (TREE_VALUE (tem
), const0_rtx
, VOIDmode
, 0);
6383 /* Flush the queue in case this parameter declaration has
6389 /* Start the RTL for a new function, and set variables used for
6391 SUBR is the FUNCTION_DECL node.
6392 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6393 the function's parameters, which must be run at any return statement. */
6396 expand_function_start (subr
, parms_have_cleanups
)
6398 int parms_have_cleanups
;
6401 rtx last_ptr
= NULL_RTX
;
6403 /* Make sure volatile mem refs aren't considered
6404 valid operands of arithmetic insns. */
6405 init_recog_no_volatile ();
6407 current_function_instrument_entry_exit
6408 = (flag_instrument_function_entry_exit
6409 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr
));
6411 current_function_profile
6413 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr
));
6415 current_function_limit_stack
6416 = (stack_limit_rtx
!= NULL_RTX
&& ! DECL_NO_LIMIT_STACK (subr
));
6418 /* If function gets a static chain arg, store it in the stack frame.
6419 Do this first, so it gets the first stack slot offset. */
6420 if (current_function_needs_context
)
6422 last_ptr
= assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
6424 /* Delay copying static chain if it is not a register to avoid
6425 conflicts with regs used for parameters. */
6426 if (! SMALL_REGISTER_CLASSES
6427 || GET_CODE (static_chain_incoming_rtx
) == REG
)
6428 emit_move_insn (last_ptr
, static_chain_incoming_rtx
);
6431 /* If the parameters of this function need cleaning up, get a label
6432 for the beginning of the code which executes those cleanups. This must
6433 be done before doing anything with return_label. */
6434 if (parms_have_cleanups
)
6435 cleanup_label
= gen_label_rtx ();
6439 /* Make the label for return statements to jump to. Do not special
6440 case machines with special return instructions -- they will be
6441 handled later during jump, ifcvt, or epilogue creation. */
6442 return_label
= gen_label_rtx ();
6444 /* Initialize rtx used to return the value. */
6445 /* Do this before assign_parms so that we copy the struct value address
6446 before any library calls that assign parms might generate. */
6448 /* Decide whether to return the value in memory or in a register. */
6449 if (aggregate_value_p (DECL_RESULT (subr
)))
6451 /* Returning something that won't go in a register. */
6452 rtx value_address
= 0;
6454 #ifdef PCC_STATIC_STRUCT_RETURN
6455 if (current_function_returns_pcc_struct
)
6457 int size
= int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr
)));
6458 value_address
= assemble_static_space (size
);
6463 /* Expect to be passed the address of a place to store the value.
6464 If it is passed as an argument, assign_parms will take care of
6466 if (struct_value_incoming_rtx
)
6468 value_address
= gen_reg_rtx (Pmode
);
6469 emit_move_insn (value_address
, struct_value_incoming_rtx
);
6474 rtx x
= gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr
)), value_address
);
6475 set_mem_attributes (x
, DECL_RESULT (subr
), 1);
6476 SET_DECL_RTL (DECL_RESULT (subr
), x
);
6479 else if (DECL_MODE (DECL_RESULT (subr
)) == VOIDmode
)
6480 /* If return mode is void, this decl rtl should not be used. */
6481 SET_DECL_RTL (DECL_RESULT (subr
), NULL_RTX
);
6484 /* Compute the return values into a pseudo reg, which we will copy
6485 into the true return register after the cleanups are done. */
6487 /* In order to figure out what mode to use for the pseudo, we
6488 figure out what the mode of the eventual return register will
6489 actually be, and use that. */
6491 = hard_function_value (TREE_TYPE (DECL_RESULT (subr
)),
6494 /* Structures that are returned in registers are not aggregate_value_p,
6495 so we may see a PARALLEL or a REG. */
6496 if (REG_P (hard_reg
))
6497 SET_DECL_RTL (DECL_RESULT (subr
), gen_reg_rtx (GET_MODE (hard_reg
)));
6498 else if (GET_CODE (hard_reg
) == PARALLEL
)
6499 SET_DECL_RTL (DECL_RESULT (subr
), gen_group_rtx (hard_reg
));
6503 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6504 result to the real return register(s). */
6505 DECL_REGISTER (DECL_RESULT (subr
)) = 1;
6508 /* Initialize rtx for parameters and local variables.
6509 In some cases this requires emitting insns. */
6511 assign_parms (subr
);
6513 /* Copy the static chain now if it wasn't a register. The delay is to
6514 avoid conflicts with the parameter passing registers. */
6516 if (SMALL_REGISTER_CLASSES
&& current_function_needs_context
)
6517 if (GET_CODE (static_chain_incoming_rtx
) != REG
)
6518 emit_move_insn (last_ptr
, static_chain_incoming_rtx
);
6520 /* The following was moved from init_function_start.
