Daily bump.
[official-gcc.git] / gcc / ada / a-cohase.ads
blob681087a2913b5c63d27c22f210e9f47539421c60
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- A D A . C O N T A I N E R S . H A S H E D _ S E T S --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 2004-2015, Free Software Foundation, Inc. --
10 -- --
11 -- This specification is derived from the Ada Reference Manual for use with --
12 -- GNAT. The copyright notice above, and the license provisions that follow --
13 -- apply solely to the contents of the part following the private keyword. --
14 -- --
15 -- GNAT is free software; you can redistribute it and/or modify it under --
16 -- terms of the GNU General Public License as published by the Free Soft- --
17 -- ware Foundation; either version 3, or (at your option) any later ver- --
18 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
19 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
20 -- or FITNESS FOR A PARTICULAR PURPOSE. --
21 -- --
22 -- As a special exception under Section 7 of GPL version 3, you are granted --
23 -- additional permissions described in the GCC Runtime Library Exception, --
24 -- version 3.1, as published by the Free Software Foundation. --
25 -- --
26 -- You should have received a copy of the GNU General Public License and --
27 -- a copy of the GCC Runtime Library Exception along with this program; --
28 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
29 -- <http://www.gnu.org/licenses/>. --
30 -- --
31 -- This unit was originally developed by Matthew J Heaney. --
32 ------------------------------------------------------------------------------
34 with Ada.Iterator_Interfaces;
36 private with Ada.Containers.Hash_Tables;
37 with Ada.Containers.Helpers;
38 private with Ada.Finalization;
39 private with Ada.Streams;
41 generic
42 type Element_Type is private;
44 with function Hash (Element : Element_Type) return Hash_Type;
46 with function Equivalent_Elements
47 (Left, Right : Element_Type) return Boolean;
49 with function "=" (Left, Right : Element_Type) return Boolean is <>;
51 package Ada.Containers.Hashed_Sets is
52 pragma Annotate (CodePeer, Skip_Analysis);
53 pragma Preelaborate;
54 pragma Remote_Types;
56 type Set is tagged private
57 with
58 Constant_Indexing => Constant_Reference,
59 Default_Iterator => Iterate,
60 Iterator_Element => Element_Type;
62 pragma Preelaborable_Initialization (Set);
64 type Cursor is private;
65 pragma Preelaborable_Initialization (Cursor);
67 Empty_Set : constant Set;
68 -- Set objects declared without an initialization expression are
69 -- initialized to the value Empty_Set.
71 No_Element : constant Cursor;
72 -- Cursor objects declared without an initialization expression are
73 -- initialized to the value No_Element.
75 function Has_Element (Position : Cursor) return Boolean;
76 -- Equivalent to Position /= No_Element
78 package Set_Iterator_Interfaces is new
79 Ada.Iterator_Interfaces (Cursor, Has_Element);
81 function "=" (Left, Right : Set) return Boolean;
82 -- For each element in Left, set equality attempts to find the equal
83 -- element in Right; if a search fails, then set equality immediately
84 -- returns False. The search works by calling Hash to find the bucket in
85 -- the Right set that corresponds to the Left element. If the bucket is
86 -- non-empty, the search calls the generic formal element equality operator
87 -- to compare the element (in Left) to the element of each node in the
88 -- bucket (in Right); the search terminates when a matching node in the
89 -- bucket is found, or the nodes in the bucket are exhausted. (Note that
90 -- element equality is called here, not Equivalent_Elements. Set equality
91 -- is the only operation in which element equality is used. Compare set
92 -- equality to Equivalent_Sets, which does call Equivalent_Elements.)
94 function Equivalent_Sets (Left, Right : Set) return Boolean;
95 -- Similar to set equality, with the difference that the element in Left is
96 -- compared to the elements in Right using the generic formal
97 -- Equivalent_Elements operation instead of element equality.
99 function To_Set (New_Item : Element_Type) return Set;
100 -- Constructs a singleton set comprising New_Element. To_Set calls Hash to
101 -- determine the bucket for New_Item.
