1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
10 -- Copyright (C) 1992-2002 Free Software Foundation, Inc. --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 2, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
18 -- for more details. You should have received a copy of the GNU General --
19 -- Public License distributed with GNAT; see file COPYING. If not, write --
20 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
21 -- MA 02111-1307, USA. --
23 -- GNAT was originally developed by the GNAT team at New York University. --
24 -- Extensive contributions were provided by Ada Core Technologies Inc. --
26 ------------------------------------------------------------------------------
28 with Atree
; use Atree
;
29 with Checks
; use Checks
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Exp_Aggr
; use Exp_Aggr
;
34 with Exp_Ch4
; use Exp_Ch4
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Ch11
; use Exp_Ch11
;
38 with Exp_Disp
; use Exp_Disp
;
39 with Exp_Dist
; use Exp_Dist
;
40 with Exp_Smem
; use Exp_Smem
;
41 with Exp_Strm
; use Exp_Strm
;
42 with Exp_Tss
; use Exp_Tss
;
43 with Exp_Util
; use Exp_Util
;
44 with Freeze
; use Freeze
;
45 with Hostparm
; use Hostparm
;
46 with Nlists
; use Nlists
;
47 with Nmake
; use Nmake
;
49 with Restrict
; use Restrict
;
50 with Rtsfind
; use Rtsfind
;
52 with Sem_Ch3
; use Sem_Ch3
;
53 with Sem_Ch8
; use Sem_Ch8
;
54 with Sem_Eval
; use Sem_Eval
;
55 with Sem_Mech
; use Sem_Mech
;
56 with Sem_Res
; use Sem_Res
;
57 with Sem_Util
; use Sem_Util
;
58 with Sinfo
; use Sinfo
;
59 with Stand
; use Stand
;
60 with Snames
; use Snames
;
61 with Tbuild
; use Tbuild
;
62 with Ttypes
; use Ttypes
;
63 with Uintp
; use Uintp
;
64 with Validsw
; use Validsw
;
66 package body Exp_Ch3
is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Adjust_Discriminants
(Rtype
: Entity_Id
);
73 -- This is used when freezing a record type. It attempts to construct
74 -- more restrictive subtypes for discriminants so that the max size of
75 -- the record can be calculated more accurately. See the body of this
76 -- procedure for details.
78 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
);
79 -- Build initialization procedure for given array type. Nod is a node
80 -- used for attachment of any actions required in its construction.
81 -- It also supplies the source location used for the procedure.
83 procedure Build_Class_Wide_Master
(T
: Entity_Id
);
84 -- for access to class-wide limited types we must build a task master
85 -- because some subsequent extension may add a task component. To avoid
86 -- bringing in the tasking run-time whenever an access-to-class-wide
87 -- limited type is used, we use the soft-link mechanism and add a level
88 -- of indirection to calls to routines that manipulate Master_Ids.
90 function Build_Discriminant_Formals
94 -- This function uses the discriminants of a type to build a list of
95 -- formal parameters, used in the following function. If the flag Use_Dl
96 -- is set, the list is built using the already defined discriminals
97 -- of the type. Otherwise new identifiers are created, with the source
98 -- names of the discriminants.
100 procedure Build_Master_Renaming
(N
: Node_Id
; T
: Entity_Id
);
101 -- If the designated type of an access type is a task type or contains
102 -- tasks, we make sure that a _Master variable is declared in the current
103 -- scope, and then declare a renaming for it:
105 -- atypeM : Master_Id renames _Master;
107 -- where atyp is the name of the access type. This declaration is
108 -- used when an allocator for the access type is expanded. The node N
109 -- is the full declaration of the designated type that contains tasks.
110 -- The renaming declaration is inserted before N, and after the Master
113 procedure Build_Record_Init_Proc
(N
: Node_Id
; Pe
: Entity_Id
);
114 -- Build record initialization procedure. N is the type declaration
115 -- node, and Pe is the corresponding entity for the record type.
117 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
);
118 -- Create An Equality function for the non-tagged variant record 'Typ'
119 -- and attach it to the TSS list
121 procedure Check_Stream_Attributes
(Typ
: Entity_Id
);
122 -- Check that if a limited extension has a parent with user-defined
123 -- stream attributes, any limited component of the extension also has
124 -- the corresponding user-defined stream attributes.
126 procedure Expand_Tagged_Root
(T
: Entity_Id
);
127 -- Add a field _Tag at the beginning of the record. This field carries
128 -- the value of the access to the Dispatch table. This procedure is only
129 -- called on root (non CPP_Class) types, the _Tag field being inherited
130 -- by the descendants.
132 procedure Expand_Record_Controller
(T
: Entity_Id
);
133 -- T must be a record type that Has_Controlled_Component. Add a field _C
134 -- of type Record_Controller or Limited_Record_Controller in the record T.
136 procedure Freeze_Array_Type
(N
: Node_Id
);
137 -- Freeze an array type. Deals with building the initialization procedure,
138 -- creating the packed array type for a packed array and also with the
139 -- creation of the controlling procedures for the controlled case. The
140 -- argument N is the N_Freeze_Entity node for the type.
142 procedure Freeze_Enumeration_Type
(N
: Node_Id
);
143 -- Freeze enumeration type with non-standard representation. Builds the
144 -- array and function needed to convert between enumeration pos and
145 -- enumeration representation values. N is the N_Freeze_Entity node
148 procedure Freeze_Record_Type
(N
: Node_Id
);
149 -- Freeze record type. Builds all necessary discriminant checking
150 -- and other ancillary functions, and builds dispatch tables where
151 -- needed. The argument N is the N_Freeze_Entity node. This processing
152 -- applies only to E_Record_Type entities, not to class wide types,
153 -- record subtypes, or private types.
155 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
);
156 -- Treat user-defined stream operations as renaming_as_body if the
157 -- subprogram they rename is not frozen when the type is frozen.
159 function Init_Formals
(Typ
: Entity_Id
) return List_Id
;
160 -- This function builds the list of formals for an initialization routine.
161 -- The first formal is always _Init with the given type. For task value
162 -- record types and types containing tasks, three additional formals are
165 -- _Master : Master_Id
166 -- _Chain : in out Activation_Chain
167 -- _Task_Id : Task_Image_Type
169 -- The caller must append additional entries for discriminants if required.
171 function In_Runtime
(E
: Entity_Id
) return Boolean;
172 -- Check if E is defined in the RTL (in a child of Ada or System). Used
173 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
175 function Make_Eq_Case
(Node
: Node_Id
; CL
: Node_Id
) return List_Id
;
176 -- Building block for variant record equality. Defined to share the
177 -- code between the tagged and non-tagged case. Given a Component_List
178 -- node CL, it generates an 'if' followed by a 'case' statement that
179 -- compares all components of local temporaries named X and Y (that
180 -- are declared as formals at some upper level). Node provides the
181 -- Sloc to be used for the generated code.
183 function Make_Eq_If
(Node
: Node_Id
; L
: List_Id
) return Node_Id
;
184 -- Building block for variant record equality. Defined to share the
185 -- code between the tagged and non-tagged case. Given the list of
186 -- components (or discriminants) L, it generates a return statement
187 -- that compares all components of local temporaries named X and Y
188 -- (that are declared as formals at some upper level). Node provides
189 -- the Sloc to be used for the generated code.
191 procedure Make_Predefined_Primitive_Specs
192 (Tag_Typ
: Entity_Id
;
193 Predef_List
: out List_Id
;
194 Renamed_Eq
: out Node_Id
);
195 -- Create a list with the specs of the predefined primitive operations.
196 -- This list contains _Size, _Read, _Write, _Input and _Output for
197 -- every tagged types, plus _equality, _assign, _deep_finalize and
198 -- _deep_adjust for non limited tagged types. _Size, _Read, _Write,
199 -- _Input and _Output implement the corresponding attributes that need
200 -- to be dispatching when their arguments are classwide. _equality and
201 -- _assign, implement equality and assignment that also must be
202 -- dispatching. _Deep_Finalize and _Deep_Adjust are empty procedures
203 -- unless the type contains some controlled components that require
204 -- finalization actions. The list is returned in Predef_List. The
205 -- parameter Renamed_Eq either returns the value Empty, or else the
206 -- defining unit name for the predefined equality function in the
207 -- case where the type has a primitive operation that is a renaming
208 -- of predefined equality (but only if there is also an overriding
209 -- user-defined equality function). The returned Renamed_Eq will be
210 -- passed to the corresponding parameter of Predefined_Primitive_Bodies.
212 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean;
213 -- returns True if there are representation clauses for type T that
214 -- are not inherited. If the result is false, the init_proc and the
215 -- discriminant_checking functions of the parent can be reused by
218 function Predef_Spec_Or_Body
223 Ret_Type
: Entity_Id
:= Empty
;
224 For_Body
: Boolean := False)
226 -- This function generates the appropriate expansion for a predefined
227 -- primitive operation specified by its name, parameter profile and
228 -- return type (Empty means this is a procedure). If For_Body is false,
229 -- then the returned node is a subprogram declaration. If For_Body is
230 -- true, then the returned node is a empty subprogram body containing
231 -- no declarations and no statements.
233 function Predef_Stream_Attr_Spec
237 For_Body
: Boolean := False)
239 -- Specialized version of Predef_Spec_Or_Body that apply to _read, _write,
240 -- _input and _output whose specs are constructed in Exp_Strm.
242 function Predef_Deep_Spec
246 For_Body
: Boolean := False)
248 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
249 -- and _deep_finalize
251 function Predefined_Primitive_Bodies
252 (Tag_Typ
: Entity_Id
;
253 Renamed_Eq
: Node_Id
)
255 -- Create the bodies of the predefined primitives that are described in
256 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
257 -- the defining unit name of the type's predefined equality as returned
258 -- by Make_Predefined_Primitive_Specs.
260 function Predefined_Primitive_Freeze
(Tag_Typ
: Entity_Id
) return List_Id
;
261 -- Freeze entities of all predefined primitive operations. This is needed
262 -- because the bodies of these operations do not normally do any freezeing.
264 --------------------------
265 -- Adjust_Discriminants --
266 --------------------------
268 -- This procedure attempts to define subtypes for discriminants that
269 -- are more restrictive than those declared. Such a replacement is
270 -- possible if we can demonstrate that values outside the restricted
271 -- range would cause constraint errors in any case. The advantage of
272 -- restricting the discriminant types in this way is tha the maximum
273 -- size of the variant record can be calculated more conservatively.
275 -- An example of a situation in which we can perform this type of
276 -- restriction is the following:
278 -- subtype B is range 1 .. 10;
279 -- type Q is array (B range <>) of Integer;
281 -- type V (N : Natural) is record
285 -- In this situation, we can restrict the upper bound of N to 10, since
286 -- any larger value would cause a constraint error in any case.
288 -- There are many situations in which such restriction is possible, but
289 -- for now, we just look for cases like the above, where the component
290 -- in question is a one dimensional array whose upper bound is one of
291 -- the record discriminants. Also the component must not be part of
292 -- any variant part, since then the component does not always exist.
294 procedure Adjust_Discriminants
(Rtype
: Entity_Id
) is
295 Loc
: constant Source_Ptr
:= Sloc
(Rtype
);
312 Comp
:= First_Component
(Rtype
);
313 while Present
(Comp
) loop
315 -- If our parent is a variant, quit, we do not look at components
316 -- that are in variant parts, because they may not always exist.
318 P
:= Parent
(Comp
); -- component declaration
319 P
:= Parent
(P
); -- component list
321 exit when Nkind
(Parent
(P
)) = N_Variant
;
323 -- We are looking for a one dimensional array type
325 Ctyp
:= Etype
(Comp
);
327 if not Is_Array_Type
(Ctyp
)
328 or else Number_Dimensions
(Ctyp
) > 1
333 -- The lower bound must be constant, and the upper bound is a
334 -- discriminant (which is a discriminant of the current record).
336 Ityp
:= Etype
(First_Index
(Ctyp
));
337 Lo
:= Type_Low_Bound
(Ityp
);
338 Hi
:= Type_High_Bound
(Ityp
);
340 if not Compile_Time_Known_Value
(Lo
)
341 or else Nkind
(Hi
) /= N_Identifier
342 or else No
(Entity
(Hi
))
343 or else Ekind
(Entity
(Hi
)) /= E_Discriminant
348 -- We have an array with appropriate bounds
350 Loval
:= Expr_Value
(Lo
);
351 Discr
:= Entity
(Hi
);
352 Dtyp
:= Etype
(Discr
);
354 -- See if the discriminant has a known upper bound
356 Dhi
:= Type_High_Bound
(Dtyp
);
358 if not Compile_Time_Known_Value
(Dhi
) then
362 Dhiv
:= Expr_Value
(Dhi
);
364 -- See if base type of component array has known upper bound
366 Ahi
:= Type_High_Bound
(Etype
(First_Index
(Base_Type
(Ctyp
))));
368 if not Compile_Time_Known_Value
(Ahi
) then
372 Ahiv
:= Expr_Value
(Ahi
);
374 -- The condition for doing the restriction is that the high bound
375 -- of the discriminant is greater than the low bound of the array,
376 -- and is also greater than the high bound of the base type index.
378 if Dhiv
> Loval
and then Dhiv
> Ahiv
then
380 -- We can reset the upper bound of the discriminant type to
381 -- whichever is larger, the low bound of the component, or
382 -- the high bound of the base type array index.
384 -- We build a subtype that is declared as
386 -- subtype Tnn is discr_type range discr_type'First .. max;
388 -- And insert this declaration into the tree. The type of the
389 -- discriminant is then reset to this more restricted subtype.
391 Tnn
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('T'));
393 Insert_Action
(Declaration_Node
(Rtype
),
394 Make_Subtype_Declaration
(Loc
,
395 Defining_Identifier
=> Tnn
,
396 Subtype_Indication
=>
397 Make_Subtype_Indication
(Loc
,
398 Subtype_Mark
=> New_Occurrence_Of
(Dtyp
, Loc
),
400 Make_Range_Constraint
(Loc
,
404 Make_Attribute_Reference
(Loc
,
405 Attribute_Name
=> Name_First
,
406 Prefix
=> New_Occurrence_Of
(Dtyp
, Loc
)),
408 Make_Integer_Literal
(Loc
,
409 Intval
=> UI_Max
(Loval
, Ahiv
)))))));
411 Set_Etype
(Discr
, Tnn
);
415 Next_Component
(Comp
);
418 end Adjust_Discriminants
;
420 ---------------------------
421 -- Build_Array_Init_Proc --
422 ---------------------------
424 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
) is
425 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
426 Comp_Type
: constant Entity_Id
:= Component_Type
(A_Type
);
427 Index_List
: List_Id
;
430 Body_Stmts
: List_Id
;
432 function Init_Component
return List_Id
;
433 -- Create one statement to initialize one array component, designated
434 -- by a full set of indices.
436 function Init_One_Dimension
(N
: Int
) return List_Id
;
437 -- Create loop to initialize one dimension of the array. The single
438 -- statement in the loop body initializes the inner dimensions if any,
439 -- or else the single component. Note that this procedure is called
440 -- recursively, with N being the dimension to be initialized. A call
441 -- with N greater than the number of dimensions simply generates the
442 -- component initialization, terminating the recursion.
448 function Init_Component
return List_Id
is
453 Make_Indexed_Component
(Loc
,
454 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
455 Expressions
=> Index_List
);
457 if Needs_Simple_Initialization
(Comp_Type
) then
458 Set_Assignment_OK
(Comp
);
460 Make_Assignment_Statement
(Loc
,
462 Expression
=> Get_Simple_Init_Val
(Comp_Type
, Loc
)));
466 Build_Initialization_Call
(Loc
, Comp
, Comp_Type
, True, A_Type
);
470 ------------------------
471 -- Init_One_Dimension --
472 ------------------------
474 function Init_One_Dimension
(N
: Int
) return List_Id
is
478 -- If the component does not need initializing, then there is nothing
479 -- to do here, so we return a null body. This occurs when generating
480 -- the dummy Init_Proc needed for Initialize_Scalars processing.
482 if not Has_Non_Null_Base_Init_Proc
(Comp_Type
)
483 and then not Needs_Simple_Initialization
(Comp_Type
)
484 and then not Has_Task
(Comp_Type
)
486 return New_List
(Make_Null_Statement
(Loc
));
488 -- If all dimensions dealt with, we simply initialize the component
490 elsif N
> Number_Dimensions
(A_Type
) then
491 return Init_Component
;
493 -- Here we generate the required loop
497 Make_Defining_Identifier
(Loc
, New_External_Name
('J', N
));
499 Append
(New_Reference_To
(Index
, Loc
), Index_List
);
502 Make_Implicit_Loop_Statement
(Nod
,
505 Make_Iteration_Scheme
(Loc
,
506 Loop_Parameter_Specification
=>
507 Make_Loop_Parameter_Specification
(Loc
,
508 Defining_Identifier
=> Index
,
509 Discrete_Subtype_Definition
=>
510 Make_Attribute_Reference
(Loc
,
511 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
512 Attribute_Name
=> Name_Range
,
513 Expressions
=> New_List
(
514 Make_Integer_Literal
(Loc
, N
))))),
515 Statements
=> Init_One_Dimension
(N
+ 1)));
517 end Init_One_Dimension
;
519 -- Start of processing for Build_Array_Init_Proc
522 if Suppress_Init_Proc
(A_Type
) then
526 Index_List
:= New_List
;
528 -- We need an initialization procedure if any of the following is true:
530 -- 1. The component type has an initialization procedure
531 -- 2. The component type needs simple initialization
532 -- 3. Tasks are present
533 -- 4. The type is marked as a publc entity
535 -- The reason for the public entity test is to deal properly with the
536 -- Initialize_Scalars pragma. This pragma can be set in the client and
537 -- not in the declaring package, this means the client will make a call
538 -- to the initialization procedure (because one of conditions 1-3 must
539 -- apply in this case), and we must generate a procedure (even if it is
540 -- null) to satisfy the call in this case.
542 -- Exception: do not build an array init_proc for a type whose root type
543 -- is Standard.String or Standard.Wide_String, since there is no place
544 -- to put the code, and in any case we handle initialization of such
545 -- types (in the Initialize_Scalars case, that's the only time the issue
546 -- arises) in a special manner anyway which does not need an init_proc.
548 if Has_Non_Null_Base_Init_Proc
(Comp_Type
)
549 or else Needs_Simple_Initialization
(Comp_Type
)
550 or else Has_Task
(Comp_Type
)
551 or else (Is_Public
(A_Type
)
552 and then Root_Type
(A_Type
) /= Standard_String
553 and then Root_Type
(A_Type
) /= Standard_Wide_String
)
556 Make_Defining_Identifier
(Loc
, Name_uInit_Proc
);
558 Body_Stmts
:= Init_One_Dimension
(1);
561 Make_Subprogram_Body
(Loc
,
563 Make_Procedure_Specification
(Loc
,
564 Defining_Unit_Name
=> Proc_Id
,
565 Parameter_Specifications
=> Init_Formals
(A_Type
)),
566 Declarations
=> New_List
,
567 Handled_Statement_Sequence
=>
568 Make_Handled_Sequence_Of_Statements
(Loc
,
569 Statements
=> Body_Stmts
));
571 Set_Ekind
(Proc_Id
, E_Procedure
);
572 Set_Is_Public
(Proc_Id
, Is_Public
(A_Type
));
573 Set_Is_Internal
(Proc_Id
);
574 Set_Has_Completion
(Proc_Id
);
576 if not Debug_Generated_Code
then
577 Set_Debug_Info_Off
(Proc_Id
);
580 -- Set inlined unless controlled stuff or tasks around, in which
581 -- case we do not want to inline, because nested stuff may cause
582 -- difficulties in interunit inlining, and furthermore there is
583 -- in any case no point in inlining such complex init procs.
585 if not Has_Task
(Proc_Id
)
586 and then not Controlled_Type
(Proc_Id
)
588 Set_Is_Inlined
(Proc_Id
);
591 -- Associate Init_Proc with type, and determine if the procedure
592 -- is null (happens because of the Initialize_Scalars pragma case,
593 -- where we have to generate a null procedure in case it is called
594 -- by a client with Initialize_Scalars set). Such procedures have
595 -- to be generated, but do not have to be called, so we mark them
596 -- as null to suppress the call.
598 Set_Init_Proc
(A_Type
, Proc_Id
);
600 if List_Length
(Body_Stmts
) = 1
601 and then Nkind
(First
(Body_Stmts
)) = N_Null_Statement
603 Set_Is_Null_Init_Proc
(Proc_Id
);
607 end Build_Array_Init_Proc
;
609 -----------------------------
610 -- Build_Class_Wide_Master --
611 -----------------------------
613 procedure Build_Class_Wide_Master
(T
: Entity_Id
) is
614 Loc
: constant Source_Ptr
:= Sloc
(T
);
620 -- Nothing to do if there is no task hierarchy.