6521 The move is supposed to make sdb output more accurate. */
6522 /* Indicate the beginning of the function body,
6523 as opposed to parm setup. */
6524 emit_note (NULL
, NOTE_INSN_FUNCTION_BEG
);
6526 if (GET_CODE (get_last_insn ()) != NOTE
)
6527 emit_note (NULL
, NOTE_INSN_DELETED
);
6528 parm_birth_insn
= get_last_insn ();
6530 context_display
= 0;
6531 if (current_function_needs_context
)
6533 /* Fetch static chain values for containing functions. */
6534 tem
= decl_function_context (current_function_decl
);
6535 /* Copy the static chain pointer into a pseudo. If we have
6536 small register classes, copy the value from memory if
6537 static_chain_incoming_rtx is a REG. */
6540 /* If the static chain originally came in a register, put it back
6541 there, then move it out in the next insn. The reason for
6542 this peculiar code is to satisfy function integration. */
6543 if (SMALL_REGISTER_CLASSES
6544 && GET_CODE (static_chain_incoming_rtx
) == REG
)
6545 emit_move_insn (static_chain_incoming_rtx
, last_ptr
);
6546 last_ptr
= copy_to_reg (static_chain_incoming_rtx
);
6551 tree rtlexp
= make_node (RTL_EXPR
);
6553 RTL_EXPR_RTL (rtlexp
) = last_ptr
;
6554 context_display
= tree_cons (tem
, rtlexp
, context_display
);
6555 tem
= decl_function_context (tem
);
6558 /* Chain thru stack frames, assuming pointer to next lexical frame
6559 is found at the place we always store it. */
6560 #ifdef FRAME_GROWS_DOWNWARD
6561 last_ptr
= plus_constant (last_ptr
,
6562 -(HOST_WIDE_INT
) GET_MODE_SIZE (Pmode
));
6564 last_ptr
= gen_rtx_MEM (Pmode
, memory_address (Pmode
, last_ptr
));
6565 set_mem_alias_set (last_ptr
, get_frame_alias_set ());
6566 last_ptr
= copy_to_reg (last_ptr
);
6568 /* If we are not optimizing, ensure that we know that this
6569 piece of context is live over the entire function. */
6571 save_expr_regs
= gen_rtx_EXPR_LIST (VOIDmode
, last_ptr
,
6576 if (current_function_instrument_entry_exit
)
6578 rtx fun
= DECL_RTL (current_function_decl
);
6579 if (GET_CODE (fun
) == MEM
)
6580 fun
= XEXP (fun
, 0);
6583 emit_library_call (profile_function_entry_libfunc
, LCT_NORMAL
, VOIDmode
,
6585 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS
,
6587 hard_frame_pointer_rtx
),
6591 if (current_function_profile
)
6594 PROFILE_HOOK (current_function_funcdef_no
);
6598 /* After the display initializations is where the tail-recursion label
6599 should go, if we end up needing one. Ensure we have a NOTE here
6600 since some things (like trampolines) get placed before this. */
6601 tail_recursion_reentry
= emit_note (NULL
, NOTE_INSN_DELETED
);
6603 /* Evaluate now the sizes of any types declared among the arguments. */
6604 expand_pending_sizes (nreverse (get_pending_sizes ()));
6606 /* Make sure there is a line number after the function entry setup code. */
6607 force_next_line_note ();
6610 /* Undo the effects of init_dummy_function_start. */
6612 expand_dummy_function_end ()
6614 /* End any sequences that failed to be closed due to syntax errors. */
6615 while (in_sequence_p ())
6618 /* Outside function body, can't compute type's actual size
6619 until next function's body starts. */
6621 free_after_parsing (cfun
);
6622 free_after_compilation (cfun
);
6626 /* Call DOIT for each hard register used as a return value from
6627 the current function. */
6630 diddle_return_value (doit
, arg
)
6631 void (*doit
) PARAMS ((rtx
, void *));
6634 rtx outgoing
= current_function_return_rtx
;
6639 if (GET_CODE (outgoing
) == REG
)
6640 (*doit
) (outgoing
, arg
);
6641 else if (GET_CODE (outgoing
) == PARALLEL
)
6645 for (i
= 0; i
< XVECLEN (outgoing
, 0); i
++)
6647 rtx x
= XEXP (XVECEXP (outgoing
, 0, i
), 0);
6649 if (GET_CODE (x
) == REG
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6656 do_clobber_return_reg (reg
, arg
)
6658 void *arg ATTRIBUTE_UNUSED
;
6660 emit_insn (gen_rtx_CLOBBER (VOIDmode
, reg
));
6664 clobber_return_register ()
6666 diddle_return_value (do_clobber_return_reg
, NULL
);
6668 /* In case we do use pseudo to return value, clobber it too. */
6669 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
6671 tree decl_result
= DECL_RESULT (current_function_decl
);
6672 rtx decl_rtl
= DECL_RTL (decl_result
);
6673 if (REG_P (decl_rtl
) && REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
)
6675 do_clobber_return_reg (decl_rtl
, NULL
);
6681 do_use_return_reg (reg
, arg
)
6683 void *arg ATTRIBUTE_UNUSED
;
6685 emit_insn (gen_rtx_USE (VOIDmode
, reg
));
6689 use_return_register ()
6691 diddle_return_value (do_use_return_reg
, NULL
);
6694 static GTY(()) rtx initial_trampoline
;
6696 /* Generate RTL for the end of the current function.
