i386-protos.h (x86_emit_floatuns): Declare.
[official-gcc.git] / gcc / combine.c
blobaeb5c2f1b98d1695f8351508ffd1447c79dac83d
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tm_p.h"
83 #include "flags.h"
84 #include "regs.h"
85 #include "hard-reg-set.h"
86 #include "basic-block.h"
87 #include "insn-config.h"
88 #include "function.h"
89 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
90 #include "expr.h"
91 #include "insn-attr.h"
92 #include "recog.h"
93 #include "real.h"
94 #include "toplev.h"
96 /* It is not safe to use ordinary gen_lowpart in combine.
97 Use gen_lowpart_for_combine instead. See comments there. */
98 #define gen_lowpart dont_use_gen_lowpart_you_dummy
100 /* Number of attempts to combine instructions in this function. */
102 static int combine_attempts;
104 /* Number of attempts that got as far as substitution in this function. */
106 static int combine_merges;
108 /* Number of instructions combined with added SETs in this function. */
110 static int combine_extras;
112 /* Number of instructions combined in this function. */
114 static int combine_successes;
116 /* Totals over entire compilation. */
118 static int total_attempts, total_merges, total_extras, total_successes;
121 /* Vector mapping INSN_UIDs to cuids.
122 The cuids are like uids but increase monotonically always.
123 Combine always uses cuids so that it can compare them.
124 But actually renumbering the uids, which we used to do,
125 proves to be a bad idea because it makes it hard to compare
126 the dumps produced by earlier passes with those from later passes. */
128 static int *uid_cuid;
129 static int max_uid_cuid;
131 /* Get the cuid of an insn. */
133 #define INSN_CUID(INSN) \
134 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
136 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
137 BITS_PER_WORD would invoke undefined behavior. Work around it. */
139 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
140 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
142 /* Maximum register number, which is the size of the tables below. */
144 static unsigned int combine_max_regno;
146 /* Record last point of death of (hard or pseudo) register n. */
148 static rtx *reg_last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
152 static rtx *reg_last_set;
154 /* Record the cuid of the last insn that invalidated memory
155 (anything that writes memory, and subroutine calls, but not pushes). */
157 static int mem_last_set;
159 /* Record the cuid of the last CALL_INSN
160 so we can tell whether a potential combination crosses any calls. */
162 static int last_call_cuid;
164 /* When `subst' is called, this is the insn that is being modified
165 (by combining in a previous insn). The PATTERN of this insn
166 is still the old pattern partially modified and it should not be
167 looked at, but this may be used to examine the successors of the insn
168 to judge whether a simplification is valid. */
170 static rtx subst_insn;
172 /* This is the lowest CUID that `subst' is currently dealing with.
173 get_last_value will not return a value if the register was set at or
174 after this CUID. If not for this mechanism, we could get confused if
175 I2 or I1 in try_combine were an insn that used the old value of a register
176 to obtain a new value. In that case, we might erroneously get the
177 new value of the register when we wanted the old one. */
179 static int subst_low_cuid;
181 /* This contains any hard registers that are used in newpat; reg_dead_at_p
182 must consider all these registers to be always live. */
184 static HARD_REG_SET newpat_used_regs;
186 /* This is an insn to which a LOG_LINKS entry has been added. If this
187 insn is the earlier than I2 or I3, combine should rescan starting at
188 that location. */
190 static rtx added_links_insn;
192 /* Basic block in which we are performing combines. */
193 static basic_block this_basic_block;
195 /* A bitmap indicating which blocks had registers go dead at entry.
196 After combine, we'll need to re-do global life analysis with
197 those blocks as starting points. */
198 static sbitmap refresh_blocks;
200 /* The next group of arrays allows the recording of the last value assigned
201 to (hard or pseudo) register n. We use this information to see if a
202 operation being processed is redundant given a prior operation performed
203 on the register. For example, an `and' with a constant is redundant if
204 all the zero bits are already known to be turned off.
206 We use an approach similar to that used by cse, but change it in the
207 following ways:
209 (1) We do not want to reinitialize at each label.
210 (2) It is useful, but not critical, to know the actual value assigned
211 to a register. Often just its form is helpful.
213 Therefore, we maintain the following arrays:
215 reg_last_set_value the last value assigned
216 reg_last_set_label records the value of label_tick when the
217 register was assigned
218 reg_last_set_table_tick records the value of label_tick when a
219 value using the register is assigned
220 reg_last_set_invalid set to nonzero when it is not valid
221 to use the value of this register in some
222 register's value
224 To understand the usage of these tables, it is important to understand
225 the distinction between the value in reg_last_set_value being valid
226 and the register being validly contained in some other expression in the
227 table.
229 Entry I in reg_last_set_value is valid if it is nonzero, and either
230 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
232 Register I may validly appear in any expression returned for the value
233 of another register if reg_n_sets[i] is 1. It may also appear in the
234 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
235 reg_last_set_invalid[j] is zero.
237 If an expression is found in the table containing a register which may
238 not validly appear in an expression, the register is replaced by
239 something that won't match, (clobber (const_int 0)).
241 reg_last_set_invalid[i] is set nonzero when register I is being assigned
242 to and reg_last_set_table_tick[i] == label_tick. */
244 /* Record last value assigned to (hard or pseudo) register n. */
246 static rtx *reg_last_set_value;
248 /* Record the value of label_tick when the value for register n is placed in
249 reg_last_set_value[n]. */
251 static int *reg_last_set_label;
253 /* Record the value of label_tick when an expression involving register n
254 is placed in reg_last_set_value. */
256 static int *reg_last_set_table_tick;
258 /* Set nonzero if references to register n in expressions should not be
259 used. */
261 static char *reg_last_set_invalid;
263 /* Incremented for each label. */
265 static int label_tick;
267 /* Some registers that are set more than once and used in more than one
268 basic block are nevertheless always set in similar ways. For example,
269 a QImode register may be loaded from memory in two places on a machine
270 where byte loads zero extend.
272 We record in the following array what we know about the nonzero
273 bits of a register, specifically which bits are known to be zero.
275 If an entry is zero, it means that we don't know anything special. */
277 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
279 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
280 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
282 static enum machine_mode nonzero_bits_mode;
284 /* Nonzero if we know that a register has some leading bits that are always
285 equal to the sign bit. */
287 static unsigned char *reg_sign_bit_copies;
289 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
290 It is zero while computing them and after combine has completed. This
291 former test prevents propagating values based on previously set values,
292 which can be incorrect if a variable is modified in a loop. */
294 static int nonzero_sign_valid;
296 /* These arrays are maintained in parallel with reg_last_set_value
297 and are used to store the mode in which the register was last set,
298 the bits that were known to be zero when it was last set, and the
299 number of sign bits copies it was known to have when it was last set. */
301 static enum machine_mode *reg_last_set_mode;
302 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
303 static char *reg_last_set_sign_bit_copies;
305 /* Record one modification to rtl structure
306 to be undone by storing old_contents into *where.
307 is_int is 1 if the contents are an int. */
309 struct undo
311 struct undo *next;
312 int is_int;
313 union {rtx r; int i;} old_contents;
314 union {rtx *r; int *i;} where;
317 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
318 num_undo says how many are currently recorded.
320 other_insn is nonzero if we have modified some other insn in the process
321 of working on subst_insn. It must be verified too. */
323 struct undobuf
325 struct undo *undos;
326 struct undo *frees;
327 rtx other_insn;
330 static struct undobuf undobuf;
332 /* Number of times the pseudo being substituted for
333 was found and replaced. */
335 static int n_occurrences;
337 static void do_SUBST PARAMS ((rtx *, rtx));
338 static void do_SUBST_INT PARAMS ((int *, int));
339 static void init_reg_last_arrays PARAMS ((void));
340 static void setup_incoming_promotions PARAMS ((void));
341 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
342 static int cant_combine_insn_p PARAMS ((rtx));
343 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
344 static int sets_function_arg_p PARAMS ((rtx));
345 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
346 static int contains_muldiv PARAMS ((rtx));
347 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
348 static void undo_all PARAMS ((void));
349 static void undo_commit PARAMS ((void));
350 static rtx *find_split_point PARAMS ((rtx *, rtx));
351 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
352 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
353 static rtx simplify_if_then_else PARAMS ((rtx));
354 static rtx simplify_set PARAMS ((rtx));
355 static rtx simplify_logical PARAMS ((rtx, int));
356 static rtx expand_compound_operation PARAMS ((rtx));
357 static rtx expand_field_assignment PARAMS ((rtx));
358 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
359 rtx, unsigned HOST_WIDE_INT, int,
360 int, int));
361 static rtx extract_left_shift PARAMS ((rtx, int));
362 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
363 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
364 unsigned HOST_WIDE_INT *));
365 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
366 unsigned HOST_WIDE_INT, rtx, int));
367 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
368 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
369 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
370 static rtx make_field_assignment PARAMS ((rtx));
371 static rtx apply_distributive_law PARAMS ((rtx));
372 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
373 unsigned HOST_WIDE_INT));
374 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
375 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
376 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
377 enum rtx_code, HOST_WIDE_INT,
378 enum machine_mode, int *));
379 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
380 rtx, int));
381 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
382 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
383 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
384 rtx, rtx));
385 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
386 static void update_table_tick PARAMS ((rtx));
387 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
388 static void check_promoted_subreg PARAMS ((rtx, rtx));
389 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
390 static void record_dead_and_set_regs PARAMS ((rtx));
391 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
392 static rtx get_last_value PARAMS ((rtx));
393 static int use_crosses_set_p PARAMS ((rtx, int));
394 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
395 static int reg_dead_at_p PARAMS ((rtx, rtx));
396 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
397 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
398 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
399 static void distribute_links PARAMS ((rtx));
400 static void mark_used_regs_combine PARAMS ((rtx));
401 static int insn_cuid PARAMS ((rtx));
402 static void record_promoted_value PARAMS ((rtx, rtx));
403 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
404 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
406 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
407 insn. The substitution can be undone by undo_all. If INTO is already
408 set to NEWVAL, do not record this change. Because computing NEWVAL might
409 also call SUBST, we have to compute it before we put anything into
410 the undo table. */
412 static void
413 do_SUBST (into, newval)
414 rtx *into, newval;
416 struct undo *buf;
417 rtx oldval = *into;
419 if (oldval == newval)
420 return;
422 /* We'd like to catch as many invalid transformations here as
423 possible. Unfortunately, there are way too many mode changes
424 that are perfectly valid, so we'd waste too much effort for
425 little gain doing the checks here. Focus on catching invalid
426 transformations involving integer constants. */
427 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
428 && GET_CODE (newval) == CONST_INT)
430 /* Sanity check that we're replacing oldval with a CONST_INT
431 that is a valid sign-extension for the original mode. */
432 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
433 GET_MODE (oldval)))
434 abort ();
436 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
437 CONST_INT is not valid, because after the replacement, the
438 original mode would be gone. Unfortunately, we can't tell
439 when do_SUBST is called to replace the operand thereof, so we
440 perform this test on oldval instead, checking whether an
441 invalid replacement took place before we got here. */
442 if ((GET_CODE (oldval) == SUBREG
443 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
444 || (GET_CODE (oldval) == ZERO_EXTEND
445 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
446 abort ();
449 if (undobuf.frees)
450 buf = undobuf.frees, undobuf.frees = buf->next;
451 else
452 buf = (struct undo *) xmalloc (sizeof (struct undo));
454 buf->is_int = 0;
455 buf->where.r = into;
456 buf->old_contents.r = oldval;
457 *into = newval;
459 buf->next = undobuf.undos, undobuf.undos = buf;
462 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
464 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
465 for the value of a HOST_WIDE_INT value (including CONST_INT) is
466 not safe. */
468 static void
469 do_SUBST_INT (into, newval)
470 int *into, newval;
472 struct undo *buf;
473 int oldval = *into;
475 if (oldval == newval)
476 return;
478 if (undobuf.frees)
479 buf = undobuf.frees, undobuf.frees = buf->next;
480 else
481 buf = (struct undo *) xmalloc (sizeof (struct undo));
483 buf->is_int = 1;
484 buf->where.i = into;
485 buf->old_contents.i = oldval;
486 *into = newval;
488 buf->next = undobuf.undos, undobuf.undos = buf;
491 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
493 /* Main entry point for combiner. F is the first insn of the function.
494 NREGS is the first unused pseudo-reg number.
496 Return nonzero if the combiner has turned an indirect jump
497 instruction into a direct jump. */
499 combine_instructions (f, nregs)
500 rtx f;
501 unsigned int nregs;
503 rtx insn, next;
504 #ifdef HAVE_cc0
505 rtx prev;
506 #endif
507 int i;
508 rtx links, nextlinks;
510 int new_direct_jump_p = 0;
512 combine_attempts = 0;
513 combine_merges = 0;
514 combine_extras = 0;
515 combine_successes = 0;
517 combine_max_regno = nregs;
519 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
520 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
521 reg_sign_bit_copies
522 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
524 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
525 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
526 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
527 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
528 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
529 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
530 reg_last_set_mode
531 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
532 reg_last_set_nonzero_bits
533 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
534 reg_last_set_sign_bit_copies
535 = (char *) xmalloc (nregs * sizeof (char));
537 init_reg_last_arrays ();
539 init_recog_no_volatile ();
541 /* Compute maximum uid value so uid_cuid can be allocated. */
543 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
544 if (INSN_UID (insn) > i)
545 i = INSN_UID (insn);
547 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
548 max_uid_cuid = i;
550 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
552 /* Don't use reg_nonzero_bits when computing it. This can cause problems
553 when, for example, we have j <<= 1 in a loop. */
555 nonzero_sign_valid = 0;
557 /* Compute the mapping from uids to cuids.
558 Cuids are numbers assigned to insns, like uids,
559 except that cuids increase monotonically through the code.
561 Scan all SETs and see if we can deduce anything about what
562 bits are known to be zero for some registers and how many copies
563 of the sign bit are known to exist for those registers.
565 Also set any known values so that we can use it while searching
566 for what bits are known to be set. */
568 label_tick = 1;
570 setup_incoming_promotions ();
572 refresh_blocks = sbitmap_alloc (last_basic_block);
573 sbitmap_zero (refresh_blocks);
575 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
577 uid_cuid[INSN_UID (insn)] = ++i;
578 subst_low_cuid = i;
579 subst_insn = insn;
581 if (INSN_P (insn))
583 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
584 NULL);
585 record_dead_and_set_regs (insn);
587 #ifdef AUTO_INC_DEC
588 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
589 if (REG_NOTE_KIND (links) == REG_INC)
590 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
591 NULL);
592 #endif
595 if (GET_CODE (insn) == CODE_LABEL)
596 label_tick++;
599 nonzero_sign_valid = 1;
601 /* Now scan all the insns in forward order. */
603 label_tick = 1;
604 last_call_cuid = 0;
605 mem_last_set = 0;
606 init_reg_last_arrays ();
607 setup_incoming_promotions ();
609 FOR_EACH_BB (this_basic_block)
611 for (insn = this_basic_block->head;
612 insn != NEXT_INSN (this_basic_block->end);
613 insn = next ? next : NEXT_INSN (insn))
615 next = 0;
617 if (GET_CODE (insn) == CODE_LABEL)
618 label_tick++;
620 else if (INSN_P (insn))
622 /* See if we know about function return values before this
623 insn based upon SUBREG flags. */
624 check_promoted_subreg (insn, PATTERN (insn));
626 /* Try this insn with each insn it links back to. */
628 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
629 if ((next = try_combine (insn, XEXP (links, 0),
630 NULL_RTX, &new_direct_jump_p)) != 0)
631 goto retry;
633 /* Try each sequence of three linked insns ending with this one. */
635 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
637 rtx link = XEXP (links, 0);
639 /* If the linked insn has been replaced by a note, then there
640 is no point in pursuing this chain any further. */
641 if (GET_CODE (link) == NOTE)
642 continue;
644 for (nextlinks = LOG_LINKS (link);
645 nextlinks;
646 nextlinks = XEXP (nextlinks, 1))
647 if ((next = try_combine (insn, link,
648 XEXP (nextlinks, 0),
649 &new_direct_jump_p)) != 0)
650 goto retry;
653 #ifdef HAVE_cc0
654 /* Try to combine a jump insn that uses CC0
655 with a preceding insn that sets CC0, and maybe with its
656 logical predecessor as well.
657 This is how we make decrement-and-branch insns.
658 We need this special code because data flow connections
659 via CC0 do not get entered in LOG_LINKS. */
661 if (GET_CODE (insn) == JUMP_INSN
662 && (prev = prev_nonnote_insn (insn)) != 0
663 && GET_CODE (prev) == INSN
664 && sets_cc0_p (PATTERN (prev)))
666 if ((next = try_combine (insn, prev,
667 NULL_RTX, &new_direct_jump_p)) != 0)
668 goto retry;
670 for (nextlinks = LOG_LINKS (prev); nextlinks;
671 nextlinks = XEXP (nextlinks, 1))
672 if ((next = try_combine (insn, prev,
673 XEXP (nextlinks, 0),
674 &new_direct_jump_p)) != 0)
675 goto retry;
678 /* Do the same for an insn that explicitly references CC0. */
679 if (GET_CODE (insn) == INSN
680 && (prev = prev_nonnote_insn (insn)) != 0
681 && GET_CODE (prev) == INSN
682 && sets_cc0_p (PATTERN (prev))
683 && GET_CODE (PATTERN (insn)) == SET
684 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
686 if ((next = try_combine (insn, prev,
687 NULL_RTX, &new_direct_jump_p)) != 0)
688 goto retry;
690 for (nextlinks = LOG_LINKS (prev); nextlinks;
691 nextlinks = XEXP (nextlinks, 1))
692 if ((next = try_combine (insn, prev,
693 XEXP (nextlinks, 0),
694 &new_direct_jump_p)) != 0)
695 goto retry;
698 /* Finally, see if any of the insns that this insn links to
699 explicitly references CC0. If so, try this insn, that insn,
700 and its predecessor if it sets CC0. */
701 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
702 if (GET_CODE (XEXP (links, 0)) == INSN
703 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
704 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
705 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
706 && GET_CODE (prev) == INSN
707 && sets_cc0_p (PATTERN (prev))
708 && (next = try_combine (insn, XEXP (links, 0),
709 prev, &new_direct_jump_p)) != 0)
710 goto retry;
711 #endif
713 /* Try combining an insn with two different insns whose results it
714 uses. */
715 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
716 for (nextlinks = XEXP (links, 1); nextlinks;
717 nextlinks = XEXP (nextlinks, 1))
718 if ((next = try_combine (insn, XEXP (links, 0),
719 XEXP (nextlinks, 0),
720 &new_direct_jump_p)) != 0)
721 goto retry;
723 if (GET_CODE (insn) != NOTE)
724 record_dead_and_set_regs (insn);
726 retry:
731 clear_bb_flags ();
733 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
734 BASIC_BLOCK (i)->flags |= BB_DIRTY);
735 new_direct_jump_p |= purge_all_dead_edges (0);
736 delete_noop_moves (f);
738 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
739 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
740 | PROP_KILL_DEAD_CODE);
742 /* Clean up. */
743 sbitmap_free (refresh_blocks);
744 free (reg_nonzero_bits);
745 free (reg_sign_bit_copies);
746 free (reg_last_death);
747 free (reg_last_set);
748 free (reg_last_set_value);
749 free (reg_last_set_table_tick);
750 free (reg_last_set_label);
751 free (reg_last_set_invalid);
752 free (reg_last_set_mode);
753 free (reg_last_set_nonzero_bits);
754 free (reg_last_set_sign_bit_copies);
755 free (uid_cuid);
758 struct undo *undo, *next;
759 for (undo = undobuf.frees; undo; undo = next)
761 next = undo->next;
762 free (undo);
764 undobuf.frees = 0;
767 total_attempts += combine_attempts;
768 total_merges += combine_merges;
769 total_extras += combine_extras;
770 total_successes += combine_successes;
772 nonzero_sign_valid = 0;
774 /* Make recognizer allow volatile MEMs again. */
775 init_recog ();
777 return new_direct_jump_p;
780 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
782 static void
783 init_reg_last_arrays ()
785 unsigned int nregs = combine_max_regno;
787 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
788 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
789 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
790 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
791 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
792 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
793 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
794 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
795 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
798 /* Set up any promoted values for incoming argument registers. */
800 static void
801 setup_incoming_promotions ()
803 #ifdef PROMOTE_FUNCTION_ARGS
804 unsigned int regno;
805 rtx reg;
806 enum machine_mode mode;
807 int unsignedp;
808 rtx first = get_insns ();
810 #ifndef OUTGOING_REGNO
811 #define OUTGOING_REGNO(N) N
812 #endif
813 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
814 /* Check whether this register can hold an incoming pointer
815 argument. FUNCTION_ARG_REGNO_P tests outgoing register
816 numbers, so translate if necessary due to register windows. */
817 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
818 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
820 record_value_for_reg
821 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
822 : SIGN_EXTEND),
823 GET_MODE (reg),
824 gen_rtx_CLOBBER (mode, const0_rtx)));
826 #endif
829 /* Called via note_stores. If X is a pseudo that is narrower than
830 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
832 If we are setting only a portion of X and we can't figure out what
833 portion, assume all bits will be used since we don't know what will
834 be happening.
836 Similarly, set how many bits of X are known to be copies of the sign bit
837 at all locations in the function. This is the smallest number implied
838 by any set of X. */
840 static void
841 set_nonzero_bits_and_sign_copies (x, set, data)
842 rtx x;
843 rtx set;
844 void *data ATTRIBUTE_UNUSED;
846 unsigned int num;
848 if (GET_CODE (x) == REG
849 && REGNO (x) >= FIRST_PSEUDO_REGISTER
850 /* If this register is undefined at the start of the file, we can't
851 say what its contents were. */
852 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
853 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
855 if (set == 0 || GET_CODE (set) == CLOBBER)
857 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
858 reg_sign_bit_copies[REGNO (x)] = 1;
859 return;
862 /* If this is a complex assignment, see if we can convert it into a
863 simple assignment. */
864 set = expand_field_assignment (set);
866 /* If this is a simple assignment, or we have a paradoxical SUBREG,
867 set what we know about X. */
869 if (SET_DEST (set) == x
870 || (GET_CODE (SET_DEST (set)) == SUBREG
871 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
872 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
873 && SUBREG_REG (SET_DEST (set)) == x))
875 rtx src = SET_SRC (set);
877 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
878 /* If X is narrower than a word and SRC is a non-negative
879 constant that would appear negative in the mode of X,
880 sign-extend it for use in reg_nonzero_bits because some
881 machines (maybe most) will actually do the sign-extension
882 and this is the conservative approach.
884 ??? For 2.5, try to tighten up the MD files in this regard
885 instead of this kludge. */
887 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
888 && GET_CODE (src) == CONST_INT
889 && INTVAL (src) > 0
890 && 0 != (INTVAL (src)
891 & ((HOST_WIDE_INT) 1
892 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
893 src = GEN_INT (INTVAL (src)
894 | ((HOST_WIDE_INT) (-1)
895 << GET_MODE_BITSIZE (GET_MODE (x))));
896 #endif
898 /* Don't call nonzero_bits if it cannot change anything. */
899 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
900 reg_nonzero_bits[REGNO (x)]
901 |= nonzero_bits (src, nonzero_bits_mode);
902 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
903 if (reg_sign_bit_copies[REGNO (x)] == 0
904 || reg_sign_bit_copies[REGNO (x)] > num)
905 reg_sign_bit_copies[REGNO (x)] = num;
907 else
909 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
910 reg_sign_bit_copies[REGNO (x)] = 1;
915 /* See if INSN can be combined into I3. PRED and SUCC are optionally
916 insns that were previously combined into I3 or that will be combined
917 into the merger of INSN and I3.
919 Return 0 if the combination is not allowed for any reason.
921 If the combination is allowed, *PDEST will be set to the single
922 destination of INSN and *PSRC to the single source, and this function
923 will return 1. */
925 static int
926 can_combine_p (insn, i3, pred, succ, pdest, psrc)
927 rtx insn;
928 rtx i3;
929 rtx pred ATTRIBUTE_UNUSED;
930 rtx succ;
931 rtx *pdest, *psrc;
933 int i;
934 rtx set = 0, src, dest;
935 rtx p;
936 #ifdef AUTO_INC_DEC
937 rtx link;
938 #endif
939 int all_adjacent = (succ ? (next_active_insn (insn) == succ
940 && next_active_insn (succ) == i3)
941 : next_active_insn (insn) == i3);
943 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
944 or a PARALLEL consisting of such a SET and CLOBBERs.
946 If INSN has CLOBBER parallel parts, ignore them for our processing.
947 By definition, these happen during the execution of the insn. When it
948 is merged with another insn, all bets are off. If they are, in fact,
949 needed and aren't also supplied in I3, they may be added by
950 recog_for_combine. Otherwise, it won't match.
952 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
953 note.
955 Get the source and destination of INSN. If more than one, can't
956 combine. */
958 if (GET_CODE (PATTERN (insn)) == SET)
959 set = PATTERN (insn);
960 else if (GET_CODE (PATTERN (insn)) == PARALLEL
961 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
963 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
965 rtx elt = XVECEXP (PATTERN (insn), 0, i);
967 switch (GET_CODE (elt))
969 /* This is important to combine floating point insns
970 for the SH4 port. */
971 case USE:
972 /* Combining an isolated USE doesn't make sense.
973 We depend here on combinable_i3pat to reject them. */
974 /* The code below this loop only verifies that the inputs of
975 the SET in INSN do not change. We call reg_set_between_p
976 to verify that the REG in the USE does not change between
977 I3 and INSN.
978 If the USE in INSN was for a pseudo register, the matching
979 insn pattern will likely match any register; combining this
980 with any other USE would only be safe if we knew that the
981 used registers have identical values, or if there was
982 something to tell them apart, e.g. different modes. For
983 now, we forgo such complicated tests and simply disallow
984 combining of USES of pseudo registers with any other USE. */
985 if (GET_CODE (XEXP (elt, 0)) == REG
986 && GET_CODE (PATTERN (i3)) == PARALLEL)
988 rtx i3pat = PATTERN (i3);
989 int i = XVECLEN (i3pat, 0) - 1;
990 unsigned int regno = REGNO (XEXP (elt, 0));
994 rtx i3elt = XVECEXP (i3pat, 0, i);
996 if (GET_CODE (i3elt) == USE
997 && GET_CODE (XEXP (i3elt, 0)) == REG
998 && (REGNO (XEXP (i3elt, 0)) == regno
999 ? reg_set_between_p (XEXP (elt, 0),
1000 PREV_INSN (insn), i3)
1001 : regno >= FIRST_PSEUDO_REGISTER))
1002 return 0;
1004 while (--i >= 0);
1006 break;
1008 /* We can ignore CLOBBERs. */
1009 case CLOBBER:
1010 break;
1012 case SET:
1013 /* Ignore SETs whose result isn't used but not those that
1014 have side-effects. */
1015 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1016 && ! side_effects_p (elt))
1017 break;
1019 /* If we have already found a SET, this is a second one and
1020 so we cannot combine with this insn. */
1021 if (set)
1022 return 0;
1024 set = elt;
1025 break;
1027 default:
1028 /* Anything else means we can't combine. */
1029 return 0;
1033 if (set == 0
1034 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1035 so don't do anything with it. */
1036 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1037 return 0;
1039 else
1040 return 0;
1042 if (set == 0)
1043 return 0;
1045 set = expand_field_assignment (set);
1046 src = SET_SRC (set), dest = SET_DEST (set);
1048 /* Don't eliminate a store in the stack pointer. */
1049 if (dest == stack_pointer_rtx
1050 /* If we couldn't eliminate a field assignment, we can't combine. */
1051 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1052 /* Don't combine with an insn that sets a register to itself if it has
1053 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1054 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1055 /* Can't merge an ASM_OPERANDS. */
1056 || GET_CODE (src) == ASM_OPERANDS
1057 /* Can't merge a function call. */
1058 || GET_CODE (src) == CALL
1059 /* Don't eliminate a function call argument. */
1060 || (GET_CODE (i3) == CALL_INSN
1061 && (find_reg_fusage (i3, USE, dest)
1062 || (GET_CODE (dest) == REG
1063 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1064 && global_regs[REGNO (dest)])))
1065 /* Don't substitute into an incremented register. */
1066 || FIND_REG_INC_NOTE (i3, dest)
1067 || (succ && FIND_REG_INC_NOTE (succ, dest))
1068 #if 0
1069 /* Don't combine the end of a libcall into anything. */
1070 /* ??? This gives worse code, and appears to be unnecessary, since no
1071 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1072 use REG_RETVAL notes for noconflict blocks, but other code here
1073 makes sure that those insns don't disappear. */
1074 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1075 #endif
1076 /* Make sure that DEST is not used after SUCC but before I3. */
1077 || (succ && ! all_adjacent
1078 && reg_used_between_p (dest, succ, i3))
1079 /* Make sure that the value that is to be substituted for the register
1080 does not use any registers whose values alter in between. However,
1081 If the insns are adjacent, a use can't cross a set even though we
1082 think it might (this can happen for a sequence of insns each setting
1083 the same destination; reg_last_set of that register might point to
1084 a NOTE). If INSN has a REG_EQUIV note, the register is always
1085 equivalent to the memory so the substitution is valid even if there
1086 are intervening stores. Also, don't move a volatile asm or
1087 UNSPEC_VOLATILE across any other insns. */
1088 || (! all_adjacent
1089 && (((GET_CODE (src) != MEM
1090 || ! find_reg_note (insn, REG_EQUIV, src))
1091 && use_crosses_set_p (src, INSN_CUID (insn)))
1092 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1093 || GET_CODE (src) == UNSPEC_VOLATILE))
1094 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1095 better register allocation by not doing the combine. */
1096 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1097 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1098 /* Don't combine across a CALL_INSN, because that would possibly
1099 change whether the life span of some REGs crosses calls or not,
1100 and it is a pain to update that information.
1101 Exception: if source is a constant, moving it later can't hurt.
1102 Accept that special case, because it helps -fforce-addr a lot. */
1103 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1104 return 0;
1106 /* DEST must either be a REG or CC0. */
1107 if (GET_CODE (dest) == REG)
1109 /* If register alignment is being enforced for multi-word items in all
1110 cases except for parameters, it is possible to have a register copy
1111 insn referencing a hard register that is not allowed to contain the
1112 mode being copied and which would not be valid as an operand of most
1113 insns. Eliminate this problem by not combining with such an insn.
1115 Also, on some machines we don't want to extend the life of a hard
1116 register. */
1118 if (GET_CODE (src) == REG
1119 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1120 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1121 /* Don't extend the life of a hard register unless it is
1122 user variable (if we have few registers) or it can't
1123 fit into the desired register (meaning something special
1124 is going on).
1125 Also avoid substituting a return register into I3, because
1126 reload can't handle a conflict with constraints of other
1127 inputs. */
1128 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1129 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1130 return 0;
1132 else if (GET_CODE (dest) != CC0)
1133 return 0;
1135 /* Don't substitute for a register intended as a clobberable operand.
1136 Similarly, don't substitute an expression containing a register that
1137 will be clobbered in I3. */
1138 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1139 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1140 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1141 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1142 src)
1143 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1144 return 0;
1146 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1147 or not), reject, unless nothing volatile comes between it and I3 */
1149 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1151 /* Make sure succ doesn't contain a volatile reference. */
1152 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1153 return 0;
1155 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1156 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1157 return 0;
1160 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1161 to be an explicit register variable, and was chosen for a reason. */
1163 if (GET_CODE (src) == ASM_OPERANDS
1164 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1165 return 0;
1167 /* If there are any volatile insns between INSN and I3, reject, because
1168 they might affect machine state. */
1170 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1171 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1172 return 0;
1174 /* If INSN or I2 contains an autoincrement or autodecrement,
1175 make sure that register is not used between there and I3,
1176 and not already used in I3 either.
1177 Also insist that I3 not be a jump; if it were one
1178 and the incremented register were spilled, we would lose. */
1180 #ifdef AUTO_INC_DEC
1181 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1182 if (REG_NOTE_KIND (link) == REG_INC
1183 && (GET_CODE (i3) == JUMP_INSN
1184 || reg_used_between_p (XEXP (link, 0), insn, i3)
1185 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1186 return 0;
1187 #endif
1189 #ifdef HAVE_cc0
1190 /* Don't combine an insn that follows a CC0-setting insn.
1191 An insn that uses CC0 must not be separated from the one that sets it.
1192 We do, however, allow I2 to follow a CC0-setting insn if that insn
1193 is passed as I1; in that case it will be deleted also.
1194 We also allow combining in this case if all the insns are adjacent
1195 because that would leave the two CC0 insns adjacent as well.
1196 It would be more logical to test whether CC0 occurs inside I1 or I2,
1197 but that would be much slower, and this ought to be equivalent. */
1199 p = prev_nonnote_insn (insn);
1200 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1201 && ! all_adjacent)
1202 return 0;
1203 #endif
1205 /* If we get here, we have passed all the tests and the combination is
1206 to be allowed. */
1208 *pdest = dest;
1209 *psrc = src;
1211 return 1;
1214 /* Check if PAT is an insn - or a part of it - used to set up an
1215 argument for a function in a hard register. */
1217 static int
1218 sets_function_arg_p (pat)
1219 rtx pat;
1221 int i;
1222 rtx inner_dest;
1224 switch (GET_CODE (pat))
1226 case INSN:
1227 return sets_function_arg_p (PATTERN (pat));
1229 case PARALLEL:
1230 for (i = XVECLEN (pat, 0); --i >= 0;)
1231 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1232 return 1;
1234 break;
1236 case SET:
1237 inner_dest = SET_DEST (pat);
1238 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1239 || GET_CODE (inner_dest) == SUBREG
1240 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1241 inner_dest = XEXP (inner_dest, 0);
1243 return (GET_CODE (inner_dest) == REG
1244 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1245 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1247 default:
1248 break;
1251 return 0;
1254 /* LOC is the location within I3 that contains its pattern or the component
1255 of a PARALLEL of the pattern. We validate that it is valid for combining.
1257 One problem is if I3 modifies its output, as opposed to replacing it
1258 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1259 so would produce an insn that is not equivalent to the original insns.
1261 Consider:
1263 (set (reg:DI 101) (reg:DI 100))
1264 (set (subreg:SI (reg:DI 101) 0) <foo>)
1266 This is NOT equivalent to:
1268 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1269 (set (reg:DI 101) (reg:DI 100))])
1271 Not only does this modify 100 (in which case it might still be valid
1272 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1274 We can also run into a problem if I2 sets a register that I1
1275 uses and I1 gets directly substituted into I3 (not via I2). In that
1276 case, we would be getting the wrong value of I2DEST into I3, so we
1277 must reject the combination. This case occurs when I2 and I1 both
1278 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1279 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1280 of a SET must prevent combination from occurring.
1282 Before doing the above check, we first try to expand a field assignment
1283 into a set of logical operations.
1285 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1286 we place a register that is both set and used within I3. If more than one
1287 such register is detected, we fail.
1289 Return 1 if the combination is valid, zero otherwise. */
1291 static int
1292 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1293 rtx i3;
1294 rtx *loc;
1295 rtx i2dest;
1296 rtx i1dest;
1297 int i1_not_in_src;
1298 rtx *pi3dest_killed;
1300 rtx x = *loc;
1302 if (GET_CODE (x) == SET)
1304 rtx set = expand_field_assignment (x);
1305 rtx dest = SET_DEST (set);
1306 rtx src = SET_SRC (set);
1307 rtx inner_dest = dest;
1309 #if 0
1310 rtx inner_src = src;
1311 #endif
1313 SUBST (*loc, set);
1315 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1316 || GET_CODE (inner_dest) == SUBREG
1317 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1318 inner_dest = XEXP (inner_dest, 0);
1320 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1321 was added. */
1322 #if 0
1323 while (GET_CODE (inner_src) == STRICT_LOW_PART
1324 || GET_CODE (inner_src) == SUBREG
1325 || GET_CODE (inner_src) == ZERO_EXTRACT)
1326 inner_src = XEXP (inner_src, 0);
1328 /* If it is better that two different modes keep two different pseudos,
1329 avoid combining them. This avoids producing the following pattern
1330 on a 386:
1331 (set (subreg:SI (reg/v:QI 21) 0)
1332 (lshiftrt:SI (reg/v:SI 20)
1333 (const_int 24)))
1334 If that were made, reload could not handle the pair of
1335 reg 20/21, since it would try to get any GENERAL_REGS
1336 but some of them don't handle QImode. */
1338 if (rtx_equal_p (inner_src, i2dest)
1339 && GET_CODE (inner_dest) == REG
1340 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1341 return 0;
1342 #endif
1344 /* Check for the case where I3 modifies its output, as
1345 discussed above. */
1346 if ((inner_dest != dest
1347 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1348 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1350 /* This is the same test done in can_combine_p except we can't test
1351 all_adjacent; we don't have to, since this instruction will stay
1352 in place, thus we are not considering increasing the lifetime of
1353 INNER_DEST.
1355 Also, if this insn sets a function argument, combining it with
1356 something that might need a spill could clobber a previous
1357 function argument; the all_adjacent test in can_combine_p also
1358 checks this; here, we do a more specific test for this case. */
1360 || (GET_CODE (inner_dest) == REG
1361 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1362 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1363 GET_MODE (inner_dest))))
1364 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1365 return 0;
1367 /* If DEST is used in I3, it is being killed in this insn,
1368 so record that for later.
1369 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1370 STACK_POINTER_REGNUM, since these are always considered to be
1371 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1372 if (pi3dest_killed && GET_CODE (dest) == REG
1373 && reg_referenced_p (dest, PATTERN (i3))
1374 && REGNO (dest) != FRAME_POINTER_REGNUM
1375 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1376 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1377 #endif
1378 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1379 && (REGNO (dest) != ARG_POINTER_REGNUM
1380 || ! fixed_regs [REGNO (dest)])
1381 #endif
1382 && REGNO (dest) != STACK_POINTER_REGNUM)
1384 if (*pi3dest_killed)
1385 return 0;
1387 *pi3dest_killed = dest;
1391 else if (GET_CODE (x) == PARALLEL)
1393 int i;
1395 for (i = 0; i < XVECLEN (x, 0); i++)
1396 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1397 i1_not_in_src, pi3dest_killed))
1398 return 0;
1401 return 1;
1404 /* Return 1 if X is an arithmetic expression that contains a multiplication
1405 and division. We don't count multiplications by powers of two here. */
1407 static int
1408 contains_muldiv (x)
1409 rtx x;
1411 switch (GET_CODE (x))
1413 case MOD: case DIV: case UMOD: case UDIV:
1414 return 1;
1416 case MULT:
1417 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1418 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1419 default:
1420 switch (GET_RTX_CLASS (GET_CODE (x)))
1422 case 'c': case '<': case '2':
1423 return contains_muldiv (XEXP (x, 0))
1424 || contains_muldiv (XEXP (x, 1));
1426 case '1':
1427 return contains_muldiv (XEXP (x, 0));
1429 default:
1430 return 0;
1435 /* Determine whether INSN can be used in a combination. Return nonzero if
1436 not. This is used in try_combine to detect early some cases where we
1437 can't perform combinations. */
1439 static int
1440 cant_combine_insn_p (insn)
1441 rtx insn;
1443 rtx set;
1444 rtx src, dest;
1446 /* If this isn't really an insn, we can't do anything.
1447 This can occur when flow deletes an insn that it has merged into an
1448 auto-increment address. */
1449 if (! INSN_P (insn))
1450 return 1;
1452 /* Never combine loads and stores involving hard regs. The register
1453 allocator can usually handle such reg-reg moves by tying. If we allow
1454 the combiner to make substitutions of hard regs, we risk aborting in
1455 reload on machines that have SMALL_REGISTER_CLASSES.
1456 As an exception, we allow combinations involving fixed regs; these are
1457 not available to the register allocator so there's no risk involved. */
1459 set = single_set (insn);
1460 if (! set)
1461 return 0;
1462 src = SET_SRC (set);
1463 dest = SET_DEST (set);
1464 if (GET_CODE (src) == SUBREG)
1465 src = SUBREG_REG (src);
1466 if (GET_CODE (dest) == SUBREG)
1467 dest = SUBREG_REG (dest);
1468 if (REG_P (src) && REG_P (dest)
1469 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1470 && ! fixed_regs[REGNO (src)])
1471 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1472 && ! fixed_regs[REGNO (dest)])))
1473 return 1;
1475 return 0;
1478 /* Try to combine the insns I1 and I2 into I3.
1479 Here I1 and I2 appear earlier than I3.
1480 I1 can be zero; then we combine just I2 into I3.
1482 If we are combining three insns and the resulting insn is not recognized,
1483 try splitting it into two insns. If that happens, I2 and I3 are retained
1484 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1485 are pseudo-deleted.
1487 Return 0 if the combination does not work. Then nothing is changed.
1488 If we did the combination, return the insn at which combine should
1489 resume scanning.
1491 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1492 new direct jump instruction. */
1494 static rtx
1495 try_combine (i3, i2, i1, new_direct_jump_p)
1496 rtx i3, i2, i1;
1497 int *new_direct_jump_p;
1499 /* New patterns for I3 and I2, respectively. */
1500 rtx newpat, newi2pat = 0;
1501 int substed_i2 = 0, substed_i1 = 0;
1502 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1503 int added_sets_1, added_sets_2;
1504 /* Total number of SETs to put into I3. */
1505 int total_sets;
1506 /* Nonzero is I2's body now appears in I3. */
1507 int i2_is_used;
1508 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1509 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1510 /* Contains I3 if the destination of I3 is used in its source, which means
1511 that the old life of I3 is being killed. If that usage is placed into
1512 I2 and not in I3, a REG_DEAD note must be made. */
1513 rtx i3dest_killed = 0;
1514 /* SET_DEST and SET_SRC of I2 and I1. */
1515 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1516 /* PATTERN (I2), or a copy of it in certain cases. */
1517 rtx i2pat;
1518 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1519 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1520 int i1_feeds_i3 = 0;
1521 /* Notes that must be added to REG_NOTES in I3 and I2. */
1522 rtx new_i3_notes, new_i2_notes;
1523 /* Notes that we substituted I3 into I2 instead of the normal case. */
1524 int i3_subst_into_i2 = 0;
1525 /* Notes that I1, I2 or I3 is a MULT operation. */
1526 int have_mult = 0;
1528 int maxreg;
1529 rtx temp;
1530 rtx link;
1531 int i;
1533 /* Exit early if one of the insns involved can't be used for
1534 combinations. */
1535 if (cant_combine_insn_p (i3)
1536 || cant_combine_insn_p (i2)
1537 || (i1 && cant_combine_insn_p (i1))
1538 /* We also can't do anything if I3 has a
1539 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1540 libcall. */
1541 #if 0
1542 /* ??? This gives worse code, and appears to be unnecessary, since no
1543 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1544 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1545 #endif
1547 return 0;
1549 combine_attempts++;
1550 undobuf.other_insn = 0;
1552 /* Reset the hard register usage information. */
1553 CLEAR_HARD_REG_SET (newpat_used_regs);
1555 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1556 code below, set I1 to be the earlier of the two insns. */
1557 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1558 temp = i1, i1 = i2, i2 = temp;
1560 added_links_insn = 0;
1562 /* First check for one important special-case that the code below will
1563 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1564 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1565 we may be able to replace that destination with the destination of I3.
1566 This occurs in the common code where we compute both a quotient and
1567 remainder into a structure, in which case we want to do the computation
1568 directly into the structure to avoid register-register copies.
1570 Note that this case handles both multiple sets in I2 and also
1571 cases where I2 has a number of CLOBBER or PARALLELs.
1573 We make very conservative checks below and only try to handle the
1574 most common cases of this. For example, we only handle the case
1575 where I2 and I3 are adjacent to avoid making difficult register
1576 usage tests. */
1578 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1579 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1580 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1581 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1582 && GET_CODE (PATTERN (i2)) == PARALLEL
1583 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1584 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1585 below would need to check what is inside (and reg_overlap_mentioned_p
1586 doesn't support those codes anyway). Don't allow those destinations;
1587 the resulting insn isn't likely to be recognized anyway. */
1588 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1589 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1590 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1591 SET_DEST (PATTERN (i3)))
1592 && next_real_insn (i2) == i3)
1594 rtx p2 = PATTERN (i2);
1596 /* Make sure that the destination of I3,
1597 which we are going to substitute into one output of I2,
1598 is not used within another output of I2. We must avoid making this:
1599 (parallel [(set (mem (reg 69)) ...)
1600 (set (reg 69) ...)])
1601 which is not well-defined as to order of actions.
1602 (Besides, reload can't handle output reloads for this.)
