atomicity.h (_Atomic_add_mutex): Fix declaration.
[official-gcc.git] / gcc / combine.c
blobaaf701fb54399031985903e1314e59eceb45386d
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tm_p.h"
83 #include "flags.h"
84 #include "regs.h"
85 #include "hard-reg-set.h"
86 #include "basic-block.h"
87 #include "insn-config.h"
88 #include "function.h"
89 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
90 #include "expr.h"
91 #include "insn-attr.h"
92 #include "recog.h"
93 #include "real.h"
94 #include "toplev.h"
96 /* It is not safe to use ordinary gen_lowpart in combine.
97 Use gen_lowpart_for_combine instead. See comments there. */
98 #define gen_lowpart dont_use_gen_lowpart_you_dummy
100 /* Number of attempts to combine instructions in this function. */
102 static int combine_attempts;
104 /* Number of attempts that got as far as substitution in this function. */
106 static int combine_merges;
108 /* Number of instructions combined with added SETs in this function. */
110 static int combine_extras;
112 /* Number of instructions combined in this function. */
114 static int combine_successes;
116 /* Totals over entire compilation. */
118 static int total_attempts, total_merges, total_extras, total_successes;
121 /* Vector mapping INSN_UIDs to cuids.
122 The cuids are like uids but increase monotonically always.
123 Combine always uses cuids so that it can compare them.
124 But actually renumbering the uids, which we used to do,
125 proves to be a bad idea because it makes it hard to compare
126 the dumps produced by earlier passes with those from later passes. */
128 static int *uid_cuid;
129 static int max_uid_cuid;
131 /* Get the cuid of an insn. */
133 #define INSN_CUID(INSN) \
134 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
136 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
137 BITS_PER_WORD would invoke undefined behavior. Work around it. */
139 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
140 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
142 /* Maximum register number, which is the size of the tables below. */
144 static unsigned int combine_max_regno;
146 /* Record last point of death of (hard or pseudo) register n. */
148 static rtx *reg_last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
152 static rtx *reg_last_set;
154 /* Record the cuid of the last insn that invalidated memory
155 (anything that writes memory, and subroutine calls, but not pushes). */
157 static int mem_last_set;
159 /* Record the cuid of the last CALL_INSN
160 so we can tell whether a potential combination crosses any calls. */
162 static int last_call_cuid;
164 /* When `subst' is called, this is the insn that is being modified
165 (by combining in a previous insn). The PATTERN of this insn
166 is still the old pattern partially modified and it should not be
167 looked at, but this may be used to examine the successors of the insn
168 to judge whether a simplification is valid. */
170 static rtx subst_insn;
172 /* This is the lowest CUID that `subst' is currently dealing with.
173 get_last_value will not return a value if the register was set at or
174 after this CUID. If not for this mechanism, we could get confused if
175 I2 or I1 in try_combine were an insn that used the old value of a register
176 to obtain a new value. In that case, we might erroneously get the
177 new value of the register when we wanted the old one. */
179 static int subst_low_cuid;
181 /* This contains any hard registers that are used in newpat; reg_dead_at_p
182 must consider all these registers to be always live. */
184 static HARD_REG_SET newpat_used_regs;
186 /* This is an insn to which a LOG_LINKS entry has been added. If this
187 insn is the earlier than I2 or I3, combine should rescan starting at
188 that location. */
190 static rtx added_links_insn;
192 /* Basic block in which we are performing combines. */
193 static basic_block this_basic_block;
195 /* A bitmap indicating which blocks had registers go dead at entry.
196 After combine, we'll need to re-do global life analysis with
197 those blocks as starting points. */
198 static sbitmap refresh_blocks;
200 /* The next group of arrays allows the recording of the last value assigned
201 to (hard or pseudo) register n. We use this information to see if a
202 operation being processed is redundant given a prior operation performed
203 on the register. For example, an `and' with a constant is redundant if
204 all the zero bits are already known to be turned off.
206 We use an approach similar to that used by cse, but change it in the
207 following ways:
209 (1) We do not want to reinitialize at each label.
210 (2) It is useful, but not critical, to know the actual value assigned
211 to a register. Often just its form is helpful.
213 Therefore, we maintain the following arrays:
215 reg_last_set_value the last value assigned
216 reg_last_set_label records the value of label_tick when the
217 register was assigned
218 reg_last_set_table_tick records the value of label_tick when a
219 value using the register is assigned
220 reg_last_set_invalid set to nonzero when it is not valid
221 to use the value of this register in some
222 register's value
224 To understand the usage of these tables, it is important to understand
225 the distinction between the value in reg_last_set_value being valid
226 and the register being validly contained in some other expression in the
227 table.
229 Entry I in reg_last_set_value is valid if it is nonzero, and either
230 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
232 Register I may validly appear in any expression returned for the value
233 of another register if reg_n_sets[i] is 1. It may also appear in the
234 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
235 reg_last_set_invalid[j] is zero.
237 If an expression is found in the table containing a register which may
238 not validly appear in an expression, the register is replaced by
239 something that won't match, (clobber (const_int 0)).
241 reg_last_set_invalid[i] is set nonzero when register I is being assigned
242 to and reg_last_set_table_tick[i] == label_tick. */
244 /* Record last value assigned to (hard or pseudo) register n. */
246 static rtx *reg_last_set_value;
248 /* Record the value of label_tick when the value for register n is placed in
249 reg_last_set_value[n]. */
251 static int *reg_last_set_label;
253 /* Record the value of label_tick when an expression involving register n
254 is placed in reg_last_set_value. */
256 static int *reg_last_set_table_tick;
258 /* Set nonzero if references to register n in expressions should not be
259 used. */
261 static char *reg_last_set_invalid;
263 /* Incremented for each label. */
265 static int label_tick;
267 /* Some registers that are set more than once and used in more than one
268 basic block are nevertheless always set in similar ways. For example,
269 a QImode register may be loaded from memory in two places on a machine
270 where byte loads zero extend.
272 We record in the following array what we know about the nonzero
273 bits of a register, specifically which bits are known to be zero.
275 If an entry is zero, it means that we don't know anything special. */
277 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
279 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
280 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
282 static enum machine_mode nonzero_bits_mode;
284 /* Nonzero if we know that a register has some leading bits that are always
285 equal to the sign bit. */
287 static unsigned char *reg_sign_bit_copies;
289 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
290 It is zero while computing them and after combine has completed. This
291 former test prevents propagating values based on previously set values,
292 which can be incorrect if a variable is modified in a loop. */
294 static int nonzero_sign_valid;
296 /* These arrays are maintained in parallel with reg_last_set_value
297 and are used to store the mode in which the register was last set,
298 the bits that were known to be zero when it was last set, and the
299 number of sign bits copies it was known to have when it was last set. */
301 static enum machine_mode *reg_last_set_mode;
302 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
303 static char *reg_last_set_sign_bit_copies;
305 /* Record one modification to rtl structure
306 to be undone by storing old_contents into *where.
307 is_int is 1 if the contents are an int. */
309 struct undo
311 struct undo *next;
312 int is_int;
313 union {rtx r; int i;} old_contents;
314 union {rtx *r; int *i;} where;
317 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
318 num_undo says how many are currently recorded.
320 other_insn is nonzero if we have modified some other insn in the process
321 of working on subst_insn. It must be verified too. */
323 struct undobuf
325 struct undo *undos;
326 struct undo *frees;
327 rtx other_insn;
330 static struct undobuf undobuf;
332 /* Number of times the pseudo being substituted for
333 was found and replaced. */
335 static int n_occurrences;
337 static void do_SUBST PARAMS ((rtx *, rtx));
338 static void do_SUBST_INT PARAMS ((int *, int));
339 static void init_reg_last_arrays PARAMS ((void));
340 static void setup_incoming_promotions PARAMS ((void));
341 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
342 static int cant_combine_insn_p PARAMS ((rtx));
343 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
344 static int sets_function_arg_p PARAMS ((rtx));
345 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
346 static int contains_muldiv PARAMS ((rtx));
347 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
348 static void undo_all PARAMS ((void));
349 static void undo_commit PARAMS ((void));
350 static rtx *find_split_point PARAMS ((rtx *, rtx));
351 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
352 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
353 static rtx simplify_if_then_else PARAMS ((rtx));
354 static rtx simplify_set PARAMS ((rtx));
355 static rtx simplify_logical PARAMS ((rtx, int));
356 static rtx expand_compound_operation PARAMS ((rtx));
357 static rtx expand_field_assignment PARAMS ((rtx));
358 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
359 rtx, unsigned HOST_WIDE_INT, int,
360 int, int));
361 static rtx extract_left_shift PARAMS ((rtx, int));
362 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
363 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
364 unsigned HOST_WIDE_INT *));
365 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
366 unsigned HOST_WIDE_INT, rtx, int));
367 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
368 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
369 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
370 static rtx make_field_assignment PARAMS ((rtx));
371 static rtx apply_distributive_law PARAMS ((rtx));
372 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
373 unsigned HOST_WIDE_INT));
374 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
375 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
376 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
377 enum rtx_code, HOST_WIDE_INT,
378 enum machine_mode, int *));
379 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
380 rtx, int));
381 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
382 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
383 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
384 rtx, rtx));
385 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
386 static void update_table_tick PARAMS ((rtx));
387 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
388 static void check_promoted_subreg PARAMS ((rtx, rtx));
389 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
390 static void record_dead_and_set_regs PARAMS ((rtx));
391 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
392 static rtx get_last_value PARAMS ((rtx));
393 static int use_crosses_set_p PARAMS ((rtx, int));
394 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
395 static int reg_dead_at_p PARAMS ((rtx, rtx));
396 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
397 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
398 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
399 static void distribute_links PARAMS ((rtx));
400 static void mark_used_regs_combine PARAMS ((rtx));
401 static int insn_cuid PARAMS ((rtx));
402 static void record_promoted_value PARAMS ((rtx, rtx));
403 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
404 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
406 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
407 insn. The substitution can be undone by undo_all. If INTO is already
408 set to NEWVAL, do not record this change. Because computing NEWVAL might
409 also call SUBST, we have to compute it before we put anything into
410 the undo table. */
412 static void
413 do_SUBST (into, newval)
414 rtx *into, newval;
416 struct undo *buf;
417 rtx oldval = *into;
419 if (oldval == newval)
420 return;
422 /* We'd like to catch as many invalid transformations here as
423 possible. Unfortunately, there are way too many mode changes
424 that are perfectly valid, so we'd waste too much effort for
425 little gain doing the checks here. Focus on catching invalid
426 transformations involving integer constants. */
427 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
428 && GET_CODE (newval) == CONST_INT)
430 /* Sanity check that we're replacing oldval with a CONST_INT
431 that is a valid sign-extension for the original mode. */
432 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
433 GET_MODE (oldval)))
434 abort ();
436 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
437 CONST_INT is not valid, because after the replacement, the
438 original mode would be gone. Unfortunately, we can't tell
439 when do_SUBST is called to replace the operand thereof, so we
440 perform this test on oldval instead, checking whether an
441 invalid replacement took place before we got here. */
442 if ((GET_CODE (oldval) == SUBREG
443 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
444 || (GET_CODE (oldval) == ZERO_EXTEND
445 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
446 abort ();
449 if (undobuf.frees)
450 buf = undobuf.frees, undobuf.frees = buf->next;
451 else
452 buf = (struct undo *) xmalloc (sizeof (struct undo));
454 buf->is_int = 0;
455 buf->where.r = into;
456 buf->old_contents.r = oldval;
457 *into = newval;
459 buf->next = undobuf.undos, undobuf.undos = buf;
462 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
464 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
465 for the value of a HOST_WIDE_INT value (including CONST_INT) is
466 not safe. */
468 static void
469 do_SUBST_INT (into, newval)
470 int *into, newval;
472 struct undo *buf;
473 int oldval = *into;
475 if (oldval == newval)
476 return;
478 if (undobuf.frees)
479 buf = undobuf.frees, undobuf.frees = buf->next;
480 else
481 buf = (struct undo *) xmalloc (sizeof (struct undo));
483 buf->is_int = 1;
484 buf->where.i = into;
485 buf->old_contents.i = oldval;
486 *into = newval;
488 buf->next = undobuf.undos, undobuf.undos = buf;
491 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
493 /* Main entry point for combiner. F is the first insn of the function.
494 NREGS is the first unused pseudo-reg number.
496 Return nonzero if the combiner has turned an indirect jump
497 instruction into a direct jump. */
499 combine_instructions (f, nregs)
500 rtx f;
501 unsigned int nregs;
503 rtx insn, next;
504 #ifdef HAVE_cc0
505 rtx prev;
506 #endif
507 int i;
508 rtx links, nextlinks;
510 int new_direct_jump_p = 0;
512 combine_attempts = 0;
513 combine_merges = 0;
514 combine_extras = 0;
515 combine_successes = 0;
517 combine_max_regno = nregs;
519 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
520 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
521 reg_sign_bit_copies
522 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
524 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
525 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
526 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
527 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
528 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
529 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
530 reg_last_set_mode
531 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
532 reg_last_set_nonzero_bits
533 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
534 reg_last_set_sign_bit_copies
535 = (char *) xmalloc (nregs * sizeof (char));
537 init_reg_last_arrays ();
539 init_recog_no_volatile ();
541 /* Compute maximum uid value so uid_cuid can be allocated. */
543 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
544 if (INSN_UID (insn) > i)
545 i = INSN_UID (insn);
547 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
548 max_uid_cuid = i;
550 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
552 /* Don't use reg_nonzero_bits when computing it. This can cause problems
553 when, for example, we have j <<= 1 in a loop. */
555 nonzero_sign_valid = 0;
557 /* Compute the mapping from uids to cuids.
558 Cuids are numbers assigned to insns, like uids,
559 except that cuids increase monotonically through the code.
561 Scan all SETs and see if we can deduce anything about what
562 bits are known to be zero for some registers and how many copies
563 of the sign bit are known to exist for those registers.
565 Also set any known values so that we can use it while searching
566 for what bits are known to be set. */
568 label_tick = 1;
570 setup_incoming_promotions ();
572 refresh_blocks = sbitmap_alloc (last_basic_block);
573 sbitmap_zero (refresh_blocks);
575 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
577 uid_cuid[INSN_UID (insn)] = ++i;
578 subst_low_cuid = i;
579 subst_insn = insn;
581 if (INSN_P (insn))
583 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
584 NULL);
585 record_dead_and_set_regs (insn);
587 #ifdef AUTO_INC_DEC
588 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
589 if (REG_NOTE_KIND (links) == REG_INC)
590 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
591 NULL);
592 #endif
595 if (GET_CODE (insn) == CODE_LABEL)
596 label_tick++;
599 nonzero_sign_valid = 1;
601 /* Now scan all the insns in forward order. */
603 label_tick = 1;
604 last_call_cuid = 0;
605 mem_last_set = 0;
606 init_reg_last_arrays ();
607 setup_incoming_promotions ();
609 FOR_EACH_BB (this_basic_block)
611 for (insn = this_basic_block->head;
612 insn != NEXT_INSN (this_basic_block->end);
613 insn = next ? next : NEXT_INSN (insn))
615 next = 0;
617 if (GET_CODE (insn) == CODE_LABEL)
618 label_tick++;
620 else if (INSN_P (insn))
622 /* See if we know about function return values before this
623 insn based upon SUBREG flags. */
624 check_promoted_subreg (insn, PATTERN (insn));
626 /* Try this insn with each insn it links back to. */
628 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
629 if ((next = try_combine (insn, XEXP (links, 0),
630 NULL_RTX, &new_direct_jump_p)) != 0)
631 goto retry;
633 /* Try each sequence of three linked insns ending with this one. */
635 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
637 rtx link = XEXP (links, 0);
639 /* If the linked insn has been replaced by a note, then there
640 is no point in pursuing this chain any further. */
641 if (GET_CODE (link) == NOTE)
642 continue;
644 for (nextlinks = LOG_LINKS (link);
645 nextlinks;
646 nextlinks = XEXP (nextlinks, 1))
647 if ((next = try_combine (insn, link,
648 XEXP (nextlinks, 0),
649 &new_direct_jump_p)) != 0)
650 goto retry;
653 #ifdef HAVE_cc0
654 /* Try to combine a jump insn that uses CC0
655 with a preceding insn that sets CC0, and maybe with its
656 logical predecessor as well.
657 This is how we make decrement-and-branch insns.
658 We need this special code because data flow connections
659 via CC0 do not get entered in LOG_LINKS. */
661 if (GET_CODE (insn) == JUMP_INSN
662 && (prev = prev_nonnote_insn (insn)) != 0
663 && GET_CODE (prev) == INSN
664 && sets_cc0_p (PATTERN (prev)))
666 if ((next = try_combine (insn, prev,
667 NULL_RTX, &new_direct_jump_p)) != 0)
668 goto retry;
670 for (nextlinks = LOG_LINKS (prev); nextlinks;
671 nextlinks = XEXP (nextlinks, 1))
672 if ((next = try_combine (insn, prev,
673 XEXP (nextlinks, 0),
674 &new_direct_jump_p)) != 0)
675 goto retry;
678 /* Do the same for an insn that explicitly references CC0. */
679 if (GET_CODE (insn) == INSN
680 && (prev = prev_nonnote_insn (insn)) != 0
681 && GET_CODE (prev) == INSN
682 && sets_cc0_p (PATTERN (prev))
683 && GET_CODE (PATTERN (insn)) == SET
684 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
686 if ((next = try_combine (insn, prev,
687 NULL_RTX, &new_direct_jump_p)) != 0)
688 goto retry;
690 for (nextlinks = LOG_LINKS (prev); nextlinks;
691 nextlinks = XEXP (nextlinks, 1))
692 if ((next = try_combine (insn, prev,
693 XEXP (nextlinks, 0),
694 &new_direct_jump_p)) != 0)
695 goto retry;
698 /* Finally, see if any of the insns that this insn links to
699 explicitly references CC0. If so, try this insn, that insn,
700 and its predecessor if it sets CC0. */
701 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
702 if (GET_CODE (XEXP (links, 0)) == INSN
703 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
704 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
705 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
706 && GET_CODE (prev) == INSN
707 && sets_cc0_p (PATTERN (prev))
708 && (next = try_combine (insn, XEXP (links, 0),
709 prev, &new_direct_jump_p)) != 0)
710 goto retry;
711 #endif
713 /* Try combining an insn with two different insns whose results it
714 uses. */
715 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
716 for (nextlinks = XEXP (links, 1); nextlinks;
717 nextlinks = XEXP (nextlinks, 1))
718 if ((next = try_combine (insn, XEXP (links, 0),
719 XEXP (nextlinks, 0),
720 &new_direct_jump_p)) != 0)
721 goto retry;
723 if (GET_CODE (insn) != NOTE)
724 record_dead_and_set_regs (insn);
726 retry:
731 clear_bb_flags ();
733 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
734 BASIC_BLOCK (i)->flags |= BB_DIRTY);
735 new_direct_jump_p |= purge_all_dead_edges (0);
736 delete_noop_moves (f);
738 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
739 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
740 | PROP_KILL_DEAD_CODE);
742 /* Clean up. */
743 sbitmap_free (refresh_blocks);
744 free (reg_nonzero_bits);
745 free (reg_sign_bit_copies);
746 free (reg_last_death);
747 free (reg_last_set);
748 free (reg_last_set_value);
749 free (reg_last_set_table_tick);
750 free (reg_last_set_label);
751 free (reg_last_set_invalid);
752 free (reg_last_set_mode);
753 free (reg_last_set_nonzero_bits);
754 free (reg_last_set_sign_bit_copies);
755 free (uid_cuid);
758 struct undo *undo, *next;
759 for (undo = undobuf.frees; undo; undo = next)
761 next = undo->next;
762 free (undo);
764 undobuf.frees = 0;
767 total_attempts += combine_attempts;
768 total_merges += combine_merges;
769 total_extras += combine_extras;
770 total_successes += combine_successes;
772 nonzero_sign_valid = 0;
774 /* Make recognizer allow volatile MEMs again. */
775 init_recog ();
777 return new_direct_jump_p;
780 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
782 static void
783 init_reg_last_arrays ()
785 unsigned int nregs = combine_max_regno;
787 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
788 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
789 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
790 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
791 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
792 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
793 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
794 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
795 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
798 /* Set up any promoted values for incoming argument registers. */
800 static void
801 setup_incoming_promotions ()
803 #ifdef PROMOTE_FUNCTION_ARGS
804 unsigned int regno;
805 rtx reg;
806 enum machine_mode mode;
807 int unsignedp;
808 rtx first = get_insns ();
810 #ifndef OUTGOING_REGNO
811 #define OUTGOING_REGNO(N) N
812 #endif
813 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
814 /* Check whether this register can hold an incoming pointer
815 argument. FUNCTION_ARG_REGNO_P tests outgoing register
816 numbers, so translate if necessary due to register windows. */
817 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
818 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
820 record_value_for_reg
821 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
822 : SIGN_EXTEND),
823 GET_MODE (reg),
824 gen_rtx_CLOBBER (mode, const0_rtx)));
826 #endif
829 /* Called via note_stores. If X is a pseudo that is narrower than
830 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
832 If we are setting only a portion of X and we can't figure out what
833 portion, assume all bits will be used since we don't know what will
834 be happening.
836 Similarly, set how many bits of X are known to be copies of the sign bit
837 at all locations in the function. This is the smallest number implied
838 by any set of X. */
840 static void
841 set_nonzero_bits_and_sign_copies (x, set, data)
842 rtx x;
843 rtx set;
844 void *data ATTRIBUTE_UNUSED;
846 unsigned int num;
848 if (GET_CODE (x) == REG
849 && REGNO (x) >= FIRST_PSEUDO_REGISTER
850 /* If this register is undefined at the start of the file, we can't
851 say what its contents were. */
852 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
853 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
855 if (set == 0 || GET_CODE (set) == CLOBBER)
857 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
858 reg_sign_bit_copies[REGNO (x)] = 1;
859 return;
862 /* If this is a complex assignment, see if we can convert it into a
863 simple assignment. */
864 set = expand_field_assignment (set);
866 /* If this is a simple assignment, or we have a paradoxical SUBREG,
867 set what we know about X. */
869 if (SET_DEST (set) == x
870 || (GET_CODE (SET_DEST (set)) == SUBREG
871 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
872 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
873 && SUBREG_REG (SET_DEST (set)) == x))
875 rtx src = SET_SRC (set);
877 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
878 /* If X is narrower than a word and SRC is a non-negative
879 constant that would appear negative in the mode of X,
880 sign-extend it for use in reg_nonzero_bits because some
881 machines (maybe most) will actually do the sign-extension
882 and this is the conservative approach.
884 ??? For 2.5, try to tighten up the MD files in this regard
885 instead of this kludge. */
887 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
888 && GET_CODE (src) == CONST_INT
889 && INTVAL (src) > 0
890 && 0 != (INTVAL (src)
891 & ((HOST_WIDE_INT) 1
892 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
893 src = GEN_INT (INTVAL (src)
894 | ((HOST_WIDE_INT) (-1)
895 << GET_MODE_BITSIZE (GET_MODE (x))));
896 #endif
898 /* Don't call nonzero_bits if it cannot change anything. */
899 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
900 reg_nonzero_bits[REGNO (x)]
901 |= nonzero_bits (src, nonzero_bits_mode);
902 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
903 if (reg_sign_bit_copies[REGNO (x)] == 0
904 || reg_sign_bit_copies[REGNO (x)] > num)
905 reg_sign_bit_copies[REGNO (x)] = num;
907 else
909 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
910 reg_sign_bit_copies[REGNO (x)] = 1;
915 /* See if INSN can be combined into I3. PRED and SUCC are optionally
916 insns that were previously combined into I3 or that will be combined
917 into the merger of INSN and I3.
919 Return 0 if the combination is not allowed for any reason.
921 If the combination is allowed, *PDEST will be set to the single
922 destination of INSN and *PSRC to the single source, and this function
923 will return 1. */
925 static int
926 can_combine_p (insn, i3, pred, succ, pdest, psrc)
927 rtx insn;
928 rtx i3;
929 rtx pred ATTRIBUTE_UNUSED;
930 rtx succ;
931 rtx *pdest, *psrc;
933 int i;
934 rtx set = 0, src, dest;
935 rtx p;
936 #ifdef AUTO_INC_DEC
937 rtx link;
938 #endif
939 int all_adjacent = (succ ? (next_active_insn (insn) == succ
940 && next_active_insn (succ) == i3)
941 : next_active_insn (insn) == i3);
943 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
944 or a PARALLEL consisting of such a SET and CLOBBERs.
946 If INSN has CLOBBER parallel parts, ignore them for our processing.
947 By definition, these happen during the execution of the insn. When it
948 is merged with another insn, all bets are off. If they are, in fact,
949 needed and aren't also supplied in I3, they may be added by
950 recog_for_combine. Otherwise, it won't match.
952 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
953 note.
955 Get the source and destination of INSN. If more than one, can't
956 combine. */
958 if (GET_CODE (PATTERN (insn)) == SET)
959 set = PATTERN (insn);
960 else if (GET_CODE (PATTERN (insn)) == PARALLEL
961 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
963 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
965 rtx elt = XVECEXP (PATTERN (insn), 0, i);
967 switch (GET_CODE (elt))
969 /* This is important to combine floating point insns
970 for the SH4 port. */
971 case USE:
972 /* Combining an isolated USE doesn't make sense.
973 We depend here on combinable_i3pat to reject them. */
974 /* The code below this loop only verifies that the inputs of
975 the SET in INSN do not change. We call reg_set_between_p
976 to verify that the REG in the USE does not change between
977 I3 and INSN.
978 If the USE in INSN was for a pseudo register, the matching
979 insn pattern will likely match any register; combining this
980 with any other USE would only be safe if we knew that the
981 used registers have identical values, or if there was
982 something to tell them apart, e.g. different modes. For
983 now, we forgo such complicated tests and simply disallow
984 combining of USES of pseudo registers with any other USE. */
985 if (GET_CODE (XEXP (elt, 0)) == REG
986 && GET_CODE (PATTERN (i3)) == PARALLEL)
988 rtx i3pat = PATTERN (i3);
989 int i = XVECLEN (i3pat, 0) - 1;
990 unsigned int regno = REGNO (XEXP (elt, 0));
994 rtx i3elt = XVECEXP (i3pat, 0, i);
996 if (GET_CODE (i3elt) == USE
997 && GET_CODE (XEXP (i3elt, 0)) == REG
998 && (REGNO (XEXP (i3elt, 0)) == regno
999 ? reg_set_between_p (XEXP (elt, 0),
1000 PREV_INSN (insn), i3)
1001 : regno >= FIRST_PSEUDO_REGISTER))
1002 return 0;
1004 while (--i >= 0);
1006 break;
1008 /* We can ignore CLOBBERs. */
1009 case CLOBBER:
1010 break;
1012 case SET:
1013 /* Ignore SETs whose result isn't used but not those that
1014 have side-effects. */
1015 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1016 && ! side_effects_p (elt))
1017 break;
1019 /* If we have already found a SET, this is a second one and
1020 so we cannot combine with this insn. */
1021 if (set)
1022 return 0;
1024 set = elt;
1025 break;
1027 default:
1028 /* Anything else means we can't combine. */
1029 return 0;
1033 if (set == 0
1034 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1035 so don't do anything with it. */
1036 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1037 return 0;
1039 else
1040 return 0;
1042 if (set == 0)
1043 return 0;
1045 set = expand_field_assignment (set);
1046 src = SET_SRC (set), dest = SET_DEST (set);
1048 /* Don't eliminate a store in the stack pointer. */
1049 if (dest == stack_pointer_rtx
1050 /* If we couldn't eliminate a field assignment, we can't combine. */
1051 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1052 /* Don't combine with an insn that sets a register to itself if it has
1053 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1054 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1055 /* Can't merge an ASM_OPERANDS. */
1056 || GET_CODE (src) == ASM_OPERANDS
1057 /* Can't merge a function call. */
1058 || GET_CODE (src) == CALL
1059 /* Don't eliminate a function call argument. */
1060 || (GET_CODE (i3) == CALL_INSN
1061 && (find_reg_fusage (i3, USE, dest)
1062 || (GET_CODE (dest) == REG
1063 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1064 && global_regs[REGNO (dest)])))
1065 /* Don't substitute into an incremented register. */
1066 || FIND_REG_INC_NOTE (i3, dest)
1067 || (succ && FIND_REG_INC_NOTE (succ, dest))
1068 #if 0
1069 /* Don't combine the end of a libcall into anything. */
1070 /* ??? This gives worse code, and appears to be unnecessary, since no
1071 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1072 use REG_RETVAL notes for noconflict blocks, but other code here
1073 makes sure that those insns don't disappear. */
1074 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1075 #endif
1076 /* Make sure that DEST is not used after SUCC but before I3. */
1077 || (succ && ! all_adjacent
1078 && reg_used_between_p (dest, succ, i3))
1079 /* Make sure that the value that is to be substituted for the register
1080 does not use any registers whose values alter in between. However,
1081 If the insns are adjacent, a use can't cross a set even though we
1082 think it might (this can happen for a sequence of insns each setting
1083 the same destination; reg_last_set of that register might point to
1084 a NOTE). If INSN has a REG_EQUIV note, the register is always
1085 equivalent to the memory so the substitution is valid even if there
1086 are intervening stores. Also, don't move a volatile asm or
1087 UNSPEC_VOLATILE across any other insns. */
1088 || (! all_adjacent
1089 && (((GET_CODE (src) != MEM
1090 || ! find_reg_note (insn, REG_EQUIV, src))
1091 && use_crosses_set_p (src, INSN_CUID (insn)))
1092 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1093 || GET_CODE (src) == UNSPEC_VOLATILE))
1094 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1095 better register allocation by not doing the combine. */
1096 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1097 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1098 /* Don't combine across a CALL_INSN, because that would possibly
1099 change whether the life span of some REGs crosses calls or not,
1100 and it is a pain to update that information.
1101 Exception: if source is a constant, moving it later can't hurt.
1102 Accept that special case, because it helps -fforce-addr a lot. */
1103 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1104 return 0;
1106 /* DEST must either be a REG or CC0. */
1107 if (GET_CODE (dest) == REG)
1109 /* If register alignment is being enforced for multi-word items in all
1110 cases except for parameters, it is possible to have a register copy
1111 insn referencing a hard register that is not allowed to contain the
1112 mode being copied and which would not be valid as an operand of most
1113 insns. Eliminate this problem by not combining with such an insn.
1115 Also, on some machines we don't want to extend the life of a hard
1116 register. */
1118 if (GET_CODE (src) == REG
1119 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1120 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1121 /* Don't extend the life of a hard register unless it is
1122 user variable (if we have few registers) or it can't
1123 fit into the desired register (meaning something special
1124 is going on).
1125 Also avoid substituting a return register into I3, because
1126 reload can't handle a conflict with constraints of other
1127 inputs. */
1128 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1129 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1130 return 0;
1132 else if (GET_CODE (dest) != CC0)
1133 return 0;
1135 /* Don't substitute for a register intended as a clobberable operand.
1136 Similarly, don't substitute an expression containing a register that
1137 will be clobbered in I3. */
1138 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1139 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1140 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1141 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1142 src)
1143 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1144 return 0;
1146 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1147 or not), reject, unless nothing volatile comes between it and I3 */
1149 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1151 /* Make sure succ doesn't contain a volatile reference. */
1152 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1153 return 0;
1155 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1156 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1157 return 0;
1160 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1161 to be an explicit register variable, and was chosen for a reason. */
1163 if (GET_CODE (src) == ASM_OPERANDS
1164 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1165 return 0;
1167 /* If there are any volatile insns between INSN and I3, reject, because
1168 they might affect machine state. */
1170 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1171 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1172 return 0;
1174 /* If INSN or I2 contains an autoincrement or autodecrement,
1175 make sure that register is not used between there and I3,
1176 and not already used in I3 either.
1177 Also insist that I3 not be a jump; if it were one
1178 and the incremented register were spilled, we would lose. */
1180 #ifdef AUTO_INC_DEC
1181 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1182 if (REG_NOTE_KIND (link) == REG_INC
1183 && (GET_CODE (i3) == JUMP_INSN
1184 || reg_used_between_p (XEXP (link, 0), insn, i3)
1185 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1186 return 0;
1187 #endif
1189 #ifdef HAVE_cc0
1190 /* Don't combine an insn that follows a CC0-setting insn.
1191 An insn that uses CC0 must not be separated from the one that sets it.
1192 We do, however, allow I2 to follow a CC0-setting insn if that insn
1193 is passed as I1; in that case it will be deleted also.
1194 We also allow combining in this case if all the insns are adjacent
1195 because that would leave the two CC0 insns adjacent as well.
1196 It would be more logical to test whether CC0 occurs inside I1 or I2,
1197 but that would be much slower, and this ought to be equivalent. */
1199 p = prev_nonnote_insn (insn);
1200 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1201 && ! all_adjacent)
1202 return 0;
1203 #endif
1205 /* If we get here, we have passed all the tests and the combination is
1206 to be allowed. */
1208 *pdest = dest;
1209 *psrc = src;
1211 return 1;
1214 /* Check if PAT is an insn - or a part of it - used to set up an
1215 argument for a function in a hard register. */
1217 static int
1218 sets_function_arg_p (pat)
1219 rtx pat;
1221 int i;
1222 rtx inner_dest;
1224 switch (GET_CODE (pat))
1226 case INSN:
1227 return sets_function_arg_p (PATTERN (pat));
1229 case PARALLEL:
1230 for (i = XVECLEN (pat, 0); --i >= 0;)
1231 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1232 return 1;
1234 break;
1236 case SET:
1237 inner_dest = SET_DEST (pat);
1238 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1239 || GET_CODE (inner_dest) == SUBREG
1240 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1241 inner_dest = XEXP (inner_dest, 0);
1243 return (GET_CODE (inner_dest) == REG
1244 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1245 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1247 default:
1248 break;
1251 return 0;
1254 /* LOC is the location within I3 that contains its pattern or the component
1255 of a PARALLEL of the pattern. We validate that it is valid for combining.
1257 One problem is if I3 modifies its output, as opposed to replacing it
1258 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1259 so would produce an insn that is not equivalent to the original insns.
1261 Consider:
1263 (set (reg:DI 101) (reg:DI 100))
1264 (set (subreg:SI (reg:DI 101) 0) <foo>)
1266 This is NOT equivalent to:
1268 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1269 (set (reg:DI 101) (reg:DI 100))])
1271 Not only does this modify 100 (in which case it might still be valid
1272 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1274 We can also run into a problem if I2 sets a register that I1
1275 uses and I1 gets directly substituted into I3 (not via I2). In that
1276 case, we would be getting the wrong value of I2DEST into I3, so we
1277 must reject the combination. This case occurs when I2 and I1 both
1278 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1279 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1280 of a SET must prevent combination from occurring.
1282 Before doing the above check, we first try to expand a field assignment
1283 into a set of logical operations.
1285 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1286 we place a register that is both set and used within I3. If more than one
1287 such register is detected, we fail.