6697 FILENAME and LINE are the current position in the source file.
6699 It is up to language-specific callers to do cleanups for parameters--
6700 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6703 expand_function_end (filename
, line
, end_bindings
)
6704 const char *filename
;
6711 finish_expr_for_function ();
6713 /* If arg_pointer_save_area was referenced only from a nested
6714 function, we will not have initialized it yet. Do that now. */
6715 if (arg_pointer_save_area
&& ! cfun
->arg_pointer_save_area_init
)
6716 get_arg_pointer_save_area (cfun
);
6718 #ifdef NON_SAVING_SETJMP
6719 /* Don't put any variables in registers if we call setjmp
6720 on a machine that fails to restore the registers. */
6721 if (NON_SAVING_SETJMP
&& current_function_calls_setjmp
)
6723 if (DECL_INITIAL (current_function_decl
) != error_mark_node
)
6724 setjmp_protect (DECL_INITIAL (current_function_decl
));
6726 setjmp_protect_args ();
6730 /* Initialize any trampolines required by this function. */
6731 for (link
= trampoline_list
; link
; link
= TREE_CHAIN (link
))
6733 tree function
= TREE_PURPOSE (link
);
6734 rtx context ATTRIBUTE_UNUSED
= lookup_static_chain (function
);
6735 rtx tramp
= RTL_EXPR_RTL (TREE_VALUE (link
));
6736 #ifdef TRAMPOLINE_TEMPLATE
6741 #ifdef TRAMPOLINE_TEMPLATE
6742 /* First make sure this compilation has a template for
6743 initializing trampolines. */
6744 if (initial_trampoline
== 0)
6747 = gen_rtx_MEM (BLKmode
, assemble_trampoline_template ());
6748 set_mem_align (initial_trampoline
, TRAMPOLINE_ALIGNMENT
);
6752 /* Generate insns to initialize the trampoline. */
6754 tramp
= round_trampoline_addr (XEXP (tramp
, 0));
6755 #ifdef TRAMPOLINE_TEMPLATE
6756 blktramp
= replace_equiv_address (initial_trampoline
, tramp
);
6757 emit_block_move (blktramp
, initial_trampoline
,
6758 GEN_INT (TRAMPOLINE_SIZE
), BLOCK_OP_NORMAL
);
6760 INITIALIZE_TRAMPOLINE (tramp
, XEXP (DECL_RTL (function
), 0), context
);
6764 /* Put those insns at entry to the containing function (this one). */
6765 emit_insn_before (seq
, tail_recursion_reentry
);
6768 /* If we are doing stack checking and this function makes calls,
6769 do a stack probe at the start of the function to ensure we have enough
6770 space for another stack frame. */
6771 if (flag_stack_check
&& ! STACK_CHECK_BUILTIN
)
6775 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
6776 if (GET_CODE (insn
) == CALL_INSN
)
6779 probe_stack_range (STACK_CHECK_PROTECT
,
6780 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE
));
6783 emit_insn_before (seq
, tail_recursion_reentry
);
6788 /* Warn about unused parms if extra warnings were specified. */
6789 /* Either ``-Wextra -Wunused'' or ``-Wunused-parameter'' enables this
6790 warning. WARN_UNUSED_PARAMETER is negative when set by
6791 -Wunused. Note that -Wall implies -Wunused, so ``-Wall -Wextra'' will
6792 also give these warnings. */
6793 if (warn_unused_parameter
> 0
6794 || (warn_unused_parameter
< 0 && extra_warnings
))
6798 for (decl
= DECL_ARGUMENTS (current_function_decl
);
6799 decl
; decl
= TREE_CHAIN (decl
))
6800 if (! TREE_USED (decl
) && TREE_CODE (decl
) == PARM_DECL
6801 && DECL_NAME (decl
) && ! DECL_ARTIFICIAL (decl
))
6802 warning_with_decl (decl
, "unused parameter `%s'");
6805 /* Delete handlers for nonlocal gotos if nothing uses them. */
6806 if (nonlocal_goto_handler_slots
!= 0
6807 && ! current_function_has_nonlocal_label
)
6810 /* End any sequences that failed to be closed due to syntax errors. */
6811 while (in_sequence_p ())
6814 /* Outside function body, can't compute type's actual size
6815 until next function's body starts. */
6816 immediate_size_expand
--;
6818 clear_pending_stack_adjust ();
6819 do_pending_stack_adjust ();
6821 /* Mark the end of the function body.
6822 If control reaches this insn, the function can drop through
6823 without returning a value. */
6824 emit_note (NULL
, NOTE_INSN_FUNCTION_END
);
6826 /* Must mark the last line number note in the function, so that the test
6827 coverage code can avoid counting the last line twice. This just tells
6828 the code to ignore the immediately following line note, since there
6829 already exists a copy of this note somewhere above. This line number
6830 note is still needed for debugging though, so we can't delete it. */
6831 if (flag_test_coverage
)
6832 emit_note (NULL
, NOTE_INSN_REPEATED_LINE_NUMBER
);
6834 /* Output a linenumber for the end of the function.
6835 SDB depends on this. */
6836 emit_line_note_force (filename
, line
);
6838 /* Before the return label (if any), clobber the return
6839 registers so that they are not propagated live to the rest of
6840 the function. This can only happen with functions that drop
6841 through; if there had been a return statement, there would
6842 have either been a return rtx, or a jump to the return label.