1604 The problem can also happen if the dest of I3 is a memory ref,
1605 if another dest in I2 is an indirect memory ref. */
1606 for (i = 0; i < XVECLEN (p2, 0); i++)
1607 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1608 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1609 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1610 SET_DEST (XVECEXP (p2, 0, i))))
1611 break;
1613 if (i == XVECLEN (p2, 0))
1614 for (i = 0; i < XVECLEN (p2, 0); i++)
1615 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1616 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1617 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1619 combine_merges++;
1621 subst_insn = i3;
1622 subst_low_cuid = INSN_CUID (i2);
1624 added_sets_2 = added_sets_1 = 0;
1625 i2dest = SET_SRC (PATTERN (i3));
1627 /* Replace the dest in I2 with our dest and make the resulting
1628 insn the new pattern for I3. Then skip to where we
1629 validate the pattern. Everything was set up above. */
1630 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1631 SET_DEST (PATTERN (i3)));
1633 newpat = p2;
1634 i3_subst_into_i2 = 1;
1635 goto validate_replacement;
1639 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1640 one of those words to another constant, merge them by making a new
1641 constant. */
1642 if (i1 == 0
1643 && (temp = single_set (i2)) != 0
1644 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1645 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1646 && GET_CODE (SET_DEST (temp)) == REG
1647 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1648 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1649 && GET_CODE (PATTERN (i3)) == SET
1650 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1651 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1652 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1653 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1654 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1656 HOST_WIDE_INT lo, hi;
1658 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1659 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1660 else
1662 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1663 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1666 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1668 /* We don't handle the case of the target word being wider
1669 than a host wide int. */
1670 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1671 abort ();
1673 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1674 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1675 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1677 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1678 hi = INTVAL (SET_SRC (PATTERN (i3)));
1679 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1681 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1682 >> (HOST_BITS_PER_WIDE_INT - 1));
1684 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1685 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1686 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1687 (INTVAL (SET_SRC (PATTERN (i3)))));
1688 if (hi == sign)
1689 hi = lo < 0 ? -1 : 0;
1691 else
1692 /* We don't handle the case of the higher word not fitting
1693 entirely in either hi or lo. */
1694 abort ();
1696 combine_merges++;
1697 subst_insn = i3;
1698 subst_low_cuid = INSN_CUID (i2);
1699 added_sets_2 = added_sets_1 = 0;
1700 i2dest = SET_DEST (temp);
1702 SUBST (SET_SRC (temp),
1703 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1705 newpat = PATTERN (i2);
1706 goto validate_replacement;
1709 #ifndef HAVE_cc0
1710 /* If we have no I1 and I2 looks like:
1711 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1712 (set Y OP)])
1713 make up a dummy I1 that is
1714 (set Y OP)
1715 and change I2 to be
1716 (set (reg:CC X) (compare:CC Y (const_int 0)))
1718 (We can ignore any trailing CLOBBERs.)
1720 This undoes a previous combination and allows us to match a branch-and-
1721 decrement insn. */
1723 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1724 && XVECLEN (PATTERN (i2), 0) >= 2
1725 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1726 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1727 == MODE_CC)
1728 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1729 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1730 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1731 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1732 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1733 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1735 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1736 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1737 break;
1739 if (i == 1)
1741 /* We make I1 with the same INSN_UID as I2. This gives it
1742 the same INSN_CUID for value tracking. Our fake I1 will
1743 never appear in the insn stream so giving it the same INSN_UID
1744 as I2 will not cause a problem. */
1746 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1747 BLOCK_FOR_INSN (i2), INSN_SCOPE (i2),
1748 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1749 NULL_RTX);
1751 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1752 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1753 SET_DEST (PATTERN (i1)));
1756 #endif
1758 /* Verify that I2 and I1 are valid for combining. */
1759 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1760 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1762 undo_all ();
1763 return 0;
1766 /* Record whether I2DEST is used in I2SRC and similarly for the other
1767 cases. Knowing this will help in register status updating below. */
1768 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1769 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1770 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1772 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1773 in I2SRC. */
1774 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1776 /* Ensure that I3's pattern can be the destination of combines. */
1777 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1778 i1 && i2dest_in_i1src && i1_feeds_i3,
1779 &i3dest_killed))
1781 undo_all ();
1782 return 0;
1785 /* See if any of the insns is a MULT operation. Unless one is, we will
1786 reject a combination that is, since it must be slower. Be conservative
1787 here. */
1788 if (GET_CODE (i2src) == MULT
1789 || (i1 != 0 && GET_CODE (i1src) == MULT)
1790 || (GET_CODE (PATTERN (i3)) == SET
1791 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1792 have_mult = 1;
1794 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1795 We used to do this EXCEPT in one case: I3 has a post-inc in an
1796 output operand. However, that exception can give rise to insns like
1797 mov r3,(r3)+
1798 which is a famous insn on the PDP-11 where the value of r3 used as the
1799 source was model-dependent. Avoid this sort of thing. */
1801 #if 0
1802 if (!(GET_CODE (PATTERN (i3)) == SET
1803 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1804 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1805 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1806 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1807 /* It's not the exception. */
1808 #endif
1809 #ifdef AUTO_INC_DEC
1810 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1811 if (REG_NOTE_KIND (link) == REG_INC
1812 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1813 || (i1 != 0
1814 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1816 undo_all ();
1817 return 0;
1819 #endif
1821 /* See if the SETs in I1 or I2 need to be kept around in the merged
1822 instruction: whenever the value set there is still needed past I3.
1823 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1825 For the SET in I1, we have two cases: If I1 and I2 independently
1826 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1827 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1828 in I1 needs to be kept around unless I1DEST dies or is set in either
1829 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1830 I1DEST. If so, we know I1 feeds into I2. */
1832 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1834 added_sets_1
1835 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1836 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1838 /* If the set in I2 needs to be kept around, we must make a copy of
1839 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1840 PATTERN (I2), we are only substituting for the original I1DEST, not into
1841 an already-substituted copy. This also prevents making self-referential
1842 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1843 I2DEST. */
1845 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1846 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1847 : PATTERN (i2));
1849 if (added_sets_2)
1850 i2pat = copy_rtx (i2pat);
1852 combine_merges++;
1854 /* Substitute in the latest insn for the regs set by the earlier ones. */
1856 maxreg = max_reg_num ();
1858 subst_insn = i3;
1860 /* It is possible that the source of I2 or I1 may be performing an
1861 unneeded operation, such as a ZERO_EXTEND of something that is known
1862 to have the high part zero. Handle that case by letting subst look at
1863 the innermost one of them.
1865 Another way to do this would be to have a function that tries to
1866 simplify a single insn instead of merging two or more insns. We don't
1867 do this because of the potential of infinite loops and because
1868 of the potential extra memory required. However, doing it the way
1869 we are is a bit of a kludge and doesn't catch all cases.
1871 But only do this if -fexpensive-optimizations since it slows things down
1872 and doesn't usually win. */
1874 if (flag_expensive_optimizations)
1876 /* Pass pc_rtx so no substitutions are done, just simplifications.
1877 The cases that we are interested in here do not involve the few
1878 cases were is_replaced is checked. */
1879 if (i1)
1881 subst_low_cuid = INSN_CUID (i1);
1882 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1884 else
1886 subst_low_cuid = INSN_CUID (i2);
1887 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1891 #ifndef HAVE_cc0
1892 /* Many machines that don't use CC0 have insns that can both perform an
1893 arithmetic operation and set the condition code. These operations will
1894 be represented as a PARALLEL with the first element of the vector
1895 being a COMPARE of an arithmetic operation with the constant zero.
1896 The second element of the vector will set some pseudo to the result
1897 of the same arithmetic operation. If we simplify the COMPARE, we won't
1898 match such a pattern and so will generate an extra insn. Here we test
1899 for this case, where both the comparison and the operation result are
1900 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1901 I2SRC. Later we will make the PARALLEL that contains I2. */
1903 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1904 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1905 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1906 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1908 #ifdef EXTRA_CC_MODES
1909 rtx *cc_use;
1910 enum machine_mode compare_mode;
1911 #endif
1913 newpat = PATTERN (i3);
1914 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1916 i2_is_used = 1;
1918 #ifdef EXTRA_CC_MODES
1919 /* See if a COMPARE with the operand we substituted in should be done
1920 with the mode that is currently being used. If not, do the same
1921 processing we do in `subst' for a SET; namely, if the destination
1922 is used only once, try to replace it with a register of the proper
1923 mode and also replace the COMPARE. */
1924 if (undobuf.other_insn == 0
1925 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1926 &undobuf.other_insn))
1927 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1928 i2src, const0_rtx))
1929 != GET_MODE (SET_DEST (newpat))))
1931 unsigned int regno = REGNO (SET_DEST (newpat));
1932 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1934 if (regno < FIRST_PSEUDO_REGISTER
1935 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1936 && ! REG_USERVAR_P (SET_DEST (newpat))))
1938 if (regno >= FIRST_PSEUDO_REGISTER)
1939 SUBST (regno_reg_rtx[regno], new_dest);
1941 SUBST (SET_DEST (newpat), new_dest);
1942 SUBST (XEXP (*cc_use, 0), new_dest);
1943 SUBST (SET_SRC (newpat),
1944 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1946 else
1947 undobuf.other_insn = 0;
1949 #endif
1951 else
1952 #endif
1954 n_occurrences = 0; /* `subst' counts here */
1956 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1957 need to make a unique copy of I2SRC each time we substitute it
1958 to avoid self-referential rtl. */
1960 subst_low_cuid = INSN_CUID (i2);
1961 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1962 ! i1_feeds_i3 && i1dest_in_i1src);
1963 substed_i2 = 1;
1965 /* Record whether i2's body now appears within i3's body. */
1966 i2_is_used = n_occurrences;
1969 /* If we already got a failure, don't try to do more. Otherwise,
1970 try to substitute in I1 if we have it. */
1972 if (i1 && GET_CODE (newpat) != CLOBBER)
1974 /* Before we can do this substitution, we must redo the test done
1975 above (see detailed comments there) that ensures that I1DEST
1976 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1978 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1979 0, (rtx*) 0))
1981 undo_all ();
1982 return 0;
1985 n_occurrences = 0;
1986 subst_low_cuid = INSN_CUID (i1);
1987 newpat = subst (newpat, i1dest, i1src, 0, 0);
1988 substed_i1 = 1;
1991 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1992 to count all the ways that I2SRC and I1SRC can be used. */
1993 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1994 && i2_is_used + added_sets_2 > 1)
1995 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1996 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1997 > 1))
1998 /* Fail if we tried to make a new register (we used to abort, but there's
1999 really no reason to). */
2000 || max_reg_num () != maxreg
2001 /* Fail if we couldn't do something and have a CLOBBER. */
2002 || GET_CODE (newpat) == CLOBBER
2003 /* Fail if this new pattern is a MULT and we didn't have one before
2004 at the outer level. */
2005 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2006 && ! have_mult))
2008 undo_all ();
2009 return 0;
2012 /* If the actions of the earlier insns must be kept
2013 in addition to substituting them into the latest one,
2014 we must make a new PARALLEL for the latest insn
2015 to hold additional the SETs. */
2017 if (added_sets_1 || added_sets_2)
2019 combine_extras++;
2021 if (GET_CODE (newpat) == PARALLEL)
2023 rtvec old = XVEC (newpat, 0);
2024 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2025 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2026 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2027 sizeof (old->elem[0]) * old->num_elem);
2029 else
2031 rtx old = newpat;
2032 total_sets = 1 + added_sets_1 + added_sets_2;
2033 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2034 XVECEXP (newpat, 0, 0) = old;
2037 if (added_sets_1)
2038 XVECEXP (newpat, 0, --total_sets)
2039 = (GET_CODE (PATTERN (i1)) == PARALLEL
2040 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2042 if (added_sets_2)
2044 /* If there is no I1, use I2's body as is. We used to also not do
2045 the subst call below if I2 was substituted into I3,
2046 but that could lose a simplification. */
2047 if (i1 == 0)
2048 XVECEXP (newpat, 0, --total_sets) = i2pat;
2049 else
2050 /* See comment where i2pat is assigned. */
2051 XVECEXP (newpat, 0, --total_sets)
2052 = subst (i2pat, i1dest, i1src, 0, 0);
2056 /* We come here when we are replacing a destination in I2 with the
2057 destination of I3. */
2058 validate_replacement:
2060 /* Note which hard regs this insn has as inputs. */
2061 mark_used_regs_combine (newpat);
2063 /* Is the result of combination a valid instruction? */
2064 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2066 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2067 the second SET's destination is a register that is unused. In that case,
2068 we just need the first SET. This can occur when simplifying a divmod
2069 insn. We *must* test for this case here because the code below that
2070 splits two independent SETs doesn't handle this case correctly when it
2071 updates the register status. Also check the case where the first
2072 SET's destination is unused. That would not cause incorrect code, but
2073 does cause an unneeded insn to remain. */
2075 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2076 && XVECLEN (newpat, 0) == 2
2077 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2078 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2079 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2080 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2081 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2082 && asm_noperands (newpat) < 0)
2084 newpat = XVECEXP (newpat, 0, 0);
2085 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2088 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2089 && XVECLEN (newpat, 0) == 2
2090 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2091 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2092 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2093 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2094 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2095 && asm_noperands (newpat) < 0)
2097 newpat = XVECEXP (newpat, 0, 1);
2098 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2101 /* If we were combining three insns and the result is a simple SET
2102 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2103 insns. There are two ways to do this. It can be split using a
2104 machine-specific method (like when you have an addition of a large
2105 constant) or by combine in the function find_split_point. */
2107 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2108 && asm_noperands (newpat) < 0)
2110 rtx m_split, *split;
2111 rtx ni2dest = i2dest;
2113 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2114 use I2DEST as a scratch register will help. In the latter case,
2115 convert I2DEST to the mode of the source of NEWPAT if we can. */
2117 m_split = split_insns (newpat, i3);
2119 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2120 inputs of NEWPAT. */
2122 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2123 possible to try that as a scratch reg. This would require adding
2124 more code to make it work though. */
2126 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2128 /* If I2DEST is a hard register or the only use of a pseudo,
2129 we can change its mode. */
2130 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2131 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2132 && GET_CODE (i2dest) == REG
2133 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2134 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2135 && ! REG_USERVAR_P (i2dest))))
2136 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2137 REGNO (i2dest));
2139 m_split = split_insns (gen_rtx_PARALLEL
2140 (VOIDmode,
2141 gen_rtvec (2, newpat,
2142 gen_rtx_CLOBBER (VOIDmode,
2143 ni2dest))),
2144 i3);
2145 /* If the split with the mode-changed register didn't work, try
2146 the original register. */
2147 if (! m_split && ni2dest != i2dest)
2149 ni2dest = i2dest;
2150 m_split = split_insns (gen_rtx_PARALLEL
2151 (VOIDmode,
2152 gen_rtvec (2, newpat,
2153 gen_rtx_CLOBBER (VOIDmode,
2154 i2dest))),
2155 i3);
2159 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2161 m_split = PATTERN (m_split);
2162 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2163 if (insn_code_number >= 0)
2164 newpat = m_split;
2166 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2167 && (next_real_insn (i2) == i3
2168 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2170 rtx i2set, i3set;
2171 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2172 newi2pat = PATTERN (m_split);
2174 i3set = single_set (NEXT_INSN (m_split));
2175 i2set = single_set (m_split);
2177 /* In case we changed the mode of I2DEST, replace it in the
2178 pseudo-register table here. We can't do it above in case this
2179 code doesn't get executed and we do a split the other way. */
2181 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2182 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2184 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2186 /* If I2 or I3 has multiple SETs, we won't know how to track
2187 register status, so don't use these insns. If I2's destination
2188 is used between I2 and I3, we also can't use these insns. */
2190 if (i2_code_number >= 0 && i2set && i3set
2191 && (next_real_insn (i2) == i3
2192 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2193 insn_code_number = recog_for_combine (&newi3pat, i3,
2194 &new_i3_notes);
2195 if (insn_code_number >= 0)
2196 newpat = newi3pat;
2198 /* It is possible that both insns now set the destination of I3.
2199 If so, we must show an extra use of it. */
2201 if (insn_code_number >= 0)
2203 rtx new_i3_dest = SET_DEST (i3set);
2204 rtx new_i2_dest = SET_DEST (i2set);
2206 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2207 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2208 || GET_CODE (new_i3_dest) == SUBREG)
2209 new_i3_dest = XEXP (new_i3_dest, 0);
2211 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2212 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2213 || GET_CODE (new_i2_dest) == SUBREG)
2214 new_i2_dest = XEXP (new_i2_dest, 0);
2216 if (GET_CODE (new_i3_dest) == REG
2217 && GET_CODE (new_i2_dest) == REG
2218 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2219 REG_N_SETS (REGNO (new_i2_dest))++;
2223 /* If we can split it and use I2DEST, go ahead and see if that
2224 helps things be recognized. Verify that none of the registers
2225 are set between I2 and I3. */
2226 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2227 #ifdef HAVE_cc0
2228 && GET_CODE (i2dest) == REG
2229 #endif
2230 /* We need I2DEST in the proper mode. If it is a hard register
2231 or the only use of a pseudo, we can change its mode. */
2232 && (GET_MODE (*split) == GET_MODE (i2dest)
2233 || GET_MODE (*split) == VOIDmode
2234 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2235 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2236 && ! REG_USERVAR_P (i2dest)))
2237 && (next_real_insn (i2) == i3
2238 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2239 /* We can't overwrite I2DEST if its value is still used by
2240 NEWPAT. */
2241 && ! reg_referenced_p (i2dest, newpat))
2243 rtx newdest = i2dest;
2244 enum rtx_code split_code = GET_CODE (*split);
2245 enum machine_mode split_mode = GET_MODE (*split);
2247 /* Get NEWDEST as a register in the proper mode. We have already
2248 validated that we can do this. */
2249 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2251 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2253 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2254 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2257 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2258 an ASHIFT. This can occur if it was inside a PLUS and hence
2259 appeared to be a memory address. This is a kludge. */
2260 if (split_code == MULT
2261 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2262 && INTVAL (XEXP (*split, 1)) > 0
2263 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2265 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2266 XEXP (*split, 0), GEN_INT (i)));
2267 /* Update split_code because we may not have a multiply
2268 anymore. */
2269 split_code = GET_CODE (*split);
2272 #ifdef INSN_SCHEDULING
2273 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2274 be written as a ZERO_EXTEND. */
2275 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2277 #ifdef LOAD_EXTEND_OP
2278 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2279 what it really is. */
2280 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2281 == SIGN_EXTEND)
2282 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2283 SUBREG_REG (*split)));
2284 else
2285 #endif
2286 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2287 SUBREG_REG (*split)));
2289 #endif
2291 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2292 SUBST (*split, newdest);
2293 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2295 /* If the split point was a MULT and we didn't have one before,
2296 don't use one now. */
2297 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2298 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2302 /* Check for a case where we loaded from memory in a narrow mode and
2303 then sign extended it, but we need both registers. In that case,
2304 we have a PARALLEL with both loads from the same memory location.
2305 We can split this into a load from memory followed by a register-register
2306 copy. This saves at least one insn, more if register allocation can
2307 eliminate the copy.
2309 We cannot do this if the destination of the first assignment is a
2310 condition code register or cc0. We eliminate this case by making sure
2311 the SET_DEST and SET_SRC have the same mode.
2313 We cannot do this if the destination of the second assignment is
2314 a register that we have already assumed is zero-extended. Similarly
2315 for a SUBREG of such a register. */
2317 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2318 && GET_CODE (newpat) == PARALLEL
2319 && XVECLEN (newpat, 0) == 2
2320 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2321 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2322 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2323 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2324 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2325 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2326 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2327 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2328 INSN_CUID (i2))
2329 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2330 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2331 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2332 (GET_CODE (temp) == REG
2333 && reg_nonzero_bits[REGNO (temp)] != 0
2334 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2335 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2336 && (reg_nonzero_bits[REGNO (temp)]
2337 != GET_MODE_MASK (word_mode))))
2338 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2339 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2340 (GET_CODE (temp) == REG
2341 && reg_nonzero_bits[REGNO (temp)] != 0
2342 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2343 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2344 && (reg_nonzero_bits[REGNO (temp)]
2345 != GET_MODE_MASK (word_mode)))))
2346 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2347 SET_SRC (XVECEXP (newpat, 0, 1)))
2348 && ! find_reg_note (i3, REG_UNUSED,
2349 SET_DEST (XVECEXP (newpat, 0, 0))))
2351 rtx ni2dest;
2353 newi2pat = XVECEXP (newpat, 0, 0);
2354 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2355 newpat = XVECEXP (newpat, 0, 1);
2356 SUBST (SET_SRC (newpat),
2357 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2358 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2360 if (i2_code_number >= 0)
2361 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2363 if (insn_code_number >= 0)
2365 rtx insn;
2366 rtx link;
2368 /* If we will be able to accept this, we have made a change to the
2369 destination of I3. This can invalidate a LOG_LINKS pointing
2370 to I3. No other part of combine.c makes such a transformation.
2372 The new I3 will have a destination that was previously the
2373 destination of I1 or I2 and which was used in i2 or I3. Call
2374 distribute_links to make a LOG_LINK from the next use of
2375 that destination. */
2377 PATTERN (i3) = newpat;
2378 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2380 /* I3 now uses what used to be its destination and which is
2381 now I2's destination. That means we need a LOG_LINK from
2382 I3 to I2. But we used to have one, so we still will.
2384 However, some later insn might be using I2's dest and have
2385 a LOG_LINK pointing at I3. We must remove this link.
2386 The simplest way to remove the link is to point it at I1,
2387 which we know will be a NOTE. */
2389 for (insn = NEXT_INSN (i3);
2390 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2391 || insn != this_basic_block->next_bb->head);
2392 insn = NEXT_INSN (insn))
2394 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2396 for (link = LOG_LINKS (insn); link;
2397 link = XEXP (link, 1))
2398 if (XEXP (link, 0) == i3)
2399 XEXP (link, 0) = i1;
2401 break;
2407 /* Similarly, check for a case where we have a PARALLEL of two independent
2408 SETs but we started with three insns. In this case, we can do the sets
2409 as two separate insns. This case occurs when some SET allows two
2410 other insns to combine, but the destination of that SET is still live. */
2412 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2413 && GET_CODE (newpat) == PARALLEL
2414 && XVECLEN (newpat, 0) == 2
2415 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2416 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2417 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2418 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2419 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2420 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2421 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2422 INSN_CUID (i2))
2423 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2424 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2425 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2426 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2427 XVECEXP (newpat, 0, 0))
2428 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2429 XVECEXP (newpat, 0, 1))
2430 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2431 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2433 /* Normally, it doesn't matter which of the two is done first,
2434 but it does if one references cc0. In that case, it has to
2435 be first. */
2436 #ifdef HAVE_cc0
2437 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2439 newi2pat = XVECEXP (newpat, 0, 0);
2440 newpat = XVECEXP (newpat, 0, 1);
2442 else
2443 #endif
2445 newi2pat = XVECEXP (newpat, 0, 1);
2446 newpat = XVECEXP (newpat, 0, 0);
2449 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2451 if (i2_code_number >= 0)
2452 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2455 /* If it still isn't recognized, fail and change things back the way they
2456 were. */
2457 if ((insn_code_number < 0
2458 /* Is the result a reasonable ASM_OPERANDS? */
2459 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2461 undo_all ();
2462 return 0;
2465 /* If we had to change another insn, make sure it is valid also. */
2466 if (undobuf.other_insn)
2468 rtx other_pat = PATTERN (undobuf.other_insn);
2469 rtx new_other_notes;
2470 rtx note, next;
2472 CLEAR_HARD_REG_SET (newpat_used_regs);
2474 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2475 &new_other_notes);
2477 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2479 undo_all ();
2480 return 0;
2483 PATTERN (undobuf.other_insn) = other_pat;
2485 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2486 are still valid. Then add any non-duplicate notes added by
2487 recog_for_combine. */
2488 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2490 next = XEXP (note, 1);
2492 if (REG_NOTE_KIND (note) == REG_UNUSED
2493 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2495 if (GET_CODE (XEXP (note, 0)) == REG)
2496 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2498 remove_note (undobuf.other_insn, note);
2502 for (note = new_other_notes; note; note = XEXP (note, 1))
2503 if (GET_CODE (XEXP (note, 0)) == REG)
2504 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2506 distribute_notes (new_other_notes, undobuf.other_insn,
2507 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2509 #ifdef HAVE_cc0
2510 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2511 they are adjacent to each other or not. */
2513 rtx p = prev_nonnote_insn (i3);
2514 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2515 && sets_cc0_p (newi2pat))
2517 undo_all ();
2518 return 0;
2521 #endif
2523 /* We now know that we can do this combination. Merge the insns and
2524 update the status of registers and LOG_LINKS. */
2527 rtx i3notes, i2notes, i1notes = 0;
2528 rtx i3links, i2links, i1links = 0;
2529 rtx midnotes = 0;
2530 unsigned int regno;
2531 /* Compute which registers we expect to eliminate. newi2pat may be setting
2532 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2533 same as i3dest, in which case newi2pat may be setting i1dest. */
2534 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2535 || i2dest_in_i2src || i2dest_in_i1src
2536 ? 0 : i2dest);
2537 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2538 || (newi2pat && reg_set_p (i1dest, newi2pat))
2539 ? 0 : i1dest);
2541 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2542 clear them. */
2543 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2544 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2545 if (i1)
2546 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2548 /* Ensure that we do not have something that should not be shared but
2549 occurs multiple times in the new insns. Check this by first
2550 resetting all the `used' flags and then copying anything is shared. */
2552 reset_used_flags (i3notes);
2553 reset_used_flags (i2notes);
2554 reset_used_flags (i1notes);
2555 reset_used_flags (newpat);
2556 reset_used_flags (newi2pat);
2557 if (undobuf.other_insn)
2558 reset_used_flags (PATTERN (undobuf.other_insn));
2560 i3notes = copy_rtx_if_shared (i3notes);
2561 i2notes = copy_rtx_if_shared (i2notes);
2562 i1notes = copy_rtx_if_shared (i1notes);
2563 newpat = copy_rtx_if_shared (newpat);
2564 newi2pat = copy_rtx_if_shared (newi2pat);
2565 if (undobuf.other_insn)
2566 reset_used_flags (PATTERN (undobuf.other_insn));
2568 INSN_CODE (i3) = insn_code_number;
2569 PATTERN (i3) = newpat;
2571 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2573 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2575 reset_used_flags (call_usage);
2576 call_usage = copy_rtx (call_usage);
2578 if (substed_i2)
2579 replace_rtx (call_usage, i2dest, i2src);
2581 if (substed_i1)
2582 replace_rtx (call_usage, i1dest, i1src);
2584 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2587 if (undobuf.other_insn)
2588 INSN_CODE (undobuf.other_insn) = other_code_number;
2590 /* We had one special case above where I2 had more than one set and
2591 we replaced a destination of one of those sets with the destination
2592 of I3. In that case, we have to update LOG_LINKS of insns later
2593 in this basic block. Note that this (expensive) case is rare.
2595 Also, in this case, we must pretend that all REG_NOTEs for I2
2596 actually came from I3, so that REG_UNUSED notes from I2 will be
2597 properly handled. */
2599 if (i3_subst_into_i2)
2601 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2602 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2603 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2604 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2605 && ! find_reg_note (i2, REG_UNUSED,
2606 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2607 for (temp = NEXT_INSN (i2);
2608 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2609 || this_basic_block->head != temp);
2610 temp = NEXT_INSN (temp))
2611 if (temp != i3 && INSN_P (temp))
2612 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2613 if (XEXP (link, 0) == i2)
2614 XEXP (link, 0) = i3;
2616 if (i3notes)
2618 rtx link = i3notes;
2619 while (XEXP (link, 1))
2620 link = XEXP (link, 1);
2621 XEXP (link, 1) = i2notes;
2623 else
2624 i3notes = i2notes;
2625 i2notes = 0;
2628 LOG_LINKS (i3) = 0;
2629 REG_NOTES (i3) = 0;
2630 LOG_LINKS (i2) = 0;
2631 REG_NOTES (i2) = 0;
2633 if (newi2pat)
2635 INSN_CODE (i2) = i2_code_number;
2636 PATTERN (i2) = newi2pat;
2638 else
2640 PUT_CODE (i2, NOTE);
2641 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2642 NOTE_SOURCE_FILE (i2) = 0;
2645 if (i1)
2647 LOG_LINKS (i1) = 0;
2648 REG_NOTES (i1) = 0;
2649 PUT_CODE (i1, NOTE);
2650 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2651 NOTE_SOURCE_FILE (i1) = 0;
2654 /* Get death notes for everything that is now used in either I3 or
2655 I2 and used to die in a previous insn. If we built two new
2656 patterns, move from I1 to I2 then I2 to I3 so that we get the
2657 proper movement on registers that I2 modifies. */
2659 if (newi2pat)
2661 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2662 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2664 else
2665 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2666 i3, &midnotes);
2668 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2669 if (i3notes)
2670 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2671 elim_i2, elim_i1);
2672 if (i2notes)
2673 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2674 elim_i2, elim_i1);
2675 if (i1notes)
2676 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2677 elim_i2, elim_i1);
2678 if (midnotes)
2679 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2680 elim_i2, elim_i1);
2682 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2683 know these are REG_UNUSED and want them to go to the desired insn,
2684 so we always pass it as i3. We have not counted the notes in
2685 reg_n_deaths yet, so we need to do so now. */
2687 if (newi2pat && new_i2_notes)
2689 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2690 if (GET_CODE (XEXP (temp, 0)) == REG)
2691 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2693 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2696 if (new_i3_notes)
2698 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2699 if (GET_CODE (XEXP (temp, 0)) == REG)
2700 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2702 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2705 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2706 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2707 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2708 in that case, it might delete I2. Similarly for I2 and I1.
2709 Show an additional death due to the REG_DEAD note we make here. If
2710 we discard it in distribute_notes, we will decrement it again. */
2712 if (i3dest_killed)
2714 if (GET_CODE (i3dest_killed) == REG)
2715 REG_N_DEATHS (REGNO (i3dest_killed))++;
2717 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2718 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2719 NULL_RTX),
2720 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2721 else
2722 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2723 NULL_RTX),
2724 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2725 elim_i2, elim_i1);
2728 if (i2dest_in_i2src)
2730 if (GET_CODE (i2dest) == REG)
2731 REG_N_DEATHS (REGNO (i2dest))++;
2733 if (newi2pat && reg_set_p (i2dest, newi2pat))
2734 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2735 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2736 else
2737 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2738 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2739 NULL_RTX, NULL_RTX);
2742 if (i1dest_in_i1src)
2744 if (GET_CODE (i1dest) == REG)
2745 REG_N_DEATHS (REGNO (i1dest))++;
2747 if (newi2pat && reg_set_p (i1dest, newi2pat))
2748 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2749 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2750 else
2751 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2752 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2753 NULL_RTX, NULL_RTX);
2756 distribute_links (i3links);
2757 distribute_links (i2links);
2758 distribute_links (i1links);
2760 if (GET_CODE (i2dest) == REG)
2762 rtx link;
2763 rtx i2_insn = 0, i2_val = 0, set;
2765 /* The insn that used to set this register doesn't exist, and
2766 this life of the register may not exist either. See if one of
2767 I3's links points to an insn that sets I2DEST. If it does,
2768 that is now the last known value for I2DEST. If we don't update
2769 this and I2 set the register to a value that depended on its old
2770 contents, we will get confused. If this insn is used, thing
2771 will be set correctly in combine_instructions. */
2773 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2774 if ((set = single_set (XEXP (link, 0))) != 0
2775 && rtx_equal_p (i2dest, SET_DEST (set)))
2776 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2778 record_value_for_reg (i2dest, i2_insn, i2_val);
2780 /* If the reg formerly set in I2 died only once and that was in I3,
2781 zero its use count so it won't make `reload' do any work. */
2782 if (! added_sets_2
2783 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2784 && ! i2dest_in_i2src)
2786 regno = REGNO (i2dest);
2787 REG_N_SETS (regno)--;
2791 if (i1 && GET_CODE (i1dest) == REG)
2793 rtx link;
2794 rtx i1_insn = 0, i1_val = 0, set;
2796 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2797 if ((set = single_set (XEXP (link, 0))) != 0
2798 && rtx_equal_p (i1dest, SET_DEST (set)))
2799 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2801 record_value_for_reg (i1dest, i1_insn, i1_val);
2803 regno = REGNO (i1dest);
2804 if (! added_sets_1 && ! i1dest_in_i1src)
2805 REG_N_SETS (regno)--;
2808 /* Update reg_nonzero_bits et al for any changes that may have been made
2809 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2810 important. Because newi2pat can affect nonzero_bits of newpat */
2811 if (newi2pat)
2812 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2813 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2815 /* Set new_direct_jump_p if a new return or simple jump instruction
2816 has been created.
2818 If I3 is now an unconditional jump, ensure that it has a
2819 BARRIER following it since it may have initially been a
2820 conditional jump. It may also be the last nonnote insn. */
2822 if (returnjump_p (i3) || any_uncondjump_p (i3))
2824 *new_direct_jump_p = 1;
2826 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2827 || GET_CODE (temp) != BARRIER)
2828 emit_barrier_after (i3);
2831 if (undobuf.other_insn != NULL_RTX
2832 && (returnjump_p (undobuf.other_insn)
2833 || any_uncondjump_p (undobuf.other_insn)))
2835 *new_direct_jump_p = 1;
2837 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2838 || GET_CODE (temp) != BARRIER)
2839 emit_barrier_after (undobuf.other_insn);
2842 /* An NOOP jump does not need barrier, but it does need cleaning up
2843 of CFG. */
2844 if (GET_CODE (newpat) == SET
2845 && SET_SRC (newpat) == pc_rtx
2846 && SET_DEST (newpat) == pc_rtx)
2847 *new_direct_jump_p = 1;
2850 combine_successes++;
2851 undo_commit ();
2853 if (added_links_insn
2854 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2855 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2856 return added_links_insn;
2857 else
2858 return newi2pat ? i2 : i3;
2861 /* Undo all the modifications recorded in undobuf. */
2863 static void
2864 undo_all ()
2866 struct undo *undo, *next;
2868 for (undo = undobuf.undos; undo; undo = next)
2870 next = undo->next;
2871 if (undo->is_int)
2872 *undo->where.i = undo->old_contents.i;
2873 else
2874 *undo->where.r = undo->old_contents.r;
2876 undo->next = undobuf.frees;
2877 undobuf.frees = undo;
2880 undobuf.undos = 0;
2883 /* We've committed to accepting the changes we made. Move all
2884 of the undos to the free list. */
2886 static void
2887 undo_commit ()
2889 struct undo *undo, *next;
2891 for (undo = undobuf.undos; undo; undo = next)
2893 next = undo->next;
2894 undo->next = undobuf.frees;
2895 undobuf.frees = undo;
2897 undobuf.undos = 0;
2901 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2902 where we have an arithmetic expression and return that point. LOC will
2903 be inside INSN.
2905 try_combine will call this function to see if an insn can be split into
2906 two insns. */
2908 static rtx *
2909 find_split_point (loc, insn)
2910 rtx *loc;
2911 rtx insn;
2913 rtx x = *loc;
2914 enum rtx_code code = GET_CODE (x);
2915 rtx *split;
2916 unsigned HOST_WIDE_INT len = 0;
2917 HOST_WIDE_INT pos = 0;
2918 int unsignedp = 0;
2919 rtx inner = NULL_RTX;
2921 /* First special-case some codes. */
2922 switch (code)
2924 case SUBREG:
2925 #ifdef INSN_SCHEDULING
2926 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2927 point. */
2928 if (GET_CODE (SUBREG_REG (x)) == MEM)
2929 return loc;
2930 #endif
2931 return find_split_point (&SUBREG_REG (x), insn);
2933 case MEM:
2934 #ifdef HAVE_lo_sum
2935 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2936 using LO_SUM and HIGH. */
2937 if (GET_CODE (XEXP (x, 0)) == CONST
2938 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2940 SUBST (XEXP (x, 0),
2941 gen_rtx_LO_SUM (Pmode,
2942 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2943 XEXP (x, 0)));
2944 return &XEXP (XEXP (x, 0), 0);
2946 #endif
2948 /* If we have a PLUS whose second operand is a constant and the
2949 address is not valid, perhaps will can split it up using
2950 the machine-specific way to split large constants. We use
2951 the first pseudo-reg (one of the virtual regs) as a placeholder;
2952 it will not remain in the result. */
2953 if (GET_CODE (XEXP (x, 0)) == PLUS
2954 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2955 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2957 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2958 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2959 subst_insn);
2961 /* This should have produced two insns, each of which sets our
2962 placeholder. If the source of the second is a valid address,
2963 we can make put both sources together and make a split point
2964 in the middle. */
2966 if (seq
2967 && NEXT_INSN (seq) != NULL_RTX
2968 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2969 && GET_CODE (seq) == INSN
2970 && GET_CODE (PATTERN (seq)) == SET
2971 && SET_DEST (PATTERN (seq)) == reg
2972 && ! reg_mentioned_p (reg,
2973 SET_SRC (PATTERN (seq)))
2974 && GET_CODE (NEXT_INSN (seq)) == INSN
2975 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2976 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2977 && memory_address_p (GET_MODE (x),
2978 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2980 rtx src1 = SET_SRC (PATTERN (seq));
2981 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2983 /* Replace the placeholder in SRC2 with SRC1. If we can
2984 find where in SRC2 it was placed, that can become our
2985 split point and we can replace this address with SRC2.
2986 Just try two obvious places. */
2988 src2 = replace_rtx (src2, reg, src1);
2989 split = 0;
2990 if (XEXP (src2, 0) == src1)
2991 split = &XEXP (src2, 0);
2992 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2993 && XEXP (XEXP (src2, 0), 0) == src1)
2994 split = &XEXP (XEXP (src2, 0), 0);
2996 if (split)
2998 SUBST (XEXP (x, 0), src2);
2999 return split;
3003 /* If that didn't work, perhaps the first operand is complex and
3004 needs to be computed separately, so make a split point there.
3005 This will occur on machines that just support REG + CONST
3006 and have a constant moved through some previous computation. */
3008 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3009 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3010 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3011 == 'o')))
3012 return &XEXP (XEXP (x, 0), 0);
3014 break;
3016 case SET:
3017 #ifdef HAVE_cc0
3018 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3019 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3020 we need to put the operand into a register. So split at that
3021 point. */
3023 if (SET_DEST (x) == cc0_rtx
3024 && GET_CODE (SET_SRC (x)) != COMPARE
3025 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3026 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3027 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3028 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3029 return &SET_SRC (x);
3030 #endif
3032 /* See if we can split SET_SRC as it stands. */
3033 split = find_split_point (&SET_SRC (x), insn);
3034 if (split && split != &SET_SRC (x))
3035 return split;
3037 /* See if we can split SET_DEST as it stands. */
3038 split = find_split_point (&SET_DEST (x), insn);
3039 if (split && split != &SET_DEST (x))
3040 return split;
3042 /* See if this is a bitfield assignment with everything constant. If
3043 so, this is an IOR of an AND, so split it into that. */
3044 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3045 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3046 <= HOST_BITS_PER_WIDE_INT)
3047 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3048 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3049 && GET_CODE (SET_SRC (x)) == CONST_INT
3050 && ((INTVAL (XEXP (SET_DEST (x), 1))
3051 + INTVAL (XEXP (SET_DEST (x), 2)))
3052 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3053 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3055 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3056 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3057 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3058 rtx dest = XEXP (SET_DEST (x), 0);
3059 enum machine_mode mode = GET_MODE (dest);
3060 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3062 if (BITS_BIG_ENDIAN)
3063 pos = GET_MODE_BITSIZE (mode) - len - pos;
3065 if (src == mask)
3066 SUBST (SET_SRC (x),
3067 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3068 else
3069 SUBST (SET_SRC (x),
3070 gen_binary (IOR, mode,
3071 gen_binary (AND, mode, dest,
3072 gen_int_mode (~(mask << pos),
3073 mode)),
3074 GEN_INT (src << pos)));
3076 SUBST (SET_DEST (x), dest);
3078 split = find_split_point (&SET_SRC (x), insn);
3079 if (split && split != &SET_SRC (x))
3080 return split;
3083 /* Otherwise, see if this is an operation that we can split into two.
3084 If so, try to split that. */
3085 code = GET_CODE (SET_SRC (x));
3087 switch (code)
3089 case AND:
3090 /* If we are AND'ing with a large constant that is only a single
3091 bit and the result is only being used in a context where we
3092 need to know if it is zero or nonzero, replace it with a bit
3093 extraction. This will avoid the large constant, which might
3094 have taken more than one insn to make. If the constant were
3095 not a valid argument to the AND but took only one insn to make,
3096 this is no worse, but if it took more than one insn, it will
3097 be better. */
3099 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3100 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3101 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3102 && GET_CODE (SET_DEST (x)) == REG
3103 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3104 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3105 && XEXP (*split, 0) == SET_DEST (x)
3106 && XEXP (*split, 1) == const0_rtx)
3108 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3109 XEXP (SET_SRC (x), 0),
3110 pos, NULL_RTX, 1, 1, 0, 0);
3111 if (extraction != 0)
3113 SUBST (SET_SRC (x), extraction);
3114 return find_split_point (loc, insn);
3117 break;
3119 case NE:
3120 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3121 is known to be on, this can be converted into a NEG of a shift. */
3122 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3123 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3124 && 1 <= (pos = exact_log2
3125 (nonzero_bits (XEXP (SET_SRC (x), 0),
3126 GET_MODE (XEXP (SET_SRC (x), 0))))))
3128 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3130 SUBST (SET_SRC (x),
3131 gen_rtx_NEG (mode,
3132 gen_rtx_LSHIFTRT (mode,
3133 XEXP (SET_SRC (x), 0),
3134 GEN_INT (pos))));
3136 split = find_split_point (&SET_SRC (x), insn);
3137 if (split && split != &SET_SRC (x))
3138 return split;
3140 break;
3142 case SIGN_EXTEND:
3143 inner = XEXP (SET_SRC (x), 0);
3145 /* We can't optimize if either mode is a partial integer
3146 mode as we don't know how many bits are significant
3147 in those modes. */
3148 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3149 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3150 break;
3152 pos = 0;
3153 len = GET_MODE_BITSIZE (GET_MODE (inner));
3154 unsignedp = 0;
3155 break;
3157 case SIGN_EXTRACT:
3158 case ZERO_EXTRACT:
3159 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3160 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3162 inner = XEXP (SET_SRC (x), 0);
3163 len = INTVAL (XEXP (SET_SRC (x), 1));
3164 pos = INTVAL (XEXP (SET_SRC (x), 2));
3166 if (BITS_BIG_ENDIAN)
3167 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3168 unsignedp = (code == ZERO_EXTRACT);
3170 break;
3172 default:
3173 break;
3176 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3178 enum machine_mode mode = GET_MODE (SET_SRC (x));
3180 /* For unsigned, we have a choice of a shift followed by an
3181 AND or two shifts. Use two shifts for field sizes where the
3182 constant might be too large. We assume here that we can
3183 always at least get 8-bit constants in an AND insn, which is
3184 true for every current RISC. */
3186 if (unsignedp && len <= 8)
3188 SUBST (SET_SRC (x),
3189 gen_rtx_AND (mode,
3190 gen_rtx_LSHIFTRT
3191 (mode, gen_lowpart_for_combine (mode, inner),
3192 GEN_INT (pos)),
3193 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3195 split = find_split_point (&SET_SRC (x), insn);
3196 if (split && split != &SET_SRC (x))
3197 return split;
3199 else
3201 SUBST (SET_SRC (x),
3202 gen_rtx_fmt_ee
3203 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3204 gen_rtx_ASHIFT (mode,
3205 gen_lowpart_for_combine (mode, inner),
3206 GEN_INT (GET_MODE_BITSIZE (mode)
3207 - len - pos)),
3208 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3210 split = find_split_point (&SET_SRC (x), insn);
3211 if (split && split != &SET_SRC (x))
3212 return split;
3216 /* See if this is a simple operation with a constant as the second
3217 operand. It might be that this constant is out of range and hence
3218 could be used as a split point. */
3219 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3220 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3221 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3222 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3223 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3224 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3225 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3226 == 'o'))))
3227 return &XEXP (SET_SRC (x), 1);
3229 /* Finally, see if this is a simple operation with its first operand
3230 not in a register. The operation might require this operand in a
3231 register, so return it as a split point. We can always do this
3232 because if the first operand were another operation, we would have
3233 already found it as a split point. */
3234 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3235 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3236 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3237 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3238 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3239 return &XEXP (SET_SRC (x), 0);
3241 return 0;
3243 case AND:
3244 case IOR:
3245 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3246 it is better to write this as (not (ior A B)) so we can split it.