1289 Return 1 if the combination is valid, zero otherwise. */
1291 static int
1292 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1293 rtx i3;
1294 rtx *loc;
1295 rtx i2dest;
1296 rtx i1dest;
1297 int i1_not_in_src;
1298 rtx *pi3dest_killed;
1300 rtx x = *loc;
1302 if (GET_CODE (x) == SET)
1304 rtx set = expand_field_assignment (x);
1305 rtx dest = SET_DEST (set);
1306 rtx src = SET_SRC (set);
1307 rtx inner_dest = dest;
1309 #if 0
1310 rtx inner_src = src;
1311 #endif
1313 SUBST (*loc, set);
1315 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1316 || GET_CODE (inner_dest) == SUBREG
1317 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1318 inner_dest = XEXP (inner_dest, 0);
1320 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1321 was added. */
1322 #if 0
1323 while (GET_CODE (inner_src) == STRICT_LOW_PART
1324 || GET_CODE (inner_src) == SUBREG
1325 || GET_CODE (inner_src) == ZERO_EXTRACT)
1326 inner_src = XEXP (inner_src, 0);
1328 /* If it is better that two different modes keep two different pseudos,
1329 avoid combining them. This avoids producing the following pattern
1330 on a 386:
1331 (set (subreg:SI (reg/v:QI 21) 0)
1332 (lshiftrt:SI (reg/v:SI 20)
1333 (const_int 24)))
1334 If that were made, reload could not handle the pair of
1335 reg 20/21, since it would try to get any GENERAL_REGS
1336 but some of them don't handle QImode. */
1338 if (rtx_equal_p (inner_src, i2dest)
1339 && GET_CODE (inner_dest) == REG
1340 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1341 return 0;
1342 #endif
1344 /* Check for the case where I3 modifies its output, as
1345 discussed above. */
1346 if ((inner_dest != dest
1347 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1348 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1350 /* This is the same test done in can_combine_p except we can't test
1351 all_adjacent; we don't have to, since this instruction will stay
1352 in place, thus we are not considering increasing the lifetime of
1353 INNER_DEST.
1355 Also, if this insn sets a function argument, combining it with
1356 something that might need a spill could clobber a previous
1357 function argument; the all_adjacent test in can_combine_p also
1358 checks this; here, we do a more specific test for this case. */
1360 || (GET_CODE (inner_dest) == REG
1361 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1362 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1363 GET_MODE (inner_dest))))
1364 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1365 return 0;
1367 /* If DEST is used in I3, it is being killed in this insn,
1368 so record that for later.
1369 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1370 STACK_POINTER_REGNUM, since these are always considered to be
1371 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1372 if (pi3dest_killed && GET_CODE (dest) == REG
1373 && reg_referenced_p (dest, PATTERN (i3))
1374 && REGNO (dest) != FRAME_POINTER_REGNUM
1375 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1376 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1377 #endif
1378 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1379 && (REGNO (dest) != ARG_POINTER_REGNUM
1380 || ! fixed_regs [REGNO (dest)])
1381 #endif
1382 && REGNO (dest) != STACK_POINTER_REGNUM)
1384 if (*pi3dest_killed)
1385 return 0;
1387 *pi3dest_killed = dest;
1391 else if (GET_CODE (x) == PARALLEL)
1393 int i;
1395 for (i = 0; i < XVECLEN (x, 0); i++)
1396 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1397 i1_not_in_src, pi3dest_killed))
1398 return 0;
1401 return 1;
1404 /* Return 1 if X is an arithmetic expression that contains a multiplication
1405 and division. We don't count multiplications by powers of two here. */
1407 static int
1408 contains_muldiv (x)
1409 rtx x;
1411 switch (GET_CODE (x))
1413 case MOD: case DIV: case UMOD: case UDIV:
1414 return 1;
1416 case MULT:
1417 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1418 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1419 default:
1420 switch (GET_RTX_CLASS (GET_CODE (x)))
1422 case 'c': case '<': case '2':
1423 return contains_muldiv (XEXP (x, 0))
1424 || contains_muldiv (XEXP (x, 1));
1426 case '1':
1427 return contains_muldiv (XEXP (x, 0));
1429 default:
1430 return 0;
1435 /* Determine whether INSN can be used in a combination. Return nonzero if
1436 not. This is used in try_combine to detect early some cases where we
1437 can't perform combinations. */
1439 static int
1440 cant_combine_insn_p (insn)
1441 rtx insn;
1443 rtx set;
1444 rtx src, dest;
1446 /* If this isn't really an insn, we can't do anything.
1447 This can occur when flow deletes an insn that it has merged into an
1448 auto-increment address. */
1449 if (! INSN_P (insn))
1450 return 1;
1452 /* Never combine loads and stores involving hard regs. The register
1453 allocator can usually handle such reg-reg moves by tying. If we allow
1454 the combiner to make substitutions of hard regs, we risk aborting in
1455 reload on machines that have SMALL_REGISTER_CLASSES.
1456 As an exception, we allow combinations involving fixed regs; these are
1457 not available to the register allocator so there's no risk involved. */
1459 set = single_set (insn);
1460 if (! set)
1461 return 0;
1462 src = SET_SRC (set);
1463 dest = SET_DEST (set);
1464 if (GET_CODE (src) == SUBREG)
1465 src = SUBREG_REG (src);
1466 if (GET_CODE (dest) == SUBREG)
1467 dest = SUBREG_REG (dest);
1468 if (REG_P (src) && REG_P (dest)
1469 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1470 && ! fixed_regs[REGNO (src)])
1471 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1472 && ! fixed_regs[REGNO (dest)])))
1473 return 1;
1475 return 0;
1478 /* Try to combine the insns I1 and I2 into I3.
1479 Here I1 and I2 appear earlier than I3.
1480 I1 can be zero; then we combine just I2 into I3.
1482 If we are combining three insns and the resulting insn is not recognized,
1483 try splitting it into two insns. If that happens, I2 and I3 are retained
1484 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1485 are pseudo-deleted.
1487 Return 0 if the combination does not work. Then nothing is changed.
1488 If we did the combination, return the insn at which combine should
1489 resume scanning.
1491 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1492 new direct jump instruction. */
1494 static rtx
1495 try_combine (i3, i2, i1, new_direct_jump_p)
1496 rtx i3, i2, i1;
1497 int *new_direct_jump_p;
1499 /* New patterns for I3 and I2, respectively. */
1500 rtx newpat, newi2pat = 0;
1501 int substed_i2 = 0, substed_i1 = 0;
1502 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1503 int added_sets_1, added_sets_2;
1504 /* Total number of SETs to put into I3. */
1505 int total_sets;
1506 /* Nonzero is I2's body now appears in I3. */
1507 int i2_is_used;
1508 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1509 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1510 /* Contains I3 if the destination of I3 is used in its source, which means
1511 that the old life of I3 is being killed. If that usage is placed into
1512 I2 and not in I3, a REG_DEAD note must be made. */
1513 rtx i3dest_killed = 0;
1514 /* SET_DEST and SET_SRC of I2 and I1. */
1515 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1516 /* PATTERN (I2), or a copy of it in certain cases. */
1517 rtx i2pat;
1518 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1519 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1520 int i1_feeds_i3 = 0;
1521 /* Notes that must be added to REG_NOTES in I3 and I2. */
1522 rtx new_i3_notes, new_i2_notes;
1523 /* Notes that we substituted I3 into I2 instead of the normal case. */
1524 int i3_subst_into_i2 = 0;
1525 /* Notes that I1, I2 or I3 is a MULT operation. */
1526 int have_mult = 0;
1528 int maxreg;
1529 rtx temp;
1530 rtx link;
1531 int i;
1533 /* Exit early if one of the insns involved can't be used for
1534 combinations. */
1535 if (cant_combine_insn_p (i3)
1536 || cant_combine_insn_p (i2)
1537 || (i1 && cant_combine_insn_p (i1))
1538 /* We also can't do anything if I3 has a
1539 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1540 libcall. */
1541 #if 0
1542 /* ??? This gives worse code, and appears to be unnecessary, since no
1543 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1544 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1545 #endif
1547 return 0;
1549 combine_attempts++;
1550 undobuf.other_insn = 0;
1552 /* Reset the hard register usage information. */
1553 CLEAR_HARD_REG_SET (newpat_used_regs);
1555 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1556 code below, set I1 to be the earlier of the two insns. */
1557 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1558 temp = i1, i1 = i2, i2 = temp;
1560 added_links_insn = 0;
1562 /* First check for one important special-case that the code below will
1563 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1564 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1565 we may be able to replace that destination with the destination of I3.
1566 This occurs in the common code where we compute both a quotient and
1567 remainder into a structure, in which case we want to do the computation
1568 directly into the structure to avoid register-register copies.
1570 Note that this case handles both multiple sets in I2 and also
1571 cases where I2 has a number of CLOBBER or PARALLELs.
1573 We make very conservative checks below and only try to handle the
1574 most common cases of this. For example, we only handle the case
1575 where I2 and I3 are adjacent to avoid making difficult register
1576 usage tests. */
1578 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1579 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1580 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1581 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1582 && GET_CODE (PATTERN (i2)) == PARALLEL
1583 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1584 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1585 below would need to check what is inside (and reg_overlap_mentioned_p
1586 doesn't support those codes anyway). Don't allow those destinations;
1587 the resulting insn isn't likely to be recognized anyway. */
1588 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1589 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1590 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1591 SET_DEST (PATTERN (i3)))
1592 && next_real_insn (i2) == i3)
1594 rtx p2 = PATTERN (i2);
1596 /* Make sure that the destination of I3,
1597 which we are going to substitute into one output of I2,
1598 is not used within another output of I2. We must avoid making this:
1599 (parallel [(set (mem (reg 69)) ...)
1600 (set (reg 69) ...)])
1601 which is not well-defined as to order of actions.
1602 (Besides, reload can't handle output reloads for this.)
1604 The problem can also happen if the dest of I3 is a memory ref,
1605 if another dest in I2 is an indirect memory ref. */
1606 for (i = 0; i < XVECLEN (p2, 0); i++)
1607 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1608 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1609 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1610 SET_DEST (XVECEXP (p2, 0, i))))
1611 break;
1613 if (i == XVECLEN (p2, 0))
1614 for (i = 0; i < XVECLEN (p2, 0); i++)
1615 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1616 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1617 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1619 combine_merges++;
1621 subst_insn = i3;
1622 subst_low_cuid = INSN_CUID (i2);
1624 added_sets_2 = added_sets_1 = 0;
1625 i2dest = SET_SRC (PATTERN (i3));
1627 /* Replace the dest in I2 with our dest and make the resulting
1628 insn the new pattern for I3. Then skip to where we
1629 validate the pattern. Everything was set up above. */
1630 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1631 SET_DEST (PATTERN (i3)));
1633 newpat = p2;
1634 i3_subst_into_i2 = 1;
1635 goto validate_replacement;
1639 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1640 one of those words to another constant, merge them by making a new
1641 constant. */
1642 if (i1 == 0
1643 && (temp = single_set (i2)) != 0
1644 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1645 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1646 && GET_CODE (SET_DEST (temp)) == REG
1647 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1648 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1649 && GET_CODE (PATTERN (i3)) == SET
1650 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1651 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1652 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1653 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1654 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1656 HOST_WIDE_INT lo, hi;
1658 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1659 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1660 else
1662 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1663 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1666 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1668 /* We don't handle the case of the target word being wider
1669 than a host wide int. */
1670 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1671 abort ();
1673 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1674 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1675 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1677 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1678 hi = INTVAL (SET_SRC (PATTERN (i3)));
1679 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1681 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1682 >> (HOST_BITS_PER_WIDE_INT - 1));
1684 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1685 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1686 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1687 (INTVAL (SET_SRC (PATTERN (i3)))));
1688 if (hi == sign)
1689 hi = lo < 0 ? -1 : 0;
1691 else
1692 /* We don't handle the case of the higher word not fitting
1693 entirely in either hi or lo. */
1694 abort ();
1696 combine_merges++;
1697 subst_insn = i3;
1698 subst_low_cuid = INSN_CUID (i2);
1699 added_sets_2 = added_sets_1 = 0;
1700 i2dest = SET_DEST (temp);
1702 SUBST (SET_SRC (temp),
1703 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1705 newpat = PATTERN (i2);
1706 goto validate_replacement;
1709 #ifndef HAVE_cc0
1710 /* If we have no I1 and I2 looks like:
1711 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1712 (set Y OP)])
1713 make up a dummy I1 that is
1714 (set Y OP)
1715 and change I2 to be
1716 (set (reg:CC X) (compare:CC Y (const_int 0)))
1718 (We can ignore any trailing CLOBBERs.)
1720 This undoes a previous combination and allows us to match a branch-and-
1721 decrement insn. */
1723 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1724 && XVECLEN (PATTERN (i2), 0) >= 2
1725 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1726 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1727 == MODE_CC)
1728 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1729 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1730 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1731 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1732 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1733 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1735 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1736 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1737 break;
1739 if (i == 1)
1741 /* We make I1 with the same INSN_UID as I2. This gives it
1742 the same INSN_CUID for value tracking. Our fake I1 will
1743 never appear in the insn stream so giving it the same INSN_UID
1744 as I2 will not cause a problem. */
1746 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1747 BLOCK_FOR_INSN (i2), INSN_SCOPE (i2),
1748 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1749 NULL_RTX);
1751 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1752 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1753 SET_DEST (PATTERN (i1)));
1756 #endif
1758 /* Verify that I2 and I1 are valid for combining. */
1759 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1760 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1762 undo_all ();
1763 return 0;
1766 /* Record whether I2DEST is used in I2SRC and similarly for the other
1767 cases. Knowing this will help in register status updating below. */
1768 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1769 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1770 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1772 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1773 in I2SRC. */
1774 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1776 /* Ensure that I3's pattern can be the destination of combines. */
1777 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1778 i1 && i2dest_in_i1src && i1_feeds_i3,
1779 &i3dest_killed))
1781 undo_all ();
1782 return 0;
1785 /* See if any of the insns is a MULT operation. Unless one is, we will
1786 reject a combination that is, since it must be slower. Be conservative
1787 here. */
1788 if (GET_CODE (i2src) == MULT
1789 || (i1 != 0 && GET_CODE (i1src) == MULT)
1790 || (GET_CODE (PATTERN (i3)) == SET
1791 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1792 have_mult = 1;
1794 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1795 We used to do this EXCEPT in one case: I3 has a post-inc in an
1796 output operand. However, that exception can give rise to insns like
1797 mov r3,(r3)+
1798 which is a famous insn on the PDP-11 where the value of r3 used as the
1799 source was model-dependent. Avoid this sort of thing. */
1801 #if 0
1802 if (!(GET_CODE (PATTERN (i3)) == SET
1803 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1804 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1805 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1806 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1807 /* It's not the exception. */
1808 #endif
1809 #ifdef AUTO_INC_DEC
1810 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1811 if (REG_NOTE_KIND (link) == REG_INC
1812 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1813 || (i1 != 0
1814 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1816 undo_all ();
1817 return 0;
1819 #endif
1821 /* See if the SETs in I1 or I2 need to be kept around in the merged
1822 instruction: whenever the value set there is still needed past I3.
1823 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1825 For the SET in I1, we have two cases: If I1 and I2 independently
1826 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1827 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1828 in I1 needs to be kept around unless I1DEST dies or is set in either
1829 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1830 I1DEST. If so, we know I1 feeds into I2. */
1832 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1834 added_sets_1
1835 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1836 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1838 /* If the set in I2 needs to be kept around, we must make a copy of
1839 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1840 PATTERN (I2), we are only substituting for the original I1DEST, not into
1841 an already-substituted copy. This also prevents making self-referential
1842 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1843 I2DEST. */
1845 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1846 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1847 : PATTERN (i2));
1849 if (added_sets_2)
1850 i2pat = copy_rtx (i2pat);
1852 combine_merges++;
1854 /* Substitute in the latest insn for the regs set by the earlier ones. */
1856 maxreg = max_reg_num ();
1858 subst_insn = i3;
1860 /* It is possible that the source of I2 or I1 may be performing an
1861 unneeded operation, such as a ZERO_EXTEND of something that is known
1862 to have the high part zero. Handle that case by letting subst look at
1863 the innermost one of them.
1865 Another way to do this would be to have a function that tries to
1866 simplify a single insn instead of merging two or more insns. We don't
1867 do this because of the potential of infinite loops and because
1868 of the potential extra memory required. However, doing it the way
1869 we are is a bit of a kludge and doesn't catch all cases.
1871 But only do this if -fexpensive-optimizations since it slows things down
1872 and doesn't usually win. */
1874 if (flag_expensive_optimizations)
1876 /* Pass pc_rtx so no substitutions are done, just simplifications.
1877 The cases that we are interested in here do not involve the few
1878 cases were is_replaced is checked. */
1879 if (i1)
1881 subst_low_cuid = INSN_CUID (i1);
1882 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1884 else
1886 subst_low_cuid = INSN_CUID (i2);
1887 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1891 #ifndef HAVE_cc0
1892 /* Many machines that don't use CC0 have insns that can both perform an
1893 arithmetic operation and set the condition code. These operations will
1894 be represented as a PARALLEL with the first element of the vector
1895 being a COMPARE of an arithmetic operation with the constant zero.
1896 The second element of the vector will set some pseudo to the result
1897 of the same arithmetic operation. If we simplify the COMPARE, we won't
1898 match such a pattern and so will generate an extra insn. Here we test
1899 for this case, where both the comparison and the operation result are
1900 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1901 I2SRC. Later we will make the PARALLEL that contains I2. */
1903 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1904 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1905 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1906 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1908 #ifdef EXTRA_CC_MODES
1909 rtx *cc_use;
1910 enum machine_mode compare_mode;
1911 #endif
1913 newpat = PATTERN (i3);
1914 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1916 i2_is_used = 1;
1918 #ifdef EXTRA_CC_MODES
1919 /* See if a COMPARE with the operand we substituted in should be done
1920 with the mode that is currently being used. If not, do the same
1921 processing we do in `subst' for a SET; namely, if the destination
1922 is used only once, try to replace it with a register of the proper
1923 mode and also replace the COMPARE. */
1924 if (undobuf.other_insn == 0
1925 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1926 &undobuf.other_insn))
1927 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1928 i2src, const0_rtx))
1929 != GET_MODE (SET_DEST (newpat))))
1931 unsigned int regno = REGNO (SET_DEST (newpat));
1932 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1934 if (regno < FIRST_PSEUDO_REGISTER
1935 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1936 && ! REG_USERVAR_P (SET_DEST (newpat))))
1938 if (regno >= FIRST_PSEUDO_REGISTER)
1939 SUBST (regno_reg_rtx[regno], new_dest);
1941 SUBST (SET_DEST (newpat), new_dest);
1942 SUBST (XEXP (*cc_use, 0), new_dest);
1943 SUBST (SET_SRC (newpat),
1944 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1946 else
1947 undobuf.other_insn = 0;
1949 #endif
1951 else
1952 #endif
1954 n_occurrences = 0; /* `subst' counts here */
1956 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1957 need to make a unique copy of I2SRC each time we substitute it
1958 to avoid self-referential rtl. */
1960 subst_low_cuid = INSN_CUID (i2);
1961 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1962 ! i1_feeds_i3 && i1dest_in_i1src);
1963 substed_i2 = 1;
1965 /* Record whether i2's body now appears within i3's body. */
1966 i2_is_used = n_occurrences;
1969 /* If we already got a failure, don't try to do more. Otherwise,
1970 try to substitute in I1 if we have it. */
1972 if (i1 && GET_CODE (newpat) != CLOBBER)
1974 /* Before we can do this substitution, we must redo the test done
1975 above (see detailed comments there) that ensures that I1DEST
1976 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1978 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1979 0, (rtx*) 0))
1981 undo_all ();
1982 return 0;
1985 n_occurrences = 0;
1986 subst_low_cuid = INSN_CUID (i1);
1987 newpat = subst (newpat, i1dest, i1src, 0, 0);
1988 substed_i1 = 1;
1991 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1992 to count all the ways that I2SRC and I1SRC can be used. */
1993 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1994 && i2_is_used + added_sets_2 > 1)
1995 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1996 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1997 > 1))
1998 /* Fail if we tried to make a new register (we used to abort, but there's
1999 really no reason to). */
2000 || max_reg_num () != maxreg
2001 /* Fail if we couldn't do something and have a CLOBBER. */
2002 || GET_CODE (newpat) == CLOBBER
2003 /* Fail if this new pattern is a MULT and we didn't have one before
2004 at the outer level. */
2005 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2006 && ! have_mult))
2008 undo_all ();
2009 return 0;
2012 /* If the actions of the earlier insns must be kept
2013 in addition to substituting them into the latest one,
2014 we must make a new PARALLEL for the latest insn
2015 to hold additional the SETs. */
2017 if (added_sets_1 || added_sets_2)
2019 combine_extras++;
2021 if (GET_CODE (newpat) == PARALLEL)
2023 rtvec old = XVEC (newpat, 0);
2024 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2025 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2026 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2027 sizeof (old->elem[0]) * old->num_elem);
2029 else
2031 rtx old = newpat;
2032 total_sets = 1 + added_sets_1 + added_sets_2;
2033 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2034 XVECEXP (newpat, 0, 0) = old;
2037 if (added_sets_1)
2038 XVECEXP (newpat, 0, --total_sets)
2039 = (GET_CODE (PATTERN (i1)) == PARALLEL
2040 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2042 if (added_sets_2)
2044 /* If there is no I1, use I2's body as is. We used to also not do
2045 the subst call below if I2 was substituted into I3,
2046 but that could lose a simplification. */
2047 if (i1 == 0)
2048 XVECEXP (newpat, 0, --total_sets) = i2pat;
2049 else
2050 /* See comment where i2pat is assigned. */
2051 XVECEXP (newpat, 0, --total_sets)
2052 = subst (i2pat, i1dest, i1src, 0, 0);
2056 /* We come here when we are replacing a destination in I2 with the
2057 destination of I3. */
2058 validate_replacement:
2060 /* Note which hard regs this insn has as inputs. */
2061 mark_used_regs_combine (newpat);
2063 /* Is the result of combination a valid instruction? */
2064 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2066 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2067 the second SET's destination is a register that is unused. In that case,
2068 we just need the first SET. This can occur when simplifying a divmod
2069 insn. We *must* test for this case here because the code below that
2070 splits two independent SETs doesn't handle this case correctly when it
2071 updates the register status. Also check the case where the first
2072 SET's destination is unused. That would not cause incorrect code, but
2073 does cause an unneeded insn to remain. */
2075 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2076 && XVECLEN (newpat, 0) == 2
2077 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2078 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2079 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2080 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2081 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2082 && asm_noperands (newpat) < 0)
2084 newpat = XVECEXP (newpat, 0, 0);
2085 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2088 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2089 && XVECLEN (newpat, 0) == 2
2090 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2091 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2092 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2093 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2094 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2095 && asm_noperands (newpat) < 0)
2097 newpat = XVECEXP (newpat, 0, 1);
2098 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2101 /* If we were combining three insns and the result is a simple SET
2102 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2103 insns. There are two ways to do this. It can be split using a
2104 machine-specific method (like when you have an addition of a large
2105 constant) or by combine in the function find_split_point. */
2107 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2108 && asm_noperands (newpat) < 0)
2110 rtx m_split, *split;
2111 rtx ni2dest = i2dest;
2113 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2114 use I2DEST as a scratch register will help. In the latter case,
2115 convert I2DEST to the mode of the source of NEWPAT if we can. */
2117 m_split = split_insns (newpat, i3);
2119 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2120 inputs of NEWPAT. */
2122 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2123 possible to try that as a scratch reg. This would require adding
2124 more code to make it work though. */
2126 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2128 /* If I2DEST is a hard register or the only use of a pseudo,
2129 we can change its mode. */
2130 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2131 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2132 && GET_CODE (i2dest) == REG
2133 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2134 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2135 && ! REG_USERVAR_P (i2dest))))
2136 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2137 REGNO (i2dest));
2139 m_split = split_insns (gen_rtx_PARALLEL
2140 (VOIDmode,
2141 gen_rtvec (2, newpat,
2142 gen_rtx_CLOBBER (VOIDmode,
2143 ni2dest))),
2144 i3);
2145 /* If the split with the mode-changed register didn't work, try
2146 the original register. */
2147 if (! m_split && ni2dest != i2dest)
2149 ni2dest = i2dest;
2150 m_split = split_insns (gen_rtx_PARALLEL
2151 (VOIDmode,
2152 gen_rtvec (2, newpat,
2153 gen_rtx_CLOBBER (VOIDmode,
2154 i2dest))),
2155 i3);
2159 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2161 m_split = PATTERN (m_split);
2162 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2163 if (insn_code_number >= 0)
2164 newpat = m_split;
2166 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2167 && (next_real_insn (i2) == i3
2168 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2170 rtx i2set, i3set;
2171 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2172 newi2pat = PATTERN (m_split);
2174 i3set = single_set (NEXT_INSN (m_split));
2175 i2set = single_set (m_split);
2177 /* In case we changed the mode of I2DEST, replace it in the
2178 pseudo-register table here. We can't do it above in case this
2179 code doesn't get executed and we do a split the other way. */
2181 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2182 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2184 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2186 /* If I2 or I3 has multiple SETs, we won't know how to track
2187 register status, so don't use these insns. If I2's destination
2188 is used between I2 and I3, we also can't use these insns. */
2190 if (i2_code_number >= 0 && i2set && i3set
2191 && (next_real_insn (i2) == i3
2192 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2193 insn_code_number = recog_for_combine (&newi3pat, i3,
2194 &new_i3_notes);
2195 if (insn_code_number >= 0)
2196 newpat = newi3pat;
2198 /* It is possible that both insns now set the destination of I3.
2199 If so, we must show an extra use of it. */
2201 if (insn_code_number >= 0)
2203 rtx new_i3_dest = SET_DEST (i3set);
2204 rtx new_i2_dest = SET_DEST (i2set);
2206 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2207 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2208 || GET_CODE (new_i3_dest) == SUBREG)
2209 new_i3_dest = XEXP (new_i3_dest, 0);
2211 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2212 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2213 || GET_CODE (new_i2_dest) == SUBREG)
2214 new_i2_dest = XEXP (new_i2_dest, 0);
2216 if (GET_CODE (new_i3_dest) == REG
2217 && GET_CODE (new_i2_dest) == REG
2218 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2219 REG_N_SETS (REGNO (new_i2_dest))++;
2223 /* If we can split it and use I2DEST, go ahead and see if that
2224 helps things be recognized. Verify that none of the registers
2225 are set between I2 and I3. */
2226 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2227 #ifdef HAVE_cc0
2228 && GET_CODE (i2dest) == REG
2229 #endif
2230 /* We need I2DEST in the proper mode. If it is a hard register
2231 or the only use of a pseudo, we can change its mode. */
2232 && (GET_MODE (*split) == GET_MODE (i2dest)
2233 || GET_MODE (*split) == VOIDmode
2234 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2235 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2236 && ! REG_USERVAR_P (i2dest)))
2237 && (next_real_insn (i2) == i3
2238 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2239 /* We can't overwrite I2DEST if its value is still used by
2240 NEWPAT. */
2241 && ! reg_referenced_p (i2dest, newpat))
2243 rtx newdest = i2dest;
2244 enum rtx_code split_code = GET_CODE (*split);
2245 enum machine_mode split_mode = GET_MODE (*split);
2247 /* Get NEWDEST as a register in the proper mode. We have already
2248 validated that we can do this. */
2249 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2251 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2253 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2254 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2257 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2258 an ASHIFT. This can occur if it was inside a PLUS and hence
2259 appeared to be a memory address. This is a kludge. */
2260 if (split_code == MULT
2261 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2262 && INTVAL (XEXP (*split, 1)) > 0
2263 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2265 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2266 XEXP (*split, 0), GEN_INT (i)));
2267 /* Update split_code because we may not have a multiply
2268 anymore. */
2269 split_code = GET_CODE (*split);
2272 #ifdef INSN_SCHEDULING
2273 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2274 be written as a ZERO_EXTEND. */
2275 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2277 #ifdef LOAD_EXTEND_OP
2278 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2279 what it really is. */
2280 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2281 == SIGN_EXTEND)
2282 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2283 SUBREG_REG (*split)));
2284 else
2285 #endif
2286 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2287 SUBREG_REG (*split)));
2289 #endif
2291 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2292 SUBST (*split, newdest);
2293 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2295 /* If the split point was a MULT and we didn't have one before,
2296 don't use one now. */
2297 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2298 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2302 /* Check for a case where we loaded from memory in a narrow mode and
2303 then sign extended it, but we need both registers. In that case,
2304 we have a PARALLEL with both loads from the same memory location.
2305 We can split this into a load from memory followed by a register-register
2306 copy. This saves at least one insn, more if register allocation can
2307 eliminate the copy.
2309 We cannot do this if the destination of the first assignment is a
2310 condition code register or cc0. We eliminate this case by making sure
2311 the SET_DEST and SET_SRC have the same mode.
2313 We cannot do this if the destination of the second assignment is
2314 a register that we have already assumed is zero-extended. Similarly
2315 for a SUBREG of such a register. */
2317 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2318 && GET_CODE (newpat) == PARALLEL
2319 && XVECLEN (newpat, 0) == 2
2320 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2321 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2322 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2323 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2324 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2325 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2326 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2327 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2328 INSN_CUID (i2))
2329 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2330 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2331 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2332 (GET_CODE (temp) == REG
2333 && reg_nonzero_bits[REGNO (temp)] != 0
2334 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2335 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2336 && (reg_nonzero_bits[REGNO (temp)]
2337 != GET_MODE_MASK (word_mode))))
2338 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2339 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2340 (GET_CODE (temp) == REG
2341 && reg_nonzero_bits[REGNO (temp)] != 0
2342 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2343 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2344 && (reg_nonzero_bits[REGNO (temp)]
2345 != GET_MODE_MASK (word_mode)))))
2346 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2347 SET_SRC (XVECEXP (newpat, 0, 1)))
2348 && ! find_reg_note (i3, REG_UNUSED,
2349 SET_DEST (XVECEXP (newpat, 0, 0))))
2351 rtx ni2dest;
2353 newi2pat = XVECEXP (newpat, 0, 0);
2354 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2355 newpat = XVECEXP (newpat, 0, 1);
2356 SUBST (SET_SRC (newpat),
2357 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2358 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2360 if (i2_code_number >= 0)
2361 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2363 if (insn_code_number >= 0)
2365 rtx insn;
2366 rtx link;
2368 /* If we will be able to accept this, we have made a change to the
2369 destination of I3. This can invalidate a LOG_LINKS pointing
2370 to I3. No other part of combine.c makes such a transformation.
2372 The new I3 will have a destination that was previously the
2373 destination of I1 or I2 and which was used in i2 or I3. Call
2374 distribute_links to make a LOG_LINK from the next use of
2375 that destination. */
2377 PATTERN (i3) = newpat;
2378 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2380 /* I3 now uses what used to be its destination and which is
2381 now I2's destination. That means we need a LOG_LINK from
2382 I3 to I2. But we used to have one, so we still will.
2384 However, some later insn might be using I2's dest and have
2385 a LOG_LINK pointing at I3. We must remove this link.
2386 The simplest way to remove the link is to point it at I1,
2387 which we know will be a NOTE. */
2389 for (insn = NEXT_INSN (i3);
2390 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2391 || insn != this_basic_block->next_bb->head);
2392 insn = NEXT_INSN (insn))
2394 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2396 for (link = LOG_LINKS (insn); link;
2397 link = XEXP (link, 1))
2398 if (XEXP (link, 0) == i3)
2399 XEXP (link, 0) = i1;
2401 break;
2407 /* Similarly, check for a case where we have a PARALLEL of two independent
2408 SETs but we started with three insns. In this case, we can do the sets
2409 as two separate insns. This case occurs when some SET allows two
2410 other insns to combine, but the destination of that SET is still live. */
2412 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2413 && GET_CODE (newpat) == PARALLEL
2414 && XVECLEN (newpat, 0) == 2
2415 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2416 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2417 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2418 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2419 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2420 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2421 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2422 INSN_CUID (i2))
2423 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2424 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2425 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2426 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2427 XVECEXP (newpat, 0, 0))
2428 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2429 XVECEXP (newpat, 0, 1))
2430 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2431 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2433 /* Normally, it doesn't matter which of the two is done first,
2434 but it does if one references cc0. In that case, it has to
2435 be first. */
2436 #ifdef HAVE_cc0
2437 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2439 newi2pat = XVECEXP (newpat, 0, 0);
2440 newpat = XVECEXP (newpat, 0, 1);
2442 else
2443 #endif
2445 newi2pat = XVECEXP (newpat, 0, 1);
2446 newpat = XVECEXP (newpat, 0, 0);
2449 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2451 if (i2_code_number >= 0)
2452 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2455 /* If it still isn't recognized, fail and change things back the way they
2456 were. */
2457 if ((insn_code_number < 0
2458 /* Is the result a reasonable ASM_OPERANDS? */
2459 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2461 undo_all ();
2462 return 0;
2465 /* If we had to change another insn, make sure it is valid also. */
2466 if (undobuf.other_insn)
2468 rtx other_pat = PATTERN (undobuf.other_insn);
2469 rtx new_other_notes;
2470 rtx note, next;
2472 CLEAR_HARD_REG_SET (newpat_used_regs);
2474 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2475 &new_other_notes);
2477 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2479 undo_all ();
2480 return 0;
2483 PATTERN (undobuf.other_insn) = other_pat;
2485 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2486 are still valid. Then add any non-duplicate notes added by
2487 recog_for_combine. */
2488 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2490 next = XEXP (note, 1);
2492 if (REG_NOTE_KIND (note) == REG_UNUSED
2493 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2495 if (GET_CODE (XEXP (note, 0)) == REG)
2496 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2498 remove_note (undobuf.other_insn, note);
2502 for (note = new_other_notes; note; note = XEXP (note, 1))
2503 if (GET_CODE (XEXP (note, 0)) == REG)
2504 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2506 distribute_notes (new_other_notes, undobuf.other_insn,
2507 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2509 #ifdef HAVE_cc0
2510 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2511 they are adjacent to each other or not. */
2513 rtx p = prev_nonnote_insn (i3);
2514 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2515 && sets_cc0_p (newi2pat))
2517 undo_all ();
2518 return 0;
2521 #endif
2523 /* We now know that we can do this combination. Merge the insns and
2524 update the status of registers and LOG_LINKS. */
2527 rtx i3notes, i2notes, i1notes = 0;
2528 rtx i3links, i2links, i1links = 0;
2529 rtx midnotes = 0;
2530 unsigned int regno;
2531 /* Compute which registers we expect to eliminate. newi2pat may be setting
2532 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2533 same as i3dest, in which case newi2pat may be setting i1dest. */
2534 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2535 || i2dest_in_i2src || i2dest_in_i1src
2536 ? 0 : i2dest);
2537 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2538 || (newi2pat && reg_set_p (i1dest, newi2pat))
2539 ? 0 : i1dest);
2541 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2542 clear them. */
2543 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2544 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2545 if (i1)
2546 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2548 /* Ensure that we do not have something that should not be shared but
2549 occurs multiple times in the new insns. Check this by first
2550 resetting all the `used' flags and then copying anything is shared. */
2552 reset_used_flags (i3notes);
2553 reset_used_flags (i2notes);
2554 reset_used_flags (i1notes);
2555 reset_used_flags (newpat);
2556 reset_used_flags (newi2pat);
2557 if (undobuf.other_insn)
2558 reset_used_flags (PATTERN (undobuf.other_insn));
2560 i3notes = copy_rtx_if_shared (i3notes);
2561 i2notes = copy_rtx_if_shared (i2notes);
2562 i1notes = copy_rtx_if_shared (i1notes);
2563 newpat = copy_rtx_if_shared (newpat);
2564 newi2pat = copy_rtx_if_shared (newi2pat);
2565 if (undobuf.other_insn)
2566 reset_used_flags (PATTERN (undobuf.other_insn));
2568 INSN_CODE (i3) = insn_code_number;
2569 PATTERN (i3) = newpat;
2571 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2573 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2575 reset_used_flags (call_usage);
2576 call_usage = copy_rtx (call_usage);
2578 if (substed_i2)
2579 replace_rtx (call_usage, i2dest, i2src);
2581 if (substed_i1)
2582 replace_rtx (call_usage, i1dest, i1src);
2584 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2587 if (undobuf.other_insn)
2588 INSN_CODE (undobuf.other_insn) = other_code_number;
2590 /* We had one special case above where I2 had more than one set and
2591 we replaced a destination of one of those sets with the destination
2592 of I3. In that case, we have to update LOG_LINKS of insns later
2593 in this basic block. Note that this (expensive) case is rare.