622 if Restrictions
(No_Task_Hierarchy
) then
626 -- Nothing to do if we already built a master entity for this scope
628 if not Has_Master_Entity
(Scope
(T
)) then
629 -- first build the master entity
630 -- _Master : constant Master_Id := Current_Master.all;
631 -- and insert it just before the current declaration
634 Make_Object_Declaration
(Loc
,
635 Defining_Identifier
=>
636 Make_Defining_Identifier
(Loc
, Name_uMaster
),
637 Constant_Present
=> True,
638 Object_Definition
=> New_Reference_To
(Standard_Integer
, Loc
),
640 Make_Explicit_Dereference
(Loc
,
641 New_Reference_To
(RTE
(RE_Current_Master
), Loc
)));
644 Insert_Before
(P
, Decl
);
646 Set_Has_Master_Entity
(Scope
(T
));
648 -- Now mark the containing scope as a task master
650 while Nkind
(P
) /= N_Compilation_Unit
loop
653 -- If we fall off the top, we are at the outer level, and the
654 -- environment task is our effective master, so nothing to mark.
656 if Nkind
(P
) = N_Task_Body
657 or else Nkind
(P
) = N_Block_Statement
658 or else Nkind
(P
) = N_Subprogram_Body
660 Set_Is_Task_Master
(P
, True);
666 -- Now define the renaming of the master_id.
669 Make_Defining_Identifier
(Loc
,
670 New_External_Name
(Chars
(T
), 'M'));
673 Make_Object_Renaming_Declaration
(Loc
,
674 Defining_Identifier
=> M_Id
,
675 Subtype_Mark
=> New_Reference_To
(Standard_Integer
, Loc
),
676 Name
=> Make_Identifier
(Loc
, Name_uMaster
));
677 Insert_Before
(Parent
(T
), Decl
);
680 Set_Master_Id
(T
, M_Id
);
681 end Build_Class_Wide_Master
;
683 --------------------------------
684 -- Build_Discr_Checking_Funcs --
685 --------------------------------
687 procedure Build_Discr_Checking_Funcs
(N
: Node_Id
) is
690 Enclosing_Func_Id
: Entity_Id
;
695 function Build_Case_Statement
696 (Case_Id
: Entity_Id
;
699 -- Need documentation for this spec ???
701 function Build_Dcheck_Function
702 (Case_Id
: Entity_Id
;
705 -- Build the discriminant checking function for a given variant
707 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
);
708 -- Builds the discriminant checking function for each variant of the
709 -- given variant part of the record type.
711 --------------------------
712 -- Build_Case_Statement --
713 --------------------------
715 function Build_Case_Statement
716 (Case_Id
: Entity_Id
;
720 Actuals_List
: List_Id
;
721 Alt_List
: List_Id
:= New_List
;
723 Case_Alt_Node
: Node_Id
;
725 Choice_List
: List_Id
;
727 Return_Node
: Node_Id
;
730 -- Build a case statement containing only two alternatives. The
731 -- first alternative corresponds exactly to the discrete choices
732 -- given on the variant with contains the components that we are
733 -- generating the checks for. If the discriminant is one of these
734 -- return False. The other alternative consists of the choice
735 -- "Others" and will return True indicating the discriminant did
738 Case_Node
:= New_Node
(N_Case_Statement
, Loc
);
740 -- Replace the discriminant which controls the variant, with the
741 -- name of the formal of the checking function.
743 Set_Expression
(Case_Node
,
744 Make_Identifier
(Loc
, Chars
(Case_Id
)));
746 Choice
:= First
(Discrete_Choices
(Variant
));
748 if Nkind
(Choice
) = N_Others_Choice
then
749 Choice_List
:= New_Copy_List
(Others_Discrete_Choices
(Choice
));
751 Choice_List
:= New_Copy_List
(Discrete_Choices
(Variant
));
754 if not Is_Empty_List
(Choice_List
) then
755 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
756 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
758 -- In case this is a nested variant, we need to return the result
759 -- of the discriminant checking function for the immediately
760 -- enclosing variant.
762 if Present
(Enclosing_Func_Id
) then
763 Actuals_List
:= New_List
;
765 D
:= First_Discriminant
(Rec_Id
);
766 while Present
(D
) loop
767 Append
(Make_Identifier
(Loc
, Chars
(D
)), Actuals_List
);
768 Next_Discriminant
(D
);
772 Make_Return_Statement
(Loc
,
774 Make_Function_Call
(Loc
,
776 New_Reference_To
(Enclosing_Func_Id
, Loc
),
777 Parameter_Associations
=>
782 Make_Return_Statement
(Loc
,
784 New_Reference_To
(Standard_False
, Loc
));
787 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
788 Append
(Case_Alt_Node
, Alt_List
);
791 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
792 Choice_List
:= New_List
(New_Node
(N_Others_Choice
, Loc
));
793 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
796 Make_Return_Statement
(Loc
,
798 New_Reference_To
(Standard_True
, Loc
));
800 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
801 Append
(Case_Alt_Node
, Alt_List
);
803 Set_Alternatives
(Case_Node
, Alt_List
);
805 end Build_Case_Statement
;
807 ---------------------------
808 -- Build_Dcheck_Function --
809 ---------------------------
811 function Build_Dcheck_Function
812 (Case_Id
: Entity_Id
;
818 Parameter_List
: List_Id
;
822 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
823 Sequence
:= Sequence
+ 1;
826 Make_Defining_Identifier
(Loc
,
827 Chars
=> New_External_Name
(Chars
(Rec_Id
), 'D', Sequence
));
829 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
830 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
832 Parameter_List
:= Build_Discriminant_Formals
(Rec_Id
, False);
834 Set_Parameter_Specifications
(Spec_Node
, Parameter_List
);
835 Set_Subtype_Mark
(Spec_Node
,
836 New_Reference_To
(Standard_Boolean
, Loc
));
837 Set_Specification
(Body_Node
, Spec_Node
);
838 Set_Declarations
(Body_Node
, New_List
);
840 Set_Handled_Statement_Sequence
(Body_Node
,
841 Make_Handled_Sequence_Of_Statements
(Loc
,
842 Statements
=> New_List
(
843 Build_Case_Statement
(Case_Id
, Variant
))));
845 Set_Ekind
(Func_Id
, E_Function
);
846 Set_Mechanism
(Func_Id
, Default_Mechanism
);
847 Set_Is_Inlined
(Func_Id
, True);
848 Set_Is_Pure
(Func_Id
, True);
849 Set_Is_Public
(Func_Id
, Is_Public
(Rec_Id
));
850 Set_Is_Internal
(Func_Id
, True);
852 if not Debug_Generated_Code
then
853 Set_Debug_Info_Off
(Func_Id
);
856 Append_Freeze_Action
(Rec_Id
, Body_Node
);
857 Set_Dcheck_Function
(Variant
, Func_Id
);
859 end Build_Dcheck_Function
;
861 ----------------------------
862 -- Build_Dcheck_Functions --
863 ----------------------------
865 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
) is
866 Component_List_Node
: Node_Id
;
868 Discr_Name
: Entity_Id
;
871 Saved_Enclosing_Func_Id
: Entity_Id
;
874 -- Build the discriminant checking function for each variant, label
875 -- all components of that variant with the function's name.
877 Discr_Name
:= Entity
(Name
(Variant_Part_Node
));
878 Variant
:= First_Non_Pragma
(Variants
(Variant_Part_Node
));
880 while Present
(Variant
) loop
881 Func_Id
:= Build_Dcheck_Function
(Discr_Name
, Variant
);
882 Component_List_Node
:= Component_List
(Variant
);
884 if not Null_Present
(Component_List_Node
) then
886 First_Non_Pragma
(Component_Items
(Component_List_Node
));
888 while Present
(Decl
) loop
889 Set_Discriminant_Checking_Func
890 (Defining_Identifier
(Decl
), Func_Id
);
892 Next_Non_Pragma
(Decl
);
895 if Present
(Variant_Part
(Component_List_Node
)) then
896 Saved_Enclosing_Func_Id
:= Enclosing_Func_Id
;
897 Enclosing_Func_Id
:= Func_Id
;
898 Build_Dcheck_Functions
(Variant_Part
(Component_List_Node
));
899 Enclosing_Func_Id
:= Saved_Enclosing_Func_Id
;
903 Next_Non_Pragma
(Variant
);
905 end Build_Dcheck_Functions
;
907 -- Start of processing for Build_Discr_Checking_Funcs
910 -- Only build if not done already
912 if not Discr_Check_Funcs_Built
(N
) then
913 Type_Def
:= Type_Definition
(N
);
915 if Nkind
(Type_Def
) = N_Record_Definition
then
916 if No
(Component_List
(Type_Def
)) then -- null record.
919 V
:= Variant_Part
(Component_List
(Type_Def
));
922 else pragma Assert
(Nkind
(Type_Def
) = N_Derived_Type_Definition
);
923 if No
(Component_List
(Record_Extension_Part
(Type_Def
))) then
927 (Component_List
(Record_Extension_Part
(Type_Def
)));
931 Rec_Id
:= Defining_Identifier
(N
);
933 if Present
(V
) and then not Is_Unchecked_Union
(Rec_Id
) then
935 Enclosing_Func_Id
:= Empty
;
936 Build_Dcheck_Functions
(V
);
939 Set_Discr_Check_Funcs_Built
(N
);
941 end Build_Discr_Checking_Funcs
;
943 --------------------------------
944 -- Build_Discriminant_Formals --
945 --------------------------------
947 function Build_Discriminant_Formals
954 Loc
: Source_Ptr
:= Sloc
(Rec_Id
);
955 Param_Spec_Node
: Node_Id
;
956 Parameter_List
: List_Id
:= New_List
;
959 if Has_Discriminants
(Rec_Id
) then
960 D
:= First_Discriminant
(Rec_Id
);
962 while Present
(D
) loop
966 Formal
:= Discriminal
(D
);
968 Formal
:= Make_Defining_Identifier
(Loc
, Chars
(D
));
972 Make_Parameter_Specification
(Loc
,
973 Defining_Identifier
=> Formal
,
975 New_Reference_To
(Etype
(D
), Loc
));
976 Append
(Param_Spec_Node
, Parameter_List
);
977 Next_Discriminant
(D
);
981 return Parameter_List
;
982 end Build_Discriminant_Formals
;
984 -------------------------------
985 -- Build_Initialization_Call --
986 -------------------------------
988 -- References to a discriminant inside the record type declaration
989 -- can appear either in the subtype_indication to constrain a
990 -- record or an array, or as part of a larger expression given for
991 -- the initial value of a component. In both of these cases N appears
992 -- in the record initialization procedure and needs to be replaced by
993 -- the formal parameter of the initialization procedure which
994 -- corresponds to that discriminant.
996 -- In the example below, references to discriminants D1 and D2 in proc_1
997 -- are replaced by references to formals with the same name
1000 -- A similar replacement is done for calls to any record
1001 -- initialization procedure for any components that are themselves
1002 -- of a record type.
1004 -- type R (D1, D2 : Integer) is record
1005 -- X : Integer := F * D1;
1006 -- Y : Integer := F * D2;
1009 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1013 -- Out_2.X := F * D1;
1014 -- Out_2.Y := F * D2;
1017 function Build_Initialization_Call
1021 In_Init_Proc
: Boolean := False;
1022 Enclos_Type
: Entity_Id
:= Empty
;
1023 Discr_Map
: Elist_Id
:= New_Elmt_List
)
1026 First_Arg
: Node_Id
;
1032 Proc
: constant Entity_Id
:= Base_Init_Proc
(Typ
);
1033 Init_Type
: constant Entity_Id
:= Etype
(First_Formal
(Proc
));
1034 Full_Init_Type
: constant Entity_Id
:= Underlying_Type
(Init_Type
);
1035 Res
: List_Id
:= New_List
;
1036 Full_Type
: Entity_Id
:= Typ
;
1037 Controller_Typ
: Entity_Id
;
1040 -- Nothing to do if the Init_Proc is null, unless Initialize_Sclalars
1041 -- is active (in which case we make the call anyway, since in the
1042 -- actual compiled client it may be non null).
1044 if Is_Null_Init_Proc
(Proc
) and then not Init_Or_Norm_Scalars
then
1048 -- Go to full view if private type
1050 if Is_Private_Type
(Typ
)
1051 and then Present
(Full_View
(Typ
))
1053 Full_Type
:= Full_View
(Typ
);
1056 -- If Typ is derived, the procedure is the initialization procedure for
1057 -- the root type. Wrap the argument in an conversion to make it type
1058 -- honest. Actually it isn't quite type honest, because there can be
1059 -- conflicts of views in the private type case. That is why we set
1060 -- Conversion_OK in the conversion node.
1062 if (Is_Record_Type
(Typ
)
1063 or else Is_Array_Type
(Typ
)
1064 or else Is_Private_Type
(Typ
))
1065 and then Init_Type
/= Base_Type
(Typ
)
1067 First_Arg
:= OK_Convert_To
(Etype
(Init_Type
), Id_Ref
);
1068 Set_Etype
(First_Arg
, Init_Type
);
1071 First_Arg
:= Id_Ref
;
1074 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Typ
));
1076 -- In the tasks case, add _Master as the value of the _Master parameter
1077 -- and _Chain as the value of the _Chain parameter. At the outer level,
1078 -- these will be variables holding the corresponding values obtained
1079 -- from GNARL. At inner levels, they will be the parameters passed down
1080 -- through the outer routines.
1082 if Has_Task
(Full_Type
) then
1083 if Restrictions
(No_Task_Hierarchy
) then
1085 -- See comments in System.Tasking.Initialization.Init_RTS
1088 Append_To
(Args
, Make_Integer_Literal
(Loc
, 3));
1090 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1093 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1095 Decls
:= Build_Task_Image_Decls
(Loc
, Id_Ref
, Enclos_Type
);
1096 Decl
:= Last
(Decls
);
1099 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
1100 Append_List
(Decls
, Res
);
1107 -- Add discriminant values if discriminants are present
1109 if Has_Discriminants
(Full_Init_Type
) then
1110 Discr
:= First_Discriminant
(Full_Init_Type
);
1112 while Present
(Discr
) loop
1114 -- If this is a discriminated concurrent type, the init_proc
1115 -- for the corresponding record is being called. Use that
1116 -- type directly to find the discriminant value, to handle
1117 -- properly intervening renamed discriminants.
1120 T
: Entity_Id
:= Full_Type
;
1123 if Is_Protected_Type
(T
) then
1124 T
:= Corresponding_Record_Type
(T
);
1128 Get_Discriminant_Value
(
1131 Discriminant_Constraint
(Full_Type
));
1134 if In_Init_Proc
then
1136 -- Replace any possible references to the discriminant in the
1137 -- call to the record initialization procedure with references
1138 -- to the appropriate formal parameter.
1140 if Nkind
(Arg
) = N_Identifier
1141 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1143 Arg
:= New_Reference_To
(Discriminal
(Entity
(Arg
)), Loc
);
1145 -- Case of access discriminants. We replace the reference
1146 -- to the type by a reference to the actual object
1148 elsif Nkind
(Arg
) = N_Attribute_Reference
1149 and then Is_Access_Type
(Etype
(Arg
))
1150 and then Is_Entity_Name
(Prefix
(Arg
))
1151 and then Is_Type
(Entity
(Prefix
(Arg
)))
1154 Make_Attribute_Reference
(Loc
,
1155 Prefix
=> New_Copy
(Prefix
(Id_Ref
)),
1156 Attribute_Name
=> Name_Unrestricted_Access
);
1158 -- Otherwise make a copy of the default expression. Note
1159 -- that we use the current Sloc for this, because we do not
1160 -- want the call to appear to be at the declaration point.
1161 -- Within the expression, replace discriminants with their
1166 New_Copy_Tree
(Arg
, Map
=> Discr_Map
, New_Sloc
=> Loc
);
1170 if Is_Constrained
(Full_Type
) then
1171 Arg
:= Duplicate_Subexpr
(Arg
);
1173 -- The constraints come from the discriminant default
1174 -- exps, they must be reevaluated, so we use New_Copy_Tree
1175 -- but we ensure the proper Sloc (for any embedded calls).
1177 Arg
:= New_Copy_Tree
(Arg
, New_Sloc
=> Loc
);
1181 Append_To
(Args
, Arg
);
1183 Next_Discriminant
(Discr
);
1187 -- If this is a call to initialize the parent component of a derived
1188 -- tagged type, indicate that the tag should not be set in the parent.
1190 if Is_Tagged_Type
(Full_Init_Type
)
1191 and then not Is_CPP_Class
(Full_Init_Type
)
1192 and then Nkind
(Id_Ref
) = N_Selected_Component
1193 and then Chars
(Selector_Name
(Id_Ref
)) = Name_uParent
1195 Append_To
(Args
, New_Occurrence_Of
(Standard_False
, Loc
));
1199 Make_Procedure_Call_Statement
(Loc
,
1200 Name
=> New_Occurrence_Of
(Proc
, Loc
),
1201 Parameter_Associations
=> Args
));
1203 if Controlled_Type
(Typ
)
1204 and then Nkind
(Id_Ref
) = N_Selected_Component
1206 if Chars
(Selector_Name
(Id_Ref
)) /= Name_uParent
then
1207 Append_List_To
(Res
,
1209 Ref
=> New_Copy_Tree
(First_Arg
),
1212 Find_Final_List
(Typ
, New_Copy_Tree
(First_Arg
)),
1213 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
1215 -- If the enclosing type is an extension with new controlled
1216 -- components, it has his own record controller. If the parent
1217 -- also had a record controller, attach it to the new one.
1218 -- Build_Init_Statements relies on the fact that in this specific
1219 -- case the last statement of the result is the attach call to
1220 -- the controller. If this is changed, it must be synchronized.
1222 elsif Present
(Enclos_Type
)
1223 and then Has_New_Controlled_Component
(Enclos_Type
)
1224 and then Has_Controlled_Component
(Typ
)
1226 if Is_Return_By_Reference_Type
(Typ
) then
1227 Controller_Typ
:= RTE
(RE_Limited_Record_Controller
);
1229 Controller_Typ
:= RTE
(RE_Record_Controller
);
1232 Append_List_To
(Res
,
1235 Make_Selected_Component
(Loc
,
1236 Prefix
=> New_Copy_Tree
(First_Arg
),
1237 Selector_Name
=> Make_Identifier
(Loc
, Name_uController
)),
1238 Typ
=> Controller_Typ
,
1239 Flist_Ref
=> Find_Final_List
(Typ
, New_Copy_Tree
(First_Arg
)),
1240 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
1244 -- Discard dynamic string allocated for name after call to init_proc,
1245 -- to avoid storage leaks. This is done for composite types because
1246 -- the allocated name is used as prefix for the id constructed at run-
1247 -- time, and this allocated name is not released when the task itself
1250 if Has_Task
(Full_Type
)
1251 and then not Is_Task_Type
(Full_Type
)
1254 Make_Procedure_Call_Statement
(Loc
,
1255 Name
=> New_Occurrence_Of
(RTE
(RE_Free_Task_Image
), Loc
),
1256 Parameter_Associations
=> New_List
(
1257 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
))));
1261 end Build_Initialization_Call
;
1263 ---------------------------
1264 -- Build_Master_Renaming --
1265 ---------------------------
1267 procedure Build_Master_Renaming
(N
: Node_Id
; T
: Entity_Id
) is
1268 Loc
: constant Source_Ptr
:= Sloc
(N
);
1273 -- Nothing to do if there is no task hierarchy.
1275 if Restrictions
(No_Task_Hierarchy
) then
1280 Make_Defining_Identifier
(Loc
,
1281 New_External_Name
(Chars
(T
), 'M'));
1284 Make_Object_Renaming_Declaration
(Loc
,
1285 Defining_Identifier
=> M_Id
,
1286 Subtype_Mark
=> New_Reference_To
(RTE
(RE_Master_Id
), Loc
),
1287 Name
=> Make_Identifier
(Loc
, Name_uMaster
));
1288 Insert_Before
(N
, Decl
);
1291 Set_Master_Id
(T
, M_Id
);
1293 end Build_Master_Renaming
;
1295 ----------------------------
1296 -- Build_Record_Init_Proc --
1297 ----------------------------
1299 procedure Build_Record_Init_Proc
(N
: Node_Id
; Pe
: Entity_Id
) is
1300 Loc
: Source_Ptr
:= Sloc
(N
);
1301 Proc_Id
: Entity_Id
;
1302 Rec_Type
: Entity_Id
;
1303 Discr_Map
: Elist_Id
:= New_Elmt_List
;
1304 Set_Tag
: Entity_Id
:= Empty
;
1306 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
;
1307 -- Build a assignment statement node which assigns to record
1308 -- component its default expression if defined. The left hand side
1309 -- of the assignment is marked Assignment_OK so that initialization
1310 -- of limited private records works correctly, Return also the
1311 -- adjustment call for controlled objects
1313 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
);
1314 -- If the record has discriminants, adds assignment statements to
1315 -- statement list to initialize the discriminant values from the
1316 -- arguments of the initialization procedure.