3247 Similarly for IOR. */
3248 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3250 SUBST (*loc,
3251 gen_rtx_NOT (GET_MODE (x),
3252 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3253 GET_MODE (x),
3254 XEXP (XEXP (x, 0), 0),
3255 XEXP (XEXP (x, 1), 0))));
3256 return find_split_point (loc, insn);
3259 /* Many RISC machines have a large set of logical insns. If the
3260 second operand is a NOT, put it first so we will try to split the
3261 other operand first. */
3262 if (GET_CODE (XEXP (x, 1)) == NOT)
3264 rtx tem = XEXP (x, 0);
3265 SUBST (XEXP (x, 0), XEXP (x, 1));
3266 SUBST (XEXP (x, 1), tem);
3268 break;
3270 default:
3271 break;
3274 /* Otherwise, select our actions depending on our rtx class. */
3275 switch (GET_RTX_CLASS (code))
3277 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3278 case '3':
3279 split = find_split_point (&XEXP (x, 2), insn);
3280 if (split)
3281 return split;
3282 /* ... fall through ... */
3283 case '2':
3284 case 'c':
3285 case '<':
3286 split = find_split_point (&XEXP (x, 1), insn);
3287 if (split)
3288 return split;
3289 /* ... fall through ... */
3290 case '1':
3291 /* Some machines have (and (shift ...) ...) insns. If X is not
3292 an AND, but XEXP (X, 0) is, use it as our split point. */
3293 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3294 return &XEXP (x, 0);
3296 split = find_split_point (&XEXP (x, 0), insn);
3297 if (split)
3298 return split;
3299 return loc;
3302 /* Otherwise, we don't have a split point. */
3303 return 0;
3306 /* Throughout X, replace FROM with TO, and return the result.
3307 The result is TO if X is FROM;
3308 otherwise the result is X, but its contents may have been modified.
3309 If they were modified, a record was made in undobuf so that
3310 undo_all will (among other things) return X to its original state.
3312 If the number of changes necessary is too much to record to undo,
3313 the excess changes are not made, so the result is invalid.
3314 The changes already made can still be undone.
3315 undobuf.num_undo is incremented for such changes, so by testing that
3316 the caller can tell whether the result is valid.
3318 `n_occurrences' is incremented each time FROM is replaced.
3320 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3322 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3323 by copying if `n_occurrences' is nonzero. */
3325 static rtx
3326 subst (x, from, to, in_dest, unique_copy)
3327 rtx x, from, to;
3328 int in_dest;
3329 int unique_copy;
3331 enum rtx_code code = GET_CODE (x);
3332 enum machine_mode op0_mode = VOIDmode;
3333 const char *fmt;
3334 int len, i;
3335 rtx new;
3337 /* Two expressions are equal if they are identical copies of a shared
3338 RTX or if they are both registers with the same register number
3339 and mode. */
3341 #define COMBINE_RTX_EQUAL_P(X,Y) \
3342 ((X) == (Y) \
3343 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3344 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3346 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3348 n_occurrences++;
3349 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3352 /* If X and FROM are the same register but different modes, they will
3353 not have been seen as equal above. However, flow.c will make a
3354 LOG_LINKS entry for that case. If we do nothing, we will try to
3355 rerecognize our original insn and, when it succeeds, we will
3356 delete the feeding insn, which is incorrect.
3358 So force this insn not to match in this (rare) case. */
3359 if (! in_dest && code == REG && GET_CODE (from) == REG
3360 && REGNO (x) == REGNO (from))
3361 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3363 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3364 of which may contain things that can be combined. */
3365 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3366 return x;
3368 /* It is possible to have a subexpression appear twice in the insn.
3369 Suppose that FROM is a register that appears within TO.
3370 Then, after that subexpression has been scanned once by `subst',
3371 the second time it is scanned, TO may be found. If we were
3372 to scan TO here, we would find FROM within it and create a
3373 self-referent rtl structure which is completely wrong. */
3374 if (COMBINE_RTX_EQUAL_P (x, to))
3375 return to;
3377 /* Parallel asm_operands need special attention because all of the
3378 inputs are shared across the arms. Furthermore, unsharing the
3379 rtl results in recognition failures. Failure to handle this case
3380 specially can result in circular rtl.
3382 Solve this by doing a normal pass across the first entry of the
3383 parallel, and only processing the SET_DESTs of the subsequent
3384 entries. Ug. */
3386 if (code == PARALLEL
3387 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3388 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3390 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3392 /* If this substitution failed, this whole thing fails. */
3393 if (GET_CODE (new) == CLOBBER
3394 && XEXP (new, 0) == const0_rtx)
3395 return new;
3397 SUBST (XVECEXP (x, 0, 0), new);
3399 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3401 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3403 if (GET_CODE (dest) != REG
3404 && GET_CODE (dest) != CC0
3405 && GET_CODE (dest) != PC)
3407 new = subst (dest, from, to, 0, unique_copy);
3409 /* If this substitution failed, this whole thing fails. */
3410 if (GET_CODE (new) == CLOBBER
3411 && XEXP (new, 0) == const0_rtx)
3412 return new;
3414 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3418 else
3420 len = GET_RTX_LENGTH (code);
3421 fmt = GET_RTX_FORMAT (code);
3423 /* We don't need to process a SET_DEST that is a register, CC0,
3424 or PC, so set up to skip this common case. All other cases
3425 where we want to suppress replacing something inside a
3426 SET_SRC are handled via the IN_DEST operand. */
3427 if (code == SET
3428 && (GET_CODE (SET_DEST (x)) == REG
3429 || GET_CODE (SET_DEST (x)) == CC0
3430 || GET_CODE (SET_DEST (x)) == PC))
3431 fmt = "ie";
3433 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3434 constant. */
3435 if (fmt[0] == 'e')
3436 op0_mode = GET_MODE (XEXP (x, 0));
3438 for (i = 0; i < len; i++)
3440 if (fmt[i] == 'E')
3442 int j;
3443 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3445 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3447 new = (unique_copy && n_occurrences
3448 ? copy_rtx (to) : to);
3449 n_occurrences++;
3451 else
3453 new = subst (XVECEXP (x, i, j), from, to, 0,
3454 unique_copy);
3456 /* If this substitution failed, this whole thing
3457 fails. */
3458 if (GET_CODE (new) == CLOBBER
3459 && XEXP (new, 0) == const0_rtx)
3460 return new;
3463 SUBST (XVECEXP (x, i, j), new);
3466 else if (fmt[i] == 'e')
3468 /* If this is a register being set, ignore it. */
3469 new = XEXP (x, i);
3470 if (in_dest
3471 && (code == SUBREG || code == STRICT_LOW_PART
3472 || code == ZERO_EXTRACT)
3473 && i == 0
3474 && GET_CODE (new) == REG)
3477 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3479 /* In general, don't install a subreg involving two
3480 modes not tieable. It can worsen register
3481 allocation, and can even make invalid reload
3482 insns, since the reg inside may need to be copied
3483 from in the outside mode, and that may be invalid
3484 if it is an fp reg copied in integer mode.
3486 We allow two exceptions to this: It is valid if
3487 it is inside another SUBREG and the mode of that
3488 SUBREG and the mode of the inside of TO is
3489 tieable and it is valid if X is a SET that copies
3490 FROM to CC0. */
3492 if (GET_CODE (to) == SUBREG
3493 && ! MODES_TIEABLE_P (GET_MODE (to),
3494 GET_MODE (SUBREG_REG (to)))
3495 && ! (code == SUBREG
3496 && MODES_TIEABLE_P (GET_MODE (x),
3497 GET_MODE (SUBREG_REG (to))))
3498 #ifdef HAVE_cc0
3499 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3500 #endif
3502 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3504 #ifdef CANNOT_CHANGE_MODE_CLASS
3505 if (code == SUBREG
3506 && GET_CODE (to) == REG
3507 && REGNO (to) < FIRST_PSEUDO_REGISTER
3508 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3509 GET_MODE (to),
3510 GET_MODE (x)))
3511 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3512 #endif
3514 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3515 n_occurrences++;
3517 else
3518 /* If we are in a SET_DEST, suppress most cases unless we
3519 have gone inside a MEM, in which case we want to
3520 simplify the address. We assume here that things that
3521 are actually part of the destination have their inner
3522 parts in the first expression. This is true for SUBREG,
3523 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3524 things aside from REG and MEM that should appear in a
3525 SET_DEST. */
3526 new = subst (XEXP (x, i), from, to,
3527 (((in_dest
3528 && (code == SUBREG || code == STRICT_LOW_PART
3529 || code == ZERO_EXTRACT))
3530 || code == SET)
3531 && i == 0), unique_copy);
3533 /* If we found that we will have to reject this combination,
3534 indicate that by returning the CLOBBER ourselves, rather than
3535 an expression containing it. This will speed things up as
3536 well as prevent accidents where two CLOBBERs are considered
3537 to be equal, thus producing an incorrect simplification. */
3539 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3540 return new;
3542 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3544 enum machine_mode mode = GET_MODE (x);
3546 x = simplify_subreg (GET_MODE (x), new,
3547 GET_MODE (SUBREG_REG (x)),
3548 SUBREG_BYTE (x));
3549 if (! x)
3550 x = gen_rtx_CLOBBER (mode, const0_rtx);
3552 else if (GET_CODE (new) == CONST_INT
3553 && GET_CODE (x) == ZERO_EXTEND)
3555 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3556 new, GET_MODE (XEXP (x, 0)));
3557 if (! x)
3558 abort ();
3560 else
3561 SUBST (XEXP (x, i), new);
3566 /* Try to simplify X. If the simplification changed the code, it is likely
3567 that further simplification will help, so loop, but limit the number
3568 of repetitions that will be performed. */
3570 for (i = 0; i < 4; i++)
3572 /* If X is sufficiently simple, don't bother trying to do anything
3573 with it. */
3574 if (code != CONST_INT && code != REG && code != CLOBBER)
3575 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3577 if (GET_CODE (x) == code)
3578 break;
3580 code = GET_CODE (x);
3582 /* We no longer know the original mode of operand 0 since we
3583 have changed the form of X) */
3584 op0_mode = VOIDmode;
3587 return x;
3590 /* Simplify X, a piece of RTL. We just operate on the expression at the
3591 outer level; call `subst' to simplify recursively. Return the new
3592 expression.
3594 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3595 will be the iteration even if an expression with a code different from
3596 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3598 static rtx
3599 combine_simplify_rtx (x, op0_mode, last, in_dest)
3600 rtx x;
3601 enum machine_mode op0_mode;
3602 int last;
3603 int in_dest;
3605 enum rtx_code code = GET_CODE (x);
3606 enum machine_mode mode = GET_MODE (x);
3607 rtx temp;
3608 rtx reversed;
3609 int i;
3611 /* If this is a commutative operation, put a constant last and a complex
3612 expression first. We don't need to do this for comparisons here. */
3613 if (GET_RTX_CLASS (code) == 'c'
3614 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3616 temp = XEXP (x, 0);
3617 SUBST (XEXP (x, 0), XEXP (x, 1));
3618 SUBST (XEXP (x, 1), temp);
3621 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3622 sign extension of a PLUS with a constant, reverse the order of the sign
3623 extension and the addition. Note that this not the same as the original
3624 code, but overflow is undefined for signed values. Also note that the
3625 PLUS will have been partially moved "inside" the sign-extension, so that
3626 the first operand of X will really look like:
3627 (ashiftrt (plus (ashift A C4) C5) C4).
3628 We convert this to
3629 (plus (ashiftrt (ashift A C4) C2) C4)
3630 and replace the first operand of X with that expression. Later parts
3631 of this function may simplify the expression further.
3633 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3634 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3635 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3637 We do this to simplify address expressions. */
3639 if ((code == PLUS || code == MINUS || code == MULT)
3640 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3641 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3642 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3643 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3644 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3645 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3646 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3647 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3648 XEXP (XEXP (XEXP (x, 0), 0), 1),
3649 XEXP (XEXP (x, 0), 1))) != 0)
3651 rtx new
3652 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3653 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3654 INTVAL (XEXP (XEXP (x, 0), 1)));
3656 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3657 INTVAL (XEXP (XEXP (x, 0), 1)));
3659 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3662 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3663 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3664 things. Check for cases where both arms are testing the same
3665 condition.
3667 Don't do anything if all operands are very simple. */
3669 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3670 || GET_RTX_CLASS (code) == '<')
3671 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3672 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3673 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3674 == 'o')))
3675 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3676 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3677 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3678 == 'o')))))
3679 || (GET_RTX_CLASS (code) == '1'
3680 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3681 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3682 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3683 == 'o'))))))
3685 rtx cond, true_rtx, false_rtx;
3687 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3688 if (cond != 0
3689 /* If everything is a comparison, what we have is highly unlikely
3690 to be simpler, so don't use it. */
3691 && ! (GET_RTX_CLASS (code) == '<'
3692 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3693 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3695 rtx cop1 = const0_rtx;
3696 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3698 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3699 return x;
3701 /* Simplify the alternative arms; this may collapse the true and
3702 false arms to store-flag values. */
3703 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3704 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3706 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3707 is unlikely to be simpler. */
3708 if (general_operand (true_rtx, VOIDmode)
3709 && general_operand (false_rtx, VOIDmode))
3711 enum rtx_code reversed;
3713 /* Restarting if we generate a store-flag expression will cause
3714 us to loop. Just drop through in this case. */
3716 /* If the result values are STORE_FLAG_VALUE and zero, we can
3717 just make the comparison operation. */
3718 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3719 x = gen_binary (cond_code, mode, cond, cop1);
3720 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3721 && ((reversed = reversed_comparison_code_parts
3722 (cond_code, cond, cop1, NULL))
3723 != UNKNOWN))
3724 x = gen_binary (reversed, mode, cond, cop1);
3726 /* Likewise, we can make the negate of a comparison operation
3727 if the result values are - STORE_FLAG_VALUE and zero. */
3728 else if (GET_CODE (true_rtx) == CONST_INT
3729 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3730 && false_rtx == const0_rtx)
3731 x = simplify_gen_unary (NEG, mode,
3732 gen_binary (cond_code, mode, cond,
3733 cop1),
3734 mode);
3735 else if (GET_CODE (false_rtx) == CONST_INT
3736 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3737 && true_rtx == const0_rtx
3738 && ((reversed = reversed_comparison_code_parts
3739 (cond_code, cond, cop1, NULL))
3740 != UNKNOWN))
3741 x = simplify_gen_unary (NEG, mode,
3742 gen_binary (reversed, mode,
3743 cond, cop1),
3744 mode);
3745 else
3746 return gen_rtx_IF_THEN_ELSE (mode,
3747 gen_binary (cond_code, VOIDmode,
3748 cond, cop1),
3749 true_rtx, false_rtx);
3751 code = GET_CODE (x);
3752 op0_mode = VOIDmode;
3757 /* Try to fold this expression in case we have constants that weren't
3758 present before. */
3759 temp = 0;
3760 switch (GET_RTX_CLASS (code))
3762 case '1':
3763 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3764 break;
3765 case '<':
3767 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3768 if (cmp_mode == VOIDmode)
3770 cmp_mode = GET_MODE (XEXP (x, 1));
3771 if (cmp_mode == VOIDmode)
3772 cmp_mode = op0_mode;
3774 temp = simplify_relational_operation (code, cmp_mode,
3775 XEXP (x, 0), XEXP (x, 1));
3777 #ifdef FLOAT_STORE_FLAG_VALUE
3778 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3780 if (temp == const0_rtx)
3781 temp = CONST0_RTX (mode);
3782 else
3783 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3784 mode);
3786 #endif
3787 break;
3788 case 'c':
3789 case '2':
3790 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3791 break;
3792 case 'b':
3793 case '3':
3794 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3795 XEXP (x, 1), XEXP (x, 2));
3796 break;
3799 if (temp)
3801 x = temp;
3802 code = GET_CODE (temp);
3803 op0_mode = VOIDmode;
3804 mode = GET_MODE (temp);
3807 /* First see if we can apply the inverse distributive law. */
3808 if (code == PLUS || code == MINUS
3809 || code == AND || code == IOR || code == XOR)
3811 x = apply_distributive_law (x);
3812 code = GET_CODE (x);
3813 op0_mode = VOIDmode;
3816 /* If CODE is an associative operation not otherwise handled, see if we
3817 can associate some operands. This can win if they are constants or
3818 if they are logically related (i.e. (a & b) & a). */
3819 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3820 || code == AND || code == IOR || code == XOR
3821 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3822 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3823 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3825 if (GET_CODE (XEXP (x, 0)) == code)
3827 rtx other = XEXP (XEXP (x, 0), 0);
3828 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3829 rtx inner_op1 = XEXP (x, 1);
3830 rtx inner;
3832 /* Make sure we pass the constant operand if any as the second
3833 one if this is a commutative operation. */
3834 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3836 rtx tem = inner_op0;
3837 inner_op0 = inner_op1;
3838 inner_op1 = tem;
3840 inner = simplify_binary_operation (code == MINUS ? PLUS
3841 : code == DIV ? MULT
3842 : code,
3843 mode, inner_op0, inner_op1);
3845 /* For commutative operations, try the other pair if that one
3846 didn't simplify. */
3847 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3849 other = XEXP (XEXP (x, 0), 1);
3850 inner = simplify_binary_operation (code, mode,
3851 XEXP (XEXP (x, 0), 0),
3852 XEXP (x, 1));
3855 if (inner)
3856 return gen_binary (code, mode, other, inner);
3860 /* A little bit of algebraic simplification here. */
3861 switch (code)
3863 case MEM:
3864 /* Ensure that our address has any ASHIFTs converted to MULT in case
3865 address-recognizing predicates are called later. */
3866 temp = make_compound_operation (XEXP (x, 0), MEM);
3867 SUBST (XEXP (x, 0), temp);
3868 break;
3870 case SUBREG:
3871 if (op0_mode == VOIDmode)
3872 op0_mode = GET_MODE (SUBREG_REG (x));
3874 /* simplify_subreg can't use gen_lowpart_for_combine. */
3875 if (CONSTANT_P (SUBREG_REG (x))
3876 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3877 /* Don't call gen_lowpart_for_combine if the inner mode
3878 is VOIDmode and we cannot simplify it, as SUBREG without
3879 inner mode is invalid. */
3880 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3881 || gen_lowpart_common (mode, SUBREG_REG (x))))
3882 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3884 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3885 break;
3887 rtx temp;
3888 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3889 SUBREG_BYTE (x));
3890 if (temp)
3891 return temp;
3894 /* Don't change the mode of the MEM if that would change the meaning
3895 of the address. */
3896 if (GET_CODE (SUBREG_REG (x)) == MEM
3897 && (MEM_VOLATILE_P (SUBREG_REG (x))
3898 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3899 return gen_rtx_CLOBBER (mode, const0_rtx);
3901 /* Note that we cannot do any narrowing for non-constants since
3902 we might have been counting on using the fact that some bits were
3903 zero. We now do this in the SET. */
3905 break;
3907 case NOT:
3908 /* (not (plus X -1)) can become (neg X). */
3909 if (GET_CODE (XEXP (x, 0)) == PLUS
3910 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3911 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3913 /* Similarly, (not (neg X)) is (plus X -1). */
3914 if (GET_CODE (XEXP (x, 0)) == NEG)
3915 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3917 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3918 if (GET_CODE (XEXP (x, 0)) == XOR
3919 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3920 && (temp = simplify_unary_operation (NOT, mode,
3921 XEXP (XEXP (x, 0), 1),
3922 mode)) != 0)
3923 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3925 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3926 other than 1, but that is not valid. We could do a similar
3927 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3928 but this doesn't seem common enough to bother with. */
3929 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3930 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3931 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3932 const1_rtx, mode),
3933 XEXP (XEXP (x, 0), 1));
3935 if (GET_CODE (XEXP (x, 0)) == SUBREG
3936 && subreg_lowpart_p (XEXP (x, 0))
3937 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3938 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3939 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3940 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3942 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3944 x = gen_rtx_ROTATE (inner_mode,
3945 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3946 inner_mode),
3947 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3948 return gen_lowpart_for_combine (mode, x);
3951 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3952 reversing the comparison code if valid. */
3953 if (STORE_FLAG_VALUE == -1
3954 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3955 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3956 XEXP (XEXP (x, 0), 1))))
3957 return reversed;
3959 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3960 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3961 perform the above simplification. */
3963 if (STORE_FLAG_VALUE == -1
3964 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3965 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3966 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3967 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3969 /* Apply De Morgan's laws to reduce number of patterns for machines
3970 with negating logical insns (and-not, nand, etc.). If result has
3971 only one NOT, put it first, since that is how the patterns are
3972 coded. */
3974 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3976 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3977 enum machine_mode op_mode;
3979 op_mode = GET_MODE (in1);
3980 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3982 op_mode = GET_MODE (in2);
3983 if (op_mode == VOIDmode)
3984 op_mode = mode;
3985 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3987 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3989 rtx tem = in2;
3990 in2 = in1; in1 = tem;
3993 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3994 mode, in1, in2);
3996 break;
3998 case NEG:
3999 /* (neg (plus X 1)) can become (not X). */
4000 if (GET_CODE (XEXP (x, 0)) == PLUS
4001 && XEXP (XEXP (x, 0), 1) == const1_rtx)
4002 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
4004 /* Similarly, (neg (not X)) is (plus X 1). */
4005 if (GET_CODE (XEXP (x, 0)) == NOT)
4006 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
4008 /* (neg (minus X Y)) can become (minus Y X). This transformation
4009 isn't safe for modes with signed zeros, since if X and Y are
4010 both +0, (minus Y X) is the same as (minus X Y). If the rounding
4011 mode is towards +infinity (or -infinity) then the two expressions
4012 will be rounded differently. */
4013 if (GET_CODE (XEXP (x, 0)) == MINUS
4014 && !HONOR_SIGNED_ZEROS (mode)
4015 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4016 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4017 XEXP (XEXP (x, 0), 0));
4019 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
4020 if (GET_CODE (XEXP (x, 0)) == PLUS
4021 && !HONOR_SIGNED_ZEROS (mode)
4022 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4024 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
4025 temp = combine_simplify_rtx (temp, mode, last, in_dest);
4026 return gen_binary (MINUS, mode, temp, XEXP (XEXP (x, 0), 1));
4029 /* (neg (mult A B)) becomes (mult (neg A) B).
4030 This works even for floating-point values. */
4031 if (GET_CODE (XEXP (x, 0)) == MULT)
4033 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
4034 return gen_binary (MULT, mode, temp, XEXP (XEXP (x, 0), 1));
4037 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4038 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4039 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4040 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4042 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4043 if we can then eliminate the NEG (e.g.,
4044 if the operand is a constant). */
4046 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4048 temp = simplify_unary_operation (NEG, mode,
4049 XEXP (XEXP (x, 0), 0), mode);
4050 if (temp)
4051 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4054 temp = expand_compound_operation (XEXP (x, 0));
4056 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4057 replaced by (lshiftrt X C). This will convert
4058 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4060 if (GET_CODE (temp) == ASHIFTRT
4061 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4062 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4063 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4064 INTVAL (XEXP (temp, 1)));
4066 /* If X has only a single bit that might be nonzero, say, bit I, convert
4067 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4068 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4069 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4070 or a SUBREG of one since we'd be making the expression more
4071 complex if it was just a register. */
4073 if (GET_CODE (temp) != REG
4074 && ! (GET_CODE (temp) == SUBREG
4075 && GET_CODE (SUBREG_REG (temp)) == REG)
4076 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4078 rtx temp1 = simplify_shift_const
4079 (NULL_RTX, ASHIFTRT, mode,
4080 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4081 GET_MODE_BITSIZE (mode) - 1 - i),
4082 GET_MODE_BITSIZE (mode) - 1 - i);
4084 /* If all we did was surround TEMP with the two shifts, we
4085 haven't improved anything, so don't use it. Otherwise,
4086 we are better off with TEMP1. */
4087 if (GET_CODE (temp1) != ASHIFTRT
4088 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4089 || XEXP (XEXP (temp1, 0), 0) != temp)
4090 return temp1;
4092 break;
4094 case TRUNCATE:
4095 /* We can't handle truncation to a partial integer mode here
4096 because we don't know the real bitsize of the partial
4097 integer mode. */
4098 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4099 break;
4101 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4102 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4103 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4104 SUBST (XEXP (x, 0),
4105 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4106 GET_MODE_MASK (mode), NULL_RTX, 0));
4108 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4109 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4110 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4111 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4112 return XEXP (XEXP (x, 0), 0);
4114 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4115 (OP:SI foo:SI) if OP is NEG or ABS. */
4116 if ((GET_CODE (XEXP (x, 0)) == ABS
4117 || GET_CODE (XEXP (x, 0)) == NEG)
4118 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4119 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4120 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4121 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4122 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4124 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4125 (truncate:SI x). */
4126 if (GET_CODE (XEXP (x, 0)) == SUBREG
4127 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4128 && subreg_lowpart_p (XEXP (x, 0)))
4129 return SUBREG_REG (XEXP (x, 0));
4131 /* If we know that the value is already truncated, we can
4132 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4133 is nonzero for the corresponding modes. But don't do this
4134 for an (LSHIFTRT (MULT ...)) since this will cause problems
4135 with the umulXi3_highpart patterns. */
4136 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4137 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4138 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4139 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4140 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4141 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4142 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4144 /* A truncate of a comparison can be replaced with a subreg if
4145 STORE_FLAG_VALUE permits. This is like the previous test,
4146 but it works even if the comparison is done in a mode larger
4147 than HOST_BITS_PER_WIDE_INT. */
4148 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4149 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4150 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4151 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4153 /* Similarly, a truncate of a register whose value is a
4154 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4155 permits. */
4156 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4157 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4158 && (temp = get_last_value (XEXP (x, 0)))
4159 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4160 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4162 break;
4164 case FLOAT_TRUNCATE:
4165 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4166 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4167 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4168 return XEXP (XEXP (x, 0), 0);
4170 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4171 (OP:SF foo:SF) if OP is NEG or ABS. */
4172 if ((GET_CODE (XEXP (x, 0)) == ABS
4173 || GET_CODE (XEXP (x, 0)) == NEG)
4174 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4175 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4176 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4177 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4179 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4180 is (float_truncate:SF x). */
4181 if (GET_CODE (XEXP (x, 0)) == SUBREG
4182 && subreg_lowpart_p (XEXP (x, 0))
4183 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4184 return SUBREG_REG (XEXP (x, 0));
4185 break;
4187 #ifdef HAVE_cc0
4188 case COMPARE:
4189 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4190 using cc0, in which case we want to leave it as a COMPARE
4191 so we can distinguish it from a register-register-copy. */
4192 if (XEXP (x, 1) == const0_rtx)
4193 return XEXP (x, 0);
4195 /* x - 0 is the same as x unless x's mode has signed zeros and
4196 allows rounding towards -infinity. Under those conditions,
4197 0 - 0 is -0. */
4198 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4199 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4200 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4201 return XEXP (x, 0);
4202 break;
4203 #endif
4205 case CONST:
4206 /* (const (const X)) can become (const X). Do it this way rather than
4207 returning the inner CONST since CONST can be shared with a
4208 REG_EQUAL note. */
4209 if (GET_CODE (XEXP (x, 0)) == CONST)
4210 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4211 break;
4213 #ifdef HAVE_lo_sum
4214 case LO_SUM:
4215 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4216 can add in an offset. find_split_point will split this address up
4217 again if it doesn't match. */
4218 if (GET_CODE (XEXP (x, 0)) == HIGH
4219 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4220 return XEXP (x, 1);
4221 break;
4222 #endif
4224 case PLUS:
4225 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4227 if (GET_CODE (XEXP (x, 0)) == MULT
4228 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4230 rtx in1, in2;
4232 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4233 in2 = XEXP (XEXP (x, 0), 1);
4234 return gen_binary (MINUS, mode, XEXP (x, 1),
4235 gen_binary (MULT, mode, in1, in2));
4238 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4239 outermost. That's because that's the way indexed addresses are
4240 supposed to appear. This code used to check many more cases, but
4241 they are now checked elsewhere. */
4242 if (GET_CODE (XEXP (x, 0)) == PLUS
4243 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4244 return gen_binary (PLUS, mode,
4245 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4246 XEXP (x, 1)),
4247 XEXP (XEXP (x, 0), 1));
4249 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4250 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4251 bit-field and can be replaced by either a sign_extend or a
4252 sign_extract. The `and' may be a zero_extend and the two
4253 <c>, -<c> constants may be reversed. */
4254 if (GET_CODE (XEXP (x, 0)) == XOR
4255 && GET_CODE (XEXP (x, 1)) == CONST_INT
4256 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4257 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4258 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4259 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4260 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4261 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4262 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4263 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4264 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4265 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4266 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4267 == (unsigned int) i + 1))))
4268 return simplify_shift_const
4269 (NULL_RTX, ASHIFTRT, mode,
4270 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4271 XEXP (XEXP (XEXP (x, 0), 0), 0),
4272 GET_MODE_BITSIZE (mode) - (i + 1)),
4273 GET_MODE_BITSIZE (mode) - (i + 1));
4275 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4276 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4277 is 1. This produces better code than the alternative immediately
4278 below. */
4279 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4280 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4281 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4282 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4283 XEXP (XEXP (x, 0), 0),
4284 XEXP (XEXP (x, 0), 1))))
4285 return
4286 simplify_gen_unary (NEG, mode, reversed, mode);
4288 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4289 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4290 the bitsize of the mode - 1. This allows simplification of
4291 "a = (b & 8) == 0;" */
4292 if (XEXP (x, 1) == constm1_rtx
4293 && GET_CODE (XEXP (x, 0)) != REG
4294 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4295 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4296 && nonzero_bits (XEXP (x, 0), mode) == 1)
4297 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4298 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4299 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4300 GET_MODE_BITSIZE (mode) - 1),
4301 GET_MODE_BITSIZE (mode) - 1);
4303 /* If we are adding two things that have no bits in common, convert
4304 the addition into an IOR. This will often be further simplified,
4305 for example in cases like ((a & 1) + (a & 2)), which can
4306 become a & 3. */
4308 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4309 && (nonzero_bits (XEXP (x, 0), mode)
4310 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4312 /* Try to simplify the expression further. */
4313 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4314 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4316 /* If we could, great. If not, do not go ahead with the IOR
4317 replacement, since PLUS appears in many special purpose
4318 address arithmetic instructions. */
4319 if (GET_CODE (temp) != CLOBBER && temp != tor)
4320 return temp;
4322 break;
4324 case MINUS:
4325 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4326 by reversing the comparison code if valid. */
4327 if (STORE_FLAG_VALUE == 1
4328 && XEXP (x, 0) == const1_rtx
4329 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4330 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4331 XEXP (XEXP (x, 1), 0),
4332 XEXP (XEXP (x, 1), 1))))
4333 return reversed;
4335 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4336 (and <foo> (const_int pow2-1)) */
4337 if (GET_CODE (XEXP (x, 1)) == AND
4338 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4339 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4340 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4341 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4342 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4344 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4346 if (GET_CODE (XEXP (x, 1)) == MULT
4347 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4349 rtx in1, in2;
4351 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4352 in2 = XEXP (XEXP (x, 1), 1);
4353 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4354 XEXP (x, 0));
4357 /* Canonicalize (minus (neg A) (mult B C)) to
4358 (minus (mult (neg B) C) A). */
4359 if (GET_CODE (XEXP (x, 1)) == MULT
4360 && GET_CODE (XEXP (x, 0)) == NEG)
4362 rtx in1, in2;
4364 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4365 in2 = XEXP (XEXP (x, 1), 1);
4366 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4367 XEXP (XEXP (x, 0), 0));
4370 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4371 integers. */
4372 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4373 return gen_binary (MINUS, mode,
4374 gen_binary (MINUS, mode, XEXP (x, 0),
4375 XEXP (XEXP (x, 1), 0)),
4376 XEXP (XEXP (x, 1), 1));
4377 break;
4379 case MULT:
4380 /* If we have (mult (plus A B) C), apply the distributive law and then
4381 the inverse distributive law to see if things simplify. This
4382 occurs mostly in addresses, often when unrolling loops. */
4384 if (GET_CODE (XEXP (x, 0)) == PLUS)
4386 x = apply_distributive_law
4387 (gen_binary (PLUS, mode,
4388 gen_binary (MULT, mode,
4389 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4390 gen_binary (MULT, mode,
4391 XEXP (XEXP (x, 0), 1),
4392 copy_rtx (XEXP (x, 1)))));
4394 if (GET_CODE (x) != MULT)
4395 return x;
4397 /* Try simplify a*(b/c) as (a*b)/c. */
4398 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4399 && GET_CODE (XEXP (x, 0)) == DIV)
4401 rtx tem = simplify_binary_operation (MULT, mode,
4402 XEXP (XEXP (x, 0), 0),
4403 XEXP (x, 1));
4404 if (tem)
4405 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4407 break;
4409 case UDIV:
4410 /* If this is a divide by a power of two, treat it as a shift if
4411 its first operand is a shift. */
4412 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4413 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4414 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4415 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4416 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4417 || GET_CODE (XEXP (x, 0)) == ROTATE
4418 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4419 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4420 break;
4422 case EQ: case NE:
4423 case GT: case GTU: case GE: case GEU:
4424 case LT: case LTU: case LE: case LEU:
4425 case UNEQ: case LTGT:
4426 case UNGT: case UNGE:
4427 case UNLT: case UNLE:
4428 case UNORDERED: case ORDERED:
4429 /* If the first operand is a condition code, we can't do anything
4430 with it. */
4431 if (GET_CODE (XEXP (x, 0)) == COMPARE
4432 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4433 #ifdef HAVE_cc0
4434 && XEXP (x, 0) != cc0_rtx
4435 #endif
4438 rtx op0 = XEXP (x, 0);
4439 rtx op1 = XEXP (x, 1);
4440 enum rtx_code new_code;
4442 if (GET_CODE (op0) == COMPARE)
4443 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4445 /* Simplify our comparison, if possible. */
4446 new_code = simplify_comparison (code, &op0, &op1);
4448 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4449 if only the low-order bit is possibly nonzero in X (such as when
4450 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4451 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4452 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4453 (plus X 1).
4455 Remove any ZERO_EXTRACT we made when thinking this was a
4456 comparison. It may now be simpler to use, e.g., an AND. If a
4457 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4458 the call to make_compound_operation in the SET case. */
4460 if (STORE_FLAG_VALUE == 1
4461 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4462 && op1 == const0_rtx
4463 && mode == GET_MODE (op0)
4464 && nonzero_bits (op0, mode) == 1)
4465 return gen_lowpart_for_combine (mode,
4466 expand_compound_operation (op0));
4468 else if (STORE_FLAG_VALUE == 1
4469 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4470 && op1 == const0_rtx
4471 && mode == GET_MODE (op0)
4472 && (num_sign_bit_copies (op0, mode)
4473 == GET_MODE_BITSIZE (mode)))
4475 op0 = expand_compound_operation (op0);
4476 return simplify_gen_unary (NEG, mode,
4477 gen_lowpart_for_combine (mode, op0),
4478 mode);
4481 else if (STORE_FLAG_VALUE == 1
4482 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4483 && op1 == const0_rtx
4484 && mode == GET_MODE (op0)
4485 && nonzero_bits (op0, mode) == 1)
4487 op0 = expand_compound_operation (op0);
4488 return gen_binary (XOR, mode,
4489 gen_lowpart_for_combine (mode, op0),
4490 const1_rtx);
4493 else if (STORE_FLAG_VALUE == 1
4494 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4495 && op1 == const0_rtx
4496 && mode == GET_MODE (op0)
4497 && (num_sign_bit_copies (op0, mode)
4498 == GET_MODE_BITSIZE (mode)))
4500 op0 = expand_compound_operation (op0);
4501 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4504 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4505 those above. */
4506 if (STORE_FLAG_VALUE == -1
4507 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4508 && op1 == const0_rtx
4509 && (num_sign_bit_copies (op0, mode)
4510 == GET_MODE_BITSIZE (mode)))
4511 return gen_lowpart_for_combine (mode,
4512 expand_compound_operation (op0));
4514 else if (STORE_FLAG_VALUE == -1
4515 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4516 && op1 == const0_rtx
4517 && mode == GET_MODE (op0)
4518 && nonzero_bits (op0, mode) == 1)
4520 op0 = expand_compound_operation (op0);
4521 return simplify_gen_unary (NEG, mode,
4522 gen_lowpart_for_combine (mode, op0),
4523 mode);
4526 else if (STORE_FLAG_VALUE == -1
4527 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4528 && op1 == const0_rtx
4529 && mode == GET_MODE (op0)
4530 && (num_sign_bit_copies (op0, mode)
4531 == GET_MODE_BITSIZE (mode)))
4533 op0 = expand_compound_operation (op0);
4534 return simplify_gen_unary (NOT, mode,
4535 gen_lowpart_for_combine (mode, op0),
4536 mode);
4539 /* If X is 0/1, (eq X 0) is X-1. */
4540 else if (STORE_FLAG_VALUE == -1
4541 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4542 && op1 == const0_rtx
4543 && mode == GET_MODE (op0)
4544 && nonzero_bits (op0, mode) == 1)
4546 op0 = expand_compound_operation (op0);
4547 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4550 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4551 one bit that might be nonzero, we can convert (ne x 0) to
4552 (ashift x c) where C puts the bit in the sign bit. Remove any
4553 AND with STORE_FLAG_VALUE when we are done, since we are only
4554 going to test the sign bit. */
4555 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4556 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4557 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4558 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4559 && op1 == const0_rtx
4560 && mode == GET_MODE (op0)
4561 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4563 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4564 expand_compound_operation (op0),
4565 GET_MODE_BITSIZE (mode) - 1 - i);
4566 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4567 return XEXP (x, 0);
4568 else
4569 return x;
4572 /* If the code changed, return a whole new comparison. */
4573 if (new_code != code)
4574 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4576 /* Otherwise, keep this operation, but maybe change its operands.