2595 Also, in this case, we must pretend that all REG_NOTEs for I2
2596 actually came from I3, so that REG_UNUSED notes from I2 will be
2597 properly handled. */
2599 if (i3_subst_into_i2)
2601 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2602 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2603 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2604 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2605 && ! find_reg_note (i2, REG_UNUSED,
2606 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2607 for (temp = NEXT_INSN (i2);
2608 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2609 || this_basic_block->head != temp);
2610 temp = NEXT_INSN (temp))
2611 if (temp != i3 && INSN_P (temp))
2612 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2613 if (XEXP (link, 0) == i2)
2614 XEXP (link, 0) = i3;
2616 if (i3notes)
2618 rtx link = i3notes;
2619 while (XEXP (link, 1))
2620 link = XEXP (link, 1);
2621 XEXP (link, 1) = i2notes;
2623 else
2624 i3notes = i2notes;
2625 i2notes = 0;
2628 LOG_LINKS (i3) = 0;
2629 REG_NOTES (i3) = 0;
2630 LOG_LINKS (i2) = 0;
2631 REG_NOTES (i2) = 0;
2633 if (newi2pat)
2635 INSN_CODE (i2) = i2_code_number;
2636 PATTERN (i2) = newi2pat;
2638 else
2640 PUT_CODE (i2, NOTE);
2641 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2642 NOTE_SOURCE_FILE (i2) = 0;
2645 if (i1)
2647 LOG_LINKS (i1) = 0;
2648 REG_NOTES (i1) = 0;
2649 PUT_CODE (i1, NOTE);
2650 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2651 NOTE_SOURCE_FILE (i1) = 0;
2654 /* Get death notes for everything that is now used in either I3 or
2655 I2 and used to die in a previous insn. If we built two new
2656 patterns, move from I1 to I2 then I2 to I3 so that we get the
2657 proper movement on registers that I2 modifies. */
2659 if (newi2pat)
2661 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2662 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2664 else
2665 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2666 i3, &midnotes);
2668 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2669 if (i3notes)
2670 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2671 elim_i2, elim_i1);
2672 if (i2notes)
2673 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2674 elim_i2, elim_i1);
2675 if (i1notes)
2676 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2677 elim_i2, elim_i1);
2678 if (midnotes)
2679 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2680 elim_i2, elim_i1);
2682 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2683 know these are REG_UNUSED and want them to go to the desired insn,
2684 so we always pass it as i3. We have not counted the notes in
2685 reg_n_deaths yet, so we need to do so now. */
2687 if (newi2pat && new_i2_notes)
2689 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2690 if (GET_CODE (XEXP (temp, 0)) == REG)
2691 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2693 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2696 if (new_i3_notes)
2698 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2699 if (GET_CODE (XEXP (temp, 0)) == REG)
2700 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2702 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2705 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2706 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2707 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2708 in that case, it might delete I2. Similarly for I2 and I1.
2709 Show an additional death due to the REG_DEAD note we make here. If
2710 we discard it in distribute_notes, we will decrement it again. */
2712 if (i3dest_killed)
2714 if (GET_CODE (i3dest_killed) == REG)
2715 REG_N_DEATHS (REGNO (i3dest_killed))++;
2717 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2718 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2719 NULL_RTX),
2720 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2721 else
2722 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2723 NULL_RTX),
2724 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2725 elim_i2, elim_i1);
2728 if (i2dest_in_i2src)
2730 if (GET_CODE (i2dest) == REG)
2731 REG_N_DEATHS (REGNO (i2dest))++;
2733 if (newi2pat && reg_set_p (i2dest, newi2pat))
2734 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2735 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2736 else
2737 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2738 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2739 NULL_RTX, NULL_RTX);
2742 if (i1dest_in_i1src)
2744 if (GET_CODE (i1dest) == REG)
2745 REG_N_DEATHS (REGNO (i1dest))++;
2747 if (newi2pat && reg_set_p (i1dest, newi2pat))
2748 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2749 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2750 else
2751 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2752 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2753 NULL_RTX, NULL_RTX);
2756 distribute_links (i3links);
2757 distribute_links (i2links);
2758 distribute_links (i1links);
2760 if (GET_CODE (i2dest) == REG)
2762 rtx link;
2763 rtx i2_insn = 0, i2_val = 0, set;
2765 /* The insn that used to set this register doesn't exist, and
2766 this life of the register may not exist either. See if one of
2767 I3's links points to an insn that sets I2DEST. If it does,
2768 that is now the last known value for I2DEST. If we don't update
2769 this and I2 set the register to a value that depended on its old
2770 contents, we will get confused. If this insn is used, thing
2771 will be set correctly in combine_instructions. */
2773 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2774 if ((set = single_set (XEXP (link, 0))) != 0
2775 && rtx_equal_p (i2dest, SET_DEST (set)))
2776 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2778 record_value_for_reg (i2dest, i2_insn, i2_val);
2780 /* If the reg formerly set in I2 died only once and that was in I3,
2781 zero its use count so it won't make `reload' do any work. */
2782 if (! added_sets_2
2783 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2784 && ! i2dest_in_i2src)
2786 regno = REGNO (i2dest);
2787 REG_N_SETS (regno)--;
2791 if (i1 && GET_CODE (i1dest) == REG)
2793 rtx link;
2794 rtx i1_insn = 0, i1_val = 0, set;
2796 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2797 if ((set = single_set (XEXP (link, 0))) != 0
2798 && rtx_equal_p (i1dest, SET_DEST (set)))
2799 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2801 record_value_for_reg (i1dest, i1_insn, i1_val);
2803 regno = REGNO (i1dest);
2804 if (! added_sets_1 && ! i1dest_in_i1src)
2805 REG_N_SETS (regno)--;
2808 /* Update reg_nonzero_bits et al for any changes that may have been made
2809 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2810 important. Because newi2pat can affect nonzero_bits of newpat */
2811 if (newi2pat)
2812 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2813 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2815 /* Set new_direct_jump_p if a new return or simple jump instruction
2816 has been created.
2818 If I3 is now an unconditional jump, ensure that it has a
2819 BARRIER following it since it may have initially been a
2820 conditional jump. It may also be the last nonnote insn. */
2822 if (returnjump_p (i3) || any_uncondjump_p (i3))
2824 *new_direct_jump_p = 1;
2826 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2827 || GET_CODE (temp) != BARRIER)
2828 emit_barrier_after (i3);
2831 if (undobuf.other_insn != NULL_RTX
2832 && (returnjump_p (undobuf.other_insn)
2833 || any_uncondjump_p (undobuf.other_insn)))
2835 *new_direct_jump_p = 1;
2837 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2838 || GET_CODE (temp) != BARRIER)
2839 emit_barrier_after (undobuf.other_insn);
2842 /* An NOOP jump does not need barrier, but it does need cleaning up
2843 of CFG. */
2844 if (GET_CODE (newpat) == SET
2845 && SET_SRC (newpat) == pc_rtx
2846 && SET_DEST (newpat) == pc_rtx)
2847 *new_direct_jump_p = 1;
2850 combine_successes++;
2851 undo_commit ();
2853 if (added_links_insn
2854 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2855 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2856 return added_links_insn;
2857 else
2858 return newi2pat ? i2 : i3;
2861 /* Undo all the modifications recorded in undobuf. */
2863 static void
2864 undo_all ()
2866 struct undo *undo, *next;
2868 for (undo = undobuf.undos; undo; undo = next)
2870 next = undo->next;
2871 if (undo->is_int)
2872 *undo->where.i = undo->old_contents.i;
2873 else
2874 *undo->where.r = undo->old_contents.r;
2876 undo->next = undobuf.frees;
2877 undobuf.frees = undo;
2880 undobuf.undos = 0;
2883 /* We've committed to accepting the changes we made. Move all
2884 of the undos to the free list. */
2886 static void
2887 undo_commit ()
2889 struct undo *undo, *next;
2891 for (undo = undobuf.undos; undo; undo = next)
2893 next = undo->next;
2894 undo->next = undobuf.frees;
2895 undobuf.frees = undo;
2897 undobuf.undos = 0;
2901 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2902 where we have an arithmetic expression and return that point. LOC will
2903 be inside INSN.
2905 try_combine will call this function to see if an insn can be split into
2906 two insns. */
2908 static rtx *
2909 find_split_point (loc, insn)
2910 rtx *loc;
2911 rtx insn;
2913 rtx x = *loc;
2914 enum rtx_code code = GET_CODE (x);
2915 rtx *split;
2916 unsigned HOST_WIDE_INT len = 0;
2917 HOST_WIDE_INT pos = 0;
2918 int unsignedp = 0;
2919 rtx inner = NULL_RTX;
2921 /* First special-case some codes. */
2922 switch (code)
2924 case SUBREG:
2925 #ifdef INSN_SCHEDULING
2926 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2927 point. */
2928 if (GET_CODE (SUBREG_REG (x)) == MEM)
2929 return loc;
2930 #endif
2931 return find_split_point (&SUBREG_REG (x), insn);
2933 case MEM:
2934 #ifdef HAVE_lo_sum
2935 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2936 using LO_SUM and HIGH. */
2937 if (GET_CODE (XEXP (x, 0)) == CONST
2938 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2940 SUBST (XEXP (x, 0),
2941 gen_rtx_LO_SUM (Pmode,
2942 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2943 XEXP (x, 0)));
2944 return &XEXP (XEXP (x, 0), 0);
2946 #endif
2948 /* If we have a PLUS whose second operand is a constant and the
2949 address is not valid, perhaps will can split it up using
2950 the machine-specific way to split large constants. We use
2951 the first pseudo-reg (one of the virtual regs) as a placeholder;
2952 it will not remain in the result. */
2953 if (GET_CODE (XEXP (x, 0)) == PLUS
2954 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2955 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2957 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2958 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2959 subst_insn);
2961 /* This should have produced two insns, each of which sets our
2962 placeholder. If the source of the second is a valid address,
2963 we can make put both sources together and make a split point
2964 in the middle. */
2966 if (seq
2967 && NEXT_INSN (seq) != NULL_RTX
2968 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2969 && GET_CODE (seq) == INSN
2970 && GET_CODE (PATTERN (seq)) == SET
2971 && SET_DEST (PATTERN (seq)) == reg
2972 && ! reg_mentioned_p (reg,
2973 SET_SRC (PATTERN (seq)))
2974 && GET_CODE (NEXT_INSN (seq)) == INSN
2975 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2976 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2977 && memory_address_p (GET_MODE (x),
2978 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2980 rtx src1 = SET_SRC (PATTERN (seq));
2981 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2983 /* Replace the placeholder in SRC2 with SRC1. If we can
2984 find where in SRC2 it was placed, that can become our
2985 split point and we can replace this address with SRC2.
2986 Just try two obvious places. */
2988 src2 = replace_rtx (src2, reg, src1);
2989 split = 0;
2990 if (XEXP (src2, 0) == src1)
2991 split = &XEXP (src2, 0);
2992 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2993 && XEXP (XEXP (src2, 0), 0) == src1)
2994 split = &XEXP (XEXP (src2, 0), 0);
2996 if (split)
2998 SUBST (XEXP (x, 0), src2);
2999 return split;
3003 /* If that didn't work, perhaps the first operand is complex and
3004 needs to be computed separately, so make a split point there.
3005 This will occur on machines that just support REG + CONST
3006 and have a constant moved through some previous computation. */
3008 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3009 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3010 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3011 == 'o')))
3012 return &XEXP (XEXP (x, 0), 0);
3014 break;
3016 case SET:
3017 #ifdef HAVE_cc0
3018 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3019 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3020 we need to put the operand into a register. So split at that
3021 point. */
3023 if (SET_DEST (x) == cc0_rtx
3024 && GET_CODE (SET_SRC (x)) != COMPARE
3025 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3026 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3027 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3028 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3029 return &SET_SRC (x);
3030 #endif
3032 /* See if we can split SET_SRC as it stands. */
3033 split = find_split_point (&SET_SRC (x), insn);
3034 if (split && split != &SET_SRC (x))
3035 return split;
3037 /* See if we can split SET_DEST as it stands. */
3038 split = find_split_point (&SET_DEST (x), insn);
3039 if (split && split != &SET_DEST (x))
3040 return split;
3042 /* See if this is a bitfield assignment with everything constant. If
3043 so, this is an IOR of an AND, so split it into that. */
3044 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3045 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3046 <= HOST_BITS_PER_WIDE_INT)
3047 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3048 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3049 && GET_CODE (SET_SRC (x)) == CONST_INT
3050 && ((INTVAL (XEXP (SET_DEST (x), 1))
3051 + INTVAL (XEXP (SET_DEST (x), 2)))
3052 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3053 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3055 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3056 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3057 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3058 rtx dest = XEXP (SET_DEST (x), 0);
3059 enum machine_mode mode = GET_MODE (dest);
3060 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3062 if (BITS_BIG_ENDIAN)
3063 pos = GET_MODE_BITSIZE (mode) - len - pos;
3065 if (src == mask)
3066 SUBST (SET_SRC (x),
3067 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3068 else
3069 SUBST (SET_SRC (x),
3070 gen_binary (IOR, mode,
3071 gen_binary (AND, mode, dest,
3072 gen_int_mode (~(mask << pos),
3073 mode)),
3074 GEN_INT (src << pos)));
3076 SUBST (SET_DEST (x), dest);
3078 split = find_split_point (&SET_SRC (x), insn);
3079 if (split && split != &SET_SRC (x))
3080 return split;
3083 /* Otherwise, see if this is an operation that we can split into two.
3084 If so, try to split that. */
3085 code = GET_CODE (SET_SRC (x));
3087 switch (code)
3089 case AND:
3090 /* If we are AND'ing with a large constant that is only a single
3091 bit and the result is only being used in a context where we
3092 need to know if it is zero or nonzero, replace it with a bit
3093 extraction. This will avoid the large constant, which might
3094 have taken more than one insn to make. If the constant were
3095 not a valid argument to the AND but took only one insn to make,
3096 this is no worse, but if it took more than one insn, it will
3097 be better. */
3099 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3100 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3101 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3102 && GET_CODE (SET_DEST (x)) == REG
3103 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3104 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3105 && XEXP (*split, 0) == SET_DEST (x)
3106 && XEXP (*split, 1) == const0_rtx)
3108 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3109 XEXP (SET_SRC (x), 0),
3110 pos, NULL_RTX, 1, 1, 0, 0);
3111 if (extraction != 0)
3113 SUBST (SET_SRC (x), extraction);
3114 return find_split_point (loc, insn);
3117 break;
3119 case NE:
3120 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3121 is known to be on, this can be converted into a NEG of a shift. */
3122 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3123 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3124 && 1 <= (pos = exact_log2
3125 (nonzero_bits (XEXP (SET_SRC (x), 0),
3126 GET_MODE (XEXP (SET_SRC (x), 0))))))
3128 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3130 SUBST (SET_SRC (x),
3131 gen_rtx_NEG (mode,
3132 gen_rtx_LSHIFTRT (mode,
3133 XEXP (SET_SRC (x), 0),
3134 GEN_INT (pos))));
3136 split = find_split_point (&SET_SRC (x), insn);
3137 if (split && split != &SET_SRC (x))
3138 return split;
3140 break;
3142 case SIGN_EXTEND:
3143 inner = XEXP (SET_SRC (x), 0);
3145 /* We can't optimize if either mode is a partial integer
3146 mode as we don't know how many bits are significant
3147 in those modes. */
3148 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3149 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3150 break;
3152 pos = 0;
3153 len = GET_MODE_BITSIZE (GET_MODE (inner));
3154 unsignedp = 0;
3155 break;
3157 case SIGN_EXTRACT:
3158 case ZERO_EXTRACT:
3159 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3160 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3162 inner = XEXP (SET_SRC (x), 0);
3163 len = INTVAL (XEXP (SET_SRC (x), 1));
3164 pos = INTVAL (XEXP (SET_SRC (x), 2));
3166 if (BITS_BIG_ENDIAN)
3167 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3168 unsignedp = (code == ZERO_EXTRACT);
3170 break;
3172 default:
3173 break;
3176 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3178 enum machine_mode mode = GET_MODE (SET_SRC (x));
3180 /* For unsigned, we have a choice of a shift followed by an
3181 AND or two shifts. Use two shifts for field sizes where the
3182 constant might be too large. We assume here that we can
3183 always at least get 8-bit constants in an AND insn, which is
3184 true for every current RISC. */
3186 if (unsignedp && len <= 8)
3188 SUBST (SET_SRC (x),
3189 gen_rtx_AND (mode,
3190 gen_rtx_LSHIFTRT
3191 (mode, gen_lowpart_for_combine (mode, inner),
3192 GEN_INT (pos)),
3193 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3195 split = find_split_point (&SET_SRC (x), insn);
3196 if (split && split != &SET_SRC (x))
3197 return split;
3199 else
3201 SUBST (SET_SRC (x),
3202 gen_rtx_fmt_ee
3203 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3204 gen_rtx_ASHIFT (mode,
3205 gen_lowpart_for_combine (mode, inner),
3206 GEN_INT (GET_MODE_BITSIZE (mode)
3207 - len - pos)),
3208 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3210 split = find_split_point (&SET_SRC (x), insn);
3211 if (split && split != &SET_SRC (x))
3212 return split;
3216 /* See if this is a simple operation with a constant as the second
3217 operand. It might be that this constant is out of range and hence
3218 could be used as a split point. */
3219 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3220 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3221 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3222 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3223 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3224 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3225 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3226 == 'o'))))
3227 return &XEXP (SET_SRC (x), 1);
3229 /* Finally, see if this is a simple operation with its first operand
3230 not in a register. The operation might require this operand in a
3231 register, so return it as a split point. We can always do this
3232 because if the first operand were another operation, we would have
3233 already found it as a split point. */
3234 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3235 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3236 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3237 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3238 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3239 return &XEXP (SET_SRC (x), 0);
3241 return 0;
3243 case AND:
3244 case IOR:
3245 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3246 it is better to write this as (not (ior A B)) so we can split it.
3247 Similarly for IOR. */
3248 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3250 SUBST (*loc,
3251 gen_rtx_NOT (GET_MODE (x),
3252 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3253 GET_MODE (x),
3254 XEXP (XEXP (x, 0), 0),
3255 XEXP (XEXP (x, 1), 0))));
3256 return find_split_point (loc, insn);
3259 /* Many RISC machines have a large set of logical insns. If the
3260 second operand is a NOT, put it first so we will try to split the
3261 other operand first. */
3262 if (GET_CODE (XEXP (x, 1)) == NOT)
3264 rtx tem = XEXP (x, 0);
3265 SUBST (XEXP (x, 0), XEXP (x, 1));
3266 SUBST (XEXP (x, 1), tem);
3268 break;
3270 default:
3271 break;
3274 /* Otherwise, select our actions depending on our rtx class. */
3275 switch (GET_RTX_CLASS (code))
3277 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3278 case '3':
3279 split = find_split_point (&XEXP (x, 2), insn);
3280 if (split)
3281 return split;
3282 /* ... fall through ... */
3283 case '2':
3284 case 'c':
3285 case '<':
3286 split = find_split_point (&XEXP (x, 1), insn);
3287 if (split)
3288 return split;
3289 /* ... fall through ... */
3290 case '1':
3291 /* Some machines have (and (shift ...) ...) insns. If X is not
3292 an AND, but XEXP (X, 0) is, use it as our split point. */
3293 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3294 return &XEXP (x, 0);
3296 split = find_split_point (&XEXP (x, 0), insn);
3297 if (split)
3298 return split;
3299 return loc;
3302 /* Otherwise, we don't have a split point. */
3303 return 0;
3306 /* Throughout X, replace FROM with TO, and return the result.
3307 The result is TO if X is FROM;
3308 otherwise the result is X, but its contents may have been modified.
3309 If they were modified, a record was made in undobuf so that
3310 undo_all will (among other things) return X to its original state.
3312 If the number of changes necessary is too much to record to undo,
3313 the excess changes are not made, so the result is invalid.
3314 The changes already made can still be undone.
3315 undobuf.num_undo is incremented for such changes, so by testing that
3316 the caller can tell whether the result is valid.
3318 `n_occurrences' is incremented each time FROM is replaced.
3320 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3322 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3323 by copying if `n_occurrences' is nonzero. */
3325 static rtx
3326 subst (x, from, to, in_dest, unique_copy)
3327 rtx x, from, to;
3328 int in_dest;
3329 int unique_copy;
3331 enum rtx_code code = GET_CODE (x);
3332 enum machine_mode op0_mode = VOIDmode;
3333 const char *fmt;
3334 int len, i;
3335 rtx new;
3337 /* Two expressions are equal if they are identical copies of a shared
3338 RTX or if they are both registers with the same register number
3339 and mode. */
3341 #define COMBINE_RTX_EQUAL_P(X,Y) \
3342 ((X) == (Y) \
3343 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3344 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3346 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3348 n_occurrences++;
3349 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3352 /* If X and FROM are the same register but different modes, they will
3353 not have been seen as equal above. However, flow.c will make a
3354 LOG_LINKS entry for that case. If we do nothing, we will try to
3355 rerecognize our original insn and, when it succeeds, we will
3356 delete the feeding insn, which is incorrect.
3358 So force this insn not to match in this (rare) case. */
3359 if (! in_dest && code == REG && GET_CODE (from) == REG
3360 && REGNO (x) == REGNO (from))
3361 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3363 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3364 of which may contain things that can be combined. */
3365 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3366 return x;
3368 /* It is possible to have a subexpression appear twice in the insn.
3369 Suppose that FROM is a register that appears within TO.
3370 Then, after that subexpression has been scanned once by `subst',
3371 the second time it is scanned, TO may be found. If we were
3372 to scan TO here, we would find FROM within it and create a
3373 self-referent rtl structure which is completely wrong. */
3374 if (COMBINE_RTX_EQUAL_P (x, to))
3375 return to;
3377 /* Parallel asm_operands need special attention because all of the
3378 inputs are shared across the arms. Furthermore, unsharing the
3379 rtl results in recognition failures. Failure to handle this case
3380 specially can result in circular rtl.
3382 Solve this by doing a normal pass across the first entry of the
3383 parallel, and only processing the SET_DESTs of the subsequent
3384 entries. Ug. */
3386 if (code == PARALLEL
3387 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3388 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3390 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3392 /* If this substitution failed, this whole thing fails. */
3393 if (GET_CODE (new) == CLOBBER
3394 && XEXP (new, 0) == const0_rtx)
3395 return new;
3397 SUBST (XVECEXP (x, 0, 0), new);
3399 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3401 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3403 if (GET_CODE (dest) != REG
3404 && GET_CODE (dest) != CC0
3405 && GET_CODE (dest) != PC)
3407 new = subst (dest, from, to, 0, unique_copy);
3409 /* If this substitution failed, this whole thing fails. */
3410 if (GET_CODE (new) == CLOBBER
3411 && XEXP (new, 0) == const0_rtx)
3412 return new;
3414 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3418 else
3420 len = GET_RTX_LENGTH (code);
3421 fmt = GET_RTX_FORMAT (code);
3423 /* We don't need to process a SET_DEST that is a register, CC0,
3424 or PC, so set up to skip this common case. All other cases
3425 where we want to suppress replacing something inside a
3426 SET_SRC are handled via the IN_DEST operand. */
3427 if (code == SET
3428 && (GET_CODE (SET_DEST (x)) == REG
3429 || GET_CODE (SET_DEST (x)) == CC0
3430 || GET_CODE (SET_DEST (x)) == PC))
3431 fmt = "ie";
3433 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3434 constant. */
3435 if (fmt[0] == 'e')
3436 op0_mode = GET_MODE (XEXP (x, 0));
3438 for (i = 0; i < len; i++)
3440 if (fmt[i] == 'E')
3442 int j;
3443 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3445 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3447 new = (unique_copy && n_occurrences
3448 ? copy_rtx (to) : to);
3449 n_occurrences++;
3451 else
3453 new = subst (XVECEXP (x, i, j), from, to, 0,
3454 unique_copy);
3456 /* If this substitution failed, this whole thing
3457 fails. */
3458 if (GET_CODE (new) == CLOBBER
3459 && XEXP (new, 0) == const0_rtx)
3460 return new;
3463 SUBST (XVECEXP (x, i, j), new);
3466 else if (fmt[i] == 'e')
3468 /* If this is a register being set, ignore it. */
3469 new = XEXP (x, i);
3470 if (in_dest
3471 && (code == SUBREG || code == STRICT_LOW_PART
3472 || code == ZERO_EXTRACT)
3473 && i == 0
3474 && GET_CODE (new) == REG)
3477 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3479 /* In general, don't install a subreg involving two
3480 modes not tieable. It can worsen register
3481 allocation, and can even make invalid reload
3482 insns, since the reg inside may need to be copied
3483 from in the outside mode, and that may be invalid
3484 if it is an fp reg copied in integer mode.
3486 We allow two exceptions to this: It is valid if
3487 it is inside another SUBREG and the mode of that
3488 SUBREG and the mode of the inside of TO is
3489 tieable and it is valid if X is a SET that copies
3490 FROM to CC0. */
3492 if (GET_CODE (to) == SUBREG
3493 && ! MODES_TIEABLE_P (GET_MODE (to),
3494 GET_MODE (SUBREG_REG (to)))
3495 && ! (code == SUBREG
3496 && MODES_TIEABLE_P (GET_MODE (x),
3497 GET_MODE (SUBREG_REG (to))))
3498 #ifdef HAVE_cc0
3499 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3500 #endif
3502 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3504 #ifdef CANNOT_CHANGE_MODE_CLASS
3505 if (code == SUBREG
3506 && GET_CODE (to) == REG
3507 && REGNO (to) < FIRST_PSEUDO_REGISTER
3508 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3509 GET_MODE (to),
3510 GET_MODE (x)))
3511 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3512 #endif
3514 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3515 n_occurrences++;
3517 else
3518 /* If we are in a SET_DEST, suppress most cases unless we
3519 have gone inside a MEM, in which case we want to
3520 simplify the address. We assume here that things that
3521 are actually part of the destination have their inner
3522 parts in the first expression. This is true for SUBREG,
3523 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3524 things aside from REG and MEM that should appear in a
3525 SET_DEST. */
3526 new = subst (XEXP (x, i), from, to,
3527 (((in_dest
3528 && (code == SUBREG || code == STRICT_LOW_PART
3529 || code == ZERO_EXTRACT))
3530 || code == SET)
3531 && i == 0), unique_copy);
3533 /* If we found that we will have to reject this combination,
3534 indicate that by returning the CLOBBER ourselves, rather than
3535 an expression containing it. This will speed things up as
3536 well as prevent accidents where two CLOBBERs are considered
3537 to be equal, thus producing an incorrect simplification. */
3539 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3540 return new;
3542 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3544 enum machine_mode mode = GET_MODE (x);
3546 x = simplify_subreg (GET_MODE (x), new,
3547 GET_MODE (SUBREG_REG (x)),
3548 SUBREG_BYTE (x));
3549 if (! x)
3550 x = gen_rtx_CLOBBER (mode, const0_rtx);
3552 else if (GET_CODE (new) == CONST_INT
3553 && GET_CODE (x) == ZERO_EXTEND)
3555 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3556 new, GET_MODE (XEXP (x, 0)));
3557 if (! x)
3558 abort ();
3560 else
3561 SUBST (XEXP (x, i), new);
3566 /* Try to simplify X. If the simplification changed the code, it is likely
3567 that further simplification will help, so loop, but limit the number
3568 of repetitions that will be performed. */
3570 for (i = 0; i < 4; i++)
3572 /* If X is sufficiently simple, don't bother trying to do anything
3573 with it. */
3574 if (code != CONST_INT && code != REG && code != CLOBBER)
3575 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3577 if (GET_CODE (x) == code)
3578 break;
3580 code = GET_CODE (x);
3582 /* We no longer know the original mode of operand 0 since we
3583 have changed the form of X) */
3584 op0_mode = VOIDmode;
3587 return x;
3590 /* Simplify X, a piece of RTL. We just operate on the expression at the
3591 outer level; call `subst' to simplify recursively. Return the new
3592 expression.
3594 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3595 will be the iteration even if an expression with a code different from
3596 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3598 static rtx
3599 combine_simplify_rtx (x, op0_mode, last, in_dest)
3600 rtx x;
3601 enum machine_mode op0_mode;
3602 int last;
3603 int in_dest;
3605 enum rtx_code code = GET_CODE (x);
3606 enum machine_mode mode = GET_MODE (x);
3607 rtx temp;
3608 rtx reversed;
3609 int i;
3611 /* If this is a commutative operation, put a constant last and a complex
3612 expression first. We don't need to do this for comparisons here. */
3613 if (GET_RTX_CLASS (code) == 'c'
3614 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3616 temp = XEXP (x, 0);
3617 SUBST (XEXP (x, 0), XEXP (x, 1));
3618 SUBST (XEXP (x, 1), temp);
3621 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3622 sign extension of a PLUS with a constant, reverse the order of the sign
3623 extension and the addition. Note that this not the same as the original
3624 code, but overflow is undefined for signed values. Also note that the
3625 PLUS will have been partially moved "inside" the sign-extension, so that
3626 the first operand of X will really look like:
3627 (ashiftrt (plus (ashift A C4) C5) C4).
3628 We convert this to
3629 (plus (ashiftrt (ashift A C4) C2) C4)
3630 and replace the first operand of X with that expression. Later parts
3631 of this function may simplify the expression further.
3633 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3634 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3635 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3637 We do this to simplify address expressions. */
3639 if ((code == PLUS || code == MINUS || code == MULT)
3640 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3641 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3642 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3643 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3644 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3645 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3646 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3647 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3648 XEXP (XEXP (XEXP (x, 0), 0), 1),
3649 XEXP (XEXP (x, 0), 1))) != 0)
3651 rtx new
3652 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3653 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3654 INTVAL (XEXP (XEXP (x, 0), 1)));
3656 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3657 INTVAL (XEXP (XEXP (x, 0), 1)));
3659 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3662 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3663 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3664 things. Check for cases where both arms are testing the same
3665 condition.
3667 Don't do anything if all operands are very simple. */
3669 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3670 || GET_RTX_CLASS (code) == '<')
3671 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3672 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3673 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3674 == 'o')))
3675 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3676 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3677 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3678 == 'o')))))
3679 || (GET_RTX_CLASS (code) == '1'
3680 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3681 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3682 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3683 == 'o'))))))
3685 rtx cond, true_rtx, false_rtx;
3687 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3688 if (cond != 0
3689 /* If everything is a comparison, what we have is highly unlikely
3690 to be simpler, so don't use it. */
3691 && ! (GET_RTX_CLASS (code) == '<'
3692 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3693 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3695 rtx cop1 = const0_rtx;
3696 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3698 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3699 return x;
3701 /* Simplify the alternative arms; this may collapse the true and
3702 false arms to store-flag values. */
3703 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3704 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3706 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3707 is unlikely to be simpler. */
3708 if (general_operand (true_rtx, VOIDmode)
3709 && general_operand (false_rtx, VOIDmode))
3711 enum rtx_code reversed;
3713 /* Restarting if we generate a store-flag expression will cause
3714 us to loop. Just drop through in this case. */
3716 /* If the result values are STORE_FLAG_VALUE and zero, we can
3717 just make the comparison operation. */
3718 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3719 x = gen_binary (cond_code, mode, cond, cop1);
3720 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3721 && ((reversed = reversed_comparison_code_parts
3722 (cond_code, cond, cop1, NULL))
3723 != UNKNOWN))
3724 x = gen_binary (reversed, mode, cond, cop1);
3726 /* Likewise, we can make the negate of a comparison operation
3727 if the result values are - STORE_FLAG_VALUE and zero. */
3728 else if (GET_CODE (true_rtx) == CONST_INT
3729 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3730 && false_rtx == const0_rtx)
3731 x = simplify_gen_unary (NEG, mode,
3732 gen_binary (cond_code, mode, cond,
3733 cop1),
3734 mode);
3735 else if (GET_CODE (false_rtx) == CONST_INT
3736 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3737 && true_rtx == const0_rtx
3738 && ((reversed = reversed_comparison_code_parts
3739 (cond_code, cond, cop1, NULL))
3740 != UNKNOWN))
3741 x = simplify_gen_unary (NEG, mode,
3742 gen_binary (reversed, mode,
3743 cond, cop1),
3744 mode);
3745 else
3746 return gen_rtx_IF_THEN_ELSE (mode,
3747 gen_binary (cond_code, VOIDmode,
3748 cond, cop1),
3749 true_rtx, false_rtx);
3751 code = GET_CODE (x);
3752 op0_mode = VOIDmode;
3757 /* Try to fold this expression in case we have constants that weren't
3758 present before. */
3759 temp = 0;
3760 switch (GET_RTX_CLASS (code))
3762 case '1':
3763 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3764 break;
3765 case '<':
3767 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3768 if (cmp_mode == VOIDmode)
3770 cmp_mode = GET_MODE (XEXP (x, 1));
3771 if (cmp_mode == VOIDmode)
3772 cmp_mode = op0_mode;
3774 temp = simplify_relational_operation (code, cmp_mode,
3775 XEXP (x, 0), XEXP (x, 1));
3777 #ifdef FLOAT_STORE_FLAG_VALUE
3778 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3780 if (temp == const0_rtx)
3781 temp = CONST0_RTX (mode);
3782 else
3783 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3784 mode);
3786 #endif
3787 break;
3788 case 'c':
3789 case '2':
3790 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3791 break;
3792 case 'b':
3793 case '3':
3794 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3795 XEXP (x, 1), XEXP (x, 2));
3796 break;
3799 if (temp)
3801 x = temp;
3802 code = GET_CODE (temp);
3803 op0_mode = VOIDmode;
3804 mode = GET_MODE (temp);
3807 /* First see if we can apply the inverse distributive law. */
3808 if (code == PLUS || code == MINUS
3809 || code == AND || code == IOR || code == XOR)
3811 x = apply_distributive_law (x);
3812 code = GET_CODE (x);
3813 op0_mode = VOIDmode;
3816 /* If CODE is an associative operation not otherwise handled, see if we
3817 can associate some operands. This can win if they are constants or
3818 if they are logically related (i.e. (a & b) & a). */
3819 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3820 || code == AND || code == IOR || code == XOR
3821 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3822 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3823 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3825 if (GET_CODE (XEXP (x, 0)) == code)
3827 rtx other = XEXP (XEXP (x, 0), 0);
3828 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3829 rtx inner_op1 = XEXP (x, 1);
3830 rtx inner;
3832 /* Make sure we pass the constant operand if any as the second
3833 one if this is a commutative operation. */
3834 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3836 rtx tem = inner_op0;
3837 inner_op0 = inner_op1;
3838 inner_op1 = tem;
3840 inner = simplify_binary_operation (code == MINUS ? PLUS
3841 : code == DIV ? MULT
3842 : code,
3843 mode, inner_op0, inner_op1);
3845 /* For commutative operations, try the other pair if that one
3846 didn't simplify. */
3847 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3849 other = XEXP (XEXP (x, 0), 1);
3850 inner = simplify_binary_operation (code, mode,
3851 XEXP (XEXP (x, 0), 0),
3852 XEXP (x, 1));
3855 if (inner)
3856 return gen_binary (code, mode, other, inner);
3860 /* A little bit of algebraic simplification here. */
3861 switch (code)
3863 case MEM:
3864 /* Ensure that our address has any ASHIFTs converted to MULT in case
3865 address-recognizing predicates are called later. */
3866 temp = make_compound_operation (XEXP (x, 0), MEM);
3867 SUBST (XEXP (x, 0), temp);
3868 break;
3870 case SUBREG:
3871 if (op0_mode == VOIDmode)
3872 op0_mode = GET_MODE (SUBREG_REG (x));
3874 /* simplify_subreg can't use gen_lowpart_for_combine. */
3875 if (CONSTANT_P (SUBREG_REG (x))
3876 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3877 /* Don't call gen_lowpart_for_combine if the inner mode
3878 is VOIDmode and we cannot simplify it, as SUBREG without
3879 inner mode is invalid. */
3880 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3881 || gen_lowpart_common (mode, SUBREG_REG (x))))
3882 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3884 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3885 break;
3887 rtx temp;
3888 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3889 SUBREG_BYTE (x));
3890 if (temp)
3891 return temp;
3894 /* Don't change the mode of the MEM if that would change the meaning
3895 of the address. */
3896 if (GET_CODE (SUBREG_REG (x)) == MEM
3897 && (MEM_VOLATILE_P (SUBREG_REG (x))
3898 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3899 return gen_rtx_CLOBBER (mode, const0_rtx);
3901 /* Note that we cannot do any narrowing for non-constants since
3902 we might have been counting on using the fact that some bits were
3903 zero. We now do this in the SET. */
3905 break;
3907 case NOT:
3908 /* (not (plus X -1)) can become (neg X). */
3909 if (GET_CODE (XEXP (x, 0)) == PLUS
3910 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3911 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3913 /* Similarly, (not (neg X)) is (plus X -1). */
3914 if (GET_CODE (XEXP (x, 0)) == NEG)
3915 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3917 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3918 if (GET_CODE (XEXP (x, 0)) == XOR
3919 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3920 && (temp = simplify_unary_operation (NOT, mode,
3921 XEXP (XEXP (x, 0), 1),
3922 mode)) != 0)
3923 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3925 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3926 other than 1, but that is not valid. We could do a similar
3927 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3928 but this doesn't seem common enough to bother with. */
3929 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3930 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3931 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3932 const1_rtx, mode),
3933 XEXP (XEXP (x, 0), 1));
3935 if (GET_CODE (XEXP (x, 0)) == SUBREG
3936 && subreg_lowpart_p (XEXP (x, 0))
3937 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3938 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3939 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3940 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3942 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3944 x = gen_rtx_ROTATE (inner_mode,
3945 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3946 inner_mode),
3947 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3948 return gen_lowpart_for_combine (mode, x);
3951 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3952 reversing the comparison code if valid. */
3953 if (STORE_FLAG_VALUE == -1
3954 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3955 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3956 XEXP (XEXP (x, 0), 1))))
3957 return reversed;
3959 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3960 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3961 perform the above simplification. */
3963 if (STORE_FLAG_VALUE == -1
3964 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3965 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3966 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3967 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3969 /* Apply De Morgan's laws to reduce number of patterns for machines
3970 with negating logical insns (and-not, nand, etc.). If result has
3971 only one NOT, put it first, since that is how the patterns are
3972 coded. */
3974 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3976 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3977 enum machine_mode op_mode;
3979 op_mode = GET_MODE (in1);
3980 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3982 op_mode = GET_MODE (in2);
3983 if (op_mode == VOIDmode)
3984 op_mode = mode;
3985 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3987 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3989 rtx tem = in2;
3990 in2 = in1; in1 = tem;
3993 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3994 mode, in1, in2);
3996 break;
3998 case NEG:
3999 /* (neg (plus X 1)) can become (not X). */
4000 if (GET_CODE (XEXP (x, 0)) == PLUS
4001 && XEXP (XEXP (x, 0), 1) == const1_rtx)
4002 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
4004 /* Similarly, (neg (not X)) is (plus X 1). */
4005 if (GET_CODE (XEXP (x, 0)) == NOT)
4006 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
4008 /* (neg (minus X Y)) can become (minus Y X). This transformation
4009 isn't safe for modes with signed zeros, since if X and Y are
4010 both +0, (minus Y X) is the same as (minus X Y). If the rounding
4011 mode is towards +infinity (or -infinity) then the two expressions
4012 will be rounded differently. */
4013 if (GET_CODE (XEXP (x, 0)) == MINUS
4014 && !HONOR_SIGNED_ZEROS (mode)
4015 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4016 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4017 XEXP (XEXP (x, 0), 0));
4019 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
4020 if (GET_CODE (XEXP (x, 0)) == PLUS
4021 && !HONOR_SIGNED_ZEROS (mode)
4022 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4024 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
4025 temp = combine_simplify_rtx (temp, mode, last, in_dest);
4026 return gen_binary (MINUS, mode, temp, XEXP (XEXP (x, 0), 1));
4029 /* (neg (mult A B)) becomes (mult (neg A) B).