1318 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
;
1319 -- Build a list representing a sequence of statements which initialize
1320 -- components of the given component list. This may involve building
1321 -- case statements for the variant parts.
1323 function Build_Init_Call_Thru
1324 (Parameters
: List_Id
)
1326 -- Given a non-tagged type-derivation that declares discriminants,
1329 -- type R (R1, R2 : Integer) is record ... end record;
1331 -- type D (D1 : Integer) is new R (1, D1);
1333 -- we make the _init_proc of D be
1335 -- procedure _init_proc(X : D; D1 : Integer) is
1337 -- _init_proc( R(X), 1, D1);
1340 -- This function builds the call statement in this _init_proc.
1342 procedure Build_Init_Procedure
;
1343 -- Build the tree corresponding to the procedure specification and body
1344 -- of the initialization procedure (by calling all the preceding
1345 -- auxiliary routines), and install it as the _init TSS.
1347 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
);
1348 -- Add range checks to components of disciminated records. S is a
1349 -- subtype indication of a record component. Check_List is a list
1350 -- to which the check actions are appended.
1352 function Component_Needs_Simple_Initialization
1355 -- Determines if a component needs simple initialization, given its
1356 -- type T. This is identical to Needs_Simple_Initialization, except
1357 -- that the types Tag and Vtable_Ptr, which are access types which
1358 -- would normally require simple initialization to null, do not
1359 -- require initialization as components, since they are explicitly
1360 -- initialized by other means.
1362 procedure Constrain_Array
1364 Check_List
: List_Id
);
1365 -- Called from Build_Record_Checks.
1366 -- Apply a list of index constraints to an unconstrained array type.
1367 -- The first parameter is the entity for the resulting subtype.
1368 -- Check_List is a list to which the check actions are appended.
1370 procedure Constrain_Index
1373 Check_List
: List_Id
);
1374 -- Called from Build_Record_Checks.
1375 -- Process an index constraint in a constrained array declaration.
1376 -- The constraint can be a subtype name, or a range with or without
1377 -- an explicit subtype mark. The index is the corresponding index of the
1378 -- unconstrained array. S is the range expression. Check_List is a list
1379 -- to which the check actions are appended.
1381 function Parent_Subtype_Renaming_Discrims
return Boolean;
1382 -- Returns True for base types N that rename discriminants, else False
1384 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean;
1385 -- Determines whether a record initialization procedure needs to be
1386 -- generated for the given record type.
1388 ----------------------
1389 -- Build_Assignment --
1390 ----------------------
1392 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
is
1395 Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Id
));
1396 Kind
: Node_Kind
:= Nkind
(N
);
1402 Make_Selected_Component
(Loc
,
1403 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1404 Selector_Name
=> New_Occurrence_Of
(Id
, Loc
));
1405 Set_Assignment_OK
(Lhs
);
1407 -- Case of an access attribute applied to the current
1408 -- instance. Replace the reference to the type by a
1409 -- reference to the actual object. (Note that this
1410 -- handles the case of the top level of the expression
1411 -- being given by such an attribute, but doesn't cover
1412 -- uses nested within an initial value expression.
1413 -- Nested uses are unlikely to occur in practice,
1414 -- but theoretically possible. It's not clear how
1415 -- to handle them without fully traversing the
1418 if Kind
= N_Attribute_Reference
1419 and then (Attribute_Name
(N
) = Name_Unchecked_Access
1421 Attribute_Name
(N
) = Name_Unrestricted_Access
)
1422 and then Is_Entity_Name
(Prefix
(N
))
1423 and then Is_Type
(Entity
(Prefix
(N
)))
1424 and then Entity
(Prefix
(N
)) = Rec_Type
1427 Make_Attribute_Reference
(Loc
,
1428 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1429 Attribute_Name
=> Name_Unrestricted_Access
);
1432 -- For a derived type the default value is copied from the component
1433 -- declaration of the parent. In the analysis of the init_proc for
1434 -- the parent the default value may have been expanded into a local
1435 -- variable, which is of course not usable here. We must copy the
1436 -- original expression and reanalyze.
1438 if Nkind
(Exp
) = N_Identifier
1439 and then not Comes_From_Source
(Exp
)
1440 and then Analyzed
(Exp
)
1441 and then not In_Open_Scopes
(Scope
(Entity
(Exp
)))
1442 and then Nkind
(Original_Node
(Exp
)) = N_Aggregate
1444 Exp
:= New_Copy_Tree
(Original_Node
(Exp
));
1448 Make_Assignment_Statement
(Loc
,
1450 Expression
=> Exp
));
1452 Set_No_Ctrl_Actions
(First
(Res
));
1454 -- Adjust the tag if tagged (because of possible view conversions).
1455 -- Suppress the tag adjustment when Java_VM because JVM tags are
1456 -- represented implicitly in objects.
1458 if Is_Tagged_Type
(Typ
) and then not Java_VM
then
1460 Make_Assignment_Statement
(Loc
,
1462 Make_Selected_Component
(Loc
,
1463 Prefix
=> New_Copy_Tree
(Lhs
),
1465 New_Reference_To
(Tag_Component
(Typ
), Loc
)),
1468 Unchecked_Convert_To
(RTE
(RE_Tag
),
1469 New_Reference_To
(Access_Disp_Table
(Typ
), Loc
))));
1472 -- Adjust the component if controlled except if it is an
1473 -- aggregate that will be expanded inline
1475 if Kind
= N_Qualified_Expression
then
1476 Kind
:= Nkind
(Parent
(N
));
1479 if Controlled_Type
(Typ
)
1480 and then not (Kind
= N_Aggregate
or else Kind
= N_Extension_Aggregate
)
1482 Append_List_To
(Res
,
1484 Ref
=> New_Copy_Tree
(Lhs
),
1487 Find_Final_List
(Etype
(Id
), New_Copy_Tree
(Lhs
)),
1488 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
1492 end Build_Assignment
;
1494 ------------------------------------
1495 -- Build_Discriminant_Assignments --
1496 ------------------------------------
1498 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
) is
1500 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Rec_Type
);
1503 if Has_Discriminants
(Rec_Type
)
1504 and then not Is_Unchecked_Union
(Rec_Type
)
1506 D
:= First_Discriminant
(Rec_Type
);
1508 while Present
(D
) loop
1509 -- Don't generate the assignment for discriminants in derived
1510 -- tagged types if the discriminant is a renaming of some
1511 -- ancestor discriminant. This initialization will be done
1512 -- when initializing the _parent field of the derived record.
1514 if Is_Tagged
and then
1515 Present
(Corresponding_Discriminant
(D
))
1521 Append_List_To
(Statement_List
,
1522 Build_Assignment
(D
,
1523 New_Reference_To
(Discriminal
(D
), Loc
)));
1526 Next_Discriminant
(D
);
1529 end Build_Discriminant_Assignments
;
1531 --------------------------
1532 -- Build_Init_Call_Thru --
1533 --------------------------
1535 function Build_Init_Call_Thru
1536 (Parameters
: List_Id
)
1539 Parent_Proc
: constant Entity_Id
:=
1540 Base_Init_Proc
(Etype
(Rec_Type
));
1542 Parent_Type
: constant Entity_Id
:=
1543 Etype
(First_Formal
(Parent_Proc
));
1545 Uparent_Type
: constant Entity_Id
:=
1546 Underlying_Type
(Parent_Type
);
1548 First_Discr_Param
: Node_Id
;
1550 Parent_Discr
: Entity_Id
;
1551 First_Arg
: Node_Id
;
1557 -- First argument (_Init) is the object to be initialized.
1558 -- ??? not sure where to get a reasonable Loc for First_Arg
1561 OK_Convert_To
(Parent_Type
,
1562 New_Reference_To
(Defining_Identifier
(First
(Parameters
)), Loc
));
1564 Set_Etype
(First_Arg
, Parent_Type
);
1566 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Rec_Type
));
1568 -- In the tasks case,
1569 -- add _Master as the value of the _Master parameter
1570 -- add _Chain as the value of the _Chain parameter.
1571 -- add _Task_Id as the value of the _Task_Id parameter.
1572 -- At the outer level, these will be variables holding the
1573 -- corresponding values obtained from GNARL or the expander.
1575 -- At inner levels, they will be the parameters passed down through
1576 -- the outer routines.
1578 First_Discr_Param
:= Next
(First
(Parameters
));
1580 if Has_Task
(Rec_Type
) then
1581 if Restrictions
(No_Task_Hierarchy
) then
1583 -- See comments in System.Tasking.Initialization.Init_RTS
1586 Append_To
(Args
, Make_Integer_Literal
(Loc
, 3));
1588 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1591 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1592 Append_To
(Args
, Make_Identifier
(Loc
, Name_uTask_Id
));
1593 First_Discr_Param
:= Next
(Next
(Next
(First_Discr_Param
)));
1596 -- Append discriminant values
1598 if Has_Discriminants
(Uparent_Type
) then
1599 pragma Assert
(not Is_Tagged_Type
(Uparent_Type
));
1601 Parent_Discr
:= First_Discriminant
(Uparent_Type
);
1602 while Present
(Parent_Discr
) loop
1604 -- Get the initial value for this discriminant
1605 -- ?????? needs to be cleaned up to use parent_Discr_Constr
1609 Discr_Value
: Elmt_Id
:=
1611 (Girder_Constraint
(Rec_Type
));
1613 Discr
: Entity_Id
:=
1614 First_Girder_Discriminant
(Uparent_Type
);
1616 while Original_Record_Component
(Parent_Discr
) /= Discr
loop
1617 Next_Girder_Discriminant
(Discr
);
1618 Next_Elmt
(Discr_Value
);
1621 Arg
:= Node
(Discr_Value
);
1624 -- Append it to the list
1626 if Nkind
(Arg
) = N_Identifier
1627 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1630 New_Reference_To
(Discriminal
(Entity
(Arg
)), Loc
));
1632 -- Case of access discriminants. We replace the reference
1633 -- to the type by a reference to the actual object
1636 -- elsif Nkind (Arg) = N_Attribute_Reference
1637 -- and then Is_Entity_Name (Prefix (Arg))
1638 -- and then Is_Type (Entity (Prefix (Arg)))
1641 -- Make_Attribute_Reference (Loc,
1642 -- Prefix => New_Copy (Prefix (Id_Ref)),
1643 -- Attribute_Name => Name_Unrestricted_Access));
1646 Append_To
(Args
, New_Copy
(Arg
));
1649 Next_Discriminant
(Parent_Discr
);
1655 Make_Procedure_Call_Statement
(Loc
,
1656 Name
=> New_Occurrence_Of
(Parent_Proc
, Loc
),
1657 Parameter_Associations
=> Args
));
1660 end Build_Init_Call_Thru
;
1662 --------------------------
1663 -- Build_Init_Procedure --
1664 --------------------------
1666 procedure Build_Init_Procedure
is
1667 Body_Node
: Node_Id
;
1668 Handled_Stmt_Node
: Node_Id
;
1669 Parameters
: List_Id
;
1670 Proc_Spec_Node
: Node_Id
;
1671 Body_Stmts
: List_Id
;
1672 Record_Extension_Node
: Node_Id
;
1676 Body_Stmts
:= New_List
;
1677 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
1679 Proc_Id
:= Make_Defining_Identifier
(Loc
, Name_uInit_Proc
);
1680 Set_Ekind
(Proc_Id
, E_Procedure
);
1682 Proc_Spec_Node
:= New_Node
(N_Procedure_Specification
, Loc
);
1683 Set_Defining_Unit_Name
(Proc_Spec_Node
, Proc_Id
);
1685 Parameters
:= Init_Formals
(Rec_Type
);
1686 Append_List_To
(Parameters
,
1687 Build_Discriminant_Formals
(Rec_Type
, True));
1689 -- For tagged types, we add a flag to indicate whether the routine
1690 -- is called to initialize a parent component in the init_proc of
1691 -- a type extension. If the flag is false, we do not set the tag
1692 -- because it has been set already in the extension.
1694 if Is_Tagged_Type
(Rec_Type
)
1695 and then not Is_CPP_Class
(Rec_Type
)
1698 Make_Defining_Identifier
(Loc
, New_Internal_Name
('P'));
1700 Append_To
(Parameters
,
1701 Make_Parameter_Specification
(Loc
,
1702 Defining_Identifier
=> Set_Tag
,
1703 Parameter_Type
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
1704 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
1707 Set_Parameter_Specifications
(Proc_Spec_Node
, Parameters
);
1708 Set_Specification
(Body_Node
, Proc_Spec_Node
);
1709 Set_Declarations
(Body_Node
, New_List
);
1711 if Parent_Subtype_Renaming_Discrims
then
1713 -- N is a Derived_Type_Definition that renames the parameters
1714 -- of the ancestor type. We init it by expanding our discrims
1715 -- and call the ancestor _init_proc with a type-converted object
1717 Append_List_To
(Body_Stmts
,
1718 Build_Init_Call_Thru
(Parameters
));
1720 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
1721 Build_Discriminant_Assignments
(Body_Stmts
);
1723 if not Null_Present
(Type_Definition
(N
)) then
1724 Append_List_To
(Body_Stmts
,
1725 Build_Init_Statements
(
1726 Component_List
(Type_Definition
(N
))));
1730 -- N is a Derived_Type_Definition with a possible non-empty
1731 -- extension. The initialization of a type extension consists
1732 -- in the initialization of the components in the extension.
1734 Build_Discriminant_Assignments
(Body_Stmts
);
1736 Record_Extension_Node
:=
1737 Record_Extension_Part
(Type_Definition
(N
));
1739 if not Null_Present
(Record_Extension_Node
) then
1742 Build_Init_Statements
(
1743 Component_List
(Record_Extension_Node
));
1746 -- The parent field must be initialized first because
1747 -- the offset of the new discriminants may depend on it
1749 Prepend_To
(Body_Stmts
, Remove_Head
(Stmts
));
1750 Append_List_To
(Body_Stmts
, Stmts
);
1755 -- Add here the assignment to instantiate the Tag
1757 -- The assignement corresponds to the code:
1759 -- _Init._Tag := Typ'Tag;
1761 -- Suppress the tag assignment when Java_VM because JVM tags are
1762 -- represented implicitly in objects.
1764 if Is_Tagged_Type
(Rec_Type
)
1765 and then not Is_CPP_Class
(Rec_Type
)
1766 and then not Java_VM
1769 Make_Assignment_Statement
(Loc
,
1771 Make_Selected_Component
(Loc
,
1772 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1774 New_Reference_To
(Tag_Component
(Rec_Type
), Loc
)),
1777 New_Reference_To
(Access_Disp_Table
(Rec_Type
), Loc
));
1779 -- The tag must be inserted before the assignments to other
1780 -- components, because the initial value of the component may
1781 -- depend ot the tag (eg. through a dispatching operation on
1782 -- an access to the current type). The tag assignment is not done
1783 -- when initializing the parent component of a type extension,
1784 -- because in that case the tag is set in the extension.
1785 -- Extensions of imported C++ classes add a final complication,
1786 -- because we cannot inhibit tag setting in the constructor for
1787 -- the parent. In that case we insert the tag initialization
1788 -- after the calls to initialize the parent.
1791 Make_If_Statement
(Loc
,
1792 Condition
=> New_Occurrence_Of
(Set_Tag
, Loc
),
1793 Then_Statements
=> New_List
(Init_Tag
));
1795 if not Is_CPP_Class
(Etype
(Rec_Type
)) then
1796 Prepend_To
(Body_Stmts
, Init_Tag
);
1800 Nod
: Node_Id
:= First
(Body_Stmts
);
1803 -- We assume the first init_proc call is for the parent
1805 while Present
(Next
(Nod
))
1806 and then (Nkind
(Nod
) /= N_Procedure_Call_Statement
1807 or else Chars
(Name
(Nod
)) /= Name_uInit_Proc
)
1812 Insert_After
(Nod
, Init_Tag
);
1817 Handled_Stmt_Node
:= New_Node
(N_Handled_Sequence_Of_Statements
, Loc
);
1818 Set_Statements
(Handled_Stmt_Node
, Body_Stmts
);
1819 Set_Exception_Handlers
(Handled_Stmt_Node
, No_List
);
1820 Set_Handled_Statement_Sequence
(Body_Node
, Handled_Stmt_Node
);
1822 if not Debug_Generated_Code
then
1823 Set_Debug_Info_Off
(Proc_Id
);
1826 -- Associate Init_Proc with type, and determine if the procedure
1827 -- is null (happens because of the Initialize_Scalars pragma case,
1828 -- where we have to generate a null procedure in case it is called
1829 -- by a client with Initialize_Scalars set). Such procedures have
1830 -- to be generated, but do not have to be called, so we mark them
1831 -- as null to suppress the call.
1833 Set_Init_Proc
(Rec_Type
, Proc_Id
);
1835 if List_Length
(Body_Stmts
) = 1
1836 and then Nkind
(First
(Body_Stmts
)) = N_Null_Statement
1838 Set_Is_Null_Init_Proc
(Proc_Id
);
1840 end Build_Init_Procedure
;
1842 ---------------------------
1843 -- Build_Init_Statements --
1844 ---------------------------
1846 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
is
1848 Statement_List
: List_Id
;
1850 Check_List
: List_Id
:= New_List
;
1852 Per_Object_Constraint_Components
: Boolean;
1861 if Null_Present
(Comp_List
) then
1862 return New_List
(Make_Null_Statement
(Loc
));
1865 Statement_List
:= New_List
;
1867 -- Loop through components, skipping pragmas, in 2 steps. The first
1868 -- step deals with regular components. The second step deals with
1869 -- components have per object constraints, and no explicit initia-
1872 Per_Object_Constraint_Components
:= False;
1874 -- First step : regular components.
1876 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
1877 while Present
(Decl
) loop
1879 Build_Record_Checks
(Subtype_Indication
(Decl
), Check_List
);
1881 Id
:= Defining_Identifier
(Decl
);
1884 if Has_Per_Object_Constraint
(Id
)
1885 and then No
(Expression
(Decl
))
1887 -- Skip processing for now and ask for a second pass
1889 Per_Object_Constraint_Components
:= True;
1891 if Present
(Expression
(Decl
)) then
1892 Stmts
:= Build_Assignment
(Id
, Expression
(Decl
));
1894 elsif Has_Non_Null_Base_Init_Proc
(Typ
) then
1896 Build_Initialization_Call
(Loc
,
1897 Make_Selected_Component
(Loc
,
1898 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1899 Selector_Name
=> New_Occurrence_Of
(Id
, Loc
)),
1900 Typ
, True, Rec_Type
, Discr_Map
=> Discr_Map
);
1902 elsif Component_Needs_Simple_Initialization
(Typ
) then
1904 Build_Assignment
(Id
, Get_Simple_Init_Val
(Typ
, Loc
));
1910 if Present
(Check_List
) then
1911 Append_List_To
(Statement_List
, Check_List
);
1914 if Present
(Stmts
) then
1916 -- Add the initialization of the record controller
1917 -- before the _Parent field is attached to it when
1918 -- the attachment can occur. It does not work to
1919 -- simply initialize the controller first: it must be
1920 -- initialized after the parent if the parent holds
1921 -- discriminants that can be used to compute the
1922 -- offset of the controller. This code relies on
1923 -- the last statement of the initialization call
1924 -- being the attachement of the parent. see
1925 -- Build_Initialization_Call.