4577 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4578 SUBST (XEXP (x, 0), op0);
4579 SUBST (XEXP (x, 1), op1);
4581 break;
4583 case IF_THEN_ELSE:
4584 return simplify_if_then_else (x);
4586 case ZERO_EXTRACT:
4587 case SIGN_EXTRACT:
4588 case ZERO_EXTEND:
4589 case SIGN_EXTEND:
4590 /* If we are processing SET_DEST, we are done. */
4591 if (in_dest)
4592 return x;
4594 return expand_compound_operation (x);
4596 case SET:
4597 return simplify_set (x);
4599 case AND:
4600 case IOR:
4601 case XOR:
4602 return simplify_logical (x, last);
4604 case ABS:
4605 /* (abs (neg <foo>)) -> (abs <foo>) */
4606 if (GET_CODE (XEXP (x, 0)) == NEG)
4607 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4609 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4610 do nothing. */
4611 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4612 break;
4614 /* If operand is something known to be positive, ignore the ABS. */
4615 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4616 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4617 <= HOST_BITS_PER_WIDE_INT)
4618 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4619 & ((HOST_WIDE_INT) 1
4620 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4621 == 0)))
4622 return XEXP (x, 0);
4624 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4625 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4626 return gen_rtx_NEG (mode, XEXP (x, 0));
4628 break;
4630 case FFS:
4631 /* (ffs (*_extend <X>)) = (ffs <X>) */
4632 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4633 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4634 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4635 break;
4637 case POPCOUNT:
4638 case PARITY:
4639 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4640 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4641 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4642 break;
4644 case FLOAT:
4645 /* (float (sign_extend <X>)) = (float <X>). */
4646 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4647 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4648 break;
4650 case ASHIFT:
4651 case LSHIFTRT:
4652 case ASHIFTRT:
4653 case ROTATE:
4654 case ROTATERT:
4655 /* If this is a shift by a constant amount, simplify it. */
4656 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4657 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4658 INTVAL (XEXP (x, 1)));
4660 #ifdef SHIFT_COUNT_TRUNCATED
4661 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4662 SUBST (XEXP (x, 1),
4663 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4664 ((HOST_WIDE_INT) 1
4665 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4666 - 1,
4667 NULL_RTX, 0));
4668 #endif
4670 break;
4672 case VEC_SELECT:
4674 rtx op0 = XEXP (x, 0);
4675 rtx op1 = XEXP (x, 1);
4676 int len;
4678 if (GET_CODE (op1) != PARALLEL)
4679 abort ();
4680 len = XVECLEN (op1, 0);
4681 if (len == 1
4682 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4683 && GET_CODE (op0) == VEC_CONCAT)
4685 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4687 /* Try to find the element in the VEC_CONCAT. */
4688 for (;;)
4690 if (GET_MODE (op0) == GET_MODE (x))
4691 return op0;
4692 if (GET_CODE (op0) == VEC_CONCAT)
4694 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4695 if (op0_size < offset)
4696 op0 = XEXP (op0, 0);
4697 else
4699 offset -= op0_size;
4700 op0 = XEXP (op0, 1);
4703 else
4704 break;
4709 break;
4711 default:
4712 break;
4715 return x;
4718 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4720 static rtx
4721 simplify_if_then_else (x)
4722 rtx x;
4724 enum machine_mode mode = GET_MODE (x);
4725 rtx cond = XEXP (x, 0);
4726 rtx true_rtx = XEXP (x, 1);
4727 rtx false_rtx = XEXP (x, 2);
4728 enum rtx_code true_code = GET_CODE (cond);
4729 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4730 rtx temp;
4731 int i;
4732 enum rtx_code false_code;
4733 rtx reversed;
4735 /* Simplify storing of the truth value. */
4736 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4737 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4739 /* Also when the truth value has to be reversed. */
4740 if (comparison_p
4741 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4742 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4743 XEXP (cond, 1))))
4744 return reversed;
4746 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4747 in it is being compared against certain values. Get the true and false
4748 comparisons and see if that says anything about the value of each arm. */
4750 if (comparison_p
4751 && ((false_code = combine_reversed_comparison_code (cond))
4752 != UNKNOWN)
4753 && GET_CODE (XEXP (cond, 0)) == REG)
4755 HOST_WIDE_INT nzb;
4756 rtx from = XEXP (cond, 0);
4757 rtx true_val = XEXP (cond, 1);
4758 rtx false_val = true_val;
4759 int swapped = 0;
4761 /* If FALSE_CODE is EQ, swap the codes and arms. */
4763 if (false_code == EQ)
4765 swapped = 1, true_code = EQ, false_code = NE;
4766 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4769 /* If we are comparing against zero and the expression being tested has
4770 only a single bit that might be nonzero, that is its value when it is
4771 not equal to zero. Similarly if it is known to be -1 or 0. */
4773 if (true_code == EQ && true_val == const0_rtx
4774 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4775 false_code = EQ, false_val = GEN_INT (nzb);
4776 else if (true_code == EQ && true_val == const0_rtx
4777 && (num_sign_bit_copies (from, GET_MODE (from))
4778 == GET_MODE_BITSIZE (GET_MODE (from))))
4779 false_code = EQ, false_val = constm1_rtx;
4781 /* Now simplify an arm if we know the value of the register in the
4782 branch and it is used in the arm. Be careful due to the potential
4783 of locally-shared RTL. */
4785 if (reg_mentioned_p (from, true_rtx))
4786 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4787 from, true_val),
4788 pc_rtx, pc_rtx, 0, 0);
4789 if (reg_mentioned_p (from, false_rtx))
4790 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4791 from, false_val),
4792 pc_rtx, pc_rtx, 0, 0);
4794 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4795 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4797 true_rtx = XEXP (x, 1);
4798 false_rtx = XEXP (x, 2);
4799 true_code = GET_CODE (cond);
4802 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4803 reversed, do so to avoid needing two sets of patterns for
4804 subtract-and-branch insns. Similarly if we have a constant in the true
4805 arm, the false arm is the same as the first operand of the comparison, or
4806 the false arm is more complicated than the true arm. */
4808 if (comparison_p
4809 && combine_reversed_comparison_code (cond) != UNKNOWN
4810 && (true_rtx == pc_rtx
4811 || (CONSTANT_P (true_rtx)
4812 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4813 || true_rtx == const0_rtx
4814 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4815 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4816 || (GET_CODE (true_rtx) == SUBREG
4817 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4818 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4819 || reg_mentioned_p (true_rtx, false_rtx)
4820 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4822 true_code = reversed_comparison_code (cond, NULL);
4823 SUBST (XEXP (x, 0),
4824 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4825 XEXP (cond, 1)));
4827 SUBST (XEXP (x, 1), false_rtx);
4828 SUBST (XEXP (x, 2), true_rtx);
4830 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4831 cond = XEXP (x, 0);
4833 /* It is possible that the conditional has been simplified out. */
4834 true_code = GET_CODE (cond);
4835 comparison_p = GET_RTX_CLASS (true_code) == '<';
4838 /* If the two arms are identical, we don't need the comparison. */
4840 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4841 return true_rtx;
4843 /* Convert a == b ? b : a to "a". */
4844 if (true_code == EQ && ! side_effects_p (cond)
4845 && !HONOR_NANS (mode)
4846 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4847 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4848 return false_rtx;
4849 else if (true_code == NE && ! side_effects_p (cond)
4850 && !HONOR_NANS (mode)
4851 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4852 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4853 return true_rtx;
4855 /* Look for cases where we have (abs x) or (neg (abs X)). */
4857 if (GET_MODE_CLASS (mode) == MODE_INT
4858 && GET_CODE (false_rtx) == NEG
4859 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4860 && comparison_p
4861 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4862 && ! side_effects_p (true_rtx))
4863 switch (true_code)
4865 case GT:
4866 case GE:
4867 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4868 case LT:
4869 case LE:
4870 return
4871 simplify_gen_unary (NEG, mode,
4872 simplify_gen_unary (ABS, mode, true_rtx, mode),
4873 mode);
4874 default:
4875 break;
4878 /* Look for MIN or MAX. */
4880 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4881 && comparison_p
4882 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4883 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4884 && ! side_effects_p (cond))
4885 switch (true_code)
4887 case GE:
4888 case GT:
4889 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4890 case LE:
4891 case LT:
4892 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4893 case GEU:
4894 case GTU:
4895 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4896 case LEU:
4897 case LTU:
4898 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4899 default:
4900 break;
4903 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4904 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4905 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4906 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4907 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4908 neither 1 or -1, but it isn't worth checking for. */
4910 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4911 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4913 rtx t = make_compound_operation (true_rtx, SET);
4914 rtx f = make_compound_operation (false_rtx, SET);
4915 rtx cond_op0 = XEXP (cond, 0);
4916 rtx cond_op1 = XEXP (cond, 1);
4917 enum rtx_code op = NIL, extend_op = NIL;
4918 enum machine_mode m = mode;
4919 rtx z = 0, c1 = NULL_RTX;
4921 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4922 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4923 || GET_CODE (t) == ASHIFT
4924 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4925 && rtx_equal_p (XEXP (t, 0), f))
4926 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4928 /* If an identity-zero op is commutative, check whether there
4929 would be a match if we swapped the operands. */
4930 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4931 || GET_CODE (t) == XOR)
4932 && rtx_equal_p (XEXP (t, 1), f))
4933 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4934 else if (GET_CODE (t) == SIGN_EXTEND
4935 && (GET_CODE (XEXP (t, 0)) == PLUS
4936 || GET_CODE (XEXP (t, 0)) == MINUS
4937 || GET_CODE (XEXP (t, 0)) == IOR
4938 || GET_CODE (XEXP (t, 0)) == XOR
4939 || GET_CODE (XEXP (t, 0)) == ASHIFT
4940 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4941 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4942 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4943 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4944 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4945 && (num_sign_bit_copies (f, GET_MODE (f))
4946 > (unsigned int)
4947 (GET_MODE_BITSIZE (mode)
4948 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4950 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4951 extend_op = SIGN_EXTEND;
4952 m = GET_MODE (XEXP (t, 0));
4954 else if (GET_CODE (t) == SIGN_EXTEND
4955 && (GET_CODE (XEXP (t, 0)) == PLUS
4956 || GET_CODE (XEXP (t, 0)) == IOR
4957 || GET_CODE (XEXP (t, 0)) == XOR)
4958 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4959 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4960 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4961 && (num_sign_bit_copies (f, GET_MODE (f))
4962 > (unsigned int)
4963 (GET_MODE_BITSIZE (mode)
4964 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4966 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4967 extend_op = SIGN_EXTEND;
4968 m = GET_MODE (XEXP (t, 0));
4970 else if (GET_CODE (t) == ZERO_EXTEND
4971 && (GET_CODE (XEXP (t, 0)) == PLUS
4972 || GET_CODE (XEXP (t, 0)) == MINUS
4973 || GET_CODE (XEXP (t, 0)) == IOR
4974 || GET_CODE (XEXP (t, 0)) == XOR
4975 || GET_CODE (XEXP (t, 0)) == ASHIFT
4976 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4977 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4978 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4979 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4980 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4981 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4982 && ((nonzero_bits (f, GET_MODE (f))
4983 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4984 == 0))
4986 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4987 extend_op = ZERO_EXTEND;
4988 m = GET_MODE (XEXP (t, 0));
4990 else if (GET_CODE (t) == ZERO_EXTEND
4991 && (GET_CODE (XEXP (t, 0)) == PLUS
4992 || GET_CODE (XEXP (t, 0)) == IOR
4993 || GET_CODE (XEXP (t, 0)) == XOR)
4994 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4995 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4996 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4997 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4998 && ((nonzero_bits (f, GET_MODE (f))
4999 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5000 == 0))
5002 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5003 extend_op = ZERO_EXTEND;
5004 m = GET_MODE (XEXP (t, 0));
5007 if (z)
5009 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5010 pc_rtx, pc_rtx, 0, 0);
5011 temp = gen_binary (MULT, m, temp,
5012 gen_binary (MULT, m, c1, const_true_rtx));
5013 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5014 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
5016 if (extend_op != NIL)
5017 temp = simplify_gen_unary (extend_op, mode, temp, m);
5019 return temp;
5023 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5024 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5025 negation of a single bit, we can convert this operation to a shift. We
5026 can actually do this more generally, but it doesn't seem worth it. */
5028 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5029 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5030 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5031 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5032 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5033 == GET_MODE_BITSIZE (mode))
5034 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5035 return
5036 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5037 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
5039 return x;
5042 /* Simplify X, a SET expression. Return the new expression. */
5044 static rtx
5045 simplify_set (x)
5046 rtx x;
5048 rtx src = SET_SRC (x);
5049 rtx dest = SET_DEST (x);
5050 enum machine_mode mode
5051 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5052 rtx other_insn;
5053 rtx *cc_use;
5055 /* (set (pc) (return)) gets written as (return). */
5056 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5057 return src;
5059 /* Now that we know for sure which bits of SRC we are using, see if we can
5060 simplify the expression for the object knowing that we only need the
5061 low-order bits. */
5063 if (GET_MODE_CLASS (mode) == MODE_INT
5064 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5066 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5067 SUBST (SET_SRC (x), src);
5070 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5071 the comparison result and try to simplify it unless we already have used
5072 undobuf.other_insn. */
5073 if ((GET_MODE_CLASS (mode) == MODE_CC
5074 || GET_CODE (src) == COMPARE
5075 || CC0_P (dest))
5076 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5077 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5078 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5079 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5081 enum rtx_code old_code = GET_CODE (*cc_use);
5082 enum rtx_code new_code;
5083 rtx op0, op1, tmp;
5084 int other_changed = 0;
5085 enum machine_mode compare_mode = GET_MODE (dest);
5086 enum machine_mode tmp_mode;
5088 if (GET_CODE (src) == COMPARE)
5089 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5090 else
5091 op0 = src, op1 = const0_rtx;
5093 /* Check whether the comparison is known at compile time. */
5094 if (GET_MODE (op0) != VOIDmode)
5095 tmp_mode = GET_MODE (op0);
5096 else if (GET_MODE (op1) != VOIDmode)
5097 tmp_mode = GET_MODE (op1);
5098 else
5099 tmp_mode = compare_mode;
5100 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
5101 if (tmp != NULL_RTX)
5103 rtx pat = PATTERN (other_insn);
5104 undobuf.other_insn = other_insn;
5105 SUBST (*cc_use, tmp);
5107 /* Attempt to simplify CC user. */
5108 if (GET_CODE (pat) == SET)
5110 rtx new = simplify_rtx (SET_SRC (pat));
5111 if (new != NULL_RTX)
5112 SUBST (SET_SRC (pat), new);
5115 /* Convert X into a no-op move. */
5116 SUBST (SET_DEST (x), pc_rtx);
5117 SUBST (SET_SRC (x), pc_rtx);
5118 return x;
5121 /* Simplify our comparison, if possible. */
5122 new_code = simplify_comparison (old_code, &op0, &op1);
5124 #ifdef EXTRA_CC_MODES
5125 /* If this machine has CC modes other than CCmode, check to see if we
5126 need to use a different CC mode here. */
5127 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5128 #endif /* EXTRA_CC_MODES */
5130 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5131 /* If the mode changed, we have to change SET_DEST, the mode in the
5132 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5133 a hard register, just build new versions with the proper mode. If it
5134 is a pseudo, we lose unless it is only time we set the pseudo, in
5135 which case we can safely change its mode. */
5136 if (compare_mode != GET_MODE (dest))
5138 unsigned int regno = REGNO (dest);
5139 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5141 if (regno < FIRST_PSEUDO_REGISTER
5142 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5144 if (regno >= FIRST_PSEUDO_REGISTER)
5145 SUBST (regno_reg_rtx[regno], new_dest);
5147 SUBST (SET_DEST (x), new_dest);
5148 SUBST (XEXP (*cc_use, 0), new_dest);
5149 other_changed = 1;
5151 dest = new_dest;
5154 #endif
5156 /* If the code changed, we have to build a new comparison in
5157 undobuf.other_insn. */
5158 if (new_code != old_code)
5160 unsigned HOST_WIDE_INT mask;
5162 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5163 dest, const0_rtx));
5165 /* If the only change we made was to change an EQ into an NE or
5166 vice versa, OP0 has only one bit that might be nonzero, and OP1
5167 is zero, check if changing the user of the condition code will
5168 produce a valid insn. If it won't, we can keep the original code
5169 in that insn by surrounding our operation with an XOR. */
5171 if (((old_code == NE && new_code == EQ)
5172 || (old_code == EQ && new_code == NE))
5173 && ! other_changed && op1 == const0_rtx
5174 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5175 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5177 rtx pat = PATTERN (other_insn), note = 0;
5179 if ((recog_for_combine (&pat, other_insn, &note) < 0
5180 && ! check_asm_operands (pat)))
5182 PUT_CODE (*cc_use, old_code);
5183 other_insn = 0;
5185 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5189 other_changed = 1;
5192 if (other_changed)
5193 undobuf.other_insn = other_insn;
5195 #ifdef HAVE_cc0
5196 /* If we are now comparing against zero, change our source if
5197 needed. If we do not use cc0, we always have a COMPARE. */
5198 if (op1 == const0_rtx && dest == cc0_rtx)
5200 SUBST (SET_SRC (x), op0);
5201 src = op0;
5203 else
5204 #endif
5206 /* Otherwise, if we didn't previously have a COMPARE in the
5207 correct mode, we need one. */
5208 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5210 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5211 src = SET_SRC (x);
5213 else
5215 /* Otherwise, update the COMPARE if needed. */
5216 SUBST (XEXP (src, 0), op0);
5217 SUBST (XEXP (src, 1), op1);
5220 else
5222 /* Get SET_SRC in a form where we have placed back any
5223 compound expressions. Then do the checks below. */
5224 src = make_compound_operation (src, SET);
5225 SUBST (SET_SRC (x), src);
5228 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5229 and X being a REG or (subreg (reg)), we may be able to convert this to
5230 (set (subreg:m2 x) (op)).
5232 We can always do this if M1 is narrower than M2 because that means that
5233 we only care about the low bits of the result.
5235 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5236 perform a narrower operation than requested since the high-order bits will
5237 be undefined. On machine where it is defined, this transformation is safe
5238 as long as M1 and M2 have the same number of words. */
5240 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5241 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5242 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5243 / UNITS_PER_WORD)
5244 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5245 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5246 #ifndef WORD_REGISTER_OPERATIONS
5247 && (GET_MODE_SIZE (GET_MODE (src))
5248 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5249 #endif
5250 #ifdef CANNOT_CHANGE_MODE_CLASS
5251 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5252 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5253 GET_MODE (SUBREG_REG (src)),
5254 GET_MODE (src)))
5255 #endif
5256 && (GET_CODE (dest) == REG
5257 || (GET_CODE (dest) == SUBREG
5258 && GET_CODE (SUBREG_REG (dest)) == REG)))
5260 SUBST (SET_DEST (x),
5261 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5262 dest));
5263 SUBST (SET_SRC (x), SUBREG_REG (src));
5265 src = SET_SRC (x), dest = SET_DEST (x);
5268 #ifdef HAVE_cc0
5269 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5270 in SRC. */
5271 if (dest == cc0_rtx
5272 && GET_CODE (src) == SUBREG
5273 && subreg_lowpart_p (src)
5274 && (GET_MODE_BITSIZE (GET_MODE (src))
5275 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5277 rtx inner = SUBREG_REG (src);
5278 enum machine_mode inner_mode = GET_MODE (inner);
5280 /* Here we make sure that we don't have a sign bit on. */
5281 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5282 && (nonzero_bits (inner, inner_mode)
5283 < ((unsigned HOST_WIDE_INT) 1
5284 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5286 SUBST (SET_SRC (x), inner);
5287 src = SET_SRC (x);
5290 #endif
5292 #ifdef LOAD_EXTEND_OP
5293 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5294 would require a paradoxical subreg. Replace the subreg with a
5295 zero_extend to avoid the reload that would otherwise be required. */
5297 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5298 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5299 && SUBREG_BYTE (src) == 0
5300 && (GET_MODE_SIZE (GET_MODE (src))
5301 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5302 && GET_CODE (SUBREG_REG (src)) == MEM)
5304 SUBST (SET_SRC (x),
5305 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5306 GET_MODE (src), SUBREG_REG (src)));
5308 src = SET_SRC (x);
5310 #endif
5312 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5313 are comparing an item known to be 0 or -1 against 0, use a logical
5314 operation instead. Check for one of the arms being an IOR of the other
5315 arm with some value. We compute three terms to be IOR'ed together. In
5316 practice, at most two will be nonzero. Then we do the IOR's. */
5318 if (GET_CODE (dest) != PC
5319 && GET_CODE (src) == IF_THEN_ELSE
5320 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5321 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5322 && XEXP (XEXP (src, 0), 1) == const0_rtx
5323 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5324 #ifdef HAVE_conditional_move
5325 && ! can_conditionally_move_p (GET_MODE (src))
5326 #endif
5327 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5328 GET_MODE (XEXP (XEXP (src, 0), 0)))
5329 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5330 && ! side_effects_p (src))
5332 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5333 ? XEXP (src, 1) : XEXP (src, 2));
5334 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5335 ? XEXP (src, 2) : XEXP (src, 1));
5336 rtx term1 = const0_rtx, term2, term3;
5338 if (GET_CODE (true_rtx) == IOR
5339 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5340 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5341 else if (GET_CODE (true_rtx) == IOR
5342 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5343 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5344 else if (GET_CODE (false_rtx) == IOR
5345 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5346 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5347 else if (GET_CODE (false_rtx) == IOR
5348 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5349 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5351 term2 = gen_binary (AND, GET_MODE (src),
5352 XEXP (XEXP (src, 0), 0), true_rtx);
5353 term3 = gen_binary (AND, GET_MODE (src),
5354 simplify_gen_unary (NOT, GET_MODE (src),
5355 XEXP (XEXP (src, 0), 0),
5356 GET_MODE (src)),
5357 false_rtx);
5359 SUBST (SET_SRC (x),
5360 gen_binary (IOR, GET_MODE (src),
5361 gen_binary (IOR, GET_MODE (src), term1, term2),
5362 term3));
5364 src = SET_SRC (x);
5367 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5368 whole thing fail. */
5369 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5370 return src;
5371 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5372 return dest;
5373 else
5374 /* Convert this into a field assignment operation, if possible. */
5375 return make_field_assignment (x);
5378 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5379 result. LAST is nonzero if this is the last retry. */
5381 static rtx
5382 simplify_logical (x, last)
5383 rtx x;
5384 int last;
5386 enum machine_mode mode = GET_MODE (x);
5387 rtx op0 = XEXP (x, 0);
5388 rtx op1 = XEXP (x, 1);
5389 rtx reversed;
5391 switch (GET_CODE (x))
5393 case AND:
5394 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5395 insn (and may simplify more). */
5396 if (GET_CODE (op0) == XOR
5397 && rtx_equal_p (XEXP (op0, 0), op1)
5398 && ! side_effects_p (op1))
5399 x = gen_binary (AND, mode,
5400 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5401 op1);
5403 if (GET_CODE (op0) == XOR
5404 && rtx_equal_p (XEXP (op0, 1), op1)
5405 && ! side_effects_p (op1))
5406 x = gen_binary (AND, mode,
5407 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5408 op1);
5410 /* Similarly for (~(A ^ B)) & A. */
5411 if (GET_CODE (op0) == NOT
5412 && GET_CODE (XEXP (op0, 0)) == XOR
5413 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5414 && ! side_effects_p (op1))
5415 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5417 if (GET_CODE (op0) == NOT
5418 && GET_CODE (XEXP (op0, 0)) == XOR
5419 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5420 && ! side_effects_p (op1))
5421 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5423 /* We can call simplify_and_const_int only if we don't lose
5424 any (sign) bits when converting INTVAL (op1) to
5425 "unsigned HOST_WIDE_INT". */
5426 if (GET_CODE (op1) == CONST_INT
5427 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5428 || INTVAL (op1) > 0))
5430 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5432 /* If we have (ior (and (X C1) C2)) and the next restart would be
5433 the last, simplify this by making C1 as small as possible
5434 and then exit. */
5435 if (last
5436 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5437 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5438 && GET_CODE (op1) == CONST_INT)
5439 return gen_binary (IOR, mode,
5440 gen_binary (AND, mode, XEXP (op0, 0),
5441 GEN_INT (INTVAL (XEXP (op0, 1))
5442 & ~INTVAL (op1))), op1);
5444 if (GET_CODE (x) != AND)
5445 return x;
5447 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5448 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5449 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5452 /* Convert (A | B) & A to A. */
5453 if (GET_CODE (op0) == IOR
5454 && (rtx_equal_p (XEXP (op0, 0), op1)
5455 || rtx_equal_p (XEXP (op0, 1), op1))
5456 && ! side_effects_p (XEXP (op0, 0))
5457 && ! side_effects_p (XEXP (op0, 1)))
5458 return op1;
5460 /* In the following group of tests (and those in case IOR below),
5461 we start with some combination of logical operations and apply
5462 the distributive law followed by the inverse distributive law.
5463 Most of the time, this results in no change. However, if some of
5464 the operands are the same or inverses of each other, simplifications
5465 will result.
5467 For example, (and (ior A B) (not B)) can occur as the result of
5468 expanding a bit field assignment. When we apply the distributive
5469 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5470 which then simplifies to (and (A (not B))).
5472 If we have (and (ior A B) C), apply the distributive law and then
5473 the inverse distributive law to see if things simplify. */
5475 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5477 x = apply_distributive_law
5478 (gen_binary (GET_CODE (op0), mode,
5479 gen_binary (AND, mode, XEXP (op0, 0), op1),
5480 gen_binary (AND, mode, XEXP (op0, 1),
5481 copy_rtx (op1))));
5482 if (GET_CODE (x) != AND)
5483 return x;
5486 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5487 return apply_distributive_law
5488 (gen_binary (GET_CODE (op1), mode,
5489 gen_binary (AND, mode, XEXP (op1, 0), op0),
5490 gen_binary (AND, mode, XEXP (op1, 1),
5491 copy_rtx (op0))));
5493 /* Similarly, taking advantage of the fact that
5494 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5496 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5497 return apply_distributive_law
5498 (gen_binary (XOR, mode,
5499 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5500 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5501 XEXP (op1, 1))));
5503 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5504 return apply_distributive_law
5505 (gen_binary (XOR, mode,
5506 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5507 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5508 break;
5510 case IOR:
5511 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5512 if (GET_CODE (op1) == CONST_INT
5513 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5514 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5515 return op1;
5517 /* Convert (A & B) | A to A. */
5518 if (GET_CODE (op0) == AND
5519 && (rtx_equal_p (XEXP (op0, 0), op1)
5520 || rtx_equal_p (XEXP (op0, 1), op1))
5521 && ! side_effects_p (XEXP (op0, 0))
5522 && ! side_effects_p (XEXP (op0, 1)))
5523 return op1;
5525 /* If we have (ior (and A B) C), apply the distributive law and then
5526 the inverse distributive law to see if things simplify. */
5528 if (GET_CODE (op0) == AND)
5530 x = apply_distributive_law
5531 (gen_binary (AND, mode,
5532 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5533 gen_binary (IOR, mode, XEXP (op0, 1),
5534 copy_rtx (op1))));
5536 if (GET_CODE (x) != IOR)
5537 return x;
5540 if (GET_CODE (op1) == AND)
5542 x = apply_distributive_law
5543 (gen_binary (AND, mode,
5544 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5545 gen_binary (IOR, mode, XEXP (op1, 1),
5546 copy_rtx (op0))));
5548 if (GET_CODE (x) != IOR)
5549 return x;
5552 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5553 mode size to (rotate A CX). */
5555 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5556 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5557 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5558 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5559 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5560 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5561 == GET_MODE_BITSIZE (mode)))
5562 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5563 (GET_CODE (op0) == ASHIFT
5564 ? XEXP (op0, 1) : XEXP (op1, 1)));
5566 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5567 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5568 does not affect any of the bits in OP1, it can really be done
5569 as a PLUS and we can associate. We do this by seeing if OP1
5570 can be safely shifted left C bits. */
5571 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5572 && GET_CODE (XEXP (op0, 0)) == PLUS
5573 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5574 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5575 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5577 int count = INTVAL (XEXP (op0, 1));
5578 HOST_WIDE_INT mask = INTVAL (op1) << count;
5580 if (mask >> count == INTVAL (op1)
5581 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5583 SUBST (XEXP (XEXP (op0, 0), 1),
5584 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5585 return op0;
5588 break;
5590 case XOR:
5591 /* If we are XORing two things that have no bits in common,
5592 convert them into an IOR. This helps to detect rotation encoded
5593 using those methods and possibly other simplifications. */
5595 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5596 && (nonzero_bits (op0, mode)
5597 & nonzero_bits (op1, mode)) == 0)
5598 return (gen_binary (IOR, mode, op0, op1));
5600 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5601 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5602 (NOT y). */
5604 int num_negated = 0;
5606 if (GET_CODE (op0) == NOT)
5607 num_negated++, op0 = XEXP (op0, 0);
5608 if (GET_CODE (op1) == NOT)
5609 num_negated++, op1 = XEXP (op1, 0);
5611 if (num_negated == 2)
5613 SUBST (XEXP (x, 0), op0);
5614 SUBST (XEXP (x, 1), op1);
5616 else if (num_negated == 1)
5617 return
5618 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5619 mode);
5622 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5623 correspond to a machine insn or result in further simplifications
5624 if B is a constant. */
5626 if (GET_CODE (op0) == AND
5627 && rtx_equal_p (XEXP (op0, 1), op1)
5628 && ! side_effects_p (op1))
5629 return gen_binary (AND, mode,
5630 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5631 op1);
5633 else if (GET_CODE (op0) == AND
5634 && rtx_equal_p (XEXP (op0, 0), op1)
5635 && ! side_effects_p (op1))
5636 return gen_binary (AND, mode,
5637 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5638 op1);
5640 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5641 comparison if STORE_FLAG_VALUE is 1. */
5642 if (STORE_FLAG_VALUE == 1
5643 && op1 == const1_rtx
5644 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5645 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5646 XEXP (op0, 1))))
5647 return reversed;
5649 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5650 is (lt foo (const_int 0)), so we can perform the above
5651 simplification if STORE_FLAG_VALUE is 1. */
5653 if (STORE_FLAG_VALUE == 1
5654 && op1 == const1_rtx
5655 && GET_CODE (op0) == LSHIFTRT
5656 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5657 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5658 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5660 /* (xor (comparison foo bar) (const_int sign-bit))
5661 when STORE_FLAG_VALUE is the sign bit. */
5662 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5663 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5664 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5665 && op1 == const_true_rtx
5666 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5667 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5668 XEXP (op0, 1))))
5669 return reversed;
5671 break;
5673 default:
5674 abort ();
5677 return x;
5680 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5681 operations" because they can be replaced with two more basic operations.
5682 ZERO_EXTEND is also considered "compound" because it can be replaced with
5683 an AND operation, which is simpler, though only one operation.
5685 The function expand_compound_operation is called with an rtx expression
5686 and will convert it to the appropriate shifts and AND operations,
5687 simplifying at each stage.
5689 The function make_compound_operation is called to convert an expression
5690 consisting of shifts and ANDs into the equivalent compound expression.
5691 It is the inverse of this function, loosely speaking. */
5693 static rtx
5694 expand_compound_operation (x)
5695 rtx x;
5697 unsigned HOST_WIDE_INT pos = 0, len;
5698 int unsignedp = 0;
5699 unsigned int modewidth;
5700 rtx tem;
5702 switch (GET_CODE (x))
5704 case ZERO_EXTEND:
5705 unsignedp = 1;
5706 case SIGN_EXTEND:
5707 /* We can't necessarily use a const_int for a multiword mode;
5708 it depends on implicitly extending the value.
5709 Since we don't know the right way to extend it,
5710 we can't tell whether the implicit way is right.
5712 Even for a mode that is no wider than a const_int,
5713 we can't win, because we need to sign extend one of its bits through
5714 the rest of it, and we don't know which bit. */
5715 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5716 return x;
5718 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5719 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5720 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5721 reloaded. If not for that, MEM's would very rarely be safe.
5723 Reject MODEs bigger than a word, because we might not be able
5724 to reference a two-register group starting with an arbitrary register
5725 (and currently gen_lowpart might crash for a SUBREG). */
5727 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5728 return x;
5730 /* Reject MODEs that aren't scalar integers because turning vector
5731 or complex modes into shifts causes problems. */
5733 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5734 return x;
5736 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5737 /* If the inner object has VOIDmode (the only way this can happen
5738 is if it is an ASM_OPERANDS), we can't do anything since we don't
5739 know how much masking to do. */
5740 if (len == 0)
5741 return x;
5743 break;
5745 case ZERO_EXTRACT:
5746 unsignedp = 1;
5747 case SIGN_EXTRACT:
5748 /* If the operand is a CLOBBER, just return it. */
5749 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5750 return XEXP (x, 0);
5752 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5753 || GET_CODE (XEXP (x, 2)) != CONST_INT
5754 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5755 return x;
5757 /* Reject MODEs that aren't scalar integers because turning vector
5758 or complex modes into shifts causes problems. */
5760 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5761 return x;
5763 len = INTVAL (XEXP (x, 1));
5764 pos = INTVAL (XEXP (x, 2));
5766 /* If this goes outside the object being extracted, replace the object
5767 with a (use (mem ...)) construct that only combine understands
5768 and is used only for this purpose. */
5769 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5770 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5772 if (BITS_BIG_ENDIAN)
5773 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5775 break;
5777 default:
5778 return x;
5780 /* Convert sign extension to zero extension, if we know that the high
5781 bit is not set, as this is easier to optimize. It will be converted
5782 back to cheaper alternative in make_extraction. */
5783 if (GET_CODE (x) == SIGN_EXTEND
5784 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5785 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5786 & ~(((unsigned HOST_WIDE_INT)
5787 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5788 >> 1))
5789 == 0)))
5791 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5792 return expand_compound_operation (temp);
5795 /* We can optimize some special cases of ZERO_EXTEND. */
5796 if (GET_CODE (x) == ZERO_EXTEND)
5798 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5799 know that the last value didn't have any inappropriate bits
5800 set. */
5801 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5802 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5803 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5804 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5805 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5806 return XEXP (XEXP (x, 0), 0);
5808 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5809 if (GET_CODE (XEXP (x, 0)) == SUBREG
5810 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5811 && subreg_lowpart_p (XEXP (x, 0))
5812 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5813 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5814 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5815 return SUBREG_REG (XEXP (x, 0));
5817 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5818 is a comparison and STORE_FLAG_VALUE permits. This is like
5819 the first case, but it works even when GET_MODE (x) is larger
5820 than HOST_WIDE_INT. */
5821 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5822 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5823 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5824 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5825 <= HOST_BITS_PER_WIDE_INT)
5826 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5827 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5828 return XEXP (XEXP (x, 0), 0);
5830 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5831 if (GET_CODE (XEXP (x, 0)) == SUBREG
5832 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5833 && subreg_lowpart_p (XEXP (x, 0))
5834 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5835 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5836 <= HOST_BITS_PER_WIDE_INT)
5837 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5838 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5839 return SUBREG_REG (XEXP (x, 0));
5843 /* If we reach here, we want to return a pair of shifts. The inner
5844 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5845 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5846 logical depending on the value of UNSIGNEDP.
5848 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5849 converted into an AND of a shift.
5851 We must check for the case where the left shift would have a negative
5852 count. This can happen in a case like (x >> 31) & 255 on machines
5853 that can't shift by a constant. On those machines, we would first
5854 combine the shift with the AND to produce a variable-position
5855 extraction. Then the constant of 31 would be substituted in to produce
5856 a such a position. */
5858 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5859 if (modewidth + len >= pos)
5860 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5861 GET_MODE (x),
5862 simplify_shift_const (NULL_RTX, ASHIFT,
5863 GET_MODE (x),
5864 XEXP (x, 0),
5865 modewidth - pos - len),
5866 modewidth - len);
5868 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5869 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5870 simplify_shift_const (NULL_RTX, LSHIFTRT,
5871 GET_MODE (x),
5872 XEXP (x, 0), pos),
5873 ((HOST_WIDE_INT) 1 << len) - 1);
5874 else
5875 /* Any other cases we can't handle. */
5876 return x;
5878 /* If we couldn't do this for some reason, return the original
5879 expression. */
5880 if (GET_CODE (tem) == CLOBBER)
5881 return x;
5883 return tem;
5886 /* X is a SET which contains an assignment of one object into
5887 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5888 or certain SUBREGS). If possible, convert it into a series of
5889 logical operations.
5891 We half-heartedly support variable positions, but do not at all
5892 support variable lengths. */
5894 static rtx
5895 expand_field_assignment (x)
5896 rtx x;
5898 rtx inner;
5899 rtx pos; /* Always counts from low bit. */
5900 int len;
5901 rtx mask;
5902 enum machine_mode compute_mode;
5904 /* Loop until we find something we can't simplify. */
5905 while (1)
5907 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5908 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5910 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5911 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5912 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5914 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5915 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5917 inner = XEXP (SET_DEST (x), 0);
5918 len = INTVAL (XEXP (SET_DEST (x), 1));
5919 pos = XEXP (SET_DEST (x), 2);
5921 /* If the position is constant and spans the width of INNER,
5922 surround INNER with a USE to indicate this. */
5923 if (GET_CODE (pos) == CONST_INT
5924 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5925 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5927 if (BITS_BIG_ENDIAN)
5929 if (GET_CODE (pos) == CONST_INT)
5930 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5931 - INTVAL (pos));
5932 else if (GET_CODE (pos) == MINUS
5933 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5934 && (INTVAL (XEXP (pos, 1))
5935 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5936 /* If position is ADJUST - X, new position is X. */
5937 pos = XEXP (pos, 0);
5938 else
5939 pos = gen_binary (MINUS, GET_MODE (pos),
5940 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5941 - len),
5942 pos);
5946 /* A SUBREG between two modes that occupy the same numbers of words
5947 can be done by moving the SUBREG to the source. */
5948 else if (GET_CODE (SET_DEST (x)) == SUBREG
5949 /* We need SUBREGs to compute nonzero_bits properly. */
5950 && nonzero_sign_valid
5951 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5952 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5953 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5954 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5956 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5957 gen_lowpart_for_combine
5958 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5959 SET_SRC (x)));
5960 continue;
5962 else
5963 break;
5965 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5966 inner = SUBREG_REG (inner);
5968 compute_mode = GET_MODE (inner);
5970 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5971 if (! SCALAR_INT_MODE_P (compute_mode))
5973 enum machine_mode imode;
5975 /* Don't do anything for vector or complex integral types. */
5976 if (! FLOAT_MODE_P (compute_mode))
5977 break;
5979 /* Try to find an integral mode to pun with. */
5980 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5981 if (imode == BLKmode)
5982 break;
5984 compute_mode = imode;
5985 inner = gen_lowpart_for_combine (imode, inner);
5988 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5989 if (len < HOST_BITS_PER_WIDE_INT)
5990 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5991 else
5992 break;
5994 /* Now compute the equivalent expression. Make a copy of INNER
5995 for the SET_DEST in case it is a MEM into which we will substitute;
5996 we don't want shared RTL in that case. */
5997 x = gen_rtx_SET
5998 (VOIDmode, copy_rtx (inner),
5999 gen_binary (IOR, compute_mode,
6000 gen_binary (AND, compute_mode,
6001 simplify_gen_unary (NOT, compute_mode,
6002 gen_binary (ASHIFT,
6003 compute_mode,
6004 mask, pos),
6005 compute_mode),
6006 inner),
6007 gen_binary (ASHIFT, compute_mode,
6008 gen_binary (AND, compute_mode,
6009 gen_lowpart_for_combine
6010 (compute_mode, SET_SRC (x)),
6011 mask),
6012 pos)));
6015 return x;
6018 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6019 it is an RTX that represents a variable starting position; otherwise,
6020 POS is the (constant) starting bit position (counted from the LSB).
6022 INNER may be a USE. This will occur when we started with a bitfield
6023 that went outside the boundary of the object in memory, which is
6024 allowed on most machines. To isolate this case, we produce a USE
6025 whose mode is wide enough and surround the MEM with it. The only
6026 code that understands the USE is this routine. If it is not removed,
6027 it will cause the resulting insn not to match.
6029 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6030 signed reference.
6032 IN_DEST is nonzero if this is a reference in the destination of a
6033 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6034 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6035 be used.
6037 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6038 ZERO_EXTRACT should be built even for bits starting at bit 0.
6040 MODE is the desired mode of the result (if IN_DEST == 0).
6042 The result is an RTX for the extraction or NULL_RTX if the target
6043 can't handle it. */
6045 static rtx
6046 make_extraction (mode, inner, pos, pos_rtx, len,
6047 unsignedp, in_dest, in_compare)
6048 enum machine_mode mode;
6049 rtx inner;
6050 HOST_WIDE_INT pos;
6051 rtx pos_rtx;
6052 unsigned HOST_WIDE_INT len;
6053 int unsignedp;
6054 int in_dest, in_compare;
6056 /* This mode describes the size of the storage area
6057 to fetch the overall value from. Within that, we
6058 ignore the POS lowest bits, etc. */
6059 enum machine_mode is_mode = GET_MODE (inner);
6060 enum machine_mode inner_mode;
6061 enum machine_mode wanted_inner_mode = byte_mode;
6062 enum machine_mode wanted_inner_reg_mode = word_mode;
6063 enum machine_mode pos_mode = word_mode;
6064 enum machine_mode extraction_mode = word_mode;
6065 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6066 int spans_byte = 0;
6067 rtx new = 0;
6068 rtx orig_pos_rtx = pos_rtx;
6069 HOST_WIDE_INT orig_pos;
6071 /* Get some information about INNER and get the innermost object. */
6072 if (GET_CODE (inner) == USE)
6073 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6074 /* We don't need to adjust the position because we set up the USE
6075 to pretend that it was a full-word object. */
6076 spans_byte = 1, inner = XEXP (inner, 0);
6077 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6079 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6080 consider just the QI as the memory to extract from.
6081 The subreg adds or removes high bits; its mode is
6082 irrelevant to the meaning of this extraction,
6083 since POS and LEN count from the lsb. */
6084 if (GET_CODE (SUBREG_REG (inner)) == MEM)
6085 is_mode = GET_MODE (SUBREG_REG (inner));
6086 inner = SUBREG_REG (inner);
6088 else if (GET_CODE (inner) == ASHIFT
6089 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6090 && pos_rtx == 0 && pos == 0
6091 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6093 /* We're extracting the least significant bits of an rtx
6094 (ashift X (const_int C)), where LEN > C. Extract the
6095 least significant (LEN - C) bits of X, giving an rtx
6096 whose mode is MODE, then shift it left C times. */
6097 new = make_extraction (mode, XEXP (inner, 0),
6098 0, 0, len - INTVAL (XEXP (inner, 1)),
6099 unsignedp, in_dest, in_compare);
6100 if (new != 0)
6101 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6104 inner_mode = GET_MODE (inner);
6106 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6107 pos = INTVAL (pos_rtx), pos_rtx = 0;
6109 /* See if this can be done without an extraction. We never can if the
6110 width of the field is not the same as that of some integer mode. For
6111 registers, we can only avoid the extraction if the position is at the
6112 low-order bit and this is either not in the destination or we have the
6113 appropriate STRICT_LOW_PART operation available.
6115 For MEM, we can avoid an extract if the field starts on an appropriate
6116 boundary and we can change the mode of the memory reference. However,
6117 we cannot directly access the MEM if we have a USE and the underlying
6118 MEM is not TMODE. This combination means that MEM was being used in a
6119 context where bits outside its mode were being referenced; that is only
6120 valid in bit-field insns. */
6122 if (tmode != BLKmode
6123 && ! (spans_byte && inner_mode != tmode)
6124 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6125 && GET_CODE (inner) != MEM
6126 && (! in_dest
6127 || (GET_CODE (inner) == REG
6128 && have_insn_for (STRICT_LOW_PART, tmode))))
6129 || (GET_CODE (inner) == MEM && pos_rtx == 0
6130 && (pos
6131 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6132 : BITS_PER_UNIT)) == 0
6133 /* We can't do this if we are widening INNER_MODE (it
6134 may not be aligned, for one thing). */
6135 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6136 && (inner_mode == tmode
6137 || (! mode_dependent_address_p (XEXP (inner, 0))
6138 && ! MEM_VOLATILE_P (inner))))))
6140 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6141 field. If the original and current mode are the same, we need not
6142 adjust the offset. Otherwise, we do if bytes big endian.
6144 If INNER is not a MEM, get a piece consisting of just the field
6145 of interest (in this case POS % BITS_PER_WORD must be 0). */
6147 if (GET_CODE (inner) == MEM)
6149 HOST_WIDE_INT offset;
6151 /* POS counts from lsb, but make OFFSET count in memory order. */
6152 if (BYTES_BIG_ENDIAN)
6153 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6154 else
6155 offset = pos / BITS_PER_UNIT;
6157 new = adjust_address_nv (inner, tmode, offset);
6159 else if (GET_CODE (inner) == REG)
6161 /* We can't call gen_lowpart_for_combine here since we always want
6162 a SUBREG and it would sometimes return a new hard register. */
6163 if (tmode != inner_mode)
6165 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6167 if (WORDS_BIG_ENDIAN
6168 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6169 final_word = ((GET_MODE_SIZE (inner_mode)
6170 - GET_MODE_SIZE (tmode))
6171 / UNITS_PER_WORD) - final_word;
6173 final_word *= UNITS_PER_WORD;
6174 if (BYTES_BIG_ENDIAN &&
6175 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6176 final_word += (GET_MODE_SIZE (inner_mode)
6177 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6179 /* Avoid creating invalid subregs, for example when
6180 simplifying (x>>32)&255. */
6181 if (final_word >= GET_MODE_SIZE (inner_mode))
6182 return NULL_RTX;
6184 new = gen_rtx_SUBREG (tmode, inner, final_word);
6186 else
6187 new = inner;
6189 else
6190 new = force_to_mode (inner, tmode,
6191 len >= HOST_BITS_PER_WIDE_INT
6192 ? ~(unsigned HOST_WIDE_INT) 0
6193 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6194 NULL_RTX, 0);
6196 /* If this extraction is going into the destination of a SET,
6197 make a STRICT_LOW_PART unless we made a MEM. */
6199 if (in_dest)
6200 return (GET_CODE (new) == MEM ? new
6201 : (GET_CODE (new) != SUBREG
6202 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6203 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6205 if (mode == tmode)
6206 return new;
6208 if (GET_CODE (new) == CONST_INT)
6209 return gen_int_mode (INTVAL (new), mode);
6211 /* If we know that no extraneous bits are set, and that the high
6212 bit is not set, convert the extraction to the cheaper of
6213 sign and zero extension, that are equivalent in these cases. */
6214 if (flag_expensive_optimizations
6215 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6216 && ((nonzero_bits (new, tmode)
6217 & ~(((unsigned HOST_WIDE_INT)
6218 GET_MODE_MASK (tmode))
6219 >> 1))
6220 == 0)))
6222 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6223 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6225 /* Prefer ZERO_EXTENSION, since it gives more information to
6226 backends. */
6227 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6228 return temp;
6229 return temp1;
6232 /* Otherwise, sign- or zero-extend unless we already are in the
6233 proper mode. */
6235 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6236 mode, new));
6239 /* Unless this is a COMPARE or we have a funny memory reference,
6240 don't do anything with zero-extending field extracts starting at
6241 the low-order bit since they are simple AND operations. */
6242 if (pos_rtx == 0 && pos == 0 && ! in_dest
6243 && ! in_compare && ! spans_byte && unsignedp)
6244 return 0;
6246 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6247 we would be spanning bytes or if the position is not a constant and the
6248 length is not 1. In all other cases, we would only be going outside
6249 our object in cases when an original shift would have been
6250 undefined. */
6251 if (! spans_byte && GET_CODE (inner) == MEM
6252 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6253 || (pos_rtx != 0 && len != 1)))
6254 return 0;
6256 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6257 and the mode for the result. */
6258 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6260 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6261 pos_mode = mode_for_extraction (EP_insv, 2);
6262 extraction_mode = mode_for_extraction (EP_insv, 3);
6265 if (! in_dest && unsignedp
6266 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6268 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6269 pos_mode = mode_for_extraction (EP_extzv, 3);
6270 extraction_mode = mode_for_extraction (EP_extzv, 0);
6273 if (! in_dest && ! unsignedp
6274 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6276 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6277 pos_mode = mode_for_extraction (EP_extv, 3);
6278 extraction_mode = mode_for_extraction (EP_extv, 0);
6281 /* Never narrow an object, since that might not be safe. */
6283 if (mode != VOIDmode
6284 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6285 extraction_mode = mode;
6287 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6288 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6289 pos_mode = GET_MODE (pos_rtx);
6291 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6292 if we have to change the mode of memory and cannot, the desired mode is
6293 EXTRACTION_MODE. */
6294 if (GET_CODE (inner) != MEM)
6295 wanted_inner_mode = wanted_inner_reg_mode;
6296 else if (inner_mode != wanted_inner_mode
6297 && (mode_dependent_address_p (XEXP (inner, 0))
6298 || MEM_VOLATILE_P (inner)))
6299 wanted_inner_mode = extraction_mode;
6301 orig_pos = pos;
6303 if (BITS_BIG_ENDIAN)
6305 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6306 BITS_BIG_ENDIAN style. If position is constant, compute new
6307 position. Otherwise, build subtraction.
6308 Note that POS is relative to the mode of the original argument.
6309 If it's a MEM we need to recompute POS relative to that.
6310 However, if we're extracting from (or inserting into) a register,
6311 we want to recompute POS relative to wanted_inner_mode. */
6312 int width = (GET_CODE (inner) == MEM
6313 ? GET_MODE_BITSIZE (is_mode)
6314 : GET_MODE_BITSIZE (wanted_inner_mode));
6316 if (pos_rtx == 0)
6317 pos = width - len - pos;
6318 else
6319 pos_rtx
6320 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6321 /* POS may be less than 0 now, but we check for that below.
6322 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6325 /* If INNER has a wider mode, make it smaller. If this is a constant
6326 extract, try to adjust the byte to point to the byte containing
6327 the value. */
6328 if (wanted_inner_mode != VOIDmode
6329 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6330 && ((GET_CODE (inner) == MEM
6331 && (inner_mode == wanted_inner_mode
6332 || (! mode_dependent_address_p (XEXP (inner, 0))
6333 && ! MEM_VOLATILE_P (inner))))))
6335 int offset = 0;
6337 /* The computations below will be correct if the machine is big
6338 endian in both bits and bytes or little endian in bits and bytes.