6844 We delay actual code generation after the current_function_value_rtx
6846 clobber_after
= get_last_insn ();
6848 /* Output the label for the actual return from the function,
6849 if one is expected. This happens either because a function epilogue
6850 is used instead of a return instruction, or because a return was done
6851 with a goto in order to run local cleanups, or because of pcc-style
6852 structure returning. */
6854 emit_label (return_label
);
6856 /* C++ uses this. */
6858 expand_end_bindings (0, 0, 0);
6860 if (current_function_instrument_entry_exit
)
6862 rtx fun
= DECL_RTL (current_function_decl
);
6863 if (GET_CODE (fun
) == MEM
)
6864 fun
= XEXP (fun
, 0);
6867 emit_library_call (profile_function_exit_libfunc
, LCT_NORMAL
, VOIDmode
,
6869 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS
,
6871 hard_frame_pointer_rtx
),
6875 /* Let except.c know where it should emit the call to unregister
6876 the function context for sjlj exceptions. */
6877 if (flag_exceptions
&& USING_SJLJ_EXCEPTIONS
)
6878 sjlj_emit_function_exit_after (get_last_insn ());
6880 /* If we had calls to alloca, and this machine needs
6881 an accurate stack pointer to exit the function,
6882 insert some code to save and restore the stack pointer. */
6883 #ifdef EXIT_IGNORE_STACK
6884 if (! EXIT_IGNORE_STACK
)
6886 if (current_function_calls_alloca
)
6890 emit_stack_save (SAVE_FUNCTION
, &tem
, parm_birth_insn
);
6891 emit_stack_restore (SAVE_FUNCTION
, tem
, NULL_RTX
);
6894 /* If scalar return value was computed in a pseudo-reg, or was a named
6895 return value that got dumped to the stack, copy that to the hard
6897 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
6899 tree decl_result
= DECL_RESULT (current_function_decl
);
6900 rtx decl_rtl
= DECL_RTL (decl_result
);
6902 if (REG_P (decl_rtl
)
6903 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
6904 : DECL_REGISTER (decl_result
))
6906 rtx real_decl_rtl
= current_function_return_rtx
;
6908 /* This should be set in assign_parms. */
6909 if (! REG_FUNCTION_VALUE_P (real_decl_rtl
))
6912 /* If this is a BLKmode structure being returned in registers,
6913 then use the mode computed in expand_return. Note that if
6914 decl_rtl is memory, then its mode may have been changed,
6915 but that current_function_return_rtx has not. */
6916 if (GET_MODE (real_decl_rtl
) == BLKmode
)
6917 PUT_MODE (real_decl_rtl
, GET_MODE (decl_rtl
));
6919 /* If a named return value dumped decl_return to memory, then
6920 we may need to re-do the PROMOTE_MODE signed/unsigned
6922 if (GET_MODE (real_decl_rtl
) != GET_MODE (decl_rtl
))
6924 int unsignedp
= TREE_UNSIGNED (TREE_TYPE (decl_result
));
6926 #ifdef PROMOTE_FUNCTION_RETURN
6927 promote_mode (TREE_TYPE (decl_result
), GET_MODE (decl_rtl
),
6931 convert_move (real_decl_rtl
, decl_rtl
, unsignedp
);
6933 else if (GET_CODE (real_decl_rtl
) == PARALLEL
)
6935 /* If expand_function_start has created a PARALLEL for decl_rtl,
6936 move the result to the real return registers. Otherwise, do
6937 a group load from decl_rtl for a named return. */
6938 if (GET_CODE (decl_rtl
) == PARALLEL
)
6939 emit_group_move (real_decl_rtl
, decl_rtl
);
6941 emit_group_load (real_decl_rtl
, decl_rtl
,
6942 int_size_in_bytes (TREE_TYPE (decl_result
)));
6945 emit_move_insn (real_decl_rtl
, decl_rtl
);
6949 /* If returning a structure, arrange to return the address of the value
6950 in a place where debuggers expect to find it.
6952 If returning a structure PCC style,
6953 the caller also depends on this value.
6954 And current_function_returns_pcc_struct is not necessarily set. */
6955 if (current_function_returns_struct
6956 || current_function_returns_pcc_struct
)
6959 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl
)), 0);
6960 tree type
= TREE_TYPE (DECL_RESULT (current_function_decl
));
6961 #ifdef FUNCTION_OUTGOING_VALUE
6963 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type
),
6964 current_function_decl
);
6967 = FUNCTION_VALUE (build_pointer_type (type
), current_function_decl
);
6970 /* Mark this as a function return value so integrate will delete the
6971 assignment and USE below when inlining this function. */
6972 REG_FUNCTION_VALUE_P (outgoing
) = 1;
6974 #ifdef POINTERS_EXTEND_UNSIGNED
6975 /* The address may be ptr_mode and OUTGOING may be Pmode. */
6976 if (GET_MODE (outgoing
) != GET_MODE (value_address
))
6977 value_address
= convert_memory_address (GET_MODE (outgoing
),
6981 emit_move_insn (outgoing
, value_address
);
6983 /* Show return register used to hold result (in this case the address
6985 current_function_return_rtx
= outgoing
;
6988 /* If this is an implementation of throw, do what's necessary to
6989 communicate between __builtin_eh_return and the epilogue. */
6990 expand_eh_return ();
6992 /* Emit the actual code to clobber return register. */
6997 clobber_return_register ();
7001 after
= emit_insn_after (seq
, clobber_after
);
7003 if (clobber_after
!= after
)
7004 cfun
->x_clobber_return_insn
= after
;
7007 /* ??? This should no longer be necessary since stupid is no longer with
7008 us, but there are some parts of the compiler (eg reload_combine, and
7009 sh mach_dep_reorg) that still try and compute their own lifetime info
7010 instead of using the general framework. */
7011 use_return_register ();
7013 /* Fix up any gotos that jumped out to the outermost
7014 binding level of the function.