1927 if Chars
(Id
) = Name_uController
1928 and then Rec_Type
/= Etype
(Rec_Type
)
1929 and then Has_Controlled_Component
(Etype
(Rec_Type
))
1930 and then Has_New_Controlled_Component
(Rec_Type
)
1932 Insert_List_Before
(Last
(Statement_List
), Stmts
);
1934 Append_List_To
(Statement_List
, Stmts
);
1939 Next_Non_Pragma
(Decl
);
1942 if Per_Object_Constraint_Components
then
1944 -- Second pass: components with per-object constraints
1946 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
1948 while Present
(Decl
) loop
1950 Id
:= Defining_Identifier
(Decl
);
1953 if Has_Per_Object_Constraint
(Id
)
1954 and then No
(Expression
(Decl
))
1956 if Has_Non_Null_Base_Init_Proc
(Typ
) then
1957 Append_List_To
(Statement_List
,
1958 Build_Initialization_Call
(Loc
,
1959 Make_Selected_Component
(Loc
,
1960 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1961 Selector_Name
=> New_Occurrence_Of
(Id
, Loc
)),
1962 Typ
, True, Rec_Type
, Discr_Map
=> Discr_Map
));
1964 elsif Component_Needs_Simple_Initialization
(Typ
) then
1965 Append_List_To
(Statement_List
,
1966 Build_Assignment
(Id
, Get_Simple_Init_Val
(Typ
, Loc
)));
1970 Next_Non_Pragma
(Decl
);
1974 -- Process the variant part
1976 if Present
(Variant_Part
(Comp_List
)) then
1977 Alt_List
:= New_List
;
1978 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
1980 while Present
(Variant
) loop
1981 Loc
:= Sloc
(Variant
);
1982 Append_To
(Alt_List
,
1983 Make_Case_Statement_Alternative
(Loc
,
1985 New_Copy_List
(Discrete_Choices
(Variant
)),
1987 Build_Init_Statements
(Component_List
(Variant
))));
1989 Next_Non_Pragma
(Variant
);
1992 -- The expression of the case statement which is a reference
1993 -- to one of the discriminants is replaced by the appropriate
1994 -- formal parameter of the initialization procedure.
1996 Append_To
(Statement_List
,
1997 Make_Case_Statement
(Loc
,
1999 New_Reference_To
(Discriminal
(
2000 Entity
(Name
(Variant_Part
(Comp_List
)))), Loc
),
2001 Alternatives
=> Alt_List
));
2004 -- For a task record type, add the task create call and calls
2005 -- to bind any interrupt (signal) entries.
2007 if Is_Task_Record_Type
(Rec_Type
) then
2008 Append_To
(Statement_List
, Make_Task_Create_Call
(Rec_Type
));
2011 Task_Type
: constant Entity_Id
:=
2012 Corresponding_Concurrent_Type
(Rec_Type
);
2013 Task_Decl
: constant Node_Id
:= Parent
(Task_Type
);
2014 Task_Def
: constant Node_Id
:= Task_Definition
(Task_Decl
);
2019 if Present
(Task_Def
) then
2020 Vis_Decl
:= First
(Visible_Declarations
(Task_Def
));
2021 while Present
(Vis_Decl
) loop
2022 Loc
:= Sloc
(Vis_Decl
);
2024 if Nkind
(Vis_Decl
) = N_Attribute_Definition_Clause
then
2025 if Get_Attribute_Id
(Chars
(Vis_Decl
)) =
2028 Ent
:= Entity
(Name
(Vis_Decl
));
2030 if Ekind
(Ent
) = E_Entry
then
2031 Append_To
(Statement_List
,
2032 Make_Procedure_Call_Statement
(Loc
,
2033 Name
=> New_Reference_To
(
2034 RTE
(RE_Bind_Interrupt_To_Entry
), Loc
),
2035 Parameter_Associations
=> New_List
(
2036 Make_Selected_Component
(Loc
,
2038 Make_Identifier
(Loc
, Name_uInit
),
2040 Make_Identifier
(Loc
, Name_uTask_Id
)),
2041 Entry_Index_Expression
(
2042 Loc
, Ent
, Empty
, Task_Type
),
2043 Expression
(Vis_Decl
))));
2054 -- For a protected type, add statements generated by
2055 -- Make_Initialize_Protection.
2057 if Is_Protected_Record_Type
(Rec_Type
) then
2058 Append_List_To
(Statement_List
,
2059 Make_Initialize_Protection
(Rec_Type
));
2062 -- If no initializations when generated for component declarations
2063 -- corresponding to this Statement_List, append a null statement
2064 -- to the Statement_List to make it a valid Ada tree.
2066 if Is_Empty_List
(Statement_List
) then
2067 Append
(New_Node
(N_Null_Statement
, Loc
), Statement_List
);
2070 return Statement_List
;
2071 end Build_Init_Statements
;
2073 -------------------------
2074 -- Build_Record_Checks --
2075 -------------------------
2077 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
) is
2079 Subtype_Mark_Id
: Entity_Id
;
2082 if Nkind
(S
) = N_Subtype_Indication
then
2083 Find_Type
(Subtype_Mark
(S
));
2085 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
2087 -- Remaining processing depends on type
2089 case Ekind
(Subtype_Mark_Id
) is
2092 Constrain_Array
(S
, Check_List
);
2098 end Build_Record_Checks
;
2100 -------------------------------------------
2101 -- Component_Needs_Simple_Initialization --
2102 -------------------------------------------
2104 function Component_Needs_Simple_Initialization
2110 Needs_Simple_Initialization
(T
)
2111 and then not Is_RTE
(T
, RE_Tag
)
2112 and then not Is_RTE
(T
, RE_Vtable_Ptr
);
2113 end Component_Needs_Simple_Initialization
;
2115 ---------------------
2116 -- Constrain_Array --
2117 ---------------------
2119 procedure Constrain_Array
2121 Check_List
: List_Id
)
2123 C
: constant Node_Id
:= Constraint
(SI
);
2124 Number_Of_Constraints
: Nat
:= 0;
2129 T
:= Entity
(Subtype_Mark
(SI
));
2131 if Ekind
(T
) in Access_Kind
then
2132 T
:= Designated_Type
(T
);
2135 S
:= First
(Constraints
(C
));
2137 while Present
(S
) loop
2138 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
2142 -- In either case, the index constraint must provide a discrete
2143 -- range for each index of the array type and the type of each
2144 -- discrete range must be the same as that of the corresponding
2145 -- index. (RM 3.6.1)
2147 S
:= First
(Constraints
(C
));
2148 Index
:= First_Index
(T
);
2151 -- Apply constraints to each index type
2153 for J
in 1 .. Number_Of_Constraints
loop
2154 Constrain_Index
(Index
, S
, Check_List
);
2159 end Constrain_Array
;
2161 ---------------------
2162 -- Constrain_Index --
2163 ---------------------
2165 procedure Constrain_Index
2168 Check_List
: List_Id
)
2170 T
: constant Entity_Id
:= Etype
(Index
);
2173 if Nkind
(S
) = N_Range
then
2174 Process_Range_Expr_In_Decl
(S
, T
, Check_List
);
2176 end Constrain_Index
;
2178 --------------------------------------
2179 -- Parent_Subtype_Renaming_Discrims --
2180 --------------------------------------
2182 function Parent_Subtype_Renaming_Discrims
return Boolean is
2187 if Base_Type
(Pe
) /= Pe
then
2192 or else not Has_Discriminants
(Pe
)
2193 or else Is_Constrained
(Pe
)
2194 or else Is_Tagged_Type
(Pe
)
2199 -- If there are no explicit girder discriminants we have inherited
2200 -- the root type discriminants so far, so no renamings occurred.
2202 if First_Discriminant
(Pe
) = First_Girder_Discriminant
(Pe
) then
2206 -- Check if we have done some trivial renaming of the parent
2207 -- discriminants, i.e. someting like
2209 -- type DT (X1,X2: int) is new PT (X1,X2);
2211 De
:= First_Discriminant
(Pe
);
2212 Dp
:= First_Discriminant
(Etype
(Pe
));
2214 while Present
(De
) loop
2215 pragma Assert
(Present
(Dp
));
2217 if Corresponding_Discriminant
(De
) /= Dp
then
2221 Next_Discriminant
(De
);
2222 Next_Discriminant
(Dp
);
2225 return Present
(Dp
);
2226 end Parent_Subtype_Renaming_Discrims
;
2228 ------------------------
2229 -- Requires_Init_Proc --
2230 ------------------------
2232 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean is
2233 Comp_Decl
: Node_Id
;
2238 -- Definitely do not need one if specifically suppressed
2240 if Suppress_Init_Proc
(Rec_Id
) then
2244 -- Otherwise we need to generate an initialization procedure if
2245 -- Is_CPP_Class is False and at least one of the following applies:
2247 -- 1. Discriminants are present, since they need to be initialized
2248 -- with the appropriate discriminant constraint expressions.
2249 -- However, the discriminant of an unchecked union does not
2250 -- count, since the discriminant is not present.
2252 -- 2. The type is a tagged type, since the implicit Tag component
2253 -- needs to be initialized with a pointer to the dispatch table.
2255 -- 3. The type contains tasks
2257 -- 4. One or more components has an initial value
2259 -- 5. One or more components is for a type which itself requires
2260 -- an initialization procedure.
2262 -- 6. One or more components is a type that requires simple
2263 -- initialization (see Needs_Simple_Initialization), except
2264 -- that types Tag and Vtable_Ptr are excluded, since fields
2265 -- of these types are initialized by other means.
2267 -- 7. The type is the record type built for a task type (since at
2268 -- the very least, Create_Task must be called)
2270 -- 8. The type is the record type built for a protected type (since
2271 -- at least Initialize_Protection must be called)
2273 -- 9. The type is marked as a public entity. The reason we add this
2274 -- case (even if none of the above apply) is to properly handle
2275 -- Initialize_Scalars. If a package is compiled without an IS
2276 -- pragma, and the client is compiled with an IS pragma, then
2277 -- the client will think an initialization procedure is present
2278 -- and call it, when in fact no such procedure is required, but
2279 -- since the call is generated, there had better be a routine
2280 -- at the other end of the call, even if it does nothing!)
2282 -- Note: the reason we exclude the CPP_Class case is ???
2284 if Is_CPP_Class
(Rec_Id
) then
2287 elsif Is_Public
(Rec_Id
) then
2290 elsif (Has_Discriminants
(Rec_Id
)
2291 and then not Is_Unchecked_Union
(Rec_Id
))
2292 or else Is_Tagged_Type
(Rec_Id
)
2293 or else Is_Concurrent_Record_Type
(Rec_Id
)
2294 or else Has_Task
(Rec_Id
)
2299 Id
:= First_Component
(Rec_Id
);
2301 while Present
(Id
) loop
2302 Comp_Decl
:= Parent
(Id
);
2305 if Present
(Expression
(Comp_Decl
))
2306 or else Has_Non_Null_Base_Init_Proc
(Typ
)
2307 or else Component_Needs_Simple_Initialization
(Typ
)
2312 Next_Component
(Id
);
2316 end Requires_Init_Proc
;
2318 -- Start of processing for Build_Record_Init_Proc
2321 Rec_Type
:= Defining_Identifier
(N
);
2323 -- This may be full declaration of a private type, in which case
2324 -- the visible entity is a record, and the private entity has been
2325 -- exchanged with it in the private part of the current package.
2326 -- The initialization procedure is built for the record type, which
2327 -- is retrievable from the private entity.
2329 if Is_Incomplete_Or_Private_Type
(Rec_Type
) then
2330 Rec_Type
:= Underlying_Type
(Rec_Type
);
2333 -- If there are discriminants, build the discriminant map to replace
2334 -- discriminants by their discriminals in complex bound expressions.
2335 -- These only arise for the corresponding records of protected types.
2337 if Is_Concurrent_Record_Type
(Rec_Type
)
2338 and then Has_Discriminants
(Rec_Type
)
2344 Disc
:= First_Discriminant
(Rec_Type
);
2346 while Present
(Disc
) loop
2347 Append_Elmt
(Disc
, Discr_Map
);
2348 Append_Elmt
(Discriminal
(Disc
), Discr_Map
);
2349 Next_Discriminant
(Disc
);
2354 -- Derived types that have no type extension can use the initialization
2355 -- procedure of their parent and do not need a procedure of their own.
2356 -- This is only correct if there are no representation clauses for the
2357 -- type or its parent, and if the parent has in fact been frozen so
2358 -- that its initialization procedure exists.
2360 if Is_Derived_Type
(Rec_Type
)
2361 and then not Is_Tagged_Type
(Rec_Type
)
2362 and then not Has_New_Non_Standard_Rep
(Rec_Type
)
2363 and then not Parent_Subtype_Renaming_Discrims
2364 and then Has_Non_Null_Base_Init_Proc
(Etype
(Rec_Type
))
2366 Copy_TSS
(Base_Init_Proc
(Etype
(Rec_Type
)), Rec_Type
);
2368 -- Otherwise if we need an initialization procedure, then build one,
2369 -- mark it as public and inlinable and as having a completion.
2371 elsif Requires_Init_Proc
(Rec_Type
) then
2372 Build_Init_Procedure
;
2373 Set_Is_Public
(Proc_Id
, Is_Public
(Pe
));
2375 -- The initialization of protected records is not worth inlining.
2376 -- In addition, when compiled for another unit for inlining purposes,
2377 -- it may make reference to entities that have not been elaborated
2378 -- yet. The initialization of controlled records contains a nested
2379 -- clean-up procedure that makes it impractical to inline as well,
2380 -- and leads to undefined symbols if inlined in a different unit.
2381 -- Similar considerations apply to task types.
2383 if not Is_Concurrent_Type
(Rec_Type
)
2384 and then not Has_Task
(Rec_Type
)
2385 and then not Controlled_Type
(Rec_Type
)
2387 Set_Is_Inlined
(Proc_Id
);
2390 Set_Is_Internal
(Proc_Id
);
2391 Set_Has_Completion
(Proc_Id
);
2393 if not Debug_Generated_Code
then
2394 Set_Debug_Info_Off
(Proc_Id
);
2397 end Build_Record_Init_Proc
;
2399 ------------------------------------
2400 -- Build_Variant_Record_Equality --
2401 ------------------------------------
2405 -- function _Equality (X, Y : T) return Boolean is
2407 -- -- Compare discriminants
2409 -- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
2413 -- -- Compare components
2415 -- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
2419 -- -- Compare variant part
2423 -- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
2428 -- if False or else X.Cn /= Y.Cn then
2435 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
) is
2436 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
2437 F
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
,
2439 X
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_X
);
2440 Y
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_Y
);
2441 Def
: constant Node_Id
:= Parent
(Typ
);
2442 Comps
: constant Node_Id
:= Component_List
(Type_Definition
(Def
));
2444 Function_Body
: Node_Id
;
2445 Stmts
: List_Id
:= New_List
;
2448 if Is_Derived_Type
(Typ
)
2449 and then not Has_New_Non_Standard_Rep
(Typ
)
2452 Parent_Eq
: Entity_Id
:= TSS
(Root_Type
(Typ
), Name_uEquality
);
2455 if Present
(Parent_Eq
) then
2456 Copy_TSS
(Parent_Eq
, Typ
);
2463 Make_Subprogram_Body
(Loc
,
2465 Make_Function_Specification
(Loc
,
2466 Defining_Unit_Name
=> F
,
2467 Parameter_Specifications
=> New_List
(
2468 Make_Parameter_Specification
(Loc
,
2469 Defining_Identifier
=> X
,
2470 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)),
2472 Make_Parameter_Specification
(Loc
,
2473 Defining_Identifier
=> Y
,
2474 Parameter_Type
=> New_Reference_To
(Typ
, Loc
))),
2476 Subtype_Mark
=> New_Reference_To
(Standard_Boolean
, Loc
)),
2478 Declarations
=> New_List
,
2479 Handled_Statement_Sequence
=>
2480 Make_Handled_Sequence_Of_Statements
(Loc
,
2481 Statements
=> Stmts
));
2483 -- For unchecked union case, raise program error. This will only
2484 -- happen in the case of dynamic dispatching for a tagged type,
2485 -- since in the static cases it is a compile time error.
2487 if Has_Unchecked_Union
(Typ
) then
2489 Make_Raise_Program_Error
(Loc
,
2490 Reason
=> PE_Unchecked_Union_Restriction
));
2494 Discriminant_Specifications
(Def
)));
2495 Append_List_To
(Stmts
,
2496 Make_Eq_Case
(Typ
, Comps
));
2500 Make_Return_Statement
(Loc
,
2501 Expression
=> New_Reference_To
(Standard_True
, Loc
)));
2506 if not Debug_Generated_Code
then
2507 Set_Debug_Info_Off
(F
);
2509 end Build_Variant_Record_Equality
;
2511 -----------------------------
2512 -- Check_Stream_Attributes --
2513 -----------------------------
2515 procedure Check_Stream_Attributes
(Typ
: Entity_Id
) is
2517 Par
: constant Entity_Id
:= Root_Type
(Base_Type
(Typ
));
2518 Par_Read
: Boolean := Present
(TSS
(Par
, Name_uRead
));
2519 Par_Write
: Boolean := Present
(TSS
(Par
, Name_uWrite
));
2522 if Par_Read
or else Par_Write
then
2523 Comp
:= First_Component
(Typ
);
2524 while Present
(Comp
) loop
2525 if Comes_From_Source
(Comp
)
2526 and then Original_Record_Component
(Comp
) = Comp
2527 and then Is_Limited_Type
(Etype
(Comp
))
2529 if (Par_Read
and then
2530 No
(TSS
(Base_Type
(Etype
(Comp
)), Name_uRead
)))
2533 No
(TSS
(Base_Type
(Etype
(Comp
)), Name_uWrite
)))
2536 ("|component must have Stream attribute",
2541 Next_Component
(Comp
);
2544 end Check_Stream_Attributes
;
2546 ---------------------------
2547 -- Expand_Derived_Record --
2548 ---------------------------
2550 -- Add a field _parent at the beginning of the record extension. This is
2551 -- used to implement inheritance. Here are some examples of expansion:
2553 -- 1. no discriminants
2554 -- type T2 is new T1 with null record;
2556 -- type T2 is new T1 with record
2560 -- 2. renamed discriminants
2561 -- type T2 (B, C : Int) is new T1 (A => B) with record
2562 -- _Parent : T1 (A => B);
2566 -- 3. inherited discriminants
2567 -- type T2 is new T1 with record -- discriminant A inherited
2568 -- _Parent : T1 (A);
2572 procedure Expand_Derived_Record
(T
: Entity_Id
; Def
: Node_Id
) is
2573 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
2574 Loc
: constant Source_Ptr
:= Sloc
(Def
);
2575 Rec_Ext_Part
: Node_Id
:= Record_Extension_Part
(Def
);
2576 Par_Subtype
: Entity_Id
;
2577 Comp_List
: Node_Id
;
2578 Comp_Decl
: Node_Id
;
2581 List_Constr
: constant List_Id
:= New_List
;
2584 -- Expand_Tagged_Extension is called directly from the semantics, so
2585 -- we must check to see whether expansion is active before proceeding
2587 if not Expander_Active
then
2591 -- This may be a derivation of an untagged private type whose full
2592 -- view is tagged, in which case the Derived_Type_Definition has no
2593 -- extension part. Build an empty one now.
2595 if No
(Rec_Ext_Part
) then
2597 Make_Record_Definition
(Loc
,
2599 Component_List
=> Empty
,
2600 Null_Present
=> True);
2602 Set_Record_Extension_Part
(Def
, Rec_Ext_Part
);
2603 Mark_Rewrite_Insertion
(Rec_Ext_Part
);
2606 Comp_List
:= Component_List
(Rec_Ext_Part
);
2608 Parent_N
:= Make_Defining_Identifier
(Loc
, Name_uParent
);
2610 -- If the derived type inherits its discriminants the type of the
2611 -- _parent field must be constrained by the inherited discriminants
2613 if Has_Discriminants
(T
)
2614 and then Nkind
(Indic
) /= N_Subtype_Indication
2615 and then not Is_Constrained
(Entity
(Indic
))
2617 D
:= First_Discriminant
(T
);
2618 while (Present
(D
)) loop
2619 Append_To
(List_Constr
, New_Occurrence_Of
(D
, Loc
));
2620 Next_Discriminant
(D
);
2625 Make_Subtype_Indication
(Loc
,
2626 Subtype_Mark
=> New_Reference_To
(Entity
(Indic
), Loc
),
2628 Make_Index_Or_Discriminant_Constraint
(Loc
,
2629 Constraints
=> List_Constr
)),
2632 -- Otherwise the original subtype_indication is just what is needed
2635 Par_Subtype
:= Process_Subtype
(New_Copy_Tree
(Indic
), Def
);
2638 Set_Parent_Subtype
(T
, Par_Subtype
);
2641 Make_Component_Declaration
(Loc
,
2642 Defining_Identifier
=> Parent_N
,
2643 Subtype_Indication
=> New_Reference_To
(Par_Subtype
, Loc
));
2645 if Null_Present
(Rec_Ext_Part
) then
2646 Set_Component_List
(Rec_Ext_Part
,
2647 Make_Component_List
(Loc
,
2648 Component_Items
=> New_List
(Comp_Decl
),
2649 Variant_Part
=> Empty
,
2650 Null_Present
=> False));
2651 Set_Null_Present
(Rec_Ext_Part
, False);
2653 elsif Null_Present
(Comp_List
)
2654 or else Is_Empty_List
(Component_Items
(Comp_List
))
2656 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
2657 Set_Null_Present
(Comp_List
, False);
2660 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
2663 Analyze
(Comp_Decl
);
2664 end Expand_Derived_Record
;
2666 ------------------------------------
2667 -- Expand_N_Full_Type_Declaration --
2668 ------------------------------------
2670 procedure Expand_N_Full_Type_Declaration
(N
: Node_Id
) is
2671 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2672 B_Id
: Entity_Id
:= Base_Type
(Def_Id
);
2677 if Is_Access_Type
(Def_Id
) then
2679 -- Anonymous access types are created for the components of the
2680 -- record parameter for an entry declaration. No master is created
2683 if Has_Task
(Designated_Type
(Def_Id
))
2684 and then Comes_From_Source
(N
)
2686 Build_Master_Entity
(Def_Id
);
2687 Build_Master_Renaming
(Parent
(Def_Id
), Def_Id
);
2689 -- Create a class-wide master because a Master_Id must be generated
2690 -- for access-to-limited-class-wide types, whose root may be extended
2691 -- with task components.