103 function Capacity (Container : Set) return Count_Type;
104 -- Returns the current capacity of the set. Capacity is the maximum length
105 -- before which rehashing in guaranteed not to occur.
107 procedure Reserve_Capacity (Container : in out Set; Capacity : Count_Type);
108 -- Adjusts the current capacity, by allocating a new buckets array. If the
109 -- requested capacity is less than the current capacity, then the capacity
110 -- is contracted (to a value not less than the current length). If the
111 -- requested capacity is greater than the current capacity, then the
112 -- capacity is expanded (to a value not less than what is requested). In
113 -- either case, the nodes are rehashed from the old buckets array onto the
114 -- new buckets array (Hash is called once for each existing element in
115 -- order to compute the new index), and then the old buckets array is
116 -- deallocated.
118 function Length (Container : Set) return Count_Type;
119 -- Returns the number of items in the set
121 function Is_Empty (Container : Set) return Boolean;
122 -- Equivalent to Length (Container) = 0
124 procedure Clear (Container : in out Set);
125 -- Removes all of the items from the set
127 function Element (Position : Cursor) return Element_Type;
128 -- Returns the element of the node designated by the cursor
130 procedure Replace_Element
131 (Container : in out Set;
132 Position : Cursor;
133 New_Item : Element_Type);
134 -- If New_Item is equivalent (as determined by calling Equivalent_Elements)
135 -- to the element of the node designated by Position, then New_Element is
136 -- assigned to that element. Otherwise, it calls Hash to determine the
137 -- bucket for New_Item. If the bucket is not empty, then it calls
138 -- Equivalent_Elements for each node in that bucket to determine whether
139 -- New_Item is equivalent to an element in that bucket. If
140 -- Equivalent_Elements returns True then Program_Error is raised (because
141 -- an element may appear only once in the set); otherwise, New_Item is
142 -- assigned to the node designated by Position, and the node is moved to
143 -- its new bucket.
145 procedure Query_Element
146 (Position : Cursor;
147 Process : not null access procedure (Element : Element_Type));
148 -- Calls Process with the element (having only a constant view) of the node
149 -- designed by the cursor.
151 type Constant_Reference_Type
152 (Element : not null access constant Element_Type) is private
153 with Implicit_Dereference => Element;
155 function Constant_Reference
156 (Container : aliased Set;
157 Position : Cursor) return Constant_Reference_Type;
158 pragma Inline (Constant_Reference);
160 procedure Assign (Target : in out Set; Source : Set);
162 function Copy (Source : Set; Capacity : Count_Type := 0) return Set;
164 procedure Move (Target : in out Set; Source : in out Set);
165 -- Clears Target (if it's not empty), and then moves (not copies) the
166 -- buckets array and nodes from Source to Target.
168 procedure Insert
169 (Container : in out Set;
170 New_Item : Element_Type;
171 Position : out Cursor;
172 Inserted : out Boolean);
173 -- Conditionally inserts New_Item into the set. If New_Item is already in
174 -- the set, then Inserted returns False and Position designates the node
175 -- containing the existing element (which is not modified). If New_Item is
176 -- not already in the set, then Inserted returns True and Position
177 -- designates the newly-inserted node containing New_Item. The search for
178 -- an existing element works as follows. Hash is called to determine
179 -- New_Item's bucket; if the bucket is non-empty, then Equivalent_Elements
180 -- is called to compare New_Item to the element of each node in that
181 -- bucket. If the bucket is empty, or there were no equivalent elements in
182 -- the bucket, the search "fails" and the New_Item is inserted in the set
183 -- (and Inserted returns True); otherwise, the search "succeeds" (and
184 -- Inserted returns False).
186 procedure Insert (Container : in out Set; New_Item : Element_Type);
187 -- Attempts to insert New_Item into the set, performing the usual insertion
188 -- search (which involves calling both Hash and Equivalent_Elements); if
189 -- the search succeeds (New_Item is equivalent to an element already in the
190 -- set, and so was not inserted), then this operation raises
191 -- Constraint_Error. (This version of Insert is similar to Replace, but
192 -- having the opposite exception behavior. It is intended for use when you
193 -- want to assert that the item is not already in the set.)