7015 Must follow emitting RETURN_LABEL. */
7017 /* If you have any cleanups to do at this point,
7018 and they need to create temporary variables,
7019 then you will lose. */
7020 expand_fixups (get_insns ());
7024 get_arg_pointer_save_area (f
)
7027 rtx ret
= f
->x_arg_pointer_save_area
;
7031 ret
= assign_stack_local_1 (Pmode
, GET_MODE_SIZE (Pmode
), 0, f
);
7032 f
->x_arg_pointer_save_area
= ret
;
7035 if (f
== cfun
&& ! f
->arg_pointer_save_area_init
)
7039 /* Save the arg pointer at the beginning of the function. The
7040 generated stack slot may not be a valid memory address, so we
7041 have to check it and fix it if necessary. */
7043 emit_move_insn (validize_mem (ret
), virtual_incoming_args_rtx
);
7047 push_topmost_sequence ();
7048 emit_insn_after (seq
, get_insns ());
7049 pop_topmost_sequence ();
7055 /* Extend a vector that records the INSN_UIDs of INSNS
7056 (a list of one or more insns). */
7059 record_insns (insns
, vecp
)
7068 while (tmp
!= NULL_RTX
)
7071 tmp
= NEXT_INSN (tmp
);
7074 i
= VARRAY_SIZE (*vecp
);
7075 VARRAY_GROW (*vecp
, i
+ len
);
7077 while (tmp
!= NULL_RTX
)
7079 VARRAY_INT (*vecp
, i
) = INSN_UID (tmp
);
7081 tmp
= NEXT_INSN (tmp
);
7085 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7086 be running after reorg, SEQUENCE rtl is possible. */
7089 contains (insn
, vec
)
7095 if (GET_CODE (insn
) == INSN
7096 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
7099 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
7100 for (j
= VARRAY_SIZE (vec
) - 1; j
>= 0; --j
)
7101 if (INSN_UID (XVECEXP (PATTERN (insn
), 0, i
)) == VARRAY_INT (vec
, j
))
7107 for (j
= VARRAY_SIZE (vec
) - 1; j
>= 0; --j
)
7108 if (INSN_UID (insn
) == VARRAY_INT (vec
, j
))
7115 prologue_epilogue_contains (insn
)
7118 if (contains (insn
, prologue
))
7120 if (contains (insn
, epilogue
))
7126 sibcall_epilogue_contains (insn
)
7129 if (sibcall_epilogue
)
7130 return contains (insn
, sibcall_epilogue
);
7135 /* Insert gen_return at the end of block BB. This also means updating
7136 block_for_insn appropriately. */
7139 emit_return_into_block (bb
, line_note
)
7143 emit_jump_insn_after (gen_return (), bb
->end
);
7145 emit_line_note_after (NOTE_SOURCE_FILE (line_note
),
7146 NOTE_LINE_NUMBER (line_note
), PREV_INSN (bb
->end
));
7148 #endif /* HAVE_return */
7150 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7152 /* These functions convert the epilogue into a variant that does not modify the
7153 stack pointer. This is used in cases where a function returns an object
7154 whose size is not known until it is computed. The called function leaves the
7155 object on the stack, leaves the stack depressed, and returns a pointer to
7158 What we need to do is track all modifications and references to the stack
7159 pointer, deleting the modifications and changing the references to point to
7160 the location the stack pointer would have pointed to had the modifications
7163 These functions need to be portable so we need to make as few assumptions
7164 about the epilogue as we can. However, the epilogue basically contains
7165 three things: instructions to reset the stack pointer, instructions to
7166 reload registers, possibly including the frame pointer, and an
7167 instruction to return to the caller.
7169 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7170 We also make no attempt to validate the insns we make since if they are
7171 invalid, we probably can't do anything valid. The intent is that these
7172 routines get "smarter" as more and more machines start to use them and
7173 they try operating on different epilogues.
7175 We use the following structure to track what the part of the epilogue that
7176 we've already processed has done. We keep two copies of the SP equivalence,
7177 one for use during the insn we are processing and one for use in the next
7178 insn. The difference is because one part of a PARALLEL may adjust SP
7179 and the other may use it. */
7183 rtx sp_equiv_reg
; /* REG that SP is set from, perhaps SP. */
7184 HOST_WIDE_INT sp_offset
; /* Offset from SP_EQUIV_REG of present SP. */
7185 rtx new_sp_equiv_reg
; /* REG to be used at end of insn. */
7186 HOST_WIDE_INT new_sp_offset
; /* Offset to be used at end of insn. */
7187 rtx equiv_reg_src
; /* If nonzero, the value that SP_EQUIV_REG
7188 should be set to once we no longer need
7192 static void handle_epilogue_set
PARAMS ((rtx
, struct epi_info
*));
7193 static void emit_equiv_load
PARAMS ((struct epi_info
*));
7195 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7196 no modifications to the stack pointer. Return the new list of insns. */
7199 keep_stack_depressed (insns
)
7203 struct epi_info info
;
7206 /* If the epilogue is just a single instruction, it ust be OK as is. */
7208 if (NEXT_INSN (insns
) == NULL_RTX
)
7211 /* Otherwise, start a sequence, initialize the information we have, and
7212 process all the insns we were given. */
7215 info
.sp_equiv_reg
= stack_pointer_rtx
;
7217 info
.equiv_reg_src
= 0;
7221 while (insn
!= NULL_RTX
)
7223 next
= NEXT_INSN (insn
);
7232 /* If this insn references the register that SP is equivalent to and
7233 we have a pending load to that register, we must force out the load