4030 This works even for floating-point values. */
4031 if (GET_CODE (XEXP (x, 0)) == MULT)
4033 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
4034 return gen_binary (MULT, mode, temp, XEXP (XEXP (x, 0), 1));
4037 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4038 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4039 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4040 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4042 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4043 if we can then eliminate the NEG (e.g.,
4044 if the operand is a constant). */
4046 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4048 temp = simplify_unary_operation (NEG, mode,
4049 XEXP (XEXP (x, 0), 0), mode);
4050 if (temp)
4051 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4054 temp = expand_compound_operation (XEXP (x, 0));
4056 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4057 replaced by (lshiftrt X C). This will convert
4058 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4060 if (GET_CODE (temp) == ASHIFTRT
4061 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4062 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4063 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4064 INTVAL (XEXP (temp, 1)));
4066 /* If X has only a single bit that might be nonzero, say, bit I, convert
4067 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4068 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4069 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4070 or a SUBREG of one since we'd be making the expression more
4071 complex if it was just a register. */
4073 if (GET_CODE (temp) != REG
4074 && ! (GET_CODE (temp) == SUBREG
4075 && GET_CODE (SUBREG_REG (temp)) == REG)
4076 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4078 rtx temp1 = simplify_shift_const
4079 (NULL_RTX, ASHIFTRT, mode,
4080 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4081 GET_MODE_BITSIZE (mode) - 1 - i),
4082 GET_MODE_BITSIZE (mode) - 1 - i);
4084 /* If all we did was surround TEMP with the two shifts, we
4085 haven't improved anything, so don't use it. Otherwise,
4086 we are better off with TEMP1. */
4087 if (GET_CODE (temp1) != ASHIFTRT
4088 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4089 || XEXP (XEXP (temp1, 0), 0) != temp)
4090 return temp1;
4092 break;
4094 case TRUNCATE:
4095 /* We can't handle truncation to a partial integer mode here
4096 because we don't know the real bitsize of the partial
4097 integer mode. */
4098 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4099 break;
4101 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4102 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4103 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4104 SUBST (XEXP (x, 0),
4105 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4106 GET_MODE_MASK (mode), NULL_RTX, 0));
4108 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4109 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4110 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4111 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4112 return XEXP (XEXP (x, 0), 0);
4114 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4115 (OP:SI foo:SI) if OP is NEG or ABS. */
4116 if ((GET_CODE (XEXP (x, 0)) == ABS
4117 || GET_CODE (XEXP (x, 0)) == NEG)
4118 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4119 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4120 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4121 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4122 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4124 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4125 (truncate:SI x). */
4126 if (GET_CODE (XEXP (x, 0)) == SUBREG
4127 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4128 && subreg_lowpart_p (XEXP (x, 0)))
4129 return SUBREG_REG (XEXP (x, 0));
4131 /* If we know that the value is already truncated, we can
4132 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4133 is nonzero for the corresponding modes. But don't do this
4134 for an (LSHIFTRT (MULT ...)) since this will cause problems
4135 with the umulXi3_highpart patterns. */
4136 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4137 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4138 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4139 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4140 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4141 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4142 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4144 /* A truncate of a comparison can be replaced with a subreg if
4145 STORE_FLAG_VALUE permits. This is like the previous test,
4146 but it works even if the comparison is done in a mode larger
4147 than HOST_BITS_PER_WIDE_INT. */
4148 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4149 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4150 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4151 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4153 /* Similarly, a truncate of a register whose value is a
4154 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4155 permits. */
4156 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4157 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4158 && (temp = get_last_value (XEXP (x, 0)))
4159 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4160 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4162 break;
4164 case FLOAT_TRUNCATE:
4165 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4166 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4167 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4168 return XEXP (XEXP (x, 0), 0);
4170 /* (float_truncate:SF (float_truncate:DF foo:XF))
4171 = (float_truncate:SF foo:XF).
4172 This may elliminate double rounding, so it is unsafe.
4174 (float_truncate:SF (float_extend:XF foo:DF))
4175 = (float_truncate:SF foo:DF).
4177 (float_truncate:DF (float_extend:XF foo:SF))
4178 = (float_extend:SF foo:DF). */
4179 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4180 && flag_unsafe_math_optimizations)
4181 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4182 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4183 0)))
4184 > GET_MODE_SIZE (mode)
4185 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4186 mode,
4187 XEXP (XEXP (x, 0), 0), mode);
4189 /* (float_truncate (float x)) is (float x) */
4190 if (GET_CODE (XEXP (x, 0)) == FLOAT
4191 && (flag_unsafe_math_optimizations
4192 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4193 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4194 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4195 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4196 return simplify_gen_unary (FLOAT, mode,
4197 XEXP (XEXP (x, 0), 0),
4198 GET_MODE (XEXP (XEXP (x, 0), 0)));
4200 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4201 (OP:SF foo:SF) if OP is NEG or ABS. */
4202 if ((GET_CODE (XEXP (x, 0)) == ABS
4203 || GET_CODE (XEXP (x, 0)) == NEG)
4204 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4205 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4206 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4207 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4209 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4210 is (float_truncate:SF x). */
4211 if (GET_CODE (XEXP (x, 0)) == SUBREG
4212 && subreg_lowpart_p (XEXP (x, 0))
4213 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4214 return SUBREG_REG (XEXP (x, 0));
4215 break;
4216 case FLOAT_EXTEND:
4217 /* (float_extend (float_extend x)) is (float_extend x)
4219 (float_extend (float x)) is (float x) assuming that double
4220 rounding can't happen.
4222 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4223 || (GET_CODE (XEXP (x, 0)) == FLOAT
4224 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4225 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4226 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4227 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4228 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4229 XEXP (XEXP (x, 0), 0),
4230 GET_MODE (XEXP (XEXP (x, 0), 0)));
4232 break;
4233 #ifdef HAVE_cc0
4234 case COMPARE:
4235 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4236 using cc0, in which case we want to leave it as a COMPARE
4237 so we can distinguish it from a register-register-copy. */
4238 if (XEXP (x, 1) == const0_rtx)
4239 return XEXP (x, 0);
4241 /* x - 0 is the same as x unless x's mode has signed zeros and
4242 allows rounding towards -infinity. Under those conditions,
4243 0 - 0 is -0. */
4244 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4245 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4246 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4247 return XEXP (x, 0);
4248 break;
4249 #endif
4251 case CONST:
4252 /* (const (const X)) can become (const X). Do it this way rather than
4253 returning the inner CONST since CONST can be shared with a
4254 REG_EQUAL note. */
4255 if (GET_CODE (XEXP (x, 0)) == CONST)
4256 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4257 break;
4259 #ifdef HAVE_lo_sum
4260 case LO_SUM:
4261 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4262 can add in an offset. find_split_point will split this address up
4263 again if it doesn't match. */
4264 if (GET_CODE (XEXP (x, 0)) == HIGH
4265 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4266 return XEXP (x, 1);
4267 break;
4268 #endif
4270 case PLUS:
4271 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4273 if (GET_CODE (XEXP (x, 0)) == MULT
4274 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4276 rtx in1, in2;
4278 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4279 in2 = XEXP (XEXP (x, 0), 1);
4280 return gen_binary (MINUS, mode, XEXP (x, 1),
4281 gen_binary (MULT, mode, in1, in2));
4284 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4285 outermost. That's because that's the way indexed addresses are
4286 supposed to appear. This code used to check many more cases, but
4287 they are now checked elsewhere. */
4288 if (GET_CODE (XEXP (x, 0)) == PLUS
4289 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4290 return gen_binary (PLUS, mode,
4291 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4292 XEXP (x, 1)),
4293 XEXP (XEXP (x, 0), 1));
4295 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4296 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4297 bit-field and can be replaced by either a sign_extend or a
4298 sign_extract. The `and' may be a zero_extend and the two
4299 <c>, -<c> constants may be reversed. */
4300 if (GET_CODE (XEXP (x, 0)) == XOR
4301 && GET_CODE (XEXP (x, 1)) == CONST_INT
4302 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4303 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4304 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4305 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4306 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4307 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4308 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4309 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4310 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4311 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4312 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4313 == (unsigned int) i + 1))))
4314 return simplify_shift_const
4315 (NULL_RTX, ASHIFTRT, mode,
4316 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4317 XEXP (XEXP (XEXP (x, 0), 0), 0),
4318 GET_MODE_BITSIZE (mode) - (i + 1)),
4319 GET_MODE_BITSIZE (mode) - (i + 1));
4321 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4322 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4323 is 1. This produces better code than the alternative immediately
4324 below. */
4325 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4326 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4327 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4328 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4329 XEXP (XEXP (x, 0), 0),
4330 XEXP (XEXP (x, 0), 1))))
4331 return
4332 simplify_gen_unary (NEG, mode, reversed, mode);
4334 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4335 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4336 the bitsize of the mode - 1. This allows simplification of
4337 "a = (b & 8) == 0;" */
4338 if (XEXP (x, 1) == constm1_rtx
4339 && GET_CODE (XEXP (x, 0)) != REG
4340 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4341 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4342 && nonzero_bits (XEXP (x, 0), mode) == 1)
4343 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4344 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4345 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4346 GET_MODE_BITSIZE (mode) - 1),
4347 GET_MODE_BITSIZE (mode) - 1);
4349 /* If we are adding two things that have no bits in common, convert
4350 the addition into an IOR. This will often be further simplified,
4351 for example in cases like ((a & 1) + (a & 2)), which can
4352 become a & 3. */
4354 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4355 && (nonzero_bits (XEXP (x, 0), mode)
4356 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4358 /* Try to simplify the expression further. */
4359 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4360 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4362 /* If we could, great. If not, do not go ahead with the IOR
4363 replacement, since PLUS appears in many special purpose
4364 address arithmetic instructions. */
4365 if (GET_CODE (temp) != CLOBBER && temp != tor)
4366 return temp;
4368 break;
4370 case MINUS:
4371 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4372 by reversing the comparison code if valid. */
4373 if (STORE_FLAG_VALUE == 1
4374 && XEXP (x, 0) == const1_rtx
4375 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4376 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4377 XEXP (XEXP (x, 1), 0),
4378 XEXP (XEXP (x, 1), 1))))
4379 return reversed;
4381 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4382 (and <foo> (const_int pow2-1)) */
4383 if (GET_CODE (XEXP (x, 1)) == AND
4384 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4385 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4386 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4387 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4388 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4390 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4392 if (GET_CODE (XEXP (x, 1)) == MULT
4393 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4395 rtx in1, in2;
4397 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4398 in2 = XEXP (XEXP (x, 1), 1);
4399 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4400 XEXP (x, 0));
4403 /* Canonicalize (minus (neg A) (mult B C)) to
4404 (minus (mult (neg B) C) A). */
4405 if (GET_CODE (XEXP (x, 1)) == MULT
4406 && GET_CODE (XEXP (x, 0)) == NEG)
4408 rtx in1, in2;
4410 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4411 in2 = XEXP (XEXP (x, 1), 1);
4412 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4413 XEXP (XEXP (x, 0), 0));
4416 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4417 integers. */
4418 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4419 return gen_binary (MINUS, mode,
4420 gen_binary (MINUS, mode, XEXP (x, 0),
4421 XEXP (XEXP (x, 1), 0)),
4422 XEXP (XEXP (x, 1), 1));
4423 break;
4425 case MULT:
4426 /* If we have (mult (plus A B) C), apply the distributive law and then
4427 the inverse distributive law to see if things simplify. This
4428 occurs mostly in addresses, often when unrolling loops. */
4430 if (GET_CODE (XEXP (x, 0)) == PLUS)
4432 x = apply_distributive_law
4433 (gen_binary (PLUS, mode,
4434 gen_binary (MULT, mode,
4435 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4436 gen_binary (MULT, mode,
4437 XEXP (XEXP (x, 0), 1),
4438 copy_rtx (XEXP (x, 1)))));
4440 if (GET_CODE (x) != MULT)
4441 return x;
4443 /* Try simplify a*(b/c) as (a*b)/c. */
4444 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4445 && GET_CODE (XEXP (x, 0)) == DIV)
4447 rtx tem = simplify_binary_operation (MULT, mode,
4448 XEXP (XEXP (x, 0), 0),
4449 XEXP (x, 1));
4450 if (tem)
4451 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4453 break;
4455 case UDIV:
4456 /* If this is a divide by a power of two, treat it as a shift if
4457 its first operand is a shift. */
4458 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4459 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4460 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4461 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4462 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4463 || GET_CODE (XEXP (x, 0)) == ROTATE
4464 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4465 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4466 break;
4468 case EQ: case NE:
4469 case GT: case GTU: case GE: case GEU:
4470 case LT: case LTU: case LE: case LEU:
4471 case UNEQ: case LTGT:
4472 case UNGT: case UNGE:
4473 case UNLT: case UNLE:
4474 case UNORDERED: case ORDERED:
4475 /* If the first operand is a condition code, we can't do anything
4476 with it. */
4477 if (GET_CODE (XEXP (x, 0)) == COMPARE
4478 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4479 #ifdef HAVE_cc0
4480 && XEXP (x, 0) != cc0_rtx
4481 #endif
4484 rtx op0 = XEXP (x, 0);
4485 rtx op1 = XEXP (x, 1);
4486 enum rtx_code new_code;
4488 if (GET_CODE (op0) == COMPARE)
4489 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4491 /* Simplify our comparison, if possible. */
4492 new_code = simplify_comparison (code, &op0, &op1);
4494 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4495 if only the low-order bit is possibly nonzero in X (such as when
4496 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4497 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4498 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4499 (plus X 1).
4501 Remove any ZERO_EXTRACT we made when thinking this was a
4502 comparison. It may now be simpler to use, e.g., an AND. If a
4503 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4504 the call to make_compound_operation in the SET case. */
4506 if (STORE_FLAG_VALUE == 1
4507 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4508 && op1 == const0_rtx
4509 && mode == GET_MODE (op0)
4510 && nonzero_bits (op0, mode) == 1)
4511 return gen_lowpart_for_combine (mode,
4512 expand_compound_operation (op0));
4514 else if (STORE_FLAG_VALUE == 1
4515 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4516 && op1 == const0_rtx
4517 && mode == GET_MODE (op0)
4518 && (num_sign_bit_copies (op0, mode)
4519 == GET_MODE_BITSIZE (mode)))
4521 op0 = expand_compound_operation (op0);
4522 return simplify_gen_unary (NEG, mode,
4523 gen_lowpart_for_combine (mode, op0),
4524 mode);
4527 else if (STORE_FLAG_VALUE == 1
4528 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4529 && op1 == const0_rtx
4530 && mode == GET_MODE (op0)
4531 && nonzero_bits (op0, mode) == 1)
4533 op0 = expand_compound_operation (op0);
4534 return gen_binary (XOR, mode,
4535 gen_lowpart_for_combine (mode, op0),
4536 const1_rtx);
4539 else if (STORE_FLAG_VALUE == 1
4540 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4541 && op1 == const0_rtx
4542 && mode == GET_MODE (op0)
4543 && (num_sign_bit_copies (op0, mode)
4544 == GET_MODE_BITSIZE (mode)))
4546 op0 = expand_compound_operation (op0);
4547 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4550 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4551 those above. */
4552 if (STORE_FLAG_VALUE == -1
4553 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4554 && op1 == const0_rtx
4555 && (num_sign_bit_copies (op0, mode)
4556 == GET_MODE_BITSIZE (mode)))
4557 return gen_lowpart_for_combine (mode,
4558 expand_compound_operation (op0));
4560 else if (STORE_FLAG_VALUE == -1
4561 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4562 && op1 == const0_rtx
4563 && mode == GET_MODE (op0)
4564 && nonzero_bits (op0, mode) == 1)
4566 op0 = expand_compound_operation (op0);
4567 return simplify_gen_unary (NEG, mode,
4568 gen_lowpart_for_combine (mode, op0),
4569 mode);
4572 else if (STORE_FLAG_VALUE == -1
4573 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4574 && op1 == const0_rtx
4575 && mode == GET_MODE (op0)
4576 && (num_sign_bit_copies (op0, mode)
4577 == GET_MODE_BITSIZE (mode)))
4579 op0 = expand_compound_operation (op0);
4580 return simplify_gen_unary (NOT, mode,
4581 gen_lowpart_for_combine (mode, op0),
4582 mode);
4585 /* If X is 0/1, (eq X 0) is X-1. */
4586 else if (STORE_FLAG_VALUE == -1
4587 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4588 && op1 == const0_rtx
4589 && mode == GET_MODE (op0)
4590 && nonzero_bits (op0, mode) == 1)
4592 op0 = expand_compound_operation (op0);
4593 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4596 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4597 one bit that might be nonzero, we can convert (ne x 0) to
4598 (ashift x c) where C puts the bit in the sign bit. Remove any
4599 AND with STORE_FLAG_VALUE when we are done, since we are only
4600 going to test the sign bit. */
4601 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4602 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4603 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4604 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4605 && op1 == const0_rtx
4606 && mode == GET_MODE (op0)
4607 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4609 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4610 expand_compound_operation (op0),
4611 GET_MODE_BITSIZE (mode) - 1 - i);
4612 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4613 return XEXP (x, 0);
4614 else
4615 return x;
4618 /* If the code changed, return a whole new comparison. */
4619 if (new_code != code)
4620 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4622 /* Otherwise, keep this operation, but maybe change its operands.
4623 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4624 SUBST (XEXP (x, 0), op0);
4625 SUBST (XEXP (x, 1), op1);
4627 break;
4629 case IF_THEN_ELSE:
4630 return simplify_if_then_else (x);
4632 case ZERO_EXTRACT:
4633 case SIGN_EXTRACT:
4634 case ZERO_EXTEND:
4635 case SIGN_EXTEND:
4636 /* If we are processing SET_DEST, we are done. */
4637 if (in_dest)
4638 return x;
4640 return expand_compound_operation (x);
4642 case SET:
4643 return simplify_set (x);
4645 case AND:
4646 case IOR:
4647 case XOR:
4648 return simplify_logical (x, last);
4650 case ABS:
4651 /* (abs (neg <foo>)) -> (abs <foo>) */
4652 if (GET_CODE (XEXP (x, 0)) == NEG)
4653 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4655 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4656 do nothing. */
4657 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4658 break;
4660 /* If operand is something known to be positive, ignore the ABS. */
4661 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4662 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4663 <= HOST_BITS_PER_WIDE_INT)
4664 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4665 & ((HOST_WIDE_INT) 1
4666 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4667 == 0)))
4668 return XEXP (x, 0);
4670 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4671 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4672 return gen_rtx_NEG (mode, XEXP (x, 0));
4674 break;
4676 case FFS:
4677 /* (ffs (*_extend <X>)) = (ffs <X>) */
4678 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4679 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4680 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4681 break;
4683 case POPCOUNT:
4684 case PARITY:
4685 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4686 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4687 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4688 break;
4690 case FLOAT:
4691 /* (float (sign_extend <X>)) = (float <X>). */
4692 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4693 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4694 break;
4696 case ASHIFT:
4697 case LSHIFTRT:
4698 case ASHIFTRT:
4699 case ROTATE:
4700 case ROTATERT:
4701 /* If this is a shift by a constant amount, simplify it. */
4702 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4703 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4704 INTVAL (XEXP (x, 1)));
4706 #ifdef SHIFT_COUNT_TRUNCATED
4707 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4708 SUBST (XEXP (x, 1),
4709 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4710 ((HOST_WIDE_INT) 1
4711 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4712 - 1,
4713 NULL_RTX, 0));
4714 #endif
4716 break;
4718 case VEC_SELECT:
4720 rtx op0 = XEXP (x, 0);
4721 rtx op1 = XEXP (x, 1);
4722 int len;
4724 if (GET_CODE (op1) != PARALLEL)
4725 abort ();
4726 len = XVECLEN (op1, 0);
4727 if (len == 1
4728 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4729 && GET_CODE (op0) == VEC_CONCAT)
4731 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4733 /* Try to find the element in the VEC_CONCAT. */
4734 for (;;)
4736 if (GET_MODE (op0) == GET_MODE (x))
4737 return op0;
4738 if (GET_CODE (op0) == VEC_CONCAT)
4740 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4741 if (op0_size < offset)
4742 op0 = XEXP (op0, 0);
4743 else
4745 offset -= op0_size;
4746 op0 = XEXP (op0, 1);
4749 else
4750 break;
4755 break;
4757 default:
4758 break;
4761 return x;
4764 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4766 static rtx
4767 simplify_if_then_else (x)
4768 rtx x;
4770 enum machine_mode mode = GET_MODE (x);
4771 rtx cond = XEXP (x, 0);
4772 rtx true_rtx = XEXP (x, 1);
4773 rtx false_rtx = XEXP (x, 2);
4774 enum rtx_code true_code = GET_CODE (cond);
4775 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4776 rtx temp;
4777 int i;
4778 enum rtx_code false_code;
4779 rtx reversed;
4781 /* Simplify storing of the truth value. */
4782 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4783 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4785 /* Also when the truth value has to be reversed. */
4786 if (comparison_p
4787 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4788 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4789 XEXP (cond, 1))))
4790 return reversed;
4792 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4793 in it is being compared against certain values. Get the true and false
4794 comparisons and see if that says anything about the value of each arm. */
4796 if (comparison_p
4797 && ((false_code = combine_reversed_comparison_code (cond))
4798 != UNKNOWN)
4799 && GET_CODE (XEXP (cond, 0)) == REG)
4801 HOST_WIDE_INT nzb;
4802 rtx from = XEXP (cond, 0);
4803 rtx true_val = XEXP (cond, 1);
4804 rtx false_val = true_val;
4805 int swapped = 0;
4807 /* If FALSE_CODE is EQ, swap the codes and arms. */
4809 if (false_code == EQ)
4811 swapped = 1, true_code = EQ, false_code = NE;
4812 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4815 /* If we are comparing against zero and the expression being tested has
4816 only a single bit that might be nonzero, that is its value when it is
4817 not equal to zero. Similarly if it is known to be -1 or 0. */
4819 if (true_code == EQ && true_val == const0_rtx
4820 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4821 false_code = EQ, false_val = GEN_INT (nzb);
4822 else if (true_code == EQ && true_val == const0_rtx
4823 && (num_sign_bit_copies (from, GET_MODE (from))
4824 == GET_MODE_BITSIZE (GET_MODE (from))))
4825 false_code = EQ, false_val = constm1_rtx;
4827 /* Now simplify an arm if we know the value of the register in the
4828 branch and it is used in the arm. Be careful due to the potential
4829 of locally-shared RTL. */
4831 if (reg_mentioned_p (from, true_rtx))
4832 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4833 from, true_val),
4834 pc_rtx, pc_rtx, 0, 0);
4835 if (reg_mentioned_p (from, false_rtx))
4836 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4837 from, false_val),
4838 pc_rtx, pc_rtx, 0, 0);
4840 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4841 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4843 true_rtx = XEXP (x, 1);
4844 false_rtx = XEXP (x, 2);
4845 true_code = GET_CODE (cond);
4848 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4849 reversed, do so to avoid needing two sets of patterns for
4850 subtract-and-branch insns. Similarly if we have a constant in the true
4851 arm, the false arm is the same as the first operand of the comparison, or
4852 the false arm is more complicated than the true arm. */
4854 if (comparison_p
4855 && combine_reversed_comparison_code (cond) != UNKNOWN
4856 && (true_rtx == pc_rtx
4857 || (CONSTANT_P (true_rtx)
4858 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4859 || true_rtx == const0_rtx
4860 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4861 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4862 || (GET_CODE (true_rtx) == SUBREG
4863 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4864 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4865 || reg_mentioned_p (true_rtx, false_rtx)
4866 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4868 true_code = reversed_comparison_code (cond, NULL);
4869 SUBST (XEXP (x, 0),
4870 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4871 XEXP (cond, 1)));
4873 SUBST (XEXP (x, 1), false_rtx);
4874 SUBST (XEXP (x, 2), true_rtx);
4876 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4877 cond = XEXP (x, 0);
4879 /* It is possible that the conditional has been simplified out. */
4880 true_code = GET_CODE (cond);
4881 comparison_p = GET_RTX_CLASS (true_code) == '<';
4884 /* If the two arms are identical, we don't need the comparison. */
4886 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4887 return true_rtx;
4889 /* Convert a == b ? b : a to "a". */
4890 if (true_code == EQ && ! side_effects_p (cond)
4891 && !HONOR_NANS (mode)
4892 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4893 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4894 return false_rtx;
4895 else if (true_code == NE && ! side_effects_p (cond)
4896 && !HONOR_NANS (mode)
4897 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4898 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4899 return true_rtx;
4901 /* Look for cases where we have (abs x) or (neg (abs X)). */
4903 if (GET_MODE_CLASS (mode) == MODE_INT
4904 && GET_CODE (false_rtx) == NEG
4905 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4906 && comparison_p
4907 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4908 && ! side_effects_p (true_rtx))
4909 switch (true_code)
4911 case GT:
4912 case GE:
4913 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4914 case LT:
4915 case LE:
4916 return
4917 simplify_gen_unary (NEG, mode,
4918 simplify_gen_unary (ABS, mode, true_rtx, mode),
4919 mode);
4920 default:
4921 break;
4924 /* Look for MIN or MAX. */
4926 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4927 && comparison_p
4928 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4929 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4930 && ! side_effects_p (cond))
4931 switch (true_code)
4933 case GE:
4934 case GT:
4935 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4936 case LE:
4937 case LT:
4938 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4939 case GEU:
4940 case GTU:
4941 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4942 case LEU:
4943 case LTU:
4944 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4945 default:
4946 break;
4949 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4950 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4951 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4952 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4953 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4954 neither 1 or -1, but it isn't worth checking for. */
4956 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4957 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4959 rtx t = make_compound_operation (true_rtx, SET);
4960 rtx f = make_compound_operation (false_rtx, SET);
4961 rtx cond_op0 = XEXP (cond, 0);
4962 rtx cond_op1 = XEXP (cond, 1);
4963 enum rtx_code op = NIL, extend_op = NIL;
4964 enum machine_mode m = mode;
4965 rtx z = 0, c1 = NULL_RTX;
4967 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4968 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4969 || GET_CODE (t) == ASHIFT
4970 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4971 && rtx_equal_p (XEXP (t, 0), f))
4972 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4974 /* If an identity-zero op is commutative, check whether there
4975 would be a match if we swapped the operands. */
4976 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4977 || GET_CODE (t) == XOR)
4978 && rtx_equal_p (XEXP (t, 1), f))
4979 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4980 else if (GET_CODE (t) == SIGN_EXTEND
4981 && (GET_CODE (XEXP (t, 0)) == PLUS
4982 || GET_CODE (XEXP (t, 0)) == MINUS
4983 || GET_CODE (XEXP (t, 0)) == IOR
4984 || GET_CODE (XEXP (t, 0)) == XOR
4985 || GET_CODE (XEXP (t, 0)) == ASHIFT
4986 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4987 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4988 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4989 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4990 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4991 && (num_sign_bit_copies (f, GET_MODE (f))
4992 > (unsigned int)
4993 (GET_MODE_BITSIZE (mode)
4994 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4996 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4997 extend_op = SIGN_EXTEND;
4998 m = GET_MODE (XEXP (t, 0));
5000 else if (GET_CODE (t) == SIGN_EXTEND
5001 && (GET_CODE (XEXP (t, 0)) == PLUS
5002 || GET_CODE (XEXP (t, 0)) == IOR
5003 || GET_CODE (XEXP (t, 0)) == XOR)
5004 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5005 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5006 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5007 && (num_sign_bit_copies (f, GET_MODE (f))
5008 > (unsigned int)
5009 (GET_MODE_BITSIZE (mode)
5010 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5012 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5013 extend_op = SIGN_EXTEND;
5014 m = GET_MODE (XEXP (t, 0));
5016 else if (GET_CODE (t) == ZERO_EXTEND
5017 && (GET_CODE (XEXP (t, 0)) == PLUS
5018 || GET_CODE (XEXP (t, 0)) == MINUS
5019 || GET_CODE (XEXP (t, 0)) == IOR
5020 || GET_CODE (XEXP (t, 0)) == XOR
5021 || GET_CODE (XEXP (t, 0)) == ASHIFT
5022 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5023 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5024 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5025 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5026 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5027 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5028 && ((nonzero_bits (f, GET_MODE (f))
5029 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5030 == 0))
5032 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5033 extend_op = ZERO_EXTEND;
5034 m = GET_MODE (XEXP (t, 0));
5036 else if (GET_CODE (t) == ZERO_EXTEND
5037 && (GET_CODE (XEXP (t, 0)) == PLUS
5038 || GET_CODE (XEXP (t, 0)) == IOR
5039 || GET_CODE (XEXP (t, 0)) == XOR)
5040 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5041 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5042 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5043 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5044 && ((nonzero_bits (f, GET_MODE (f))
5045 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5046 == 0))
5048 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5049 extend_op = ZERO_EXTEND;
5050 m = GET_MODE (XEXP (t, 0));
5053 if (z)
5055 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5056 pc_rtx, pc_rtx, 0, 0);
5057 temp = gen_binary (MULT, m, temp,
5058 gen_binary (MULT, m, c1, const_true_rtx));
5059 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5060 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
5062 if (extend_op != NIL)
5063 temp = simplify_gen_unary (extend_op, mode, temp, m);
5065 return temp;
5069 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5070 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5071 negation of a single bit, we can convert this operation to a shift. We
5072 can actually do this more generally, but it doesn't seem worth it. */
5074 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5075 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5076 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5077 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5078 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5079 == GET_MODE_BITSIZE (mode))
5080 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5081 return
5082 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5083 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
5085 return x;
5088 /* Simplify X, a SET expression. Return the new expression. */
5090 static rtx
5091 simplify_set (x)
5092 rtx x;
5094 rtx src = SET_SRC (x);
5095 rtx dest = SET_DEST (x);
5096 enum machine_mode mode
5097 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5098 rtx other_insn;
5099 rtx *cc_use;
5101 /* (set (pc) (return)) gets written as (return). */
5102 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5103 return src;
5105 /* Now that we know for sure which bits of SRC we are using, see if we can
5106 simplify the expression for the object knowing that we only need the
5107 low-order bits. */
5109 if (GET_MODE_CLASS (mode) == MODE_INT
5110 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5112 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5113 SUBST (SET_SRC (x), src);
5116 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5117 the comparison result and try to simplify it unless we already have used
5118 undobuf.other_insn. */
5119 if ((GET_MODE_CLASS (mode) == MODE_CC
5120 || GET_CODE (src) == COMPARE
5121 || CC0_P (dest))
5122 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5123 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5124 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5125 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5127 enum rtx_code old_code = GET_CODE (*cc_use);
5128 enum rtx_code new_code;
5129 rtx op0, op1, tmp;
5130 int other_changed = 0;
5131 enum machine_mode compare_mode = GET_MODE (dest);
5132 enum machine_mode tmp_mode;
5134 if (GET_CODE (src) == COMPARE)
5135 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5136 else
5137 op0 = src, op1 = const0_rtx;
5139 /* Check whether the comparison is known at compile time. */
5140 if (GET_MODE (op0) != VOIDmode)
5141 tmp_mode = GET_MODE (op0);
5142 else if (GET_MODE (op1) != VOIDmode)
5143 tmp_mode = GET_MODE (op1);
5144 else
5145 tmp_mode = compare_mode;
5146 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
5147 if (tmp != NULL_RTX)
5149 rtx pat = PATTERN (other_insn);
5150 undobuf.other_insn = other_insn;
5151 SUBST (*cc_use, tmp);
5153 /* Attempt to simplify CC user. */
5154 if (GET_CODE (pat) == SET)
5156 rtx new = simplify_rtx (SET_SRC (pat));
5157 if (new != NULL_RTX)
5158 SUBST (SET_SRC (pat), new);
5161 /* Convert X into a no-op move. */
5162 SUBST (SET_DEST (x), pc_rtx);
5163 SUBST (SET_SRC (x), pc_rtx);
5164 return x;
5167 /* Simplify our comparison, if possible. */
5168 new_code = simplify_comparison (old_code, &op0, &op1);
5170 #ifdef EXTRA_CC_MODES
5171 /* If this machine has CC modes other than CCmode, check to see if we
5172 need to use a different CC mode here. */
5173 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5174 #endif /* EXTRA_CC_MODES */
5176 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5177 /* If the mode changed, we have to change SET_DEST, the mode in the
5178 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5179 a hard register, just build new versions with the proper mode. If it
5180 is a pseudo, we lose unless it is only time we set the pseudo, in
5181 which case we can safely change its mode. */
5182 if (compare_mode != GET_MODE (dest))
5184 unsigned int regno = REGNO (dest);
5185 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5187 if (regno < FIRST_PSEUDO_REGISTER
5188 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5190 if (regno >= FIRST_PSEUDO_REGISTER)
5191 SUBST (regno_reg_rtx[regno], new_dest);
5193 SUBST (SET_DEST (x), new_dest);
5194 SUBST (XEXP (*cc_use, 0), new_dest);
5195 other_changed = 1;
5197 dest = new_dest;
5200 #endif
5202 /* If the code changed, we have to build a new comparison in
5203 undobuf.other_insn. */
5204 if (new_code != old_code)
5206 unsigned HOST_WIDE_INT mask;
5208 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5209 dest, const0_rtx));
5211 /* If the only change we made was to change an EQ into an NE or
5212 vice versa, OP0 has only one bit that might be nonzero, and OP1
5213 is zero, check if changing the user of the condition code will
5214 produce a valid insn. If it won't, we can keep the original code
5215 in that insn by surrounding our operation with an XOR. */
5217 if (((old_code == NE && new_code == EQ)
5218 || (old_code == EQ && new_code == NE))
5219 && ! other_changed && op1 == const0_rtx
5220 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5221 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5223 rtx pat = PATTERN (other_insn), note = 0;
5225 if ((recog_for_combine (&pat, other_insn, &note) < 0
5226 && ! check_asm_operands (pat)))
5228 PUT_CODE (*cc_use, old_code);
5229 other_insn = 0;
5231 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5235 other_changed = 1;
5238 if (other_changed)
5239 undobuf.other_insn = other_insn;
5241 #ifdef HAVE_cc0
5242 /* If we are now comparing against zero, change our source if
5243 needed. If we do not use cc0, we always have a COMPARE. */
5244 if (op1 == const0_rtx && dest == cc0_rtx)
5246 SUBST (SET_SRC (x), op0);
5247 src = op0;
5249 else
5250 #endif
5252 /* Otherwise, if we didn't previously have a COMPARE in the
5253 correct mode, we need one. */
5254 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5256 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5257 src = SET_SRC (x);
5259 else
5261 /* Otherwise, update the COMPARE if needed. */
5262 SUBST (XEXP (src, 0), op0);
5263 SUBST (XEXP (src, 1), op1);
5266 else
5268 /* Get SET_SRC in a form where we have placed back any
5269 compound expressions. Then do the checks below. */
5270 src = make_compound_operation (src, SET);
5271 SUBST (SET_SRC (x), src);
5274 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5275 and X being a REG or (subreg (reg)), we may be able to convert this to
5276 (set (subreg:m2 x) (op)).