195 procedure Include (Container : in out Set; New_Item : Element_Type);
196 -- Attempts to insert New_Item into the set. If an element equivalent to
197 -- New_Item is already in the set (the insertion search succeeded, and
198 -- hence New_Item was not inserted), then the value of New_Item is assigned
199 -- to the existing element. (This insertion operation only raises an
200 -- exception if cursor tampering occurs. It is intended for use when you
201 -- want to insert the item in the set, and you don't care whether an
202 -- equivalent element is already present.)
204 procedure Replace (Container : in out Set; New_Item : Element_Type);
205 -- Searches for New_Item in the set; if the search fails (because an
206 -- equivalent element was not in the set), then it raises
207 -- Constraint_Error. Otherwise, the existing element is assigned the value
208 -- New_Item. (This is similar to Insert, but with the opposite exception
209 -- behavior. It is intended for use when you want to assert that the item
210 -- is already in the set.)
212 procedure Exclude (Container : in out Set; Item : Element_Type);
213 -- Searches for Item in the set, and if found, removes its node from the
214 -- set and then deallocates it. The search works as follows. The operation
215 -- calls Hash to determine the item's bucket; if the bucket is not empty,
216 -- it calls Equivalent_Elements to compare Item to the element of each node
217 -- in the bucket. (This is the deletion analog of Include. It is intended
218 -- for use when you want to remove the item from the set, but don't care
219 -- whether the item is already in the set.)
221 procedure Delete (Container : in out Set; Item : Element_Type);
222 -- Searches for Item in the set (which involves calling both Hash and
223 -- Equivalent_Elements). If the search fails, then the operation raises
224 -- Constraint_Error. Otherwise it removes the node from the set and then
225 -- deallocates it. (This is the deletion analog of non-conditional
226 -- Insert. It is intended for use when you want to assert that the item is
227 -- already in the set.)
229 procedure Delete (Container : in out Set; Position : in out Cursor);
230 -- Removes the node designated by Position from the set, and then
231 -- deallocates the node. The operation calls Hash to determine the bucket,
232 -- and then compares Position to each node in the bucket until there's a
233 -- match (it does not call Equivalent_Elements).
235 procedure Union (Target : in out Set; Source : Set);
236 -- The operation first calls Reserve_Capacity if the current capacity is
237 -- less than the sum of the lengths of Source and Target. It then iterates
238 -- over the Source set, and conditionally inserts each element into Target.
240 function Union (Left, Right : Set) return Set;
241 -- The operation first copies the Left set to the result, and then iterates
242 -- over the Right set to conditionally insert each element into the result.
244 function "or" (Left, Right : Set) return Set renames Union;
246 procedure Intersection (Target : in out Set; Source : Set);
247 -- Iterates over the Target set (calling First and Next), calling Find to
248 -- determine whether the element is in Source. If an equivalent element is
249 -- not found in Source, the element is deleted from Target.
251 function Intersection (Left, Right : Set) return Set;
252 -- Iterates over the Left set, calling Find to determine whether the
253 -- element is in Right. If an equivalent element is found, it is inserted
254 -- into the result set.
256 function "and" (Left, Right : Set) return Set renames Intersection;
258 procedure Difference (Target : in out Set; Source : Set);
259 -- Iterates over the Source (calling First and Next), calling Find to
260 -- determine whether the element is in Target. If an equivalent element is
261 -- found, it is deleted from Target.
263 function Difference (Left, Right : Set) return Set;
264 -- Iterates over the Left set, calling Find to determine whether the
265 -- element is in the Right set. If an equivalent element is not found, the
266 -- element is inserted into the result set.
268 function "-" (Left, Right : Set) return Set renames Difference;
270 procedure Symmetric_Difference (Target : in out Set; Source : Set);
271 -- The operation first calls Reserve_Capacity if the current capacity is
272 -- less than the sum of the lengths of Source and Target. It then iterates
273 -- over the Source set, searching for the element in Target (calling Hash
274 -- and Equivalent_Elements). If an equivalent element is found, it is
275 -- removed from Target; otherwise it is inserted into Target.
