2017-07-18 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / libgfortran / generated / maxloc1_16_r16.c
blob4bdc4d66b893d2ae51c06c7ea743c47962091dda
1 /* Implementation of the MAXLOC intrinsic
2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
29 #if defined (HAVE_GFC_REAL_16) && defined (HAVE_GFC_INTEGER_16)
32 extern void maxloc1_16_r16 (gfc_array_i16 * const restrict,
33 gfc_array_r16 * const restrict, const index_type * const restrict);
34 export_proto(maxloc1_16_r16);
36 void
37 maxloc1_16_r16 (gfc_array_i16 * const restrict retarray,
38 gfc_array_r16 * const restrict array,
39 const index_type * const restrict pdim)
41 index_type count[GFC_MAX_DIMENSIONS];
42 index_type extent[GFC_MAX_DIMENSIONS];
43 index_type sstride[GFC_MAX_DIMENSIONS];
44 index_type dstride[GFC_MAX_DIMENSIONS];
45 const GFC_REAL_16 * restrict base;
46 GFC_INTEGER_16 * restrict dest;
47 index_type rank;
48 index_type n;
49 index_type len;
50 index_type delta;
51 index_type dim;
52 int continue_loop;
54 /* Make dim zero based to avoid confusion. */
55 dim = (*pdim) - 1;
56 rank = GFC_DESCRIPTOR_RANK (array) - 1;
58 len = GFC_DESCRIPTOR_EXTENT(array,dim);
59 if (len < 0)
60 len = 0;
61 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
63 for (n = 0; n < dim; n++)
65 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
66 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
68 if (extent[n] < 0)
69 extent[n] = 0;
71 for (n = dim; n < rank; n++)
73 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
74 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
76 if (extent[n] < 0)
77 extent[n] = 0;
80 if (retarray->base_addr == NULL)
82 size_t alloc_size, str;
84 for (n = 0; n < rank; n++)
86 if (n == 0)
87 str = 1;
88 else
89 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
91 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
95 retarray->offset = 0;
96 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
98 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
100 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_16));
101 if (alloc_size == 0)
103 /* Make sure we have a zero-sized array. */
104 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
105 return;
109 else
111 if (rank != GFC_DESCRIPTOR_RANK (retarray))
112 runtime_error ("rank of return array incorrect in"
113 " MAXLOC intrinsic: is %ld, should be %ld",
114 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
115 (long int) rank);
117 if (unlikely (compile_options.bounds_check))
118 bounds_ifunction_return ((array_t *) retarray, extent,
119 "return value", "MAXLOC");
122 for (n = 0; n < rank; n++)
124 count[n] = 0;
125 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
126 if (extent[n] <= 0)
127 return;
130 base = array->base_addr;
131 dest = retarray->base_addr;
133 continue_loop = 1;
134 while (continue_loop)
136 const GFC_REAL_16 * restrict src;
137 GFC_INTEGER_16 result;
138 src = base;
141 GFC_REAL_16 maxval;
142 #if defined (GFC_REAL_16_INFINITY)
143 maxval = -GFC_REAL_16_INFINITY;
144 #else
145 maxval = -GFC_REAL_16_HUGE;
146 #endif
147 result = 1;
148 if (len <= 0)
149 *dest = 0;
150 else
152 for (n = 0; n < len; n++, src += delta)
155 #if defined (GFC_REAL_16_QUIET_NAN)
156 if (*src >= maxval)
158 maxval = *src;
159 result = (GFC_INTEGER_16)n + 1;
160 break;
163 for (; n < len; n++, src += delta)
165 #endif
166 if (*src > maxval)
168 maxval = *src;
169 result = (GFC_INTEGER_16)n + 1;
173 *dest = result;
176 /* Advance to the next element. */
177 count[0]++;
178 base += sstride[0];
179 dest += dstride[0];
180 n = 0;
181 while (count[n] == extent[n])
183 /* When we get to the end of a dimension, reset it and increment
184 the next dimension. */
185 count[n] = 0;
186 /* We could precalculate these products, but this is a less
187 frequently used path so probably not worth it. */
188 base -= sstride[n] * extent[n];
189 dest -= dstride[n] * extent[n];
190 n++;
191 if (n >= rank)
