Daily bump.
[official-gcc.git] / gcc / ada / s-tassta.adb
blob7e0bdcb9e305d41d3764ef84422899d3a0cb760d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K I N G . S T A G E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 pragma Polling (Off);
33 -- Turn off polling, we do not want ATC polling to take place during tasking
34 -- operations. It causes infinite loops and other problems.
36 pragma Partition_Elaboration_Policy (Concurrent);
37 -- This package only implements the concurrent elaboration policy. This pragma
38 -- will enforce it (and detect conflicts with user specified policy).
40 with Ada.Exceptions;
41 with Ada.Unchecked_Deallocation;
43 with System.Interrupt_Management;
44 with System.Tasking.Debug;
45 with System.Address_Image;
46 with System.Task_Primitives;
47 with System.Task_Primitives.Operations;
48 with System.Tasking.Utilities;
49 with System.Tasking.Queuing;
50 with System.Tasking.Rendezvous;
51 with System.OS_Primitives;
52 with System.Secondary_Stack;
53 with System.Restrictions;
54 with System.Standard_Library;
55 with System.Traces.Tasking;
56 with System.Stack_Usage;
57 with System.Storage_Elements;
59 with System.Soft_Links;
60 -- These are procedure pointers to non-tasking routines that use task
61 -- specific data. In the absence of tasking, these routines refer to global
62 -- data. In the presence of tasking, they must be replaced with pointers to
63 -- task-specific versions. Also used for Create_TSD, Destroy_TSD, Get_Current
64 -- _Excep, Finalize_Library_Objects, Task_Termination, Handler.
66 with System.Tasking.Initialization;
67 pragma Elaborate_All (System.Tasking.Initialization);
68 -- This insures that tasking is initialized if any tasks are created
70 package body System.Tasking.Stages is
72 package STPO renames System.Task_Primitives.Operations;
73 package SSL renames System.Soft_Links;
74 package SSE renames System.Storage_Elements;
75 package SST renames System.Secondary_Stack;
77 use Ada.Exceptions;
79 use Parameters;
80 use Task_Primitives;
81 use Task_Primitives.Operations;
82 use Task_Info;
84 use System.Traces;
85 use System.Traces.Tasking;
87 -----------------------
88 -- Local Subprograms --
89 -----------------------
91 procedure Free is new
92 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
94 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id);
95 -- This procedure outputs the task specific message for exception
96 -- tracing purposes.
98 procedure Task_Wrapper (Self_ID : Task_Id);
99 pragma Convention (C, Task_Wrapper);
100 -- This is the procedure that is called by the GNULL from the new context
101 -- when a task is created. It waits for activation and then calls the task
102 -- body procedure. When the task body procedure completes, it terminates
103 -- the task.
105 -- The Task_Wrapper's address will be provided to the underlying threads
106 -- library as the task entry point. Convention C is what makes most sense
107 -- for that purpose (Export C would make the function globally visible,
108 -- and affect the link name on which GDB depends). This will in addition
109 -- trigger an automatic stack alignment suitable for GCC's assumptions if
110 -- need be.
112 -- "Vulnerable_..." in the procedure names below means they must be called
113 -- with abort deferred.
115 procedure Vulnerable_Complete_Task (Self_ID : Task_Id);
116 -- Complete the calling task. This procedure must be called with
117 -- abort deferred. It should only be called by Complete_Task and
118 -- Finalize_Global_Tasks (for the environment task).
120 procedure Vulnerable_Complete_Master (Self_ID : Task_Id);
121 -- Complete the current master of the calling task. This procedure
122 -- must be called with abort deferred. It should only be called by
123 -- Vulnerable_Complete_Task and Complete_Master.
125 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id);
126 -- Signal to Self_ID's activator that Self_ID has completed activation.
127 -- This procedure must be called with abort deferred.
129 procedure Abort_Dependents (Self_ID : Task_Id);
130 -- Abort all the direct dependents of Self at its current master nesting
131 -- level, plus all of their dependents, transitively. RTS_Lock should be
132 -- locked by the caller.
134 procedure Vulnerable_Free_Task (T : Task_Id);
135 -- Recover all runtime system storage associated with the task T. This
136 -- should only be called after T has terminated and will no longer be
137 -- referenced.
139 -- For tasks created by an allocator that fails, due to an exception, it is
140 -- called from Expunge_Unactivated_Tasks.
142 -- Different code is used at master completion, in Terminate_Dependents,
143 -- due to a need for tighter synchronization with the master.
145 ----------------------
146 -- Abort_Dependents --
147 ----------------------
149 procedure Abort_Dependents (Self_ID : Task_Id) is
150 C : Task_Id;
151 P : Task_Id;
153 -- Each task C will take care of its own dependents, so there is no
154 -- need to worry about them here. In fact, it would be wrong to abort
155 -- indirect dependents here, because we can't distinguish between
156 -- duplicate master ids. For example, suppose we have three nested
157 -- task bodies T1,T2,T3. And suppose T1 also calls P which calls Q (and
158 -- both P and Q are task masters). Q will have the same master id as
159 -- Master_of_Task of T3. Previous versions of this would abort T3 when
160 -- Q calls Complete_Master, which was completely wrong.
162 begin
163 C := All_Tasks_List;
164 while C /= null loop
165 P := C.Common.Parent;
167 if P = Self_ID then
168 if C.Master_of_Task = Self_ID.Master_Within then
169 pragma Debug
170 (Debug.Trace (Self_ID, "Aborting", 'X', C));
171 Utilities.Abort_One_Task (Self_ID, C);
172 C.Dependents_Aborted := True;
173 end if;
174 end if;
176 C := C.Common.All_Tasks_Link;
177 end loop;
179 Self_ID.Dependents_Aborted := True;
180 end Abort_Dependents;
182 -----------------
183 -- Abort_Tasks --
184 -----------------
186 procedure Abort_Tasks (Tasks : Task_List) is
187 begin
188 Utilities.Abort_Tasks (Tasks);
189 end Abort_Tasks;
191 --------------------
192 -- Activate_Tasks --
193 --------------------
195 -- Note that locks of activator and activated task are both locked here.
196 -- This is necessary because C.Common.State and Self.Common.Wait_Count have
197 -- to be synchronized. This is safe from deadlock because the activator is
198 -- always created before the activated task. That satisfies our
199 -- in-order-of-creation ATCB locking policy.
201 -- At one point, we may also lock the parent, if the parent is different
202 -- from the activator. That is also consistent with the lock ordering
203 -- policy, since the activator cannot be created before the parent.
205 -- Since we are holding both the activator's lock, and Task_Wrapper locks
206 -- that before it does anything more than initialize the low-level ATCB
207 -- components, it should be safe to wait to update the counts until we see
208 -- that the thread creation is successful.
210 -- If the thread creation fails, we do need to close the entries of the
211 -- task. The first phase, of dequeuing calls, only requires locking the
212 -- acceptor's ATCB, but the waking up of the callers requires locking the
213 -- caller's ATCB. We cannot safely do this while we are holding other
214 -- locks. Therefore, the queue-clearing operation is done in a separate
215 -- pass over the activation chain.
217 procedure Activate_Tasks (Chain_Access : Activation_Chain_Access) is
218 Self_ID : constant Task_Id := STPO.Self;
219 P : Task_Id;
220 C : Task_Id;
221 Next_C, Last_C : Task_Id;
222 Activate_Prio : System.Any_Priority;
223 Success : Boolean;
224 All_Elaborated : Boolean := True;
226 begin
227 -- If pragma Detect_Blocking is active, then we must check whether this
228 -- potentially blocking operation is called from a protected action.
230 if System.Tasking.Detect_Blocking
231 and then Self_ID.Common.Protected_Action_Nesting > 0
232 then
233 raise Program_Error with "potentially blocking operation";
234 end if;
236 pragma Debug
237 (Debug.Trace (Self_ID, "Activate_Tasks", 'C'));
239 Initialization.Defer_Abort_Nestable (Self_ID);
241 pragma Assert (Self_ID.Common.Wait_Count = 0);
243 -- Lock RTS_Lock, to prevent activated tasks from racing ahead before
244 -- we finish activating the chain.
246 Lock_RTS;
248 -- Check that all task bodies have been elaborated
250 C := Chain_Access.T_ID;
251 Last_C := null;
252 while C /= null loop
253 if C.Common.Elaborated /= null
254 and then not C.Common.Elaborated.all
255 then
256 All_Elaborated := False;
257 end if;
259 -- Reverse the activation chain so that tasks are activated in the
260 -- same order they're declared.
262 Next_C := C.Common.Activation_Link;
263 C.Common.Activation_Link := Last_C;
264 Last_C := C;
265 C := Next_C;
266 end loop;
268 Chain_Access.T_ID := Last_C;
270 if not All_Elaborated then
271 Unlock_RTS;
272 Initialization.Undefer_Abort_Nestable (Self_ID);
273 raise Program_Error with "Some tasks have not been elaborated";
274 end if;
276 -- Activate all the tasks in the chain. Creation of the thread of
277 -- control was deferred until activation. So create it now.