277 function Symmetric_Difference (Left, Right : Set) return Set;
278 -- The operation first iterates over the Left set. It calls Find to
279 -- determine whether the element is in the Right set. If no equivalent
280 -- element is found, the element from Left is inserted into the result. The
281 -- operation then iterates over the Right set, to determine whether the
282 -- element is in the Left set. If no equivalent element is found, the Right
283 -- element is inserted into the result.
285 function "xor" (Left, Right : Set) return Set
286 renames Symmetric_Difference;
288 function Overlap (Left, Right : Set) return Boolean;
289 -- Iterates over the Left set (calling First and Next), calling Find to
290 -- determine whether the element is in the Right set. If an equivalent
291 -- element is found, the operation immediately returns True. The operation
292 -- returns False if the iteration over Left terminates without finding any
293 -- equivalent element in Right.
295 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean;
296 -- Iterates over Subset (calling First and Next), calling Find to determine
297 -- whether the element is in Of_Set. If no equivalent element is found in
298 -- Of_Set, the operation immediately returns False. The operation returns
299 -- True if the iteration over Subset terminates without finding an element
300 -- not in Of_Set (that is, every element in Subset is equivalent to an
301 -- element in Of_Set).
303 function First (Container : Set) return Cursor;
304 -- Returns a cursor that designates the first non-empty bucket, by
305 -- searching from the beginning of the buckets array.
307 function Next (Position : Cursor) return Cursor;
308 -- Returns a cursor that designates the node that follows the current one
309 -- designated by Position. If Position designates the last node in its
310 -- bucket, the operation calls Hash to compute the index of this bucket,
311 -- and searches the buckets array for the first non-empty bucket, starting
312 -- from that index; otherwise, it simply follows the link to the next node
313 -- in the same bucket.
315 procedure Next (Position : in out Cursor);
316 -- Equivalent to Position := Next (Position)
318 function Find
319 (Container : Set;
320 Item : Element_Type) return Cursor;
321 -- Searches for Item in the set. Find calls Hash to determine the item's
322 -- bucket; if the bucket is not empty, it calls Equivalent_Elements to
323 -- compare Item to each element in the bucket. If the search succeeds, Find
324 -- returns a cursor designating the node containing the equivalent element;
325 -- otherwise, it returns No_Element.
327 function Contains (Container : Set; Item : Element_Type) return Boolean;
328 -- Equivalent to Find (Container, Item) /= No_Element
330 function Equivalent_Elements (Left, Right : Cursor) return Boolean;
331 -- Returns the result of calling Equivalent_Elements with the elements of
332 -- the nodes designated by cursors Left and Right.
334 function Equivalent_Elements
335 (Left : Cursor;
336 Right : Element_Type) return Boolean;
337 -- Returns the result of calling Equivalent_Elements with element of the
338 -- node designated by Left and element Right.
340 function Equivalent_Elements
341 (Left : Element_Type;
342 Right : Cursor) return Boolean;
343 -- Returns the result of calling Equivalent_Elements with element Left and
344 -- the element of the node designated by Right.
346 procedure Iterate
347 (Container : Set;
348 Process : not null access procedure (Position : Cursor));
349 -- Calls Process for each node in the set
351 function Iterate
352 (Container : Set) return Set_Iterator_Interfaces.Forward_Iterator'Class;
354 generic
355 type Key_Type (<>) is private;
357 with function Key (Element : Element_Type) return Key_Type;
359 with function Hash (Key : Key_Type) return Hash_Type;
361 with function Equivalent_Keys (Left, Right : Key_Type) return Boolean;
363 package Generic_Keys is
365 function Key (Position : Cursor) return Key_Type;
366 -- Applies generic formal operation Key to the element of the node
367 -- designated by Position.
369 function Element (Container : Set; Key : Key_Type) return Element_Type;
370 -- Searches (as per the key-based Find) for the node containing Key, and
371 -- returns the associated element.