6339 If it is mixed, we must adjust. */
6341 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6342 adjust OFFSET to compensate. */
6343 if (BYTES_BIG_ENDIAN
6344 && ! spans_byte
6345 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6346 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6348 /* If this is a constant position, we can move to the desired byte. */
6349 if (pos_rtx == 0)
6351 offset += pos / BITS_PER_UNIT;
6352 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6355 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6356 && ! spans_byte
6357 && is_mode != wanted_inner_mode)
6358 offset = (GET_MODE_SIZE (is_mode)
6359 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6361 if (offset != 0 || inner_mode != wanted_inner_mode)
6362 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6365 /* If INNER is not memory, we can always get it into the proper mode. If we
6366 are changing its mode, POS must be a constant and smaller than the size
6367 of the new mode. */
6368 else if (GET_CODE (inner) != MEM)
6370 if (GET_MODE (inner) != wanted_inner_mode
6371 && (pos_rtx != 0
6372 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6373 return 0;
6375 inner = force_to_mode (inner, wanted_inner_mode,
6376 pos_rtx
6377 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6378 ? ~(unsigned HOST_WIDE_INT) 0
6379 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6380 << orig_pos),
6381 NULL_RTX, 0);
6384 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6385 have to zero extend. Otherwise, we can just use a SUBREG. */
6386 if (pos_rtx != 0
6387 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6389 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6391 /* If we know that no extraneous bits are set, and that the high
6392 bit is not set, convert extraction to cheaper one - either
6393 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6394 cases. */
6395 if (flag_expensive_optimizations
6396 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6397 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6398 & ~(((unsigned HOST_WIDE_INT)
6399 GET_MODE_MASK (GET_MODE (pos_rtx)))
6400 >> 1))
6401 == 0)))
6403 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6405 /* Prefer ZERO_EXTENSION, since it gives more information to
6406 backends. */
6407 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6408 temp = temp1;
6410 pos_rtx = temp;
6412 else if (pos_rtx != 0
6413 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6414 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6416 /* Make POS_RTX unless we already have it and it is correct. If we don't
6417 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6418 be a CONST_INT. */
6419 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6420 pos_rtx = orig_pos_rtx;
6422 else if (pos_rtx == 0)
6423 pos_rtx = GEN_INT (pos);
6425 /* Make the required operation. See if we can use existing rtx. */
6426 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6427 extraction_mode, inner, GEN_INT (len), pos_rtx);
6428 if (! in_dest)
6429 new = gen_lowpart_for_combine (mode, new);
6431 return new;
6434 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6435 with any other operations in X. Return X without that shift if so. */
6437 static rtx
6438 extract_left_shift (x, count)
6439 rtx x;
6440 int count;
6442 enum rtx_code code = GET_CODE (x);
6443 enum machine_mode mode = GET_MODE (x);
6444 rtx tem;
6446 switch (code)
6448 case ASHIFT:
6449 /* This is the shift itself. If it is wide enough, we will return
6450 either the value being shifted if the shift count is equal to
6451 COUNT or a shift for the difference. */
6452 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6453 && INTVAL (XEXP (x, 1)) >= count)
6454 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6455 INTVAL (XEXP (x, 1)) - count);
6456 break;
6458 case NEG: case NOT:
6459 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6460 return simplify_gen_unary (code, mode, tem, mode);
6462 break;
6464 case PLUS: case IOR: case XOR: case AND:
6465 /* If we can safely shift this constant and we find the inner shift,
6466 make a new operation. */
6467 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6468 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6469 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6470 return gen_binary (code, mode, tem,
6471 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6473 break;
6475 default:
6476 break;
6479 return 0;
6482 /* Look at the expression rooted at X. Look for expressions
6483 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6484 Form these expressions.
6486 Return the new rtx, usually just X.
6488 Also, for machines like the VAX that don't have logical shift insns,
6489 try to convert logical to arithmetic shift operations in cases where
6490 they are equivalent. This undoes the canonicalizations to logical
6491 shifts done elsewhere.
6493 We try, as much as possible, to re-use rtl expressions to save memory.
6495 IN_CODE says what kind of expression we are processing. Normally, it is
6496 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6497 being kludges), it is MEM. When processing the arguments of a comparison
6498 or a COMPARE against zero, it is COMPARE. */
6500 static rtx
6501 make_compound_operation (x, in_code)
6502 rtx x;
6503 enum rtx_code in_code;
6505 enum rtx_code code = GET_CODE (x);
6506 enum machine_mode mode = GET_MODE (x);
6507 int mode_width = GET_MODE_BITSIZE (mode);
6508 rtx rhs, lhs;
6509 enum rtx_code next_code;
6510 int i;
6511 rtx new = 0;
6512 rtx tem;
6513 const char *fmt;
6515 /* Select the code to be used in recursive calls. Once we are inside an
6516 address, we stay there. If we have a comparison, set to COMPARE,
6517 but once inside, go back to our default of SET. */
6519 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6520 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6521 && XEXP (x, 1) == const0_rtx) ? COMPARE
6522 : in_code == COMPARE ? SET : in_code);
6524 /* Process depending on the code of this operation. If NEW is set
6525 nonzero, it will be returned. */
6527 switch (code)
6529 case ASHIFT:
6530 /* Convert shifts by constants into multiplications if inside
6531 an address. */
6532 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6533 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6534 && INTVAL (XEXP (x, 1)) >= 0)
6536 new = make_compound_operation (XEXP (x, 0), next_code);
6537 new = gen_rtx_MULT (mode, new,
6538 GEN_INT ((HOST_WIDE_INT) 1
6539 << INTVAL (XEXP (x, 1))));
6541 break;
6543 case AND:
6544 /* If the second operand is not a constant, we can't do anything
6545 with it. */
6546 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6547 break;
6549 /* If the constant is a power of two minus one and the first operand
6550 is a logical right shift, make an extraction. */
6551 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6552 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6554 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6555 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6556 0, in_code == COMPARE);
6559 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6560 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6561 && subreg_lowpart_p (XEXP (x, 0))
6562 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6563 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6565 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6566 next_code);
6567 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6568 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6569 0, in_code == COMPARE);
6571 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6572 else if ((GET_CODE (XEXP (x, 0)) == XOR
6573 || GET_CODE (XEXP (x, 0)) == IOR)
6574 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6575 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6576 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6578 /* Apply the distributive law, and then try to make extractions. */
6579 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6580 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6581 XEXP (x, 1)),
6582 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6583 XEXP (x, 1)));
6584 new = make_compound_operation (new, in_code);
6587 /* If we are have (and (rotate X C) M) and C is larger than the number
6588 of bits in M, this is an extraction. */
6590 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6591 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6592 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6593 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6595 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6596 new = make_extraction (mode, new,
6597 (GET_MODE_BITSIZE (mode)
6598 - INTVAL (XEXP (XEXP (x, 0), 1))),
6599 NULL_RTX, i, 1, 0, in_code == COMPARE);
6602 /* On machines without logical shifts, if the operand of the AND is
6603 a logical shift and our mask turns off all the propagated sign
6604 bits, we can replace the logical shift with an arithmetic shift. */
6605 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6606 && !have_insn_for (LSHIFTRT, mode)
6607 && have_insn_for (ASHIFTRT, mode)
6608 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6609 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6610 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6611 && mode_width <= HOST_BITS_PER_WIDE_INT)
6613 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6615 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6616 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6617 SUBST (XEXP (x, 0),
6618 gen_rtx_ASHIFTRT (mode,
6619 make_compound_operation
6620 (XEXP (XEXP (x, 0), 0), next_code),
6621 XEXP (XEXP (x, 0), 1)));
6624 /* If the constant is one less than a power of two, this might be
6625 representable by an extraction even if no shift is present.
6626 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6627 we are in a COMPARE. */
6628 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6629 new = make_extraction (mode,
6630 make_compound_operation (XEXP (x, 0),
6631 next_code),
6632 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6634 /* If we are in a comparison and this is an AND with a power of two,
6635 convert this into the appropriate bit extract. */
6636 else if (in_code == COMPARE
6637 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6638 new = make_extraction (mode,
6639 make_compound_operation (XEXP (x, 0),
6640 next_code),
6641 i, NULL_RTX, 1, 1, 0, 1);
6643 break;
6645 case LSHIFTRT:
6646 /* If the sign bit is known to be zero, replace this with an
6647 arithmetic shift. */
6648 if (have_insn_for (ASHIFTRT, mode)
6649 && ! have_insn_for (LSHIFTRT, mode)
6650 && mode_width <= HOST_BITS_PER_WIDE_INT
6651 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6653 new = gen_rtx_ASHIFTRT (mode,
6654 make_compound_operation (XEXP (x, 0),
6655 next_code),
6656 XEXP (x, 1));
6657 break;
6660 /* ... fall through ... */
6662 case ASHIFTRT:
6663 lhs = XEXP (x, 0);
6664 rhs = XEXP (x, 1);
6666 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6667 this is a SIGN_EXTRACT. */
6668 if (GET_CODE (rhs) == CONST_INT
6669 && GET_CODE (lhs) == ASHIFT
6670 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6671 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6673 new = make_compound_operation (XEXP (lhs, 0), next_code);
6674 new = make_extraction (mode, new,
6675 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6676 NULL_RTX, mode_width - INTVAL (rhs),
6677 code == LSHIFTRT, 0, in_code == COMPARE);
6678 break;
6681 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6682 If so, try to merge the shifts into a SIGN_EXTEND. We could
6683 also do this for some cases of SIGN_EXTRACT, but it doesn't
6684 seem worth the effort; the case checked for occurs on Alpha. */
6686 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6687 && ! (GET_CODE (lhs) == SUBREG
6688 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6689 && GET_CODE (rhs) == CONST_INT
6690 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6691 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6692 new = make_extraction (mode, make_compound_operation (new, next_code),
6693 0, NULL_RTX, mode_width - INTVAL (rhs),
6694 code == LSHIFTRT, 0, in_code == COMPARE);
6696 break;
6698 case SUBREG:
6699 /* Call ourselves recursively on the inner expression. If we are
6700 narrowing the object and it has a different RTL code from
6701 what it originally did, do this SUBREG as a force_to_mode. */
6703 tem = make_compound_operation (SUBREG_REG (x), in_code);
6704 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6705 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6706 && subreg_lowpart_p (x))
6708 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6709 NULL_RTX, 0);
6711 /* If we have something other than a SUBREG, we might have
6712 done an expansion, so rerun ourselves. */
6713 if (GET_CODE (newer) != SUBREG)
6714 newer = make_compound_operation (newer, in_code);
6716 return newer;
6719 /* If this is a paradoxical subreg, and the new code is a sign or
6720 zero extension, omit the subreg and widen the extension. If it
6721 is a regular subreg, we can still get rid of the subreg by not
6722 widening so much, or in fact removing the extension entirely. */
6723 if ((GET_CODE (tem) == SIGN_EXTEND
6724 || GET_CODE (tem) == ZERO_EXTEND)
6725 && subreg_lowpart_p (x))
6727 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6728 || (GET_MODE_SIZE (mode) >
6729 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6731 if (! SCALAR_INT_MODE_P (mode))
6732 break;
6733 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6735 else
6736 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6737 return tem;
6739 break;
6741 default:
6742 break;
6745 if (new)
6747 x = gen_lowpart_for_combine (mode, new);
6748 code = GET_CODE (x);
6751 /* Now recursively process each operand of this operation. */
6752 fmt = GET_RTX_FORMAT (code);
6753 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6754 if (fmt[i] == 'e')
6756 new = make_compound_operation (XEXP (x, i), next_code);
6757 SUBST (XEXP (x, i), new);
6760 return x;
6763 /* Given M see if it is a value that would select a field of bits
6764 within an item, but not the entire word. Return -1 if not.
6765 Otherwise, return the starting position of the field, where 0 is the
6766 low-order bit.
6768 *PLEN is set to the length of the field. */
6770 static int
6771 get_pos_from_mask (m, plen)
6772 unsigned HOST_WIDE_INT m;
6773 unsigned HOST_WIDE_INT *plen;
6775 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6776 int pos = exact_log2 (m & -m);
6777 int len;
6779 if (pos < 0)
6780 return -1;
6782 /* Now shift off the low-order zero bits and see if we have a power of
6783 two minus 1. */
6784 len = exact_log2 ((m >> pos) + 1);
6786 if (len <= 0)
6787 return -1;
6789 *plen = len;
6790 return pos;
6793 /* See if X can be simplified knowing that we will only refer to it in
6794 MODE and will only refer to those bits that are nonzero in MASK.
6795 If other bits are being computed or if masking operations are done
6796 that select a superset of the bits in MASK, they can sometimes be
6797 ignored.
6799 Return a possibly simplified expression, but always convert X to
6800 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6802 Also, if REG is nonzero and X is a register equal in value to REG,
6803 replace X with REG.
6805 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6806 are all off in X. This is used when X will be complemented, by either
6807 NOT, NEG, or XOR. */
6809 static rtx
6810 force_to_mode (x, mode, mask, reg, just_select)
6811 rtx x;
6812 enum machine_mode mode;
6813 unsigned HOST_WIDE_INT mask;
6814 rtx reg;
6815 int just_select;
6817 enum rtx_code code = GET_CODE (x);
6818 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6819 enum machine_mode op_mode;
6820 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6821 rtx op0, op1, temp;
6823 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6824 code below will do the wrong thing since the mode of such an
6825 expression is VOIDmode.
6827 Also do nothing if X is a CLOBBER; this can happen if X was
6828 the return value from a call to gen_lowpart_for_combine. */
6829 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6830 return x;
6832 /* We want to perform the operation is its present mode unless we know
6833 that the operation is valid in MODE, in which case we do the operation
6834 in MODE. */
6835 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6836 && have_insn_for (code, mode))
6837 ? mode : GET_MODE (x));
6839 /* It is not valid to do a right-shift in a narrower mode
6840 than the one it came in with. */
6841 if ((code == LSHIFTRT || code == ASHIFTRT)
6842 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6843 op_mode = GET_MODE (x);
6845 /* Truncate MASK to fit OP_MODE. */
6846 if (op_mode)
6847 mask &= GET_MODE_MASK (op_mode);
6849 /* When we have an arithmetic operation, or a shift whose count we
6850 do not know, we need to assume that all bit the up to the highest-order
6851 bit in MASK will be needed. This is how we form such a mask. */
6852 if (op_mode)
6853 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6854 ? GET_MODE_MASK (op_mode)
6855 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6856 - 1));
6857 else
6858 fuller_mask = ~(HOST_WIDE_INT) 0;
6860 /* Determine what bits of X are guaranteed to be (non)zero. */
6861 nonzero = nonzero_bits (x, mode);
6863 /* If none of the bits in X are needed, return a zero. */
6864 if (! just_select && (nonzero & mask) == 0)
6865 x = const0_rtx;
6867 /* If X is a CONST_INT, return a new one. Do this here since the
6868 test below will fail. */
6869 if (GET_CODE (x) == CONST_INT)
6871 if (SCALAR_INT_MODE_P (mode))
6872 return gen_int_mode (INTVAL (x) & mask, mode);
6873 else
6875 x = GEN_INT (INTVAL (x) & mask);
6876 return gen_lowpart_common (mode, x);
6880 /* If X is narrower than MODE and we want all the bits in X's mode, just
6881 get X in the proper mode. */
6882 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6883 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6884 return gen_lowpart_for_combine (mode, x);
6886 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6887 MASK are already known to be zero in X, we need not do anything. */
6888 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6889 return x;
6891 switch (code)
6893 case CLOBBER:
6894 /* If X is a (clobber (const_int)), return it since we know we are
6895 generating something that won't match. */
6896 return x;
6898 case USE:
6899 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6900 spanned the boundary of the MEM. If we are now masking so it is
6901 within that boundary, we don't need the USE any more. */
6902 if (! BITS_BIG_ENDIAN
6903 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6904 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6905 break;
6907 case SIGN_EXTEND:
6908 case ZERO_EXTEND:
6909 case ZERO_EXTRACT:
6910 case SIGN_EXTRACT:
6911 x = expand_compound_operation (x);
6912 if (GET_CODE (x) != code)
6913 return force_to_mode (x, mode, mask, reg, next_select);
6914 break;
6916 case REG:
6917 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6918 || rtx_equal_p (reg, get_last_value (x))))
6919 x = reg;
6920 break;
6922 case SUBREG:
6923 if (subreg_lowpart_p (x)
6924 /* We can ignore the effect of this SUBREG if it narrows the mode or
6925 if the constant masks to zero all the bits the mode doesn't
6926 have. */
6927 && ((GET_MODE_SIZE (GET_MODE (x))
6928 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6929 || (0 == (mask
6930 & GET_MODE_MASK (GET_MODE (x))
6931 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6932 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6933 break;
6935 case AND:
6936 /* If this is an AND with a constant, convert it into an AND
6937 whose constant is the AND of that constant with MASK. If it
6938 remains an AND of MASK, delete it since it is redundant. */
6940 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6942 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6943 mask & INTVAL (XEXP (x, 1)));
6945 /* If X is still an AND, see if it is an AND with a mask that
6946 is just some low-order bits. If so, and it is MASK, we don't
6947 need it. */
6949 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6950 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6951 == mask))
6952 x = XEXP (x, 0);
6954 /* If it remains an AND, try making another AND with the bits
6955 in the mode mask that aren't in MASK turned on. If the
6956 constant in the AND is wide enough, this might make a
6957 cheaper constant. */
6959 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6960 && GET_MODE_MASK (GET_MODE (x)) != mask
6961 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6963 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6964 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6965 int width = GET_MODE_BITSIZE (GET_MODE (x));
6966 rtx y;
6968 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6969 number, sign extend it. */
6970 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6971 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6972 cval |= (HOST_WIDE_INT) -1 << width;
6974 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6975 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6976 x = y;
6979 break;
6982 goto binop;
6984 case PLUS:
6985 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6986 low-order bits (as in an alignment operation) and FOO is already
6987 aligned to that boundary, mask C1 to that boundary as well.
6988 This may eliminate that PLUS and, later, the AND. */
6991 unsigned int width = GET_MODE_BITSIZE (mode);
6992 unsigned HOST_WIDE_INT smask = mask;
6994 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6995 number, sign extend it. */
6997 if (width < HOST_BITS_PER_WIDE_INT
6998 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6999 smask |= (HOST_WIDE_INT) -1 << width;
7001 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7002 && exact_log2 (- smask) >= 0
7003 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7004 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7005 return force_to_mode (plus_constant (XEXP (x, 0),
7006 (INTVAL (XEXP (x, 1)) & smask)),
7007 mode, smask, reg, next_select);
7010 /* ... fall through ... */
7012 case MULT:
7013 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7014 most significant bit in MASK since carries from those bits will
7015 affect the bits we are interested in. */
7016 mask = fuller_mask;
7017 goto binop;
7019 case MINUS:
7020 /* If X is (minus C Y) where C's least set bit is larger than any bit
7021 in the mask, then we may replace with (neg Y). */
7022 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7023 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7024 & -INTVAL (XEXP (x, 0))))
7025 > mask))
7027 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7028 GET_MODE (x));
7029 return force_to_mode (x, mode, mask, reg, next_select);
7032 /* Similarly, if C contains every bit in the fuller_mask, then we may
7033 replace with (not Y). */
7034 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7035 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7036 == INTVAL (XEXP (x, 0))))
7038 x = simplify_gen_unary (NOT, GET_MODE (x),
7039 XEXP (x, 1), GET_MODE (x));
7040 return force_to_mode (x, mode, mask, reg, next_select);
7043 mask = fuller_mask;
7044 goto binop;
7046 case IOR:
7047 case XOR:
7048 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7049 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7050 operation which may be a bitfield extraction. Ensure that the
7051 constant we form is not wider than the mode of X. */
7053 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7054 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7055 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7056 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7057 && GET_CODE (XEXP (x, 1)) == CONST_INT
7058 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7059 + floor_log2 (INTVAL (XEXP (x, 1))))
7060 < GET_MODE_BITSIZE (GET_MODE (x)))
7061 && (INTVAL (XEXP (x, 1))
7062 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7064 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7065 << INTVAL (XEXP (XEXP (x, 0), 1)));
7066 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7067 XEXP (XEXP (x, 0), 0), temp);
7068 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7069 XEXP (XEXP (x, 0), 1));
7070 return force_to_mode (x, mode, mask, reg, next_select);
7073 binop:
7074 /* For most binary operations, just propagate into the operation and
7075 change the mode if we have an operation of that mode. */
7077 op0 = gen_lowpart_for_combine (op_mode,
7078 force_to_mode (XEXP (x, 0), mode, mask,
7079 reg, next_select));
7080 op1 = gen_lowpart_for_combine (op_mode,
7081 force_to_mode (XEXP (x, 1), mode, mask,
7082 reg, next_select));
7084 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7085 x = gen_binary (code, op_mode, op0, op1);
7086 break;
7088 case ASHIFT:
7089 /* For left shifts, do the same, but just for the first operand.
7090 However, we cannot do anything with shifts where we cannot
7091 guarantee that the counts are smaller than the size of the mode
7092 because such a count will have a different meaning in a
7093 wider mode. */
7095 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7096 && INTVAL (XEXP (x, 1)) >= 0
7097 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7098 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7099 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7100 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7101 break;
7103 /* If the shift count is a constant and we can do arithmetic in
7104 the mode of the shift, refine which bits we need. Otherwise, use the
7105 conservative form of the mask. */
7106 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7107 && INTVAL (XEXP (x, 1)) >= 0
7108 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7109 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7110 mask >>= INTVAL (XEXP (x, 1));
7111 else
7112 mask = fuller_mask;
7114 op0 = gen_lowpart_for_combine (op_mode,
7115 force_to_mode (XEXP (x, 0), op_mode,
7116 mask, reg, next_select));
7118 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7119 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7120 break;
7122 case LSHIFTRT:
7123 /* Here we can only do something if the shift count is a constant,
7124 this shift constant is valid for the host, and we can do arithmetic
7125 in OP_MODE. */
7127 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7128 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7129 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7131 rtx inner = XEXP (x, 0);
7132 unsigned HOST_WIDE_INT inner_mask;
7134 /* Select the mask of the bits we need for the shift operand. */
7135 inner_mask = mask << INTVAL (XEXP (x, 1));
7137 /* We can only change the mode of the shift if we can do arithmetic
7138 in the mode of the shift and INNER_MASK is no wider than the
7139 width of OP_MODE. */
7140 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7141 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7142 op_mode = GET_MODE (x);
7144 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7146 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7147 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7150 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7151 shift and AND produces only copies of the sign bit (C2 is one less
7152 than a power of two), we can do this with just a shift. */
7154 if (GET_CODE (x) == LSHIFTRT
7155 && GET_CODE (XEXP (x, 1)) == CONST_INT
7156 /* The shift puts one of the sign bit copies in the least significant
7157 bit. */
7158 && ((INTVAL (XEXP (x, 1))
7159 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7160 >= GET_MODE_BITSIZE (GET_MODE (x)))
7161 && exact_log2 (mask + 1) >= 0
7162 /* Number of bits left after the shift must be more than the mask
7163 needs. */
7164 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7165 <= GET_MODE_BITSIZE (GET_MODE (x)))
7166 /* Must be more sign bit copies than the mask needs. */
7167 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7168 >= exact_log2 (mask + 1)))
7169 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7170 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7171 - exact_log2 (mask + 1)));
7173 goto shiftrt;
7175 case ASHIFTRT:
7176 /* If we are just looking for the sign bit, we don't need this shift at
7177 all, even if it has a variable count. */
7178 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7179 && (mask == ((unsigned HOST_WIDE_INT) 1
7180 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7181 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7183 /* If this is a shift by a constant, get a mask that contains those bits
7184 that are not copies of the sign bit. We then have two cases: If
7185 MASK only includes those bits, this can be a logical shift, which may
7186 allow simplifications. If MASK is a single-bit field not within
7187 those bits, we are requesting a copy of the sign bit and hence can
7188 shift the sign bit to the appropriate location. */
7190 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7191 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7193 int i = -1;
7195 /* If the considered data is wider than HOST_WIDE_INT, we can't
7196 represent a mask for all its bits in a single scalar.
7197 But we only care about the lower bits, so calculate these. */
7199 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7201 nonzero = ~(HOST_WIDE_INT) 0;
7203 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7204 is the number of bits a full-width mask would have set.
7205 We need only shift if these are fewer than nonzero can
7206 hold. If not, we must keep all bits set in nonzero. */
7208 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7209 < HOST_BITS_PER_WIDE_INT)
7210 nonzero >>= INTVAL (XEXP (x, 1))
7211 + HOST_BITS_PER_WIDE_INT
7212 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7214 else
7216 nonzero = GET_MODE_MASK (GET_MODE (x));
7217 nonzero >>= INTVAL (XEXP (x, 1));
7220 if ((mask & ~nonzero) == 0
7221 || (i = exact_log2 (mask)) >= 0)
7223 x = simplify_shift_const
7224 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7225 i < 0 ? INTVAL (XEXP (x, 1))
7226 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7228 if (GET_CODE (x) != ASHIFTRT)
7229 return force_to_mode (x, mode, mask, reg, next_select);
7233 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7234 even if the shift count isn't a constant. */
7235 if (mask == 1)
7236 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7238 shiftrt:
7240 /* If this is a zero- or sign-extension operation that just affects bits
7241 we don't care about, remove it. Be sure the call above returned
7242 something that is still a shift. */
7244 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7245 && GET_CODE (XEXP (x, 1)) == CONST_INT
7246 && INTVAL (XEXP (x, 1)) >= 0
7247 && (INTVAL (XEXP (x, 1))
7248 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7249 && GET_CODE (XEXP (x, 0)) == ASHIFT
7250 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7251 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7252 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7253 reg, next_select);
7255 break;
7257 case ROTATE:
7258 case ROTATERT:
7259 /* If the shift count is constant and we can do computations
7260 in the mode of X, compute where the bits we care about are.
7261 Otherwise, we can't do anything. Don't change the mode of
7262 the shift or propagate MODE into the shift, though. */
7263 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7264 && INTVAL (XEXP (x, 1)) >= 0)
7266 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7267 GET_MODE (x), GEN_INT (mask),
7268 XEXP (x, 1));
7269 if (temp && GET_CODE (temp) == CONST_INT)
7270 SUBST (XEXP (x, 0),
7271 force_to_mode (XEXP (x, 0), GET_MODE (x),
7272 INTVAL (temp), reg, next_select));
7274 break;
7276 case NEG:
7277 /* If we just want the low-order bit, the NEG isn't needed since it
7278 won't change the low-order bit. */
7279 if (mask == 1)
7280 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7282 /* We need any bits less significant than the most significant bit in
7283 MASK since carries from those bits will affect the bits we are
7284 interested in. */
7285 mask = fuller_mask;
7286 goto unop;
7288 case NOT:
7289 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7290 same as the XOR case above. Ensure that the constant we form is not
7291 wider than the mode of X. */
7293 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7294 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7295 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7296 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7297 < GET_MODE_BITSIZE (GET_MODE (x)))
7298 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7300 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7301 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7302 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7304 return force_to_mode (x, mode, mask, reg, next_select);
7307 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7308 use the full mask inside the NOT. */
7309 mask = fuller_mask;
7311 unop:
7312 op0 = gen_lowpart_for_combine (op_mode,
7313 force_to_mode (XEXP (x, 0), mode, mask,
7314 reg, next_select));
7315 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7316 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7317 break;
7319 case NE:
7320 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7321 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7322 which is equal to STORE_FLAG_VALUE. */
7323 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7324 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7325 && (nonzero_bits (XEXP (x, 0), mode)
7326 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7327 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7329 break;
7331 case IF_THEN_ELSE:
7332 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7333 written in a narrower mode. We play it safe and do not do so. */
7335 SUBST (XEXP (x, 1),
7336 gen_lowpart_for_combine (GET_MODE (x),
7337 force_to_mode (XEXP (x, 1), mode,
7338 mask, reg, next_select)));
7339 SUBST (XEXP (x, 2),
7340 gen_lowpart_for_combine (GET_MODE (x),
7341 force_to_mode (XEXP (x, 2), mode,
7342 mask, reg, next_select)));
7343 break;
7345 default:
7346 break;
7349 /* Ensure we return a value of the proper mode. */
7350 return gen_lowpart_for_combine (mode, x);
7353 /* Return nonzero if X is an expression that has one of two values depending on
7354 whether some other value is zero or nonzero. In that case, we return the
7355 value that is being tested, *PTRUE is set to the value if the rtx being
7356 returned has a nonzero value, and *PFALSE is set to the other alternative.
7358 If we return zero, we set *PTRUE and *PFALSE to X. */
7360 static rtx
7361 if_then_else_cond (x, ptrue, pfalse)
7362 rtx x;
7363 rtx *ptrue, *pfalse;
7365 enum machine_mode mode = GET_MODE (x);
7366 enum rtx_code code = GET_CODE (x);
7367 rtx cond0, cond1, true0, true1, false0, false1;
7368 unsigned HOST_WIDE_INT nz;
7370 /* If we are comparing a value against zero, we are done. */
7371 if ((code == NE || code == EQ)
7372 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7374 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7375 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7376 return XEXP (x, 0);
7379 /* If this is a unary operation whose operand has one of two values, apply
7380 our opcode to compute those values. */
7381 else if (GET_RTX_CLASS (code) == '1'
7382 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7384 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7385 *pfalse = simplify_gen_unary (code, mode, false0,
7386 GET_MODE (XEXP (x, 0)));
7387 return cond0;
7390 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7391 make can't possibly match and would suppress other optimizations. */
7392 else if (code == COMPARE)
7395 /* If this is a binary operation, see if either side has only one of two
7396 values. If either one does or if both do and they are conditional on
7397 the same value, compute the new true and false values. */
7398 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7399 || GET_RTX_CLASS (code) == '<')
7401 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7402 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7404 if ((cond0 != 0 || cond1 != 0)
7405 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7407 /* If if_then_else_cond returned zero, then true/false are the
7408 same rtl. We must copy one of them to prevent invalid rtl
7409 sharing. */
7410 if (cond0 == 0)
7411 true0 = copy_rtx (true0);
7412 else if (cond1 == 0)
7413 true1 = copy_rtx (true1);
7415 *ptrue = gen_binary (code, mode, true0, true1);
7416 *pfalse = gen_binary (code, mode, false0, false1);
7417 return cond0 ? cond0 : cond1;
7420 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7421 operands is zero when the other is nonzero, and vice-versa,
7422 and STORE_FLAG_VALUE is 1 or -1. */
7424 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7425 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7426 || code == UMAX)
7427 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7429 rtx op0 = XEXP (XEXP (x, 0), 1);
7430 rtx op1 = XEXP (XEXP (x, 1), 1);
7432 cond0 = XEXP (XEXP (x, 0), 0);
7433 cond1 = XEXP (XEXP (x, 1), 0);
7435 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7436 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7437 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7438 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7439 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7440 || ((swap_condition (GET_CODE (cond0))
7441 == combine_reversed_comparison_code (cond1))
7442 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7443 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7444 && ! side_effects_p (x))
7446 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7447 *pfalse = gen_binary (MULT, mode,
7448 (code == MINUS
7449 ? simplify_gen_unary (NEG, mode, op1,
7450 mode)
7451 : op1),
7452 const_true_rtx);
7453 return cond0;
7457 /* Similarly for MULT, AND and UMIN, except that for these the result
7458 is always zero. */
7459 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7460 && (code == MULT || code == AND || code == UMIN)
7461 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7463 cond0 = XEXP (XEXP (x, 0), 0);
7464 cond1 = XEXP (XEXP (x, 1), 0);
7466 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7467 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7468 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7469 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7470 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7471 || ((swap_condition (GET_CODE (cond0))
7472 == combine_reversed_comparison_code (cond1))
7473 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7474 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7475 && ! side_effects_p (x))
7477 *ptrue = *pfalse = const0_rtx;
7478 return cond0;
7483 else if (code == IF_THEN_ELSE)
7485 /* If we have IF_THEN_ELSE already, extract the condition and
7486 canonicalize it if it is NE or EQ. */
7487 cond0 = XEXP (x, 0);
7488 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7489 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7490 return XEXP (cond0, 0);
7491 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7493 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7494 return XEXP (cond0, 0);
7496 else
7497 return cond0;
7500 /* If X is a SUBREG, we can narrow both the true and false values
7501 if the inner expression, if there is a condition. */
7502 else if (code == SUBREG
7503 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7504 &true0, &false0)))
7506 *ptrue = simplify_gen_subreg (mode, true0,
7507 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7508 *pfalse = simplify_gen_subreg (mode, false0,
7509 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7511 return cond0;
7514 /* If X is a constant, this isn't special and will cause confusions
7515 if we treat it as such. Likewise if it is equivalent to a constant. */
7516 else if (CONSTANT_P (x)
7517 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7520 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7521 will be least confusing to the rest of the compiler. */
7522 else if (mode == BImode)
7524 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7525 return x;
7528 /* If X is known to be either 0 or -1, those are the true and
7529 false values when testing X. */
7530 else if (x == constm1_rtx || x == const0_rtx
7531 || (mode != VOIDmode
7532 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7534 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7535 return x;
7538 /* Likewise for 0 or a single bit. */
7539 else if (mode != VOIDmode
7540 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7541 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7543 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7544 return x;
7547 /* Otherwise fail; show no condition with true and false values the same. */
7548 *ptrue = *pfalse = x;
7549 return 0;
7552 /* Return the value of expression X given the fact that condition COND
7553 is known to be true when applied to REG as its first operand and VAL
7554 as its second. X is known to not be shared and so can be modified in
7555 place.
7557 We only handle the simplest cases, and specifically those cases that
7558 arise with IF_THEN_ELSE expressions. */
7560 static rtx
7561 known_cond (x, cond, reg, val)
7562 rtx x;
7563 enum rtx_code cond;
7564 rtx reg, val;
7566 enum rtx_code code = GET_CODE (x);
7567 rtx temp;
7568 const char *fmt;
7569 int i, j;
7571 if (side_effects_p (x))
7572 return x;
7574 /* If either operand of the condition is a floating point value,
7575 then we have to avoid collapsing an EQ comparison. */
7576 if (cond == EQ
7577 && rtx_equal_p (x, reg)
7578 && ! FLOAT_MODE_P (GET_MODE (x))
7579 && ! FLOAT_MODE_P (GET_MODE (val)))
7580 return val;
7582 if (cond == UNEQ && rtx_equal_p (x, reg))
7583 return val;
7585 /* If X is (abs REG) and we know something about REG's relationship
7586 with zero, we may be able to simplify this. */
7588 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7589 switch (cond)
7591 case GE: case GT: case EQ:
7592 return XEXP (x, 0);
7593 case LT: case LE:
7594 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7595 XEXP (x, 0),
7596 GET_MODE (XEXP (x, 0)));
7597 default:
7598 break;
7601 /* The only other cases we handle are MIN, MAX, and comparisons if the
7602 operands are the same as REG and VAL. */
7604 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7606 if (rtx_equal_p (XEXP (x, 0), val))
7607 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7609 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7611 if (GET_RTX_CLASS (code) == '<')
7613 if (comparison_dominates_p (cond, code))
7614 return const_true_rtx;
7616 code = combine_reversed_comparison_code (x);
7617 if (code != UNKNOWN
7618 && comparison_dominates_p (cond, code))
7619 return const0_rtx;
7620 else
7621 return x;
7623 else if (code == SMAX || code == SMIN
7624 || code == UMIN || code == UMAX)
7626 int unsignedp = (code == UMIN || code == UMAX);
7628 /* Do not reverse the condition when it is NE or EQ.
7629 This is because we cannot conclude anything about
7630 the value of 'SMAX (x, y)' when x is not equal to y,
7631 but we can when x equals y. */
7632 if ((code == SMAX || code == UMAX)
7633 && ! (cond == EQ || cond == NE))
7634 cond = reverse_condition (cond);
7636 switch (cond)
7638 case GE: case GT:
7639 return unsignedp ? x : XEXP (x, 1);
7640 case LE: case LT:
7641 return unsignedp ? x : XEXP (x, 0);
7642 case GEU: case GTU:
7643 return unsignedp ? XEXP (x, 1) : x;
7644 case LEU: case LTU:
7645 return unsignedp ? XEXP (x, 0) : x;
7646 default:
7647 break;
7652 else if (code == SUBREG)
7654 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7655 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7657 if (SUBREG_REG (x) != r)
7659 /* We must simplify subreg here, before we lose track of the
7660 original inner_mode. */
7661 new = simplify_subreg (GET_MODE (x), r,
7662 inner_mode, SUBREG_BYTE (x));
7663 if (new)
7664 return new;
7665 else
7666 SUBST (SUBREG_REG (x), r);
7669 return x;
7671 /* We don't have to handle SIGN_EXTEND here, because even in the
7672 case of replacing something with a modeless CONST_INT, a
7673 CONST_INT is already (supposed to be) a valid sign extension for
7674 its narrower mode, which implies it's already properly
7675 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7676 story is different. */
7677 else if (code == ZERO_EXTEND)
7679 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7680 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7682 if (XEXP (x, 0) != r)
7684 /* We must simplify the zero_extend here, before we lose
7685 track of the original inner_mode. */
7686 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7687 r, inner_mode);
7688 if (new)
7689 return new;
7690 else
7691 SUBST (XEXP (x, 0), r);
7694 return x;
7697 fmt = GET_RTX_FORMAT (code);
7698 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7700 if (fmt[i] == 'e')
7701 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7702 else if (fmt[i] == 'E')
7703 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7704 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7705 cond, reg, val));
7708 return x;
7711 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7712 assignment as a field assignment. */
7714 static int
7715 rtx_equal_for_field_assignment_p (x, y)
7716 rtx x;
7717 rtx y;
7719 if (x == y || rtx_equal_p (x, y))
7720 return 1;
7722 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7723 return 0;
7725 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7726 Note that all SUBREGs of MEM are paradoxical; otherwise they
7727 would have been rewritten. */
7728 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7729 && GET_CODE (SUBREG_REG (y)) == MEM
7730 && rtx_equal_p (SUBREG_REG (y),
7731 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7732 return 1;
7734 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7735 && GET_CODE (SUBREG_REG (x)) == MEM
7736 && rtx_equal_p (SUBREG_REG (x),
7737 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7738 return 1;
7740 /* We used to see if get_last_value of X and Y were the same but that's
7741 not correct. In one direction, we'll cause the assignment to have
7742 the wrong destination and in the case, we'll import a register into this
7743 insn that might have already have been dead. So fail if none of the
7744 above cases are true. */
7745 return 0;
7748 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7749 Return that assignment if so.
7751 We only handle the most common cases. */
7753 static rtx
7754 make_field_assignment (x)
7755 rtx x;
7757 rtx dest = SET_DEST (x);
7758 rtx src = SET_SRC (x);
7759 rtx assign;
7760 rtx rhs, lhs;
7761 HOST_WIDE_INT c1;
7762 HOST_WIDE_INT pos;
7763 unsigned HOST_WIDE_INT len;
7764 rtx other;
7765 enum machine_mode mode;
7767 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7768 a clear of a one-bit field. We will have changed it to
7769 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7770 for a SUBREG. */
7772 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7773 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7774 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7775 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7777 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7778 1, 1, 1, 0);
7779 if (assign != 0)
7780 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7781 return x;
7784 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7785 && subreg_lowpart_p (XEXP (src, 0))
7786 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7787 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7788 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7789 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7790 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7792 assign = make_extraction (VOIDmode, dest, 0,
7793 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7794 1, 1, 1, 0);
7795 if (assign != 0)
7796 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7797 return x;
7800 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7801 one-bit field. */
7802 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7803 && XEXP (XEXP (src, 0), 0) == const1_rtx
7804 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7806 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7807 1, 1, 1, 0);
7808 if (assign != 0)
7809 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7810 return x;
7813 /* The other case we handle is assignments into a constant-position
7814 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7815 a mask that has all one bits except for a group of zero bits and
7816 OTHER is known to have zeros where C1 has ones, this is such an
7817 assignment. Compute the position and length from C1. Shift OTHER
7818 to the appropriate position, force it to the required mode, and
7819 make the extraction. Check for the AND in both operands. */
7821 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7822 return x;
7824 rhs = expand_compound_operation (XEXP (src, 0));
7825 lhs = expand_compound_operation (XEXP (src, 1));
7827 if (GET_CODE (rhs) == AND
7828 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7829 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7830 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7831 else if (GET_CODE (lhs) == AND
7832 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7833 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7834 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7835 else
7836 return x;
7838 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7839 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7840 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7841 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7842 return x;
7844 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7845 if (assign == 0)
7846 return x;
7848 /* The mode to use for the source is the mode of the assignment, or of
7849 what is inside a possible STRICT_LOW_PART. */
7850 mode = (GET_CODE (assign) == STRICT_LOW_PART
7851 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7853 /* Shift OTHER right POS places and make it the source, restricting it
7854 to the proper length and mode. */
7856 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7857 GET_MODE (src), other, pos),
7858 mode,
7859 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7860 ? ~(unsigned HOST_WIDE_INT) 0
7861 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7862 dest, 0);
7864 return gen_rtx_SET (VOIDmode, assign, src);
7867 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7868 if so. */
7870 static rtx
7871 apply_distributive_law (x)
7872 rtx x;
7874 enum rtx_code code = GET_CODE (x);
7875 rtx lhs, rhs, other;
7876 rtx tem;
7877 enum rtx_code inner_code;
7879 /* Distributivity is not true for floating point.
7880 It can change the value. So don't do it.
7881 -- rms and moshier@world.std.com. */
7882 if (FLOAT_MODE_P (GET_MODE (x)))
7883 return x;
7885 /* The outer operation can only be one of the following: */
7886 if (code != IOR && code != AND && code != XOR
7887 && code != PLUS && code != MINUS)
7888 return x;
7890 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7892 /* If either operand is a primitive we can't do anything, so get out
7893 fast. */
7894 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7895 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7896 return x;
7898 lhs = expand_compound_operation (lhs);
7899 rhs = expand_compound_operation (rhs);
7900 inner_code = GET_CODE (lhs);
7901 if (inner_code != GET_CODE (rhs))
7902 return x;
7904 /* See if the inner and outer operations distribute. */
7905 switch (inner_code)
7907 case LSHIFTRT:
7908 case ASHIFTRT:
7909 case AND:
7910 case IOR:
7911 /* These all distribute except over PLUS. */
7912 if (code == PLUS || code == MINUS)
7913 return x;
7914 break;
7916 case MULT:
7917 if (code != PLUS && code != MINUS)
7918 return x;
7919 break;
7921 case ASHIFT:
7922 /* This is also a multiply, so it distributes over everything. */
7923 break;
7925 case SUBREG:
7926 /* Non-paradoxical SUBREGs distributes over all operations, provided
7927 the inner modes and byte offsets are the same, this is an extraction
7928 of a low-order part, we don't convert an fp operation to int or
7929 vice versa, and we would not be converting a single-word
7930 operation into a multi-word operation. The latter test is not
7931 required, but it prevents generating unneeded multi-word operations.
7932 Some of the previous tests are redundant given the latter test, but
7933 are retained because they are required for correctness.
7935 We produce the result slightly differently in this case. */
7937 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7938 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7939 || ! subreg_lowpart_p (lhs)
7940 || (GET_MODE_CLASS (GET_MODE (lhs))
7941 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7942 || (GET_MODE_SIZE (GET_MODE (lhs))
7943 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7944 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7945 return x;
7947 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7948 SUBREG_REG (lhs), SUBREG_REG (rhs));
7949 return gen_lowpart_for_combine (GET_MODE (x), tem);
7951 default:
7952 return x;
7955 /* Set LHS and RHS to the inner operands (A and B in the example
7956 above) and set OTHER to the common operand (C in the example).
7957 These is only one way to do this unless the inner operation is
7958 commutative. */
7959 if (GET_RTX_CLASS (inner_code) == 'c'
7960 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7961 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7962 else if (GET_RTX_CLASS (inner_code) == 'c'
7963 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7964 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7965 else if (GET_RTX_CLASS (inner_code) == 'c'
7966 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7967 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7968 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7969 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7970 else
7971 return x;
7973 /* Form the new inner operation, seeing if it simplifies first. */
7974 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7976 /* There is one exception to the general way of distributing:
7977 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7978 if (code == XOR && inner_code == IOR)
7980 inner_code = AND;
7981 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7984 /* We may be able to continuing distributing the result, so call
7985 ourselves recursively on the inner operation before forming the
7986 outer operation, which we return. */
7987 return gen_binary (inner_code, GET_MODE (x),
7988 apply_distributive_law (tem), other);
7991 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7992 in MODE.
7994 Return an equivalent form, if different from X. Otherwise, return X. If
7995 X is zero, we are to always construct the equivalent form. */
7997 static rtx
7998 simplify_and_const_int (x, mode, varop, constop)
7999 rtx x;
8000 enum machine_mode mode;
8001 rtx varop;
8002 unsigned HOST_WIDE_INT constop;
8004 unsigned HOST_WIDE_INT nonzero;
8005 int i;
8007 /* Simplify VAROP knowing that we will be only looking at some of the
8008 bits in it.
8010 Note by passing in CONSTOP, we guarantee that the bits not set in
8011 CONSTOP are not significant and will never be examined. We must
8012 ensure that is the case by explicitly masking out those bits
8013 before returning. */
8014 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8016 /* If VAROP is a CLOBBER, we will fail so return it. */
8017 if (GET_CODE (varop) == CLOBBER)
8018 return varop;
8020 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8021 to VAROP and return the new constant. */
8022 if (GET_CODE (varop) == CONST_INT)
8023 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8025 /* See what bits may be nonzero in VAROP. Unlike the general case of
8026 a call to nonzero_bits, here we don't care about bits outside
8027 MODE. */
8029 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8031 /* Turn off all bits in the constant that are known to already be zero.
8032 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8033 which is tested below. */
8035 constop &= nonzero;
8037 /* If we don't have any bits left, return zero. */
8038 if (constop == 0)
8039 return const0_rtx;
8041 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8042 a power of two, we can replace this with an ASHIFT. */
8043 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8044 && (i = exact_log2 (constop)) >= 0)
8045 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8047 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8048 or XOR, then try to apply the distributive law. This may eliminate
8049 operations if either branch can be simplified because of the AND.