279 C := Chain_Access.T_ID;
280 while C /= null loop
281 if C.Common.State /= Terminated then
282 pragma Assert (C.Common.State = Unactivated);
284 P := C.Common.Parent;
285 Write_Lock (P);
286 Write_Lock (C);
288 Activate_Prio :=
289 (if C.Common.Base_Priority < Get_Priority (Self_ID)
290 then Get_Priority (Self_ID)
291 else C.Common.Base_Priority);
293 System.Task_Primitives.Operations.Create_Task
294 (C, Task_Wrapper'Address,
295 Parameters.Size_Type
296 (C.Common.Compiler_Data.Pri_Stack_Info.Size),
297 Activate_Prio, Success);
299 -- There would be a race between the created task and the creator
300 -- to do the following initialization, if we did not have a
301 -- Lock/Unlock_RTS pair in the task wrapper to prevent it from
302 -- racing ahead.
304 if Success then
305 C.Common.State := Activating;
306 C.Awake_Count := 1;
307 C.Alive_Count := 1;
308 P.Awake_Count := P.Awake_Count + 1;
309 P.Alive_Count := P.Alive_Count + 1;
311 if P.Common.State = Master_Completion_Sleep and then
312 C.Master_of_Task = P.Master_Within
313 then
314 pragma Assert (Self_ID /= P);
315 P.Common.Wait_Count := P.Common.Wait_Count + 1;
316 end if;
318 for J in System.Tasking.Debug.Known_Tasks'Range loop
319 if System.Tasking.Debug.Known_Tasks (J) = null then
320 System.Tasking.Debug.Known_Tasks (J) := C;
321 C.Known_Tasks_Index := J;
322 exit;
323 end if;
324 end loop;
326 if Global_Task_Debug_Event_Set then
327 Debug.Signal_Debug_Event
328 (Debug.Debug_Event_Activating, C);
329 end if;
331 C.Common.State := Runnable;
333 Unlock (C);
334 Unlock (P);
336 else
337 -- No need to set Awake_Count, State, etc. here since the loop
338 -- below will do that for any Unactivated tasks.
340 Unlock (C);
341 Unlock (P);
342 Self_ID.Common.Activation_Failed := True;
343 end if;
344 end if;
346 C := C.Common.Activation_Link;
347 end loop;
349 if not Single_Lock then
350 Unlock_RTS;
351 end if;
353 -- Close the entries of any tasks that failed thread creation, and count
354 -- those that have not finished activation.
356 Write_Lock (Self_ID);
357 Self_ID.Common.State := Activator_Sleep;
359 C := Chain_Access.T_ID;
360 while C /= null loop
361 Write_Lock (C);
363 if C.Common.State = Unactivated then
364 C.Common.Activator := null;
365 C.Common.State := Terminated;
366 C.Callable := False;
367 Utilities.Cancel_Queued_Entry_Calls (C);
369 elsif C.Common.Activator /= null then
370 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
371 end if;
373 Unlock (C);
374 P := C.Common.Activation_Link;
375 C.Common.Activation_Link := null;
376 C := P;
377 end loop;
379 -- Wait for the activated tasks to complete activation. It is
380 -- unsafe to abort any of these tasks until the count goes to zero.
382 loop
383 exit when Self_ID.Common.Wait_Count = 0;
384 Sleep (Self_ID, Activator_Sleep);
385 end loop;
387 Self_ID.Common.State := Runnable;
388 Unlock (Self_ID);
390 if Single_Lock then
391 Unlock_RTS;
392 end if;
394 -- Remove the tasks from the chain
396 Chain_Access.T_ID := null;
397 Initialization.Undefer_Abort_Nestable (Self_ID);
399 if Self_ID.Common.Activation_Failed then
400 Self_ID.Common.Activation_Failed := False;
401 raise Tasking_Error with "Failure during activation";
402 end if;
403 end Activate_Tasks;
405 -------------------------
406 -- Complete_Activation --
407 -------------------------
409 procedure Complete_Activation is
410 Self_ID : constant Task_Id := STPO.Self;
412 begin
413 Initialization.Defer_Abort_Nestable (Self_ID);
415 if Single_Lock then
416 Lock_RTS;
417 end if;
419 Vulnerable_Complete_Activation (Self_ID);
421 if Single_Lock then
422 Unlock_RTS;
423 end if;
425 Initialization.Undefer_Abort_Nestable (Self_ID);
427 -- ??? Why do we need to allow for nested deferral here?
429 if Runtime_Traces then
430 Send_Trace_Info (T_Activate);
431 end if;
432 end Complete_Activation;
434 ---------------------
435 -- Complete_Master --
436 ---------------------
438 procedure Complete_Master is
439 Self_ID : constant Task_Id := STPO.Self;
440 begin
441 pragma Assert
442 (Self_ID.Deferral_Level > 0
443 or else not System.Restrictions.Abort_Allowed);
444 Vulnerable_Complete_Master (Self_ID);
445 end Complete_Master;
447 -------------------
448 -- Complete_Task --
449 -------------------
451 -- See comments on Vulnerable_Complete_Task for details
453 procedure Complete_Task is
454 Self_ID : constant Task_Id := STPO.Self;
456 begin
457 pragma Assert
458 (Self_ID.Deferral_Level > 0
459 or else not System.Restrictions.Abort_Allowed);
461 Vulnerable_Complete_Task (Self_ID);
463 -- All of our dependents have terminated, never undefer abort again
465 end Complete_Task;
467 -----------------
468 -- Create_Task --
469 -----------------
471 -- Compiler interface only. Do not call from within the RTS. This must be
472 -- called to create a new task.
474 procedure Create_Task
475 (Priority : Integer;
476 Size : System.Parameters.Size_Type;
477 Secondary_Stack_Size : System.Parameters.Size_Type;
478 Task_Info : System.Task_Info.Task_Info_Type;
479 CPU : Integer;
480 Relative_Deadline : Ada.Real_Time.Time_Span;
481 Domain : Dispatching_Domain_Access;
482 Num_Entries : Task_Entry_Index;
483 Master : Master_Level;
484 State : Task_Procedure_Access;
485 Discriminants : System.Address;
486 Elaborated : Access_Boolean;
487 Chain : in out Activation_Chain;
488 Task_Image : String;
489 Created_Task : out Task_Id)
491 T, P : Task_Id;
492 Self_ID : constant Task_Id := STPO.Self;
493 Success : Boolean;
494 Base_Priority : System.Any_Priority;
495 Len : Natural;
496 Base_CPU : System.Multiprocessors.CPU_Range;
498 use type System.Multiprocessors.CPU_Range;
500 pragma Unreferenced (Relative_Deadline);
501 -- EDF scheduling is not supported by any of the target platforms so
502 -- this parameter is not passed any further.
504 begin
505 -- If Master is greater than the current master, it means that Master
506 -- has already awaited its dependent tasks. This raises Program_Error,
507 -- by 4.8(10.3/2). See AI-280. Ignore this check for foreign threads.
509 if Self_ID.Master_of_Task /= Foreign_Task_Level
510 and then Master > Self_ID.Master_Within
511 then
512 raise Program_Error with
513 "create task after awaiting termination";
514 end if;
516 -- If pragma Detect_Blocking is active must be checked whether this
517 -- potentially blocking operation is called from a protected action.
519 if System.Tasking.Detect_Blocking
520 and then Self_ID.Common.Protected_Action_Nesting > 0
521 then
522 raise Program_Error with "potentially blocking operation";
523 end if;
525 pragma Debug (Debug.Trace (Self_ID, "Create_Task", 'C'));
527 Base_Priority :=
528 (if Priority = Unspecified_Priority
529 then Self_ID.Common.Base_Priority
530 else System.Any_Priority (Priority));
532 -- Legal values of CPU are the special Unspecified_CPU value which is
533 -- inserted by the compiler for tasks without CPU aspect, and those in
534 -- the range of CPU_Range but no greater than Number_Of_CPUs. Otherwise
535 -- the task is defined to have failed, and it becomes a completed task
536 -- (RM D.16(14/3)).
538 if CPU /= Unspecified_CPU
539 and then (CPU < Integer (System.Multiprocessors.CPU_Range'First)
540 or else
541 CPU > Integer (System.Multiprocessors.Number_Of_CPUs))
542 then
543 raise Tasking_Error with "CPU not in range";
545 -- Normal CPU affinity
547 else
548 -- When the application code says nothing about the task affinity
549 -- (task without CPU aspect) then the compiler inserts the value
550 -- Unspecified_CPU which indicates to the run-time library that
551 -- the task will activate and execute on the same processor as its
552 -- activating task if the activating task is assigned a processor
553 -- (RM D.16(14/3)).
555 Base_CPU :=
556 (if CPU = Unspecified_CPU
557 then Self_ID.Common.Base_CPU
558 else System.Multiprocessors.CPU_Range (CPU));
559 end if;
561 -- Find parent P of new Task, via master level number. Independent
562 -- tasks should have Parent = Environment_Task, and all tasks created
563 -- by independent tasks are also independent. See, for example,
564 -- s-interr.adb, where Interrupt_Manager does "new Server_Task". The
565 -- access type is at library level, so the parent of the Server_Task
566 -- is Environment_Task.