2693 elsif Is_Class_Wide_Type
(Designated_Type
(Def_Id
))
2694 and then Is_Limited_Type
(Designated_Type
(Def_Id
))
2695 and then Tasking_Allowed
2697 -- Don't create a class-wide master for types whose convention is
2698 -- Java since these types cannot embed Ada tasks anyway. Note that
2699 -- the following test cannot catch the following case:
2701 -- package java.lang.Object is
2702 -- type Typ is tagged limited private;
2703 -- type Ref is access all Typ'Class;
2705 -- type Typ is tagged limited ...;
2706 -- pragma Convention (Typ, Java)
2709 -- Because the convention appears after we have done the
2710 -- processing for type Ref.
2712 and then Convention
(Designated_Type
(Def_Id
)) /= Convention_Java
2714 Build_Class_Wide_Master
(Def_Id
);
2716 elsif Ekind
(Def_Id
) = E_Access_Protected_Subprogram_Type
then
2717 Expand_Access_Protected_Subprogram_Type
(N
);
2720 elsif Has_Task
(Def_Id
) then
2721 Expand_Previous_Access_Type
(Def_Id
);
2724 Par_Id
:= Etype
(B_Id
);
2726 -- The parent type is private then we need to inherit
2727 -- any TSS operations from the full view.
2729 if Ekind
(Par_Id
) in Private_Kind
2730 and then Present
(Full_View
(Par_Id
))
2732 Par_Id
:= Base_Type
(Full_View
(Par_Id
));
2735 if Nkind
(Type_Definition
(Original_Node
(N
)))
2736 = N_Derived_Type_Definition
2737 and then not Is_Tagged_Type
(Def_Id
)
2738 and then Present
(Freeze_Node
(Par_Id
))
2739 and then Present
(TSS_Elist
(Freeze_Node
(Par_Id
)))
2741 Ensure_Freeze_Node
(B_Id
);
2742 FN
:= Freeze_Node
(B_Id
);
2744 if No
(TSS_Elist
(FN
)) then
2745 Set_TSS_Elist
(FN
, New_Elmt_List
);
2749 T_E
: Elist_Id
:= TSS_Elist
(FN
);
2753 Elmt
:= First_Elmt
(TSS_Elist
(Freeze_Node
(Par_Id
)));
2755 while Present
(Elmt
) loop
2756 if Chars
(Node
(Elmt
)) /= Name_uInit
then
2757 Append_Elmt
(Node
(Elmt
), T_E
);
2763 -- If the derived type itself is private with a full view,
2764 -- then associate the full view with the inherited TSS_Elist
2767 if Ekind
(B_Id
) in Private_Kind
2768 and then Present
(Full_View
(B_Id
))
2770 Ensure_Freeze_Node
(Base_Type
(Full_View
(B_Id
)));
2772 (Freeze_Node
(Base_Type
(Full_View
(B_Id
))), TSS_Elist
(FN
));
2776 end Expand_N_Full_Type_Declaration
;
2778 ---------------------------------
2779 -- Expand_N_Object_Declaration --
2780 ---------------------------------
2782 -- First we do special processing for objects of a tagged type where this
2783 -- is the point at which the type is frozen. The creation of the dispatch
2784 -- table and the initialization procedure have to be deferred to this
2785 -- point, since we reference previously declared primitive subprograms.
2787 -- For all types, we call an initialization procedure if there is one
2789 procedure Expand_N_Object_Declaration
(N
: Node_Id
) is
2790 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2791 Typ
: constant Entity_Id
:= Etype
(Def_Id
);
2792 Loc
: constant Source_Ptr
:= Sloc
(N
);
2793 Expr
: Node_Id
:= Expression
(N
);
2799 -- If we have a task type in no run time mode, then complain and ignore
2802 and then not Restricted_Profile
2803 and then Is_Task_Type
(Typ
)
2805 Disallow_In_No_Run_Time_Mode
(N
);
2808 -- Don't do anything for deferred constants. All proper actions will
2809 -- be expanded during the redeclaration.
2811 elsif No
(Expr
) and Constant_Present
(N
) then
2815 -- Make shared memory routines for shared passive variable
2817 if Is_Shared_Passive
(Def_Id
) then
2818 Make_Shared_Var_Procs
(N
);
2821 -- If tasks being declared, make sure we have an activation chain
2822 -- defined for the tasks (has no effect if we already have one), and
2823 -- also that a Master variable is established and that the appropriate
2824 -- enclosing construct is established as a task master.
2826 if Has_Task
(Typ
) then
2827 Build_Activation_Chain_Entity
(N
);
2828 Build_Master_Entity
(Def_Id
);
2831 -- Default initialization required, and no expression present
2835 -- Expand Initialize call for controlled objects. One may wonder why
2836 -- the Initialize Call is not done in the regular Init procedure
2837 -- attached to the record type. That's because the init procedure is
2838 -- recursively called on each component, including _Parent, thus the
2839 -- Init call for a controlled object would generate not only one
2840 -- Initialize call as it is required but one for each ancestor of
2841 -- its type. This processing is suppressed if No_Initialization set.
2843 if not Controlled_Type
(Typ
)
2844 or else No_Initialization
(N
)
2848 elsif not Abort_Allowed
2849 or else not Comes_From_Source
(N
)
2851 Insert_Actions_After
(N
,
2853 Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
2854 Typ
=> Base_Type
(Typ
),
2855 Flist_Ref
=> Find_Final_List
(Def_Id
),
2856 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
2861 -- We need to protect the initialize call
2865 -- Initialize (...);
2867 -- Undefer_Abort.all;
2870 -- ??? this won't protect the initialize call for controlled
2871 -- components which are part of the init proc, so this block
2872 -- should probably also contain the call to _init_proc but this
2873 -- requires some code reorganization...
2876 L
: constant List_Id
:=
2878 Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
2879 Typ
=> Base_Type
(Typ
),
2880 Flist_Ref
=> Find_Final_List
(Def_Id
),
2881 With_Attach
=> Make_Integer_Literal
(Loc
, 1));
2883 Blk
: constant Node_Id
:=
2884 Make_Block_Statement
(Loc
,
2885 Handled_Statement_Sequence
=>
2886 Make_Handled_Sequence_Of_Statements
(Loc
, L
));
2889 Prepend_To
(L
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
2890 Set_At_End_Proc
(Handled_Statement_Sequence
(Blk
),
2891 New_Occurrence_Of
(RTE
(RE_Abort_Undefer_Direct
), Loc
));
2892 Insert_Actions_After
(N
, New_List
(Blk
));
2893 Expand_At_End_Handler
2894 (Handled_Statement_Sequence
(Blk
), Entity
(Identifier
(Blk
)));
2898 -- Call type initialization procedure if there is one. We build the
2899 -- call and put it immediately after the object declaration, so that
2900 -- it will be expanded in the usual manner. Note that this will
2901 -- result in proper handling of defaulted discriminants. The call
2902 -- to the Init_Proc is suppressed if No_Initialization is set.
2904 if Has_Non_Null_Base_Init_Proc
(Typ
)
2905 and then not No_Initialization
(N
)
2907 -- The call to the initialization procedure does NOT freeze
2908 -- the object being initialized. This is because the call is
2909 -- not a source level call. This works fine, because the only
2910 -- possible statements depending on freeze status that can
2911 -- appear after the _Init call are rep clauses which can
2912 -- safely appear after actual references to the object.
2914 Id_Ref
:= New_Reference_To
(Def_Id
, Loc
);
2915 Set_Must_Not_Freeze
(Id_Ref
);
2916 Set_Assignment_OK
(Id_Ref
);
2918 Insert_Actions_After
(N
,
2919 Build_Initialization_Call
(Loc
, Id_Ref
, Typ
));
2921 -- The initialization call may well set Not_Source_Assigned
2922 -- to False, because it looks like an modification, but the
2923 -- proper criterion is whether or not the type is at least
2924 -- partially initialized, so reset the flag appropriately.
2926 Set_Not_Source_Assigned
2927 (Def_Id
, not Is_Partially_Initialized_Type
(Typ
));
2929 -- If simple initialization is required, then set an appropriate
2930 -- simple initialization expression in place. This special
2931 -- initialization is required even though No_Init_Flag is present.
2933 elsif Needs_Simple_Initialization
(Typ
) then
2934 Set_No_Initialization
(N
, False);
2935 Set_Expression
(N
, Get_Simple_Init_Val
(Typ
, Loc
));
2936 Analyze_And_Resolve
(Expression
(N
), Typ
);
2939 -- Explicit initialization present
2942 -- Obtain actual expression from qualified expression
2944 if Nkind
(Expr
) = N_Qualified_Expression
then
2945 Expr_Q
:= Expression
(Expr
);
2950 -- When we have the appropriate type of aggregate in the
2951 -- expression (it has been determined during analysis of the
2952 -- aggregate by setting the delay flag), let's perform in
2953 -- place assignment and thus avoid creating a temporay.
2955 if Is_Delayed_Aggregate
(Expr_Q
) then
2956 Convert_Aggr_In_Object_Decl
(N
);
2959 -- In most cases, we must check that the initial value meets
2960 -- any constraint imposed by the declared type. However, there
2961 -- is one very important exception to this rule. If the entity
2962 -- has an unconstrained nominal subtype, then it acquired its
2963 -- constraints from the expression in the first place, and not
2964 -- only does this mean that the constraint check is not needed,
2965 -- but an attempt to perform the constraint check can
2966 -- cause order of elaboration problems.
2968 if not Is_Constr_Subt_For_U_Nominal
(Typ
) then
2970 -- If this is an allocator for an aggregate that has been
2971 -- allocated in place, delay checks until assignments are
2972 -- made, because the discriminants are not initialized.
2974 if Nkind
(Expr
) = N_Allocator
2975 and then No_Initialization
(Expr
)
2979 Apply_Constraint_Check
(Expr
, Typ
);
2983 -- If the type is controlled we attach the object to the final
2984 -- list and adjust the target after the copy. This
2986 if Controlled_Type
(Typ
) then
2992 -- Attach the result to a dummy final list which will never
2993 -- be finalized if Delay_Finalize_Attachis set. It is
2994 -- important to attach to a dummy final list rather than
2995 -- not attaching at all in order to reset the pointers
2996 -- coming from the initial value. Equivalent code exists
2997 -- in the sec-stack case in Exp_Ch4.Expand_N_Allocator.
2999 if Delay_Finalize_Attach
(N
) then
3001 Make_Defining_Identifier
(Loc
, New_Internal_Name
('F'));
3003 Make_Object_Declaration
(Loc
,
3004 Defining_Identifier
=> F
,
3005 Object_Definition
=>
3006 New_Reference_To
(RTE
(RE_Finalizable_Ptr
), Loc
)));
3008 Flist
:= New_Reference_To
(F
, Loc
);
3011 Flist
:= Find_Final_List
(Def_Id
);
3014 Insert_Actions_After
(N
,
3016 Ref
=> New_Reference_To
(Def_Id
, Loc
),
3017 Typ
=> Base_Type
(Typ
),
3019 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
3023 -- For tagged types, when an init value is given, the tag has
3024 -- to be re-initialized separately in order to avoid the
3025 -- propagation of a wrong tag coming from a view conversion
3026 -- unless the type is class wide (in this case the tag comes
3027 -- from the init value). Suppress the tag assignment when
3028 -- Java_VM because JVM tags are represented implicitly
3029 -- in objects. Ditto for types that are CPP_CLASS.
3031 if Is_Tagged_Type
(Typ
)
3032 and then not Is_Class_Wide_Type
(Typ
)
3033 and then not Is_CPP_Class
(Typ
)
3034 and then not Java_VM
3036 -- The re-assignment of the tag has to be done even if
3037 -- the object is a constant
3040 Make_Selected_Component
(Loc
,
3041 Prefix
=> New_Reference_To
(Def_Id
, Loc
),
3043 New_Reference_To
(Tag_Component
(Typ
), Loc
));
3045 Set_Assignment_OK
(New_Ref
);
3048 Make_Assignment_Statement
(Loc
,
3051 Unchecked_Convert_To
(RTE
(RE_Tag
),
3053 (Access_Disp_Table
(Base_Type
(Typ
)), Loc
))));
3055 -- For discrete types, set the Is_Known_Valid flag if the
3056 -- initializing value is known to be valid.
3058 elsif Is_Discrete_Type
(Typ
)
3059 and then Expr_Known_Valid
(Expr
)
3061 Set_Is_Known_Valid
(Def_Id
);
3064 -- If validity checking on copies, validate initial expression
3066 if Validity_Checks_On
3067 and then Validity_Check_Copies
3069 Ensure_Valid
(Expr
);
3070 Set_Is_Known_Valid
(Def_Id
);
3075 -- For array type, check for size too large
3076 -- We really need this for record types too???
3078 if Is_Array_Type
(Typ
) then
3079 Apply_Array_Size_Check
(N
, Typ
);
3082 end Expand_N_Object_Declaration
;
3084 ---------------------------------
3085 -- Expand_N_Subtype_Indication --
3086 ---------------------------------
3088 -- Add a check on the range of the subtype. The static case is
3089 -- partially duplicated by Process_Range_Expr_In_Decl in Sem_Ch3,
3090 -- but we still need to check here for the static case in order to
3091 -- avoid generating extraneous expanded code.
3093 procedure Expand_N_Subtype_Indication
(N
: Node_Id
) is
3094 Ran
: Node_Id
:= Range_Expression
(Constraint
(N
));
3095 Typ
: Entity_Id
:= Entity
(Subtype_Mark
(N
));
3098 if Nkind
(Parent
(N
)) = N_Constrained_Array_Definition
or else
3099 Nkind
(Parent
(N
)) = N_Slice
3102 Apply_Range_Check
(Ran
, Typ
);
3104 end Expand_N_Subtype_Indication
;
3106 ---------------------------
3107 -- Expand_N_Variant_Part --
3108 ---------------------------
3110 -- If the last variant does not contain the Others choice, replace
3111 -- it with an N_Others_Choice node since Gigi always wants an Others.
3112 -- Note that we do not bother to call Analyze on the modified variant
3113 -- part, since it's only effect would be to compute the contents of
3114 -- the Others_Discrete_Choices node laboriously, and of course we
3115 -- already know the list of choices that corresponds to the others
3116 -- choice (it's the list we are replacing!)
3118 procedure Expand_N_Variant_Part
(N
: Node_Id
) is
3119 Last_Var
: constant Node_Id
:= Last_Non_Pragma
(Variants
(N
));
3120 Others_Node
: Node_Id
;
3123 if Nkind
(First
(Discrete_Choices
(Last_Var
))) /= N_Others_Choice
then
3124 Others_Node
:= Make_Others_Choice
(Sloc
(Last_Var
));
3125 Set_Others_Discrete_Choices
3126 (Others_Node
, Discrete_Choices
(Last_Var
));
3127 Set_Discrete_Choices
(Last_Var
, New_List
(Others_Node
));
3129 end Expand_N_Variant_Part
;
3131 ---------------------------------
3132 -- Expand_Previous_Access_Type --
3133 ---------------------------------
3135 procedure Expand_Previous_Access_Type
(Def_Id
: Entity_Id
) is
3136 T
: Entity_Id
:= First_Entity
(Current_Scope
);
3139 -- Find all access types declared in the current scope, whose
3140 -- designated type is Def_Id.
3142 while Present
(T
) loop
3143 if Is_Access_Type
(T
)
3144 and then Designated_Type
(T
) = Def_Id
3146 Build_Master_Entity
(Def_Id
);
3147 Build_Master_Renaming
(Parent
(Def_Id
), T
);
3152 end Expand_Previous_Access_Type
;
3154 ------------------------------
3155 -- Expand_Record_Controller --
3156 ------------------------------
3158 procedure Expand_Record_Controller
(T
: Entity_Id
) is
3159 Def
: Node_Id
:= Type_Definition
(Parent
(T
));
3160 Comp_List
: Node_Id
;
3161 Comp_Decl
: Node_Id
;
3163 First_Comp
: Node_Id
;
3164 Controller_Type
: Entity_Id
;
3168 if Nkind
(Def
) = N_Derived_Type_Definition
then
3169 Def
:= Record_Extension_Part
(Def
);
3172 if Null_Present
(Def
) then
3173 Set_Component_List
(Def
,
3174 Make_Component_List
(Sloc
(Def
),
3175 Component_Items
=> Empty_List
,
3176 Variant_Part
=> Empty
,
3177 Null_Present
=> True));
3180 Comp_List
:= Component_List
(Def
);
3182 if Null_Present
(Comp_List
)
3183 or else Is_Empty_List
(Component_Items
(Comp_List
))
3185 Loc
:= Sloc
(Comp_List
);
3187 Loc
:= Sloc
(First
(Component_Items
(Comp_List
)));
3190 if Is_Return_By_Reference_Type
(T
) then
3191 Controller_Type
:= RTE
(RE_Limited_Record_Controller
);
3193 Controller_Type
:= RTE
(RE_Record_Controller
);
3196 Ent
:= Make_Defining_Identifier
(Loc
, Name_uController
);
3199 Make_Component_Declaration
(Loc
,
3200 Defining_Identifier
=> Ent
,
3201 Subtype_Indication
=> New_Reference_To
(Controller_Type
, Loc
));
3203 if Null_Present
(Comp_List
)
3204 or else Is_Empty_List
(Component_Items
(Comp_List
))
3206 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
3207 Set_Null_Present
(Comp_List
, False);
3210 -- The controller cannot be placed before the _Parent field
3211 -- since gigi lays out field in order and _parent must be
3212 -- first to preserve the polymorphism of tagged types.
3214 First_Comp
:= First
(Component_Items
(Comp_List
));
3216 if Chars
(Defining_Identifier
(First_Comp
)) /= Name_uParent
3217 and then Chars
(Defining_Identifier
(First_Comp
)) /= Name_uTag
3219 Insert_Before
(First_Comp
, Comp_Decl
);
3221 Insert_After
(First_Comp
, Comp_Decl
);
3226 Analyze
(Comp_Decl
);
3227 Set_Ekind
(Ent
, E_Component
);
3228 Init_Component_Location
(Ent
);
3230 -- Move the _controller entity ahead in the list of internal
3231 -- entities of the enclosing record so that it is selected
3232 -- instead of a potentially inherited one.