8050 It may also make some cases more complex, but those cases probably
8051 won't match a pattern either with or without this. */
8053 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8054 return
8055 gen_lowpart_for_combine
8056 (mode,
8057 apply_distributive_law
8058 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8059 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8060 XEXP (varop, 0), constop),
8061 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8062 XEXP (varop, 1), constop))));
8064 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8065 the AND and see if one of the operands simplifies to zero. If so, we
8066 may eliminate it. */
8068 if (GET_CODE (varop) == PLUS
8069 && exact_log2 (constop + 1) >= 0)
8071 rtx o0, o1;
8073 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8074 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8075 if (o0 == const0_rtx)
8076 return o1;
8077 if (o1 == const0_rtx)
8078 return o0;
8081 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8082 if we already had one (just check for the simplest cases). */
8083 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8084 && GET_MODE (XEXP (x, 0)) == mode
8085 && SUBREG_REG (XEXP (x, 0)) == varop)
8086 varop = XEXP (x, 0);
8087 else
8088 varop = gen_lowpart_for_combine (mode, varop);
8090 /* If we can't make the SUBREG, try to return what we were given. */
8091 if (GET_CODE (varop) == CLOBBER)
8092 return x ? x : varop;
8094 /* If we are only masking insignificant bits, return VAROP. */
8095 if (constop == nonzero)
8096 x = varop;
8097 else
8099 /* Otherwise, return an AND. */
8100 constop = trunc_int_for_mode (constop, mode);
8101 /* See how much, if any, of X we can use. */
8102 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8103 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8105 else
8107 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8108 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8109 SUBST (XEXP (x, 1), GEN_INT (constop));
8111 SUBST (XEXP (x, 0), varop);
8115 return x;
8118 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8119 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8120 is less useful. We can't allow both, because that results in exponential
8121 run time recursion. There is a nullstone testcase that triggered
8122 this. This macro avoids accidental uses of num_sign_bit_copies. */
8123 #define num_sign_bit_copies()
8125 /* Given an expression, X, compute which bits in X can be nonzero.
8126 We don't care about bits outside of those defined in MODE.
8128 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8129 a shift, AND, or zero_extract, we can do better. */
8131 static unsigned HOST_WIDE_INT
8132 nonzero_bits (x, mode)
8133 rtx x;
8134 enum machine_mode mode;
8136 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8137 unsigned HOST_WIDE_INT inner_nz;
8138 enum rtx_code code;
8139 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8140 rtx tem;
8142 /* For floating-point values, assume all bits are needed. */
8143 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8144 return nonzero;
8146 /* If X is wider than MODE, use its mode instead. */
8147 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8149 mode = GET_MODE (x);
8150 nonzero = GET_MODE_MASK (mode);
8151 mode_width = GET_MODE_BITSIZE (mode);
8154 if (mode_width > HOST_BITS_PER_WIDE_INT)
8155 /* Our only callers in this case look for single bit values. So
8156 just return the mode mask. Those tests will then be false. */
8157 return nonzero;
8159 #ifndef WORD_REGISTER_OPERATIONS
8160 /* If MODE is wider than X, but both are a single word for both the host
8161 and target machines, we can compute this from which bits of the
8162 object might be nonzero in its own mode, taking into account the fact
8163 that on many CISC machines, accessing an object in a wider mode
8164 causes the high-order bits to become undefined. So they are
8165 not known to be zero. */
8167 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8168 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8169 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8170 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8172 nonzero &= nonzero_bits (x, GET_MODE (x));
8173 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8174 return nonzero;
8176 #endif
8178 code = GET_CODE (x);
8179 switch (code)
8181 case REG:
8182 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8183 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8184 all the bits above ptr_mode are known to be zero. */
8185 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8186 && REG_POINTER (x))
8187 nonzero &= GET_MODE_MASK (ptr_mode);
8188 #endif
8190 /* Include declared information about alignment of pointers. */
8191 /* ??? We don't properly preserve REG_POINTER changes across
8192 pointer-to-integer casts, so we can't trust it except for
8193 things that we know must be pointers. See execute/960116-1.c. */
8194 if ((x == stack_pointer_rtx
8195 || x == frame_pointer_rtx
8196 || x == arg_pointer_rtx)
8197 && REGNO_POINTER_ALIGN (REGNO (x)))
8199 unsigned HOST_WIDE_INT alignment
8200 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8202 #ifdef PUSH_ROUNDING
8203 /* If PUSH_ROUNDING is defined, it is possible for the
8204 stack to be momentarily aligned only to that amount,
8205 so we pick the least alignment. */
8206 if (x == stack_pointer_rtx && PUSH_ARGS)
8207 alignment = MIN (PUSH_ROUNDING (1), alignment);
8208 #endif
8210 nonzero &= ~(alignment - 1);
8213 /* If X is a register whose nonzero bits value is current, use it.
8214 Otherwise, if X is a register whose value we can find, use that
8215 value. Otherwise, use the previously-computed global nonzero bits
8216 for this register. */
8218 if (reg_last_set_value[REGNO (x)] != 0
8219 && (reg_last_set_mode[REGNO (x)] == mode
8220 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8221 && GET_MODE_CLASS (mode) == MODE_INT))
8222 && (reg_last_set_label[REGNO (x)] == label_tick
8223 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8224 && REG_N_SETS (REGNO (x)) == 1
8225 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8226 REGNO (x))))
8227 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8228 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8230 tem = get_last_value (x);
8232 if (tem)
8234 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8235 /* If X is narrower than MODE and TEM is a non-negative
8236 constant that would appear negative in the mode of X,
8237 sign-extend it for use in reg_nonzero_bits because some
8238 machines (maybe most) will actually do the sign-extension
8239 and this is the conservative approach.
8241 ??? For 2.5, try to tighten up the MD files in this regard
8242 instead of this kludge. */
8244 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8245 && GET_CODE (tem) == CONST_INT
8246 && INTVAL (tem) > 0
8247 && 0 != (INTVAL (tem)
8248 & ((HOST_WIDE_INT) 1
8249 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8250 tem = GEN_INT (INTVAL (tem)
8251 | ((HOST_WIDE_INT) (-1)
8252 << GET_MODE_BITSIZE (GET_MODE (x))));
8253 #endif
8254 return nonzero_bits (tem, mode) & nonzero;
8256 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8258 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8260 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8261 /* We don't know anything about the upper bits. */
8262 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8263 return nonzero & mask;
8265 else
8266 return nonzero;
8268 case CONST_INT:
8269 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8270 /* If X is negative in MODE, sign-extend the value. */
8271 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8272 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8273 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8274 #endif
8276 return INTVAL (x);
8278 case MEM:
8279 #ifdef LOAD_EXTEND_OP
8280 /* In many, if not most, RISC machines, reading a byte from memory
8281 zeros the rest of the register. Noticing that fact saves a lot
8282 of extra zero-extends. */
8283 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8284 nonzero &= GET_MODE_MASK (GET_MODE (x));
8285 #endif
8286 break;
8288 case EQ: case NE:
8289 case UNEQ: case LTGT:
8290 case GT: case GTU: case UNGT:
8291 case LT: case LTU: case UNLT:
8292 case GE: case GEU: case UNGE:
8293 case LE: case LEU: case UNLE:
8294 case UNORDERED: case ORDERED:
8296 /* If this produces an integer result, we know which bits are set.
8297 Code here used to clear bits outside the mode of X, but that is
8298 now done above. */
8300 if (GET_MODE_CLASS (mode) == MODE_INT
8301 && mode_width <= HOST_BITS_PER_WIDE_INT)
8302 nonzero = STORE_FLAG_VALUE;
8303 break;
8305 case NEG:
8306 #if 0
8307 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8308 and num_sign_bit_copies. */
8309 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8310 == GET_MODE_BITSIZE (GET_MODE (x)))
8311 nonzero = 1;
8312 #endif
8314 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8315 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8316 break;
8318 case ABS:
8319 #if 0
8320 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8321 and num_sign_bit_copies. */
8322 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8323 == GET_MODE_BITSIZE (GET_MODE (x)))
8324 nonzero = 1;
8325 #endif
8326 break;
8328 case TRUNCATE:
8329 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8330 break;
8332 case ZERO_EXTEND:
8333 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8334 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8335 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8336 break;
8338 case SIGN_EXTEND:
8339 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8340 Otherwise, show all the bits in the outer mode but not the inner
8341 may be nonzero. */
8342 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8343 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8345 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8346 if (inner_nz
8347 & (((HOST_WIDE_INT) 1
8348 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8349 inner_nz |= (GET_MODE_MASK (mode)
8350 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8353 nonzero &= inner_nz;
8354 break;
8356 case AND:
8357 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8358 & nonzero_bits (XEXP (x, 1), mode));
8359 break;
8361 case XOR: case IOR:
8362 case UMIN: case UMAX: case SMIN: case SMAX:
8364 unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8366 /* Don't call nonzero_bits for the second time if it cannot change
8367 anything. */
8368 if ((nonzero & nonzero0) != nonzero)
8369 nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8371 break;
8373 case PLUS: case MINUS:
8374 case MULT:
8375 case DIV: case UDIV:
8376 case MOD: case UMOD:
8377 /* We can apply the rules of arithmetic to compute the number of
8378 high- and low-order zero bits of these operations. We start by
8379 computing the width (position of the highest-order nonzero bit)
8380 and the number of low-order zero bits for each value. */
8382 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8383 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8384 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
8385 int width0 = floor_log2 (nz0) + 1;
8386 int width1 = floor_log2 (nz1) + 1;
8387 int low0 = floor_log2 (nz0 & -nz0);
8388 int low1 = floor_log2 (nz1 & -nz1);
8389 HOST_WIDE_INT op0_maybe_minusp
8390 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
8391 HOST_WIDE_INT op1_maybe_minusp
8392 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
8393 unsigned int result_width = mode_width;
8394 int result_low = 0;
8396 switch (code)
8398 case PLUS:
8399 result_width = MAX (width0, width1) + 1;
8400 result_low = MIN (low0, low1);
8401 break;
8402 case MINUS:
8403 result_low = MIN (low0, low1);
8404 break;
8405 case MULT:
8406 result_width = width0 + width1;
8407 result_low = low0 + low1;
8408 break;
8409 case DIV:
8410 if (width1 == 0)
8411 break;
8412 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8413 result_width = width0;
8414 break;
8415 case UDIV:
8416 if (width1 == 0)
8417 break;
8418 result_width = width0;
8419 break;
8420 case MOD:
8421 if (width1 == 0)
8422 break;
8423 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8424 result_width = MIN (width0, width1);
8425 result_low = MIN (low0, low1);
8426 break;
8427 case UMOD:
8428 if (width1 == 0)
8429 break;
8430 result_width = MIN (width0, width1);
8431 result_low = MIN (low0, low1);
8432 break;
8433 default:
8434 abort ();
8437 if (result_width < mode_width)
8438 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8440 if (result_low > 0)
8441 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8443 #ifdef POINTERS_EXTEND_UNSIGNED
8444 /* If pointers extend unsigned and this is an addition or subtraction
8445 to a pointer in Pmode, all the bits above ptr_mode are known to be
8446 zero. */
8447 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8448 && (code == PLUS || code == MINUS)
8449 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8450 nonzero &= GET_MODE_MASK (ptr_mode);
8451 #endif
8453 break;
8455 case ZERO_EXTRACT:
8456 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8457 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8458 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8459 break;
8461 case SUBREG:
8462 /* If this is a SUBREG formed for a promoted variable that has
8463 been zero-extended, we know that at least the high-order bits
8464 are zero, though others might be too. */
8466 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8467 nonzero = (GET_MODE_MASK (GET_MODE (x))
8468 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8470 /* If the inner mode is a single word for both the host and target
8471 machines, we can compute this from which bits of the inner
8472 object might be nonzero. */
8473 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8474 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8475 <= HOST_BITS_PER_WIDE_INT))
8477 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8479 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8480 /* If this is a typical RISC machine, we only have to worry
8481 about the way loads are extended. */
8482 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8483 ? (((nonzero
8484 & (((unsigned HOST_WIDE_INT) 1
8485 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8486 != 0))
8487 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8488 || GET_CODE (SUBREG_REG (x)) != MEM)
8489 #endif
8491 /* On many CISC machines, accessing an object in a wider mode
8492 causes the high-order bits to become undefined. So they are
8493 not known to be zero. */
8494 if (GET_MODE_SIZE (GET_MODE (x))
8495 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8496 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8497 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8500 break;
8502 case ASHIFTRT:
8503 case LSHIFTRT:
8504 case ASHIFT:
8505 case ROTATE:
8506 /* The nonzero bits are in two classes: any bits within MODE
8507 that aren't in GET_MODE (x) are always significant. The rest of the
8508 nonzero bits are those that are significant in the operand of
8509 the shift when shifted the appropriate number of bits. This
8510 shows that high-order bits are cleared by the right shift and
8511 low-order bits by left shifts. */
8512 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8513 && INTVAL (XEXP (x, 1)) >= 0
8514 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8516 enum machine_mode inner_mode = GET_MODE (x);
8517 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8518 int count = INTVAL (XEXP (x, 1));
8519 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8520 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8521 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8522 unsigned HOST_WIDE_INT outer = 0;
8524 if (mode_width > width)
8525 outer = (op_nonzero & nonzero & ~mode_mask);
8527 if (code == LSHIFTRT)
8528 inner >>= count;
8529 else if (code == ASHIFTRT)
8531 inner >>= count;
8533 /* If the sign bit may have been nonzero before the shift, we
8534 need to mark all the places it could have been copied to
8535 by the shift as possibly nonzero. */
8536 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8537 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8539 else if (code == ASHIFT)
8540 inner <<= count;
8541 else
8542 inner = ((inner << (count % width)
8543 | (inner >> (width - (count % width)))) & mode_mask);
8545 nonzero &= (outer | inner);
8547 break;
8549 case FFS:
8550 case CLZ:
8551 case CTZ:
8552 case POPCOUNT:
8553 /* This is at most the number of bits in the mode. */
8554 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8555 break;
8557 case PARITY:
8558 nonzero = 1;
8559 break;
8561 case IF_THEN_ELSE:
8562 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8563 | nonzero_bits (XEXP (x, 2), mode));
8564 break;
8566 default:
8567 break;
8570 return nonzero;
8573 /* See the macro definition above. */
8574 #undef num_sign_bit_copies
8576 /* Return the number of bits at the high-order end of X that are known to
8577 be equal to the sign bit. X will be used in mode MODE; if MODE is
8578 VOIDmode, X will be used in its own mode. The returned value will always
8579 be between 1 and the number of bits in MODE. */
8581 static unsigned int
8582 num_sign_bit_copies (x, mode)
8583 rtx x;
8584 enum machine_mode mode;
8586 enum rtx_code code = GET_CODE (x);
8587 unsigned int bitwidth;
8588 int num0, num1, result;
8589 unsigned HOST_WIDE_INT nonzero;
8590 rtx tem;
8592 /* If we weren't given a mode, use the mode of X. If the mode is still
8593 VOIDmode, we don't know anything. Likewise if one of the modes is
8594 floating-point. */
8596 if (mode == VOIDmode)
8597 mode = GET_MODE (x);
8599 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8600 return 1;
8602 bitwidth = GET_MODE_BITSIZE (mode);
8604 /* For a smaller object, just ignore the high bits. */
8605 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8607 num0 = num_sign_bit_copies (x, GET_MODE (x));
8608 return MAX (1,
8609 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8612 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8614 #ifndef WORD_REGISTER_OPERATIONS
8615 /* If this machine does not do all register operations on the entire
8616 register and MODE is wider than the mode of X, we can say nothing
8617 at all about the high-order bits. */
8618 return 1;
8619 #else
8620 /* Likewise on machines that do, if the mode of the object is smaller
8621 than a word and loads of that size don't sign extend, we can say
8622 nothing about the high order bits. */
8623 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8624 #ifdef LOAD_EXTEND_OP
8625 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8626 #endif
8628 return 1;
8629 #endif
8632 switch (code)
8634 case REG:
8636 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8637 /* If pointers extend signed and this is a pointer in Pmode, say that
8638 all the bits above ptr_mode are known to be sign bit copies. */
8639 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8640 && REG_POINTER (x))
8641 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8642 #endif
8644 if (reg_last_set_value[REGNO (x)] != 0
8645 && reg_last_set_mode[REGNO (x)] == mode
8646 && (reg_last_set_label[REGNO (x)] == label_tick
8647 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8648 && REG_N_SETS (REGNO (x)) == 1
8649 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8650 REGNO (x))))
8651 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8652 return reg_last_set_sign_bit_copies[REGNO (x)];
8654 tem = get_last_value (x);
8655 if (tem != 0)
8656 return num_sign_bit_copies (tem, mode);
8658 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8659 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8660 return reg_sign_bit_copies[REGNO (x)];
8661 break;
8663 case MEM:
8664 #ifdef LOAD_EXTEND_OP
8665 /* Some RISC machines sign-extend all loads of smaller than a word. */
8666 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8667 return MAX (1, ((int) bitwidth
8668 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8669 #endif
8670 break;
8672 case CONST_INT:
8673 /* If the constant is negative, take its 1's complement and remask.
8674 Then see how many zero bits we have. */
8675 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8676 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8677 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8678 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8680 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8682 case SUBREG:
8683 /* If this is a SUBREG for a promoted object that is sign-extended
8684 and we are looking at it in a wider mode, we know that at least the
8685 high-order bits are known to be sign bit copies. */
8687 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8689 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8690 return MAX ((int) bitwidth
8691 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8692 num0);
8695 /* For a smaller object, just ignore the high bits. */
8696 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8698 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8699 return MAX (1, (num0
8700 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8701 - bitwidth)));
8704 #ifdef WORD_REGISTER_OPERATIONS
8705 #ifdef LOAD_EXTEND_OP
8706 /* For paradoxical SUBREGs on machines where all register operations
8707 affect the entire register, just look inside. Note that we are
8708 passing MODE to the recursive call, so the number of sign bit copies
8709 will remain relative to that mode, not the inner mode. */
8711 /* This works only if loads sign extend. Otherwise, if we get a
8712 reload for the inner part, it may be loaded from the stack, and
8713 then we lose all sign bit copies that existed before the store
8714 to the stack. */
8716 if ((GET_MODE_SIZE (GET_MODE (x))
8717 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8718 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8719 && GET_CODE (SUBREG_REG (x)) == MEM)
8720 return num_sign_bit_copies (SUBREG_REG (x), mode);
8721 #endif
8722 #endif
8723 break;
8725 case SIGN_EXTRACT:
8726 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8727 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8728 break;
8730 case SIGN_EXTEND:
8731 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8732 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8734 case TRUNCATE:
8735 /* For a smaller object, just ignore the high bits. */
8736 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8737 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8738 - bitwidth)));
8740 case NOT:
8741 return num_sign_bit_copies (XEXP (x, 0), mode);
8743 case ROTATE: case ROTATERT:
8744 /* If we are rotating left by a number of bits less than the number
8745 of sign bit copies, we can just subtract that amount from the
8746 number. */
8747 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8748 && INTVAL (XEXP (x, 1)) >= 0
8749 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8751 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8752 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8753 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8755 break;
8757 case NEG:
8758 /* In general, this subtracts one sign bit copy. But if the value
8759 is known to be positive, the number of sign bit copies is the
8760 same as that of the input. Finally, if the input has just one bit
8761 that might be nonzero, all the bits are copies of the sign bit. */
8762 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8763 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8764 return num0 > 1 ? num0 - 1 : 1;
8766 nonzero = nonzero_bits (XEXP (x, 0), mode);
8767 if (nonzero == 1)
8768 return bitwidth;
8770 if (num0 > 1
8771 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8772 num0--;
8774 return num0;
8776 case IOR: case AND: case XOR:
8777 case SMIN: case SMAX: case UMIN: case UMAX:
8778 /* Logical operations will preserve the number of sign-bit copies.
8779 MIN and MAX operations always return one of the operands. */
8780 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8781 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8782 return MIN (num0, num1);
8784 case PLUS: case MINUS:
8785 /* For addition and subtraction, we can have a 1-bit carry. However,
8786 if we are subtracting 1 from a positive number, there will not
8787 be such a carry. Furthermore, if the positive number is known to
8788 be 0 or 1, we know the result is either -1 or 0. */
8790 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8791 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8793 nonzero = nonzero_bits (XEXP (x, 0), mode);
8794 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8795 return (nonzero == 1 || nonzero == 0 ? bitwidth
8796 : bitwidth - floor_log2 (nonzero) - 1);
8799 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8800 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8801 result = MAX (1, MIN (num0, num1) - 1);
8803 #ifdef POINTERS_EXTEND_UNSIGNED
8804 /* If pointers extend signed and this is an addition or subtraction
8805 to a pointer in Pmode, all the bits above ptr_mode are known to be
8806 sign bit copies. */
8807 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8808 && (code == PLUS || code == MINUS)
8809 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8810 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8811 - GET_MODE_BITSIZE (ptr_mode) + 1),
8812 result);
8813 #endif
8814 return result;
8816 case MULT:
8817 /* The number of bits of the product is the sum of the number of
8818 bits of both terms. However, unless one of the terms if known
8819 to be positive, we must allow for an additional bit since negating
8820 a negative number can remove one sign bit copy. */
8822 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8823 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8825 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8826 if (result > 0
8827 && (bitwidth > HOST_BITS_PER_WIDE_INT
8828 || (((nonzero_bits (XEXP (x, 0), mode)
8829 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8830 && ((nonzero_bits (XEXP (x, 1), mode)
8831 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8832 result--;
8834 return MAX (1, result);
8836 case UDIV:
8837 /* The result must be <= the first operand. If the first operand
8838 has the high bit set, we know nothing about the number of sign
8839 bit copies. */
8840 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8841 return 1;
8842 else if ((nonzero_bits (XEXP (x, 0), mode)
8843 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8844 return 1;
8845 else
8846 return num_sign_bit_copies (XEXP (x, 0), mode);
8848 case UMOD:
8849 /* The result must be <= the second operand. */
8850 return num_sign_bit_copies (XEXP (x, 1), mode);
8852 case DIV:
8853 /* Similar to unsigned division, except that we have to worry about
8854 the case where the divisor is negative, in which case we have
8855 to add 1. */
8856 result = num_sign_bit_copies (XEXP (x, 0), mode);
8857 if (result > 1
8858 && (bitwidth > HOST_BITS_PER_WIDE_INT
8859 || (nonzero_bits (XEXP (x, 1), mode)
8860 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8861 result--;
8863 return result;
8865 case MOD:
8866 result = num_sign_bit_copies (XEXP (x, 1), mode);
8867 if (result > 1
8868 && (bitwidth > HOST_BITS_PER_WIDE_INT
8869 || (nonzero_bits (XEXP (x, 1), mode)
8870 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8871 result--;
8873 return result;
8875 case ASHIFTRT:
8876 /* Shifts by a constant add to the number of bits equal to the
8877 sign bit. */
8878 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8879 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8880 && INTVAL (XEXP (x, 1)) > 0)
8881 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8883 return num0;
8885 case ASHIFT:
8886 /* Left shifts destroy copies. */
8887 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8888 || INTVAL (XEXP (x, 1)) < 0
8889 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8890 return 1;
8892 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8893 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8895 case IF_THEN_ELSE:
8896 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8897 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8898 return MIN (num0, num1);
8900 case EQ: case NE: case GE: case GT: case LE: case LT:
8901 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8902 case GEU: case GTU: case LEU: case LTU:
8903 case UNORDERED: case ORDERED:
8904 /* If the constant is negative, take its 1's complement and remask.
8905 Then see how many zero bits we have. */
8906 nonzero = STORE_FLAG_VALUE;
8907 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8908 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8909 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8911 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8912 break;
8914 default:
8915 break;
8918 /* If we haven't been able to figure it out by one of the above rules,
8919 see if some of the high-order bits are known to be zero. If so,
8920 count those bits and return one less than that amount. If we can't
8921 safely compute the mask for this mode, always return BITWIDTH. */
8923 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8924 return 1;
8926 nonzero = nonzero_bits (x, mode);
8927 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8928 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8931 /* Return the number of "extended" bits there are in X, when interpreted
8932 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8933 unsigned quantities, this is the number of high-order zero bits.
8934 For signed quantities, this is the number of copies of the sign bit
8935 minus 1. In both case, this function returns the number of "spare"
8936 bits. For example, if two quantities for which this function returns
8937 at least 1 are added, the addition is known not to overflow.
8939 This function will always return 0 unless called during combine, which
8940 implies that it must be called from a define_split. */
8942 unsigned int
8943 extended_count (x, mode, unsignedp)
8944 rtx x;
8945 enum machine_mode mode;
8946 int unsignedp;
8948 if (nonzero_sign_valid == 0)
8949 return 0;
8951 return (unsignedp
8952 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8953 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8954 - floor_log2 (nonzero_bits (x, mode)))
8955 : 0)
8956 : num_sign_bit_copies (x, mode) - 1);
8959 /* This function is called from `simplify_shift_const' to merge two
8960 outer operations. Specifically, we have already found that we need
8961 to perform operation *POP0 with constant *PCONST0 at the outermost
8962 position. We would now like to also perform OP1 with constant CONST1
8963 (with *POP0 being done last).
8965 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8966 the resulting operation. *PCOMP_P is set to 1 if we would need to
8967 complement the innermost operand, otherwise it is unchanged.
8969 MODE is the mode in which the operation will be done. No bits outside
8970 the width of this mode matter. It is assumed that the width of this mode
8971 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8973 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8974 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8975 result is simply *PCONST0.
8977 If the resulting operation cannot be expressed as one operation, we
8978 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8980 static int
8981 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8982 enum rtx_code *pop0;
8983 HOST_WIDE_INT *pconst0;
8984 enum rtx_code op1;
8985 HOST_WIDE_INT const1;
8986 enum machine_mode mode;
8987 int *pcomp_p;
8989 enum rtx_code op0 = *pop0;
8990 HOST_WIDE_INT const0 = *pconst0;
8992 const0 &= GET_MODE_MASK (mode);
8993 const1 &= GET_MODE_MASK (mode);
8995 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8996 if (op0 == AND)
8997 const1 &= const0;
8999 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
9000 if OP0 is SET. */
9002 if (op1 == NIL || op0 == SET)
9003 return 1;
9005 else if (op0 == NIL)
9006 op0 = op1, const0 = const1;
9008 else if (op0 == op1)
9010 switch (op0)
9012 case AND:
9013 const0 &= const1;
9014 break;
9015 case IOR:
9016 const0 |= const1;
9017 break;
9018 case XOR:
9019 const0 ^= const1;
9020 break;
9021 case PLUS:
9022 const0 += const1;
9023 break;
9024 case NEG:
9025 op0 = NIL;
9026 break;
9027 default:
9028 break;
9032 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9033 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9034 return 0;
9036 /* If the two constants aren't the same, we can't do anything. The
9037 remaining six cases can all be done. */
9038 else if (const0 != const1)
9039 return 0;
9041 else
9042 switch (op0)
9044 case IOR:
9045 if (op1 == AND)
9046 /* (a & b) | b == b */
9047 op0 = SET;
9048 else /* op1 == XOR */
9049 /* (a ^ b) | b == a | b */
9051 break;
9053 case XOR:
9054 if (op1 == AND)
9055 /* (a & b) ^ b == (~a) & b */
9056 op0 = AND, *pcomp_p = 1;
9057 else /* op1 == IOR */
9058 /* (a | b) ^ b == a & ~b */
9059 op0 = AND, *pconst0 = ~const0;
9060 break;
9062 case AND:
9063 if (op1 == IOR)
9064 /* (a | b) & b == b */
9065 op0 = SET;
9066 else /* op1 == XOR */
9067 /* (a ^ b) & b) == (~a) & b */
9068 *pcomp_p = 1;
9069 break;
9070 default:
9071 break;
9074 /* Check for NO-OP cases. */
9075 const0 &= GET_MODE_MASK (mode);
9076 if (const0 == 0
9077 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9078 op0 = NIL;
9079 else if (const0 == 0 && op0 == AND)
9080 op0 = SET;
9081 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9082 && op0 == AND)
9083 op0 = NIL;
9085 /* ??? Slightly redundant with the above mask, but not entirely.
9086 Moving this above means we'd have to sign-extend the mode mask
9087 for the final test. */
9088 const0 = trunc_int_for_mode (const0, mode);
9090 *pop0 = op0;
9091 *pconst0 = const0;
9093 return 1;
9096 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9097 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9098 that we started with.
9100 The shift is normally computed in the widest mode we find in VAROP, as
9101 long as it isn't a different number of words than RESULT_MODE. Exceptions
9102 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9104 static rtx
9105 simplify_shift_const (x, code, result_mode, varop, orig_count)
9106 rtx x;
9107 enum rtx_code code;
9108 enum machine_mode result_mode;
9109 rtx varop;
9110 int orig_count;
9112 enum rtx_code orig_code = code;
9113 unsigned int count;
9114 int signed_count;
9115 enum machine_mode mode = result_mode;
9116 enum machine_mode shift_mode, tmode;
9117 unsigned int mode_words
9118 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9119 /* We form (outer_op (code varop count) (outer_const)). */
9120 enum rtx_code outer_op = NIL;
9121 HOST_WIDE_INT outer_const = 0;
9122 rtx const_rtx;
9123 int complement_p = 0;
9124 rtx new;
9126 /* Make sure and truncate the "natural" shift on the way in. We don't
9127 want to do this inside the loop as it makes it more difficult to
9128 combine shifts. */
9129 #ifdef SHIFT_COUNT_TRUNCATED
9130 if (SHIFT_COUNT_TRUNCATED)
9131 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9132 #endif
9134 /* If we were given an invalid count, don't do anything except exactly
9135 what was requested. */
9137 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9139 if (x)
9140 return x;
9142 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9145 count = orig_count;
9147 /* Unless one of the branches of the `if' in this loop does a `continue',
9148 we will `break' the loop after the `if'. */
9150 while (count != 0)
9152 /* If we have an operand of (clobber (const_int 0)), just return that
9153 value. */
9154 if (GET_CODE (varop) == CLOBBER)
9155 return varop;
9157 /* If we discovered we had to complement VAROP, leave. Making a NOT
9158 here would cause an infinite loop. */
9159 if (complement_p)
9160 break;
9162 /* Convert ROTATERT to ROTATE. */
9163 if (code == ROTATERT)
9165 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9166 code = ROTATE;
9167 if (VECTOR_MODE_P (result_mode))
9168 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9169 else
9170 count = bitsize - count;
9173 /* We need to determine what mode we will do the shift in. If the
9174 shift is a right shift or a ROTATE, we must always do it in the mode
9175 it was originally done in. Otherwise, we can do it in MODE, the
9176 widest mode encountered. */
9177 shift_mode
9178 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9179 ? result_mode : mode);
9181 /* Handle cases where the count is greater than the size of the mode
9182 minus 1. For ASHIFT, use the size minus one as the count (this can
9183 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9184 take the count modulo the size. For other shifts, the result is
9185 zero.
9187 Since these shifts are being produced by the compiler by combining
9188 multiple operations, each of which are defined, we know what the
9189 result is supposed to be. */
9191 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9193 if (code == ASHIFTRT)
9194 count = GET_MODE_BITSIZE (shift_mode) - 1;
9195 else if (code == ROTATE || code == ROTATERT)
9196 count %= GET_MODE_BITSIZE (shift_mode);
9197 else
9199 /* We can't simply return zero because there may be an
9200 outer op. */
9201 varop = const0_rtx;
9202 count = 0;
9203 break;
9207 /* An arithmetic right shift of a quantity known to be -1 or 0
9208 is a no-op. */
9209 if (code == ASHIFTRT
9210 && (num_sign_bit_copies (varop, shift_mode)
9211 == GET_MODE_BITSIZE (shift_mode)))
9213 count = 0;
9214 break;
9217 /* If we are doing an arithmetic right shift and discarding all but
9218 the sign bit copies, this is equivalent to doing a shift by the
9219 bitsize minus one. Convert it into that shift because it will often
9220 allow other simplifications. */
9222 if (code == ASHIFTRT
9223 && (count + num_sign_bit_copies (varop, shift_mode)
9224 >= GET_MODE_BITSIZE (shift_mode)))
9225 count = GET_MODE_BITSIZE (shift_mode) - 1;
9227 /* We simplify the tests below and elsewhere by converting
9228 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9229 `make_compound_operation' will convert it to an ASHIFTRT for
9230 those machines (such as VAX) that don't have an LSHIFTRT. */
9231 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9232 && code == ASHIFTRT
9233 && ((nonzero_bits (varop, shift_mode)
9234 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9235 == 0))
9236 code = LSHIFTRT;
9238 switch (GET_CODE (varop))
9240 case SIGN_EXTEND:
9241 case ZERO_EXTEND:
9242 case SIGN_EXTRACT:
9243 case ZERO_EXTRACT:
9244 new = expand_compound_operation (varop);
9245 if (new != varop)
9247 varop = new;
9248 continue;
9250 break;
9252 case MEM:
9253 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9254 minus the width of a smaller mode, we can do this with a
9255 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9256 if ((code == ASHIFTRT || code == LSHIFTRT)
9257 && ! mode_dependent_address_p (XEXP (varop, 0))
9258 && ! MEM_VOLATILE_P (varop)
9259 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9260 MODE_INT, 1)) != BLKmode)
9262 new = adjust_address_nv (varop, tmode,
9263 BYTES_BIG_ENDIAN ? 0
9264 : count / BITS_PER_UNIT);
9266 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9267 : ZERO_EXTEND, mode, new);
9268 count = 0;
9269 continue;
9271 break;
9273 case USE:
9274 /* Similar to the case above, except that we can only do this if
9275 the resulting mode is the same as that of the underlying
9276 MEM and adjust the address depending on the *bits* endianness
9277 because of the way that bit-field extract insns are defined. */
9278 if ((code == ASHIFTRT || code == LSHIFTRT)
9279 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9280 MODE_INT, 1)) != BLKmode
9281 && tmode == GET_MODE (XEXP (varop, 0)))
9283 if (BITS_BIG_ENDIAN)
9284 new = XEXP (varop, 0);
9285 else
9287 new = copy_rtx (XEXP (varop, 0));
9288 SUBST (XEXP (new, 0),
9289 plus_constant (XEXP (new, 0),
9290 count / BITS_PER_UNIT));
9293 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9294 : ZERO_EXTEND, mode, new);
9295 count = 0;
9296 continue;
9298 break;
9300 case SUBREG:
9301 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9302 the same number of words as what we've seen so far. Then store
9303 the widest mode in MODE. */
9304 if (subreg_lowpart_p (varop)
9305 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9306 > GET_MODE_SIZE (GET_MODE (varop)))
9307 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9308 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9309 == mode_words)
9311 varop = SUBREG_REG (varop);
9312 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9313 mode = GET_MODE (varop);
9314 continue;
9316 break;
9318 case MULT:
9319 /* Some machines use MULT instead of ASHIFT because MULT
9320 is cheaper. But it is still better on those machines to
9321 merge two shifts into one. */
9322 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9323 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9325 varop
9326 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9327 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9328 continue;
9330 break;
9332 case UDIV:
9333 /* Similar, for when divides are cheaper. */
9334 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9335 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9337 varop
9338 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9339 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9340 continue;
9342 break;
9344 case ASHIFTRT:
9345 /* If we are extracting just the sign bit of an arithmetic
9346 right shift, that shift is not needed. However, the sign
9347 bit of a wider mode may be different from what would be
9348 interpreted as the sign bit in a narrower mode, so, if
9349 the result is narrower, don't discard the shift. */
9350 if (code == LSHIFTRT
9351 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9352 && (GET_MODE_BITSIZE (result_mode)
9353 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9355 varop = XEXP (varop, 0);
9356 continue;
9359 /* ... fall through ... */
9361 case LSHIFTRT:
9362 case ASHIFT:
9363 case ROTATE:
9364 /* Here we have two nested shifts. The result is usually the
9365 AND of a new shift with a mask. We compute the result below. */
9366 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9367 && INTVAL (XEXP (varop, 1)) >= 0
9368 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9369 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9370 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9372 enum rtx_code first_code = GET_CODE (varop);
9373 unsigned int first_count = INTVAL (XEXP (varop, 1));
9374 unsigned HOST_WIDE_INT mask;
9375 rtx mask_rtx;
9377 /* We have one common special case. We can't do any merging if
9378 the inner code is an ASHIFTRT of a smaller mode. However, if
9379 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9380 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9381 we can convert it to
9382 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9383 This simplifies certain SIGN_EXTEND operations. */
9384 if (code == ASHIFT && first_code == ASHIFTRT
9385 && count == (unsigned int)
9386 (GET_MODE_BITSIZE (result_mode)
9387 - GET_MODE_BITSIZE (GET_MODE (varop))))
9389 /* C3 has the low-order C1 bits zero. */
9391 mask = (GET_MODE_MASK (mode)
9392 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9394 varop = simplify_and_const_int (NULL_RTX, result_mode,
9395 XEXP (varop, 0), mask);
9396 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9397 varop, count);
9398 count = first_count;
9399 code = ASHIFTRT;
9400 continue;
9403 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9404 than C1 high-order bits equal to the sign bit, we can convert
9405 this to either an ASHIFT or an ASHIFTRT depending on the
9406 two counts.
9408 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9410 if (code == ASHIFTRT && first_code == ASHIFT
9411 && GET_MODE (varop) == shift_mode
9412 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9413 > first_count))
9415 varop = XEXP (varop, 0);
9417 signed_count = count - first_count;
9418 if (signed_count < 0)
9419 count = -signed_count, code = ASHIFT;
9420 else
9421 count = signed_count;
9423 continue;
9426 /* There are some cases we can't do. If CODE is ASHIFTRT,
9427 we can only do this if FIRST_CODE is also ASHIFTRT.
9429 We can't do the case when CODE is ROTATE and FIRST_CODE is
9430 ASHIFTRT.
9432 If the mode of this shift is not the mode of the outer shift,
9433 we can't do this if either shift is a right shift or ROTATE.
9435 Finally, we can't do any of these if the mode is too wide
9436 unless the codes are the same.
9438 Handle the case where the shift codes are the same
9439 first. */
9441 if (code == first_code)
9443 if (GET_MODE (varop) != result_mode
9444 && (code == ASHIFTRT || code == LSHIFTRT
9445 || code == ROTATE))
9446 break;
9448 count += first_count;
9449 varop = XEXP (varop, 0);
9450 continue;
9453 if (code == ASHIFTRT
9454 || (code == ROTATE && first_code == ASHIFTRT)
9455 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9456 || (GET_MODE (varop) != result_mode
9457 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9458 || first_code == ROTATE
9459 || code == ROTATE)))
9460 break;
9462 /* To compute the mask to apply after the shift, shift the
9463 nonzero bits of the inner shift the same way the
9464 outer shift will. */
9466 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9468 mask_rtx
9469 = simplify_binary_operation (code, result_mode, mask_rtx,
9470 GEN_INT (count));
9472 /* Give up if we can't compute an outer operation to use. */
9473 if (mask_rtx == 0
9474 || GET_CODE (mask_rtx) != CONST_INT
9475 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9476 INTVAL (mask_rtx),
9477 result_mode, &complement_p))
9478 break;
9480 /* If the shifts are in the same direction, we add the
9481 counts. Otherwise, we subtract them. */
9482 signed_count = count;
9483 if ((code == ASHIFTRT || code == LSHIFTRT)
9484 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9485 signed_count += first_count;
9486 else
9487 signed_count -= first_count;
9489 /* If COUNT is positive, the new shift is usually CODE,
9490 except for the two exceptions below, in which case it is
9491 FIRST_CODE. If the count is negative, FIRST_CODE should
9492 always be used */
9493 if (signed_count > 0
9494 && ((first_code == ROTATE && code == ASHIFT)
9495 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9496 code = first_code, count = signed_count;
9497 else if (signed_count < 0)
9498 code = first_code, count = -signed_count;
9499 else
9500 count = signed_count;
9502 varop = XEXP (varop, 0);
9503 continue;
9506 /* If we have (A << B << C) for any shift, we can convert this to
9507 (A << C << B). This wins if A is a constant. Only try this if
9508 B is not a constant. */
9510 else if (GET_CODE (varop) == code
9511 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9512 && 0 != (new
9513 = simplify_binary_operation (code, mode,
9514 XEXP (varop, 0),
9515 GEN_INT (count))))
9517 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9518 count = 0;
9519 continue;
9521 break;
9523 case NOT:
9524 /* Make this fit the case below. */
9525 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9526 GEN_INT (GET_MODE_MASK (mode)));
9527 continue;
9529 case IOR:
9530 case AND:
9531 case XOR:
9532 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9533 with C the size of VAROP - 1 and the shift is logical if
9534 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9535 we have an (le X 0) operation. If we have an arithmetic shift
9536 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9537 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9539 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9540 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9541 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9542 && (code == LSHIFTRT || code == ASHIFTRT)
9543 && count == (unsigned int)
9544 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9545 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9547 count = 0;
9548 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9549 const0_rtx);
9551 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9552 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9554 continue;
9557 /* If we have (shift (logical)), move the logical to the outside
9558 to allow it to possibly combine with another logical and the
9559 shift to combine with another shift. This also canonicalizes to
9560 what a ZERO_EXTRACT looks like. Also, some machines have
9561 (and (shift)) insns. */
9563 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9564 && (new = simplify_binary_operation (code, result_mode,
9565 XEXP (varop, 1),
9566 GEN_INT (count))) != 0
9567 && GET_CODE (new) == CONST_INT
9568 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9569 INTVAL (new), result_mode, &complement_p))
9571 varop = XEXP (varop, 0);
9572 continue;
9575 /* If we can't do that, try to simplify the shift in each arm of the
9576 logical expression, make a new logical expression, and apply
9577 the inverse distributive law. */
9579 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9580 XEXP (varop, 0), count);
9581 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9582 XEXP (varop, 1), count);
9584 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9585 varop = apply_distributive_law (varop);
9587 count = 0;
9589 break;
9591 case EQ:
9592 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9593 says that the sign bit can be tested, FOO has mode MODE, C is
9594 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9595 that may be nonzero. */
9596 if (code == LSHIFTRT
9597 && XEXP (varop, 1) == const0_rtx
9598 && GET_MODE (XEXP (varop, 0)) == result_mode
9599 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9600 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9601 && ((STORE_FLAG_VALUE
9602 & ((HOST_WIDE_INT) 1
9603 < (GET_MODE_BITSIZE (result_mode) - 1))))
9604 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9605 && merge_outer_ops (&outer_op, &outer_const, XOR,
9606 (HOST_WIDE_INT) 1, result_mode,
9607 &complement_p))
9609 varop = XEXP (varop, 0);
9610 count = 0;
9611 continue;
9613 break;
9615 case NEG:
9616 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9617 than the number of bits in the mode is equivalent to A. */
9618 if (code == LSHIFTRT
9619 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9620 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9622 varop = XEXP (varop, 0);
9623 count = 0;
9624 continue;
9627 /* NEG commutes with ASHIFT since it is multiplication. Move the
9628 NEG outside to allow shifts to combine. */
9629 if (code == ASHIFT
9630 && merge_outer_ops (&outer_op, &outer_const, NEG,
9631 (HOST_WIDE_INT) 0, result_mode,
9632 &complement_p))
9634 varop = XEXP (varop, 0);
9635 continue;
9637 break;
9639 case PLUS:
9640 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9641 is one less than the number of bits in the mode is
9642 equivalent to (xor A 1). */
9643 if (code == LSHIFTRT
9644 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9645 && XEXP (varop, 1) == constm1_rtx
9646 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9647 && merge_outer_ops (&outer_op, &outer_const, XOR,
9648 (HOST_WIDE_INT) 1, result_mode,
9649 &complement_p))
9651 count = 0;
9652 varop = XEXP (varop, 0);
9653 continue;
9656 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9657 that might be nonzero in BAR are those being shifted out and those
9658 bits are known zero in FOO, we can replace the PLUS with FOO.