373 procedure Replace
374 (Container : in out Set;
375 Key : Key_Type;
376 New_Item : Element_Type);
377 -- Searches (as per the key-based Find) for the node containing Key, and
378 -- then replaces the element of that node (as per the element-based
379 -- Replace_Element).
381 procedure Exclude (Container : in out Set; Key : Key_Type);
382 -- Searches for Key in the set, and if found, removes its node from the
383 -- set and then deallocates it. The search works by first calling Hash
384 -- (on Key) to determine the bucket; if the bucket is not empty, it
385 -- calls Equivalent_Keys to compare parameter Key to the value of
386 -- generic formal operation Key applied to element of each node in the
387 -- bucket.
389 procedure Delete (Container : in out Set; Key : Key_Type);
390 -- Deletes the node containing Key as per Exclude, with the difference
391 -- that Constraint_Error is raised if Key is not found.
393 function Find (Container : Set; Key : Key_Type) return Cursor;
394 -- Searches for the node containing Key, and returns a cursor
395 -- designating the node. The search works by first calling Hash (on Key)
396 -- to determine the bucket. If the bucket is not empty, the search
397 -- compares Key to the element of each node in the bucket, and returns
398 -- the matching node. The comparison itself works by applying the
399 -- generic formal Key operation to the element of the node, and then
400 -- calling generic formal operation Equivalent_Keys.
402 function Contains (Container : Set; Key : Key_Type) return Boolean;
403 -- Equivalent to Find (Container, Key) /= No_Element
405 procedure Update_Element_Preserving_Key
406 (Container : in out Set;
407 Position : Cursor;
408 Process : not null access
409 procedure (Element : in out Element_Type));
410 -- Calls Process with the element of the node designated by Position,
411 -- but with the restriction that the key-value of the element is not
412 -- modified. The operation first makes a copy of the value returned by
413 -- applying generic formal operation Key on the element of the node, and
414 -- then calls Process with the element. The operation verifies that the
415 -- key-part has not been modified by calling generic formal operation
416 -- Equivalent_Keys to compare the saved key-value to the value returned
417 -- by applying generic formal operation Key to the post-Process value of
418 -- element. If the key values compare equal then the operation
419 -- completes. Otherwise, the node is removed from the set and
420 -- Program_Error is raised.
422 type Reference_Type (Element : not null access Element_Type) is private
423 with Implicit_Dereference => Element;
425 function Reference_Preserving_Key
426 (Container : aliased in out Set;
427 Position : Cursor) return Reference_Type;
429 function Constant_Reference
430 (Container : aliased Set;
431 Key : Key_Type) return Constant_Reference_Type;
433 function Reference_Preserving_Key
434 (Container : aliased in out Set;
435 Key : Key_Type) return Reference_Type;
437 private
438 use Ada.Streams;
439 type Set_Access is access all Set;
440 for Set_Access'Storage_Size use 0;
442 -- Key_Preserving references must carry information to allow removal
443 -- of elements whose value may have been altered improperly, i.e. have
444 -- been given values incompatible with the hash-code of the previous
445 -- value, and are thus in the wrong bucket. (RM 18.7 (96.6/3))
447 -- We cannot store the key directly because it is an unconstrained type.
448 -- To avoid using additional dynamic allocation we store the old cursor
449 -- which simplifies possible removal. This is not possible for some
450 -- other set types.
452 -- The mechanism is different for Update_Element_Preserving_Key, as
453 -- in that case the check that buckets have not changed is performed
454 -- at the time of the update, not when the reference is finalized.