3235 E
: Entity_Id
:= Last_Entity
(T
);
3239 pragma Assert
(Chars
(E
) = Name_uController
);
3241 Set_Next_Entity
(E
, First_Entity
(T
));
3242 Set_First_Entity
(T
, E
);
3244 Comp
:= Next_Entity
(E
);
3245 while Next_Entity
(Comp
) /= E
loop
3249 Set_Next_Entity
(Comp
, Empty
);
3250 Set_Last_Entity
(T
, Comp
);
3254 end Expand_Record_Controller
;
3256 ------------------------
3257 -- Expand_Tagged_Root --
3258 ------------------------
3260 procedure Expand_Tagged_Root
(T
: Entity_Id
) is
3261 Def
: constant Node_Id
:= Type_Definition
(Parent
(T
));
3262 Comp_List
: Node_Id
;
3263 Comp_Decl
: Node_Id
;
3264 Sloc_N
: Source_Ptr
;
3267 if Null_Present
(Def
) then
3268 Set_Component_List
(Def
,
3269 Make_Component_List
(Sloc
(Def
),
3270 Component_Items
=> Empty_List
,
3271 Variant_Part
=> Empty
,
3272 Null_Present
=> True));
3275 Comp_List
:= Component_List
(Def
);
3277 if Null_Present
(Comp_List
)
3278 or else Is_Empty_List
(Component_Items
(Comp_List
))
3280 Sloc_N
:= Sloc
(Comp_List
);
3282 Sloc_N
:= Sloc
(First
(Component_Items
(Comp_List
)));
3286 Make_Component_Declaration
(Sloc_N
,
3287 Defining_Identifier
=> Tag_Component
(T
),
3288 Subtype_Indication
=>
3289 New_Reference_To
(RTE
(RE_Tag
), Sloc_N
));
3291 if Null_Present
(Comp_List
)
3292 or else Is_Empty_List
(Component_Items
(Comp_List
))
3294 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
3295 Set_Null_Present
(Comp_List
, False);
3298 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
3301 -- We don't Analyze the whole expansion because the tag component has
3302 -- already been analyzed previously. Here we just insure that the
3303 -- tree is coherent with the semantic decoration
3305 Find_Type
(Subtype_Indication
(Comp_Decl
));
3306 end Expand_Tagged_Root
;
3308 -----------------------
3309 -- Freeze_Array_Type --
3310 -----------------------
3312 procedure Freeze_Array_Type
(N
: Node_Id
) is
3313 Typ
: constant Entity_Id
:= Entity
(N
);
3314 Base
: constant Entity_Id
:= Base_Type
(Typ
);
3317 -- Nothing to do for packed case
3319 if not Is_Bit_Packed_Array
(Typ
) then
3321 -- If the component contains tasks, so does the array type.
3322 -- This may not be indicated in the array type because the
3323 -- component may have been a private type at the point of
3324 -- definition. Same if component type is controlled.
3326 Set_Has_Task
(Base
, Has_Task
(Component_Type
(Typ
)));
3327 Set_Has_Controlled_Component
(Base
,
3328 Has_Controlled_Component
(Component_Type
(Typ
))
3329 or else Is_Controlled
(Component_Type
(Typ
)));
3331 if No
(Init_Proc
(Base
)) then
3333 -- If this is an anonymous array created for a declaration
3334 -- with an initial value, its init_proc will never be called.
3335 -- The initial value itself may have been expanded into assign-
3336 -- ments, in which case the object declaration is carries the
3337 -- No_Initialization flag.
3340 and then Nkind
(Associated_Node_For_Itype
(Base
)) =
3341 N_Object_Declaration
3342 and then (Present
(Expression
(Associated_Node_For_Itype
(Base
)))
3344 No_Initialization
(Associated_Node_For_Itype
(Base
)))
3348 -- We do not need an init proc for string or wide string, since
3349 -- the only time these need initialization in normalize or
3350 -- initialize scalars mode, and these types are treated specially
3351 -- and do not need initialization procedures.
3353 elsif Base
= Standard_String
3354 or else Base
= Standard_Wide_String
3358 -- Otherwise we have to build an init proc for the subtype
3361 Build_Array_Init_Proc
(Base
, N
);
3365 if Typ
= Base
and then Has_Controlled_Component
(Base
) then
3366 Build_Controlling_Procs
(Base
);
3369 end Freeze_Array_Type
;
3371 -----------------------------
3372 -- Freeze_Enumeration_Type --
3373 -----------------------------
3375 procedure Freeze_Enumeration_Type
(N
: Node_Id
) is
3376 Loc
: constant Source_Ptr
:= Sloc
(N
);
3377 Typ
: constant Entity_Id
:= Entity
(N
);
3387 -- Build list of literal references
3392 Ent
:= First_Literal
(Typ
);
3393 while Present
(Ent
) loop
3394 Append_To
(Lst
, New_Reference_To
(Ent
, Sloc
(Ent
)));
3399 -- Now build an array declaration
3401 -- typA : array (Natural range 0 .. num - 1) of ctype :=
3402 -- (v, v, v, v, v, ....)
3404 -- where ctype is the corresponding integer type
3407 Make_Defining_Identifier
(Loc
,
3408 Chars
=> New_External_Name
(Chars
(Typ
), 'A'));
3410 Append_Freeze_Action
(Typ
,
3411 Make_Object_Declaration
(Loc
,
3412 Defining_Identifier
=> Arr
,
3413 Constant_Present
=> True,
3415 Object_Definition
=>
3416 Make_Constrained_Array_Definition
(Loc
,
3417 Discrete_Subtype_Definitions
=> New_List
(
3418 Make_Subtype_Indication
(Loc
,
3419 Subtype_Mark
=> New_Reference_To
(Standard_Natural
, Loc
),
3421 Make_Range_Constraint
(Loc
,
3425 Make_Integer_Literal
(Loc
, 0),
3427 Make_Integer_Literal
(Loc
, Num
- 1))))),
3429 Subtype_Indication
=> New_Reference_To
(Typ
, Loc
)),
3432 Make_Aggregate
(Loc
,
3433 Expressions
=> Lst
)));
3435 Set_Enum_Pos_To_Rep
(Typ
, Arr
);
3437 -- Now we build the function that converts representation values to
3438 -- position values. This function has the form:
3440 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
3443 -- when enum-lit'Enum_Rep => return posval;
3444 -- when enum-lit'Enum_Rep => return posval;
3447 -- [raise Program_Error when F]
3452 -- Note: the F parameter determines whether the others case (no valid
3453 -- representation) raises Program_Error or returns a unique value of
3454 -- minus one. The latter case is used, e.g. in 'Valid code.
3456 -- Note: the reason we use Enum_Rep values in the case here is to
3457 -- avoid the code generator making inappropriate assumptions about
3458 -- the range of the values in the case where the value is invalid.
3459 -- ityp is a signed or unsigned integer type of appropriate width.
3461 -- Note: in the case of No_Run_Time mode, where we cannot handle
3462 -- a program error in any case, we suppress the raise and just
3463 -- return -1 unconditionally (this is an erroneous program in any
3464 -- case and there is no obligation to raise Program_Error here!)
3465 -- We also do this if pragma Restrictions (No_Exceptions) is active.
3467 -- First build list of cases
3471 Ent
:= First_Literal
(Typ
);
3472 while Present
(Ent
) loop
3474 Make_Case_Statement_Alternative
(Loc
,
3475 Discrete_Choices
=> New_List
(
3476 Make_Integer_Literal
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
3477 Intval
=> Enumeration_Rep
(Ent
))),
3479 Statements
=> New_List
(
3480 Make_Return_Statement
(Loc
,
3482 Make_Integer_Literal
(Loc
,
3483 Intval
=> Enumeration_Pos
(Ent
))))));
3488 -- Representations are signed
3490 if Enumeration_Rep
(First_Literal
(Typ
)) < 0 then
3491 if Esize
(Typ
) <= Standard_Integer_Size
then
3492 Ityp
:= Standard_Integer
;
3494 Ityp
:= Universal_Integer
;
3497 -- Representations are unsigned
3500 if Esize
(Typ
) <= Standard_Integer_Size
then
3501 Ityp
:= RTE
(RE_Unsigned
);
3503 Ityp
:= RTE
(RE_Long_Long_Unsigned
);
3507 -- In normal mode, add the others clause with the test
3509 if not (No_Run_Time
or Restrictions
(No_Exceptions
)) then
3511 Make_Case_Statement_Alternative
(Loc
,
3512 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
3513 Statements
=> New_List
(
3514 Make_Raise_Program_Error
(Loc
,
3515 Condition
=> Make_Identifier
(Loc
, Name_uF
),
3516 Reason
=> PE_Invalid_Data
),
3517 Make_Return_Statement
(Loc
,
3519 Make_Integer_Literal
(Loc
, -1)))));
3521 -- If No_Run_Time mode, unconditionally return -1. Same
3522 -- treatment if we have pragma Restrictions (No_Exceptions).
3526 Make_Case_Statement_Alternative
(Loc
,
3527 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
3528 Statements
=> New_List
(
3529 Make_Return_Statement
(Loc
,
3531 Make_Integer_Literal
(Loc
, -1)))));
3534 -- Now we can build the function body
3537 Make_Defining_Identifier
(Loc
, Name_uRep_To_Pos
);
3540 Make_Subprogram_Body
(Loc
,
3542 Make_Function_Specification
(Loc
,
3543 Defining_Unit_Name
=> Fent
,
3544 Parameter_Specifications
=> New_List
(
3545 Make_Parameter_Specification
(Loc
,
3546 Defining_Identifier
=>
3547 Make_Defining_Identifier
(Loc
, Name_uA
),
3548 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)),
3549 Make_Parameter_Specification
(Loc
,
3550 Defining_Identifier
=>
3551 Make_Defining_Identifier
(Loc
, Name_uF
),
3552 Parameter_Type
=> New_Reference_To
(Standard_Boolean
, Loc
))),
3554 Subtype_Mark
=> New_Reference_To
(Standard_Integer
, Loc
)),
3556 Declarations
=> Empty_List
,
3558 Handled_Statement_Sequence
=>
3559 Make_Handled_Sequence_Of_Statements
(Loc
,
3560 Statements
=> New_List
(
3561 Make_Case_Statement
(Loc
,
3563 Unchecked_Convert_To
(Ityp
,
3564 Make_Identifier
(Loc
, Name_uA
)),
3565 Alternatives
=> Lst
))));
3567 Set_TSS
(Typ
, Fent
);
3570 if not Debug_Generated_Code
then
3571 Set_Debug_Info_Off
(Fent
);
3573 end Freeze_Enumeration_Type
;
3575 ------------------------
3576 -- Freeze_Record_Type --
3577 ------------------------
3579 procedure Freeze_Record_Type
(N
: Node_Id
) is
3580 Def_Id
: constant Node_Id
:= Entity
(N
);
3582 Type_Decl
: constant Node_Id
:= Parent
(Def_Id
);
3583 Predef_List
: List_Id
;
3585 Renamed_Eq
: Node_Id
:= Empty
;
3586 -- Could use some comments ???
3589 -- Build discriminant checking functions if not a derived type (for
3590 -- derived types that are not tagged types, we always use the
3591 -- discriminant checking functions of the parent type). However, for
3592 -- untagged types the derivation may have taken place before the
3593 -- parent was frozen, so we copy explicitly the discriminant checking
3594 -- functions from the parent into the components of the derived type.
3596 if not Is_Derived_Type
(Def_Id
)
3597 or else Has_New_Non_Standard_Rep
(Def_Id
)
3598 or else Is_Tagged_Type
(Def_Id
)
3600 Build_Discr_Checking_Funcs
(Type_Decl
);
3602 elsif Is_Derived_Type
(Def_Id
)
3603 and then not Is_Tagged_Type
(Def_Id
)
3604 and then Has_Discriminants
(Def_Id
)
3607 Old_Comp
: Entity_Id
;
3611 First_Component
(Base_Type
(Underlying_Type
(Etype
(Def_Id
))));
3612 Comp
:= First_Component
(Def_Id
);
3614 while Present
(Comp
) loop
3615 if Ekind
(Comp
) = E_Component
3616 and then Chars
(Comp
) = Chars
(Old_Comp
)
3618 Set_Discriminant_Checking_Func
(Comp
,
3619 Discriminant_Checking_Func
(Old_Comp
));
3622 Next_Component
(Old_Comp
);
3623 Next_Component
(Comp
);
3628 if Is_Derived_Type
(Def_Id
)
3629 and then Is_Limited_Type
(Def_Id
)
3630 and then Is_Tagged_Type
(Def_Id
)
3632 Check_Stream_Attributes
(Def_Id
);
3635 -- Update task and controlled component flags, because some of the
3636 -- component types may have been private at the point of the record
3639 Comp
:= First_Component
(Def_Id
);
3641 while Present
(Comp
) loop
3642 if Has_Task
(Etype
(Comp
)) then
3643 Set_Has_Task
(Def_Id
);
3645 elsif Has_Controlled_Component
(Etype
(Comp
))
3646 or else (Chars
(Comp
) /= Name_uParent
3647 and then Is_Controlled
(Etype
(Comp
)))
3649 Set_Has_Controlled_Component
(Def_Id
);
3652 Next_Component
(Comp
);
3655 -- Creation of the Dispatch Table. Note that a Dispatch Table is
3656 -- created for regular tagged types as well as for Ada types
3657 -- deriving from a C++ Class, but not for tagged types directly
3658 -- corresponding to the C++ classes. In the later case we assume
3659 -- that the Vtable is created in the C++ side and we just use it.
3661 if Is_Tagged_Type
(Def_Id
) then
3663 if Is_CPP_Class
(Def_Id
) then
3664 Set_All_DT_Position
(Def_Id
);
3665 Set_Default_Constructor
(Def_Id
);
3668 -- Usually inherited primitives are not delayed but the first
3669 -- Ada extension of a CPP_Class is an exception since the
3670 -- address of the inherited subprogram has to be inserted in
3671 -- the new Ada Dispatch Table and this is a freezing action
3672 -- (usually the inherited primitive address is inserted in the
3673 -- DT by Inherit_DT)
3675 if Is_CPP_Class
(Etype
(Def_Id
)) then
3677 Elmt
: Elmt_Id
:= First_Elmt
(Primitive_Operations
(Def_Id
));
3681 while Present
(Elmt
) loop
3682 Subp
:= Node
(Elmt
);
3684 if Present
(Alias
(Subp
)) then
3685 Set_Has_Delayed_Freeze
(Subp
);
3693 if Underlying_Type
(Etype
(Def_Id
)) = Def_Id
then
3694 Expand_Tagged_Root
(Def_Id
);
3697 -- Unfreeze momentarily the type to add the predefined
3698 -- primitives operations. The reason we unfreeze is so
3699 -- that these predefined operations will indeed end up
3700 -- as primitive operations (which must be before the
3703 Set_Is_Frozen
(Def_Id
, False);
3704 Make_Predefined_Primitive_Specs
3705 (Def_Id
, Predef_List
, Renamed_Eq
);
3706 Insert_List_Before_And_Analyze
(N
, Predef_List
);
3707 Set_Is_Frozen
(Def_Id
, True);
3708 Set_All_DT_Position
(Def_Id
);
3710 -- Add the controlled component before the freezing actions
3711 -- it is referenced in those actions.
3713 if Has_New_Controlled_Component
(Def_Id
) then
3714 Expand_Record_Controller
(Def_Id
);
3717 -- Suppress creation of a dispatch table when Java_VM because
3718 -- the dispatching mechanism is handled internally by the JVM.
3721 Append_Freeze_Actions
(Def_Id
, Make_DT
(Def_Id
));
3724 -- Make sure that the primitives Initialize, Adjust and
3725 -- Finalize are Frozen before other TSS subprograms. We
3726 -- don't want them Frozen inside.
3728 if Is_Controlled
(Def_Id
) then
3729 if not Is_Limited_Type
(Def_Id
) then
3730 Append_Freeze_Actions
(Def_Id
,
3732 (Find_Prim_Op
(Def_Id
, Name_Adjust
), Sloc
(Def_Id
)));
3735 Append_Freeze_Actions
(Def_Id
,
3737 (Find_Prim_Op
(Def_Id
, Name_Initialize
), Sloc
(Def_Id
)));
3739 Append_Freeze_Actions
(Def_Id
,
3741 (Find_Prim_Op
(Def_Id
, Name_Finalize
), Sloc
(Def_Id
)));
3744 -- Freeze rest of primitive operations
3746 Append_Freeze_Actions
3747 (Def_Id
, Predefined_Primitive_Freeze
(Def_Id
));
3750 -- In the non-tagged case, an equality function is provided only
3751 -- for variant records (that are not unchecked unions).
3753 elsif Has_Discriminants
(Def_Id
)
3754 and then not Is_Limited_Type
(Def_Id
)
3757 Comps
: constant Node_Id
:=
3758 Component_List
(Type_Definition
(Type_Decl
));
3762 and then Present
(Variant_Part
(Comps
))
3763 and then not Is_Unchecked_Union
(Def_Id
)
3765 Build_Variant_Record_Equality
(Def_Id
);
3770 -- Before building the record initialization procedure, if we are
3771 -- dealing with a concurrent record value type, then we must go
3772 -- through the discriminants, exchanging discriminals between the
3773 -- concurrent type and the concurrent record value type. See the
3774 -- section "Handling of Discriminants" in the Einfo spec for details.
3776 if Is_Concurrent_Record_Type
(Def_Id
)
3777 and then Has_Discriminants
(Def_Id
)
3780 Ctyp
: constant Entity_Id
:=
3781 Corresponding_Concurrent_Type
(Def_Id
);
3782 Conc_Discr
: Entity_Id
;
3783 Rec_Discr
: Entity_Id
;
3787 Conc_Discr
:= First_Discriminant
(Ctyp
);
3788 Rec_Discr
:= First_Discriminant
(Def_Id
);
3790 while Present
(Conc_Discr
) loop
3791 Temp
:= Discriminal
(Conc_Discr
);
3792 Set_Discriminal
(Conc_Discr
, Discriminal
(Rec_Discr
));
3793 Set_Discriminal
(Rec_Discr
, Temp
);
3795 Set_Discriminal_Link
(Discriminal
(Conc_Discr
), Conc_Discr
);
3796 Set_Discriminal_Link
(Discriminal
(Rec_Discr
), Rec_Discr
);
3798 Next_Discriminant
(Conc_Discr
);
3799 Next_Discriminant
(Rec_Discr
);
3804 if Has_Controlled_Component
(Def_Id
) then
3805 if No
(Controller_Component
(Def_Id
)) then
3806 Expand_Record_Controller
(Def_Id
);
3809 Build_Controlling_Procs
(Def_Id
);
3812 Adjust_Discriminants
(Def_Id
);
3813 Build_Record_Init_Proc
(Type_Decl
, Def_Id
);
3815 -- For tagged type, build bodies of primitive operations. Note
3816 -- that we do this after building the record initialization
3817 -- experiment, since the primitive operations may need the
3818 -- initialization routine
3820 if Is_Tagged_Type
(Def_Id
) then
3821 Predef_List
:= Predefined_Primitive_Bodies
(Def_Id
, Renamed_Eq
);
3822 Append_Freeze_Actions
(Def_Id
, Predef_List
);
3825 end Freeze_Record_Type
;
3827 ------------------------------
3828 -- Freeze_Stream_Operations --
3829 ------------------------------
3831 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
) is
3832 Names
: constant array (1 .. 4) of Name_Id
:=
3833 (Name_uInput
, Name_uOutput
, Name_uRead
, Name_uWrite
);
3834 Stream_Op
: Entity_Id
;
3837 -- Primitive operations of tagged types are frozen when the dispatch
3838 -- table is constructed.
3840 if not Comes_From_Source
(Typ
)
3841 or else Is_Tagged_Type
(Typ
)
3846 for J
in Names
'Range loop
3847 Stream_Op
:= TSS
(Typ
, Names
(J
));
3849 if Present
(Stream_Op
)
3850 and then Is_Subprogram
(Stream_Op
)
3851 and then Nkind
(Unit_Declaration_Node
(Stream_Op
)) =
3852 N_Subprogram_Declaration
3853 and then not Is_Frozen
(Stream_Op
)
3855 Append_Freeze_Actions
3856 (Typ
, Freeze_Entity
(Stream_Op
, Sloc
(N
)));
3859 end Freeze_Stream_Operations
;
3865 -- Full type declarations are expanded at the point at which the type
3866 -- is frozen. The formal N is the Freeze_Node for the type. Any statements
3867 -- or declarations generated by the freezing (e.g. the procedure generated
3868 -- for initialization) are chained in the Acions field list of the freeze
3869 -- node using Append_Freeze_Actions.
3871 procedure Freeze_Type
(N
: Node_Id
) is
3872 Def_Id
: constant Entity_Id
:= Entity
(N
);
3875 -- Process associated access types needing special processing
3877 if Present
(Access_Types_To_Process
(N
)) then
3879 E
: Elmt_Id
:= First_Elmt
(Access_Types_To_Process
(N
));
3881 while Present
(E
) loop
3883 -- If the access type is a RACW, call the expansion procedure
3884 -- for this remote pointer.
3886 if Is_Remote_Access_To_Class_Wide_Type
(Node
(E
)) then
3887 Remote_Types_Tagged_Full_View_Encountered
(Def_Id
);
3895 -- Freeze processing for record types
3897 if Is_Record_Type
(Def_Id
) then
3898 if Ekind
(Def_Id
) = E_Record_Type
then
3899 Freeze_Record_Type
(N
);
3901 -- The subtype may have been declared before the type was frozen.