568 P := Self_ID;
570 if P.Master_of_Task <= Independent_Task_Level then
571 P := Environment_Task;
572 else
573 while P /= null and then P.Master_of_Task >= Master loop
574 P := P.Common.Parent;
575 end loop;
576 end if;
578 Initialization.Defer_Abort_Nestable (Self_ID);
580 begin
581 T := New_ATCB (Num_Entries);
582 exception
583 when others =>
584 Initialization.Undefer_Abort_Nestable (Self_ID);
585 raise Storage_Error with "Cannot allocate task";
586 end;
588 -- RTS_Lock is used by Abort_Dependents and Abort_Tasks. Up to this
589 -- point, it is possible that we may be part of a family of tasks that
590 -- is being aborted.
592 Lock_RTS;
593 Write_Lock (Self_ID);
595 -- Now, we must check that we have not been aborted. If so, we should
596 -- give up on creating this task, and simply return.
598 if not Self_ID.Callable then
599 pragma Assert (Self_ID.Pending_ATC_Level = 0);
600 pragma Assert (Self_ID.Pending_Action);
601 pragma Assert
602 (Chain.T_ID = null or else Chain.T_ID.Common.State = Unactivated);
604 Unlock (Self_ID);
605 Unlock_RTS;
606 Initialization.Undefer_Abort_Nestable (Self_ID);
608 -- ??? Should never get here
610 pragma Assert (False);
611 raise Standard'Abort_Signal;
612 end if;
614 Initialize_ATCB (Self_ID, State, Discriminants, P, Elaborated,
615 Base_Priority, Base_CPU, Domain, Task_Info, Size,
616 Secondary_Stack_Size, T, Success);
618 if not Success then
619 Free (T);
620 Unlock (Self_ID);
621 Unlock_RTS;
622 Initialization.Undefer_Abort_Nestable (Self_ID);
623 raise Storage_Error with "Failed to initialize task";
624 end if;
626 if Master = Foreign_Task_Level + 2 then
628 -- This should not happen, except when a foreign task creates non
629 -- library-level Ada tasks. In this case, we pretend the master is
630 -- a regular library level task, otherwise the run-time will get
631 -- confused when waiting for these tasks to terminate.
633 T.Master_of_Task := Library_Task_Level;
635 else
636 T.Master_of_Task := Master;
637 end if;
639 T.Master_Within := T.Master_of_Task + 1;
641 for L in T.Entry_Calls'Range loop
642 T.Entry_Calls (L).Self := T;
643 T.Entry_Calls (L).Level := L;
644 end loop;
646 if Task_Image'Length = 0 then
647 T.Common.Task_Image_Len := 0;
648 else
649 Len := 1;
650 T.Common.Task_Image (1) := Task_Image (Task_Image'First);
652 -- Remove unwanted blank space generated by 'Image
654 for J in Task_Image'First + 1 .. Task_Image'Last loop
655 if Task_Image (J) /= ' '
656 or else Task_Image (J - 1) /= '('
657 then
658 Len := Len + 1;
659 T.Common.Task_Image (Len) := Task_Image (J);
660 exit when Len = T.Common.Task_Image'Last;
661 end if;
662 end loop;
664 T.Common.Task_Image_Len := Len;
665 end if;
667 -- Note: we used to have code here to initialize T.Commmon.Domain, but
668 -- that is not needed, since this is initialized in System.Tasking.
670 Unlock (Self_ID);
671 Unlock_RTS;
673 -- The CPU associated to the task (if any) must belong to the
674 -- dispatching domain.
676 if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
677 and then
678 (Base_CPU not in T.Common.Domain'Range
679 or else not T.Common.Domain (Base_CPU))
680 then
681 Initialization.Undefer_Abort_Nestable (Self_ID);
682 raise Tasking_Error with "CPU not in dispatching domain";
683 end if;
685 -- To handle the interaction between pragma CPU and dispatching domains
686 -- we need to signal that this task is being allocated to a processor.
687 -- This is needed only for tasks belonging to the system domain (the
688 -- creation of new dispatching domains can only take processors from the
689 -- system domain) and only before the environment task calls the main
690 -- procedure (dispatching domains cannot be created after this).
692 if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
693 and then T.Common.Domain = System.Tasking.System_Domain
694 and then not System.Tasking.Dispatching_Domains_Frozen
695 then
696 -- Increase the number of tasks attached to the CPU to which this
697 -- task is being moved.
699 Dispatching_Domain_Tasks (Base_CPU) :=
700 Dispatching_Domain_Tasks (Base_CPU) + 1;
701 end if;
703 -- Create TSD as early as possible in the creation of a task, since it
704 -- may be used by the operation of Ada code within the task.
706 SSL.Create_TSD (T.Common.Compiler_Data);
707 T.Common.Activation_Link := Chain.T_ID;
708 Chain.T_ID := T;
709 Created_Task := T;
710 Initialization.Undefer_Abort_Nestable (Self_ID);
712 if Runtime_Traces then
713 Send_Trace_Info (T_Create, T);
714 end if;
716 pragma Debug
717 (Debug.Trace
718 (Self_ID, "Created task in " & T.Master_of_Task'Img, 'C', T));
719 end Create_Task;
721 --------------------
722 -- Current_Master --
723 --------------------
725 function Current_Master return Master_Level is
726 begin
727 return STPO.Self.Master_Within;
728 end Current_Master;
730 ------------------
731 -- Enter_Master --
732 ------------------
734 procedure Enter_Master is
735 Self_ID : constant Task_Id := STPO.Self;
736 begin
737 Self_ID.Master_Within := Self_ID.Master_Within + 1;
738 pragma Debug
739 (Debug.Trace
740 (Self_ID, "Enter_Master ->" & Self_ID.Master_Within'Img, 'M'));
741 end Enter_Master;
743 -------------------------------
744 -- Expunge_Unactivated_Tasks --
745 -------------------------------
747 -- See procedure Close_Entries for the general case
749 procedure Expunge_Unactivated_Tasks (Chain : in out Activation_Chain) is
750 Self_ID : constant Task_Id := STPO.Self;
751 C : Task_Id;
752 Call : Entry_Call_Link;
753 Temp : Task_Id;
755 begin
756 pragma Debug
757 (Debug.Trace (Self_ID, "Expunge_Unactivated_Tasks", 'C'));
759 Initialization.Defer_Abort_Nestable (Self_ID);
761 -- ???
762 -- Experimentation has shown that abort is sometimes (but not always)
763 -- already deferred when this is called.
765 -- That may indicate an error. Find out what is going on
767 C := Chain.T_ID;
768 while C /= null loop
769 pragma Assert (C.Common.State = Unactivated);
771 Temp := C.Common.Activation_Link;
773 if C.Common.State = Unactivated then
774 Lock_RTS;
775 Write_Lock (C);
777 for J in 1 .. C.Entry_Num loop
778 Queuing.Dequeue_Head (C.Entry_Queues (J), Call);
779 pragma Assert (Call = null);
780 end loop;
782 Unlock (C);
784 Initialization.Remove_From_All_Tasks_List (C);
785 Unlock_RTS;
787 Vulnerable_Free_Task (C);
788 C := Temp;
789 end if;
790 end loop;
792 Chain.T_ID := null;
793 Initialization.Undefer_Abort_Nestable (Self_ID);
794 end Expunge_Unactivated_Tasks;
796 ---------------------------
797 -- Finalize_Global_Tasks --
798 ---------------------------
800 -- ???
801 -- We have a potential problem here if finalization of global objects does
802 -- anything with signals or the timer server, since by that time those
803 -- servers have terminated.
805 -- It is hard to see how that would occur
807 -- However, a better solution might be to do all this finalization
808 -- using the global finalization chain.
810 procedure Finalize_Global_Tasks is
811 Self_ID : constant Task_Id := STPO.Self;
813 Ignore_1 : Boolean;
814 Ignore_2 : Boolean;
816 function State
817 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
818 pragma Import (C, State, "__gnat_get_interrupt_state");
819 -- Get interrupt state for interrupt number Int. Defined in init.c
821 Default : constant Character := 's';
822 -- 's' Interrupt_State pragma set state to System (use "default"
823 -- system handler)
825 begin
826 if Self_ID.Deferral_Level = 0 then
827 -- ???
828 -- In principle, we should be able to predict whether abort is
829 -- already deferred here (and it should not be deferred yet but in
830 -- practice it seems Finalize_Global_Tasks is being called sometimes,
831 -- from RTS code for exceptions, with abort already deferred.
833 Initialization.Defer_Abort_Nestable (Self_ID);
835 -- Never undefer again
836 end if;
838 -- This code is only executed by the environment task
840 pragma Assert (Self_ID = Environment_Task);
842 -- Set Environment_Task'Callable to false to notify library-level tasks
843 -- that it is waiting for them.
845 Self_ID.Callable := False;
847 -- Exit level 2 master, for normal tasks in library-level packages
849 Complete_Master;
851 -- Force termination of "independent" library-level server tasks
853 Lock_RTS;
855 Abort_Dependents (Self_ID);
857 if not Single_Lock then
858 Unlock_RTS;
859 end if;
861 -- We need to explicitly wait for the task to be terminated here
862 -- because on true concurrent system, we may end this procedure before
863 -- the tasks are really terminated.