9659 Similarly in the other operand order. This code occurs when
9660 we are computing the size of a variable-size array. */
9662 if ((code == ASHIFTRT || code == LSHIFTRT)
9663 && count < HOST_BITS_PER_WIDE_INT
9664 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9665 && (nonzero_bits (XEXP (varop, 1), result_mode)
9666 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9668 varop = XEXP (varop, 0);
9669 continue;
9671 else if ((code == ASHIFTRT || code == LSHIFTRT)
9672 && count < HOST_BITS_PER_WIDE_INT
9673 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9674 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9675 >> count)
9676 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9677 & nonzero_bits (XEXP (varop, 1),
9678 result_mode)))
9680 varop = XEXP (varop, 1);
9681 continue;
9684 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9685 if (code == ASHIFT
9686 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9687 && (new = simplify_binary_operation (ASHIFT, result_mode,
9688 XEXP (varop, 1),
9689 GEN_INT (count))) != 0
9690 && GET_CODE (new) == CONST_INT
9691 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9692 INTVAL (new), result_mode, &complement_p))
9694 varop = XEXP (varop, 0);
9695 continue;
9697 break;
9699 case MINUS:
9700 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9701 with C the size of VAROP - 1 and the shift is logical if
9702 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9703 we have a (gt X 0) operation. If the shift is arithmetic with
9704 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9705 we have a (neg (gt X 0)) operation. */
9707 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9708 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9709 && count == (unsigned int)
9710 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9711 && (code == LSHIFTRT || code == ASHIFTRT)
9712 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9713 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9714 == count
9715 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9717 count = 0;
9718 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9719 const0_rtx);
9721 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9722 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9724 continue;
9726 break;
9728 case TRUNCATE:
9729 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9730 if the truncate does not affect the value. */
9731 if (code == LSHIFTRT
9732 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9733 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9734 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9735 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9736 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9738 rtx varop_inner = XEXP (varop, 0);
9740 varop_inner
9741 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9742 XEXP (varop_inner, 0),
9743 GEN_INT
9744 (count + INTVAL (XEXP (varop_inner, 1))));
9745 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9746 count = 0;
9747 continue;
9749 break;
9751 default:
9752 break;
9755 break;
9758 /* We need to determine what mode to do the shift in. If the shift is
9759 a right shift or ROTATE, we must always do it in the mode it was
9760 originally done in. Otherwise, we can do it in MODE, the widest mode
9761 encountered. The code we care about is that of the shift that will
9762 actually be done, not the shift that was originally requested. */
9763 shift_mode
9764 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9765 ? result_mode : mode);
9767 /* We have now finished analyzing the shift. The result should be
9768 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9769 OUTER_OP is non-NIL, it is an operation that needs to be applied
9770 to the result of the shift. OUTER_CONST is the relevant constant,
9771 but we must turn off all bits turned off in the shift.
9773 If we were passed a value for X, see if we can use any pieces of
9774 it. If not, make new rtx. */
9776 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9777 && GET_CODE (XEXP (x, 1)) == CONST_INT
9778 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9779 const_rtx = XEXP (x, 1);
9780 else
9781 const_rtx = GEN_INT (count);
9783 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9784 && GET_MODE (XEXP (x, 0)) == shift_mode
9785 && SUBREG_REG (XEXP (x, 0)) == varop)
9786 varop = XEXP (x, 0);
9787 else if (GET_MODE (varop) != shift_mode)
9788 varop = gen_lowpart_for_combine (shift_mode, varop);
9790 /* If we can't make the SUBREG, try to return what we were given. */
9791 if (GET_CODE (varop) == CLOBBER)
9792 return x ? x : varop;
9794 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9795 if (new != 0)
9796 x = new;
9797 else
9798 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9800 /* If we have an outer operation and we just made a shift, it is
9801 possible that we could have simplified the shift were it not
9802 for the outer operation. So try to do the simplification
9803 recursively. */
9805 if (outer_op != NIL && GET_CODE (x) == code
9806 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9807 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9808 INTVAL (XEXP (x, 1)));
9810 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9811 turn off all the bits that the shift would have turned off. */
9812 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9813 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9814 GET_MODE_MASK (result_mode) >> orig_count);
9816 /* Do the remainder of the processing in RESULT_MODE. */
9817 x = gen_lowpart_for_combine (result_mode, x);
9819 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9820 operation. */
9821 if (complement_p)
9822 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9824 if (outer_op != NIL)
9826 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9827 outer_const = trunc_int_for_mode (outer_const, result_mode);
9829 if (outer_op == AND)
9830 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9831 else if (outer_op == SET)
9832 /* This means that we have determined that the result is
9833 equivalent to a constant. This should be rare. */
9834 x = GEN_INT (outer_const);
9835 else if (GET_RTX_CLASS (outer_op) == '1')
9836 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9837 else
9838 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9841 return x;
9844 /* Like recog, but we receive the address of a pointer to a new pattern.
9845 We try to match the rtx that the pointer points to.
9846 If that fails, we may try to modify or replace the pattern,
9847 storing the replacement into the same pointer object.
9849 Modifications include deletion or addition of CLOBBERs.
9851 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9852 the CLOBBERs are placed.
9854 The value is the final insn code from the pattern ultimately matched,
9855 or -1. */
9857 static int
9858 recog_for_combine (pnewpat, insn, pnotes)
9859 rtx *pnewpat;
9860 rtx insn;
9861 rtx *pnotes;
9863 rtx pat = *pnewpat;
9864 int insn_code_number;
9865 int num_clobbers_to_add = 0;
9866 int i;
9867 rtx notes = 0;
9868 rtx dummy_insn;
9870 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9871 we use to indicate that something didn't match. If we find such a
9872 thing, force rejection. */
9873 if (GET_CODE (pat) == PARALLEL)
9874 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9875 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9876 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9877 return -1;
9879 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9880 instruction for pattern recognition. */
9881 dummy_insn = shallow_copy_rtx (insn);
9882 PATTERN (dummy_insn) = pat;
9883 REG_NOTES (dummy_insn) = 0;
9885 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9887 /* If it isn't, there is the possibility that we previously had an insn
9888 that clobbered some register as a side effect, but the combined
9889 insn doesn't need to do that. So try once more without the clobbers
9890 unless this represents an ASM insn. */
9892 if (insn_code_number < 0 && ! check_asm_operands (pat)
9893 && GET_CODE (pat) == PARALLEL)
9895 int pos;
9897 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9898 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9900 if (i != pos)
9901 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9902 pos++;
9905 SUBST_INT (XVECLEN (pat, 0), pos);
9907 if (pos == 1)
9908 pat = XVECEXP (pat, 0, 0);
9910 PATTERN (dummy_insn) = pat;
9911 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9914 /* Recognize all noop sets, these will be killed by followup pass. */
9915 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9916 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9918 /* If we had any clobbers to add, make a new pattern than contains
9919 them. Then check to make sure that all of them are dead. */
9920 if (num_clobbers_to_add)
9922 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9923 rtvec_alloc (GET_CODE (pat) == PARALLEL
9924 ? (XVECLEN (pat, 0)
9925 + num_clobbers_to_add)
9926 : num_clobbers_to_add + 1));
9928 if (GET_CODE (pat) == PARALLEL)
9929 for (i = 0; i < XVECLEN (pat, 0); i++)
9930 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9931 else
9932 XVECEXP (newpat, 0, 0) = pat;
9934 add_clobbers (newpat, insn_code_number);
9936 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9937 i < XVECLEN (newpat, 0); i++)
9939 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9940 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9941 return -1;
9942 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9943 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9945 pat = newpat;
9948 *pnewpat = pat;
9949 *pnotes = notes;
9951 return insn_code_number;
9954 /* Like gen_lowpart but for use by combine. In combine it is not possible
9955 to create any new pseudoregs. However, it is safe to create
9956 invalid memory addresses, because combine will try to recognize
9957 them and all they will do is make the combine attempt fail.
9959 If for some reason this cannot do its job, an rtx
9960 (clobber (const_int 0)) is returned.
9961 An insn containing that will not be recognized. */
9963 #undef gen_lowpart
9965 static rtx
9966 gen_lowpart_for_combine (mode, x)
9967 enum machine_mode mode;
9968 rtx x;
9970 rtx result;
9972 if (GET_MODE (x) == mode)
9973 return x;
9975 /* We can only support MODE being wider than a word if X is a
9976 constant integer or has a mode the same size. */
9978 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9979 && ! ((GET_MODE (x) == VOIDmode
9980 && (GET_CODE (x) == CONST_INT
9981 || GET_CODE (x) == CONST_DOUBLE))
9982 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9983 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9985 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9986 won't know what to do. So we will strip off the SUBREG here and
9987 process normally. */
9988 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9990 x = SUBREG_REG (x);
9991 if (GET_MODE (x) == mode)
9992 return x;
9995 result = gen_lowpart_common (mode, x);
9996 #ifdef CANNOT_CHANGE_MODE_CLASS
9997 if (result != 0
9998 && GET_CODE (result) == SUBREG
9999 && GET_CODE (SUBREG_REG (result)) == REG
10000 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
10001 SET_REGNO_REG_SET (&subregs_of_mode[GET_MODE (result)],
10002 REGNO (SUBREG_REG (result)));
10003 #endif
10005 if (result)
10006 return result;
10008 if (GET_CODE (x) == MEM)
10010 int offset = 0;
10012 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10013 address. */
10014 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10015 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10017 /* If we want to refer to something bigger than the original memref,
10018 generate a perverse subreg instead. That will force a reload
10019 of the original memref X. */
10020 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10021 return gen_rtx_SUBREG (mode, x, 0);
10023 if (WORDS_BIG_ENDIAN)
10024 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10025 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10027 if (BYTES_BIG_ENDIAN)
10029 /* Adjust the address so that the address-after-the-data is
10030 unchanged. */
10031 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10032 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10035 return adjust_address_nv (x, mode, offset);
10038 /* If X is a comparison operator, rewrite it in a new mode. This
10039 probably won't match, but may allow further simplifications. */
10040 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
10041 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10043 /* If we couldn't simplify X any other way, just enclose it in a
10044 SUBREG. Normally, this SUBREG won't match, but some patterns may
10045 include an explicit SUBREG or we may simplify it further in combine. */
10046 else
10048 int offset = 0;
10049 rtx res;
10050 enum machine_mode sub_mode = GET_MODE (x);
10052 offset = subreg_lowpart_offset (mode, sub_mode);
10053 if (sub_mode == VOIDmode)
10055 sub_mode = int_mode_for_mode (mode);
10056 x = gen_lowpart_common (sub_mode, x);
10058 res = simplify_gen_subreg (mode, x, sub_mode, offset);
10059 if (res)
10060 return res;
10061 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10065 /* These routines make binary and unary operations by first seeing if they
10066 fold; if not, a new expression is allocated. */
10068 static rtx
10069 gen_binary (code, mode, op0, op1)
10070 enum rtx_code code;
10071 enum machine_mode mode;
10072 rtx op0, op1;
10074 rtx result;
10075 rtx tem;
10077 if (GET_RTX_CLASS (code) == 'c'
10078 && swap_commutative_operands_p (op0, op1))
10079 tem = op0, op0 = op1, op1 = tem;
10081 if (GET_RTX_CLASS (code) == '<')
10083 enum machine_mode op_mode = GET_MODE (op0);
10085 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10086 just (REL_OP X Y). */
10087 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10089 op1 = XEXP (op0, 1);
10090 op0 = XEXP (op0, 0);
10091 op_mode = GET_MODE (op0);
10094 if (op_mode == VOIDmode)
10095 op_mode = GET_MODE (op1);
10096 result = simplify_relational_operation (code, op_mode, op0, op1);
10098 else
10099 result = simplify_binary_operation (code, mode, op0, op1);
10101 if (result)
10102 return result;
10104 /* Put complex operands first and constants second. */
10105 if (GET_RTX_CLASS (code) == 'c'
10106 && swap_commutative_operands_p (op0, op1))
10107 return gen_rtx_fmt_ee (code, mode, op1, op0);
10109 /* If we are turning off bits already known off in OP0, we need not do
10110 an AND. */
10111 else if (code == AND && GET_CODE (op1) == CONST_INT
10112 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10113 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10114 return op0;
10116 return gen_rtx_fmt_ee (code, mode, op0, op1);
10119 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10120 comparison code that will be tested.
10122 The result is a possibly different comparison code to use. *POP0 and
10123 *POP1 may be updated.
10125 It is possible that we might detect that a comparison is either always
10126 true or always false. However, we do not perform general constant
10127 folding in combine, so this knowledge isn't useful. Such tautologies
10128 should have been detected earlier. Hence we ignore all such cases. */
10130 static enum rtx_code
10131 simplify_comparison (code, pop0, pop1)
10132 enum rtx_code code;
10133 rtx *pop0;
10134 rtx *pop1;
10136 rtx op0 = *pop0;
10137 rtx op1 = *pop1;
10138 rtx tem, tem1;
10139 int i;
10140 enum machine_mode mode, tmode;
10142 /* Try a few ways of applying the same transformation to both operands. */
10143 while (1)
10145 #ifndef WORD_REGISTER_OPERATIONS
10146 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10147 so check specially. */
10148 if (code != GTU && code != GEU && code != LTU && code != LEU
10149 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10150 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10151 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10152 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10153 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10154 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10155 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10156 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10157 && GET_CODE (XEXP (op1, 1)) == CONST_INT
10158 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10159 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
10160 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
10161 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
10162 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
10163 && (INTVAL (XEXP (op0, 1))
10164 == (GET_MODE_BITSIZE (GET_MODE (op0))
10165 - (GET_MODE_BITSIZE
10166 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10168 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10169 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10171 #endif
10173 /* If both operands are the same constant shift, see if we can ignore the
10174 shift. We can if the shift is a rotate or if the bits shifted out of
10175 this shift are known to be zero for both inputs and if the type of
10176 comparison is compatible with the shift. */
10177 if (GET_CODE (op0) == GET_CODE (op1)
10178 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10179 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10180 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10181 && (code != GT && code != LT && code != GE && code != LE))
10182 || (GET_CODE (op0) == ASHIFTRT
10183 && (code != GTU && code != LTU
10184 && code != GEU && code != LEU)))
10185 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10186 && INTVAL (XEXP (op0, 1)) >= 0
10187 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10188 && XEXP (op0, 1) == XEXP (op1, 1))
10190 enum machine_mode mode = GET_MODE (op0);
10191 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10192 int shift_count = INTVAL (XEXP (op0, 1));
10194 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10195 mask &= (mask >> shift_count) << shift_count;
10196 else if (GET_CODE (op0) == ASHIFT)
10197 mask = (mask & (mask << shift_count)) >> shift_count;
10199 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10200 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10201 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10202 else
10203 break;
10206 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10207 SUBREGs are of the same mode, and, in both cases, the AND would
10208 be redundant if the comparison was done in the narrower mode,
10209 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10210 and the operand's possibly nonzero bits are 0xffffff01; in that case
10211 if we only care about QImode, we don't need the AND). This case
10212 occurs if the output mode of an scc insn is not SImode and
10213 STORE_FLAG_VALUE == 1 (e.g., the 386).
10215 Similarly, check for a case where the AND's are ZERO_EXTEND
10216 operations from some narrower mode even though a SUBREG is not
10217 present. */
10219 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10220 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10221 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10223 rtx inner_op0 = XEXP (op0, 0);
10224 rtx inner_op1 = XEXP (op1, 0);
10225 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10226 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10227 int changed = 0;
10229 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10230 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10231 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10232 && (GET_MODE (SUBREG_REG (inner_op0))
10233 == GET_MODE (SUBREG_REG (inner_op1)))
10234 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10235 <= HOST_BITS_PER_WIDE_INT)
10236 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10237 GET_MODE (SUBREG_REG (inner_op0)))))
10238 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10239 GET_MODE (SUBREG_REG (inner_op1))))))
10241 op0 = SUBREG_REG (inner_op0);
10242 op1 = SUBREG_REG (inner_op1);
10244 /* The resulting comparison is always unsigned since we masked
10245 off the original sign bit. */
10246 code = unsigned_condition (code);
10248 changed = 1;
10251 else if (c0 == c1)
10252 for (tmode = GET_CLASS_NARROWEST_MODE
10253 (GET_MODE_CLASS (GET_MODE (op0)));
10254 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10255 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10257 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10258 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10259 code = unsigned_condition (code);
10260 changed = 1;
10261 break;
10264 if (! changed)
10265 break;
10268 /* If both operands are NOT, we can strip off the outer operation
10269 and adjust the comparison code for swapped operands; similarly for
10270 NEG, except that this must be an equality comparison. */
10271 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10272 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10273 && (code == EQ || code == NE)))
10274 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10276 else
10277 break;
10280 /* If the first operand is a constant, swap the operands and adjust the
10281 comparison code appropriately, but don't do this if the second operand
10282 is already a constant integer. */
10283 if (swap_commutative_operands_p (op0, op1))
10285 tem = op0, op0 = op1, op1 = tem;
10286 code = swap_condition (code);
10289 /* We now enter a loop during which we will try to simplify the comparison.
10290 For the most part, we only are concerned with comparisons with zero,
10291 but some things may really be comparisons with zero but not start
10292 out looking that way. */
10294 while (GET_CODE (op1) == CONST_INT)
10296 enum machine_mode mode = GET_MODE (op0);
10297 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10298 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10299 int equality_comparison_p;
10300 int sign_bit_comparison_p;
10301 int unsigned_comparison_p;
10302 HOST_WIDE_INT const_op;
10304 /* We only want to handle integral modes. This catches VOIDmode,
10305 CCmode, and the floating-point modes. An exception is that we
10306 can handle VOIDmode if OP0 is a COMPARE or a comparison
10307 operation. */
10309 if (GET_MODE_CLASS (mode) != MODE_INT
10310 && ! (mode == VOIDmode
10311 && (GET_CODE (op0) == COMPARE
10312 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10313 break;
10315 /* Get the constant we are comparing against and turn off all bits
10316 not on in our mode. */
10317 const_op = INTVAL (op1);
10318 if (mode != VOIDmode)
10319 const_op = trunc_int_for_mode (const_op, mode);
10320 op1 = GEN_INT (const_op);
10322 /* If we are comparing against a constant power of two and the value
10323 being compared can only have that single bit nonzero (e.g., it was
10324 `and'ed with that bit), we can replace this with a comparison
10325 with zero. */
10326 if (const_op
10327 && (code == EQ || code == NE || code == GE || code == GEU
10328 || code == LT || code == LTU)
10329 && mode_width <= HOST_BITS_PER_WIDE_INT
10330 && exact_log2 (const_op) >= 0
10331 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10333 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10334 op1 = const0_rtx, const_op = 0;
10337 /* Similarly, if we are comparing a value known to be either -1 or
10338 0 with -1, change it to the opposite comparison against zero. */
10340 if (const_op == -1
10341 && (code == EQ || code == NE || code == GT || code == LE
10342 || code == GEU || code == LTU)
10343 && num_sign_bit_copies (op0, mode) == mode_width)
10345 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10346 op1 = const0_rtx, const_op = 0;
10349 /* Do some canonicalizations based on the comparison code. We prefer
10350 comparisons against zero and then prefer equality comparisons.
10351 If we can reduce the size of a constant, we will do that too. */
10353 switch (code)
10355 case LT:
10356 /* < C is equivalent to <= (C - 1) */
10357 if (const_op > 0)
10359 const_op -= 1;
10360 op1 = GEN_INT (const_op);
10361 code = LE;
10362 /* ... fall through to LE case below. */
10364 else
10365 break;
10367 case LE:
10368 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10369 if (const_op < 0)
10371 const_op += 1;
10372 op1 = GEN_INT (const_op);
10373 code = LT;
10376 /* If we are doing a <= 0 comparison on a value known to have
10377 a zero sign bit, we can replace this with == 0. */
10378 else if (const_op == 0
10379 && mode_width <= HOST_BITS_PER_WIDE_INT
10380 && (nonzero_bits (op0, mode)
10381 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10382 code = EQ;
10383 break;
10385 case GE:
10386 /* >= C is equivalent to > (C - 1). */
10387 if (const_op > 0)
10389 const_op -= 1;
10390 op1 = GEN_INT (const_op);
10391 code = GT;
10392 /* ... fall through to GT below. */
10394 else
10395 break;
10397 case GT:
10398 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10399 if (const_op < 0)
10401 const_op += 1;
10402 op1 = GEN_INT (const_op);
10403 code = GE;
10406 /* If we are doing a > 0 comparison on a value known to have
10407 a zero sign bit, we can replace this with != 0. */
10408 else if (const_op == 0
10409 && mode_width <= HOST_BITS_PER_WIDE_INT
10410 && (nonzero_bits (op0, mode)
10411 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10412 code = NE;
10413 break;
10415 case LTU:
10416 /* < C is equivalent to <= (C - 1). */
10417 if (const_op > 0)
10419 const_op -= 1;
10420 op1 = GEN_INT (const_op);
10421 code = LEU;
10422 /* ... fall through ... */
10425 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10426 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10427 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10429 const_op = 0, op1 = const0_rtx;
10430 code = GE;
10431 break;
10433 else
10434 break;
10436 case LEU:
10437 /* unsigned <= 0 is equivalent to == 0 */
10438 if (const_op == 0)
10439 code = EQ;
10441 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10442 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10443 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10445 const_op = 0, op1 = const0_rtx;
10446 code = GE;
10448 break;
10450 case GEU:
10451 /* >= C is equivalent to < (C - 1). */
10452 if (const_op > 1)
10454 const_op -= 1;
10455 op1 = GEN_INT (const_op);
10456 code = GTU;
10457 /* ... fall through ... */
10460 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10461 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10462 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10464 const_op = 0, op1 = const0_rtx;
10465 code = LT;
10466 break;
10468 else
10469 break;
10471 case GTU:
10472 /* unsigned > 0 is equivalent to != 0 */
10473 if (const_op == 0)
10474 code = NE;
10476 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10477 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10478 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10480 const_op = 0, op1 = const0_rtx;
10481 code = LT;
10483 break;
10485 default:
10486 break;
10489 /* Compute some predicates to simplify code below. */
10491 equality_comparison_p = (code == EQ || code == NE);
10492 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10493 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10494 || code == GEU);
10496 /* If this is a sign bit comparison and we can do arithmetic in
10497 MODE, say that we will only be needing the sign bit of OP0. */
10498 if (sign_bit_comparison_p
10499 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10500 op0 = force_to_mode (op0, mode,
10501 ((HOST_WIDE_INT) 1
10502 << (GET_MODE_BITSIZE (mode) - 1)),
10503 NULL_RTX, 0);
10505 /* Now try cases based on the opcode of OP0. If none of the cases
10506 does a "continue", we exit this loop immediately after the
10507 switch. */
10509 switch (GET_CODE (op0))
10511 case ZERO_EXTRACT:
10512 /* If we are extracting a single bit from a variable position in
10513 a constant that has only a single bit set and are comparing it
10514 with zero, we can convert this into an equality comparison
10515 between the position and the location of the single bit. */
10517 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10518 && XEXP (op0, 1) == const1_rtx
10519 && equality_comparison_p && const_op == 0
10520 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10522 if (BITS_BIG_ENDIAN)
10524 enum machine_mode new_mode
10525 = mode_for_extraction (EP_extzv, 1);
10526 if (new_mode == MAX_MACHINE_MODE)
10527 i = BITS_PER_WORD - 1 - i;
10528 else
10530 mode = new_mode;
10531 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10535 op0 = XEXP (op0, 2);
10536 op1 = GEN_INT (i);
10537 const_op = i;
10539 /* Result is nonzero iff shift count is equal to I. */
10540 code = reverse_condition (code);
10541 continue;
10544 /* ... fall through ... */
10546 case SIGN_EXTRACT:
10547 tem = expand_compound_operation (op0);
10548 if (tem != op0)
10550 op0 = tem;
10551 continue;
10553 break;
10555 case NOT:
10556 /* If testing for equality, we can take the NOT of the constant. */
10557 if (equality_comparison_p
10558 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10560 op0 = XEXP (op0, 0);
10561 op1 = tem;
10562 continue;
10565 /* If just looking at the sign bit, reverse the sense of the
10566 comparison. */
10567 if (sign_bit_comparison_p)
10569 op0 = XEXP (op0, 0);
10570 code = (code == GE ? LT : GE);
10571 continue;
10573 break;
10575 case NEG:
10576 /* If testing for equality, we can take the NEG of the constant. */
10577 if (equality_comparison_p
10578 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10580 op0 = XEXP (op0, 0);
10581 op1 = tem;
10582 continue;
10585 /* The remaining cases only apply to comparisons with zero. */
10586 if (const_op != 0)
10587 break;
10589 /* When X is ABS or is known positive,
10590 (neg X) is < 0 if and only if X != 0. */
10592 if (sign_bit_comparison_p
10593 && (GET_CODE (XEXP (op0, 0)) == ABS
10594 || (mode_width <= HOST_BITS_PER_WIDE_INT
10595 && (nonzero_bits (XEXP (op0, 0), mode)
10596 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10598 op0 = XEXP (op0, 0);
10599 code = (code == LT ? NE : EQ);
10600 continue;
10603 /* If we have NEG of something whose two high-order bits are the
10604 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10605 if (num_sign_bit_copies (op0, mode) >= 2)
10607 op0 = XEXP (op0, 0);
10608 code = swap_condition (code);
10609 continue;
10611 break;
10613 case ROTATE:
10614 /* If we are testing equality and our count is a constant, we
10615 can perform the inverse operation on our RHS. */
10616 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10617 && (tem = simplify_binary_operation (ROTATERT, mode,
10618 op1, XEXP (op0, 1))) != 0)
10620 op0 = XEXP (op0, 0);
10621 op1 = tem;
10622 continue;
10625 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10626 a particular bit. Convert it to an AND of a constant of that
10627 bit. This will be converted into a ZERO_EXTRACT. */
10628 if (const_op == 0 && sign_bit_comparison_p
10629 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10630 && mode_width <= HOST_BITS_PER_WIDE_INT)
10632 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10633 ((HOST_WIDE_INT) 1
10634 << (mode_width - 1
10635 - INTVAL (XEXP (op0, 1)))));
10636 code = (code == LT ? NE : EQ);
10637 continue;
10640 /* Fall through. */
10642 case ABS:
10643 /* ABS is ignorable inside an equality comparison with zero. */
10644 if (const_op == 0 && equality_comparison_p)
10646 op0 = XEXP (op0, 0);
10647 continue;
10649 break;
10651 case SIGN_EXTEND:
10652 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10653 to (compare FOO CONST) if CONST fits in FOO's mode and we
10654 are either testing inequality or have an unsigned comparison
10655 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10656 if (! unsigned_comparison_p
10657 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10658 <= HOST_BITS_PER_WIDE_INT)
10659 && ((unsigned HOST_WIDE_INT) const_op
10660 < (((unsigned HOST_WIDE_INT) 1
10661 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10663 op0 = XEXP (op0, 0);
10664 continue;
10666 break;
10668 case SUBREG:
10669 /* Check for the case where we are comparing A - C1 with C2,
10670 both constants are smaller than 1/2 the maximum positive
10671 value in MODE, and the comparison is equality or unsigned.
10672 In that case, if A is either zero-extended to MODE or has
10673 sufficient sign bits so that the high-order bit in MODE
10674 is a copy of the sign in the inner mode, we can prove that it is
10675 safe to do the operation in the wider mode. This simplifies
10676 many range checks. */
10678 if (mode_width <= HOST_BITS_PER_WIDE_INT
10679 && subreg_lowpart_p (op0)
10680 && GET_CODE (SUBREG_REG (op0)) == PLUS
10681 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10682 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10683 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10684 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10685 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10686 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10687 GET_MODE (SUBREG_REG (op0)))
10688 & ~GET_MODE_MASK (mode))
10689 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10690 GET_MODE (SUBREG_REG (op0)))
10691 > (unsigned int)
10692 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10693 - GET_MODE_BITSIZE (mode)))))
10695 op0 = SUBREG_REG (op0);
10696 continue;
10699 /* If the inner mode is narrower and we are extracting the low part,
10700 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10701 if (subreg_lowpart_p (op0)
10702 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10703 /* Fall through */ ;
10704 else
10705 break;
10707 /* ... fall through ... */
10709 case ZERO_EXTEND:
10710 if ((unsigned_comparison_p || equality_comparison_p)
10711 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10712 <= HOST_BITS_PER_WIDE_INT)
10713 && ((unsigned HOST_WIDE_INT) const_op
10714 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10716 op0 = XEXP (op0, 0);
10717 continue;
10719 break;
10721 case PLUS:
10722 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10723 this for equality comparisons due to pathological cases involving
10724 overflows. */
10725 if (equality_comparison_p
10726 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10727 op1, XEXP (op0, 1))))
10729 op0 = XEXP (op0, 0);
10730 op1 = tem;
10731 continue;
10734 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10735 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10736 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10738 op0 = XEXP (XEXP (op0, 0), 0);
10739 code = (code == LT ? EQ : NE);
10740 continue;
10742 break;
10744 case MINUS:
10745 /* We used to optimize signed comparisons against zero, but that
10746 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10747 arrive here as equality comparisons, or (GEU, LTU) are
10748 optimized away. No need to special-case them. */
10750 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10751 (eq B (minus A C)), whichever simplifies. We can only do
10752 this for equality comparisons due to pathological cases involving
10753 overflows. */
10754 if (equality_comparison_p
10755 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10756 XEXP (op0, 1), op1)))
10758 op0 = XEXP (op0, 0);
10759 op1 = tem;
10760 continue;
10763 if (equality_comparison_p
10764 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10765 XEXP (op0, 0), op1)))
10767 op0 = XEXP (op0, 1);
10768 op1 = tem;
10769 continue;
10772 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10773 of bits in X minus 1, is one iff X > 0. */
10774 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10775 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10776 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10777 == mode_width - 1
10778 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10780 op0 = XEXP (op0, 1);
10781 code = (code == GE ? LE : GT);
10782 continue;
10784 break;
10786 case XOR:
10787 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10788 if C is zero or B is a constant. */
10789 if (equality_comparison_p
10790 && 0 != (tem = simplify_binary_operation (XOR, mode,
10791 XEXP (op0, 1), op1)))
10793 op0 = XEXP (op0, 0);
10794 op1 = tem;
10795 continue;
10797 break;
10799 case EQ: case NE:
10800 case UNEQ: case LTGT:
10801 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10802 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10803 case UNORDERED: case ORDERED:
10804 /* We can't do anything if OP0 is a condition code value, rather
10805 than an actual data value. */
10806 if (const_op != 0
10807 #ifdef HAVE_cc0
10808 || XEXP (op0, 0) == cc0_rtx
10809 #endif
10810 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10811 break;
10813 /* Get the two operands being compared. */
10814 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10815 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10816 else
10817 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10819 /* Check for the cases where we simply want the result of the
10820 earlier test or the opposite of that result. */
10821 if (code == NE || code == EQ
10822 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10823 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10824 && (STORE_FLAG_VALUE
10825 & (((HOST_WIDE_INT) 1
10826 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10827 && (code == LT || code == GE)))
10829 enum rtx_code new_code;
10830 if (code == LT || code == NE)
10831 new_code = GET_CODE (op0);
10832 else
10833 new_code = combine_reversed_comparison_code (op0);
10835 if (new_code != UNKNOWN)
10837 code = new_code;
10838 op0 = tem;
10839 op1 = tem1;
10840 continue;
10843 break;
10845 case IOR:
10846 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10847 iff X <= 0. */
10848 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10849 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10850 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10852 op0 = XEXP (op0, 1);
10853 code = (code == GE ? GT : LE);
10854 continue;
10856 break;
10858 case AND:
10859 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10860 will be converted to a ZERO_EXTRACT later. */
10861 if (const_op == 0 && equality_comparison_p
10862 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10863 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10865 op0 = simplify_and_const_int
10866 (op0, mode, gen_rtx_LSHIFTRT (mode,
10867 XEXP (op0, 1),
10868 XEXP (XEXP (op0, 0), 1)),
10869 (HOST_WIDE_INT) 1);
10870 continue;
10873 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10874 zero and X is a comparison and C1 and C2 describe only bits set
10875 in STORE_FLAG_VALUE, we can compare with X. */
10876 if (const_op == 0 && equality_comparison_p
10877 && mode_width <= HOST_BITS_PER_WIDE_INT
10878 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10879 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10880 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10881 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10882 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10884 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10885 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10886 if ((~STORE_FLAG_VALUE & mask) == 0
10887 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10888 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10889 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10891 op0 = XEXP (XEXP (op0, 0), 0);
10892 continue;
10896 /* If we are doing an equality comparison of an AND of a bit equal
10897 to the sign bit, replace this with a LT or GE comparison of
10898 the underlying value. */
10899 if (equality_comparison_p
10900 && const_op == 0
10901 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10902 && mode_width <= HOST_BITS_PER_WIDE_INT
10903 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10904 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10906 op0 = XEXP (op0, 0);
10907 code = (code == EQ ? GE : LT);
10908 continue;
10911 /* If this AND operation is really a ZERO_EXTEND from a narrower
10912 mode, the constant fits within that mode, and this is either an
10913 equality or unsigned comparison, try to do this comparison in
10914 the narrower mode. */
10915 if ((equality_comparison_p || unsigned_comparison_p)
10916 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10917 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10918 & GET_MODE_MASK (mode))
10919 + 1)) >= 0
10920 && const_op >> i == 0
10921 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10923 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10924 continue;
10927 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10928 in both M1 and M2 and the SUBREG is either paradoxical or
10929 represents the low part, permute the SUBREG and the AND and
10930 try again. */
10931 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10932 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10933 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10934 As originally written the upper bits have a defined value
10935 due to the AND operation. However, if we commute the AND
10936 inside the SUBREG then they no longer have defined values
10937 and the meaning of the code has been changed. */
10938 && (0
10939 #ifdef WORD_REGISTER_OPERATIONS
10940 || ((mode_width
10941 > (GET_MODE_BITSIZE
10942 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10943 && mode_width <= BITS_PER_WORD)
10944 #endif
10945 || ((mode_width
10946 <= (GET_MODE_BITSIZE
10947 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10948 && subreg_lowpart_p (XEXP (op0, 0))))
10949 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10950 && mode_width <= HOST_BITS_PER_WIDE_INT
10951 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10952 <= HOST_BITS_PER_WIDE_INT)
10953 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10954 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10955 & INTVAL (XEXP (op0, 1)))
10956 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10957 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10958 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10962 = gen_lowpart_for_combine
10963 (mode,
10964 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10965 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10966 continue;
10969 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10970 (eq (and (lshiftrt X) 1) 0). */
10971 if (const_op == 0 && equality_comparison_p
10972 && XEXP (op0, 1) == const1_rtx
10973 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10974 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10976 op0 = simplify_and_const_int
10977 (op0, mode,
10978 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10979 XEXP (XEXP (op0, 0), 1)),
10980 (HOST_WIDE_INT) 1);
10981 code = (code == NE ? EQ : NE);
10982 continue;
10984 break;
10986 case ASHIFT:
10987 /* If we have (compare (ashift FOO N) (const_int C)) and
10988 the high order N bits of FOO (N+1 if an inequality comparison)
10989 are known to be zero, we can do this by comparing FOO with C
10990 shifted right N bits so long as the low-order N bits of C are
10991 zero. */
10992 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10993 && INTVAL (XEXP (op0, 1)) >= 0
10994 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10995 < HOST_BITS_PER_WIDE_INT)
10996 && ((const_op
10997 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10998 && mode_width <= HOST_BITS_PER_WIDE_INT
10999 && (nonzero_bits (XEXP (op0, 0), mode)
11000 & ~(mask >> (INTVAL (XEXP (op0, 1))
11001 + ! equality_comparison_p))) == 0)
11003 /* We must perform a logical shift, not an arithmetic one,
11004 as we want the top N bits of C to be zero. */
11005 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11007 temp >>= INTVAL (XEXP (op0, 1));
11008 op1 = gen_int_mode (temp, mode);
11009 op0 = XEXP (op0, 0);
11010 continue;
11013 /* If we are doing a sign bit comparison, it means we are testing
11014 a particular bit. Convert it to the appropriate AND. */
11015 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
11016 && mode_width <= HOST_BITS_PER_WIDE_INT)
11018 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11019 ((HOST_WIDE_INT) 1
11020 << (mode_width - 1
11021 - INTVAL (XEXP (op0, 1)))));
11022 code = (code == LT ? NE : EQ);
11023 continue;
11026 /* If this an equality comparison with zero and we are shifting
11027 the low bit to the sign bit, we can convert this to an AND of the
11028 low-order bit. */
11029 if (const_op == 0 && equality_comparison_p
11030 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11031 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11032 == mode_width - 1)
11034 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11035 (HOST_WIDE_INT) 1);
11036 continue;
11038 break;
11040 case ASHIFTRT:
11041 /* If this is an equality comparison with zero, we can do this
11042 as a logical shift, which might be much simpler. */
11043 if (equality_comparison_p && const_op == 0
11044 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11046 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11047 XEXP (op0, 0),
11048 INTVAL (XEXP (op0, 1)));
11049 continue;
11052 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11053 do the comparison in a narrower mode. */
11054 if (! unsigned_comparison_p
11055 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11056 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11057 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11058 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11059 MODE_INT, 1)) != BLKmode
11060 && (((unsigned HOST_WIDE_INT) const_op
11061 + (GET_MODE_MASK (tmode) >> 1) + 1)
11062 <= GET_MODE_MASK (tmode)))
11064 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11065 continue;
11068 /* Likewise if OP0 is a PLUS of a sign extension with a
11069 constant, which is usually represented with the PLUS
11070 between the shifts. */
11071 if (! unsigned_comparison_p
11072 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11073 && GET_CODE (XEXP (op0, 0)) == PLUS
11074 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11075 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11076 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11077 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11078 MODE_INT, 1)) != BLKmode
11079 && (((unsigned HOST_WIDE_INT) const_op
11080 + (GET_MODE_MASK (tmode) >> 1) + 1)
11081 <= GET_MODE_MASK (tmode)))
11083 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11084 rtx add_const = XEXP (XEXP (op0, 0), 1);
11085 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11086 XEXP (op0, 1));
11088 op0 = gen_binary (PLUS, tmode,
11089 gen_lowpart_for_combine (tmode, inner),
11090 new_const);
11091 continue;
11094 /* ... fall through ... */
11095 case LSHIFTRT:
11096 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11097 the low order N bits of FOO are known to be zero, we can do this
11098 by comparing FOO with C shifted left N bits so long as no
11099 overflow occurs. */
11100 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11101 && INTVAL (XEXP (op0, 1)) >= 0
11102 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11103 && mode_width <= HOST_BITS_PER_WIDE_INT
11104 && (nonzero_bits (XEXP (op0, 0), mode)
11105 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11106 && (((unsigned HOST_WIDE_INT) const_op
11107 + (GET_CODE (op0) != LSHIFTRT
11108 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11109 + 1)
11110 : 0))
11111 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11113 /* If the shift was logical, then we must make the condition
11114 unsigned. */
11115 if (GET_CODE (op0) == LSHIFTRT)
11116 code = unsigned_condition (code);
11118 const_op <<= INTVAL (XEXP (op0, 1));
11119 op1 = GEN_INT (const_op);
11120 op0 = XEXP (op0, 0);
11121 continue;
11124 /* If we are using this shift to extract just the sign bit, we
11125 can replace this with an LT or GE comparison. */
11126 if (const_op == 0
11127 && (equality_comparison_p || sign_bit_comparison_p)
11128 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11129 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11130 == mode_width - 1)
11132 op0 = XEXP (op0, 0);
11133 code = (code == NE || code == GT ? LT : GE);
11134 continue;
11136 break;
11138 default:
11139 break;
11142 break;
11145 /* Now make any compound operations involved in this comparison. Then,
11146 check for an outmost SUBREG on OP0 that is not doing anything or is
11147 paradoxical. The latter transformation must only be performed when
11148 it is known that the "extra" bits will be the same in op0 and op1 or
11149 that they don't matter. There are three cases to consider:
11151 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11152 care bits and we can assume they have any convenient value. So
11153 making the transformation is safe.
11155 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11156 In this case the upper bits of op0 are undefined. We should not make
11157 the simplification in that case as we do not know the contents of
11158 those bits.
11160 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11161 NIL. In that case we know those bits are zeros or ones. We must
11162 also be sure that they are the same as the upper bits of op1.
11164 We can never remove a SUBREG for a non-equality comparison because
11165 the sign bit is in a different place in the underlying object. */
11167 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11168 op1 = make_compound_operation (op1, SET);
11170 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11171 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
11172 implemented. */
11173 && GET_CODE (SUBREG_REG (op0)) == REG
11174 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11175 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11176 && (code == NE || code == EQ))
11178 if (GET_MODE_SIZE (GET_MODE (op0))
11179 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11181 op0 = SUBREG_REG (op0);
11182 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11184 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11185 <= HOST_BITS_PER_WIDE_INT)
11186 && (nonzero_bits (SUBREG_REG (op0),
11187 GET_MODE (SUBREG_REG (op0)))
11188 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11190 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11192 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11193 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11194 op0 = SUBREG_REG (op0), op1 = tem;
11198 /* We now do the opposite procedure: Some machines don't have compare
11199 insns in all modes. If OP0's mode is an integer mode smaller than a
11200 word and we can't do a compare in that mode, see if there is a larger
11201 mode for which we can do the compare. There are a number of cases in
11202 which we can use the wider mode. */
11204 mode = GET_MODE (op0);
11205 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11206 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11207 && ! have_insn_for (COMPARE, mode))
11208 for (tmode = GET_MODE_WIDER_MODE (mode);
11209 (tmode != VOIDmode
11210 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11211 tmode = GET_MODE_WIDER_MODE (tmode))
11212 if (have_insn_for (COMPARE, tmode))
11214 int zero_extended;
11216 /* If the only nonzero bits in OP0 and OP1 are those in the
11217 narrower mode and this is an equality or unsigned comparison,
11218 we can use the wider mode. Similarly for sign-extended
11219 values, in which case it is true for all comparisons. */
11220 zero_extended = ((code == EQ || code == NE
11221 || code == GEU || code == GTU
11222 || code == LEU || code == LTU)
11223 && (nonzero_bits (op0, tmode)
11224 & ~GET_MODE_MASK (mode)) == 0
11225 && ((GET_CODE (op1) == CONST_INT
11226 || (nonzero_bits (op1, tmode)
11227 & ~GET_MODE_MASK (mode)) == 0)));
11229 if (zero_extended
11230 || ((num_sign_bit_copies (op0, tmode)
11231 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11232 - GET_MODE_BITSIZE (mode)))
11233 && (num_sign_bit_copies (op1, tmode)
11234 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11235 - GET_MODE_BITSIZE (mode)))))
11237 /* If OP0 is an AND and we don't have an AND in MODE either,
11238 make a new AND in the proper mode. */
11239 if (GET_CODE (op0) == AND
11240 && !have_insn_for (AND, mode))
11241 op0 = gen_binary (AND, tmode,
11242 gen_lowpart_for_combine (tmode,
11243 XEXP (op0, 0)),
11244 gen_lowpart_for_combine (tmode,
11245 XEXP (op0, 1)));
11247 op0 = gen_lowpart_for_combine (tmode, op0);
11248 if (zero_extended && GET_CODE (op1) == CONST_INT)
11249 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11250 op1 = gen_lowpart_for_combine (tmode, op1);
11251 break;
11254 /* If this is a test for negative, we can make an explicit
11255 test of the sign bit. */
11257 if (op1 == const0_rtx && (code == LT || code == GE)
11258 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11260 op0 = gen_binary (AND, tmode,
11261 gen_lowpart_for_combine (tmode, op0),
11262 GEN_INT ((HOST_WIDE_INT) 1
11263 << (GET_MODE_BITSIZE (mode) - 1)));
11264 code = (code == LT) ? NE : EQ;
11265 break;
11269 #ifdef CANONICALIZE_COMPARISON
11270 /* If this machine only supports a subset of valid comparisons, see if we
11271 can convert an unsupported one into a supported one. */
11272 CANONICALIZE_COMPARISON (code, op0, op1);
11273 #endif
11275 *pop0 = op0;
11276 *pop1 = op1;
11278 return code;
11281 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11282 searching backward. */
11283 static enum rtx_code
11284 combine_reversed_comparison_code (exp)
11285 rtx exp;
11287 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11288 rtx x;
11290 if (code1 != UNKNOWN
11291 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11292 return code1;
11293 /* Otherwise try and find where the condition codes were last set and
11294 use that. */
11295 x = get_last_value (XEXP (exp, 0));
11296 if (!x || GET_CODE (x) != COMPARE)
11297 return UNKNOWN;
11298 return reversed_comparison_code_parts (GET_CODE (exp),
11299 XEXP (x, 0), XEXP (x, 1), NULL);
11302 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11303 Return NULL_RTX in case we fail to do the reversal. */
11304 static rtx
11305 reversed_comparison (exp, mode, op0, op1)
11306 rtx exp, op0, op1;
11307 enum machine_mode mode;
11309 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11310 if (reversed_code == UNKNOWN)
11311 return NULL_RTX;
11312 else
11313 return gen_binary (reversed_code, mode, op0, op1);
11316 /* Utility function for following routine. Called when X is part of a value
11317 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11318 for each register mentioned. Similar to mention_regs in cse.c */
11320 static void
11321 update_table_tick (x)
11322 rtx x;
11324 enum rtx_code code = GET_CODE (x);
11325 const char *fmt = GET_RTX_FORMAT (code);
11326 int i;
11328 if (code == REG)
11330 unsigned int regno = REGNO (x);
11331 unsigned int endregno
11332 = regno + (regno < FIRST_PSEUDO_REGISTER
11333 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11334 unsigned int r;
11336 for (r = regno; r < endregno; r++)
11337 reg_last_set_table_tick[r] = label_tick;
11339 return;
11342 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11343 /* Note that we can't have an "E" in values stored; see
11344 get_last_value_validate. */
11345 if (fmt[i] == 'e')
11346 update_table_tick (XEXP (x, i));
11349 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11350 are saying that the register is clobbered and we no longer know its
11351 value. If INSN is zero, don't update reg_last_set; this is only permitted
11352 with VALUE also zero and is used to invalidate the register. */
11354 static void
11355 record_value_for_reg (reg, insn, value)
11356 rtx reg;
11357 rtx insn;
11358 rtx value;
11360 unsigned int regno = REGNO (reg);
11361 unsigned int endregno
11362 = regno + (regno < FIRST_PSEUDO_REGISTER
11363 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11364 unsigned int i;
11366 /* If VALUE contains REG and we have a previous value for REG, substitute
11367 the previous value. */
11368 if (value && insn && reg_overlap_mentioned_p (reg, value))
11370 rtx tem;
11372 /* Set things up so get_last_value is allowed to see anything set up to
11373 our insn. */
11374 subst_low_cuid = INSN_CUID (insn);
11375 tem = get_last_value (reg);
11377 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11378 it isn't going to be useful and will take a lot of time to process,
11379 so just use the CLOBBER. */
11381 if (tem)
11383 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11384 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11385 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11386 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11387 tem = XEXP (tem, 0);
11389 value = replace_rtx (copy_rtx (value), reg, tem);
11393 /* For each register modified, show we don't know its value, that
11394 we don't know about its bitwise content, that its value has been
11395 updated, and that we don't know the location of the death of the
11396 register. */
11397 for (i = regno; i < endregno; i++)
11399 if (insn)
11400 reg_last_set[i] = insn;
11402 reg_last_set_value[i] = 0;
11403 reg_last_set_mode[i] = 0;
11404 reg_last_set_nonzero_bits[i] = 0;
11405 reg_last_set_sign_bit_copies[i] = 0;
11406 reg_last_death[i] = 0;
11409 /* Mark registers that are being referenced in this value. */
11410 if (value)
11411 update_table_tick (value);
11413 /* Now update the status of each register being set.