5278 We can always do this if M1 is narrower than M2 because that means that
5279 we only care about the low bits of the result.
5281 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5282 perform a narrower operation than requested since the high-order bits will
5283 be undefined. On machine where it is defined, this transformation is safe
5284 as long as M1 and M2 have the same number of words. */
5286 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5287 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5288 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5289 / UNITS_PER_WORD)
5290 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5291 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5292 #ifndef WORD_REGISTER_OPERATIONS
5293 && (GET_MODE_SIZE (GET_MODE (src))
5294 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5295 #endif
5296 #ifdef CANNOT_CHANGE_MODE_CLASS
5297 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5298 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5299 GET_MODE (SUBREG_REG (src)),
5300 GET_MODE (src)))
5301 #endif
5302 && (GET_CODE (dest) == REG
5303 || (GET_CODE (dest) == SUBREG
5304 && GET_CODE (SUBREG_REG (dest)) == REG)))
5306 SUBST (SET_DEST (x),
5307 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5308 dest));
5309 SUBST (SET_SRC (x), SUBREG_REG (src));
5311 src = SET_SRC (x), dest = SET_DEST (x);
5314 #ifdef HAVE_cc0
5315 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5316 in SRC. */
5317 if (dest == cc0_rtx
5318 && GET_CODE (src) == SUBREG
5319 && subreg_lowpart_p (src)
5320 && (GET_MODE_BITSIZE (GET_MODE (src))
5321 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5323 rtx inner = SUBREG_REG (src);
5324 enum machine_mode inner_mode = GET_MODE (inner);
5326 /* Here we make sure that we don't have a sign bit on. */
5327 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5328 && (nonzero_bits (inner, inner_mode)
5329 < ((unsigned HOST_WIDE_INT) 1
5330 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5332 SUBST (SET_SRC (x), inner);
5333 src = SET_SRC (x);
5336 #endif
5338 #ifdef LOAD_EXTEND_OP
5339 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5340 would require a paradoxical subreg. Replace the subreg with a
5341 zero_extend to avoid the reload that would otherwise be required. */
5343 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5344 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5345 && SUBREG_BYTE (src) == 0
5346 && (GET_MODE_SIZE (GET_MODE (src))
5347 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5348 && GET_CODE (SUBREG_REG (src)) == MEM)
5350 SUBST (SET_SRC (x),
5351 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5352 GET_MODE (src), SUBREG_REG (src)));
5354 src = SET_SRC (x);
5356 #endif
5358 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5359 are comparing an item known to be 0 or -1 against 0, use a logical
5360 operation instead. Check for one of the arms being an IOR of the other
5361 arm with some value. We compute three terms to be IOR'ed together. In
5362 practice, at most two will be nonzero. Then we do the IOR's. */
5364 if (GET_CODE (dest) != PC
5365 && GET_CODE (src) == IF_THEN_ELSE
5366 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5367 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5368 && XEXP (XEXP (src, 0), 1) == const0_rtx
5369 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5370 #ifdef HAVE_conditional_move
5371 && ! can_conditionally_move_p (GET_MODE (src))
5372 #endif
5373 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5374 GET_MODE (XEXP (XEXP (src, 0), 0)))
5375 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5376 && ! side_effects_p (src))
5378 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5379 ? XEXP (src, 1) : XEXP (src, 2));
5380 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5381 ? XEXP (src, 2) : XEXP (src, 1));
5382 rtx term1 = const0_rtx, term2, term3;
5384 if (GET_CODE (true_rtx) == IOR
5385 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5386 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5387 else if (GET_CODE (true_rtx) == IOR
5388 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5389 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5390 else if (GET_CODE (false_rtx) == IOR
5391 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5392 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5393 else if (GET_CODE (false_rtx) == IOR
5394 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5395 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5397 term2 = gen_binary (AND, GET_MODE (src),
5398 XEXP (XEXP (src, 0), 0), true_rtx);
5399 term3 = gen_binary (AND, GET_MODE (src),
5400 simplify_gen_unary (NOT, GET_MODE (src),
5401 XEXP (XEXP (src, 0), 0),
5402 GET_MODE (src)),
5403 false_rtx);
5405 SUBST (SET_SRC (x),
5406 gen_binary (IOR, GET_MODE (src),
5407 gen_binary (IOR, GET_MODE (src), term1, term2),
5408 term3));
5410 src = SET_SRC (x);
5413 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5414 whole thing fail. */
5415 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5416 return src;
5417 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5418 return dest;
5419 else
5420 /* Convert this into a field assignment operation, if possible. */
5421 return make_field_assignment (x);
5424 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5425 result. LAST is nonzero if this is the last retry. */
5427 static rtx
5428 simplify_logical (x, last)
5429 rtx x;
5430 int last;
5432 enum machine_mode mode = GET_MODE (x);
5433 rtx op0 = XEXP (x, 0);
5434 rtx op1 = XEXP (x, 1);
5435 rtx reversed;
5437 switch (GET_CODE (x))
5439 case AND:
5440 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5441 insn (and may simplify more). */
5442 if (GET_CODE (op0) == XOR
5443 && rtx_equal_p (XEXP (op0, 0), op1)
5444 && ! side_effects_p (op1))
5445 x = gen_binary (AND, mode,
5446 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5447 op1);
5449 if (GET_CODE (op0) == XOR
5450 && rtx_equal_p (XEXP (op0, 1), op1)
5451 && ! side_effects_p (op1))
5452 x = gen_binary (AND, mode,
5453 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5454 op1);
5456 /* Similarly for (~(A ^ B)) & A. */
5457 if (GET_CODE (op0) == NOT
5458 && GET_CODE (XEXP (op0, 0)) == XOR
5459 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5460 && ! side_effects_p (op1))
5461 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5463 if (GET_CODE (op0) == NOT
5464 && GET_CODE (XEXP (op0, 0)) == XOR
5465 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5466 && ! side_effects_p (op1))
5467 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5469 /* We can call simplify_and_const_int only if we don't lose
5470 any (sign) bits when converting INTVAL (op1) to
5471 "unsigned HOST_WIDE_INT". */
5472 if (GET_CODE (op1) == CONST_INT
5473 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5474 || INTVAL (op1) > 0))
5476 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5478 /* If we have (ior (and (X C1) C2)) and the next restart would be
5479 the last, simplify this by making C1 as small as possible
5480 and then exit. */
5481 if (last
5482 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5483 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5484 && GET_CODE (op1) == CONST_INT)
5485 return gen_binary (IOR, mode,
5486 gen_binary (AND, mode, XEXP (op0, 0),
5487 GEN_INT (INTVAL (XEXP (op0, 1))
5488 & ~INTVAL (op1))), op1);
5490 if (GET_CODE (x) != AND)
5491 return x;
5493 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5494 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5495 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5498 /* Convert (A | B) & A to A. */
5499 if (GET_CODE (op0) == IOR
5500 && (rtx_equal_p (XEXP (op0, 0), op1)
5501 || rtx_equal_p (XEXP (op0, 1), op1))
5502 && ! side_effects_p (XEXP (op0, 0))
5503 && ! side_effects_p (XEXP (op0, 1)))
5504 return op1;
5506 /* In the following group of tests (and those in case IOR below),
5507 we start with some combination of logical operations and apply
5508 the distributive law followed by the inverse distributive law.
5509 Most of the time, this results in no change. However, if some of
5510 the operands are the same or inverses of each other, simplifications
5511 will result.
5513 For example, (and (ior A B) (not B)) can occur as the result of
5514 expanding a bit field assignment. When we apply the distributive
5515 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5516 which then simplifies to (and (A (not B))).
5518 If we have (and (ior A B) C), apply the distributive law and then
5519 the inverse distributive law to see if things simplify. */
5521 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5523 x = apply_distributive_law
5524 (gen_binary (GET_CODE (op0), mode,
5525 gen_binary (AND, mode, XEXP (op0, 0), op1),
5526 gen_binary (AND, mode, XEXP (op0, 1),
5527 copy_rtx (op1))));
5528 if (GET_CODE (x) != AND)
5529 return x;
5532 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5533 return apply_distributive_law
5534 (gen_binary (GET_CODE (op1), mode,
5535 gen_binary (AND, mode, XEXP (op1, 0), op0),
5536 gen_binary (AND, mode, XEXP (op1, 1),
5537 copy_rtx (op0))));
5539 /* Similarly, taking advantage of the fact that
5540 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5542 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5543 return apply_distributive_law
5544 (gen_binary (XOR, mode,
5545 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5546 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5547 XEXP (op1, 1))));
5549 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5550 return apply_distributive_law
5551 (gen_binary (XOR, mode,
5552 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5553 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5554 break;
5556 case IOR:
5557 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5558 if (GET_CODE (op1) == CONST_INT
5559 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5560 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5561 return op1;
5563 /* Convert (A & B) | A to A. */
5564 if (GET_CODE (op0) == AND
5565 && (rtx_equal_p (XEXP (op0, 0), op1)
5566 || rtx_equal_p (XEXP (op0, 1), op1))
5567 && ! side_effects_p (XEXP (op0, 0))
5568 && ! side_effects_p (XEXP (op0, 1)))
5569 return op1;
5571 /* If we have (ior (and A B) C), apply the distributive law and then
5572 the inverse distributive law to see if things simplify. */
5574 if (GET_CODE (op0) == AND)
5576 x = apply_distributive_law
5577 (gen_binary (AND, mode,
5578 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5579 gen_binary (IOR, mode, XEXP (op0, 1),
5580 copy_rtx (op1))));
5582 if (GET_CODE (x) != IOR)
5583 return x;
5586 if (GET_CODE (op1) == AND)
5588 x = apply_distributive_law
5589 (gen_binary (AND, mode,
5590 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5591 gen_binary (IOR, mode, XEXP (op1, 1),
5592 copy_rtx (op0))));
5594 if (GET_CODE (x) != IOR)
5595 return x;
5598 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5599 mode size to (rotate A CX). */
5601 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5602 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5603 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5604 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5605 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5606 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5607 == GET_MODE_BITSIZE (mode)))
5608 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5609 (GET_CODE (op0) == ASHIFT
5610 ? XEXP (op0, 1) : XEXP (op1, 1)));
5612 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5613 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5614 does not affect any of the bits in OP1, it can really be done
5615 as a PLUS and we can associate. We do this by seeing if OP1
5616 can be safely shifted left C bits. */
5617 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5618 && GET_CODE (XEXP (op0, 0)) == PLUS
5619 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5620 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5621 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5623 int count = INTVAL (XEXP (op0, 1));
5624 HOST_WIDE_INT mask = INTVAL (op1) << count;
5626 if (mask >> count == INTVAL (op1)
5627 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5629 SUBST (XEXP (XEXP (op0, 0), 1),
5630 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5631 return op0;
5634 break;
5636 case XOR:
5637 /* If we are XORing two things that have no bits in common,
5638 convert them into an IOR. This helps to detect rotation encoded
5639 using those methods and possibly other simplifications. */
5641 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5642 && (nonzero_bits (op0, mode)
5643 & nonzero_bits (op1, mode)) == 0)
5644 return (gen_binary (IOR, mode, op0, op1));
5646 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5647 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5648 (NOT y). */
5650 int num_negated = 0;
5652 if (GET_CODE (op0) == NOT)
5653 num_negated++, op0 = XEXP (op0, 0);
5654 if (GET_CODE (op1) == NOT)
5655 num_negated++, op1 = XEXP (op1, 0);
5657 if (num_negated == 2)
5659 SUBST (XEXP (x, 0), op0);
5660 SUBST (XEXP (x, 1), op1);
5662 else if (num_negated == 1)
5663 return
5664 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5665 mode);
5668 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5669 correspond to a machine insn or result in further simplifications
5670 if B is a constant. */
5672 if (GET_CODE (op0) == AND
5673 && rtx_equal_p (XEXP (op0, 1), op1)
5674 && ! side_effects_p (op1))
5675 return gen_binary (AND, mode,
5676 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5677 op1);
5679 else if (GET_CODE (op0) == AND
5680 && rtx_equal_p (XEXP (op0, 0), op1)
5681 && ! side_effects_p (op1))
5682 return gen_binary (AND, mode,
5683 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5684 op1);
5686 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5687 comparison if STORE_FLAG_VALUE is 1. */
5688 if (STORE_FLAG_VALUE == 1
5689 && op1 == const1_rtx
5690 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5691 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5692 XEXP (op0, 1))))
5693 return reversed;
5695 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5696 is (lt foo (const_int 0)), so we can perform the above
5697 simplification if STORE_FLAG_VALUE is 1. */
5699 if (STORE_FLAG_VALUE == 1
5700 && op1 == const1_rtx
5701 && GET_CODE (op0) == LSHIFTRT
5702 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5703 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5704 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5706 /* (xor (comparison foo bar) (const_int sign-bit))
5707 when STORE_FLAG_VALUE is the sign bit. */
5708 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5709 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5710 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5711 && op1 == const_true_rtx
5712 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5713 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5714 XEXP (op0, 1))))
5715 return reversed;
5717 break;
5719 default:
5720 abort ();
5723 return x;
5726 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5727 operations" because they can be replaced with two more basic operations.
5728 ZERO_EXTEND is also considered "compound" because it can be replaced with
5729 an AND operation, which is simpler, though only one operation.
5731 The function expand_compound_operation is called with an rtx expression
5732 and will convert it to the appropriate shifts and AND operations,
5733 simplifying at each stage.
5735 The function make_compound_operation is called to convert an expression
5736 consisting of shifts and ANDs into the equivalent compound expression.
5737 It is the inverse of this function, loosely speaking. */
5739 static rtx
5740 expand_compound_operation (x)
5741 rtx x;
5743 unsigned HOST_WIDE_INT pos = 0, len;
5744 int unsignedp = 0;
5745 unsigned int modewidth;
5746 rtx tem;
5748 switch (GET_CODE (x))
5750 case ZERO_EXTEND:
5751 unsignedp = 1;
5752 case SIGN_EXTEND:
5753 /* We can't necessarily use a const_int for a multiword mode;
5754 it depends on implicitly extending the value.
5755 Since we don't know the right way to extend it,
5756 we can't tell whether the implicit way is right.
5758 Even for a mode that is no wider than a const_int,
5759 we can't win, because we need to sign extend one of its bits through
5760 the rest of it, and we don't know which bit. */
5761 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5762 return x;
5764 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5765 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5766 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5767 reloaded. If not for that, MEM's would very rarely be safe.
5769 Reject MODEs bigger than a word, because we might not be able
5770 to reference a two-register group starting with an arbitrary register
5771 (and currently gen_lowpart might crash for a SUBREG). */
5773 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5774 return x;
5776 /* Reject MODEs that aren't scalar integers because turning vector
5777 or complex modes into shifts causes problems. */
5779 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5780 return x;
5782 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5783 /* If the inner object has VOIDmode (the only way this can happen
5784 is if it is an ASM_OPERANDS), we can't do anything since we don't
5785 know how much masking to do. */
5786 if (len == 0)
5787 return x;
5789 break;
5791 case ZERO_EXTRACT:
5792 unsignedp = 1;
5793 case SIGN_EXTRACT:
5794 /* If the operand is a CLOBBER, just return it. */
5795 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5796 return XEXP (x, 0);
5798 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5799 || GET_CODE (XEXP (x, 2)) != CONST_INT
5800 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5801 return x;
5803 /* Reject MODEs that aren't scalar integers because turning vector
5804 or complex modes into shifts causes problems. */
5806 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5807 return x;
5809 len = INTVAL (XEXP (x, 1));
5810 pos = INTVAL (XEXP (x, 2));
5812 /* If this goes outside the object being extracted, replace the object
5813 with a (use (mem ...)) construct that only combine understands
5814 and is used only for this purpose. */
5815 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5816 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5818 if (BITS_BIG_ENDIAN)
5819 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5821 break;
5823 default:
5824 return x;
5826 /* Convert sign extension to zero extension, if we know that the high
5827 bit is not set, as this is easier to optimize. It will be converted
5828 back to cheaper alternative in make_extraction. */
5829 if (GET_CODE (x) == SIGN_EXTEND
5830 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5831 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5832 & ~(((unsigned HOST_WIDE_INT)
5833 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5834 >> 1))
5835 == 0)))
5837 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5838 return expand_compound_operation (temp);
5841 /* We can optimize some special cases of ZERO_EXTEND. */
5842 if (GET_CODE (x) == ZERO_EXTEND)
5844 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5845 know that the last value didn't have any inappropriate bits
5846 set. */
5847 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5848 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5849 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5850 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5851 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5852 return XEXP (XEXP (x, 0), 0);
5854 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5855 if (GET_CODE (XEXP (x, 0)) == SUBREG
5856 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5857 && subreg_lowpart_p (XEXP (x, 0))
5858 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5859 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5860 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5861 return SUBREG_REG (XEXP (x, 0));
5863 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5864 is a comparison and STORE_FLAG_VALUE permits. This is like
5865 the first case, but it works even when GET_MODE (x) is larger
5866 than HOST_WIDE_INT. */
5867 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5868 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5869 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5870 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5871 <= HOST_BITS_PER_WIDE_INT)
5872 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5873 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5874 return XEXP (XEXP (x, 0), 0);
5876 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5877 if (GET_CODE (XEXP (x, 0)) == SUBREG
5878 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5879 && subreg_lowpart_p (XEXP (x, 0))
5880 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5881 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5882 <= HOST_BITS_PER_WIDE_INT)
5883 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5884 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5885 return SUBREG_REG (XEXP (x, 0));
5889 /* If we reach here, we want to return a pair of shifts. The inner
5890 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5891 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5892 logical depending on the value of UNSIGNEDP.
5894 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5895 converted into an AND of a shift.
5897 We must check for the case where the left shift would have a negative
5898 count. This can happen in a case like (x >> 31) & 255 on machines
5899 that can't shift by a constant. On those machines, we would first
5900 combine the shift with the AND to produce a variable-position
5901 extraction. Then the constant of 31 would be substituted in to produce
5902 a such a position. */
5904 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5905 if (modewidth + len >= pos)
5906 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5907 GET_MODE (x),
5908 simplify_shift_const (NULL_RTX, ASHIFT,
5909 GET_MODE (x),
5910 XEXP (x, 0),
5911 modewidth - pos - len),
5912 modewidth - len);
5914 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5915 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5916 simplify_shift_const (NULL_RTX, LSHIFTRT,
5917 GET_MODE (x),
5918 XEXP (x, 0), pos),
5919 ((HOST_WIDE_INT) 1 << len) - 1);
5920 else
5921 /* Any other cases we can't handle. */
5922 return x;
5924 /* If we couldn't do this for some reason, return the original
5925 expression. */
5926 if (GET_CODE (tem) == CLOBBER)
5927 return x;
5929 return tem;
5932 /* X is a SET which contains an assignment of one object into
5933 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5934 or certain SUBREGS). If possible, convert it into a series of
5935 logical operations.
5937 We half-heartedly support variable positions, but do not at all
5938 support variable lengths. */
5940 static rtx
5941 expand_field_assignment (x)
5942 rtx x;
5944 rtx inner;
5945 rtx pos; /* Always counts from low bit. */
5946 int len;
5947 rtx mask;
5948 enum machine_mode compute_mode;
5950 /* Loop until we find something we can't simplify. */
5951 while (1)
5953 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5954 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5956 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5957 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5958 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5960 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5961 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5963 inner = XEXP (SET_DEST (x), 0);
5964 len = INTVAL (XEXP (SET_DEST (x), 1));
5965 pos = XEXP (SET_DEST (x), 2);
5967 /* If the position is constant and spans the width of INNER,
5968 surround INNER with a USE to indicate this. */
5969 if (GET_CODE (pos) == CONST_INT
5970 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5971 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5973 if (BITS_BIG_ENDIAN)
5975 if (GET_CODE (pos) == CONST_INT)
5976 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5977 - INTVAL (pos));
5978 else if (GET_CODE (pos) == MINUS
5979 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5980 && (INTVAL (XEXP (pos, 1))
5981 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5982 /* If position is ADJUST - X, new position is X. */
5983 pos = XEXP (pos, 0);
5984 else
5985 pos = gen_binary (MINUS, GET_MODE (pos),
5986 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5987 - len),
5988 pos);
5992 /* A SUBREG between two modes that occupy the same numbers of words
5993 can be done by moving the SUBREG to the source. */
5994 else if (GET_CODE (SET_DEST (x)) == SUBREG
5995 /* We need SUBREGs to compute nonzero_bits properly. */
5996 && nonzero_sign_valid
5997 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5998 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5999 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6000 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6002 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6003 gen_lowpart_for_combine
6004 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6005 SET_SRC (x)));
6006 continue;
6008 else
6009 break;
6011 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6012 inner = SUBREG_REG (inner);
6014 compute_mode = GET_MODE (inner);
6016 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6017 if (! SCALAR_INT_MODE_P (compute_mode))
6019 enum machine_mode imode;
6021 /* Don't do anything for vector or complex integral types. */
6022 if (! FLOAT_MODE_P (compute_mode))
6023 break;
6025 /* Try to find an integral mode to pun with. */
6026 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6027 if (imode == BLKmode)
6028 break;
6030 compute_mode = imode;
6031 inner = gen_lowpart_for_combine (imode, inner);
6034 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6035 if (len < HOST_BITS_PER_WIDE_INT)
6036 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6037 else
6038 break;
6040 /* Now compute the equivalent expression. Make a copy of INNER
6041 for the SET_DEST in case it is a MEM into which we will substitute;
6042 we don't want shared RTL in that case. */
6043 x = gen_rtx_SET
6044 (VOIDmode, copy_rtx (inner),
6045 gen_binary (IOR, compute_mode,
6046 gen_binary (AND, compute_mode,
6047 simplify_gen_unary (NOT, compute_mode,
6048 gen_binary (ASHIFT,
6049 compute_mode,
6050 mask, pos),
6051 compute_mode),
6052 inner),
6053 gen_binary (ASHIFT, compute_mode,
6054 gen_binary (AND, compute_mode,
6055 gen_lowpart_for_combine
6056 (compute_mode, SET_SRC (x)),
6057 mask),
6058 pos)));
6061 return x;
6064 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6065 it is an RTX that represents a variable starting position; otherwise,
6066 POS is the (constant) starting bit position (counted from the LSB).
6068 INNER may be a USE. This will occur when we started with a bitfield
6069 that went outside the boundary of the object in memory, which is
6070 allowed on most machines. To isolate this case, we produce a USE
6071 whose mode is wide enough and surround the MEM with it. The only
6072 code that understands the USE is this routine. If it is not removed,
6073 it will cause the resulting insn not to match.
6075 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6076 signed reference.
6078 IN_DEST is nonzero if this is a reference in the destination of a
6079 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6080 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6081 be used.
6083 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6084 ZERO_EXTRACT should be built even for bits starting at bit 0.
6086 MODE is the desired mode of the result (if IN_DEST == 0).
6088 The result is an RTX for the extraction or NULL_RTX if the target
6089 can't handle it. */
6091 static rtx
6092 make_extraction (mode, inner, pos, pos_rtx, len,
6093 unsignedp, in_dest, in_compare)
6094 enum machine_mode mode;
6095 rtx inner;
6096 HOST_WIDE_INT pos;
6097 rtx pos_rtx;
6098 unsigned HOST_WIDE_INT len;
6099 int unsignedp;
6100 int in_dest, in_compare;
6102 /* This mode describes the size of the storage area
6103 to fetch the overall value from. Within that, we
6104 ignore the POS lowest bits, etc. */
6105 enum machine_mode is_mode = GET_MODE (inner);
6106 enum machine_mode inner_mode;
6107 enum machine_mode wanted_inner_mode = byte_mode;
6108 enum machine_mode wanted_inner_reg_mode = word_mode;
6109 enum machine_mode pos_mode = word_mode;
6110 enum machine_mode extraction_mode = word_mode;
6111 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6112 int spans_byte = 0;
6113 rtx new = 0;
6114 rtx orig_pos_rtx = pos_rtx;
6115 HOST_WIDE_INT orig_pos;
6117 /* Get some information about INNER and get the innermost object. */
6118 if (GET_CODE (inner) == USE)
6119 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6120 /* We don't need to adjust the position because we set up the USE
6121 to pretend that it was a full-word object. */
6122 spans_byte = 1, inner = XEXP (inner, 0);
6123 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6125 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6126 consider just the QI as the memory to extract from.
6127 The subreg adds or removes high bits; its mode is
6128 irrelevant to the meaning of this extraction,
6129 since POS and LEN count from the lsb. */
6130 if (GET_CODE (SUBREG_REG (inner)) == MEM)
6131 is_mode = GET_MODE (SUBREG_REG (inner));
6132 inner = SUBREG_REG (inner);
6134 else if (GET_CODE (inner) == ASHIFT
6135 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6136 && pos_rtx == 0 && pos == 0
6137 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6139 /* We're extracting the least significant bits of an rtx
6140 (ashift X (const_int C)), where LEN > C. Extract the
6141 least significant (LEN - C) bits of X, giving an rtx
6142 whose mode is MODE, then shift it left C times. */
6143 new = make_extraction (mode, XEXP (inner, 0),
6144 0, 0, len - INTVAL (XEXP (inner, 1)),
6145 unsignedp, in_dest, in_compare);
6146 if (new != 0)
6147 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6150 inner_mode = GET_MODE (inner);
6152 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6153 pos = INTVAL (pos_rtx), pos_rtx = 0;
6155 /* See if this can be done without an extraction. We never can if the
6156 width of the field is not the same as that of some integer mode. For
6157 registers, we can only avoid the extraction if the position is at the
6158 low-order bit and this is either not in the destination or we have the
6159 appropriate STRICT_LOW_PART operation available.
6161 For MEM, we can avoid an extract if the field starts on an appropriate
6162 boundary and we can change the mode of the memory reference. However,
6163 we cannot directly access the MEM if we have a USE and the underlying
6164 MEM is not TMODE. This combination means that MEM was being used in a
6165 context where bits outside its mode were being referenced; that is only
6166 valid in bit-field insns. */
6168 if (tmode != BLKmode
6169 && ! (spans_byte && inner_mode != tmode)
6170 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6171 && GET_CODE (inner) != MEM
6172 && (! in_dest
6173 || (GET_CODE (inner) == REG
6174 && have_insn_for (STRICT_LOW_PART, tmode))))
6175 || (GET_CODE (inner) == MEM && pos_rtx == 0
6176 && (pos
6177 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6178 : BITS_PER_UNIT)) == 0
6179 /* We can't do this if we are widening INNER_MODE (it
6180 may not be aligned, for one thing). */
6181 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6182 && (inner_mode == tmode
6183 || (! mode_dependent_address_p (XEXP (inner, 0))
6184 && ! MEM_VOLATILE_P (inner))))))
6186 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6187 field. If the original and current mode are the same, we need not
6188 adjust the offset. Otherwise, we do if bytes big endian.
6190 If INNER is not a MEM, get a piece consisting of just the field
6191 of interest (in this case POS % BITS_PER_WORD must be 0). */
6193 if (GET_CODE (inner) == MEM)
6195 HOST_WIDE_INT offset;
6197 /* POS counts from lsb, but make OFFSET count in memory order. */
6198 if (BYTES_BIG_ENDIAN)
6199 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6200 else
6201 offset = pos / BITS_PER_UNIT;
6203 new = adjust_address_nv (inner, tmode, offset);
6205 else if (GET_CODE (inner) == REG)
6207 /* We can't call gen_lowpart_for_combine here since we always want
6208 a SUBREG and it would sometimes return a new hard register. */
6209 if (tmode != inner_mode)
6211 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6213 if (WORDS_BIG_ENDIAN
6214 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6215 final_word = ((GET_MODE_SIZE (inner_mode)
6216 - GET_MODE_SIZE (tmode))
6217 / UNITS_PER_WORD) - final_word;
6219 final_word *= UNITS_PER_WORD;
6220 if (BYTES_BIG_ENDIAN &&
6221 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6222 final_word += (GET_MODE_SIZE (inner_mode)
6223 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6225 /* Avoid creating invalid subregs, for example when
6226 simplifying (x>>32)&255. */
6227 if (final_word >= GET_MODE_SIZE (inner_mode))
6228 return NULL_RTX;
6230 new = gen_rtx_SUBREG (tmode, inner, final_word);
6232 else
6233 new = inner;
6235 else
6236 new = force_to_mode (inner, tmode,
6237 len >= HOST_BITS_PER_WIDE_INT
6238 ? ~(unsigned HOST_WIDE_INT) 0
6239 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6240 NULL_RTX, 0);
6242 /* If this extraction is going into the destination of a SET,
6243 make a STRICT_LOW_PART unless we made a MEM. */
6245 if (in_dest)
6246 return (GET_CODE (new) == MEM ? new
6247 : (GET_CODE (new) != SUBREG
6248 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6249 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6251 if (mode == tmode)
6252 return new;
6254 if (GET_CODE (new) == CONST_INT)
6255 return gen_int_mode (INTVAL (new), mode);
6257 /* If we know that no extraneous bits are set, and that the high
6258 bit is not set, convert the extraction to the cheaper of
6259 sign and zero extension, that are equivalent in these cases. */
6260 if (flag_expensive_optimizations
6261 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6262 && ((nonzero_bits (new, tmode)
6263 & ~(((unsigned HOST_WIDE_INT)
6264 GET_MODE_MASK (tmode))
6265 >> 1))
6266 == 0)))
6268 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6269 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6271 /* Prefer ZERO_EXTENSION, since it gives more information to
6272 backends. */
6273 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6274 return temp;
6275 return temp1;
6278 /* Otherwise, sign- or zero-extend unless we already are in the
6279 proper mode. */
6281 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6282 mode, new));
6285 /* Unless this is a COMPARE or we have a funny memory reference,
6286 don't do anything with zero-extending field extracts starting at
6287 the low-order bit since they are simple AND operations. */
6288 if (pos_rtx == 0 && pos == 0 && ! in_dest
6289 && ! in_compare && ! spans_byte && unsignedp)
6290 return 0;
6292 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6293 we would be spanning bytes or if the position is not a constant and the
6294 length is not 1. In all other cases, we would only be going outside
6295 our object in cases when an original shift would have been
6296 undefined. */
6297 if (! spans_byte && GET_CODE (inner) == MEM
6298 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6299 || (pos_rtx != 0 && len != 1)))
6300 return 0;
6302 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6303 and the mode for the result. */
6304 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6306 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6307 pos_mode = mode_for_extraction (EP_insv, 2);
6308 extraction_mode = mode_for_extraction (EP_insv, 3);
6311 if (! in_dest && unsignedp
6312 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6314 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6315 pos_mode = mode_for_extraction (EP_extzv, 3);
6316 extraction_mode = mode_for_extraction (EP_extzv, 0);
6319 if (! in_dest && ! unsignedp
6320 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6322 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6323 pos_mode = mode_for_extraction (EP_extv, 3);
6324 extraction_mode = mode_for_extraction (EP_extv, 0);
6327 /* Never narrow an object, since that might not be safe. */
6329 if (mode != VOIDmode
6330 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6331 extraction_mode = mode;
6333 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6334 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6335 pos_mode = GET_MODE (pos_rtx);
6337 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6338 if we have to change the mode of memory and cannot, the desired mode is
6339 EXTRACTION_MODE. */
6340 if (GET_CODE (inner) != MEM)
6341 wanted_inner_mode = wanted_inner_reg_mode;
6342 else if (inner_mode != wanted_inner_mode
6343 && (mode_dependent_address_p (XEXP (inner, 0))
6344 || MEM_VOLATILE_P (inner)))
6345 wanted_inner_mode = extraction_mode;
6347 orig_pos = pos;
6349 if (BITS_BIG_ENDIAN)
6351 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6352 BITS_BIG_ENDIAN style. If position is constant, compute new
6353 position. Otherwise, build subtraction.
6354 Note that POS is relative to the mode of the original argument.
6355 If it's a MEM we need to recompute POS relative to that.
6356 However, if we're extracting from (or inserting into) a register,
6357 we want to recompute POS relative to wanted_inner_mode. */
6358 int width = (GET_CODE (inner) == MEM
6359 ? GET_MODE_BITSIZE (is_mode)
6360 : GET_MODE_BITSIZE (wanted_inner_mode));
6362 if (pos_rtx == 0)
6363 pos = width - len - pos;
6364 else
6365 pos_rtx
6366 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6367 /* POS may be less than 0 now, but we check for that below.
6368 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6371 /* If INNER has a wider mode, make it smaller. If this is a constant
6372 extract, try to adjust the byte to point to the byte containing
6373 the value. */
6374 if (wanted_inner_mode != VOIDmode
6375 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6376 && ((GET_CODE (inner) == MEM
6377 && (inner_mode == wanted_inner_mode
6378 || (! mode_dependent_address_p (XEXP (inner, 0))
6379 && ! MEM_VOLATILE_P (inner))))))
6381 int offset = 0;
6383 /* The computations below will be correct if the machine is big
6384 endian in both bits and bytes or little endian in bits and bytes.