865 Write_Lock (Self_ID);
867 -- If the Abort_Task signal is set to system, it means that we may
868 -- not have been able to abort all independent tasks (in particular,
869 -- Server_Task may be blocked, waiting for a signal), in which case, do
870 -- not wait for Independent_Task_Count to go down to 0. We arbitrarily
871 -- limit the number of loop iterations; if an independent task does not
872 -- terminate, we do not want to hang here. In that case, the thread will
873 -- be terminated when the process exits.
875 if State (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
876 then
877 for J in 1 .. 10 loop
878 exit when Utilities.Independent_Task_Count = 0;
880 -- We used to yield here, but this did not take into account low
881 -- priority tasks that would cause dead lock in some cases (true
882 -- FIFO scheduling).
884 Timed_Sleep
885 (Self_ID, 0.01, System.OS_Primitives.Relative,
886 Self_ID.Common.State, Ignore_1, Ignore_2);
887 end loop;
888 end if;
890 -- ??? On multi-processor environments, it seems that the above loop
891 -- isn't sufficient, so we need to add an additional delay.
893 Timed_Sleep
894 (Self_ID, 0.01, System.OS_Primitives.Relative,
895 Self_ID.Common.State, Ignore_1, Ignore_2);
897 Unlock (Self_ID);
899 if Single_Lock then
900 Unlock_RTS;
901 end if;
903 -- Complete the environment task
905 Vulnerable_Complete_Task (Self_ID);
907 -- Handle normal task termination by the environment task, but only
908 -- for the normal task termination. In the case of Abnormal and
909 -- Unhandled_Exception they must have been handled before, and the
910 -- task termination soft link must have been changed so the task
911 -- termination routine is not executed twice.
913 SSL.Task_Termination_Handler.all (Ada.Exceptions.Null_Occurrence);
915 -- Finalize all library-level controlled objects
917 if not SSL."=" (SSL.Finalize_Library_Objects, null) then
918 SSL.Finalize_Library_Objects.all;
919 end if;
921 -- Reset the soft links to non-tasking
923 SSL.Abort_Defer := SSL.Abort_Defer_NT'Access;
924 SSL.Abort_Undefer := SSL.Abort_Undefer_NT'Access;
925 SSL.Lock_Task := SSL.Task_Lock_NT'Access;
926 SSL.Unlock_Task := SSL.Task_Unlock_NT'Access;
927 SSL.Get_Jmpbuf_Address := SSL.Get_Jmpbuf_Address_NT'Access;
928 SSL.Set_Jmpbuf_Address := SSL.Set_Jmpbuf_Address_NT'Access;
929 SSL.Get_Sec_Stack_Addr := SSL.Get_Sec_Stack_Addr_NT'Access;
930 SSL.Set_Sec_Stack_Addr := SSL.Set_Sec_Stack_Addr_NT'Access;
931 SSL.Check_Abort_Status := SSL.Check_Abort_Status_NT'Access;
932 SSL.Get_Stack_Info := SSL.Get_Stack_Info_NT'Access;
934 -- Don't bother trying to finalize Initialization.Global_Task_Lock
935 -- and System.Task_Primitives.RTS_Lock.
937 end Finalize_Global_Tasks;
939 ---------------
940 -- Free_Task --
941 ---------------
943 procedure Free_Task (T : Task_Id) is
944 Self_Id : constant Task_Id := Self;
946 begin
947 if T.Common.State = Terminated then
949 -- It is not safe to call Abort_Defer or Write_Lock at this stage
951 Initialization.Task_Lock (Self_Id);
953 Lock_RTS;
954 Initialization.Finalize_Attributes (T);
955 Initialization.Remove_From_All_Tasks_List (T);
956 Unlock_RTS;
958 Initialization.Task_Unlock (Self_Id);
960 System.Task_Primitives.Operations.Finalize_TCB (T);
962 else
963 -- If the task is not terminated, then mark the task as to be freed
964 -- upon termination.
966 T.Free_On_Termination := True;
967 end if;
968 end Free_Task;
970 ---------------------------
971 -- Move_Activation_Chain --
972 ---------------------------
974 procedure Move_Activation_Chain
975 (From, To : Activation_Chain_Access;
976 New_Master : Master_ID)
978 Self_ID : constant Task_Id := STPO.Self;
979 C : Task_Id;
981 begin
982 pragma Debug
983 (Debug.Trace (Self_ID, "Move_Activation_Chain", 'C'));
985 -- Nothing to do if From is empty, and we can check that without
986 -- deferring aborts.
988 C := From.all.T_ID;
990 if C = null then
991 return;
992 end if;
994 Initialization.Defer_Abort_Nestable (Self_ID);
996 -- Loop through the From chain, changing their Master_of_Task fields,
997 -- and to find the end of the chain.
999 loop
1000 C.Master_of_Task := New_Master;
1001 exit when C.Common.Activation_Link = null;
1002 C := C.Common.Activation_Link;
1003 end loop;
1005 -- Hook From in at the start of To
1007 C.Common.Activation_Link := To.all.T_ID;
1008 To.all.T_ID := From.all.T_ID;
1010 -- Set From to empty
1012 From.all.T_ID := null;
1014 Initialization.Undefer_Abort_Nestable (Self_ID);
1015 end Move_Activation_Chain;
1017 ------------------
1018 -- Task_Wrapper --
1019 ------------------
1021 -- The task wrapper is a procedure that is called first for each task body
1022 -- and which in turn calls the compiler-generated task body procedure.
1023 -- The wrapper's main job is to do initialization for the task. It also
1024 -- has some locally declared objects that serve as per-task local data.
1025 -- Task finalization is done by Complete_Task, which is called from an
1026 -- at-end handler that the compiler generates.
1028 procedure Task_Wrapper (Self_ID : Task_Id) is
1029 use type SSE.Storage_Offset;
1030 use System.Standard_Library;
1031 use System.Stack_Usage;
1033 Bottom_Of_Stack : aliased Integer;
1035 Task_Alternate_Stack :
1036 aliased SSE.Storage_Array (1 .. Alternate_Stack_Size);
1037 -- The alternate signal stack for this task, if any
1039 Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
1040 -- Whether to use above alternate signal stack for stack overflows
1042 function Secondary_Stack_Size return Storage_Elements.Storage_Offset;
1043 -- Returns the size of the secondary stack for the task. For fixed
1044 -- secondary stacks, the function will return the ATCB field
1045 -- Secondary_Stack_Size if it is not set to Unspecified_Size,
1046 -- otherwise a percentage of the stack is reserved using the
1047 -- System.Parameters.Sec_Stack_Percentage property.
1049 -- Dynamic secondary stacks are allocated in System.Soft_Links.
1050 -- Create_TSD and thus the function returns 0 to suppress the
1051 -- creation of the fixed secondary stack in the primary stack.
1053 --------------------------
1054 -- Secondary_Stack_Size --
1055 --------------------------
1057 function Secondary_Stack_Size return Storage_Elements.Storage_Offset is
1058 use System.Storage_Elements;
1059 use System.Secondary_Stack;
1061 begin
1062 if Parameters.Sec_Stack_Dynamic then
1063 return 0;
1065 elsif Self_ID.Common.Secondary_Stack_Size = Unspecified_Size then
1066 return (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size
1067 * SSE.Storage_Offset (Sec_Stack_Percentage) / 100);
1068 else
1069 -- Use the size specified by aspect Secondary_Stack_Size padded
1070 -- by the amount of space used by the stack data structure.
1072 return Storage_Offset (Self_ID.Common.Secondary_Stack_Size) +
1073 Storage_Offset (SST.Minimum_Secondary_Stack_Size);
1074 end if;
1075 end Secondary_Stack_Size;
1077 Secondary_Stack : aliased Storage_Elements.Storage_Array
1078 (1 .. Secondary_Stack_Size);
1079 for Secondary_Stack'Alignment use Standard'Maximum_Alignment;
1080 -- Actual area allocated for secondary stack. Note that it is critical
1081 -- that this have maximum alignment, since any kind of data can be
1082 -- allocated here.
1084 Secondary_Stack_Address : System.Address := Secondary_Stack'Address;
1085 -- Address of secondary stack. In the fixed secondary stack case, this
1086 -- value is not modified, causing a warning, hence the bracketing with
1087 -- Warnings (Off/On). But why is so much *more* bracketed???
1089 SEH_Table : aliased SSE.Storage_Array (1 .. 8);
1090 -- Structured Exception Registration table (2 words)
1092 procedure Install_SEH_Handler (Addr : System.Address);
1093 pragma Import (C, Install_SEH_Handler, "__gnat_install_SEH_handler");
1094 -- Install the SEH (Structured Exception Handling) handler
1096 Cause : Cause_Of_Termination := Normal;
1097 -- Indicates the reason why this task terminates. Normal corresponds to
1098 -- a task terminating due to completing the last statement of its body,
1099 -- or as a result of waiting on a terminate alternative. If the task
1100 -- terminates because it is being aborted then Cause will be set
1101 -- to Abnormal. If the task terminates because of an exception
1102 -- raised by the execution of its task body, then Cause is set
1103 -- to Unhandled_Exception.