193 /* Break out of the loop. */
194 continue_loop = 0;
195 break;
197 else
199 count[n]++;
200 base += sstride[n];
201 dest += dstride[n];
208 extern void mmaxloc1_16_r16 (gfc_array_i16 * const restrict,
209 gfc_array_r16 * const restrict, const index_type * const restrict,
210 gfc_array_l1 * const restrict);
211 export_proto(mmaxloc1_16_r16);
213 void
214 mmaxloc1_16_r16 (gfc_array_i16 * const restrict retarray,
215 gfc_array_r16 * const restrict array,
216 const index_type * const restrict pdim,
217 gfc_array_l1 * const restrict mask)
219 index_type count[GFC_MAX_DIMENSIONS];
220 index_type extent[GFC_MAX_DIMENSIONS];
221 index_type sstride[GFC_MAX_DIMENSIONS];
222 index_type dstride[GFC_MAX_DIMENSIONS];
223 index_type mstride[GFC_MAX_DIMENSIONS];
224 GFC_INTEGER_16 * restrict dest;
225 const GFC_REAL_16 * restrict base;
226 const GFC_LOGICAL_1 * restrict mbase;
227 int rank;
228 int dim;
229 index_type n;
230 index_type len;
231 index_type delta;
232 index_type mdelta;
233 int mask_kind;
235 dim = (*pdim) - 1;
236 rank = GFC_DESCRIPTOR_RANK (array) - 1;
238 len = GFC_DESCRIPTOR_EXTENT(array,dim);
239 if (len <= 0)
240 return;
242 mbase = mask->base_addr;
244 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
246 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
247 #ifdef HAVE_GFC_LOGICAL_16
248 || mask_kind == 16
249 #endif
251 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
252 else
253 runtime_error ("Funny sized logical array");
255 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
256 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
258 for (n = 0; n < dim; n++)
260 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
261 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
262 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
264 if (extent[n] < 0)
265 extent[n] = 0;
268 for (n = dim; n < rank; n++)
270 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
271 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
272 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
274 if (extent[n] < 0)
275 extent[n] = 0;
278 if (retarray->base_addr == NULL)
280 size_t alloc_size, str;
282 for (n = 0; n < rank; n++)
284 if (n == 0)
285 str = 1;
286 else
287 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
289 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
293 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
295 retarray->offset = 0;
296 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
298 if (alloc_size == 0)
300 /* Make sure we have a zero-sized array. */
301 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
302 return;
304 else
305 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_16));
308 else
310 if (rank != GFC_DESCRIPTOR_RANK (retarray))
311 runtime_error ("rank of return array incorrect in MAXLOC intrinsic");
313 if (unlikely (compile_options.bounds_check))
315 bounds_ifunction_return ((array_t *) retarray, extent,
316 "return value", "MAXLOC");
317 bounds_equal_extents ((array_t *) mask, (array_t *) array,
318 "MASK argument", "MAXLOC");
322 for (n = 0; n < rank; n++)
324 count[n] = 0;
325 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
326 if (extent[n] <= 0)
327 return;
330 dest = retarray->base_addr;
331 base = array->base_addr;
333 while (base)
335 const GFC_REAL_16 * restrict src;
336 const GFC_LOGICAL_1 * restrict msrc;
337 GFC_INTEGER_16 result;
338 src = base;
339 msrc = mbase;
342 GFC_REAL_16 maxval;
343 #if defined (GFC_REAL_16_INFINITY)
344 maxval = -GFC_REAL_16_INFINITY;
345 #else
346 maxval = -GFC_REAL_16_HUGE;
347 #endif
348 #if defined (GFC_REAL_16_QUIET_NAN)
349 GFC_INTEGER_16 result2 = 0;
350 #endif
351 result = 0;
352 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
355 if (*msrc)
357 #if defined (GFC_REAL_16_QUIET_NAN)
358 if (!result2)
359 result2 = (GFC_INTEGER_16)n + 1;
360 if (*src >= maxval)
361 #endif
363 maxval = *src;