6385 If it is mixed, we must adjust. */
6387 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6388 adjust OFFSET to compensate. */
6389 if (BYTES_BIG_ENDIAN
6390 && ! spans_byte
6391 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6392 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6394 /* If this is a constant position, we can move to the desired byte. */
6395 if (pos_rtx == 0)
6397 offset += pos / BITS_PER_UNIT;
6398 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6401 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6402 && ! spans_byte
6403 && is_mode != wanted_inner_mode)
6404 offset = (GET_MODE_SIZE (is_mode)
6405 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6407 if (offset != 0 || inner_mode != wanted_inner_mode)
6408 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6411 /* If INNER is not memory, we can always get it into the proper mode. If we
6412 are changing its mode, POS must be a constant and smaller than the size
6413 of the new mode. */
6414 else if (GET_CODE (inner) != MEM)
6416 if (GET_MODE (inner) != wanted_inner_mode
6417 && (pos_rtx != 0
6418 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6419 return 0;
6421 inner = force_to_mode (inner, wanted_inner_mode,
6422 pos_rtx
6423 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6424 ? ~(unsigned HOST_WIDE_INT) 0
6425 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6426 << orig_pos),
6427 NULL_RTX, 0);
6430 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6431 have to zero extend. Otherwise, we can just use a SUBREG. */
6432 if (pos_rtx != 0
6433 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6435 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6437 /* If we know that no extraneous bits are set, and that the high
6438 bit is not set, convert extraction to cheaper one - either
6439 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6440 cases. */
6441 if (flag_expensive_optimizations
6442 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6443 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6444 & ~(((unsigned HOST_WIDE_INT)
6445 GET_MODE_MASK (GET_MODE (pos_rtx)))
6446 >> 1))
6447 == 0)))
6449 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6451 /* Prefer ZERO_EXTENSION, since it gives more information to
6452 backends. */
6453 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6454 temp = temp1;
6456 pos_rtx = temp;
6458 else if (pos_rtx != 0
6459 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6460 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6462 /* Make POS_RTX unless we already have it and it is correct. If we don't
6463 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6464 be a CONST_INT. */
6465 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6466 pos_rtx = orig_pos_rtx;
6468 else if (pos_rtx == 0)
6469 pos_rtx = GEN_INT (pos);
6471 /* Make the required operation. See if we can use existing rtx. */
6472 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6473 extraction_mode, inner, GEN_INT (len), pos_rtx);
6474 if (! in_dest)
6475 new = gen_lowpart_for_combine (mode, new);
6477 return new;
6480 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6481 with any other operations in X. Return X without that shift if so. */
6483 static rtx
6484 extract_left_shift (x, count)
6485 rtx x;
6486 int count;
6488 enum rtx_code code = GET_CODE (x);
6489 enum machine_mode mode = GET_MODE (x);
6490 rtx tem;
6492 switch (code)
6494 case ASHIFT:
6495 /* This is the shift itself. If it is wide enough, we will return
6496 either the value being shifted if the shift count is equal to
6497 COUNT or a shift for the difference. */
6498 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6499 && INTVAL (XEXP (x, 1)) >= count)
6500 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6501 INTVAL (XEXP (x, 1)) - count);
6502 break;
6504 case NEG: case NOT:
6505 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6506 return simplify_gen_unary (code, mode, tem, mode);
6508 break;
6510 case PLUS: case IOR: case XOR: case AND:
6511 /* If we can safely shift this constant and we find the inner shift,
6512 make a new operation. */
6513 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6514 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6515 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6516 return gen_binary (code, mode, tem,
6517 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6519 break;
6521 default:
6522 break;
6525 return 0;
6528 /* Look at the expression rooted at X. Look for expressions
6529 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6530 Form these expressions.
6532 Return the new rtx, usually just X.
6534 Also, for machines like the VAX that don't have logical shift insns,
6535 try to convert logical to arithmetic shift operations in cases where
6536 they are equivalent. This undoes the canonicalizations to logical
6537 shifts done elsewhere.
6539 We try, as much as possible, to re-use rtl expressions to save memory.
6541 IN_CODE says what kind of expression we are processing. Normally, it is
6542 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6543 being kludges), it is MEM. When processing the arguments of a comparison
6544 or a COMPARE against zero, it is COMPARE. */
6546 static rtx
6547 make_compound_operation (x, in_code)
6548 rtx x;
6549 enum rtx_code in_code;
6551 enum rtx_code code = GET_CODE (x);
6552 enum machine_mode mode = GET_MODE (x);
6553 int mode_width = GET_MODE_BITSIZE (mode);
6554 rtx rhs, lhs;
6555 enum rtx_code next_code;
6556 int i;
6557 rtx new = 0;
6558 rtx tem;
6559 const char *fmt;
6561 /* Select the code to be used in recursive calls. Once we are inside an
6562 address, we stay there. If we have a comparison, set to COMPARE,
6563 but once inside, go back to our default of SET. */
6565 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6566 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6567 && XEXP (x, 1) == const0_rtx) ? COMPARE
6568 : in_code == COMPARE ? SET : in_code);
6570 /* Process depending on the code of this operation. If NEW is set
6571 nonzero, it will be returned. */
6573 switch (code)
6575 case ASHIFT:
6576 /* Convert shifts by constants into multiplications if inside
6577 an address. */
6578 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6579 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6580 && INTVAL (XEXP (x, 1)) >= 0)
6582 new = make_compound_operation (XEXP (x, 0), next_code);
6583 new = gen_rtx_MULT (mode, new,
6584 GEN_INT ((HOST_WIDE_INT) 1
6585 << INTVAL (XEXP (x, 1))));
6587 break;
6589 case AND:
6590 /* If the second operand is not a constant, we can't do anything
6591 with it. */
6592 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6593 break;
6595 /* If the constant is a power of two minus one and the first operand
6596 is a logical right shift, make an extraction. */
6597 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6598 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6600 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6601 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6602 0, in_code == COMPARE);
6605 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6606 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6607 && subreg_lowpart_p (XEXP (x, 0))
6608 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6609 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6611 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6612 next_code);
6613 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6614 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6615 0, in_code == COMPARE);
6617 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6618 else if ((GET_CODE (XEXP (x, 0)) == XOR
6619 || GET_CODE (XEXP (x, 0)) == IOR)
6620 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6621 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6622 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6624 /* Apply the distributive law, and then try to make extractions. */
6625 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6626 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6627 XEXP (x, 1)),
6628 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6629 XEXP (x, 1)));
6630 new = make_compound_operation (new, in_code);
6633 /* If we are have (and (rotate X C) M) and C is larger than the number
6634 of bits in M, this is an extraction. */
6636 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6637 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6638 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6639 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6641 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6642 new = make_extraction (mode, new,
6643 (GET_MODE_BITSIZE (mode)
6644 - INTVAL (XEXP (XEXP (x, 0), 1))),
6645 NULL_RTX, i, 1, 0, in_code == COMPARE);
6648 /* On machines without logical shifts, if the operand of the AND is
6649 a logical shift and our mask turns off all the propagated sign
6650 bits, we can replace the logical shift with an arithmetic shift. */
6651 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6652 && !have_insn_for (LSHIFTRT, mode)
6653 && have_insn_for (ASHIFTRT, mode)
6654 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6655 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6656 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6657 && mode_width <= HOST_BITS_PER_WIDE_INT)
6659 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6661 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6662 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6663 SUBST (XEXP (x, 0),
6664 gen_rtx_ASHIFTRT (mode,
6665 make_compound_operation
6666 (XEXP (XEXP (x, 0), 0), next_code),
6667 XEXP (XEXP (x, 0), 1)));
6670 /* If the constant is one less than a power of two, this might be
6671 representable by an extraction even if no shift is present.
6672 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6673 we are in a COMPARE. */
6674 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6675 new = make_extraction (mode,
6676 make_compound_operation (XEXP (x, 0),
6677 next_code),
6678 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6680 /* If we are in a comparison and this is an AND with a power of two,
6681 convert this into the appropriate bit extract. */
6682 else if (in_code == COMPARE
6683 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6684 new = make_extraction (mode,
6685 make_compound_operation (XEXP (x, 0),
6686 next_code),
6687 i, NULL_RTX, 1, 1, 0, 1);
6689 break;
6691 case LSHIFTRT:
6692 /* If the sign bit is known to be zero, replace this with an
6693 arithmetic shift. */
6694 if (have_insn_for (ASHIFTRT, mode)
6695 && ! have_insn_for (LSHIFTRT, mode)
6696 && mode_width <= HOST_BITS_PER_WIDE_INT
6697 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6699 new = gen_rtx_ASHIFTRT (mode,
6700 make_compound_operation (XEXP (x, 0),
6701 next_code),
6702 XEXP (x, 1));
6703 break;
6706 /* ... fall through ... */
6708 case ASHIFTRT:
6709 lhs = XEXP (x, 0);
6710 rhs = XEXP (x, 1);
6712 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6713 this is a SIGN_EXTRACT. */
6714 if (GET_CODE (rhs) == CONST_INT
6715 && GET_CODE (lhs) == ASHIFT
6716 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6717 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6719 new = make_compound_operation (XEXP (lhs, 0), next_code);
6720 new = make_extraction (mode, new,
6721 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6722 NULL_RTX, mode_width - INTVAL (rhs),
6723 code == LSHIFTRT, 0, in_code == COMPARE);
6724 break;
6727 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6728 If so, try to merge the shifts into a SIGN_EXTEND. We could
6729 also do this for some cases of SIGN_EXTRACT, but it doesn't
6730 seem worth the effort; the case checked for occurs on Alpha. */
6732 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6733 && ! (GET_CODE (lhs) == SUBREG
6734 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6735 && GET_CODE (rhs) == CONST_INT
6736 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6737 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6738 new = make_extraction (mode, make_compound_operation (new, next_code),
6739 0, NULL_RTX, mode_width - INTVAL (rhs),
6740 code == LSHIFTRT, 0, in_code == COMPARE);
6742 break;
6744 case SUBREG:
6745 /* Call ourselves recursively on the inner expression. If we are
6746 narrowing the object and it has a different RTL code from
6747 what it originally did, do this SUBREG as a force_to_mode. */
6749 tem = make_compound_operation (SUBREG_REG (x), in_code);
6750 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6751 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6752 && subreg_lowpart_p (x))
6754 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6755 NULL_RTX, 0);
6757 /* If we have something other than a SUBREG, we might have
6758 done an expansion, so rerun ourselves. */
6759 if (GET_CODE (newer) != SUBREG)
6760 newer = make_compound_operation (newer, in_code);
6762 return newer;
6765 /* If this is a paradoxical subreg, and the new code is a sign or
6766 zero extension, omit the subreg and widen the extension. If it
6767 is a regular subreg, we can still get rid of the subreg by not
6768 widening so much, or in fact removing the extension entirely. */
6769 if ((GET_CODE (tem) == SIGN_EXTEND
6770 || GET_CODE (tem) == ZERO_EXTEND)
6771 && subreg_lowpart_p (x))
6773 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6774 || (GET_MODE_SIZE (mode) >
6775 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6777 if (! SCALAR_INT_MODE_P (mode))
6778 break;
6779 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6781 else
6782 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6783 return tem;
6785 break;
6787 default:
6788 break;
6791 if (new)
6793 x = gen_lowpart_for_combine (mode, new);
6794 code = GET_CODE (x);
6797 /* Now recursively process each operand of this operation. */
6798 fmt = GET_RTX_FORMAT (code);
6799 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6800 if (fmt[i] == 'e')
6802 new = make_compound_operation (XEXP (x, i), next_code);
6803 SUBST (XEXP (x, i), new);
6806 return x;
6809 /* Given M see if it is a value that would select a field of bits
6810 within an item, but not the entire word. Return -1 if not.
6811 Otherwise, return the starting position of the field, where 0 is the
6812 low-order bit.
6814 *PLEN is set to the length of the field. */
6816 static int
6817 get_pos_from_mask (m, plen)
6818 unsigned HOST_WIDE_INT m;
6819 unsigned HOST_WIDE_INT *plen;
6821 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6822 int pos = exact_log2 (m & -m);
6823 int len;
6825 if (pos < 0)
6826 return -1;
6828 /* Now shift off the low-order zero bits and see if we have a power of
6829 two minus 1. */
6830 len = exact_log2 ((m >> pos) + 1);
6832 if (len <= 0)
6833 return -1;
6835 *plen = len;
6836 return pos;
6839 /* See if X can be simplified knowing that we will only refer to it in
6840 MODE and will only refer to those bits that are nonzero in MASK.
6841 If other bits are being computed or if masking operations are done
6842 that select a superset of the bits in MASK, they can sometimes be
6843 ignored.
6845 Return a possibly simplified expression, but always convert X to
6846 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6848 Also, if REG is nonzero and X is a register equal in value to REG,
6849 replace X with REG.
6851 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6852 are all off in X. This is used when X will be complemented, by either
6853 NOT, NEG, or XOR. */
6855 static rtx
6856 force_to_mode (x, mode, mask, reg, just_select)
6857 rtx x;
6858 enum machine_mode mode;
6859 unsigned HOST_WIDE_INT mask;
6860 rtx reg;
6861 int just_select;
6863 enum rtx_code code = GET_CODE (x);
6864 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6865 enum machine_mode op_mode;
6866 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6867 rtx op0, op1, temp;
6869 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6870 code below will do the wrong thing since the mode of such an
6871 expression is VOIDmode.
6873 Also do nothing if X is a CLOBBER; this can happen if X was
6874 the return value from a call to gen_lowpart_for_combine. */
6875 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6876 return x;
6878 /* We want to perform the operation is its present mode unless we know
6879 that the operation is valid in MODE, in which case we do the operation
6880 in MODE. */
6881 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6882 && have_insn_for (code, mode))
6883 ? mode : GET_MODE (x));
6885 /* It is not valid to do a right-shift in a narrower mode
6886 than the one it came in with. */
6887 if ((code == LSHIFTRT || code == ASHIFTRT)
6888 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6889 op_mode = GET_MODE (x);
6891 /* Truncate MASK to fit OP_MODE. */
6892 if (op_mode)
6893 mask &= GET_MODE_MASK (op_mode);
6895 /* When we have an arithmetic operation, or a shift whose count we
6896 do not know, we need to assume that all bit the up to the highest-order
6897 bit in MASK will be needed. This is how we form such a mask. */
6898 if (op_mode)
6899 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6900 ? GET_MODE_MASK (op_mode)
6901 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6902 - 1));
6903 else
6904 fuller_mask = ~(HOST_WIDE_INT) 0;
6906 /* Determine what bits of X are guaranteed to be (non)zero. */
6907 nonzero = nonzero_bits (x, mode);
6909 /* If none of the bits in X are needed, return a zero. */
6910 if (! just_select && (nonzero & mask) == 0)
6911 x = const0_rtx;
6913 /* If X is a CONST_INT, return a new one. Do this here since the
6914 test below will fail. */
6915 if (GET_CODE (x) == CONST_INT)
6917 if (SCALAR_INT_MODE_P (mode))
6918 return gen_int_mode (INTVAL (x) & mask, mode);
6919 else
6921 x = GEN_INT (INTVAL (x) & mask);
6922 return gen_lowpart_common (mode, x);
6926 /* If X is narrower than MODE and we want all the bits in X's mode, just
6927 get X in the proper mode. */
6928 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6929 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6930 return gen_lowpart_for_combine (mode, x);
6932 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6933 MASK are already known to be zero in X, we need not do anything. */
6934 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6935 return x;
6937 switch (code)
6939 case CLOBBER:
6940 /* If X is a (clobber (const_int)), return it since we know we are
6941 generating something that won't match. */
6942 return x;
6944 case USE:
6945 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6946 spanned the boundary of the MEM. If we are now masking so it is
6947 within that boundary, we don't need the USE any more. */
6948 if (! BITS_BIG_ENDIAN
6949 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6950 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6951 break;
6953 case SIGN_EXTEND:
6954 case ZERO_EXTEND:
6955 case ZERO_EXTRACT:
6956 case SIGN_EXTRACT:
6957 x = expand_compound_operation (x);
6958 if (GET_CODE (x) != code)
6959 return force_to_mode (x, mode, mask, reg, next_select);
6960 break;
6962 case REG:
6963 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6964 || rtx_equal_p (reg, get_last_value (x))))
6965 x = reg;
6966 break;
6968 case SUBREG:
6969 if (subreg_lowpart_p (x)
6970 /* We can ignore the effect of this SUBREG if it narrows the mode or
6971 if the constant masks to zero all the bits the mode doesn't
6972 have. */
6973 && ((GET_MODE_SIZE (GET_MODE (x))
6974 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6975 || (0 == (mask
6976 & GET_MODE_MASK (GET_MODE (x))
6977 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6978 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6979 break;
6981 case AND:
6982 /* If this is an AND with a constant, convert it into an AND
6983 whose constant is the AND of that constant with MASK. If it
6984 remains an AND of MASK, delete it since it is redundant. */
6986 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6988 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6989 mask & INTVAL (XEXP (x, 1)));
6991 /* If X is still an AND, see if it is an AND with a mask that
6992 is just some low-order bits. If so, and it is MASK, we don't
6993 need it. */
6995 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6996 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6997 == mask))
6998 x = XEXP (x, 0);
7000 /* If it remains an AND, try making another AND with the bits
7001 in the mode mask that aren't in MASK turned on. If the
7002 constant in the AND is wide enough, this might make a
7003 cheaper constant. */
7005 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7006 && GET_MODE_MASK (GET_MODE (x)) != mask
7007 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7009 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7010 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7011 int width = GET_MODE_BITSIZE (GET_MODE (x));
7012 rtx y;
7014 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
7015 number, sign extend it. */
7016 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7017 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7018 cval |= (HOST_WIDE_INT) -1 << width;
7020 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
7021 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7022 x = y;
7025 break;
7028 goto binop;
7030 case PLUS:
7031 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7032 low-order bits (as in an alignment operation) and FOO is already
7033 aligned to that boundary, mask C1 to that boundary as well.
7034 This may eliminate that PLUS and, later, the AND. */
7037 unsigned int width = GET_MODE_BITSIZE (mode);
7038 unsigned HOST_WIDE_INT smask = mask;
7040 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7041 number, sign extend it. */
7043 if (width < HOST_BITS_PER_WIDE_INT
7044 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7045 smask |= (HOST_WIDE_INT) -1 << width;
7047 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7048 && exact_log2 (- smask) >= 0
7049 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7050 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7051 return force_to_mode (plus_constant (XEXP (x, 0),
7052 (INTVAL (XEXP (x, 1)) & smask)),
7053 mode, smask, reg, next_select);
7056 /* ... fall through ... */
7058 case MULT:
7059 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7060 most significant bit in MASK since carries from those bits will
7061 affect the bits we are interested in. */
7062 mask = fuller_mask;
7063 goto binop;
7065 case MINUS:
7066 /* If X is (minus C Y) where C's least set bit is larger than any bit
7067 in the mask, then we may replace with (neg Y). */
7068 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7069 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7070 & -INTVAL (XEXP (x, 0))))
7071 > mask))
7073 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7074 GET_MODE (x));
7075 return force_to_mode (x, mode, mask, reg, next_select);
7078 /* Similarly, if C contains every bit in the fuller_mask, then we may
7079 replace with (not Y). */
7080 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7081 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7082 == INTVAL (XEXP (x, 0))))
7084 x = simplify_gen_unary (NOT, GET_MODE (x),
7085 XEXP (x, 1), GET_MODE (x));
7086 return force_to_mode (x, mode, mask, reg, next_select);
7089 mask = fuller_mask;
7090 goto binop;
7092 case IOR:
7093 case XOR:
7094 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7095 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7096 operation which may be a bitfield extraction. Ensure that the
7097 constant we form is not wider than the mode of X. */
7099 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7100 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7101 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7102 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7103 && GET_CODE (XEXP (x, 1)) == CONST_INT
7104 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7105 + floor_log2 (INTVAL (XEXP (x, 1))))
7106 < GET_MODE_BITSIZE (GET_MODE (x)))
7107 && (INTVAL (XEXP (x, 1))
7108 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7110 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7111 << INTVAL (XEXP (XEXP (x, 0), 1)));
7112 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7113 XEXP (XEXP (x, 0), 0), temp);
7114 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7115 XEXP (XEXP (x, 0), 1));
7116 return force_to_mode (x, mode, mask, reg, next_select);
7119 binop:
7120 /* For most binary operations, just propagate into the operation and
7121 change the mode if we have an operation of that mode. */
7123 op0 = gen_lowpart_for_combine (op_mode,
7124 force_to_mode (XEXP (x, 0), mode, mask,
7125 reg, next_select));
7126 op1 = gen_lowpart_for_combine (op_mode,
7127 force_to_mode (XEXP (x, 1), mode, mask,
7128 reg, next_select));
7130 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7131 x = gen_binary (code, op_mode, op0, op1);
7132 break;
7134 case ASHIFT:
7135 /* For left shifts, do the same, but just for the first operand.
7136 However, we cannot do anything with shifts where we cannot
7137 guarantee that the counts are smaller than the size of the mode
7138 because such a count will have a different meaning in a
7139 wider mode. */
7141 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7142 && INTVAL (XEXP (x, 1)) >= 0
7143 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7144 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7145 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7146 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7147 break;
7149 /* If the shift count is a constant and we can do arithmetic in
7150 the mode of the shift, refine which bits we need. Otherwise, use the
7151 conservative form of the mask. */
7152 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7153 && INTVAL (XEXP (x, 1)) >= 0
7154 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7155 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7156 mask >>= INTVAL (XEXP (x, 1));
7157 else
7158 mask = fuller_mask;
7160 op0 = gen_lowpart_for_combine (op_mode,
7161 force_to_mode (XEXP (x, 0), op_mode,
7162 mask, reg, next_select));
7164 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7165 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7166 break;
7168 case LSHIFTRT:
7169 /* Here we can only do something if the shift count is a constant,
7170 this shift constant is valid for the host, and we can do arithmetic
7171 in OP_MODE. */
7173 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7174 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7175 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7177 rtx inner = XEXP (x, 0);
7178 unsigned HOST_WIDE_INT inner_mask;
7180 /* Select the mask of the bits we need for the shift operand. */
7181 inner_mask = mask << INTVAL (XEXP (x, 1));
7183 /* We can only change the mode of the shift if we can do arithmetic
7184 in the mode of the shift and INNER_MASK is no wider than the
7185 width of OP_MODE. */
7186 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7187 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7188 op_mode = GET_MODE (x);
7190 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7192 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7193 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7196 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7197 shift and AND produces only copies of the sign bit (C2 is one less
7198 than a power of two), we can do this with just a shift. */
7200 if (GET_CODE (x) == LSHIFTRT
7201 && GET_CODE (XEXP (x, 1)) == CONST_INT
7202 /* The shift puts one of the sign bit copies in the least significant
7203 bit. */
7204 && ((INTVAL (XEXP (x, 1))
7205 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7206 >= GET_MODE_BITSIZE (GET_MODE (x)))
7207 && exact_log2 (mask + 1) >= 0
7208 /* Number of bits left after the shift must be more than the mask
7209 needs. */
7210 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7211 <= GET_MODE_BITSIZE (GET_MODE (x)))
7212 /* Must be more sign bit copies than the mask needs. */
7213 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7214 >= exact_log2 (mask + 1)))
7215 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7216 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7217 - exact_log2 (mask + 1)));
7219 goto shiftrt;
7221 case ASHIFTRT:
7222 /* If we are just looking for the sign bit, we don't need this shift at
7223 all, even if it has a variable count. */
7224 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7225 && (mask == ((unsigned HOST_WIDE_INT) 1
7226 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7227 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7229 /* If this is a shift by a constant, get a mask that contains those bits
7230 that are not copies of the sign bit. We then have two cases: If
7231 MASK only includes those bits, this can be a logical shift, which may
7232 allow simplifications. If MASK is a single-bit field not within
7233 those bits, we are requesting a copy of the sign bit and hence can
7234 shift the sign bit to the appropriate location. */
7236 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7237 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7239 int i = -1;
7241 /* If the considered data is wider than HOST_WIDE_INT, we can't
7242 represent a mask for all its bits in a single scalar.
7243 But we only care about the lower bits, so calculate these. */
7245 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7247 nonzero = ~(HOST_WIDE_INT) 0;
7249 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7250 is the number of bits a full-width mask would have set.
7251 We need only shift if these are fewer than nonzero can
7252 hold. If not, we must keep all bits set in nonzero. */
7254 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7255 < HOST_BITS_PER_WIDE_INT)
7256 nonzero >>= INTVAL (XEXP (x, 1))
7257 + HOST_BITS_PER_WIDE_INT
7258 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7260 else
7262 nonzero = GET_MODE_MASK (GET_MODE (x));
7263 nonzero >>= INTVAL (XEXP (x, 1));
7266 if ((mask & ~nonzero) == 0
7267 || (i = exact_log2 (mask)) >= 0)
7269 x = simplify_shift_const
7270 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7271 i < 0 ? INTVAL (XEXP (x, 1))
7272 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7274 if (GET_CODE (x) != ASHIFTRT)
7275 return force_to_mode (x, mode, mask, reg, next_select);
7279 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7280 even if the shift count isn't a constant. */
7281 if (mask == 1)
7282 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7284 shiftrt:
7286 /* If this is a zero- or sign-extension operation that just affects bits
7287 we don't care about, remove it. Be sure the call above returned
7288 something that is still a shift. */
7290 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7291 && GET_CODE (XEXP (x, 1)) == CONST_INT
7292 && INTVAL (XEXP (x, 1)) >= 0
7293 && (INTVAL (XEXP (x, 1))
7294 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7295 && GET_CODE (XEXP (x, 0)) == ASHIFT
7296 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7297 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7298 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7299 reg, next_select);
7301 break;
7303 case ROTATE:
7304 case ROTATERT:
7305 /* If the shift count is constant and we can do computations
7306 in the mode of X, compute where the bits we care about are.
7307 Otherwise, we can't do anything. Don't change the mode of
7308 the shift or propagate MODE into the shift, though. */
7309 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7310 && INTVAL (XEXP (x, 1)) >= 0)
7312 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7313 GET_MODE (x), GEN_INT (mask),
7314 XEXP (x, 1));
7315 if (temp && GET_CODE (temp) == CONST_INT)
7316 SUBST (XEXP (x, 0),
7317 force_to_mode (XEXP (x, 0), GET_MODE (x),
7318 INTVAL (temp), reg, next_select));
7320 break;
7322 case NEG:
7323 /* If we just want the low-order bit, the NEG isn't needed since it
7324 won't change the low-order bit. */
7325 if (mask == 1)
7326 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7328 /* We need any bits less significant than the most significant bit in
7329 MASK since carries from those bits will affect the bits we are
7330 interested in. */
7331 mask = fuller_mask;
7332 goto unop;
7334 case NOT:
7335 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7336 same as the XOR case above. Ensure that the constant we form is not
7337 wider than the mode of X. */
7339 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7340 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7341 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7342 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7343 < GET_MODE_BITSIZE (GET_MODE (x)))
7344 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7346 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7347 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7348 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7350 return force_to_mode (x, mode, mask, reg, next_select);
7353 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7354 use the full mask inside the NOT. */
7355 mask = fuller_mask;
7357 unop:
7358 op0 = gen_lowpart_for_combine (op_mode,
7359 force_to_mode (XEXP (x, 0), mode, mask,
7360 reg, next_select));
7361 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7362 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7363 break;
7365 case NE:
7366 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7367 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7368 which is equal to STORE_FLAG_VALUE. */
7369 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7370 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7371 && (nonzero_bits (XEXP (x, 0), mode)
7372 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7373 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7375 break;
7377 case IF_THEN_ELSE:
7378 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7379 written in a narrower mode. We play it safe and do not do so. */
7381 SUBST (XEXP (x, 1),
7382 gen_lowpart_for_combine (GET_MODE (x),
7383 force_to_mode (XEXP (x, 1), mode,
7384 mask, reg, next_select)));
7385 SUBST (XEXP (x, 2),
7386 gen_lowpart_for_combine (GET_MODE (x),
7387 force_to_mode (XEXP (x, 2), mode,
7388 mask, reg, next_select)));
7389 break;
7391 default:
7392 break;
7395 /* Ensure we return a value of the proper mode. */
7396 return gen_lowpart_for_combine (mode, x);
7399 /* Return nonzero if X is an expression that has one of two values depending on
7400 whether some other value is zero or nonzero. In that case, we return the
7401 value that is being tested, *PTRUE is set to the value if the rtx being
7402 returned has a nonzero value, and *PFALSE is set to the other alternative.
7404 If we return zero, we set *PTRUE and *PFALSE to X. */
7406 static rtx
7407 if_then_else_cond (x, ptrue, pfalse)
7408 rtx x;
7409 rtx *ptrue, *pfalse;
7411 enum machine_mode mode = GET_MODE (x);
7412 enum rtx_code code = GET_CODE (x);
7413 rtx cond0, cond1, true0, true1, false0, false1;
7414 unsigned HOST_WIDE_INT nz;
7416 /* If we are comparing a value against zero, we are done. */
7417 if ((code == NE || code == EQ)
7418 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7420 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7421 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7422 return XEXP (x, 0);
7425 /* If this is a unary operation whose operand has one of two values, apply
7426 our opcode to compute those values. */
7427 else if (GET_RTX_CLASS (code) == '1'
7428 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7430 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7431 *pfalse = simplify_gen_unary (code, mode, false0,
7432 GET_MODE (XEXP (x, 0)));
7433 return cond0;
7436 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7437 make can't possibly match and would suppress other optimizations. */
7438 else if (code == COMPARE)
7441 /* If this is a binary operation, see if either side has only one of two
7442 values. If either one does or if both do and they are conditional on
7443 the same value, compute the new true and false values. */
7444 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7445 || GET_RTX_CLASS (code) == '<')
7447 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7448 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7450 if ((cond0 != 0 || cond1 != 0)
7451 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7453 /* If if_then_else_cond returned zero, then true/false are the
7454 same rtl. We must copy one of them to prevent invalid rtl
7455 sharing. */
7456 if (cond0 == 0)
7457 true0 = copy_rtx (true0);
7458 else if (cond1 == 0)
7459 true1 = copy_rtx (true1);
7461 *ptrue = gen_binary (code, mode, true0, true1);
7462 *pfalse = gen_binary (code, mode, false0, false1);
7463 return cond0 ? cond0 : cond1;
7466 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7467 operands is zero when the other is nonzero, and vice-versa,
7468 and STORE_FLAG_VALUE is 1 or -1. */
7470 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7471 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7472 || code == UMAX)
7473 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7475 rtx op0 = XEXP (XEXP (x, 0), 1);
7476 rtx op1 = XEXP (XEXP (x, 1), 1);
7478 cond0 = XEXP (XEXP (x, 0), 0);
7479 cond1 = XEXP (XEXP (x, 1), 0);
7481 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7482 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7483 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7484 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7485 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7486 || ((swap_condition (GET_CODE (cond0))
7487 == combine_reversed_comparison_code (cond1))
7488 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7489 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7490 && ! side_effects_p (x))
7492 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7493 *pfalse = gen_binary (MULT, mode,
7494 (code == MINUS
7495 ? simplify_gen_unary (NEG, mode, op1,
7496 mode)
7497 : op1),
7498 const_true_rtx);
7499 return cond0;
7503 /* Similarly for MULT, AND and UMIN, except that for these the result
7504 is always zero. */
7505 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7506 && (code == MULT || code == AND || code == UMIN)
7507 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7509 cond0 = XEXP (XEXP (x, 0), 0);
7510 cond1 = XEXP (XEXP (x, 1), 0);
7512 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7513 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7514 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7515 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7516 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7517 || ((swap_condition (GET_CODE (cond0))
7518 == combine_reversed_comparison_code (cond1))
7519 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7520 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7521 && ! side_effects_p (x))
7523 *ptrue = *pfalse = const0_rtx;
7524 return cond0;
7529 else if (code == IF_THEN_ELSE)
7531 /* If we have IF_THEN_ELSE already, extract the condition and
7532 canonicalize it if it is NE or EQ. */
7533 cond0 = XEXP (x, 0);
7534 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7535 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7536 return XEXP (cond0, 0);
7537 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7539 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7540 return XEXP (cond0, 0);
7542 else
7543 return cond0;
7546 /* If X is a SUBREG, we can narrow both the true and false values
7547 if the inner expression, if there is a condition. */
7548 else if (code == SUBREG
7549 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7550 &true0, &false0)))
7552 *ptrue = simplify_gen_subreg (mode, true0,
7553 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7554 *pfalse = simplify_gen_subreg (mode, false0,
7555 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7557 return cond0;
7560 /* If X is a constant, this isn't special and will cause confusions
7561 if we treat it as such. Likewise if it is equivalent to a constant. */
7562 else if (CONSTANT_P (x)
7563 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7566 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7567 will be least confusing to the rest of the compiler. */
7568 else if (mode == BImode)
7570 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7571 return x;
7574 /* If X is known to be either 0 or -1, those are the true and
7575 false values when testing X. */
7576 else if (x == constm1_rtx || x == const0_rtx
7577 || (mode != VOIDmode
7578 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7580 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7581 return x;
7584 /* Likewise for 0 or a single bit. */
7585 else if (mode != VOIDmode
7586 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7587 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7589 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7590 return x;
7593 /* Otherwise fail; show no condition with true and false values the same. */
7594 *ptrue = *pfalse = x;
7595 return 0;
7598 /* Return the value of expression X given the fact that condition COND
7599 is known to be true when applied to REG as its first operand and VAL
7600 as its second. X is known to not be shared and so can be modified in
7601 place.
7603 We only handle the simplest cases, and specifically those cases that
7604 arise with IF_THEN_ELSE expressions. */
7606 static rtx
7607 known_cond (x, cond, reg, val)
7608 rtx x;
7609 enum rtx_code cond;
7610 rtx reg, val;
7612 enum rtx_code code = GET_CODE (x);
7613 rtx temp;
7614 const char *fmt;
7615 int i, j;
7617 if (side_effects_p (x))
7618 return x;
7620 /* If either operand of the condition is a floating point value,
7621 then we have to avoid collapsing an EQ comparison. */
7622 if (cond == EQ
7623 && rtx_equal_p (x, reg)
7624 && ! FLOAT_MODE_P (GET_MODE (x))
7625 && ! FLOAT_MODE_P (GET_MODE (val)))
7626 return val;
7628 if (cond == UNEQ && rtx_equal_p (x, reg))
7629 return val;
7631 /* If X is (abs REG) and we know something about REG's relationship
7632 with zero, we may be able to simplify this. */
7634 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7635 switch (cond)
7637 case GE: case GT: case EQ:
7638 return XEXP (x, 0);
7639 case LT: case LE:
7640 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7641 XEXP (x, 0),
7642 GET_MODE (XEXP (x, 0)));
7643 default:
7644 break;
7647 /* The only other cases we handle are MIN, MAX, and comparisons if the
7648 operands are the same as REG and VAL. */
7650 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7652 if (rtx_equal_p (XEXP (x, 0), val))
7653 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7655 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7657 if (GET_RTX_CLASS (code) == '<')
7659 if (comparison_dominates_p (cond, code))
7660 return const_true_rtx;
7662 code = combine_reversed_comparison_code (x);
7663 if (code != UNKNOWN
7664 && comparison_dominates_p (cond, code))
7665 return const0_rtx;
7666 else
7667 return x;
7669 else if (code == SMAX || code == SMIN
7670 || code == UMIN || code == UMAX)
7672 int unsignedp = (code == UMIN || code == UMAX);
7674 /* Do not reverse the condition when it is NE or EQ.