1105 EO : Exception_Occurrence;
1106 -- If the task terminates because of an exception raised by the
1107 -- execution of its task body, then EO will contain the associated
1108 -- exception occurrence. Otherwise, it will contain Null_Occurrence.
1110 TH : Termination_Handler := null;
1111 -- Pointer to the protected procedure to be executed upon task
1112 -- termination.
1114 procedure Search_Fall_Back_Handler (ID : Task_Id);
1115 -- Procedure that searches recursively a fall-back handler through the
1116 -- master relationship. If the handler is found, its pointer is stored
1117 -- in TH. It stops when the handler is found or when the ID is null.
1119 ------------------------------
1120 -- Search_Fall_Back_Handler --
1121 ------------------------------
1123 procedure Search_Fall_Back_Handler (ID : Task_Id) is
1124 begin
1125 -- A null Task_Id indicates that we have reached the root of the
1126 -- task hierarchy and no handler has been found.
1128 if ID = null then
1129 return;
1131 -- If there is a fall back handler, store its pointer for later
1132 -- execution.
1134 elsif ID.Common.Fall_Back_Handler /= null then
1135 TH := ID.Common.Fall_Back_Handler;
1137 -- Otherwise look for a fall back handler in the parent
1139 else
1140 Search_Fall_Back_Handler (ID.Common.Parent);
1141 end if;
1142 end Search_Fall_Back_Handler;
1144 -- Start of processing for Task_Wrapper
1146 begin
1147 pragma Assert (Self_ID.Deferral_Level = 1);
1149 Debug.Master_Hook
1150 (Self_ID, Self_ID.Common.Parent, Self_ID.Master_of_Task);
1152 -- Assume a size of the stack taken at this stage
1154 if not Parameters.Sec_Stack_Dynamic then
1155 Self_ID.Common.Compiler_Data.Sec_Stack_Addr :=
1156 Secondary_Stack'Address;
1157 SST.SS_Init (Secondary_Stack_Address, Integer (Secondary_Stack'Last));
1158 end if;
1160 if Use_Alternate_Stack then
1161 Self_ID.Common.Task_Alternate_Stack := Task_Alternate_Stack'Address;
1162 end if;
1164 -- Set the guard page at the bottom of the stack. The call to unprotect
1165 -- the page is done in Terminate_Task
1167 Stack_Guard (Self_ID, True);
1169 -- Initialize low-level TCB components, that cannot be initialized by
1170 -- the creator. Enter_Task sets Self_ID.LL.Thread.
1172 Enter_Task (Self_ID);
1174 -- Initialize dynamic stack usage
1176 if System.Stack_Usage.Is_Enabled then
1177 declare
1178 Guard_Page_Size : constant := 16 * 1024;
1179 -- Part of the stack used as a guard page. This is an OS dependent
1180 -- value, so we need to use the maximum. This value is only used
1181 -- when the stack address is known, that is currently Windows.
1183 Small_Overflow_Guard : constant := 12 * 1024;
1184 -- Note: this used to be 4K, but was changed to 12K, since
1185 -- smaller values resulted in segmentation faults from dynamic
1186 -- stack analysis.
1188 Big_Overflow_Guard : constant := 64 * 1024 + 8 * 1024;
1189 Small_Stack_Limit : constant := 64 * 1024;
1190 -- ??? These three values are experimental, and seem to work on
1191 -- most platforms. They still need to be analyzed further. They
1192 -- also need documentation, what are they and why does the logic
1193 -- differ depending on whether the stack is large or small???
1195 Pattern_Size : Natural :=
1196 Natural (Self_ID.Common.
1197 Compiler_Data.Pri_Stack_Info.Size);
1198 -- Size of the pattern
1200 Stack_Base : Address;
1201 -- Address of the base of the stack
1203 begin
1204 Stack_Base := Self_ID.Common.Compiler_Data.Pri_Stack_Info.Base;
1206 if Stack_Base = Null_Address then
1208 -- On many platforms, we don't know the real stack base
1209 -- address. Estimate it using an address in the frame.
1211 Stack_Base := Bottom_Of_Stack'Address;
1213 -- Also reduce the size of the stack to take into account the
1214 -- secondary stack array declared in this frame. This is for
1215 -- sure very conservative.
1217 if not Parameters.Sec_Stack_Dynamic then
1218 Pattern_Size :=
1219 Pattern_Size - Natural (Secondary_Stack_Size);
1220 end if;
1222 -- Adjustments for inner frames
1224 Pattern_Size := Pattern_Size -
1225 (if Pattern_Size < Small_Stack_Limit
1226 then Small_Overflow_Guard
1227 else Big_Overflow_Guard);
1228 else
1229 -- Reduce by the size of the final guard page
1231 Pattern_Size := Pattern_Size - Guard_Page_Size;
1232 end if;
1234 STPO.Lock_RTS;
1235 Initialize_Analyzer
1236 (Self_ID.Common.Analyzer,
1237 Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len),
1238 Natural (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size),
1239 SSE.To_Integer (Stack_Base),
1240 Pattern_Size);
1241 STPO.Unlock_RTS;
1242 Fill_Stack (Self_ID.Common.Analyzer);
1243 end;
1244 end if;
1246 -- We setup the SEH (Structured Exception Handling) handler if supported
1247 -- on the target.
1249 Install_SEH_Handler (SEH_Table'Address);
1251 -- Initialize exception occurrence
1253 Save_Occurrence (EO, Ada.Exceptions.Null_Occurrence);
1255 -- We lock RTS_Lock to wait for activator to finish activating the rest
1256 -- of the chain, so that everyone in the chain comes out in priority
1257 -- order.
1259 -- This also protects the value of
1260 -- Self_ID.Common.Activator.Common.Wait_Count.
1262 Lock_RTS;
1263 Unlock_RTS;
1265 if not System.Restrictions.Abort_Allowed then
1267 -- If Abort is not allowed, reset the deferral level since it will
1268 -- not get changed by the generated code. Keeping a default value
1269 -- of one would prevent some operations (e.g. select or delay) to
1270 -- proceed successfully.
1272 Self_ID.Deferral_Level := 0;
1273 end if;
1275 if Global_Task_Debug_Event_Set then
1276 Debug.Signal_Debug_Event (Debug.Debug_Event_Run, Self_ID);
1277 end if;
1279 begin
1280 -- We are separating the following portion of the code in order to
1281 -- place the exception handlers in a different block. In this way,
1282 -- we do not call Set_Jmpbuf_Address (which needs Self) before we
1283 -- set Self in Enter_Task
1285 -- Call the task body procedure
1287 -- The task body is called with abort still deferred. That
1288 -- eliminates a dangerous window, for which we had to patch-up in
1289 -- Terminate_Task.
1291 -- During the expansion of the task body, we insert an RTS-call
1292 -- to Abort_Undefer, at the first point where abort should be
1293 -- allowed.
1295 Self_ID.Common.Task_Entry_Point (Self_ID.Common.Task_Arg);
1296 Initialization.Defer_Abort_Nestable (Self_ID);
1298 exception
1299 -- We can't call Terminate_Task in the exception handlers below,
1300 -- since there may be (e.g. in the case of GCC exception handling)
1301 -- clean ups associated with the exception handler that need to
1302 -- access task specific data.
1304 -- Defer abort so that this task can't be aborted while exiting
1306 when Standard'Abort_Signal =>
1307 Initialization.Defer_Abort_Nestable (Self_ID);
1309 -- Update the cause that motivated the task termination so that
1310 -- the appropriate information is passed to the task termination
1311 -- procedure. Task termination as a result of waiting on a
1312 -- terminate alternative is a normal termination, although it is
1313 -- implemented using the abort mechanisms.
1315 if Self_ID.Terminate_Alternative then
1316 Cause := Normal;
1318 if Global_Task_Debug_Event_Set then
1319 Debug.Signal_Debug_Event
1320 (Debug.Debug_Event_Terminated, Self_ID);
1321 end if;
1322 else
1323 Cause := Abnormal;
1325 if Global_Task_Debug_Event_Set then
1326 Debug.Signal_Debug_Event
1327 (Debug.Debug_Event_Abort_Terminated, Self_ID);
1328 end if;
1329 end if;
1331 when others =>
1332 -- ??? Using an E : others here causes CD2C11A to fail on Tru64
1334 Initialization.Defer_Abort_Nestable (Self_ID);
1336 -- Perform the task specific exception tracing duty. We handle
1337 -- these outputs here and not in the common notification routine
1338 -- because we need access to tasking related data and we don't
1339 -- want to drag dependencies against tasking related units in the
1340 -- the common notification units. Additionally, no trace is ever
1341 -- triggered from the common routine for the Unhandled_Raise case
1342 -- in tasks, since an exception never appears unhandled in this
1343 -- context because of this handler.
1345 if Exception_Trace = Unhandled_Raise then
1346 Trace_Unhandled_Exception_In_Task (Self_ID);
1347 end if;
1349 -- Update the cause that motivated the task termination so that
1350 -- the appropriate information is passed to the task termination
1351 -- procedure, as well as the associated Exception_Occurrence.