456 package Impl is new Helpers.Generic_Implementation;
458 type Reference_Control_Type is
459 new Impl.Reference_Control_Type with
460 record
461 Container : Set_Access;
462 Index : Hash_Type;
463 Old_Pos : Cursor;
464 Old_Hash : Hash_Type;
465 end record;
467 overriding procedure Finalize (Control : in out Reference_Control_Type);
468 pragma Inline (Finalize);
470 type Reference_Type (Element : not null access Element_Type) is record
471 Control : Reference_Control_Type;
472 end record;
474 procedure Read
475 (Stream : not null access Root_Stream_Type'Class;
476 Item : out Reference_Type);
478 for Reference_Type'Read use Read;
480 procedure Write
481 (Stream : not null access Root_Stream_Type'Class;
482 Item : Reference_Type);
484 for Reference_Type'Write use Write;
485 end Generic_Keys;
487 private
488 pragma Inline (Next);
490 type Node_Type;
491 type Node_Access is access Node_Type;
493 type Node_Type is limited record
494 Element : aliased Element_Type;
495 Next : Node_Access;
496 end record;
498 package HT_Types is
499 new Hash_Tables.Generic_Hash_Table_Types (Node_Type, Node_Access);
501 type Set is new Ada.Finalization.Controlled with record
502 HT : HT_Types.Hash_Table_Type;
503 end record;
505 overriding procedure Adjust (Container : in out Set);
507 overriding procedure Finalize (Container : in out Set);
509 use HT_Types, HT_Types.Implementation;
510 use Ada.Finalization;
511 use Ada.Streams;
513 procedure Write
514 (Stream : not null access Root_Stream_Type'Class;
515 Container : Set);
517 for Set'Write use Write;
519 procedure Read
520 (Stream : not null access Root_Stream_Type'Class;
521 Container : out Set);
523 for Set'Read use Read;
525 type Set_Access is access all Set;
526 for Set_Access'Storage_Size use 0;
528 type Cursor is record
529 Container : Set_Access;
530 Node : Node_Access;
531 end record;
533 procedure Write
534 (Stream : not null access Root_Stream_Type'Class;
535 Item : Cursor);
537 for Cursor'Write use Write;
539 procedure Read
540 (Stream : not null access Root_Stream_Type'Class;
541 Item : out Cursor);
543 for Cursor'Read use Read;
545 subtype Reference_Control_Type is Implementation.Reference_Control_Type;
546 -- It is necessary to rename this here, so that the compiler can find it
548 type Constant_Reference_Type
549 (Element : not null access constant Element_Type) is
550 record
551 Control : Reference_Control_Type :=
552 raise Program_Error with "uninitialized reference";
553 -- The RM says, "The default initialization of an object of
554 -- type Constant_Reference_Type or Reference_Type propagates
555 -- Program_Error."
556 end record;
558 procedure Read
559 (Stream : not null access Root_Stream_Type'Class;
560 Item : out Constant_Reference_Type);
562 for Constant_Reference_Type'Read use Read;
564 procedure Write
565 (Stream : not null access Root_Stream_Type'Class;
566 Item : Constant_Reference_Type);
568 for Constant_Reference_Type'Write use Write;
570 -- Three operations are used to optimize in the expansion of "for ... of"
571 -- loops: the Next(Cursor) procedure in the visible part, and the following
572 -- Pseudo_Reference and Get_Element_Access functions. See Sem_Ch5 for
573 -- details.
575 function Pseudo_Reference
576 (Container : aliased Set'Class) return Reference_Control_Type;
577 pragma Inline (Pseudo_Reference);
578 -- Creates an object of type Reference_Control_Type pointing to the
579 -- container, and increments the Lock. Finalization of this object will
580 -- decrement the Lock.
582 type Element_Access is access all Element_Type with
583 Storage_Size => 0;
585 function Get_Element_Access
586 (Position : Cursor) return not null Element_Access;
587 -- Returns a pointer to the element designated by Position.
589 Empty_Set : constant Set := (Controlled with others => <>);
591 No_Element : constant Cursor := (Container => null, Node => null);
593 type Iterator is new Limited_Controlled and
594 Set_Iterator_Interfaces.Forward_Iterator with
595 record
596 Container : Set_Access;
597 end record
598 with Disable_Controlled => not T_Check;
600 overriding function First (Object : Iterator) return Cursor;
602 overriding function Next
603 (Object : Iterator;
604 Position : Cursor) return Cursor;
605 overriding procedure Finalize (Object : in out Iterator);
607 end Ada.Containers.Hashed_Sets;