7675 This is because we cannot conclude anything about
7676 the value of 'SMAX (x, y)' when x is not equal to y,
7677 but we can when x equals y. */
7678 if ((code == SMAX || code == UMAX)
7679 && ! (cond == EQ || cond == NE))
7680 cond = reverse_condition (cond);
7682 switch (cond)
7684 case GE: case GT:
7685 return unsignedp ? x : XEXP (x, 1);
7686 case LE: case LT:
7687 return unsignedp ? x : XEXP (x, 0);
7688 case GEU: case GTU:
7689 return unsignedp ? XEXP (x, 1) : x;
7690 case LEU: case LTU:
7691 return unsignedp ? XEXP (x, 0) : x;
7692 default:
7693 break;
7698 else if (code == SUBREG)
7700 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7701 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7703 if (SUBREG_REG (x) != r)
7705 /* We must simplify subreg here, before we lose track of the
7706 original inner_mode. */
7707 new = simplify_subreg (GET_MODE (x), r,
7708 inner_mode, SUBREG_BYTE (x));
7709 if (new)
7710 return new;
7711 else
7712 SUBST (SUBREG_REG (x), r);
7715 return x;
7717 /* We don't have to handle SIGN_EXTEND here, because even in the
7718 case of replacing something with a modeless CONST_INT, a
7719 CONST_INT is already (supposed to be) a valid sign extension for
7720 its narrower mode, which implies it's already properly
7721 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7722 story is different. */
7723 else if (code == ZERO_EXTEND)
7725 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7726 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7728 if (XEXP (x, 0) != r)
7730 /* We must simplify the zero_extend here, before we lose
7731 track of the original inner_mode. */
7732 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7733 r, inner_mode);
7734 if (new)
7735 return new;
7736 else
7737 SUBST (XEXP (x, 0), r);
7740 return x;
7743 fmt = GET_RTX_FORMAT (code);
7744 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7746 if (fmt[i] == 'e')
7747 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7748 else if (fmt[i] == 'E')
7749 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7750 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7751 cond, reg, val));
7754 return x;
7757 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7758 assignment as a field assignment. */
7760 static int
7761 rtx_equal_for_field_assignment_p (x, y)
7762 rtx x;
7763 rtx y;
7765 if (x == y || rtx_equal_p (x, y))
7766 return 1;
7768 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7769 return 0;
7771 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7772 Note that all SUBREGs of MEM are paradoxical; otherwise they
7773 would have been rewritten. */
7774 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7775 && GET_CODE (SUBREG_REG (y)) == MEM
7776 && rtx_equal_p (SUBREG_REG (y),
7777 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7778 return 1;
7780 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7781 && GET_CODE (SUBREG_REG (x)) == MEM
7782 && rtx_equal_p (SUBREG_REG (x),
7783 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7784 return 1;
7786 /* We used to see if get_last_value of X and Y were the same but that's
7787 not correct. In one direction, we'll cause the assignment to have
7788 the wrong destination and in the case, we'll import a register into this
7789 insn that might have already have been dead. So fail if none of the
7790 above cases are true. */
7791 return 0;
7794 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7795 Return that assignment if so.
7797 We only handle the most common cases. */
7799 static rtx
7800 make_field_assignment (x)
7801 rtx x;
7803 rtx dest = SET_DEST (x);
7804 rtx src = SET_SRC (x);
7805 rtx assign;
7806 rtx rhs, lhs;
7807 HOST_WIDE_INT c1;
7808 HOST_WIDE_INT pos;
7809 unsigned HOST_WIDE_INT len;
7810 rtx other;
7811 enum machine_mode mode;
7813 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7814 a clear of a one-bit field. We will have changed it to
7815 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7816 for a SUBREG. */
7818 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7819 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7820 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7821 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7823 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7824 1, 1, 1, 0);
7825 if (assign != 0)
7826 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7827 return x;
7830 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7831 && subreg_lowpart_p (XEXP (src, 0))
7832 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7833 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7834 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7835 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7836 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7838 assign = make_extraction (VOIDmode, dest, 0,
7839 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7840 1, 1, 1, 0);
7841 if (assign != 0)
7842 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7843 return x;
7846 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7847 one-bit field. */
7848 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7849 && XEXP (XEXP (src, 0), 0) == const1_rtx
7850 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7852 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7853 1, 1, 1, 0);
7854 if (assign != 0)
7855 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7856 return x;
7859 /* The other case we handle is assignments into a constant-position
7860 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7861 a mask that has all one bits except for a group of zero bits and
7862 OTHER is known to have zeros where C1 has ones, this is such an
7863 assignment. Compute the position and length from C1. Shift OTHER
7864 to the appropriate position, force it to the required mode, and
7865 make the extraction. Check for the AND in both operands. */
7867 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7868 return x;
7870 rhs = expand_compound_operation (XEXP (src, 0));
7871 lhs = expand_compound_operation (XEXP (src, 1));
7873 if (GET_CODE (rhs) == AND
7874 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7875 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7876 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7877 else if (GET_CODE (lhs) == AND
7878 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7879 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7880 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7881 else
7882 return x;
7884 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7885 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7886 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7887 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7888 return x;
7890 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7891 if (assign == 0)
7892 return x;
7894 /* The mode to use for the source is the mode of the assignment, or of
7895 what is inside a possible STRICT_LOW_PART. */
7896 mode = (GET_CODE (assign) == STRICT_LOW_PART
7897 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7899 /* Shift OTHER right POS places and make it the source, restricting it
7900 to the proper length and mode. */
7902 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7903 GET_MODE (src), other, pos),
7904 mode,
7905 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7906 ? ~(unsigned HOST_WIDE_INT) 0
7907 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7908 dest, 0);
7910 return gen_rtx_SET (VOIDmode, assign, src);
7913 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7914 if so. */
7916 static rtx
7917 apply_distributive_law (x)
7918 rtx x;
7920 enum rtx_code code = GET_CODE (x);
7921 rtx lhs, rhs, other;
7922 rtx tem;
7923 enum rtx_code inner_code;
7925 /* Distributivity is not true for floating point.
7926 It can change the value. So don't do it.
7927 -- rms and moshier@world.std.com. */
7928 if (FLOAT_MODE_P (GET_MODE (x)))
7929 return x;
7931 /* The outer operation can only be one of the following: */
7932 if (code != IOR && code != AND && code != XOR
7933 && code != PLUS && code != MINUS)
7934 return x;
7936 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7938 /* If either operand is a primitive we can't do anything, so get out
7939 fast. */
7940 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7941 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7942 return x;
7944 lhs = expand_compound_operation (lhs);
7945 rhs = expand_compound_operation (rhs);
7946 inner_code = GET_CODE (lhs);
7947 if (inner_code != GET_CODE (rhs))
7948 return x;
7950 /* See if the inner and outer operations distribute. */
7951 switch (inner_code)
7953 case LSHIFTRT:
7954 case ASHIFTRT:
7955 case AND:
7956 case IOR:
7957 /* These all distribute except over PLUS. */
7958 if (code == PLUS || code == MINUS)
7959 return x;
7960 break;
7962 case MULT:
7963 if (code != PLUS && code != MINUS)
7964 return x;
7965 break;
7967 case ASHIFT:
7968 /* This is also a multiply, so it distributes over everything. */
7969 break;
7971 case SUBREG:
7972 /* Non-paradoxical SUBREGs distributes over all operations, provided
7973 the inner modes and byte offsets are the same, this is an extraction
7974 of a low-order part, we don't convert an fp operation to int or
7975 vice versa, and we would not be converting a single-word
7976 operation into a multi-word operation. The latter test is not
7977 required, but it prevents generating unneeded multi-word operations.
7978 Some of the previous tests are redundant given the latter test, but
7979 are retained because they are required for correctness.
7981 We produce the result slightly differently in this case. */
7983 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7984 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7985 || ! subreg_lowpart_p (lhs)
7986 || (GET_MODE_CLASS (GET_MODE (lhs))
7987 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7988 || (GET_MODE_SIZE (GET_MODE (lhs))
7989 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7990 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7991 return x;
7993 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7994 SUBREG_REG (lhs), SUBREG_REG (rhs));
7995 return gen_lowpart_for_combine (GET_MODE (x), tem);
7997 default:
7998 return x;
8001 /* Set LHS and RHS to the inner operands (A and B in the example
8002 above) and set OTHER to the common operand (C in the example).
8003 These is only one way to do this unless the inner operation is
8004 commutative. */
8005 if (GET_RTX_CLASS (inner_code) == 'c'
8006 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8007 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8008 else if (GET_RTX_CLASS (inner_code) == 'c'
8009 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8010 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8011 else if (GET_RTX_CLASS (inner_code) == 'c'
8012 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8013 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8014 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8015 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8016 else
8017 return x;
8019 /* Form the new inner operation, seeing if it simplifies first. */
8020 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
8022 /* There is one exception to the general way of distributing:
8023 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
8024 if (code == XOR && inner_code == IOR)
8026 inner_code = AND;
8027 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8030 /* We may be able to continuing distributing the result, so call
8031 ourselves recursively on the inner operation before forming the
8032 outer operation, which we return. */
8033 return gen_binary (inner_code, GET_MODE (x),
8034 apply_distributive_law (tem), other);
8037 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8038 in MODE.
8040 Return an equivalent form, if different from X. Otherwise, return X. If
8041 X is zero, we are to always construct the equivalent form. */
8043 static rtx
8044 simplify_and_const_int (x, mode, varop, constop)
8045 rtx x;
8046 enum machine_mode mode;
8047 rtx varop;
8048 unsigned HOST_WIDE_INT constop;
8050 unsigned HOST_WIDE_INT nonzero;
8051 int i;
8053 /* Simplify VAROP knowing that we will be only looking at some of the
8054 bits in it.
8056 Note by passing in CONSTOP, we guarantee that the bits not set in
8057 CONSTOP are not significant and will never be examined. We must
8058 ensure that is the case by explicitly masking out those bits
8059 before returning. */
8060 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8062 /* If VAROP is a CLOBBER, we will fail so return it. */
8063 if (GET_CODE (varop) == CLOBBER)
8064 return varop;
8066 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8067 to VAROP and return the new constant. */
8068 if (GET_CODE (varop) == CONST_INT)
8069 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8071 /* See what bits may be nonzero in VAROP. Unlike the general case of
8072 a call to nonzero_bits, here we don't care about bits outside
8073 MODE. */
8075 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8077 /* Turn off all bits in the constant that are known to already be zero.
8078 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8079 which is tested below. */
8081 constop &= nonzero;
8083 /* If we don't have any bits left, return zero. */
8084 if (constop == 0)
8085 return const0_rtx;
8087 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8088 a power of two, we can replace this with an ASHIFT. */
8089 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8090 && (i = exact_log2 (constop)) >= 0)
8091 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8093 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8094 or XOR, then try to apply the distributive law. This may eliminate
8095 operations if either branch can be simplified because of the AND.
8096 It may also make some cases more complex, but those cases probably
8097 won't match a pattern either with or without this. */
8099 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8100 return
8101 gen_lowpart_for_combine
8102 (mode,
8103 apply_distributive_law
8104 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8105 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8106 XEXP (varop, 0), constop),
8107 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8108 XEXP (varop, 1), constop))));
8110 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8111 the AND and see if one of the operands simplifies to zero. If so, we
8112 may eliminate it. */
8114 if (GET_CODE (varop) == PLUS
8115 && exact_log2 (constop + 1) >= 0)
8117 rtx o0, o1;
8119 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8120 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8121 if (o0 == const0_rtx)
8122 return o1;
8123 if (o1 == const0_rtx)
8124 return o0;
8127 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8128 if we already had one (just check for the simplest cases). */
8129 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8130 && GET_MODE (XEXP (x, 0)) == mode
8131 && SUBREG_REG (XEXP (x, 0)) == varop)
8132 varop = XEXP (x, 0);
8133 else
8134 varop = gen_lowpart_for_combine (mode, varop);
8136 /* If we can't make the SUBREG, try to return what we were given. */
8137 if (GET_CODE (varop) == CLOBBER)
8138 return x ? x : varop;
8140 /* If we are only masking insignificant bits, return VAROP. */
8141 if (constop == nonzero)
8142 x = varop;
8143 else
8145 /* Otherwise, return an AND. */
8146 constop = trunc_int_for_mode (constop, mode);
8147 /* See how much, if any, of X we can use. */
8148 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8149 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8151 else
8153 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8154 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8155 SUBST (XEXP (x, 1), GEN_INT (constop));
8157 SUBST (XEXP (x, 0), varop);
8161 return x;
8164 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8165 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8166 is less useful. We can't allow both, because that results in exponential
8167 run time recursion. There is a nullstone testcase that triggered
8168 this. This macro avoids accidental uses of num_sign_bit_copies. */
8169 #define num_sign_bit_copies()
8171 /* Given an expression, X, compute which bits in X can be nonzero.
8172 We don't care about bits outside of those defined in MODE.
8174 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8175 a shift, AND, or zero_extract, we can do better. */
8177 static unsigned HOST_WIDE_INT
8178 nonzero_bits (x, mode)
8179 rtx x;
8180 enum machine_mode mode;
8182 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8183 unsigned HOST_WIDE_INT inner_nz;
8184 enum rtx_code code;
8185 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8186 rtx tem;
8188 /* For floating-point values, assume all bits are needed. */
8189 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8190 return nonzero;
8192 /* If X is wider than MODE, use its mode instead. */
8193 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8195 mode = GET_MODE (x);
8196 nonzero = GET_MODE_MASK (mode);
8197 mode_width = GET_MODE_BITSIZE (mode);
8200 if (mode_width > HOST_BITS_PER_WIDE_INT)
8201 /* Our only callers in this case look for single bit values. So
8202 just return the mode mask. Those tests will then be false. */
8203 return nonzero;
8205 #ifndef WORD_REGISTER_OPERATIONS
8206 /* If MODE is wider than X, but both are a single word for both the host
8207 and target machines, we can compute this from which bits of the
8208 object might be nonzero in its own mode, taking into account the fact
8209 that on many CISC machines, accessing an object in a wider mode
8210 causes the high-order bits to become undefined. So they are
8211 not known to be zero. */
8213 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8214 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8215 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8216 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8218 nonzero &= nonzero_bits (x, GET_MODE (x));
8219 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8220 return nonzero;
8222 #endif
8224 code = GET_CODE (x);
8225 switch (code)
8227 case REG:
8228 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8229 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8230 all the bits above ptr_mode are known to be zero. */
8231 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8232 && REG_POINTER (x))
8233 nonzero &= GET_MODE_MASK (ptr_mode);
8234 #endif
8236 /* Include declared information about alignment of pointers. */
8237 /* ??? We don't properly preserve REG_POINTER changes across
8238 pointer-to-integer casts, so we can't trust it except for
8239 things that we know must be pointers. See execute/960116-1.c. */
8240 if ((x == stack_pointer_rtx
8241 || x == frame_pointer_rtx
8242 || x == arg_pointer_rtx)
8243 && REGNO_POINTER_ALIGN (REGNO (x)))
8245 unsigned HOST_WIDE_INT alignment
8246 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8248 #ifdef PUSH_ROUNDING
8249 /* If PUSH_ROUNDING is defined, it is possible for the
8250 stack to be momentarily aligned only to that amount,
8251 so we pick the least alignment. */
8252 if (x == stack_pointer_rtx && PUSH_ARGS)
8253 alignment = MIN (PUSH_ROUNDING (1), alignment);
8254 #endif
8256 nonzero &= ~(alignment - 1);
8259 /* If X is a register whose nonzero bits value is current, use it.
8260 Otherwise, if X is a register whose value we can find, use that
8261 value. Otherwise, use the previously-computed global nonzero bits
8262 for this register. */
8264 if (reg_last_set_value[REGNO (x)] != 0
8265 && (reg_last_set_mode[REGNO (x)] == mode
8266 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8267 && GET_MODE_CLASS (mode) == MODE_INT))
8268 && (reg_last_set_label[REGNO (x)] == label_tick
8269 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8270 && REG_N_SETS (REGNO (x)) == 1
8271 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8272 REGNO (x))))
8273 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8274 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8276 tem = get_last_value (x);
8278 if (tem)
8280 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8281 /* If X is narrower than MODE and TEM is a non-negative
8282 constant that would appear negative in the mode of X,
8283 sign-extend it for use in reg_nonzero_bits because some
8284 machines (maybe most) will actually do the sign-extension
8285 and this is the conservative approach.
8287 ??? For 2.5, try to tighten up the MD files in this regard
8288 instead of this kludge. */
8290 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8291 && GET_CODE (tem) == CONST_INT
8292 && INTVAL (tem) > 0
8293 && 0 != (INTVAL (tem)
8294 & ((HOST_WIDE_INT) 1
8295 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8296 tem = GEN_INT (INTVAL (tem)
8297 | ((HOST_WIDE_INT) (-1)
8298 << GET_MODE_BITSIZE (GET_MODE (x))));
8299 #endif
8300 return nonzero_bits (tem, mode) & nonzero;
8302 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8304 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8306 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8307 /* We don't know anything about the upper bits. */
8308 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8309 return nonzero & mask;
8311 else
8312 return nonzero;
8314 case CONST_INT:
8315 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8316 /* If X is negative in MODE, sign-extend the value. */
8317 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8318 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8319 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8320 #endif
8322 return INTVAL (x);
8324 case MEM:
8325 #ifdef LOAD_EXTEND_OP
8326 /* In many, if not most, RISC machines, reading a byte from memory
8327 zeros the rest of the register. Noticing that fact saves a lot
8328 of extra zero-extends. */
8329 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8330 nonzero &= GET_MODE_MASK (GET_MODE (x));
8331 #endif
8332 break;
8334 case EQ: case NE:
8335 case UNEQ: case LTGT:
8336 case GT: case GTU: case UNGT:
8337 case LT: case LTU: case UNLT:
8338 case GE: case GEU: case UNGE:
8339 case LE: case LEU: case UNLE:
8340 case UNORDERED: case ORDERED:
8342 /* If this produces an integer result, we know which bits are set.
8343 Code here used to clear bits outside the mode of X, but that is
8344 now done above. */
8346 if (GET_MODE_CLASS (mode) == MODE_INT
8347 && mode_width <= HOST_BITS_PER_WIDE_INT)
8348 nonzero = STORE_FLAG_VALUE;
8349 break;
8351 case NEG:
8352 #if 0
8353 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8354 and num_sign_bit_copies. */
8355 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8356 == GET_MODE_BITSIZE (GET_MODE (x)))
8357 nonzero = 1;
8358 #endif
8360 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8361 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8362 break;
8364 case ABS:
8365 #if 0
8366 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8367 and num_sign_bit_copies. */
8368 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8369 == GET_MODE_BITSIZE (GET_MODE (x)))
8370 nonzero = 1;
8371 #endif
8372 break;
8374 case TRUNCATE:
8375 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8376 break;
8378 case ZERO_EXTEND:
8379 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8380 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8381 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8382 break;
8384 case SIGN_EXTEND:
8385 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8386 Otherwise, show all the bits in the outer mode but not the inner
8387 may be nonzero. */
8388 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8389 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8391 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8392 if (inner_nz
8393 & (((HOST_WIDE_INT) 1
8394 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8395 inner_nz |= (GET_MODE_MASK (mode)
8396 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8399 nonzero &= inner_nz;
8400 break;
8402 case AND:
8403 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8404 & nonzero_bits (XEXP (x, 1), mode));
8405 break;
8407 case XOR: case IOR:
8408 case UMIN: case UMAX: case SMIN: case SMAX:
8410 unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8412 /* Don't call nonzero_bits for the second time if it cannot change
8413 anything. */
8414 if ((nonzero & nonzero0) != nonzero)
8415 nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8417 break;
8419 case PLUS: case MINUS:
8420 case MULT:
8421 case DIV: case UDIV:
8422 case MOD: case UMOD:
8423 /* We can apply the rules of arithmetic to compute the number of
8424 high- and low-order zero bits of these operations. We start by
8425 computing the width (position of the highest-order nonzero bit)
8426 and the number of low-order zero bits for each value. */
8428 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8429 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8430 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
8431 int width0 = floor_log2 (nz0) + 1;
8432 int width1 = floor_log2 (nz1) + 1;
8433 int low0 = floor_log2 (nz0 & -nz0);
8434 int low1 = floor_log2 (nz1 & -nz1);
8435 HOST_WIDE_INT op0_maybe_minusp
8436 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
8437 HOST_WIDE_INT op1_maybe_minusp
8438 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
8439 unsigned int result_width = mode_width;
8440 int result_low = 0;
8442 switch (code)
8444 case PLUS:
8445 result_width = MAX (width0, width1) + 1;
8446 result_low = MIN (low0, low1);
8447 break;
8448 case MINUS:
8449 result_low = MIN (low0, low1);
8450 break;
8451 case MULT:
8452 result_width = width0 + width1;
8453 result_low = low0 + low1;
8454 break;
8455 case DIV:
8456 if (width1 == 0)
8457 break;
8458 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8459 result_width = width0;
8460 break;
8461 case UDIV:
8462 if (width1 == 0)
8463 break;
8464 result_width = width0;
8465 break;
8466 case MOD:
8467 if (width1 == 0)
8468 break;
8469 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8470 result_width = MIN (width0, width1);
8471 result_low = MIN (low0, low1);
8472 break;
8473 case UMOD:
8474 if (width1 == 0)
8475 break;
8476 result_width = MIN (width0, width1);
8477 result_low = MIN (low0, low1);
8478 break;
8479 default:
8480 abort ();
8483 if (result_width < mode_width)
8484 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8486 if (result_low > 0)
8487 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8489 #ifdef POINTERS_EXTEND_UNSIGNED
8490 /* If pointers extend unsigned and this is an addition or subtraction
8491 to a pointer in Pmode, all the bits above ptr_mode are known to be
8492 zero. */
8493 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8494 && (code == PLUS || code == MINUS)
8495 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8496 nonzero &= GET_MODE_MASK (ptr_mode);
8497 #endif
8499 break;
8501 case ZERO_EXTRACT:
8502 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8503 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8504 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8505 break;
8507 case SUBREG:
8508 /* If this is a SUBREG formed for a promoted variable that has
8509 been zero-extended, we know that at least the high-order bits
8510 are zero, though others might be too. */
8512 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8513 nonzero = (GET_MODE_MASK (GET_MODE (x))
8514 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8516 /* If the inner mode is a single word for both the host and target
8517 machines, we can compute this from which bits of the inner
8518 object might be nonzero. */
8519 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8520 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8521 <= HOST_BITS_PER_WIDE_INT))
8523 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8525 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8526 /* If this is a typical RISC machine, we only have to worry
8527 about the way loads are extended. */
8528 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8529 ? (((nonzero
8530 & (((unsigned HOST_WIDE_INT) 1
8531 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8532 != 0))
8533 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8534 || GET_CODE (SUBREG_REG (x)) != MEM)
8535 #endif
8537 /* On many CISC machines, accessing an object in a wider mode
8538 causes the high-order bits to become undefined. So they are
8539 not known to be zero. */
8540 if (GET_MODE_SIZE (GET_MODE (x))
8541 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8542 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8543 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8546 break;
8548 case ASHIFTRT:
8549 case LSHIFTRT:
8550 case ASHIFT:
8551 case ROTATE:
8552 /* The nonzero bits are in two classes: any bits within MODE
8553 that aren't in GET_MODE (x) are always significant. The rest of the
8554 nonzero bits are those that are significant in the operand of
8555 the shift when shifted the appropriate number of bits. This
8556 shows that high-order bits are cleared by the right shift and
8557 low-order bits by left shifts. */
8558 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8559 && INTVAL (XEXP (x, 1)) >= 0
8560 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8562 enum machine_mode inner_mode = GET_MODE (x);
8563 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8564 int count = INTVAL (XEXP (x, 1));
8565 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8566 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8567 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8568 unsigned HOST_WIDE_INT outer = 0;
8570 if (mode_width > width)
8571 outer = (op_nonzero & nonzero & ~mode_mask);
8573 if (code == LSHIFTRT)
8574 inner >>= count;
8575 else if (code == ASHIFTRT)
8577 inner >>= count;
8579 /* If the sign bit may have been nonzero before the shift, we
8580 need to mark all the places it could have been copied to
8581 by the shift as possibly nonzero. */
8582 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8583 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8585 else if (code == ASHIFT)
8586 inner <<= count;
8587 else
8588 inner = ((inner << (count % width)
8589 | (inner >> (width - (count % width)))) & mode_mask);
8591 nonzero &= (outer | inner);
8593 break;
8595 case FFS:
8596 case POPCOUNT:
8597 /* This is at most the number of bits in the mode. */
8598 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
8599 break;
8601 case CLZ:
8602 /* If CLZ has a known value at zero, then the nonzero bits are
8603 that value, plus the number of bits in the mode minus one. */
8604 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8605 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8606 else
8607 nonzero = -1;
8608 break;
8610 case CTZ:
8611 /* If CTZ has a known value at zero, then the nonzero bits are
8612 that value, plus the number of bits in the mode minus one. */
8613 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8614 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8615 else
8616 nonzero = -1;
8617 break;
8619 case PARITY:
8620 nonzero = 1;
8621 break;
8623 case IF_THEN_ELSE:
8624 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8625 | nonzero_bits (XEXP (x, 2), mode));
8626 break;
8628 default:
8629 break;
8632 return nonzero;
8635 /* See the macro definition above. */
8636 #undef num_sign_bit_copies
8638 /* Return the number of bits at the high-order end of X that are known to
8639 be equal to the sign bit. X will be used in mode MODE; if MODE is
8640 VOIDmode, X will be used in its own mode. The returned value will always
8641 be between 1 and the number of bits in MODE. */
8643 static unsigned int
8644 num_sign_bit_copies (x, mode)
8645 rtx x;
8646 enum machine_mode mode;
8648 enum rtx_code code = GET_CODE (x);
8649 unsigned int bitwidth;
8650 int num0, num1, result;
8651 unsigned HOST_WIDE_INT nonzero;
8652 rtx tem;
8654 /* If we weren't given a mode, use the mode of X. If the mode is still
8655 VOIDmode, we don't know anything. Likewise if one of the modes is
8656 floating-point. */
8658 if (mode == VOIDmode)
8659 mode = GET_MODE (x);
8661 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8662 return 1;
8664 bitwidth = GET_MODE_BITSIZE (mode);
8666 /* For a smaller object, just ignore the high bits. */
8667 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8669 num0 = num_sign_bit_copies (x, GET_MODE (x));
8670 return MAX (1,
8671 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8674 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8676 #ifndef WORD_REGISTER_OPERATIONS
8677 /* If this machine does not do all register operations on the entire
8678 register and MODE is wider than the mode of X, we can say nothing
8679 at all about the high-order bits. */
8680 return 1;
8681 #else
8682 /* Likewise on machines that do, if the mode of the object is smaller
8683 than a word and loads of that size don't sign extend, we can say
8684 nothing about the high order bits. */
8685 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8686 #ifdef LOAD_EXTEND_OP
8687 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8688 #endif
8690 return 1;
8691 #endif
8694 switch (code)
8696 case REG:
8698 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8699 /* If pointers extend signed and this is a pointer in Pmode, say that
8700 all the bits above ptr_mode are known to be sign bit copies. */
8701 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8702 && REG_POINTER (x))
8703 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8704 #endif
8706 if (reg_last_set_value[REGNO (x)] != 0
8707 && reg_last_set_mode[REGNO (x)] == mode
8708 && (reg_last_set_label[REGNO (x)] == label_tick
8709 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8710 && REG_N_SETS (REGNO (x)) == 1
8711 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8712 REGNO (x))))
8713 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8714 return reg_last_set_sign_bit_copies[REGNO (x)];
8716 tem = get_last_value (x);
8717 if (tem != 0)
8718 return num_sign_bit_copies (tem, mode);
8720 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8721 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8722 return reg_sign_bit_copies[REGNO (x)];
8723 break;
8725 case MEM:
8726 #ifdef LOAD_EXTEND_OP
8727 /* Some RISC machines sign-extend all loads of smaller than a word. */
8728 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8729 return MAX (1, ((int) bitwidth
8730 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8731 #endif
8732 break;
8734 case CONST_INT:
8735 /* If the constant is negative, take its 1's complement and remask.
8736 Then see how many zero bits we have. */
8737 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8738 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8739 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8740 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8742 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8744 case SUBREG:
8745 /* If this is a SUBREG for a promoted object that is sign-extended
8746 and we are looking at it in a wider mode, we know that at least the
8747 high-order bits are known to be sign bit copies. */
8749 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8751 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8752 return MAX ((int) bitwidth
8753 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8754 num0);
8757 /* For a smaller object, just ignore the high bits. */
8758 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8760 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8761 return MAX (1, (num0
8762 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8763 - bitwidth)));
8766 #ifdef WORD_REGISTER_OPERATIONS
8767 #ifdef LOAD_EXTEND_OP
8768 /* For paradoxical SUBREGs on machines where all register operations
8769 affect the entire register, just look inside. Note that we are
8770 passing MODE to the recursive call, so the number of sign bit copies
8771 will remain relative to that mode, not the inner mode. */
8773 /* This works only if loads sign extend. Otherwise, if we get a
8774 reload for the inner part, it may be loaded from the stack, and
8775 then we lose all sign bit copies that existed before the store
8776 to the stack. */
8778 if ((GET_MODE_SIZE (GET_MODE (x))
8779 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8780 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8781 && GET_CODE (SUBREG_REG (x)) == MEM)
8782 return num_sign_bit_copies (SUBREG_REG (x), mode);
8783 #endif
8784 #endif
8785 break;
8787 case SIGN_EXTRACT:
8788 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8789 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8790 break;
8792 case SIGN_EXTEND:
8793 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8794 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8796 case TRUNCATE:
8797 /* For a smaller object, just ignore the high bits. */
8798 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8799 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8800 - bitwidth)));
8802 case NOT:
8803 return num_sign_bit_copies (XEXP (x, 0), mode);
8805 case ROTATE: case ROTATERT:
8806 /* If we are rotating left by a number of bits less than the number
8807 of sign bit copies, we can just subtract that amount from the
8808 number. */
8809 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8810 && INTVAL (XEXP (x, 1)) >= 0
8811 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8813 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8814 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8815 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8817 break;
8819 case NEG:
8820 /* In general, this subtracts one sign bit copy. But if the value
8821 is known to be positive, the number of sign bit copies is the
8822 same as that of the input. Finally, if the input has just one bit
8823 that might be nonzero, all the bits are copies of the sign bit. */
8824 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8825 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8826 return num0 > 1 ? num0 - 1 : 1;
8828 nonzero = nonzero_bits (XEXP (x, 0), mode);
8829 if (nonzero == 1)
8830 return bitwidth;
8832 if (num0 > 1
8833 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8834 num0--;
8836 return num0;
8838 case IOR: case AND: case XOR:
8839 case SMIN: case SMAX: case UMIN: case UMAX:
8840 /* Logical operations will preserve the number of sign-bit copies.
8841 MIN and MAX operations always return one of the operands. */
8842 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8843 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8844 return MIN (num0, num1);
8846 case PLUS: case MINUS:
8847 /* For addition and subtraction, we can have a 1-bit carry. However,
8848 if we are subtracting 1 from a positive number, there will not
8849 be such a carry. Furthermore, if the positive number is known to
8850 be 0 or 1, we know the result is either -1 or 0. */
8852 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8853 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8855 nonzero = nonzero_bits (XEXP (x, 0), mode);
8856 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8857 return (nonzero == 1 || nonzero == 0 ? bitwidth
8858 : bitwidth - floor_log2 (nonzero) - 1);
8861 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8862 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8863 result = MAX (1, MIN (num0, num1) - 1);
8865 #ifdef POINTERS_EXTEND_UNSIGNED
8866 /* If pointers extend signed and this is an addition or subtraction
8867 to a pointer in Pmode, all the bits above ptr_mode are known to be
8868 sign bit copies. */
8869 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8870 && (code == PLUS || code == MINUS)
8871 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8872 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8873 - GET_MODE_BITSIZE (ptr_mode) + 1),
8874 result);
8875 #endif
8876 return result;
8878 case MULT:
8879 /* The number of bits of the product is the sum of the number of
8880 bits of both terms. However, unless one of the terms if known
8881 to be positive, we must allow for an additional bit since negating
8882 a negative number can remove one sign bit copy. */
8884 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8885 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8887 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8888 if (result > 0
8889 && (bitwidth > HOST_BITS_PER_WIDE_INT
8890 || (((nonzero_bits (XEXP (x, 0), mode)
8891 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8892 && ((nonzero_bits (XEXP (x, 1), mode)
8893 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8894 result--;
8896 return MAX (1, result);
8898 case UDIV:
8899 /* The result must be <= the first operand. If the first operand
8900 has the high bit set, we know nothing about the number of sign
8901 bit copies. */
8902 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8903 return 1;
8904 else if ((nonzero_bits (XEXP (x, 0), mode)
8905 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8906 return 1;
8907 else
8908 return num_sign_bit_copies (XEXP (x, 0), mode);
8910 case UMOD:
8911 /* The result must be <= the second operand. */
8912 return num_sign_bit_copies (XEXP (x, 1), mode);
8914 case DIV:
8915 /* Similar to unsigned division, except that we have to worry about
8916 the case where the divisor is negative, in which case we have
8917 to add 1. */
8918 result = num_sign_bit_copies (XEXP (x, 0), mode);
8919 if (result > 1
8920 && (bitwidth > HOST_BITS_PER_WIDE_INT
8921 || (nonzero_bits (XEXP (x, 1), mode)
8922 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8923 result--;
8925 return result;
8927 case MOD:
8928 result = num_sign_bit_copies (XEXP (x, 1), mode);
8929 if (result > 1
8930 && (bitwidth > HOST_BITS_PER_WIDE_INT
8931 || (nonzero_bits (XEXP (x, 1), mode)
8932 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8933 result--;
8935 return result;
8937 case ASHIFTRT:
8938 /* Shifts by a constant add to the number of bits equal to the
8939 sign bit. */
8940 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8941 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8942 && INTVAL (XEXP (x, 1)) > 0)
8943 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8945 return num0;
8947 case ASHIFT:
8948 /* Left shifts destroy copies. */
8949 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8950 || INTVAL (XEXP (x, 1)) < 0
8951 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8952 return 1;
8954 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8955 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8957 case IF_THEN_ELSE:
8958 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8959 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8960 return MIN (num0, num1);
8962 case EQ: case NE: case GE: case GT: case LE: case LT:
8963 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8964 case GEU: case GTU: case LEU: case LTU:
8965 case UNORDERED: case ORDERED:
8966 /* If the constant is negative, take its 1's complement and remask.
8967 Then see how many zero bits we have. */
8968 nonzero = STORE_FLAG_VALUE;
8969 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8970 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8971 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8973 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8974 break;
8976 default:
8977 break;
8980 /* If we haven't been able to figure it out by one of the above rules,
8981 see if some of the high-order bits are known to be zero. If so,
8982 count those bits and return one less than that amount. If we can't
8983 safely compute the mask for this mode, always return BITWIDTH. */
8985 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8986 return 1;
8988 nonzero = nonzero_bits (x, mode);
8989 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8990 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8993 /* Return the number of "extended" bits there are in X, when interpreted
8994 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8995 unsigned quantities, this is the number of high-order zero bits.
8996 For signed quantities, this is the number of copies of the sign bit
8997 minus 1. In both case, this function returns the number of "spare"
8998 bits. For example, if two quantities for which this function returns
8999 at least 1 are added, the addition is known not to overflow.
9001 This function will always return 0 unless called during combine, which
9002 implies that it must be called from a define_split. */
9004 unsigned int
9005 extended_count (x, mode, unsignedp)
9006 rtx x;
9007 enum machine_mode mode;
9008 int unsignedp;
9010 if (nonzero_sign_valid == 0)
9011 return 0;
9013 return (unsignedp
9014 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9015 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9016 - floor_log2 (nonzero_bits (x, mode)))
9017 : 0)
9018 : num_sign_bit_copies (x, mode) - 1);
9021 /* This function is called from `simplify_shift_const' to merge two
9022 outer operations. Specifically, we have already found that we need
9023 to perform operation *POP0 with constant *PCONST0 at the outermost
9024 position. We would now like to also perform OP1 with constant CONST1
9025 (with *POP0 being done last).
9027 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9028 the resulting operation. *PCOMP_P is set to 1 if we would need to
9029 complement the innermost operand, otherwise it is unchanged.
9031 MODE is the mode in which the operation will be done. No bits outside
9032 the width of this mode matter. It is assumed that the width of this mode
9033 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9035 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
9036 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9037 result is simply *PCONST0.