1353 Cause := Unhandled_Exception;
1355 Save_Occurrence (EO, SSL.Get_Current_Excep.all.all);
1357 if Global_Task_Debug_Event_Set then
1358 Debug.Signal_Debug_Event
1359 (Debug.Debug_Event_Exception_Terminated, Self_ID);
1360 end if;
1361 end;
1363 -- Look for a task termination handler. This code is for all tasks but
1364 -- the environment task. The task termination code for the environment
1365 -- task is executed by SSL.Task_Termination_Handler.
1367 if Single_Lock then
1368 Lock_RTS;
1369 end if;
1371 Write_Lock (Self_ID);
1373 if Self_ID.Common.Specific_Handler /= null then
1374 TH := Self_ID.Common.Specific_Handler;
1376 -- Independent tasks should not call the Fall_Back_Handler (of the
1377 -- environment task), because they are implementation artifacts that
1378 -- should be invisible to Ada programs.
1380 elsif Self_ID.Master_of_Task /= Independent_Task_Level then
1382 -- Look for a fall-back handler following the master relationship
1383 -- for the task. As specified in ARM C.7.3 par. 9/2, "the fall-back
1384 -- handler applies only to the dependent tasks of the task". Hence,
1385 -- if the terminating tasks (Self_ID) had a fall-back handler, it
1386 -- would not apply to itself, so we start the search with the parent.
1388 Search_Fall_Back_Handler (Self_ID.Common.Parent);
1389 end if;
1391 Unlock (Self_ID);
1393 if Single_Lock then
1394 Unlock_RTS;
1395 end if;
1397 -- Execute the task termination handler if we found it
1399 if TH /= null then
1400 begin
1401 TH.all (Cause, Self_ID, EO);
1403 exception
1405 -- RM-C.7.3 requires all exceptions raised here to be ignored
1407 when others =>
1408 null;
1409 end;
1410 end if;
1412 if System.Stack_Usage.Is_Enabled then
1413 Compute_Result (Self_ID.Common.Analyzer);
1414 Report_Result (Self_ID.Common.Analyzer);
1415 end if;
1417 Terminate_Task (Self_ID);
1418 end Task_Wrapper;
1420 --------------------
1421 -- Terminate_Task --
1422 --------------------
1424 -- Before we allow the thread to exit, we must clean up. This is a delicate
1425 -- job. We must wake up the task's master, who may immediately try to
1426 -- deallocate the ATCB from the current task WHILE IT IS STILL EXECUTING.
1428 -- To avoid this, the parent task must be blocked up to the latest
1429 -- statement executed. The trouble is that we have another step that we
1430 -- also want to postpone to the very end, i.e., calling SSL.Destroy_TSD.
1431 -- We have to postpone that until the end because compiler-generated code
1432 -- is likely to try to access that data at just about any point.
1434 -- We can't call Destroy_TSD while we are holding any other locks, because
1435 -- it locks Global_Task_Lock, and our deadlock prevention rules require
1436 -- that to be the outermost lock. Our first "solution" was to just lock
1437 -- Global_Task_Lock in addition to the other locks, and force the parent to
1438 -- also lock this lock between its wakeup and its freeing of the ATCB. See
1439 -- Complete_Task for the parent-side of the code that has the matching
1440 -- calls to Task_Lock and Task_Unlock. That was not really a solution,
1441 -- since the operation Task_Unlock continued to access the ATCB after
1442 -- unlocking, after which the parent was observed to race ahead, deallocate
1443 -- the ATCB, and then reallocate it to another task. The call to
1444 -- Undefer_Abort in Task_Unlock by the "terminated" task was overwriting
1445 -- the data of the new task that reused the ATCB. To solve this problem, we
1446 -- introduced the new operation Final_Task_Unlock.
1448 procedure Terminate_Task (Self_ID : Task_Id) is
1449 Environment_Task : constant Task_Id := STPO.Environment_Task;
1450 Master_of_Task : Integer;
1451 Deallocate : Boolean;
1453 begin
1454 Debug.Task_Termination_Hook;
1456 if Runtime_Traces then
1457 Send_Trace_Info (T_Terminate);
1458 end if;
1460 -- Since GCC cannot allocate stack chunks efficiently without reordering
1461 -- some of the allocations, we have to handle this unexpected situation
1462 -- here. Normally we never have to call Vulnerable_Complete_Task here.
1464 if Self_ID.Common.Activator /= null then
1465 Vulnerable_Complete_Task (Self_ID);
1466 end if;
1468 Initialization.Task_Lock (Self_ID);
1470 if Single_Lock then
1471 Lock_RTS;
1472 end if;
1474 Master_of_Task := Self_ID.Master_of_Task;
1476 -- Check if the current task is an independent task If so, decrement
1477 -- the Independent_Task_Count value.
1479 if Master_of_Task = Independent_Task_Level then
1480 if Single_Lock then
1481 Utilities.Independent_Task_Count :=
1482 Utilities.Independent_Task_Count - 1;
1484 else
1485 Write_Lock (Environment_Task);
1486 Utilities.Independent_Task_Count :=
1487 Utilities.Independent_Task_Count - 1;
1488 Unlock (Environment_Task);
1489 end if;
1490 end if;
1492 -- Unprotect the guard page if needed
1494 Stack_Guard (Self_ID, False);
1496 Utilities.Make_Passive (Self_ID, Task_Completed => True);
1497 Deallocate := Self_ID.Free_On_Termination;
1499 if Single_Lock then
1500 Unlock_RTS;
1501 end if;
1503 pragma Assert (Check_Exit (Self_ID));
1505 SSL.Destroy_TSD (Self_ID.Common.Compiler_Data);
1506 Initialization.Final_Task_Unlock (Self_ID);
1508 -- WARNING: past this point, this thread must assume that the ATCB has
1509 -- been deallocated, and can't access it anymore (which is why we have
1510 -- saved the Free_On_Termination flag in a temporary variable).
1512 if Deallocate then
1513 Free_Task (Self_ID);
1514 end if;
1516 if Master_of_Task > 0 then
1517 STPO.Exit_Task;
1518 end if;
1519 end Terminate_Task;
1521 ----------------
1522 -- Terminated --
1523 ----------------
1525 function Terminated (T : Task_Id) return Boolean is
1526 Self_ID : constant Task_Id := STPO.Self;
1527 Result : Boolean;
1529 begin
1530 Initialization.Defer_Abort_Nestable (Self_ID);
1532 if Single_Lock then
1533 Lock_RTS;
1534 end if;
1536 Write_Lock (T);
1537 Result := T.Common.State = Terminated;
1538 Unlock (T);
1540 if Single_Lock then
1541 Unlock_RTS;
1542 end if;
1544 Initialization.Undefer_Abort_Nestable (Self_ID);
1545 return Result;
1546 end Terminated;
1548 ----------------------------------------
1549 -- Trace_Unhandled_Exception_In_Task --
1550 ----------------------------------------
1552 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id) is
1553 procedure To_Stderr (S : String);
1554 pragma Import (Ada, To_Stderr, "__gnat_to_stderr");
1556 use System.Soft_Links;
1557 use System.Standard_Library;
1559 function To_Address is new
1560 Ada.Unchecked_Conversion
1561 (Task_Id, System.Task_Primitives.Task_Address);
1563 Excep : constant Exception_Occurrence_Access :=
1564 SSL.Get_Current_Excep.all;
1566 begin
1567 -- This procedure is called by the task outermost handler in
1568 -- Task_Wrapper below, so only once the task stack has been fully
1569 -- unwound. The common notification routine has been called at the
1570 -- raise point already.
1572 -- Lock to prevent unsynchronized output
1574 Initialization.Task_Lock (Self_Id);
1575 To_Stderr ("task ");
1577 if Self_Id.Common.Task_Image_Len /= 0 then
1578 To_Stderr
1579 (Self_Id.Common.Task_Image (1 .. Self_Id.Common.Task_Image_Len));
1580 To_Stderr ("_");
1581 end if;
1583 To_Stderr (System.Address_Image (To_Address (Self_Id)));
1584 To_Stderr (" terminated by unhandled exception");
1585 To_Stderr ((1 => ASCII.LF));
1586 To_Stderr (Exception_Information (Excep.all));
1587 Initialization.Task_Unlock (Self_Id);
1588 end Trace_Unhandled_Exception_In_Task;
1590 ------------------------------------
1591 -- Vulnerable_Complete_Activation --
1592 ------------------------------------
1594 -- As in several other places, the locks of the activator and activated
1595 -- task are both locked here. This follows our deadlock prevention lock
1596 -- ordering policy, since the activated task must be created after the
1597 -- activator.
1599 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id) is
1600 Activator : constant Task_Id := Self_ID.Common.Activator;
1602 begin
1603 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Activation", 'C'));
1605 Write_Lock (Activator);
1606 Write_Lock (Self_ID);
1608 pragma Assert (Self_ID.Common.Activator /= null);
1610 -- Remove dangling reference to Activator, since a task may outlive its
1611 -- activator.
1613 Self_ID.Common.Activator := null;
1615 -- Wake up the activator, if it is waiting for a chain of tasks to
1616 -- activate, and we are the last in the chain to complete activation.