11414 If someone is using this register in this block, set this register
11415 to invalid since we will get confused between the two lives in this
11416 basic block. This makes using this register always invalid. In cse, we
11417 scan the table to invalidate all entries using this register, but this
11418 is too much work for us. */
11420 for (i = regno; i < endregno; i++)
11422 reg_last_set_label[i] = label_tick;
11423 if (value && reg_last_set_table_tick[i] == label_tick)
11424 reg_last_set_invalid[i] = 1;
11425 else
11426 reg_last_set_invalid[i] = 0;
11429 /* The value being assigned might refer to X (like in "x++;"). In that
11430 case, we must replace it with (clobber (const_int 0)) to prevent
11431 infinite loops. */
11432 if (value && ! get_last_value_validate (&value, insn,
11433 reg_last_set_label[regno], 0))
11435 value = copy_rtx (value);
11436 if (! get_last_value_validate (&value, insn,
11437 reg_last_set_label[regno], 1))
11438 value = 0;
11441 /* For the main register being modified, update the value, the mode, the
11442 nonzero bits, and the number of sign bit copies. */
11444 reg_last_set_value[regno] = value;
11446 if (value)
11448 enum machine_mode mode = GET_MODE (reg);
11449 subst_low_cuid = INSN_CUID (insn);
11450 reg_last_set_mode[regno] = mode;
11451 if (GET_MODE_CLASS (mode) == MODE_INT
11452 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11453 mode = nonzero_bits_mode;
11454 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11455 reg_last_set_sign_bit_copies[regno]
11456 = num_sign_bit_copies (value, GET_MODE (reg));
11460 /* Called via note_stores from record_dead_and_set_regs to handle one
11461 SET or CLOBBER in an insn. DATA is the instruction in which the
11462 set is occurring. */
11464 static void
11465 record_dead_and_set_regs_1 (dest, setter, data)
11466 rtx dest, setter;
11467 void *data;
11469 rtx record_dead_insn = (rtx) data;
11471 if (GET_CODE (dest) == SUBREG)
11472 dest = SUBREG_REG (dest);
11474 if (GET_CODE (dest) == REG)
11476 /* If we are setting the whole register, we know its value. Otherwise
11477 show that we don't know the value. We can handle SUBREG in
11478 some cases. */
11479 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11480 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11481 else if (GET_CODE (setter) == SET
11482 && GET_CODE (SET_DEST (setter)) == SUBREG
11483 && SUBREG_REG (SET_DEST (setter)) == dest
11484 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11485 && subreg_lowpart_p (SET_DEST (setter)))
11486 record_value_for_reg (dest, record_dead_insn,
11487 gen_lowpart_for_combine (GET_MODE (dest),
11488 SET_SRC (setter)));
11489 else
11490 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11492 else if (GET_CODE (dest) == MEM
11493 /* Ignore pushes, they clobber nothing. */
11494 && ! push_operand (dest, GET_MODE (dest)))
11495 mem_last_set = INSN_CUID (record_dead_insn);
11498 /* Update the records of when each REG was most recently set or killed
11499 for the things done by INSN. This is the last thing done in processing
11500 INSN in the combiner loop.
11502 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11503 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11504 and also the similar information mem_last_set (which insn most recently
11505 modified memory) and last_call_cuid (which insn was the most recent
11506 subroutine call). */
11508 static void
11509 record_dead_and_set_regs (insn)
11510 rtx insn;
11512 rtx link;
11513 unsigned int i;
11515 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11517 if (REG_NOTE_KIND (link) == REG_DEAD
11518 && GET_CODE (XEXP (link, 0)) == REG)
11520 unsigned int regno = REGNO (XEXP (link, 0));
11521 unsigned int endregno
11522 = regno + (regno < FIRST_PSEUDO_REGISTER
11523 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11524 : 1);
11526 for (i = regno; i < endregno; i++)
11527 reg_last_death[i] = insn;
11529 else if (REG_NOTE_KIND (link) == REG_INC)
11530 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11533 if (GET_CODE (insn) == CALL_INSN)
11535 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11536 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11538 reg_last_set_value[i] = 0;
11539 reg_last_set_mode[i] = 0;
11540 reg_last_set_nonzero_bits[i] = 0;
11541 reg_last_set_sign_bit_copies[i] = 0;
11542 reg_last_death[i] = 0;
11545 last_call_cuid = mem_last_set = INSN_CUID (insn);
11547 /* Don't bother recording what this insn does. It might set the
11548 return value register, but we can't combine into a call
11549 pattern anyway, so there's no point trying (and it may cause
11550 a crash, if e.g. we wind up asking for last_set_value of a
11551 SUBREG of the return value register). */
11552 return;
11555 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11558 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11559 register present in the SUBREG, so for each such SUBREG go back and
11560 adjust nonzero and sign bit information of the registers that are
11561 known to have some zero/sign bits set.
11563 This is needed because when combine blows the SUBREGs away, the
11564 information on zero/sign bits is lost and further combines can be
11565 missed because of that. */
11567 static void
11568 record_promoted_value (insn, subreg)
11569 rtx insn;
11570 rtx subreg;
11572 rtx links, set;
11573 unsigned int regno = REGNO (SUBREG_REG (subreg));
11574 enum machine_mode mode = GET_MODE (subreg);
11576 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11577 return;
11579 for (links = LOG_LINKS (insn); links;)
11581 insn = XEXP (links, 0);
11582 set = single_set (insn);
11584 if (! set || GET_CODE (SET_DEST (set)) != REG
11585 || REGNO (SET_DEST (set)) != regno
11586 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11588 links = XEXP (links, 1);
11589 continue;
11592 if (reg_last_set[regno] == insn)
11594 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11595 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11598 if (GET_CODE (SET_SRC (set)) == REG)
11600 regno = REGNO (SET_SRC (set));
11601 links = LOG_LINKS (insn);
11603 else
11604 break;
11608 /* Scan X for promoted SUBREGs. For each one found,
11609 note what it implies to the registers used in it. */
11611 static void
11612 check_promoted_subreg (insn, x)
11613 rtx insn;
11614 rtx x;
11616 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11617 && GET_CODE (SUBREG_REG (x)) == REG)
11618 record_promoted_value (insn, x);
11619 else
11621 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11622 int i, j;
11624 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11625 switch (format[i])
11627 case 'e':
11628 check_promoted_subreg (insn, XEXP (x, i));
11629 break;
11630 case 'V':
11631 case 'E':
11632 if (XVEC (x, i) != 0)
11633 for (j = 0; j < XVECLEN (x, i); j++)
11634 check_promoted_subreg (insn, XVECEXP (x, i, j));
11635 break;
11640 /* Utility routine for the following function. Verify that all the registers
11641 mentioned in *LOC are valid when *LOC was part of a value set when
11642 label_tick == TICK. Return 0 if some are not.
11644 If REPLACE is nonzero, replace the invalid reference with
11645 (clobber (const_int 0)) and return 1. This replacement is useful because
11646 we often can get useful information about the form of a value (e.g., if
11647 it was produced by a shift that always produces -1 or 0) even though
11648 we don't know exactly what registers it was produced from. */
11650 static int
11651 get_last_value_validate (loc, insn, tick, replace)
11652 rtx *loc;
11653 rtx insn;
11654 int tick;
11655 int replace;
11657 rtx x = *loc;
11658 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11659 int len = GET_RTX_LENGTH (GET_CODE (x));
11660 int i;
11662 if (GET_CODE (x) == REG)
11664 unsigned int regno = REGNO (x);
11665 unsigned int endregno
11666 = regno + (regno < FIRST_PSEUDO_REGISTER
11667 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11668 unsigned int j;
11670 for (j = regno; j < endregno; j++)
11671 if (reg_last_set_invalid[j]
11672 /* If this is a pseudo-register that was only set once and not
11673 live at the beginning of the function, it is always valid. */
11674 || (! (regno >= FIRST_PSEUDO_REGISTER
11675 && REG_N_SETS (regno) == 1
11676 && (! REGNO_REG_SET_P
11677 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11678 && reg_last_set_label[j] > tick))
11680 if (replace)
11681 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11682 return replace;
11685 return 1;
11687 /* If this is a memory reference, make sure that there were
11688 no stores after it that might have clobbered the value. We don't
11689 have alias info, so we assume any store invalidates it. */
11690 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11691 && INSN_CUID (insn) <= mem_last_set)
11693 if (replace)
11694 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11695 return replace;
11698 for (i = 0; i < len; i++)
11699 if ((fmt[i] == 'e'
11700 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11701 /* Don't bother with these. They shouldn't occur anyway. */
11702 || fmt[i] == 'E')
11703 return 0;
11705 /* If we haven't found a reason for it to be invalid, it is valid. */
11706 return 1;
11709 /* Get the last value assigned to X, if known. Some registers
11710 in the value may be replaced with (clobber (const_int 0)) if their value
11711 is known longer known reliably. */
11713 static rtx
11714 get_last_value (x)
11715 rtx x;
11717 unsigned int regno;
11718 rtx value;
11720 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11721 then convert it to the desired mode. If this is a paradoxical SUBREG,
11722 we cannot predict what values the "extra" bits might have. */
11723 if (GET_CODE (x) == SUBREG
11724 && subreg_lowpart_p (x)
11725 && (GET_MODE_SIZE (GET_MODE (x))
11726 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11727 && (value = get_last_value (SUBREG_REG (x))) != 0)
11728 return gen_lowpart_for_combine (GET_MODE (x), value);
11730 if (GET_CODE (x) != REG)
11731 return 0;
11733 regno = REGNO (x);
11734 value = reg_last_set_value[regno];
11736 /* If we don't have a value, or if it isn't for this basic block and
11737 it's either a hard register, set more than once, or it's a live
11738 at the beginning of the function, return 0.
11740 Because if it's not live at the beginning of the function then the reg
11741 is always set before being used (is never used without being set).
11742 And, if it's set only once, and it's always set before use, then all
11743 uses must have the same last value, even if it's not from this basic
11744 block. */
11746 if (value == 0
11747 || (reg_last_set_label[regno] != label_tick
11748 && (regno < FIRST_PSEUDO_REGISTER
11749 || REG_N_SETS (regno) != 1
11750 || (REGNO_REG_SET_P
11751 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11752 return 0;
11754 /* If the value was set in a later insn than the ones we are processing,
11755 we can't use it even if the register was only set once. */
11756 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11757 return 0;
11759 /* If the value has all its registers valid, return it. */
11760 if (get_last_value_validate (&value, reg_last_set[regno],
11761 reg_last_set_label[regno], 0))
11762 return value;
11764 /* Otherwise, make a copy and replace any invalid register with
11765 (clobber (const_int 0)). If that fails for some reason, return 0. */
11767 value = copy_rtx (value);
11768 if (get_last_value_validate (&value, reg_last_set[regno],
11769 reg_last_set_label[regno], 1))
11770 return value;
11772 return 0;
11775 /* Return nonzero if expression X refers to a REG or to memory
11776 that is set in an instruction more recent than FROM_CUID. */
11778 static int
11779 use_crosses_set_p (x, from_cuid)
11780 rtx x;
11781 int from_cuid;
11783 const char *fmt;
11784 int i;
11785 enum rtx_code code = GET_CODE (x);
11787 if (code == REG)
11789 unsigned int regno = REGNO (x);
11790 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11791 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11793 #ifdef PUSH_ROUNDING
11794 /* Don't allow uses of the stack pointer to be moved,
11795 because we don't know whether the move crosses a push insn. */
11796 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11797 return 1;
11798 #endif
11799 for (; regno < endreg; regno++)
11800 if (reg_last_set[regno]
11801 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11802 return 1;
11803 return 0;
11806 if (code == MEM && mem_last_set > from_cuid)
11807 return 1;
11809 fmt = GET_RTX_FORMAT (code);
11811 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11813 if (fmt[i] == 'E')
11815 int j;
11816 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11817 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11818 return 1;
11820 else if (fmt[i] == 'e'
11821 && use_crosses_set_p (XEXP (x, i), from_cuid))
11822 return 1;
11824 return 0;
11827 /* Define three variables used for communication between the following
11828 routines. */
11830 static unsigned int reg_dead_regno, reg_dead_endregno;
11831 static int reg_dead_flag;
11833 /* Function called via note_stores from reg_dead_at_p.
11835 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11836 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11838 static void
11839 reg_dead_at_p_1 (dest, x, data)
11840 rtx dest;
11841 rtx x;
11842 void *data ATTRIBUTE_UNUSED;
11844 unsigned int regno, endregno;
11846 if (GET_CODE (dest) != REG)
11847 return;
11849 regno = REGNO (dest);
11850 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11851 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11853 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11854 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11857 /* Return nonzero if REG is known to be dead at INSN.
11859 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11860 referencing REG, it is dead. If we hit a SET referencing REG, it is
11861 live. Otherwise, see if it is live or dead at the start of the basic
11862 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11863 must be assumed to be always live. */
11865 static int
11866 reg_dead_at_p (reg, insn)
11867 rtx reg;
11868 rtx insn;
11870 basic_block block;
11871 unsigned int i;
11873 /* Set variables for reg_dead_at_p_1. */
11874 reg_dead_regno = REGNO (reg);
11875 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11876 ? HARD_REGNO_NREGS (reg_dead_regno,
11877 GET_MODE (reg))
11878 : 1);
11880 reg_dead_flag = 0;
11882 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11883 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11885 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11886 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11887 return 0;
11890 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11891 beginning of function. */
11892 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11893 insn = prev_nonnote_insn (insn))
11895 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11896 if (reg_dead_flag)
11897 return reg_dead_flag == 1 ? 1 : 0;
11899 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11900 return 1;
11903 /* Get the basic block that we were in. */
11904 if (insn == 0)
11905 block = ENTRY_BLOCK_PTR->next_bb;
11906 else
11908 FOR_EACH_BB (block)
11909 if (insn == block->head)
11910 break;
11912 if (block == EXIT_BLOCK_PTR)
11913 return 0;
11916 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11917 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11918 return 0;
11920 return 1;
11923 /* Note hard registers in X that are used. This code is similar to
11924 that in flow.c, but much simpler since we don't care about pseudos. */
11926 static void
11927 mark_used_regs_combine (x)
11928 rtx x;
11930 RTX_CODE code = GET_CODE (x);
11931 unsigned int regno;
11932 int i;
11934 switch (code)
11936 case LABEL_REF:
11937 case SYMBOL_REF:
11938 case CONST_INT:
11939 case CONST:
11940 case CONST_DOUBLE:
11941 case CONST_VECTOR:
11942 case PC:
11943 case ADDR_VEC:
11944 case ADDR_DIFF_VEC:
11945 case ASM_INPUT:
11946 #ifdef HAVE_cc0
11947 /* CC0 must die in the insn after it is set, so we don't need to take
11948 special note of it here. */
11949 case CC0:
11950 #endif
11951 return;
11953 case CLOBBER:
11954 /* If we are clobbering a MEM, mark any hard registers inside the
11955 address as used. */
11956 if (GET_CODE (XEXP (x, 0)) == MEM)
11957 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11958 return;
11960 case REG:
11961 regno = REGNO (x);
11962 /* A hard reg in a wide mode may really be multiple registers.
11963 If so, mark all of them just like the first. */
11964 if (regno < FIRST_PSEUDO_REGISTER)
11966 unsigned int endregno, r;
11968 /* None of this applies to the stack, frame or arg pointers. */
11969 if (regno == STACK_POINTER_REGNUM
11970 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11971 || regno == HARD_FRAME_POINTER_REGNUM
11972 #endif
11973 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11974 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11975 #endif
11976 || regno == FRAME_POINTER_REGNUM)
11977 return;
11979 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11980 for (r = regno; r < endregno; r++)
11981 SET_HARD_REG_BIT (newpat_used_regs, r);
11983 return;
11985 case SET:
11987 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11988 the address. */
11989 rtx testreg = SET_DEST (x);
11991 while (GET_CODE (testreg) == SUBREG
11992 || GET_CODE (testreg) == ZERO_EXTRACT
11993 || GET_CODE (testreg) == SIGN_EXTRACT
11994 || GET_CODE (testreg) == STRICT_LOW_PART)
11995 testreg = XEXP (testreg, 0);
11997 if (GET_CODE (testreg) == MEM)
11998 mark_used_regs_combine (XEXP (testreg, 0));
12000 mark_used_regs_combine (SET_SRC (x));
12002 return;
12004 default:
12005 break;
12008 /* Recursively scan the operands of this expression. */
12011 const char *fmt = GET_RTX_FORMAT (code);
12013 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12015 if (fmt[i] == 'e')
12016 mark_used_regs_combine (XEXP (x, i));
12017 else if (fmt[i] == 'E')
12019 int j;
12021 for (j = 0; j < XVECLEN (x, i); j++)
12022 mark_used_regs_combine (XVECEXP (x, i, j));
12028 /* Remove register number REGNO from the dead registers list of INSN.
12030 Return the note used to record the death, if there was one. */
12033 remove_death (regno, insn)
12034 unsigned int regno;
12035 rtx insn;
12037 rtx note = find_regno_note (insn, REG_DEAD, regno);
12039 if (note)
12041 REG_N_DEATHS (regno)--;
12042 remove_note (insn, note);
12045 return note;
12048 /* For each register (hardware or pseudo) used within expression X, if its
12049 death is in an instruction with cuid between FROM_CUID (inclusive) and
12050 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12051 list headed by PNOTES.
12053 That said, don't move registers killed by maybe_kill_insn.
12055 This is done when X is being merged by combination into TO_INSN. These
12056 notes will then be distributed as needed. */
12058 static void
12059 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
12060 rtx x;
12061 rtx maybe_kill_insn;
12062 int from_cuid;
12063 rtx to_insn;
12064 rtx *pnotes;
12066 const char *fmt;
12067 int len, i;
12068 enum rtx_code code = GET_CODE (x);
12070 if (code == REG)
12072 unsigned int regno = REGNO (x);
12073 rtx where_dead = reg_last_death[regno];
12074 rtx before_dead, after_dead;
12076 /* Don't move the register if it gets killed in between from and to. */
12077 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12078 && ! reg_referenced_p (x, maybe_kill_insn))
12079 return;
12081 /* WHERE_DEAD could be a USE insn made by combine, so first we
12082 make sure that we have insns with valid INSN_CUID values. */
12083 before_dead = where_dead;
12084 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12085 before_dead = PREV_INSN (before_dead);
12087 after_dead = where_dead;
12088 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12089 after_dead = NEXT_INSN (after_dead);
12091 if (before_dead && after_dead
12092 && INSN_CUID (before_dead) >= from_cuid
12093 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12094 || (where_dead != after_dead
12095 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12097 rtx note = remove_death (regno, where_dead);
12099 /* It is possible for the call above to return 0. This can occur
12100 when reg_last_death points to I2 or I1 that we combined with.
12101 In that case make a new note.
12103 We must also check for the case where X is a hard register
12104 and NOTE is a death note for a range of hard registers
12105 including X. In that case, we must put REG_DEAD notes for
12106 the remaining registers in place of NOTE. */
12108 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12109 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12110 > GET_MODE_SIZE (GET_MODE (x))))
12112 unsigned int deadregno = REGNO (XEXP (note, 0));
12113 unsigned int deadend
12114 = (deadregno + HARD_REGNO_NREGS (deadregno,
12115 GET_MODE (XEXP (note, 0))));
12116 unsigned int ourend
12117 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12118 unsigned int i;
12120 for (i = deadregno; i < deadend; i++)
12121 if (i < regno || i >= ourend)
12122 REG_NOTES (where_dead)
12123 = gen_rtx_EXPR_LIST (REG_DEAD,
12124 regno_reg_rtx[i],
12125 REG_NOTES (where_dead));
12128 /* If we didn't find any note, or if we found a REG_DEAD note that
12129 covers only part of the given reg, and we have a multi-reg hard
12130 register, then to be safe we must check for REG_DEAD notes
12131 for each register other than the first. They could have
12132 their own REG_DEAD notes lying around. */
12133 else if ((note == 0
12134 || (note != 0
12135 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12136 < GET_MODE_SIZE (GET_MODE (x)))))
12137 && regno < FIRST_PSEUDO_REGISTER
12138 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12140 unsigned int ourend
12141 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12142 unsigned int i, offset;
12143 rtx oldnotes = 0;
12145 if (note)
12146 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12147 else
12148 offset = 1;
12150 for (i = regno + offset; i < ourend; i++)
12151 move_deaths (regno_reg_rtx[i],
12152 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12155 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12157 XEXP (note, 1) = *pnotes;
12158 *pnotes = note;
12160 else
12161 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12163 REG_N_DEATHS (regno)++;
12166 return;
12169 else if (GET_CODE (x) == SET)
12171 rtx dest = SET_DEST (x);
12173 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12175 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12176 that accesses one word of a multi-word item, some
12177 piece of everything register in the expression is used by
12178 this insn, so remove any old death. */
12179 /* ??? So why do we test for equality of the sizes? */
12181 if (GET_CODE (dest) == ZERO_EXTRACT
12182 || GET_CODE (dest) == STRICT_LOW_PART
12183 || (GET_CODE (dest) == SUBREG
12184 && (((GET_MODE_SIZE (GET_MODE (dest))
12185 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12186 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12187 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12189 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12190 return;
12193 /* If this is some other SUBREG, we know it replaces the entire
12194 value, so use that as the destination. */
12195 if (GET_CODE (dest) == SUBREG)
12196 dest = SUBREG_REG (dest);
12198 /* If this is a MEM, adjust deaths of anything used in the address.
12199 For a REG (the only other possibility), the entire value is
12200 being replaced so the old value is not used in this insn. */
12202 if (GET_CODE (dest) == MEM)
12203 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12204 to_insn, pnotes);
12205 return;
12208 else if (GET_CODE (x) == CLOBBER)
12209 return;
12211 len = GET_RTX_LENGTH (code);
12212 fmt = GET_RTX_FORMAT (code);
12214 for (i = 0; i < len; i++)
12216 if (fmt[i] == 'E')
12218 int j;
12219 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12220 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12221 to_insn, pnotes);
12223 else if (fmt[i] == 'e')
12224 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12228 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12229 pattern of an insn. X must be a REG. */
12231 static int
12232 reg_bitfield_target_p (x, body)
12233 rtx x;
12234 rtx body;
12236 int i;
12238 if (GET_CODE (body) == SET)
12240 rtx dest = SET_DEST (body);
12241 rtx target;
12242 unsigned int regno, tregno, endregno, endtregno;
12244 if (GET_CODE (dest) == ZERO_EXTRACT)
12245 target = XEXP (dest, 0);
12246 else if (GET_CODE (dest) == STRICT_LOW_PART)
12247 target = SUBREG_REG (XEXP (dest, 0));
12248 else
12249 return 0;
12251 if (GET_CODE (target) == SUBREG)
12252 target = SUBREG_REG (target);
12254 if (GET_CODE (target) != REG)
12255 return 0;
12257 tregno = REGNO (target), regno = REGNO (x);
12258 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12259 return target == x;
12261 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12262 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12264 return endregno > tregno && regno < endtregno;
12267 else if (GET_CODE (body) == PARALLEL)
12268 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12269 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12270 return 1;
12272 return 0;
12275 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12276 as appropriate. I3 and I2 are the insns resulting from the combination
12277 insns including FROM (I2 may be zero).
12279 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12280 not need REG_DEAD notes because they are being substituted for. This
12281 saves searching in the most common cases.
12283 Each note in the list is either ignored or placed on some insns, depending
12284 on the type of note. */
12286 static void
12287 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12288 rtx notes;
12289 rtx from_insn;
12290 rtx i3, i2;
12291 rtx elim_i2, elim_i1;
12293 rtx note, next_note;
12294 rtx tem;
12296 for (note = notes; note; note = next_note)
12298 rtx place = 0, place2 = 0;
12300 /* If this NOTE references a pseudo register, ensure it references
12301 the latest copy of that register. */
12302 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12303 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12304 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12306 next_note = XEXP (note, 1);
12307 switch (REG_NOTE_KIND (note))
12309 case REG_BR_PROB:
12310 case REG_BR_PRED:
12311 case REG_EXEC_COUNT:
12312 /* Doesn't matter much where we put this, as long as it's somewhere.
12313 It is preferable to keep these notes on branches, which is most
12314 likely to be i3. */
12315 place = i3;
12316 break;
12318 case REG_VTABLE_REF:
12319 /* ??? Should remain with *a particular* memory load. Given the
12320 nature of vtable data, the last insn seems relatively safe. */
12321 place = i3;
12322 break;
12324 case REG_NON_LOCAL_GOTO:
12325 if (GET_CODE (i3) == JUMP_INSN)
12326 place = i3;
12327 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12328 place = i2;
12329 else
12330 abort ();
12331 break;
12333 case REG_EH_REGION:
12334 /* These notes must remain with the call or trapping instruction. */
12335 if (GET_CODE (i3) == CALL_INSN)
12336 place = i3;
12337 else if (i2 && GET_CODE (i2) == CALL_INSN)
12338 place = i2;
12339 else if (flag_non_call_exceptions)
12341 if (may_trap_p (i3))
12342 place = i3;
12343 else if (i2 && may_trap_p (i2))
12344 place = i2;
12345 /* ??? Otherwise assume we've combined things such that we
12346 can now prove that the instructions can't trap. Drop the
12347 note in this case. */
12349 else
12350 abort ();
12351 break;
12353 case REG_NORETURN:
12354 case REG_SETJMP:
12355 /* These notes must remain with the call. It should not be
12356 possible for both I2 and I3 to be a call. */
12357 if (GET_CODE (i3) == CALL_INSN)
12358 place = i3;
12359 else if (i2 && GET_CODE (i2) == CALL_INSN)
12360 place = i2;
12361 else
12362 abort ();
12363 break;
12365 case REG_UNUSED:
12366 /* Any clobbers for i3 may still exist, and so we must process
12367 REG_UNUSED notes from that insn.
12369 Any clobbers from i2 or i1 can only exist if they were added by
12370 recog_for_combine. In that case, recog_for_combine created the
12371 necessary REG_UNUSED notes. Trying to keep any original
12372 REG_UNUSED notes from these insns can cause incorrect output
12373 if it is for the same register as the original i3 dest.
12374 In that case, we will notice that the register is set in i3,
12375 and then add a REG_UNUSED note for the destination of i3, which
12376 is wrong. However, it is possible to have REG_UNUSED notes from
12377 i2 or i1 for register which were both used and clobbered, so
12378 we keep notes from i2 or i1 if they will turn into REG_DEAD
12379 notes. */
12381 /* If this register is set or clobbered in I3, put the note there
12382 unless there is one already. */
12383 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12385 if (from_insn != i3)
12386 break;
12388 if (! (GET_CODE (XEXP (note, 0)) == REG
12389 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12390 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12391 place = i3;
12393 /* Otherwise, if this register is used by I3, then this register
12394 now dies here, so we must put a REG_DEAD note here unless there
12395 is one already. */
12396 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12397 && ! (GET_CODE (XEXP (note, 0)) == REG
12398 ? find_regno_note (i3, REG_DEAD,
12399 REGNO (XEXP (note, 0)))
12400 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12402 PUT_REG_NOTE_KIND (note, REG_DEAD);
12403 place = i3;
12405 break;
12407 case REG_EQUAL:
12408 case REG_EQUIV:
12409 case REG_NOALIAS:
12410 /* These notes say something about results of an insn. We can
12411 only support them if they used to be on I3 in which case they
12412 remain on I3. Otherwise they are ignored.
12414 If the note refers to an expression that is not a constant, we
12415 must also ignore the note since we cannot tell whether the
12416 equivalence is still true. It might be possible to do
12417 slightly better than this (we only have a problem if I2DEST
12418 or I1DEST is present in the expression), but it doesn't
12419 seem worth the trouble. */
12421 if (from_insn == i3
12422 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12423 place = i3;
12424 break;
12426 case REG_INC:
12427 case REG_NO_CONFLICT:
12428 /* These notes say something about how a register is used. They must
12429 be present on any use of the register in I2 or I3. */
12430 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12431 place = i3;
12433 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12435 if (place)
12436 place2 = i2;
12437 else
12438 place = i2;
12440 break;
12442 case REG_LABEL:
12443 /* This can show up in several ways -- either directly in the
12444 pattern, or hidden off in the constant pool with (or without?)
12445 a REG_EQUAL note. */
12446 /* ??? Ignore the without-reg_equal-note problem for now. */
12447 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12448 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12449 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12450 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12451 place = i3;
12453 if (i2
12454 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12455 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12456 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12457 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12459 if (place)
12460 place2 = i2;
12461 else
12462 place = i2;
12465 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12466 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12467 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12469 if (JUMP_LABEL (place) != XEXP (note, 0))
12470 abort ();
12471 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12472 LABEL_NUSES (JUMP_LABEL (place))--;
12473 place = 0;
12475 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12477 if (JUMP_LABEL (place2) != XEXP (note, 0))
12478 abort ();
12479 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12480 LABEL_NUSES (JUMP_LABEL (place2))--;
12481 place2 = 0;
12483 break;
12485 case REG_NONNEG:
12486 case REG_WAS_0:
12487 /* These notes say something about the value of a register prior
12488 to the execution of an insn. It is too much trouble to see
12489 if the note is still correct in all situations. It is better
12490 to simply delete it. */
12491 break;
12493 case REG_RETVAL:
12494 /* If the insn previously containing this note still exists,
12495 put it back where it was. Otherwise move it to the previous
12496 insn. Adjust the corresponding REG_LIBCALL note. */
12497 if (GET_CODE (from_insn) != NOTE)
12498 place = from_insn;
12499 else
12501 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12502 place = prev_real_insn (from_insn);
12503 if (tem && place)
12504 XEXP (tem, 0) = place;
12505 /* If we're deleting the last remaining instruction of a
12506 libcall sequence, don't add the notes. */
12507 else if (XEXP (note, 0) == from_insn)
12508 tem = place = 0;
12510 break;
12512 case REG_LIBCALL:
12513 /* This is handled similarly to REG_RETVAL. */
12514 if (GET_CODE (from_insn) != NOTE)
12515 place = from_insn;
12516 else
12518 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12519 place = next_real_insn (from_insn);
12520 if (tem && place)
12521 XEXP (tem, 0) = place;
12522 /* If we're deleting the last remaining instruction of a
12523 libcall sequence, don't add the notes. */
12524 else if (XEXP (note, 0) == from_insn)
12525 tem = place = 0;
12527 break;
12529 case REG_DEAD:
12530 /* If the register is used as an input in I3, it dies there.
12531 Similarly for I2, if it is nonzero and adjacent to I3.
12533 If the register is not used as an input in either I3 or I2
12534 and it is not one of the registers we were supposed to eliminate,
12535 there are two possibilities. We might have a non-adjacent I2
12536 or we might have somehow eliminated an additional register
12537 from a computation. For example, we might have had A & B where
12538 we discover that B will always be zero. In this case we will
12539 eliminate the reference to A.
12541 In both cases, we must search to see if we can find a previous
12542 use of A and put the death note there. */
12544 if (from_insn
12545 && GET_CODE (from_insn) == CALL_INSN
12546 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12547 place = from_insn;
12548 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12549 place = i3;
12550 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12551 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12552 place = i2;
12554 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12555 || rtx_equal_p (XEXP (note, 0), elim_i1))
12556 break;
12558 if (place == 0)
12560 basic_block bb = this_basic_block;
12562 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12564 if (! INSN_P (tem))
12566 if (tem == bb->head)
12567 break;
12568 continue;
12571 /* If the register is being set at TEM, see if that is all
12572 TEM is doing. If so, delete TEM. Otherwise, make this
12573 into a REG_UNUSED note instead. */
12574 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12576 rtx set = single_set (tem);
12577 rtx inner_dest = 0;
12578 #ifdef HAVE_cc0
12579 rtx cc0_setter = NULL_RTX;
12580 #endif
12582 if (set != 0)
12583 for (inner_dest = SET_DEST (set);
12584 (GET_CODE (inner_dest) == STRICT_LOW_PART
12585 || GET_CODE (inner_dest) == SUBREG
12586 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12587 inner_dest = XEXP (inner_dest, 0))
12590 /* Verify that it was the set, and not a clobber that
12591 modified the register.
12593 CC0 targets must be careful to maintain setter/user
12594 pairs. If we cannot delete the setter due to side
12595 effects, mark the user with an UNUSED note instead
12596 of deleting it. */
12598 if (set != 0 && ! side_effects_p (SET_SRC (set))
12599 && rtx_equal_p (XEXP (note, 0), inner_dest)
12600 #ifdef HAVE_cc0
12601 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12602 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12603 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12604 #endif
12607 /* Move the notes and links of TEM elsewhere.
12608 This might delete other dead insns recursively.
12609 First set the pattern to something that won't use
12610 any register. */
12612 PATTERN (tem) = pc_rtx;
12614 distribute_notes (REG_NOTES (tem), tem, tem,
12615 NULL_RTX, NULL_RTX, NULL_RTX);
12616 distribute_links (LOG_LINKS (tem));
12618 PUT_CODE (tem, NOTE);
12619 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12620 NOTE_SOURCE_FILE (tem) = 0;
12622 #ifdef HAVE_cc0
12623 /* Delete the setter too. */
12624 if (cc0_setter)
12626 PATTERN (cc0_setter) = pc_rtx;
12628 distribute_notes (REG_NOTES (cc0_setter),
12629 cc0_setter, cc0_setter,
12630 NULL_RTX, NULL_RTX, NULL_RTX);
12631 distribute_links (LOG_LINKS (cc0_setter));
12633 PUT_CODE (cc0_setter, NOTE);
12634 NOTE_LINE_NUMBER (cc0_setter)
12635 = NOTE_INSN_DELETED;
12636 NOTE_SOURCE_FILE (cc0_setter) = 0;
12638 #endif
12640 /* If the register is both set and used here, put the
12641 REG_DEAD note here, but place a REG_UNUSED note
12642 here too unless there already is one. */
12643 else if (reg_referenced_p (XEXP (note, 0),
12644 PATTERN (tem)))
12646 place = tem;
12648 if (! find_regno_note (tem, REG_UNUSED,
12649 REGNO (XEXP (note, 0))))
12650 REG_NOTES (tem)
12651 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12652 REG_NOTES (tem));
12654 else
12656 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12658 /* If there isn't already a REG_UNUSED note, put one
12659 here. */
12660 if (! find_regno_note (tem, REG_UNUSED,
12661 REGNO (XEXP (note, 0))))
12662 place = tem;
12663 break;
12666 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12667 || (GET_CODE (tem) == CALL_INSN
12668 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12670 place = tem;
12672 /* If we are doing a 3->2 combination, and we have a
12673 register which formerly died in i3 and was not used
12674 by i2, which now no longer dies in i3 and is used in
12675 i2 but does not die in i2, and place is between i2
12676 and i3, then we may need to move a link from place to
12677 i2. */
12678 if (i2 && INSN_UID (place) <= max_uid_cuid
12679 && INSN_CUID (place) > INSN_CUID (i2)
12680 && from_insn
12681 && INSN_CUID (from_insn) > INSN_CUID (i2)
12682 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12684 rtx links = LOG_LINKS (place);
12685 LOG_LINKS (place) = 0;
12686 distribute_links (links);
12688 break;
12691 if (tem == bb->head)
12692 break;
12695 /* We haven't found an insn for the death note and it
12696 is still a REG_DEAD note, but we have hit the beginning
12697 of the block. If the existing life info says the reg
12698 was dead, there's nothing left to do. Otherwise, we'll
12699 need to do a global life update after combine. */
12700 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12701 && REGNO_REG_SET_P (bb->global_live_at_start,
12702 REGNO (XEXP (note, 0))))
12703 SET_BIT (refresh_blocks, this_basic_block->index);
12706 /* If the register is set or already dead at PLACE, we needn't do
12707 anything with this note if it is still a REG_DEAD note.
12708 We can here if it is set at all, not if is it totally replace,
12709 which is what `dead_or_set_p' checks, so also check for it being
12710 set partially. */
12712 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12714 unsigned int regno = REGNO (XEXP (note, 0));
12716 /* Similarly, if the instruction on which we want to place
12717 the note is a noop, we'll need do a global live update
12718 after we remove them in delete_noop_moves. */
12719 if (noop_move_p (place))
12720 SET_BIT (refresh_blocks, this_basic_block->index);
12722 if (dead_or_set_p (place, XEXP (note, 0))
12723 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12725 /* Unless the register previously died in PLACE, clear
12726 reg_last_death. [I no longer understand why this is
12727 being done.] */
12728 if (reg_last_death[regno] != place)
12729 reg_last_death[regno] = 0;
12730 place = 0;
12732 else
12733 reg_last_death[regno] = place;
12735 /* If this is a death note for a hard reg that is occupying
12736 multiple registers, ensure that we are still using all
12737 parts of the object. If we find a piece of the object
12738 that is unused, we must arrange for an appropriate REG_DEAD
12739 note to be added for it. However, we can't just emit a USE
12740 and tag the note to it, since the register might actually
12741 be dead; so we recourse, and the recursive call then finds
12742 the previous insn that used this register. */
12744 if (place && regno < FIRST_PSEUDO_REGISTER
12745 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12747 unsigned int endregno
12748 = regno + HARD_REGNO_NREGS (regno,
12749 GET_MODE (XEXP (note, 0)));
12750 int all_used = 1;
12751 unsigned int i;
12753 for (i = regno; i < endregno; i++)
12754 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12755 && ! find_regno_fusage (place, USE, i))
12756 || dead_or_set_regno_p (place, i))
12757 all_used = 0;
12759 if (! all_used)
12761 /* Put only REG_DEAD notes for pieces that are
12762 not already dead or set. */
12764 for (i = regno; i < endregno;
12765 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12767 rtx piece = regno_reg_rtx[i];
12768 basic_block bb = this_basic_block;
12770 if (! dead_or_set_p (place, piece)
12771 && ! reg_bitfield_target_p (piece,
12772 PATTERN (place)))
12774 rtx new_note
12775 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12777 distribute_notes (new_note, place, place,
12778 NULL_RTX, NULL_RTX, NULL_RTX);
12780 else if (! refers_to_regno_p (i, i + 1,
12781 PATTERN (place), 0)
12782 && ! find_regno_fusage (place, USE, i))
12783 for (tem = PREV_INSN (place); ;
12784 tem = PREV_INSN (tem))
12786 if (! INSN_P (tem))
12788 if (tem == bb->head)
12790 SET_BIT (refresh_blocks,
12791 this_basic_block->index);
12792 break;
12794 continue;
12796 if (dead_or_set_p (tem, piece)
12797 || reg_bitfield_target_p (piece,
12798 PATTERN (tem)))
12800 REG_NOTES (tem)
12801 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12802 REG_NOTES (tem));
12803 break;
12809 place = 0;
12813 break;
12815 default:
12816 /* Any other notes should not be present at this point in the
12817 compilation. */
12818 abort ();
12821 if (place)
12823 XEXP (note, 1) = REG_NOTES (place);
12824 REG_NOTES (place) = note;
12826 else if ((REG_NOTE_KIND (note) == REG_DEAD
12827 || REG_NOTE_KIND (note) == REG_UNUSED)
12828 && GET_CODE (XEXP (note, 0)) == REG)
12829 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12831 if (place2)
12833 if ((REG_NOTE_KIND (note) == REG_DEAD
12834 || REG_NOTE_KIND (note) == REG_UNUSED)
12835 && GET_CODE (XEXP (note, 0)) == REG)
12836 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12838 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12839 REG_NOTE_KIND (note),
12840 XEXP (note, 0),
12841 REG_NOTES (place2));
12846 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12847 I3, I2, and I1 to new locations. This is also called in one case to
12848 add a link pointing at I3 when I3's destination is changed. */
12850 static void
12851 distribute_links (links)
12852 rtx links;
12854 rtx link, next_link;
12856 for (link = links; link; link = next_link)
12858 rtx place = 0;
12859 rtx insn;
12860 rtx set, reg;
12862 next_link = XEXP (link, 1);
12864 /* If the insn that this link points to is a NOTE or isn't a single
12865 set, ignore it. In the latter case, it isn't clear what we
12866 can do other than ignore the link, since we can't tell which
12867 register it was for. Such links wouldn't be used by combine
12868 anyway.
12870 It is not possible for the destination of the target of the link to
12871 have been changed by combine. The only potential of this is if we
12872 replace I3, I2, and I1 by I3 and I2. But in that case the
12873 destination of I2 also remains unchanged. */
12875 if (GET_CODE (XEXP (link, 0)) == NOTE
12876 || (set = single_set (XEXP (link, 0))) == 0)
12877 continue;
12879 reg = SET_DEST (set);
12880 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12881 || GET_CODE (reg) == SIGN_EXTRACT
12882 || GET_CODE (reg) == STRICT_LOW_PART)
12883 reg = XEXP (reg, 0);
12885 /* A LOG_LINK is defined as being placed on the first insn that uses
12886 a register and points to the insn that sets the register. Start
12887 searching at the next insn after the target of the link and stop
12888 when we reach a set of the register or the end of the basic block.
12890 Note that this correctly handles the link that used to point from
12891 I3 to I2. Also note that not much searching is typically done here
12892 since most links don't point very far away. */
12894 for (insn = NEXT_INSN (XEXP (link, 0));
12895 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12896 || this_basic_block->next_bb->head != insn));
12897 insn = NEXT_INSN (insn))
12898 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12900 if (reg_referenced_p (reg, PATTERN (insn)))
12901 place = insn;
12902 break;
12904 else if (GET_CODE (insn) == CALL_INSN
12905 && find_reg_fusage (insn, USE, reg))
12907 place = insn;
12908 break;
12911 /* If we found a place to put the link, place it there unless there
12912 is already a link to the same insn as LINK at that point. */
12914 if (place)
12916 rtx link2;
12918 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12919 if (XEXP (link2, 0) == XEXP (link, 0))
12920 break;
12922 if (link2 == 0)
12924 XEXP (link, 1) = LOG_LINKS (place);
12925 LOG_LINKS (place) = link;
12927 /* Set added_links_insn to the earliest insn we added a
12928 link to. */
12929 if (added_links_insn == 0
12930 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12931 added_links_insn = place;
12937 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12939 static int
12940 insn_cuid (insn)
12941 rtx insn;
12943 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12944 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12945 insn = NEXT_INSN (insn);
12947 if (INSN_UID (insn) > max_uid_cuid)
12948 abort ();
12950 return INSN_CUID (insn);
12953 void
12954 dump_combine_stats (file)
12955 FILE *file;
12957 fnotice
12958 (file,
12959 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12960 combine_attempts, combine_merges, combine_extras, combine_successes);
12963 void
12964 dump_combine_total_stats (file)
12965 FILE *file;
12967 fnotice
12968 (file,
12969 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12970 total_attempts, total_merges, total_extras, total_successes);