7234 first and then indicate we no longer know what SP's equivalent is. */
7235 if (info
.equiv_reg_src
!= 0
7236 && reg_referenced_p (info
.sp_equiv_reg
, PATTERN (insn
)))
7238 emit_equiv_load (&info
);
7239 info
.sp_equiv_reg
= 0;
7242 info
.new_sp_equiv_reg
= info
.sp_equiv_reg
;
7243 info
.new_sp_offset
= info
.sp_offset
;
7245 /* If this is a (RETURN) and the return address is on the stack,
7246 update the address and change to an indirect jump. */
7247 if (GET_CODE (PATTERN (insn
)) == RETURN
7248 || (GET_CODE (PATTERN (insn
)) == PARALLEL
7249 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == RETURN
))
7251 rtx retaddr
= INCOMING_RETURN_ADDR_RTX
;
7253 HOST_WIDE_INT offset
= 0;
7254 rtx jump_insn
, jump_set
;
7256 /* If the return address is in a register, we can emit the insn
7257 unchanged. Otherwise, it must be a MEM and we see what the
7258 base register and offset are. In any case, we have to emit any
7259 pending load to the equivalent reg of SP, if any. */
7260 if (GET_CODE (retaddr
) == REG
)
7262 emit_equiv_load (&info
);
7267 else if (GET_CODE (retaddr
) == MEM
7268 && GET_CODE (XEXP (retaddr
, 0)) == REG
)
7269 base
= gen_rtx_REG (Pmode
, REGNO (XEXP (retaddr
, 0))), offset
= 0;
7270 else if (GET_CODE (retaddr
) == MEM
7271 && GET_CODE (XEXP (retaddr
, 0)) == PLUS
7272 && GET_CODE (XEXP (XEXP (retaddr
, 0), 0)) == REG
7273 && GET_CODE (XEXP (XEXP (retaddr
, 0), 1)) == CONST_INT
)
7275 base
= gen_rtx_REG (Pmode
, REGNO (XEXP (XEXP (retaddr
, 0), 0)));
7276 offset
= INTVAL (XEXP (XEXP (retaddr
, 0), 1));
7281 /* If the base of the location containing the return pointer
7282 is SP, we must update it with the replacement address. Otherwise,
7283 just build the necessary MEM. */
7284 retaddr
= plus_constant (base
, offset
);
7285 if (base
== stack_pointer_rtx
)
7286 retaddr
= simplify_replace_rtx (retaddr
, stack_pointer_rtx
,
7287 plus_constant (info
.sp_equiv_reg
,
7290 retaddr
= gen_rtx_MEM (Pmode
, retaddr
);
7292 /* If there is a pending load to the equivalent register for SP
7293 and we reference that register, we must load our address into
7294 a scratch register and then do that load. */
7295 if (info
.equiv_reg_src
7296 && reg_overlap_mentioned_p (info
.equiv_reg_src
, retaddr
))
7301 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
7302 if (HARD_REGNO_MODE_OK (regno
, Pmode
)
7303 && !fixed_regs
[regno
]
7304 && TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
)
7305 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR
->global_live_at_start
,
7307 && !refers_to_regno_p (regno
,
7308 regno
+ HARD_REGNO_NREGS (regno
,
7310 info
.equiv_reg_src
, NULL
))
7313 if (regno
== FIRST_PSEUDO_REGISTER
)
7316 reg
= gen_rtx_REG (Pmode
, regno
);
7317 emit_move_insn (reg
, retaddr
);
7321 emit_equiv_load (&info
);
7322 jump_insn
= emit_jump_insn (gen_indirect_jump (retaddr
));
7324 /* Show the SET in the above insn is a RETURN. */
7325 jump_set
= single_set (jump_insn
);
7329 SET_IS_RETURN_P (jump_set
) = 1;
7332 /* If SP is not mentioned in the pattern and its equivalent register, if
7333 any, is not modified, just emit it. Otherwise, if neither is set,
7334 replace the reference to SP and emit the insn. If none of those are
7335 true, handle each SET individually. */
7336 else if (!reg_mentioned_p (stack_pointer_rtx
, PATTERN (insn
))
7337 && (info
.sp_equiv_reg
== stack_pointer_rtx
7338 || !reg_set_p (info
.sp_equiv_reg
, insn
)))
7340 else if (! reg_set_p (stack_pointer_rtx
, insn
)
7341 && (info
.sp_equiv_reg
== stack_pointer_rtx
7342 || !reg_set_p (info
.sp_equiv_reg
, insn
)))
7344 if (! validate_replace_rtx (stack_pointer_rtx
,
7345 plus_constant (info
.sp_equiv_reg
,
7352 else if (GET_CODE (PATTERN (insn
)) == SET
)
7353 handle_epilogue_set (PATTERN (insn
), &info
);
7354 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
7356 for (j
= 0; j
< XVECLEN (PATTERN (insn
), 0); j
++)
7357 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, j
)) == SET
)
7358 handle_epilogue_set (XVECEXP (PATTERN (insn
), 0, j
), &info
);
7363 info
.sp_equiv_reg
= info
.new_sp_equiv_reg
;
7364 info
.sp_offset
= info
.new_sp_offset
;
7369 insns
= get_insns ();
7374 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7375 structure that contains information about what we've seen so far. We
7376 process this SET by either updating that data or by emitting one or
7380 handle_epilogue_set (set
, p
)
7384 /* First handle the case where we are setting SP. Record what it is being
7385 set from. If unknown, abort. */
7386 if (reg_set_p (stack_pointer_rtx
, set
))
7388 if (SET_DEST (set
) != stack_pointer_rtx
)
7391 if (GET_CODE (SET_SRC (set
)) == PLUS
7392 && GET_CODE (XEXP (SET_SRC (set
), 1)) == CONST_INT
)
7394 p
->new_sp_equiv_reg
= XEXP (SET_SRC (set
), 0);
7395 p
->new_sp_offset
= INTVAL (XEXP (SET_SRC (set
), 1));
7398 p
->new_sp_equiv_reg
= SET_SRC (set
), p
->new_sp_offset
= 0;
7400 /* If we are adjusting SP, we adjust from the old data. */
7401 if (p
->new_sp_equiv_reg
== stack_pointer_rtx
)
7403 p
->new_sp_equiv_reg
= p
->sp_equiv_reg
;
7404 p
->new_sp_offset
+= p
->sp_offset
;
7407 if (p
->new_sp_equiv_reg
== 0 || GET_CODE (p
->new_sp_equiv_reg
) != REG
)
7413 /* Next handle the case where we are setting SP's equivalent register.