1618 if Activator.Common.State = Activator_Sleep then
1619 Activator.Common.Wait_Count := Activator.Common.Wait_Count - 1;
1621 if Activator.Common.Wait_Count = 0 then
1622 Wakeup (Activator, Activator_Sleep);
1623 end if;
1624 end if;
1626 -- The activator raises a Tasking_Error if any task it is activating
1627 -- is completed before the activation is done. However, if the reason
1628 -- for the task completion is an abort, we do not raise an exception.
1629 -- See RM 9.2(5).
1631 if not Self_ID.Callable and then Self_ID.Pending_ATC_Level /= 0 then
1632 Activator.Common.Activation_Failed := True;
1633 end if;
1635 Unlock (Self_ID);
1636 Unlock (Activator);
1638 -- After the activation, active priority should be the same as base
1639 -- priority. We must unlock the Activator first, though, since it
1640 -- should not wait if we have lower priority.
1642 if Get_Priority (Self_ID) /= Self_ID.Common.Base_Priority then
1643 Write_Lock (Self_ID);
1644 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
1645 Unlock (Self_ID);
1646 end if;
1647 end Vulnerable_Complete_Activation;
1649 --------------------------------
1650 -- Vulnerable_Complete_Master --
1651 --------------------------------
1653 procedure Vulnerable_Complete_Master (Self_ID : Task_Id) is
1654 C : Task_Id;
1655 P : Task_Id;
1656 CM : constant Master_Level := Self_ID.Master_Within;
1657 T : aliased Task_Id;
1659 To_Be_Freed : Task_Id;
1660 -- This is a list of ATCBs to be freed, after we have released all RTS
1661 -- locks. This is necessary because of the locking order rules, since
1662 -- the storage manager uses Global_Task_Lock.
1664 pragma Warnings (Off);
1665 function Check_Unactivated_Tasks return Boolean;
1666 pragma Warnings (On);
1667 -- Temporary error-checking code below. This is part of the checks
1668 -- added in the new run time. Call it only inside a pragma Assert.
1670 -----------------------------
1671 -- Check_Unactivated_Tasks --
1672 -----------------------------
1674 function Check_Unactivated_Tasks return Boolean is
1675 begin
1676 if not Single_Lock then
1677 Lock_RTS;
1678 end if;
1680 Write_Lock (Self_ID);
1682 C := All_Tasks_List;
1683 while C /= null loop
1684 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1685 return False;
1686 end if;
1688 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1689 Write_Lock (C);
1691 if C.Common.State = Unactivated then
1692 return False;
1693 end if;
1695 Unlock (C);
1696 end if;
1698 C := C.Common.All_Tasks_Link;
1699 end loop;
1701 Unlock (Self_ID);
1703 if not Single_Lock then
1704 Unlock_RTS;
1705 end if;
1707 return True;
1708 end Check_Unactivated_Tasks;
1710 -- Start of processing for Vulnerable_Complete_Master
1712 begin
1713 pragma Debug
1714 (Debug.Trace (Self_ID, "V_Complete_Master(" & CM'Img & ")", 'C'));
1716 pragma Assert (Self_ID.Common.Wait_Count = 0);
1717 pragma Assert
1718 (Self_ID.Deferral_Level > 0
1719 or else not System.Restrictions.Abort_Allowed);
1721 -- Count how many active dependent tasks this master currently has, and
1722 -- record this in Wait_Count.
1724 -- This count should start at zero, since it is initialized to zero for
1725 -- new tasks, and the task should not exit the sleep-loops that use this
1726 -- count until the count reaches zero.
1728 -- While we're counting, if we run across any unactivated tasks that
1729 -- belong to this master, we summarily terminate them as required by
1730 -- RM-9.2(6).
1732 Lock_RTS;
1733 Write_Lock (Self_ID);
1735 C := All_Tasks_List;
1736 while C /= null loop
1738 -- Terminate unactivated (never-to-be activated) tasks
1740 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1742 -- Usually, C.Common.Activator = Self_ID implies C.Master_of_Task
1743 -- = CM. The only case where C is pending activation by this
1744 -- task, but the master of C is not CM is in Ada 2005, when C is
1745 -- part of a return object of a build-in-place function.
1747 pragma Assert (C.Common.State = Unactivated);
1749 Write_Lock (C);
1750 C.Common.Activator := null;
1751 C.Common.State := Terminated;
1752 C.Callable := False;
1753 Utilities.Cancel_Queued_Entry_Calls (C);
1754 Unlock (C);
1755 end if;
1757 -- Count it if directly dependent on this master
1759 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1760 Write_Lock (C);
1762 if C.Awake_Count /= 0 then
1763 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1764 end if;
1766 Unlock (C);
1767 end if;
1769 C := C.Common.All_Tasks_Link;
1770 end loop;
1772 Self_ID.Common.State := Master_Completion_Sleep;
1773 Unlock (Self_ID);
1775 if not Single_Lock then
1776 Unlock_RTS;
1777 end if;
1779 -- Wait until dependent tasks are all terminated or ready to terminate.
1780 -- While waiting, the task may be awakened if the task's priority needs
1781 -- changing, or this master is aborted. In the latter case, we abort the
1782 -- dependents, and resume waiting until Wait_Count goes to zero.
1784 Write_Lock (Self_ID);
1786 loop
1787 exit when Self_ID.Common.Wait_Count = 0;
1789 -- Here is a difference as compared to Complete_Master
1791 if Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
1792 and then not Self_ID.Dependents_Aborted
1793 then
1794 if Single_Lock then
1795 Abort_Dependents (Self_ID);
1796 else
1797 Unlock (Self_ID);
1798 Lock_RTS;
1799 Abort_Dependents (Self_ID);
1800 Unlock_RTS;
1801 Write_Lock (Self_ID);
1802 end if;
1803 else
1804 pragma Debug
1805 (Debug.Trace (Self_ID, "master_completion_sleep", 'C'));
1806 Sleep (Self_ID, Master_Completion_Sleep);
1807 end if;
1808 end loop;
1810 Self_ID.Common.State := Runnable;
1811 Unlock (Self_ID);
1813 -- Dependents are all terminated or on terminate alternatives. Now,
1814 -- force those on terminate alternatives to terminate, by aborting them.
1816 pragma Assert (Check_Unactivated_Tasks);
1818 if Self_ID.Alive_Count > 1 then
1819 -- ???
1820 -- Consider finding a way to skip the following extra steps if there
1821 -- are no dependents with terminate alternatives. This could be done
1822 -- by adding another count to the ATCB, similar to Awake_Count, but
1823 -- keeping track of tasks that are on terminate alternatives.
1825 pragma Assert (Self_ID.Common.Wait_Count = 0);
1827 -- Force any remaining dependents to terminate by aborting them
1829 if not Single_Lock then
1830 Lock_RTS;
1831 end if;
1833 Abort_Dependents (Self_ID);
1835 -- Above, when we "abort" the dependents we are simply using this
1836 -- operation for convenience. We are not required to support the full
1837 -- abort-statement semantics; in particular, we are not required to
1838 -- immediately cancel any queued or in-service entry calls. That is
1839 -- good, because if we tried to cancel a call we would need to lock
1840 -- the caller, in order to wake the caller up. Our anti-deadlock
1841 -- rules prevent us from doing that without releasing the locks on C
1842 -- and Self_ID. Releasing and retaking those locks would be wasteful
1843 -- at best, and should not be considered further without more
1844 -- detailed analysis of potential concurrent accesses to the ATCBs
1845 -- of C and Self_ID.
1847 -- Count how many "alive" dependent tasks this master currently has,
1848 -- and record this in Wait_Count. This count should start at zero,
1849 -- since it is initialized to zero for new tasks, and the task should
1850 -- not exit the sleep-loops that use this count until the count
1851 -- reaches zero.
1853 pragma Assert (Self_ID.Common.Wait_Count = 0);
1855 Write_Lock (Self_ID);
1857 C := All_Tasks_List;
1858 while C /= null loop
1859 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1860 Write_Lock (C);
1862 pragma Assert (C.Awake_Count = 0);
1864 if C.Alive_Count > 0 then
1865 pragma Assert (C.Terminate_Alternative);
1866 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1867 end if;
1869 Unlock (C);
1870 end if;
1872 C := C.Common.All_Tasks_Link;
1873 end loop;
1875 Self_ID.Common.State := Master_Phase_2_Sleep;
1876 Unlock (Self_ID);
1878 if not Single_Lock then
1879 Unlock_RTS;
1880 end if;
1882 -- Wait for all counted tasks to finish terminating themselves
1884 Write_Lock (Self_ID);
1886 loop
1887 exit when Self_ID.Common.Wait_Count = 0;
1888 Sleep (Self_ID, Master_Phase_2_Sleep);
1889 end loop;
1891 Self_ID.Common.State := Runnable;
1892 Unlock (Self_ID);
1893 end if;
1895 -- We don't wake up for abort here. We are already terminating just as
1896 -- fast as we can, so there is no point.
1898 -- Remove terminated tasks from the list of Self_ID's dependents, but
1899 -- don't free their ATCBs yet, because of lock order restrictions, which
1900 -- don't allow us to call "free" or "malloc" while holding any other
1901 -- locks. Instead, we put those ATCBs to be freed onto a temporary list,
1902 -- called To_Be_Freed.