3902 -- If the type has controlled components it is necessary to create
3903 -- the entity for the controller explicitly because it did not
3904 -- exist at the point of the subtype declaration. Only the entity is
3905 -- needed, the back-end will obtain the layout from the type.
3906 -- This is only necessary if this is constrained subtype whose
3907 -- component list is not shared with the base type.
3909 elsif Ekind
(Def_Id
) = E_Record_Subtype
3910 and then Has_Discriminants
(Def_Id
)
3911 and then Last_Entity
(Def_Id
) /= Last_Entity
(Base_Type
(Def_Id
))
3912 and then Present
(Controller_Component
(Def_Id
))
3915 Old_C
: Entity_Id
:= Controller_Component
(Def_Id
);
3919 if Scope
(Old_C
) = Base_Type
(Def_Id
) then
3921 -- The entity is the one in the parent. Create new one.
3923 New_C
:= New_Copy
(Old_C
);
3924 Set_Parent
(New_C
, Parent
(Old_C
));
3932 -- Freeze processing for array types
3934 elsif Is_Array_Type
(Def_Id
) then
3935 Freeze_Array_Type
(N
);
3937 -- Freeze processing for access types
3939 -- For pool-specific access types, find out the pool object used for
3940 -- this type, needs actual expansion of it in some cases. Here are the
3941 -- different cases :
3943 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
3944 -- ---> don't use any storage pool
3946 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
3948 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
3950 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
3951 -- ---> Storage Pool is the specified one
3953 -- See GNAT Pool packages in the Run-Time for more details
3955 elsif Ekind
(Def_Id
) = E_Access_Type
3956 or else Ekind
(Def_Id
) = E_General_Access_Type
3959 Loc
: constant Source_Ptr
:= Sloc
(N
);
3960 Desig_Type
: constant Entity_Id
:= Designated_Type
(Def_Id
);
3961 Pool_Object
: Entity_Id
;
3964 Freeze_Action_Typ
: Entity_Id
;
3967 if Has_Storage_Size_Clause
(Def_Id
) then
3968 Siz_Exp
:= Expression
(Parent
(Storage_Size_Variable
(Def_Id
)));
3975 -- Rep Clause "for Def_Id'Storage_Size use 0;"
3976 -- ---> don't use any storage pool
3978 if Has_Storage_Size_Clause
(Def_Id
)
3979 and then Compile_Time_Known_Value
(Siz_Exp
)
3980 and then Expr_Value
(Siz_Exp
) = 0
3986 -- Rep Clause : for Def_Id'Storage_Size use Expr.
3988 -- Def_Id__Pool : Stack_Bounded_Pool
3989 -- (Expr, DT'Size, DT'Alignment);
3991 elsif Has_Storage_Size_Clause
(Def_Id
) then
3997 -- For unconstrained composite types we give a size of
3998 -- zero so that the pool knows that it needs a special
3999 -- algorithm for variable size object allocation.
4001 if Is_Composite_Type
(Desig_Type
)
4002 and then not Is_Constrained
(Desig_Type
)
4005 Make_Integer_Literal
(Loc
, 0);
4008 Make_Integer_Literal
(Loc
, Maximum_Alignment
);
4012 Make_Attribute_Reference
(Loc
,
4013 Prefix
=> New_Reference_To
(Desig_Type
, Loc
),
4014 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
);
4017 Make_Attribute_Reference
(Loc
,
4018 Prefix
=> New_Reference_To
(Desig_Type
, Loc
),
4019 Attribute_Name
=> Name_Alignment
);
4023 Make_Defining_Identifier
(Loc
,
4024 Chars
=> New_External_Name
(Chars
(Def_Id
), 'P'));
4026 -- We put the code associated with the pools in the
4027 -- entity that has the later freeze node, usually the
4028 -- acces type but it can also be the designated_type;
4029 -- because the pool code requires both those types to be
4032 if Is_Frozen
(Desig_Type
)
4033 and then (not Present
(Freeze_Node
(Desig_Type
))
4034 or else Analyzed
(Freeze_Node
(Desig_Type
)))
4036 Freeze_Action_Typ
:= Def_Id
;
4038 -- A Taft amendment type cannot get the freeze actions
4039 -- since the full view is not there.
4041 elsif Is_Incomplete_Or_Private_Type
(Desig_Type
)
4042 and then No
(Full_View
(Desig_Type
))
4044 Freeze_Action_Typ
:= Def_Id
;
4047 Freeze_Action_Typ
:= Desig_Type
;
4050 Append_Freeze_Action
(Freeze_Action_Typ
,
4051 Make_Object_Declaration
(Loc
,
4052 Defining_Identifier
=> Pool_Object
,
4053 Object_Definition
=>
4054 Make_Subtype_Indication
(Loc
,
4057 (RTE
(RE_Stack_Bounded_Pool
), Loc
),
4060 Make_Index_Or_Discriminant_Constraint
(Loc
,
4061 Constraints
=> New_List
(
4063 -- First discriminant is the Pool Size
4066 Storage_Size_Variable
(Def_Id
), Loc
),
4068 -- Second discriminant is the element size
4072 -- Third discriminant is the alignment
4077 Set_Associated_Storage_Pool
(Def_Id
, Pool_Object
);
4081 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
4082 -- ---> Storage Pool is the specified one
4084 elsif Present
(Associated_Storage_Pool
(Def_Id
)) then
4086 -- Nothing to do the associated storage pool has been attached
4087 -- when analyzing the rep. clause
4092 -- For access-to-controlled types (including class-wide types
4093 -- and Taft-amendment types which potentially have controlled
4094 -- components), expand the list controller object that will
4095 -- store the dynamically allocated objects. Do not do this
4096 -- transformation for expander-generated access types, but do it
4097 -- for types that are the full view of types derived from other
4098 -- private types. Also suppress the list controller in the case
4099 -- of a designated type with convention Java, since this is used
4100 -- when binding to Java API specs, where there's no equivalent
4101 -- of a finalization list and we don't want to pull in the
4102 -- finalization support if not needed.
4104 if not Comes_From_Source
(Def_Id
)
4105 and then not Has_Private_Declaration
(Def_Id
)
4109 elsif (Controlled_Type
(Desig_Type
)
4110 and then Convention
(Desig_Type
) /= Convention_Java
)
4111 or else (Is_Incomplete_Or_Private_Type
(Desig_Type
)
4112 and then No
(Full_View
(Desig_Type
))
4114 -- An exception is made for types defined in the run-time
4115 -- because Ada.Tags.Tag itself is such a type and cannot
4116 -- afford this unnecessary overhead that would generates a
4117 -- loop in the expansion scheme...
4118 -- Similarly, if No_Run_Time is enabled, the designated type
4119 -- cannot be controlled.
4121 and then not In_Runtime
(Def_Id
)
4122 and then not No_Run_Time
)
4124 -- If the designated type is not frozen yet, its controlled
4125 -- status must be retrieved explicitly.
4127 or else (Is_Array_Type
(Desig_Type
)
4128 and then not Is_Frozen
(Desig_Type
)
4129 and then Controlled_Type
(Component_Type
(Desig_Type
)))
4131 Set_Associated_Final_Chain
(Def_Id
,
4132 Make_Defining_Identifier
(Loc
,
4133 New_External_Name
(Chars
(Def_Id
), 'L')));
4135 Append_Freeze_Action
(Def_Id
,
4136 Make_Object_Declaration
(Loc
,
4137 Defining_Identifier
=> Associated_Final_Chain
(Def_Id
),
4138 Object_Definition
=>
4139 New_Reference_To
(RTE
(RE_List_Controller
), Loc
)));
4143 -- Freeze processing for enumeration types
4145 elsif Ekind
(Def_Id
) = E_Enumeration_Type
then
4147 -- We only have something to do if we have a non-standard
4148 -- representation (i.e. at least one literal whose pos value
4149 -- is not the same as its representation)
4151 if Has_Non_Standard_Rep
(Def_Id
) then
4152 Freeze_Enumeration_Type
(N
);
4155 -- private types that are completed by a derivation from a private
4156 -- type have an internally generated full view, that needs to be
4157 -- frozen. This must be done explicitly because the two views share
4158 -- the freeze node, and the underlying full view is not visible when
4159 -- the freeze node is analyzed.
4161 elsif Is_Private_Type
(Def_Id
)
4162 and then Is_Derived_Type
(Def_Id
)
4163 and then Present
(Full_View
(Def_Id
))
4164 and then Is_Itype
(Full_View
(Def_Id
))
4165 and then Has_Private_Declaration
(Full_View
(Def_Id
))
4166 and then Freeze_Node
(Full_View
(Def_Id
)) = N
4168 Set_Entity
(N
, Full_View
(Def_Id
));
4170 Set_Entity
(N
, Def_Id
);
4172 -- All other types require no expander action. There are such
4173 -- cases (e.g. task types and protected types). In such cases,
4174 -- the freeze nodes are there for use by Gigi.
4178 Freeze_Stream_Operations
(N
, Def_Id
);
4181 -------------------------
4182 -- Get_Simple_Init_Val --
4183 -------------------------
4185 function Get_Simple_Init_Val
4196 -- For a private type, we should always have an underlying type
4197 -- (because this was already checked in Needs_Simple_Initialization).
4198 -- What we do is to get the value for the underlying type and then
4199 -- do an Unchecked_Convert to the private type.
4201 if Is_Private_Type
(T
) then
4202 Val
:= Get_Simple_Init_Val
(Underlying_Type
(T
), Loc
);
4204 -- A special case, if the underlying value is null, then qualify
4205 -- it with the underlying type, so that the null is properly typed
4206 -- Similarly, if it is an aggregate it must be qualified, because
4207 -- an unchecked conversion does not provide a context for it.
4209 if Nkind
(Val
) = N_Null
4210 or else Nkind
(Val
) = N_Aggregate
4213 Make_Qualified_Expression
(Loc
,
4215 New_Occurrence_Of
(Underlying_Type
(T
), Loc
),
4219 return Unchecked_Convert_To
(T
, Val
);
4221 -- For scalars, we must have normalize/initialize scalars case
4223 elsif Is_Scalar_Type
(T
) then
4224 pragma Assert
(Init_Or_Norm_Scalars
);
4226 -- Processing for Normalize_Scalars case
4228 if Normalize_Scalars
then
4230 -- First prepare a value (out of subtype range if possible)
4232 if Is_Real_Type
(T
) or else Is_Integer_Type
(T
) then
4234 Make_Attribute_Reference
(Loc
,
4235 Prefix
=> New_Occurrence_Of
(Base_Type
(T
), Loc
),
4236 Attribute_Name
=> Name_First
);
4238 elsif Is_Modular_Integer_Type
(T
) then
4240 Make_Attribute_Reference
(Loc
,
4241 Prefix
=> New_Occurrence_Of
(Base_Type
(T
), Loc
),
4242 Attribute_Name
=> Name_Last
);
4245 pragma Assert
(Is_Enumeration_Type
(T
));
4247 if Esize
(T
) <= 8 then
4248 Typ
:= RTE
(RE_Unsigned_8
);
4249 elsif Esize
(T
) <= 16 then
4250 Typ
:= RTE
(RE_Unsigned_16
);
4251 elsif Esize
(T
) <= 32 then
4252 Typ
:= RTE
(RE_Unsigned_32
);
4254 Typ
:= RTE
(RE_Unsigned_64
);
4258 Make_Attribute_Reference
(Loc
,
4259 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
4260 Attribute_Name
=> Name_Last
);
4263 -- Here for Initialize_Scalars case
4266 if Is_Floating_Point_Type
(T
) then
4267 if Root_Type
(T
) = Standard_Short_Float
then
4268 Val_RE
:= RE_IS_Isf
;
4269 elsif Root_Type
(T
) = Standard_Float
then
4270 Val_RE
:= RE_IS_Ifl
;
4272 -- The form of the following test is quite deliberate, it
4273 -- catches the case of architectures (the most common case)
4274 -- where Long_Long_Float is the same as Long_Float, and in
4275 -- such cases initializes Long_Long_Float variables from the
4276 -- Long_Float constant (since the Long_Long_Float constant is
4277 -- only for use on the x86).
4279 elsif Esize
(Root_Type
(T
)) = Esize
(Standard_Long_Float
) then
4280 Val_RE
:= RE_IS_Ilf
;
4282 -- Otherwise we have extended real on an x86
4284 else pragma Assert
(Root_Type
(T
) = Standard_Long_Long_Float
);
4285 Val_RE
:= RE_IS_Ill
;
4288 elsif Is_Unsigned_Type
(Base_Type
(T
)) then
4289 if Esize
(T
) = 8 then
4290 Val_RE
:= RE_IS_Iu1
;
4291 elsif Esize
(T
) = 16 then
4292 Val_RE
:= RE_IS_Iu2
;
4293 elsif Esize
(T
) = 32 then
4294 Val_RE
:= RE_IS_Iu4
;
4295 else pragma Assert
(Esize
(T
) = 64);
4296 Val_RE
:= RE_IS_Iu8
;
4300 if Esize
(T
) = 8 then
4301 Val_RE
:= RE_IS_Is1
;
4302 elsif Esize
(T
) = 16 then
4303 Val_RE
:= RE_IS_Is2
;
4304 elsif Esize
(T
) = 32 then
4305 Val_RE
:= RE_IS_Is4
;
4306 else pragma Assert
(Esize
(T
) = 64);
4307 Val_RE
:= RE_IS_Is8
;
4311 Val
:= New_Occurrence_Of
(RTE
(Val_RE
), Loc
);
4314 -- The final expression is obtained by doing an unchecked
4315 -- conversion of this result to the base type of the
4316 -- required subtype. We use the base type to avoid the
4317 -- unchecked conversion from chopping bits, and then we
4318 -- set Kill_Range_Check to preserve the "bad" value.
4320 Result
:= Unchecked_Convert_To
(Base_Type
(T
), Val
);
4322 if Nkind
(Result
) = N_Unchecked_Type_Conversion
then
4323 Set_Kill_Range_Check
(Result
, True);
4328 -- String or Wide_String (must have Initialize_Scalars set)
4330 elsif Root_Type
(T
) = Standard_String
4332 Root_Type
(T
) = Standard_Wide_String
4334 pragma Assert
(Init_Or_Norm_Scalars
);
4337 Make_Aggregate
(Loc
,
4338 Component_Associations
=> New_List
(
4339 Make_Component_Association
(Loc
,
4340 Choices
=> New_List
(
4341 Make_Others_Choice
(Loc
)),
4343 Get_Simple_Init_Val
(Component_Type
(T
), Loc
))));
4345 -- Access type is initialized to null
4347 elsif Is_Access_Type
(T
) then
4351 -- We initialize modular packed bit arrays to zero, to make sure that
4352 -- unused bits are zero, as required (see spec of Exp_Pakd). Also note
4353 -- that this improves gigi code, since the value tracing knows that
4354 -- all bits of the variable start out at zero. The value of zero has
4355 -- to be unchecked converted to the proper array type.
4357 elsif Is_Bit_Packed_Array
(T
) then
4359 PAT
: constant Entity_Id
:= Packed_Array_Type
(T
);
4363 pragma Assert
(Is_Modular_Integer_Type
(PAT
));
4366 Make_Unchecked_Type_Conversion
(Loc
,
4367 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
4368 Expression
=> Make_Integer_Literal
(Loc
, 0));
4370 Set_Etype
(Expression
(Nod
), PAT
);
4374 -- No other possibilities should arise, since we should only be
4375 -- calling Get_Simple_Init_Val if Needs_Simple_Initialization
4376 -- returned True, indicating one of the above cases held.
4379 raise Program_Error
;
4381 end Get_Simple_Init_Val
;
4383 ------------------------------
4384 -- Has_New_Non_Standard_Rep --
4385 ------------------------------
4387 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean is
4389 if not Is_Derived_Type
(T
) then
4390 return Has_Non_Standard_Rep
(T
)
4391 or else Has_Non_Standard_Rep
(Root_Type
(T
));
4393 -- If Has_Non_Standard_Rep is not set on the derived type, the
4394 -- representation is fully inherited.
4396 elsif not Has_Non_Standard_Rep
(T
) then
4400 return First_Rep_Item
(T
) /= First_Rep_Item
(Root_Type
(T
));
4402 -- May need a more precise check here: the First_Rep_Item may
4403 -- be a stream attribute, which does not affect the representation
4406 end Has_New_Non_Standard_Rep
;
4412 function In_Runtime
(E
: Entity_Id
) return Boolean is
4413 S1
: Entity_Id
:= Scope
(E
);
4416 while Scope
(S1
) /= Standard_Standard
loop
4420 return Chars
(S1
) = Name_System
or else Chars
(S1
) = Name_Ada
;
4427 function Init_Formals
(Typ
: Entity_Id
) return List_Id
is
4428 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
4432 -- First parameter is always _Init : in out typ. Note that we need
4433 -- this to be in/out because in the case of the task record value,
4434 -- there are default record fields (_Priority, _Size, -Task_Info)
4435 -- that may be referenced in the generated initialization routine.
4437 Formals
:= New_List
(
4438 Make_Parameter_Specification
(Loc
,
4439 Defining_Identifier
=>
4440 Make_Defining_Identifier
(Loc
, Name_uInit
),
4442 Out_Present
=> True,
4443 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)));
4445 -- For task record value, or type that contains tasks, add two more
4446 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
4447 -- We also add these parameters for the task record type case.
4450 or else (Is_Record_Type
(Typ
) and then Is_Task_Record_Type
(Typ
))
4453 Make_Parameter_Specification
(Loc
,
4454 Defining_Identifier
=>
4455 Make_Defining_Identifier
(Loc
, Name_uMaster
),
4456 Parameter_Type
=> New_Reference_To
(RTE
(RE_Master_Id
), Loc
)));
4459 Make_Parameter_Specification
(Loc
,
4460 Defining_Identifier
=>
4461 Make_Defining_Identifier
(Loc
, Name_uChain
),
4463 Out_Present
=> True,
4465 New_Reference_To
(RTE
(RE_Activation_Chain
), Loc
)));
4468 Make_Parameter_Specification
(Loc
,
4469 Defining_Identifier
=>
4470 Make_Defining_Identifier
(Loc
, Name_uTask_Id
),
4473 New_Reference_To
(RTE
(RE_Task_Image_Type
), Loc
)));
4483 -- <Make_Eq_if shared components>
4485 -- when V1 => <Make_Eq_Case> on subcomponents
4487 -- when Vn => <Make_Eq_Case> on subcomponents
4490 function Make_Eq_Case
(Node
: Node_Id
; CL
: Node_Id
) return List_Id
is
4491 Loc
: constant Source_Ptr
:= Sloc
(Node
);
4494 Result
: List_Id
:= New_List
;
4497 Append_To
(Result
, Make_Eq_If
(Node
, Component_Items
(CL
)));
4499 if No
(Variant_Part
(CL
)) then
4503 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(CL
)));
4505 if No
(Variant
) then
4509 Alt_List
:= New_List
;
4511 while Present
(Variant
) loop
4512 Append_To
(Alt_List
,
4513 Make_Case_Statement_Alternative
(Loc
,
4514 Discrete_Choices
=> New_Copy_List
(Discrete_Choices
(Variant
)),
4515 Statements
=> Make_Eq_Case
(Node
, Component_List
(Variant
))));
4517 Next_Non_Pragma
(Variant
);
4521 Make_Case_Statement
(Loc
,
4523 Make_Selected_Component
(Loc
,
4524 Prefix
=> Make_Identifier
(Loc
, Name_X
),
4525 Selector_Name
=> New_Copy
(Name
(Variant_Part
(CL
)))),
4526 Alternatives
=> Alt_List
));
4546 -- or a null statement if the list L is empty
4548 function Make_Eq_If
(Node
: Node_Id
; L
: List_Id
) return Node_Id
is
4549 Loc
: constant Source_Ptr
:= Sloc
(Node
);
4551 Field_Name
: Name_Id
;
4556 return Make_Null_Statement
(Loc
);
4561 C
:= First_Non_Pragma
(L
);
4562 while Present
(C
) loop
4563 Field_Name
:= Chars
(Defining_Identifier
(C
));
4565 -- The tags must not be compared they are not part of the value.
4566 -- Note also that in the following, we use Make_Identifier for
4567 -- the component names. Use of New_Reference_To to identify the
4568 -- components would be incorrect because the wrong entities for
4569 -- discriminants could be picked up in the private type case.