7414 If we already have a value to set it to, abort. We could update, but
7415 there seems little point in handling that case. Note that we have
7416 to allow for the case where we are setting the register set in
7417 the previous part of a PARALLEL inside a single insn. But use the
7418 old offset for any updates within this insn. */
7419 else if (p
->new_sp_equiv_reg
!= 0 && reg_set_p (p
->new_sp_equiv_reg
, set
))
7421 if (!rtx_equal_p (p
->new_sp_equiv_reg
, SET_DEST (set
))
7422 || p
->equiv_reg_src
!= 0)
7426 = simplify_replace_rtx (SET_SRC (set
), stack_pointer_rtx
,
7427 plus_constant (p
->sp_equiv_reg
,
7431 /* Otherwise, replace any references to SP in the insn to its new value
7432 and emit the insn. */
7435 SET_SRC (set
) = simplify_replace_rtx (SET_SRC (set
), stack_pointer_rtx
,
7436 plus_constant (p
->sp_equiv_reg
,
7438 SET_DEST (set
) = simplify_replace_rtx (SET_DEST (set
), stack_pointer_rtx
,
7439 plus_constant (p
->sp_equiv_reg
,
7445 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7451 if (p
->equiv_reg_src
!= 0)
7452 emit_move_insn (p
->sp_equiv_reg
, p
->equiv_reg_src
);
7454 p
->equiv_reg_src
= 0;
7458 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7459 this into place with notes indicating where the prologue ends and where
7460 the epilogue begins. Update the basic block information when possible. */
7463 thread_prologue_and_epilogue_insns (f
)
7464 rtx f ATTRIBUTE_UNUSED
;
7468 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7471 #ifdef HAVE_prologue
7472 rtx prologue_end
= NULL_RTX
;
7474 #if defined (HAVE_epilogue) || defined(HAVE_return)
7475 rtx epilogue_end
= NULL_RTX
;
7478 #ifdef HAVE_prologue
7482 seq
= gen_prologue ();
7485 /* Retain a map of the prologue insns. */
7486 record_insns (seq
, &prologue
);
7487 prologue_end
= emit_note (NULL
, NOTE_INSN_PROLOGUE_END
);
7492 /* Can't deal with multiple successors of the entry block
7493 at the moment. Function should always have at least one
7495 if (!ENTRY_BLOCK_PTR
->succ
|| ENTRY_BLOCK_PTR
->succ
->succ_next
)
7498 insert_insn_on_edge (seq
, ENTRY_BLOCK_PTR
->succ
);
7503 /* If the exit block has no non-fake predecessors, we don't need
7505 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
7506 if ((e
->flags
& EDGE_FAKE
) == 0)
7512 if (optimize
&& HAVE_return
)
7514 /* If we're allowed to generate a simple return instruction,
7515 then by definition we don't need a full epilogue. Examine
7516 the block that falls through to EXIT. If it does not
7517 contain any code, examine its predecessors and try to
7518 emit (conditional) return instructions. */
7524 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
7525 if (e
->flags
& EDGE_FALLTHRU
)
7531 /* Verify that there are no active instructions in the last block. */
7533 while (label
&& GET_CODE (label
) != CODE_LABEL
)
7535 if (active_insn_p (label
))
7537 label
= PREV_INSN (label
);
7540 if (last
->head
== label
&& GET_CODE (label
) == CODE_LABEL
)
7542 rtx epilogue_line_note
= NULL_RTX
;
7544 /* Locate the line number associated with the closing brace,
7545 if we can find one. */
7546 for (seq
= get_last_insn ();
7547 seq
&& ! active_insn_p (seq
);
7548 seq
= PREV_INSN (seq
))
7549 if (GET_CODE (seq
) == NOTE
&& NOTE_LINE_NUMBER (seq
) > 0)
7551 epilogue_line_note
= seq
;
7555 for (e
= last
->pred
; e
; e
= e_next
)
7557 basic_block bb
= e
->src
;
7560 e_next
= e
->pred_next
;
7561 if (bb
== ENTRY_BLOCK_PTR
)
7565 if ((GET_CODE (jump
) != JUMP_INSN
) || JUMP_LABEL (jump
) != label
)
7568 /* If we have an unconditional jump, we can replace that
7569 with a simple return instruction. */
7570 if (simplejump_p (jump
))
7572 emit_return_into_block (bb
, epilogue_line_note
);
7576 /* If we have a conditional jump, we can try to replace
7577 that with a conditional return instruction. */
7578 else if (condjump_p (jump
))
7582 ret
= SET_SRC (PATTERN (jump
));
7583 if (GET_CODE (XEXP (ret
, 1)) == LABEL_REF
)
7584 loc
= &XEXP (ret
, 1);
7586 loc
= &XEXP (ret
, 2);
7587 ret
= gen_rtx_RETURN (VOIDmode
);
7589 if (! validate_change (jump
, loc
, ret
, 0))
7591 if (JUMP_LABEL (jump
))
7592 LABEL_NUSES (JUMP_LABEL (jump
))--;
7594 /* If this block has only one successor, it both jumps
7595 and falls through to the fallthru block, so we can't
7597 if (bb
->succ
->succ_next
== NULL
)
7603 /* Fix up the CFG for the successful change we just made. */
7604 redirect_edge_succ (e
, EXIT_BLOCK_PTR
);
7607 /* Emit a return insn for the exit fallthru block. Whether
7608 this is still reachable will be determined later. */
7610 emit_barrier_after (last
->end
);
7611 emit_return_into_block (last
, epilogue_line_note
);
7612 epilogue_end
= last
->end
;
7613 last
->succ
->flags
&= ~EDGE_FALLTHRU
;
7618 #ifdef HAVE_epilogue
7621 /* Find the edge that falls through to EXIT. Other edges may exist
7622 due to RETURN instructions, but those don't need epilogues.