364 result = (GFC_INTEGER_16)n + 1;
365 break;
369 #if defined (GFC_REAL_16_QUIET_NAN)
370 if (unlikely (n >= len))
371 result = result2;
372 else
373 #endif
374 for (; n < len; n++, src += delta, msrc += mdelta)
376 if (*msrc && *src > maxval)
378 maxval = *src;
379 result = (GFC_INTEGER_16)n + 1;
382 *dest = result;
384 /* Advance to the next element. */
385 count[0]++;
386 base += sstride[0];
387 mbase += mstride[0];
388 dest += dstride[0];
389 n = 0;
390 while (count[n] == extent[n])
392 /* When we get to the end of a dimension, reset it and increment
393 the next dimension. */
394 count[n] = 0;
395 /* We could precalculate these products, but this is a less
396 frequently used path so probably not worth it. */
397 base -= sstride[n] * extent[n];
398 mbase -= mstride[n] * extent[n];
399 dest -= dstride[n] * extent[n];
400 n++;
401 if (n >= rank)
403 /* Break out of the loop. */
404 base = NULL;
405 break;
407 else
409 count[n]++;
410 base += sstride[n];
411 mbase += mstride[n];
412 dest += dstride[n];
419 extern void smaxloc1_16_r16 (gfc_array_i16 * const restrict,
420 gfc_array_r16 * const restrict, const index_type * const restrict,
421 GFC_LOGICAL_4 *);
422 export_proto(smaxloc1_16_r16);
424 void
425 smaxloc1_16_r16 (gfc_array_i16 * const restrict retarray,
426 gfc_array_r16 * const restrict array,
427 const index_type * const restrict pdim,
428 GFC_LOGICAL_4 * mask)
430 index_type count[GFC_MAX_DIMENSIONS];
431 index_type extent[GFC_MAX_DIMENSIONS];
432 index_type dstride[GFC_MAX_DIMENSIONS];
433 GFC_INTEGER_16 * restrict dest;
434 index_type rank;
435 index_type n;
436 index_type dim;
439 if (*mask)
441 maxloc1_16_r16 (retarray, array, pdim);
442 return;
444 /* Make dim zero based to avoid confusion. */
445 dim = (*pdim) - 1;
446 rank = GFC_DESCRIPTOR_RANK (array) - 1;
448 for (n = 0; n < dim; n++)
450 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
452 if (extent[n] <= 0)
453 extent[n] = 0;
456 for (n = dim; n < rank; n++)
458 extent[n] =
459 GFC_DESCRIPTOR_EXTENT(array,n + 1);
461 if (extent[n] <= 0)
462 extent[n] = 0;
465 if (retarray->base_addr == NULL)
467 size_t alloc_size, str;
469 for (n = 0; n < rank; n++)
471 if (n == 0)
472 str = 1;
473 else
474 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
476 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
480 retarray->offset = 0;
481 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
483 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
485 if (alloc_size == 0)
487 /* Make sure we have a zero-sized array. */
488 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
489 return;
491 else
492 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_16));
494 else
496 if (rank != GFC_DESCRIPTOR_RANK (retarray))
497 runtime_error ("rank of return array incorrect in"
498 " MAXLOC intrinsic: is %ld, should be %ld",
499 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
500 (long int) rank);
502 if (unlikely (compile_options.bounds_check))
504 for (n=0; n < rank; n++)
506 index_type ret_extent;
508 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
509 if (extent[n] != ret_extent)
510 runtime_error ("Incorrect extent in return value of"
511 " MAXLOC intrinsic in dimension %ld:"
512 " is %ld, should be %ld", (long int) n + 1,
513 (long int) ret_extent, (long int) extent[n]);
518 for (n = 0; n < rank; n++)
520 count[n] = 0;
521 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
524 dest = retarray->base_addr;
526 while(1)
528 *dest = 0;
529 count[0]++;
530 dest += dstride[0];
531 n = 0;
532 while (count[n] == extent[n])
534 /* When we get to the end of a dimension, reset it and increment
535 the next dimension. */
536 count[n] = 0;
537 /* We could precalculate these products, but this is a less
538 frequently used path so probably not worth it. */
539 dest -= dstride[n] * extent[n];
540 n++;
541 if (n >= rank)
542 return;
543 else
545 count[n]++;
546 dest += dstride[n];
552 #endif