1904 if not Single_Lock then
1905 Lock_RTS;
1906 end if;
1908 C := All_Tasks_List;
1909 P := null;
1910 while C /= null loop
1912 -- If Free_On_Termination is set, do nothing here, and let the
1913 -- task free itself if not already done, otherwise we risk a race
1914 -- condition where Vulnerable_Free_Task is called in the loop below,
1915 -- while the task calls Free_Task itself, in Terminate_Task.
1917 if C.Common.Parent = Self_ID
1918 and then C.Master_of_Task >= CM
1919 and then not C.Free_On_Termination
1920 then
1921 if P /= null then
1922 P.Common.All_Tasks_Link := C.Common.All_Tasks_Link;
1923 else
1924 All_Tasks_List := C.Common.All_Tasks_Link;
1925 end if;
1927 T := C.Common.All_Tasks_Link;
1928 C.Common.All_Tasks_Link := To_Be_Freed;
1929 To_Be_Freed := C;
1930 C := T;
1932 else
1933 P := C;
1934 C := C.Common.All_Tasks_Link;
1935 end if;
1936 end loop;
1938 Unlock_RTS;
1940 -- Free all the ATCBs on the list To_Be_Freed
1942 -- The ATCBs in the list are no longer in All_Tasks_List, and after
1943 -- any interrupt entries are detached from them they should no longer
1944 -- be referenced.
1946 -- Global_Task_Lock (Task_Lock/Unlock) is locked in the loop below to
1947 -- avoid a race between a terminating task and its parent. The parent
1948 -- might try to deallocate the ACTB out from underneath the exiting
1949 -- task. Note that Free will also lock Global_Task_Lock, but that is
1950 -- OK, since this is the *one* lock for which we have a mechanism to
1951 -- support nested locking. See Task_Wrapper and its finalizer for more
1952 -- explanation.
1954 -- ???
1955 -- The check "T.Common.Parent /= null ..." below is to prevent dangling
1956 -- references to terminated library-level tasks, which could otherwise
1957 -- occur during finalization of library-level objects. A better solution
1958 -- might be to hook task objects into the finalization chain and
1959 -- deallocate the ATCB when the task object is deallocated. However,
1960 -- this change is not likely to gain anything significant, since all
1961 -- this storage should be recovered en-masse when the process exits.
1963 while To_Be_Freed /= null loop
1964 T := To_Be_Freed;
1965 To_Be_Freed := T.Common.All_Tasks_Link;
1967 -- ??? On SGI there is currently no Interrupt_Manager, that's why we
1968 -- need to check if the Interrupt_Manager_ID is null.
1970 if T.Interrupt_Entry and then Interrupt_Manager_ID /= null then
1971 declare
1972 Detach_Interrupt_Entries_Index : constant Task_Entry_Index := 1;
1973 -- Corresponds to the entry index of System.Interrupts.
1974 -- Interrupt_Manager.Detach_Interrupt_Entries. Be sure
1975 -- to update this value when changing Interrupt_Manager specs.
1977 type Param_Type is access all Task_Id;
1979 Param : aliased Param_Type := T'Access;
1981 begin
1982 System.Tasking.Rendezvous.Call_Simple
1983 (Interrupt_Manager_ID, Detach_Interrupt_Entries_Index,
1984 Param'Address);
1985 end;
1986 end if;
1988 if (T.Common.Parent /= null
1989 and then T.Common.Parent.Common.Parent /= null)
1990 or else T.Master_of_Task > Library_Task_Level
1991 then
1992 Initialization.Task_Lock (Self_ID);
1994 -- If Sec_Stack_Addr is not null, it means that Destroy_TSD
1995 -- has not been called yet (case of an unactivated task).
1997 if T.Common.Compiler_Data.Sec_Stack_Addr /= Null_Address then
1998 SSL.Destroy_TSD (T.Common.Compiler_Data);
1999 end if;
2001 Vulnerable_Free_Task (T);
2002 Initialization.Task_Unlock (Self_ID);
2003 end if;
2004 end loop;
2006 -- It might seem nice to let the terminated task deallocate its own
2007 -- ATCB. That would not cover the case of unactivated tasks. It also
2008 -- would force us to keep the underlying thread around past termination,
2009 -- since references to the ATCB are possible past termination.
2011 -- Currently, we get rid of the thread as soon as the task terminates,
2012 -- and let the parent recover the ATCB later.
2014 -- Some day, if we want to recover the ATCB earlier, at task
2015 -- termination, we could consider using "fat task IDs", that include the
2016 -- serial number with the ATCB pointer, to catch references to tasks
2017 -- that no longer have ATCBs. It is not clear how much this would gain,
2018 -- since the user-level task object would still be occupying storage.
2020 -- Make next master level up active. We don't need to lock the ATCB,
2021 -- since the value is only updated by each task for itself.
2023 Self_ID.Master_Within := CM - 1;
2025 Debug.Master_Completed_Hook (Self_ID, CM);
2026 end Vulnerable_Complete_Master;
2028 ------------------------------
2029 -- Vulnerable_Complete_Task --
2030 ------------------------------
2032 -- Complete the calling task
2034 -- This procedure must be called with abort deferred. It should only be
2035 -- called by Complete_Task and Finalize_Global_Tasks (for the environment
2036 -- task).
2038 -- The effect is similar to that of Complete_Master. Differences include
2039 -- the closing of entries here, and computation of the number of active
2040 -- dependent tasks in Complete_Master.
2042 -- We don't lock Self_ID before the call to Vulnerable_Complete_Activation,
2043 -- because that does its own locking, and because we do not need the lock
2044 -- to test Self_ID.Common.Activator. That value should only be read and
2045 -- modified by Self.
2047 procedure Vulnerable_Complete_Task (Self_ID : Task_Id) is
2048 begin
2049 pragma Assert
2050 (Self_ID.Deferral_Level > 0
2051 or else not System.Restrictions.Abort_Allowed);
2052 pragma Assert (Self_ID = Self);
2053 pragma Assert
2054 (Self_ID.Master_Within in
2055 Self_ID.Master_of_Task + 1 .. Self_ID.Master_of_Task + 3);
2056 pragma Assert (Self_ID.Common.Wait_Count = 0);
2057 pragma Assert (Self_ID.Open_Accepts = null);
2058 pragma Assert (Self_ID.ATC_Nesting_Level = 1);
2060 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Task", 'C'));
2062 if Single_Lock then
2063 Lock_RTS;
2064 end if;
2066 Write_Lock (Self_ID);
2067 Self_ID.Callable := False;
2069 -- In theory, Self should have no pending entry calls left on its
2070 -- call-stack. Each async. select statement should clean its own call,
2071 -- and blocking entry calls should defer abort until the calls are
2072 -- cancelled, then clean up.
2074 Utilities.Cancel_Queued_Entry_Calls (Self_ID);
2075 Unlock (Self_ID);
2077 if Self_ID.Common.Activator /= null then
2078 Vulnerable_Complete_Activation (Self_ID);
2079 end if;
2081 if Single_Lock then
2082 Unlock_RTS;
2083 end if;
2085 -- If Self_ID.Master_Within = Self_ID.Master_of_Task + 2 we may have
2086 -- dependent tasks for which we need to wait. Otherwise we just exit.
2088 if Self_ID.Master_Within = Self_ID.Master_of_Task + 2 then
2089 Vulnerable_Complete_Master (Self_ID);
2090 end if;
2091 end Vulnerable_Complete_Task;
2093 --------------------------
2094 -- Vulnerable_Free_Task --
2095 --------------------------
2097 -- Recover all runtime system storage associated with the task T. This
2098 -- should only be called after T has terminated and will no longer be
2099 -- referenced.
2101 -- For tasks created by an allocator that fails, due to an exception, it
2102 -- is called from Expunge_Unactivated_Tasks.
2104 -- For tasks created by elaboration of task object declarations it is
2105 -- called from the finalization code of the Task_Wrapper procedure.
2107 procedure Vulnerable_Free_Task (T : Task_Id) is
2108 begin
2109 pragma Debug (Debug.Trace (Self, "Vulnerable_Free_Task", 'C', T));
2111 if Single_Lock then
2112 Lock_RTS;
2113 end if;
2115 Write_Lock (T);
2116 Initialization.Finalize_Attributes (T);
2117 Unlock (T);
2119 if Single_Lock then
2120 Unlock_RTS;
2121 end if;
2123 System.Task_Primitives.Operations.Finalize_TCB (T);
2124 end Vulnerable_Free_Task;
2126 -- Package elaboration code
2128 begin
2129 -- Establish the Adafinal softlink
2131 -- This is not done inside the central RTS initialization routine
2132 -- to avoid with'ing this package from System.Tasking.Initialization.
2134 SSL.Adafinal := Finalize_Global_Tasks'Access;
2136 -- Establish soft links for subprograms that manipulate master_id's.
2137 -- This cannot be done when the RTS is initialized, because of various
2138 -- elaboration constraints.
2140 SSL.Current_Master := Stages.Current_Master'Access;
2141 SSL.Enter_Master := Stages.Enter_Master'Access;
2142 SSL.Complete_Master := Stages.Complete_Master'Access;
2143 end System.Tasking.Stages;