7623 There really shouldn't be a mixture -- either all should have
7624 been converted or none, however... */
7626 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
7627 if (e
->flags
& EDGE_FALLTHRU
)
7633 epilogue_end
= emit_note (NULL
, NOTE_INSN_EPILOGUE_BEG
);
7635 seq
= gen_epilogue ();
7637 #ifdef INCOMING_RETURN_ADDR_RTX
7638 /* If this function returns with the stack depressed and we can support
7639 it, massage the epilogue to actually do that. */
7640 if (TREE_CODE (TREE_TYPE (current_function_decl
)) == FUNCTION_TYPE
7641 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl
)))
7642 seq
= keep_stack_depressed (seq
);
7645 emit_jump_insn (seq
);
7647 /* Retain a map of the epilogue insns. */
7648 record_insns (seq
, &epilogue
);
7653 insert_insn_on_edge (seq
, e
);
7660 commit_edge_insertions ();
7662 #ifdef HAVE_sibcall_epilogue
7663 /* Emit sibling epilogues before any sibling call sites. */
7664 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
7666 basic_block bb
= e
->src
;
7671 if (GET_CODE (insn
) != CALL_INSN
7672 || ! SIBLING_CALL_P (insn
))
7676 emit_insn (gen_sibcall_epilogue ());
7680 /* Retain a map of the epilogue insns. Used in life analysis to
7681 avoid getting rid of sibcall epilogue insns. Do this before we
7682 actually emit the sequence. */
7683 record_insns (seq
, &sibcall_epilogue
);
7685 i
= PREV_INSN (insn
);
7686 newinsn
= emit_insn_before (seq
, insn
);
7690 #ifdef HAVE_prologue
7695 /* GDB handles `break f' by setting a breakpoint on the first
7696 line note after the prologue. Which means (1) that if
7697 there are line number notes before where we inserted the
7698 prologue we should move them, and (2) we should generate a
7699 note before the end of the first basic block, if there isn't
7702 ??? This behavior is completely broken when dealing with
7703 multiple entry functions. We simply place the note always
7704 into first basic block and let alternate entry points
7708 for (insn
= prologue_end
; insn
; insn
= prev
)
7710 prev
= PREV_INSN (insn
);
7711 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
7713 /* Note that we cannot reorder the first insn in the
7714 chain, since rest_of_compilation relies on that
7715 remaining constant. */
7718 reorder_insns (insn
, insn
, prologue_end
);
7722 /* Find the last line number note in the first block. */
7723 for (insn
= ENTRY_BLOCK_PTR
->next_bb
->end
;
7724 insn
!= prologue_end
&& insn
;
7725 insn
= PREV_INSN (insn
))
7726 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
7729 /* If we didn't find one, make a copy of the first line number
7733 for (insn
= next_active_insn (prologue_end
);
7735 insn
= PREV_INSN (insn
))
7736 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
7738 emit_line_note_after (NOTE_SOURCE_FILE (insn
),
7739 NOTE_LINE_NUMBER (insn
),
7746 #ifdef HAVE_epilogue
7751 /* Similarly, move any line notes that appear after the epilogue.
7752 There is no need, however, to be quite so anal about the existence
7754 for (insn
= epilogue_end
; insn
; insn
= next
)
7756 next
= NEXT_INSN (insn
);
7757 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
7758 reorder_insns (insn
, insn
, PREV_INSN (epilogue_end
));
7764 /* Reposition the prologue-end and epilogue-begin notes after instruction
7765 scheduling and delayed branch scheduling. */
7768 reposition_prologue_and_epilogue_notes (f
)
7769 rtx f ATTRIBUTE_UNUSED
;
7771 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7772 rtx insn
, last
, note
;
7775 if ((len
= VARRAY_SIZE (prologue
)) > 0)
7779 /* Scan from the beginning until we reach the last prologue insn.
7780 We apparently can't depend on basic_block_{head,end} after
7782 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
7784 if (GET_CODE (insn
) == NOTE
)
7786 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_PROLOGUE_END
)
7789 else if (contains (insn
, prologue
))
7799 /* Find the prologue-end note if we haven't already, and
7800 move it to just after the last prologue insn. */
7803 for (note
= last
; (note
= NEXT_INSN (note
));)
7804 if (GET_CODE (note
) == NOTE
7805 && NOTE_LINE_NUMBER (note
) == NOTE_INSN_PROLOGUE_END
)
7809 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7810 if (GET_CODE (last
) == CODE_LABEL
)
7811 last
= NEXT_INSN (last
);
7812 reorder_insns (note
, note
, last
);
7816 if ((len
= VARRAY_SIZE (epilogue
)) > 0)
7820 /* Scan from the end until we reach the first epilogue insn.
7821 We apparently can't depend on basic_block_{head,end} after
7823 for (insn
= get_last_insn (); insn
; insn
= PREV_INSN (insn
))
7825 if (GET_CODE (insn
) == NOTE
)
7827 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EPILOGUE_BEG
)
7830 else if (contains (insn
, epilogue
))
7840 /* Find the epilogue-begin note if we haven't already, and
7841 move it to just before the first epilogue insn. */
7844 for (note
= insn
; (note
= PREV_INSN (note
));)
7845 if (GET_CODE (note
) == NOTE
7846 && NOTE_LINE_NUMBER (note
) == NOTE_INSN_EPILOGUE_BEG
)
7850 if (PREV_INSN (last
) != note
)
7851 reorder_insns (note
, note
, PREV_INSN (last
));
7854 #endif /* HAVE_prologue or HAVE_epilogue */
7857 /* Called once, at initialization, to initialize function.c. */
7860 init_function_once ()
7862 VARRAY_INT_INIT (prologue
, 0, "prologue");
7863 VARRAY_INT_INIT (epilogue
, 0, "epilogue");
7864 VARRAY_INT_INIT (sibcall_epilogue
, 0, "sibcall_epilogue");
7867 #include "gt-function.h"