4571 if Field_Name
/= Name_uTag
then
4572 Evolve_Or_Else
(Cond
,
4575 Make_Selected_Component
(Loc
,
4576 Prefix
=> Make_Identifier
(Loc
, Name_X
),
4578 Make_Identifier
(Loc
, Field_Name
)),
4581 Make_Selected_Component
(Loc
,
4582 Prefix
=> Make_Identifier
(Loc
, Name_Y
),
4584 Make_Identifier
(Loc
, Field_Name
))));
4587 Next_Non_Pragma
(C
);
4591 return Make_Null_Statement
(Loc
);
4595 Make_Implicit_If_Statement
(Node
,
4597 Then_Statements
=> New_List
(
4598 Make_Return_Statement
(Loc
,
4599 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
4604 -------------------------------------
4605 -- Make_Predefined_Primitive_Specs --
4606 -------------------------------------
4608 procedure Make_Predefined_Primitive_Specs
4609 (Tag_Typ
: Entity_Id
;
4610 Predef_List
: out List_Id
;
4611 Renamed_Eq
: out Node_Id
)
4613 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
4614 Res
: List_Id
:= New_List
;
4616 Eq_Needed
: Boolean;
4618 Eq_Name
: Name_Id
:= Name_Op_Eq
;
4620 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean;
4621 -- Returns true if Prim is a renaming of an unresolved predefined
4622 -- equality operation.
4624 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean is
4626 return Chars
(Prim
) /= Name_Op_Eq
4627 and then Present
(Alias
(Prim
))
4628 and then Comes_From_Source
(Prim
)
4629 and then Is_Intrinsic_Subprogram
(Alias
(Prim
))
4630 and then Chars
(Alias
(Prim
)) = Name_Op_Eq
;
4631 end Is_Predefined_Eq_Renaming
;
4633 -- Start of processing for Make_Predefined_Primitive_Specs
4636 Renamed_Eq
:= Empty
;
4640 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
4643 Profile
=> New_List
(
4644 Make_Parameter_Specification
(Loc
,
4645 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
4646 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
4648 Ret_Type
=> Standard_Long_Long_Integer
));
4650 -- Specs for dispatching stream attributes. We skip these for limited
4651 -- types, since there is no question of dispatching in the limited case.
4653 -- We also skip these operations in No_Run_Time mode, where
4654 -- dispatching stream operations cannot be used (this is currently
4655 -- a No_Run_Time restriction).
4657 if not (No_Run_Time
or else Is_Limited_Type
(Tag_Typ
)) then
4658 Append_To
(Res
, Predef_Stream_Attr_Spec
(Loc
, Tag_Typ
, Name_uRead
));
4659 Append_To
(Res
, Predef_Stream_Attr_Spec
(Loc
, Tag_Typ
, Name_uWrite
));
4660 Append_To
(Res
, Predef_Stream_Attr_Spec
(Loc
, Tag_Typ
, Name_uInput
));
4661 Append_To
(Res
, Predef_Stream_Attr_Spec
(Loc
, Tag_Typ
, Name_uOutput
));
4664 if not Is_Limited_Type
(Tag_Typ
) then
4666 -- Spec of "=" if expanded if the type is not limited and if a
4667 -- user defined "=" was not already declared for the non-full
4668 -- view of a private extension
4672 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
4673 while Present
(Prim
) loop
4674 -- If a primitive is encountered that renames the predefined
4675 -- equality operator before reaching any explicit equality
4676 -- primitive, then we still need to create a predefined
4677 -- equality function, because calls to it can occur via
4678 -- the renaming. A new name is created for the equality
4679 -- to avoid conflicting with any user-defined equality.
4680 -- (Note that this doesn't account for renamings of
4681 -- equality nested within subpackages???)
4683 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
4684 Eq_Name
:= New_External_Name
(Chars
(Node
(Prim
)), 'E');
4686 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
4687 and then (No
(Alias
(Node
(Prim
)))
4688 or else Nkind
(Unit_Declaration_Node
(Node
(Prim
))) =
4689 N_Subprogram_Renaming_Declaration
)
4690 and then Etype
(First_Formal
(Node
(Prim
))) =
4691 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
4697 -- If the parent equality is abstract, the inherited equality is
4698 -- abstract as well, and no body can be created for for it.
4700 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
4701 and then Present
(Alias
(Node
(Prim
)))
4702 and then Is_Abstract
(Alias
(Node
(Prim
)))
4711 -- If a renaming of predefined equality was found
4712 -- but there was no user-defined equality (so Eq_Needed
4713 -- is still true), then set the name back to Name_Op_Eq.
4714 -- But in the case where a user-defined equality was
4715 -- located after such a renaming, then the predefined
4716 -- equality function is still needed, so Eq_Needed must
4717 -- be set back to True.
4719 if Eq_Name
/= Name_Op_Eq
then
4721 Eq_Name
:= Name_Op_Eq
;
4728 Eq_Spec
:= Predef_Spec_Or_Body
(Loc
,
4731 Profile
=> New_List
(
4732 Make_Parameter_Specification
(Loc
,
4733 Defining_Identifier
=>
4734 Make_Defining_Identifier
(Loc
, Name_X
),
4735 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
4736 Make_Parameter_Specification
(Loc
,
4737 Defining_Identifier
=>
4738 Make_Defining_Identifier
(Loc
, Name_Y
),
4739 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
4740 Ret_Type
=> Standard_Boolean
);
4741 Append_To
(Res
, Eq_Spec
);
4743 if Eq_Name
/= Name_Op_Eq
then
4744 Renamed_Eq
:= Defining_Unit_Name
(Specification
(Eq_Spec
));
4746 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
4747 while Present
(Prim
) loop
4749 -- Any renamings of equality that appeared before an
4750 -- overriding equality must be updated to refer to
4751 -- the entity for the predefined equality, otherwise
4752 -- calls via the renaming would get incorrectly
4753 -- resolved to call the user-defined equality function.
4755 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
4756 Set_Alias
(Node
(Prim
), Renamed_Eq
);
4758 -- Exit upon encountering a user-defined equality
4760 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
4761 and then No
(Alias
(Node
(Prim
)))
4771 -- Spec for dispatching assignment
4773 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
4775 Name
=> Name_uAssign
,
4776 Profile
=> New_List
(
4777 Make_Parameter_Specification
(Loc
,
4778 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
4779 Out_Present
=> True,
4780 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
4782 Make_Parameter_Specification
(Loc
,
4783 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
4784 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)))));
4787 -- Specs for finalization actions that may be required in case a
4788 -- future extension contain a controlled element. We generate those
4789 -- only for root tagged types where they will get dummy bodies or
4790 -- when the type has controlled components and their body must be
4791 -- generated. It is also impossible to provide those for tagged
4792 -- types defined within s-finimp since it would involve circularity
4795 if In_Finalization_Root
(Tag_Typ
) then
4798 -- We also skip these in No_Run_Time mode where finalization is
4799 -- never permissible.
4801 elsif No_Run_Time
then
4804 elsif Etype
(Tag_Typ
) = Tag_Typ
or else Controlled_Type
(Tag_Typ
) then
4806 if not Is_Limited_Type
(Tag_Typ
) then
4808 Predef_Deep_Spec
(Loc
, Tag_Typ
, Name_uDeep_Adjust
));
4811 Append_To
(Res
, Predef_Deep_Spec
(Loc
, Tag_Typ
, Name_uDeep_Finalize
));
4815 end Make_Predefined_Primitive_Specs
;
4817 ---------------------------------
4818 -- Needs_Simple_Initialization --
4819 ---------------------------------
4821 function Needs_Simple_Initialization
(T
: Entity_Id
) return Boolean is
4823 -- Check for private type, in which case test applies to the
4824 -- underlying type of the private type.
4826 if Is_Private_Type
(T
) then
4828 RT
: constant Entity_Id
:= Underlying_Type
(T
);
4831 if Present
(RT
) then
4832 return Needs_Simple_Initialization
(RT
);
4838 -- Cases needing simple initialization are access types, and, if pragma
4839 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
4842 elsif Is_Access_Type
(T
)
4843 or else (Init_Or_Norm_Scalars
and then (Is_Scalar_Type
(T
)))
4845 or else (Is_Bit_Packed_Array
(T
)
4846 and then Is_Modular_Integer_Type
(Packed_Array_Type
(T
)))
4850 -- If Initialize/Normalize_Scalars is in effect, string objects also
4851 -- need initialization, unless they are created in the course of
4852 -- expanding an aggregate (since in the latter case they will be
4853 -- filled with appropriate initializing values before they are used).
4855 elsif Init_Or_Norm_Scalars
4857 (Root_Type
(T
) = Standard_String
4858 or else Root_Type
(T
) = Standard_Wide_String
)
4861 or else Nkind
(Associated_Node_For_Itype
(T
)) /= N_Aggregate
)
4868 end Needs_Simple_Initialization
;
4870 ----------------------
4871 -- Predef_Deep_Spec --
4872 ----------------------
4874 function Predef_Deep_Spec
4876 Tag_Typ
: Entity_Id
;
4878 For_Body
: Boolean := False)
4885 if Name
= Name_uDeep_Finalize
then
4887 Type_B
:= Standard_Boolean
;
4891 Make_Parameter_Specification
(Loc
,
4892 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_L
),
4894 Out_Present
=> True,
4896 New_Reference_To
(RTE
(RE_Finalizable_Ptr
), Loc
)));
4897 Type_B
:= Standard_Short_Short_Integer
;
4901 Make_Parameter_Specification
(Loc
,
4902 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
4904 Out_Present
=> True,
4905 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)));
4908 Make_Parameter_Specification
(Loc
,
4909 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_B
),
4910 Parameter_Type
=> New_Reference_To
(Type_B
, Loc
)));
4912 return Predef_Spec_Or_Body
(Loc
,
4916 For_Body
=> For_Body
);
4917 end Predef_Deep_Spec
;
4919 -------------------------
4920 -- Predef_Spec_Or_Body --
4921 -------------------------
4923 function Predef_Spec_Or_Body
4925 Tag_Typ
: Entity_Id
;
4928 Ret_Type
: Entity_Id
:= Empty
;
4929 For_Body
: Boolean := False)
4932 Id
: Entity_Id
:= Make_Defining_Identifier
(Loc
, Name
);
4936 Set_Is_Public
(Id
, Is_Public
(Tag_Typ
));
4938 -- The internal flag is set to mark these declarations because
4939 -- they have specific properties. First they are primitives even
4940 -- if they are not defined in the type scope (the freezing point
4941 -- is not necessarily in the same scope), furthermore the
4942 -- predefined equality can be overridden by a user-defined
4943 -- equality, no body will be generated in this case.
4945 Set_Is_Internal
(Id
);
4947 if not Debug_Generated_Code
then
4948 Set_Debug_Info_Off
(Id
);
4951 if No
(Ret_Type
) then
4953 Make_Procedure_Specification
(Loc
,
4954 Defining_Unit_Name
=> Id
,
4955 Parameter_Specifications
=> Profile
);
4958 Make_Function_Specification
(Loc
,
4959 Defining_Unit_Name
=> Id
,
4960 Parameter_Specifications
=> Profile
,
4962 New_Reference_To
(Ret_Type
, Loc
));
4965 -- If body case, return empty subprogram body. Note that this is
4966 -- ill-formed, because there is not even a null statement, and
4967 -- certainly not a return in the function case. The caller is
4968 -- expected to do surgery on the body to add the appropriate stuff.
4971 return Make_Subprogram_Body
(Loc
, Spec
, Empty_List
, Empty
);
4973 -- For the case of _Input and _Output applied to an abstract type,
4974 -- generate abstract specifications. These will never be called,
4975 -- but we need the slots allocated in the dispatching table so
4976 -- that typ'Class'Input and typ'Class'Output will work properly.
4978 elsif (Name
= Name_uInput
or else Name
= Name_uOutput
)
4979 and then Is_Abstract
(Tag_Typ
)
4981 return Make_Abstract_Subprogram_Declaration
(Loc
, Spec
);
4983 -- Normal spec case, where we return a subprogram declaration
4986 return Make_Subprogram_Declaration
(Loc
, Spec
);
4988 end Predef_Spec_Or_Body
;
4990 -----------------------------
4991 -- Predef_Stream_Attr_Spec --
4992 -----------------------------
4994 function Predef_Stream_Attr_Spec
4996 Tag_Typ
: Entity_Id
;
4998 For_Body
: Boolean := False)
5001 Ret_Type
: Entity_Id
;
5004 if Name
= Name_uInput
then
5005 Ret_Type
:= Tag_Typ
;
5010 return Predef_Spec_Or_Body
(Loc
,
5013 Profile
=> Build_Stream_Attr_Profile
(Loc
, Tag_Typ
, Name
),
5014 Ret_Type
=> Ret_Type
,
5015 For_Body
=> For_Body
);
5016 end Predef_Stream_Attr_Spec
;
5018 ---------------------------------
5019 -- Predefined_Primitive_Bodies --
5020 ---------------------------------
5022 function Predefined_Primitive_Bodies
5023 (Tag_Typ
: Entity_Id
;
5024 Renamed_Eq
: Node_Id
)
5027 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
5029 Res
: List_Id
:= New_List
;
5031 Eq_Needed
: Boolean;
5036 -- See if we have a predefined "=" operator
5038 if Present
(Renamed_Eq
) then
5040 Eq_Name
:= Chars
(Renamed_Eq
);
5046 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
5047 while Present
(Prim
) loop
5048 if Chars
(Node
(Prim
)) = Name_Op_Eq
5049 and then Is_Internal
(Node
(Prim
))
5052 Eq_Name
:= Name_Op_Eq
;
5061 Decl
:= Predef_Spec_Or_Body
(Loc
,
5064 Profile
=> New_List
(
5065 Make_Parameter_Specification
(Loc
,
5066 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
5067 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
5069 Ret_Type
=> Standard_Long_Long_Integer
,
5072 Set_Handled_Statement_Sequence
(Decl
,
5073 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
5074 Make_Return_Statement
(Loc
,
5076 Make_Attribute_Reference
(Loc
,
5077 Prefix
=> Make_Identifier
(Loc
, Name_X
),
5078 Attribute_Name
=> Name_Size
)))));
5080 Append_To
(Res
, Decl
);
5082 -- Bodies for Dispatching stream IO routines. We need these only for
5083 -- non-limited types (in the limited case there is no dispatching).
5084 -- and we always skip them in No_Run_Time mode where streams are not
5087 if not (Is_Limited_Type
(Tag_Typ
) or else No_Run_Time
) then
5088 if No
(TSS
(Tag_Typ
, Name_uRead
)) then
5089 Build_Record_Read_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
5090 Append_To
(Res
, Decl
);
5093 if No
(TSS
(Tag_Typ
, Name_uWrite
)) then
5094 Build_Record_Write_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
5095 Append_To
(Res
, Decl
);
5098 -- Skip bodies of _Input and _Output for the abstract case, since
5099 -- the corresponding specs are abstract (see Predef_Spec_Or_Body)
5101 if not Is_Abstract
(Tag_Typ
) then
5102 if No
(TSS
(Tag_Typ
, Name_uInput
)) then
5103 Build_Record_Or_Elementary_Input_Function
5104 (Loc
, Tag_Typ
, Decl
, Ent
);
5105 Append_To
(Res
, Decl
);
5108 if No
(TSS
(Tag_Typ
, Name_uOutput
)) then
5109 Build_Record_Or_Elementary_Output_Procedure
5110 (Loc
, Tag_Typ
, Decl
, Ent
);
5111 Append_To
(Res
, Decl
);
5116 if not Is_Limited_Type
(Tag_Typ
) then
5118 -- Body for equality
5122 Decl
:= Predef_Spec_Or_Body
(Loc
,
5125 Profile
=> New_List
(
5126 Make_Parameter_Specification
(Loc
,
5127 Defining_Identifier
=>
5128 Make_Defining_Identifier
(Loc
, Name_X
),
5129 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
5131 Make_Parameter_Specification
(Loc
,
5132 Defining_Identifier
=>
5133 Make_Defining_Identifier
(Loc
, Name_Y
),
5134 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
5136 Ret_Type
=> Standard_Boolean
,
5140 Def
: constant Node_Id
:= Parent
(Tag_Typ
);
5141 Variant_Case
: Boolean := Has_Discriminants
(Tag_Typ
);
5142 Comps
: Node_Id
:= Empty
;
5143 Typ_Def
: Node_Id
:= Type_Definition
(Def
);
5144 Stmts
: List_Id
:= New_List
;
5147 if Variant_Case
then
5148 if Nkind
(Typ_Def
) = N_Derived_Type_Definition
then
5149 Typ_Def
:= Record_Extension_Part
(Typ_Def
);
5152 if Present
(Typ_Def
) then
5153 Comps
:= Component_List
(Typ_Def
);
5156 Variant_Case
:= Present
(Comps
)
5157 and then Present
(Variant_Part
(Comps
));
5160 if Variant_Case
then
5162 Make_Eq_If
(Tag_Typ
, Discriminant_Specifications
(Def
)));
5163 Append_List_To
(Stmts
, Make_Eq_Case
(Tag_Typ
, Comps
));
5165 Make_Return_Statement
(Loc
,
5166 Expression
=> New_Reference_To
(Standard_True
, Loc
)));
5170 Make_Return_Statement
(Loc
,
5172 Expand_Record_Equality
(Tag_Typ
,
5174 Lhs
=> Make_Identifier
(Loc
, Name_X
),
5175 Rhs
=> Make_Identifier
(Loc
, Name_Y
),
5176 Bodies
=> Declarations
(Decl
))));
5179 Set_Handled_Statement_Sequence
(Decl
,
5180 Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
));
5182 Append_To
(Res
, Decl
);
5185 -- Body for dispatching assignment
5187 Decl
:= Predef_Spec_Or_Body
(Loc
,
5189 Name
=> Name_uAssign
,
5190 Profile
=> New_List
(
5191 Make_Parameter_Specification
(Loc
,
5192 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
5193 Out_Present
=> True,
5194 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
5196 Make_Parameter_Specification
(Loc
,
5197 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
5198 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
5201 Set_Handled_Statement_Sequence
(Decl
,
5202 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
5203 Make_Assignment_Statement
(Loc
,
5204 Name
=> Make_Identifier
(Loc
, Name_X
),
5205 Expression
=> Make_Identifier
(Loc
, Name_Y
)))));
5207 Append_To
(Res
, Decl
);
5210 -- Generate dummy bodies for finalization actions of types that have
5211 -- no controlled components.
5213 -- Skip this processing if we are in the finalization routine in the
5214 -- runtime itself, otherwise we get hopelessly circularly confused!
5216 if In_Finalization_Root
(Tag_Typ
) then
5219 -- Skip this in no run time mode (where finalization is never allowed)
5221 elsif No_Run_Time
then
5224 elsif (Etype
(Tag_Typ
) = Tag_Typ
or else Is_Controlled
(Tag_Typ
))
5225 and then not Has_Controlled_Component
(Tag_Typ
)
5227 if not Is_Limited_Type
(Tag_Typ
) then
5228 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, Name_uDeep_Adjust
, True);
5230 if Is_Controlled
(Tag_Typ
) then
5231 Set_Handled_Statement_Sequence
(Decl
,
5232 Make_Handled_Sequence_Of_Statements
(Loc
,
5234 Ref
=> Make_Identifier
(Loc
, Name_V
),
5236 Flist_Ref
=> Make_Identifier
(Loc
, Name_L
),
5237 With_Attach
=> Make_Identifier
(Loc
, Name_B
))));
5240 Set_Handled_Statement_Sequence
(Decl
,
5241 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
5242 Make_Null_Statement
(Loc
))));
5245 Append_To
(Res
, Decl
);
5248 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, Name_uDeep_Finalize
, True);
5250 if Is_Controlled
(Tag_Typ
) then
5251 Set_Handled_Statement_Sequence
(Decl
,
5252 Make_Handled_Sequence_Of_Statements
(Loc
,
5254 Ref
=> Make_Identifier
(Loc
, Name_V
),
5256 With_Detach
=> Make_Identifier
(Loc
, Name_B
))));
5259 Set_Handled_Statement_Sequence
(Decl
,
5260 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
5261 Make_Null_Statement
(Loc
))));
5264 Append_To
(Res
, Decl
);
5268 end Predefined_Primitive_Bodies
;
5270 ---------------------------------
5271 -- Predefined_Primitive_Freeze --
5272 ---------------------------------
5274 function Predefined_Primitive_Freeze
5275 (Tag_Typ
: Entity_Id
)
5278 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
5279 Res
: List_Id
:= New_List
;
5284 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
5285 while Present
(Prim
) loop
5286 if Is_Internal
(Node
(Prim
)) then
5287 Frnodes
:= Freeze_Entity
(Node
(Prim
), Loc
);
5289 if Present
(Frnodes
) then
5290 Append_List_To
(Res
, Frnodes
);
5298 end Predefined_Primitive_Freeze
;