9039 If the resulting operation cannot be expressed as one operation, we
9040 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9042 static int
9043 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
9044 enum rtx_code *pop0;
9045 HOST_WIDE_INT *pconst0;
9046 enum rtx_code op1;
9047 HOST_WIDE_INT const1;
9048 enum machine_mode mode;
9049 int *pcomp_p;
9051 enum rtx_code op0 = *pop0;
9052 HOST_WIDE_INT const0 = *pconst0;
9054 const0 &= GET_MODE_MASK (mode);
9055 const1 &= GET_MODE_MASK (mode);
9057 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9058 if (op0 == AND)
9059 const1 &= const0;
9061 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
9062 if OP0 is SET. */
9064 if (op1 == NIL || op0 == SET)
9065 return 1;
9067 else if (op0 == NIL)
9068 op0 = op1, const0 = const1;
9070 else if (op0 == op1)
9072 switch (op0)
9074 case AND:
9075 const0 &= const1;
9076 break;
9077 case IOR:
9078 const0 |= const1;
9079 break;
9080 case XOR:
9081 const0 ^= const1;
9082 break;
9083 case PLUS:
9084 const0 += const1;
9085 break;
9086 case NEG:
9087 op0 = NIL;
9088 break;
9089 default:
9090 break;
9094 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9095 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9096 return 0;
9098 /* If the two constants aren't the same, we can't do anything. The
9099 remaining six cases can all be done. */
9100 else if (const0 != const1)
9101 return 0;
9103 else
9104 switch (op0)
9106 case IOR:
9107 if (op1 == AND)
9108 /* (a & b) | b == b */
9109 op0 = SET;
9110 else /* op1 == XOR */
9111 /* (a ^ b) | b == a | b */
9113 break;
9115 case XOR:
9116 if (op1 == AND)
9117 /* (a & b) ^ b == (~a) & b */
9118 op0 = AND, *pcomp_p = 1;
9119 else /* op1 == IOR */
9120 /* (a | b) ^ b == a & ~b */
9121 op0 = AND, *pconst0 = ~const0;
9122 break;
9124 case AND:
9125 if (op1 == IOR)
9126 /* (a | b) & b == b */
9127 op0 = SET;
9128 else /* op1 == XOR */
9129 /* (a ^ b) & b) == (~a) & b */
9130 *pcomp_p = 1;
9131 break;
9132 default:
9133 break;
9136 /* Check for NO-OP cases. */
9137 const0 &= GET_MODE_MASK (mode);
9138 if (const0 == 0
9139 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9140 op0 = NIL;
9141 else if (const0 == 0 && op0 == AND)
9142 op0 = SET;
9143 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9144 && op0 == AND)
9145 op0 = NIL;
9147 /* ??? Slightly redundant with the above mask, but not entirely.
9148 Moving this above means we'd have to sign-extend the mode mask
9149 for the final test. */
9150 const0 = trunc_int_for_mode (const0, mode);
9152 *pop0 = op0;
9153 *pconst0 = const0;
9155 return 1;
9158 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9159 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9160 that we started with.
9162 The shift is normally computed in the widest mode we find in VAROP, as
9163 long as it isn't a different number of words than RESULT_MODE. Exceptions
9164 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9166 static rtx
9167 simplify_shift_const (x, code, result_mode, varop, orig_count)
9168 rtx x;
9169 enum rtx_code code;
9170 enum machine_mode result_mode;
9171 rtx varop;
9172 int orig_count;
9174 enum rtx_code orig_code = code;
9175 unsigned int count;
9176 int signed_count;
9177 enum machine_mode mode = result_mode;
9178 enum machine_mode shift_mode, tmode;
9179 unsigned int mode_words
9180 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9181 /* We form (outer_op (code varop count) (outer_const)). */
9182 enum rtx_code outer_op = NIL;
9183 HOST_WIDE_INT outer_const = 0;
9184 rtx const_rtx;
9185 int complement_p = 0;
9186 rtx new;
9188 /* Make sure and truncate the "natural" shift on the way in. We don't
9189 want to do this inside the loop as it makes it more difficult to
9190 combine shifts. */
9191 #ifdef SHIFT_COUNT_TRUNCATED
9192 if (SHIFT_COUNT_TRUNCATED)
9193 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9194 #endif
9196 /* If we were given an invalid count, don't do anything except exactly
9197 what was requested. */
9199 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9201 if (x)
9202 return x;
9204 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9207 count = orig_count;
9209 /* Unless one of the branches of the `if' in this loop does a `continue',
9210 we will `break' the loop after the `if'. */
9212 while (count != 0)
9214 /* If we have an operand of (clobber (const_int 0)), just return that
9215 value. */
9216 if (GET_CODE (varop) == CLOBBER)
9217 return varop;
9219 /* If we discovered we had to complement VAROP, leave. Making a NOT
9220 here would cause an infinite loop. */
9221 if (complement_p)
9222 break;
9224 /* Convert ROTATERT to ROTATE. */
9225 if (code == ROTATERT)
9227 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9228 code = ROTATE;
9229 if (VECTOR_MODE_P (result_mode))
9230 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9231 else
9232 count = bitsize - count;
9235 /* We need to determine what mode we will do the shift in. If the
9236 shift is a right shift or a ROTATE, we must always do it in the mode
9237 it was originally done in. Otherwise, we can do it in MODE, the
9238 widest mode encountered. */
9239 shift_mode
9240 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9241 ? result_mode : mode);
9243 /* Handle cases where the count is greater than the size of the mode
9244 minus 1. For ASHIFT, use the size minus one as the count (this can
9245 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9246 take the count modulo the size. For other shifts, the result is
9247 zero.
9249 Since these shifts are being produced by the compiler by combining
9250 multiple operations, each of which are defined, we know what the
9251 result is supposed to be. */
9253 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9255 if (code == ASHIFTRT)
9256 count = GET_MODE_BITSIZE (shift_mode) - 1;
9257 else if (code == ROTATE || code == ROTATERT)
9258 count %= GET_MODE_BITSIZE (shift_mode);
9259 else
9261 /* We can't simply return zero because there may be an
9262 outer op. */
9263 varop = const0_rtx;
9264 count = 0;
9265 break;
9269 /* An arithmetic right shift of a quantity known to be -1 or 0
9270 is a no-op. */
9271 if (code == ASHIFTRT
9272 && (num_sign_bit_copies (varop, shift_mode)
9273 == GET_MODE_BITSIZE (shift_mode)))
9275 count = 0;
9276 break;
9279 /* If we are doing an arithmetic right shift and discarding all but
9280 the sign bit copies, this is equivalent to doing a shift by the
9281 bitsize minus one. Convert it into that shift because it will often
9282 allow other simplifications. */
9284 if (code == ASHIFTRT
9285 && (count + num_sign_bit_copies (varop, shift_mode)
9286 >= GET_MODE_BITSIZE (shift_mode)))
9287 count = GET_MODE_BITSIZE (shift_mode) - 1;
9289 /* We simplify the tests below and elsewhere by converting
9290 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9291 `make_compound_operation' will convert it to an ASHIFTRT for
9292 those machines (such as VAX) that don't have an LSHIFTRT. */
9293 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9294 && code == ASHIFTRT
9295 && ((nonzero_bits (varop, shift_mode)
9296 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9297 == 0))
9298 code = LSHIFTRT;
9300 switch (GET_CODE (varop))
9302 case SIGN_EXTEND:
9303 case ZERO_EXTEND:
9304 case SIGN_EXTRACT:
9305 case ZERO_EXTRACT:
9306 new = expand_compound_operation (varop);
9307 if (new != varop)
9309 varop = new;
9310 continue;
9312 break;
9314 case MEM:
9315 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9316 minus the width of a smaller mode, we can do this with a
9317 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9318 if ((code == ASHIFTRT || code == LSHIFTRT)
9319 && ! mode_dependent_address_p (XEXP (varop, 0))
9320 && ! MEM_VOLATILE_P (varop)
9321 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9322 MODE_INT, 1)) != BLKmode)
9324 new = adjust_address_nv (varop, tmode,
9325 BYTES_BIG_ENDIAN ? 0
9326 : count / BITS_PER_UNIT);
9328 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9329 : ZERO_EXTEND, mode, new);
9330 count = 0;
9331 continue;
9333 break;
9335 case USE:
9336 /* Similar to the case above, except that we can only do this if
9337 the resulting mode is the same as that of the underlying
9338 MEM and adjust the address depending on the *bits* endianness
9339 because of the way that bit-field extract insns are defined. */
9340 if ((code == ASHIFTRT || code == LSHIFTRT)
9341 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9342 MODE_INT, 1)) != BLKmode
9343 && tmode == GET_MODE (XEXP (varop, 0)))
9345 if (BITS_BIG_ENDIAN)
9346 new = XEXP (varop, 0);
9347 else
9349 new = copy_rtx (XEXP (varop, 0));
9350 SUBST (XEXP (new, 0),
9351 plus_constant (XEXP (new, 0),
9352 count / BITS_PER_UNIT));
9355 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9356 : ZERO_EXTEND, mode, new);
9357 count = 0;
9358 continue;
9360 break;
9362 case SUBREG:
9363 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9364 the same number of words as what we've seen so far. Then store
9365 the widest mode in MODE. */
9366 if (subreg_lowpart_p (varop)
9367 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9368 > GET_MODE_SIZE (GET_MODE (varop)))
9369 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9370 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9371 == mode_words)
9373 varop = SUBREG_REG (varop);
9374 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9375 mode = GET_MODE (varop);
9376 continue;
9378 break;
9380 case MULT:
9381 /* Some machines use MULT instead of ASHIFT because MULT
9382 is cheaper. But it is still better on those machines to
9383 merge two shifts into one. */
9384 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9385 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9387 varop
9388 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9389 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9390 continue;
9392 break;
9394 case UDIV:
9395 /* Similar, for when divides are cheaper. */
9396 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9397 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9399 varop
9400 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9401 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9402 continue;
9404 break;
9406 case ASHIFTRT:
9407 /* If we are extracting just the sign bit of an arithmetic
9408 right shift, that shift is not needed. However, the sign
9409 bit of a wider mode may be different from what would be
9410 interpreted as the sign bit in a narrower mode, so, if
9411 the result is narrower, don't discard the shift. */
9412 if (code == LSHIFTRT
9413 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9414 && (GET_MODE_BITSIZE (result_mode)
9415 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9417 varop = XEXP (varop, 0);
9418 continue;
9421 /* ... fall through ... */
9423 case LSHIFTRT:
9424 case ASHIFT:
9425 case ROTATE:
9426 /* Here we have two nested shifts. The result is usually the
9427 AND of a new shift with a mask. We compute the result below. */
9428 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9429 && INTVAL (XEXP (varop, 1)) >= 0
9430 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9431 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9432 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9434 enum rtx_code first_code = GET_CODE (varop);
9435 unsigned int first_count = INTVAL (XEXP (varop, 1));
9436 unsigned HOST_WIDE_INT mask;
9437 rtx mask_rtx;
9439 /* We have one common special case. We can't do any merging if
9440 the inner code is an ASHIFTRT of a smaller mode. However, if
9441 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9442 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9443 we can convert it to
9444 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9445 This simplifies certain SIGN_EXTEND operations. */
9446 if (code == ASHIFT && first_code == ASHIFTRT
9447 && count == (unsigned int)
9448 (GET_MODE_BITSIZE (result_mode)
9449 - GET_MODE_BITSIZE (GET_MODE (varop))))
9451 /* C3 has the low-order C1 bits zero. */
9453 mask = (GET_MODE_MASK (mode)
9454 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9456 varop = simplify_and_const_int (NULL_RTX, result_mode,
9457 XEXP (varop, 0), mask);
9458 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9459 varop, count);
9460 count = first_count;
9461 code = ASHIFTRT;
9462 continue;
9465 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9466 than C1 high-order bits equal to the sign bit, we can convert
9467 this to either an ASHIFT or an ASHIFTRT depending on the
9468 two counts.
9470 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9472 if (code == ASHIFTRT && first_code == ASHIFT
9473 && GET_MODE (varop) == shift_mode
9474 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9475 > first_count))
9477 varop = XEXP (varop, 0);
9479 signed_count = count - first_count;
9480 if (signed_count < 0)
9481 count = -signed_count, code = ASHIFT;
9482 else
9483 count = signed_count;
9485 continue;
9488 /* There are some cases we can't do. If CODE is ASHIFTRT,
9489 we can only do this if FIRST_CODE is also ASHIFTRT.
9491 We can't do the case when CODE is ROTATE and FIRST_CODE is
9492 ASHIFTRT.
9494 If the mode of this shift is not the mode of the outer shift,
9495 we can't do this if either shift is a right shift or ROTATE.
9497 Finally, we can't do any of these if the mode is too wide
9498 unless the codes are the same.
9500 Handle the case where the shift codes are the same
9501 first. */
9503 if (code == first_code)
9505 if (GET_MODE (varop) != result_mode
9506 && (code == ASHIFTRT || code == LSHIFTRT
9507 || code == ROTATE))
9508 break;
9510 count += first_count;
9511 varop = XEXP (varop, 0);
9512 continue;
9515 if (code == ASHIFTRT
9516 || (code == ROTATE && first_code == ASHIFTRT)
9517 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9518 || (GET_MODE (varop) != result_mode
9519 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9520 || first_code == ROTATE
9521 || code == ROTATE)))
9522 break;
9524 /* To compute the mask to apply after the shift, shift the
9525 nonzero bits of the inner shift the same way the
9526 outer shift will. */
9528 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9530 mask_rtx
9531 = simplify_binary_operation (code, result_mode, mask_rtx,
9532 GEN_INT (count));
9534 /* Give up if we can't compute an outer operation to use. */
9535 if (mask_rtx == 0
9536 || GET_CODE (mask_rtx) != CONST_INT
9537 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9538 INTVAL (mask_rtx),
9539 result_mode, &complement_p))
9540 break;
9542 /* If the shifts are in the same direction, we add the
9543 counts. Otherwise, we subtract them. */
9544 signed_count = count;
9545 if ((code == ASHIFTRT || code == LSHIFTRT)
9546 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9547 signed_count += first_count;
9548 else
9549 signed_count -= first_count;
9551 /* If COUNT is positive, the new shift is usually CODE,
9552 except for the two exceptions below, in which case it is
9553 FIRST_CODE. If the count is negative, FIRST_CODE should
9554 always be used */
9555 if (signed_count > 0
9556 && ((first_code == ROTATE && code == ASHIFT)
9557 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9558 code = first_code, count = signed_count;
9559 else if (signed_count < 0)
9560 code = first_code, count = -signed_count;
9561 else
9562 count = signed_count;
9564 varop = XEXP (varop, 0);
9565 continue;
9568 /* If we have (A << B << C) for any shift, we can convert this to
9569 (A << C << B). This wins if A is a constant. Only try this if
9570 B is not a constant. */
9572 else if (GET_CODE (varop) == code
9573 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9574 && 0 != (new
9575 = simplify_binary_operation (code, mode,
9576 XEXP (varop, 0),
9577 GEN_INT (count))))
9579 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9580 count = 0;
9581 continue;
9583 break;
9585 case NOT:
9586 /* Make this fit the case below. */
9587 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9588 GEN_INT (GET_MODE_MASK (mode)));
9589 continue;
9591 case IOR:
9592 case AND:
9593 case XOR:
9594 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9595 with C the size of VAROP - 1 and the shift is logical if
9596 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9597 we have an (le X 0) operation. If we have an arithmetic shift
9598 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9599 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9601 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9602 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9603 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9604 && (code == LSHIFTRT || code == ASHIFTRT)
9605 && count == (unsigned int)
9606 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9607 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9609 count = 0;
9610 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9611 const0_rtx);
9613 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9614 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9616 continue;
9619 /* If we have (shift (logical)), move the logical to the outside
9620 to allow it to possibly combine with another logical and the
9621 shift to combine with another shift. This also canonicalizes to
9622 what a ZERO_EXTRACT looks like. Also, some machines have
9623 (and (shift)) insns. */
9625 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9626 && (new = simplify_binary_operation (code, result_mode,
9627 XEXP (varop, 1),
9628 GEN_INT (count))) != 0
9629 && GET_CODE (new) == CONST_INT
9630 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9631 INTVAL (new), result_mode, &complement_p))
9633 varop = XEXP (varop, 0);
9634 continue;
9637 /* If we can't do that, try to simplify the shift in each arm of the
9638 logical expression, make a new logical expression, and apply
9639 the inverse distributive law. */
9641 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9642 XEXP (varop, 0), count);
9643 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9644 XEXP (varop, 1), count);
9646 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9647 varop = apply_distributive_law (varop);
9649 count = 0;
9651 break;
9653 case EQ:
9654 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9655 says that the sign bit can be tested, FOO has mode MODE, C is
9656 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9657 that may be nonzero. */
9658 if (code == LSHIFTRT
9659 && XEXP (varop, 1) == const0_rtx
9660 && GET_MODE (XEXP (varop, 0)) == result_mode
9661 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9662 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9663 && ((STORE_FLAG_VALUE
9664 & ((HOST_WIDE_INT) 1
9665 < (GET_MODE_BITSIZE (result_mode) - 1))))
9666 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9667 && merge_outer_ops (&outer_op, &outer_const, XOR,
9668 (HOST_WIDE_INT) 1, result_mode,
9669 &complement_p))
9671 varop = XEXP (varop, 0);
9672 count = 0;
9673 continue;
9675 break;
9677 case NEG:
9678 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9679 than the number of bits in the mode is equivalent to A. */
9680 if (code == LSHIFTRT
9681 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9682 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9684 varop = XEXP (varop, 0);
9685 count = 0;
9686 continue;
9689 /* NEG commutes with ASHIFT since it is multiplication. Move the
9690 NEG outside to allow shifts to combine. */
9691 if (code == ASHIFT
9692 && merge_outer_ops (&outer_op, &outer_const, NEG,
9693 (HOST_WIDE_INT) 0, result_mode,
9694 &complement_p))
9696 varop = XEXP (varop, 0);
9697 continue;
9699 break;
9701 case PLUS:
9702 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9703 is one less than the number of bits in the mode is
9704 equivalent to (xor A 1). */
9705 if (code == LSHIFTRT
9706 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9707 && XEXP (varop, 1) == constm1_rtx
9708 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9709 && merge_outer_ops (&outer_op, &outer_const, XOR,
9710 (HOST_WIDE_INT) 1, result_mode,
9711 &complement_p))
9713 count = 0;
9714 varop = XEXP (varop, 0);
9715 continue;
9718 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9719 that might be nonzero in BAR are those being shifted out and those
9720 bits are known zero in FOO, we can replace the PLUS with FOO.
9721 Similarly in the other operand order. This code occurs when
9722 we are computing the size of a variable-size array. */
9724 if ((code == ASHIFTRT || code == LSHIFTRT)
9725 && count < HOST_BITS_PER_WIDE_INT
9726 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9727 && (nonzero_bits (XEXP (varop, 1), result_mode)
9728 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9730 varop = XEXP (varop, 0);
9731 continue;
9733 else if ((code == ASHIFTRT || code == LSHIFTRT)
9734 && count < HOST_BITS_PER_WIDE_INT
9735 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9736 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9737 >> count)
9738 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9739 & nonzero_bits (XEXP (varop, 1),
9740 result_mode)))
9742 varop = XEXP (varop, 1);
9743 continue;
9746 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9747 if (code == ASHIFT
9748 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9749 && (new = simplify_binary_operation (ASHIFT, result_mode,
9750 XEXP (varop, 1),
9751 GEN_INT (count))) != 0
9752 && GET_CODE (new) == CONST_INT
9753 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9754 INTVAL (new), result_mode, &complement_p))
9756 varop = XEXP (varop, 0);
9757 continue;
9759 break;
9761 case MINUS:
9762 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9763 with C the size of VAROP - 1 and the shift is logical if
9764 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9765 we have a (gt X 0) operation. If the shift is arithmetic with
9766 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9767 we have a (neg (gt X 0)) operation. */
9769 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9770 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9771 && count == (unsigned int)
9772 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9773 && (code == LSHIFTRT || code == ASHIFTRT)
9774 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9775 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9776 == count
9777 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9779 count = 0;
9780 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9781 const0_rtx);
9783 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9784 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9786 continue;
9788 break;
9790 case TRUNCATE:
9791 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9792 if the truncate does not affect the value. */
9793 if (code == LSHIFTRT
9794 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9795 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9796 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9797 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9798 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9800 rtx varop_inner = XEXP (varop, 0);
9802 varop_inner
9803 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9804 XEXP (varop_inner, 0),
9805 GEN_INT
9806 (count + INTVAL (XEXP (varop_inner, 1))));
9807 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9808 count = 0;
9809 continue;
9811 break;
9813 default:
9814 break;
9817 break;
9820 /* We need to determine what mode to do the shift in. If the shift is
9821 a right shift or ROTATE, we must always do it in the mode it was
9822 originally done in. Otherwise, we can do it in MODE, the widest mode
9823 encountered. The code we care about is that of the shift that will
9824 actually be done, not the shift that was originally requested. */
9825 shift_mode
9826 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9827 ? result_mode : mode);
9829 /* We have now finished analyzing the shift. The result should be
9830 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9831 OUTER_OP is non-NIL, it is an operation that needs to be applied
9832 to the result of the shift. OUTER_CONST is the relevant constant,
9833 but we must turn off all bits turned off in the shift.
9835 If we were passed a value for X, see if we can use any pieces of
9836 it. If not, make new rtx. */
9838 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9839 && GET_CODE (XEXP (x, 1)) == CONST_INT
9840 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9841 const_rtx = XEXP (x, 1);
9842 else
9843 const_rtx = GEN_INT (count);
9845 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9846 && GET_MODE (XEXP (x, 0)) == shift_mode
9847 && SUBREG_REG (XEXP (x, 0)) == varop)
9848 varop = XEXP (x, 0);
9849 else if (GET_MODE (varop) != shift_mode)
9850 varop = gen_lowpart_for_combine (shift_mode, varop);
9852 /* If we can't make the SUBREG, try to return what we were given. */
9853 if (GET_CODE (varop) == CLOBBER)
9854 return x ? x : varop;
9856 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9857 if (new != 0)
9858 x = new;
9859 else
9860 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9862 /* If we have an outer operation and we just made a shift, it is
9863 possible that we could have simplified the shift were it not
9864 for the outer operation. So try to do the simplification
9865 recursively. */
9867 if (outer_op != NIL && GET_CODE (x) == code
9868 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9869 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9870 INTVAL (XEXP (x, 1)));
9872 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9873 turn off all the bits that the shift would have turned off. */
9874 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9875 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9876 GET_MODE_MASK (result_mode) >> orig_count);
9878 /* Do the remainder of the processing in RESULT_MODE. */
9879 x = gen_lowpart_for_combine (result_mode, x);
9881 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9882 operation. */
9883 if (complement_p)
9884 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9886 if (outer_op != NIL)
9888 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9889 outer_const = trunc_int_for_mode (outer_const, result_mode);
9891 if (outer_op == AND)
9892 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9893 else if (outer_op == SET)
9894 /* This means that we have determined that the result is
9895 equivalent to a constant. This should be rare. */
9896 x = GEN_INT (outer_const);
9897 else if (GET_RTX_CLASS (outer_op) == '1')
9898 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9899 else
9900 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9903 return x;
9906 /* Like recog, but we receive the address of a pointer to a new pattern.
9907 We try to match the rtx that the pointer points to.
9908 If that fails, we may try to modify or replace the pattern,
9909 storing the replacement into the same pointer object.
9911 Modifications include deletion or addition of CLOBBERs.
9913 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9914 the CLOBBERs are placed.
9916 The value is the final insn code from the pattern ultimately matched,
9917 or -1. */
9919 static int
9920 recog_for_combine (pnewpat, insn, pnotes)
9921 rtx *pnewpat;
9922 rtx insn;
9923 rtx *pnotes;
9925 rtx pat = *pnewpat;
9926 int insn_code_number;
9927 int num_clobbers_to_add = 0;
9928 int i;
9929 rtx notes = 0;
9930 rtx dummy_insn;
9932 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9933 we use to indicate that something didn't match. If we find such a
9934 thing, force rejection. */
9935 if (GET_CODE (pat) == PARALLEL)
9936 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9937 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9938 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9939 return -1;
9941 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9942 instruction for pattern recognition. */
9943 dummy_insn = shallow_copy_rtx (insn);
9944 PATTERN (dummy_insn) = pat;
9945 REG_NOTES (dummy_insn) = 0;
9947 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9949 /* If it isn't, there is the possibility that we previously had an insn
9950 that clobbered some register as a side effect, but the combined
9951 insn doesn't need to do that. So try once more without the clobbers
9952 unless this represents an ASM insn. */
9954 if (insn_code_number < 0 && ! check_asm_operands (pat)
9955 && GET_CODE (pat) == PARALLEL)
9957 int pos;
9959 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9960 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9962 if (i != pos)
9963 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9964 pos++;
9967 SUBST_INT (XVECLEN (pat, 0), pos);
9969 if (pos == 1)
9970 pat = XVECEXP (pat, 0, 0);
9972 PATTERN (dummy_insn) = pat;
9973 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9976 /* Recognize all noop sets, these will be killed by followup pass. */
9977 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9978 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9980 /* If we had any clobbers to add, make a new pattern than contains
9981 them. Then check to make sure that all of them are dead. */
9982 if (num_clobbers_to_add)
9984 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9985 rtvec_alloc (GET_CODE (pat) == PARALLEL
9986 ? (XVECLEN (pat, 0)
9987 + num_clobbers_to_add)
9988 : num_clobbers_to_add + 1));
9990 if (GET_CODE (pat) == PARALLEL)
9991 for (i = 0; i < XVECLEN (pat, 0); i++)
9992 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9993 else
9994 XVECEXP (newpat, 0, 0) = pat;
9996 add_clobbers (newpat, insn_code_number);
9998 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9999 i < XVECLEN (newpat, 0); i++)
10001 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
10002 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10003 return -1;
10004 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
10005 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10007 pat = newpat;
10010 *pnewpat = pat;
10011 *pnotes = notes;
10013 return insn_code_number;
10016 /* Like gen_lowpart but for use by combine. In combine it is not possible
10017 to create any new pseudoregs. However, it is safe to create
10018 invalid memory addresses, because combine will try to recognize
10019 them and all they will do is make the combine attempt fail.
10021 If for some reason this cannot do its job, an rtx
10022 (clobber (const_int 0)) is returned.
10023 An insn containing that will not be recognized. */
10025 #undef gen_lowpart
10027 static rtx
10028 gen_lowpart_for_combine (mode, x)
10029 enum machine_mode mode;
10030 rtx x;
10032 rtx result;
10034 if (GET_MODE (x) == mode)
10035 return x;
10037 /* We can only support MODE being wider than a word if X is a
10038 constant integer or has a mode the same size. */
10040 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
10041 && ! ((GET_MODE (x) == VOIDmode
10042 && (GET_CODE (x) == CONST_INT
10043 || GET_CODE (x) == CONST_DOUBLE))
10044 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
10045 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10047 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10048 won't know what to do. So we will strip off the SUBREG here and
10049 process normally. */
10050 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
10052 x = SUBREG_REG (x);
10053 if (GET_MODE (x) == mode)
10054 return x;
10057 result = gen_lowpart_common (mode, x);
10058 #ifdef CANNOT_CHANGE_MODE_CLASS
10059 if (result != 0
10060 && GET_CODE (result) == SUBREG
10061 && GET_CODE (SUBREG_REG (result)) == REG
10062 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
10063 SET_REGNO_REG_SET (&subregs_of_mode[GET_MODE (result)],
10064 REGNO (SUBREG_REG (result)));
10065 #endif
10067 if (result)
10068 return result;
10070 if (GET_CODE (x) == MEM)
10072 int offset = 0;
10074 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10075 address. */
10076 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10077 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10079 /* If we want to refer to something bigger than the original memref,
10080 generate a perverse subreg instead. That will force a reload
10081 of the original memref X. */
10082 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10083 return gen_rtx_SUBREG (mode, x, 0);
10085 if (WORDS_BIG_ENDIAN)
10086 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10087 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10089 if (BYTES_BIG_ENDIAN)
10091 /* Adjust the address so that the address-after-the-data is
10092 unchanged. */
10093 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10094 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10097 return adjust_address_nv (x, mode, offset);
10100 /* If X is a comparison operator, rewrite it in a new mode. This
10101 probably won't match, but may allow further simplifications. */
10102 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
10103 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10105 /* If we couldn't simplify X any other way, just enclose it in a
10106 SUBREG. Normally, this SUBREG won't match, but some patterns may
10107 include an explicit SUBREG or we may simplify it further in combine. */
10108 else
10110 int offset = 0;
10111 rtx res;
10112 enum machine_mode sub_mode = GET_MODE (x);
10114 offset = subreg_lowpart_offset (mode, sub_mode);
10115 if (sub_mode == VOIDmode)
10117 sub_mode = int_mode_for_mode (mode);
10118 x = gen_lowpart_common (sub_mode, x);
10120 res = simplify_gen_subreg (mode, x, sub_mode, offset);
10121 if (res)
10122 return res;
10123 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10127 /* These routines make binary and unary operations by first seeing if they
10128 fold; if not, a new expression is allocated. */
10130 static rtx
10131 gen_binary (code, mode, op0, op1)
10132 enum rtx_code code;
10133 enum machine_mode mode;
10134 rtx op0, op1;
10136 rtx result;
10137 rtx tem;
10139 if (GET_RTX_CLASS (code) == 'c'
10140 && swap_commutative_operands_p (op0, op1))
10141 tem = op0, op0 = op1, op1 = tem;
10143 if (GET_RTX_CLASS (code) == '<')
10145 enum machine_mode op_mode = GET_MODE (op0);
10147 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10148 just (REL_OP X Y). */
10149 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10151 op1 = XEXP (op0, 1);
10152 op0 = XEXP (op0, 0);
10153 op_mode = GET_MODE (op0);
10156 if (op_mode == VOIDmode)
10157 op_mode = GET_MODE (op1);
10158 result = simplify_relational_operation (code, op_mode, op0, op1);
10160 else
10161 result = simplify_binary_operation (code, mode, op0, op1);
10163 if (result)
10164 return result;
10166 /* Put complex operands first and constants second. */
10167 if (GET_RTX_CLASS (code) == 'c'
10168 && swap_commutative_operands_p (op0, op1))
10169 return gen_rtx_fmt_ee (code, mode, op1, op0);
10171 /* If we are turning off bits already known off in OP0, we need not do
10172 an AND. */
10173 else if (code == AND && GET_CODE (op1) == CONST_INT
10174 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10175 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10176 return op0;
10178 return gen_rtx_fmt_ee (code, mode, op0, op1);
10181 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10182 comparison code that will be tested.
10184 The result is a possibly different comparison code to use. *POP0 and
10185 *POP1 may be updated.
10187 It is possible that we might detect that a comparison is either always
10188 true or always false. However, we do not perform general constant
10189 folding in combine, so this knowledge isn't useful. Such tautologies
10190 should have been detected earlier. Hence we ignore all such cases. */
10192 static enum rtx_code
10193 simplify_comparison (code, pop0, pop1)
10194 enum rtx_code code;
10195 rtx *pop0;
10196 rtx *pop1;
10198 rtx op0 = *pop0;
10199 rtx op1 = *pop1;
10200 rtx tem, tem1;
10201 int i;
10202 enum machine_mode mode, tmode;
10204 /* Try a few ways of applying the same transformation to both operands. */
10205 while (1)
10207 #ifndef WORD_REGISTER_OPERATIONS
10208 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10209 so check specially. */
10210 if (code != GTU && code != GEU && code != LTU && code != LEU
10211 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10212 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10213 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10214 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10215 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10216 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10217 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10218 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10219 && GET_CODE (XEXP (op1, 1)) == CONST_INT
10220 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10221 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
10222 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
10223 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
10224 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
10225 && (INTVAL (XEXP (op0, 1))
10226 == (GET_MODE_BITSIZE (GET_MODE (op0))
10227 - (GET_MODE_BITSIZE
10228 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10230 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10231 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10233 #endif
10235 /* If both operands are the same constant shift, see if we can ignore the
10236 shift. We can if the shift is a rotate or if the bits shifted out of
10237 this shift are known to be zero for both inputs and if the type of
10238 comparison is compatible with the shift. */
10239 if (GET_CODE (op0) == GET_CODE (op1)
10240 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10241 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10242 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10243 && (code != GT && code != LT && code != GE && code != LE))
10244 || (GET_CODE (op0) == ASHIFTRT
10245 && (code != GTU && code != LTU
10246 && code != GEU && code != LEU)))
10247 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10248 && INTVAL (XEXP (op0, 1)) >= 0
10249 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10250 && XEXP (op0, 1) == XEXP (op1, 1))
10252 enum machine_mode mode = GET_MODE (op0);
10253 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10254 int shift_count = INTVAL (XEXP (op0, 1));
10256 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10257 mask &= (mask >> shift_count) << shift_count;
10258 else if (GET_CODE (op0) == ASHIFT)
10259 mask = (mask & (mask << shift_count)) >> shift_count;
10261 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10262 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10263 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10264 else
10265 break;
10268 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10269 SUBREGs are of the same mode, and, in both cases, the AND would
10270 be redundant if the comparison was done in the narrower mode,
10271 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10272 and the operand's possibly nonzero bits are 0xffffff01; in that case
10273 if we only care about QImode, we don't need the AND). This case
10274 occurs if the output mode of an scc insn is not SImode and
10275 STORE_FLAG_VALUE == 1 (e.g., the 386).
10277 Similarly, check for a case where the AND's are ZERO_EXTEND
10278 operations from some narrower mode even though a SUBREG is not
10279 present. */
10281 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10282 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10283 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10285 rtx inner_op0 = XEXP (op0, 0);
10286 rtx inner_op1 = XEXP (op1, 0);
10287 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10288 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10289 int changed = 0;
10291 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10292 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10293 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10294 && (GET_MODE (SUBREG_REG (inner_op0))
10295 == GET_MODE (SUBREG_REG (inner_op1)))
10296 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10297 <= HOST_BITS_PER_WIDE_INT)
10298 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10299 GET_MODE (SUBREG_REG (inner_op0)))))
10300 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10301 GET_MODE (SUBREG_REG (inner_op1))))))
10303 op0 = SUBREG_REG (inner_op0);
10304 op1 = SUBREG_REG (inner_op1);
10306 /* The resulting comparison is always unsigned since we masked
10307 off the original sign bit. */
10308 code = unsigned_condition (code);
10310 changed = 1;
10313 else if (c0 == c1)
10314 for (tmode = GET_CLASS_NARROWEST_MODE
10315 (GET_MODE_CLASS (GET_MODE (op0)));
10316 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10317 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10319 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10320 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10321 code = unsigned_condition (code);
10322 changed = 1;
10323 break;
10326 if (! changed)
10327 break;
10330 /* If both operands are NOT, we can strip off the outer operation
10331 and adjust the comparison code for swapped operands; similarly for
10332 NEG, except that this must be an equality comparison. */
10333 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10334 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10335 && (code == EQ || code == NE)))
10336 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10338 else
10339 break;
10342 /* If the first operand is a constant, swap the operands and adjust the
10343 comparison code appropriately, but don't do this if the second operand
10344 is already a constant integer. */
10345 if (swap_commutative_operands_p (op0, op1))
10347 tem = op0, op0 = op1, op1 = tem;
10348 code = swap_condition (code);
10351 /* We now enter a loop during which we will try to simplify the comparison.
10352 For the most part, we only are concerned with comparisons with zero,
10353 but some things may really be comparisons with zero but not start
10354 out looking that way. */
10356 while (GET_CODE (op1) == CONST_INT)
10358 enum machine_mode mode = GET_MODE (op0);
10359 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10360 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10361 int equality_comparison_p;
10362 int sign_bit_comparison_p;
10363 int unsigned_comparison_p;
10364 HOST_WIDE_INT const_op;
10366 /* We only want to handle integral modes. This catches VOIDmode,
10367 CCmode, and the floating-point modes. An exception is that we
10368 can handle VOIDmode if OP0 is a COMPARE or a comparison
10369 operation. */
10371 if (GET_MODE_CLASS (mode) != MODE_INT
10372 && ! (mode == VOIDmode
10373 && (GET_CODE (op0) == COMPARE
10374 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10375 break;
10377 /* Get the constant we are comparing against and turn off all bits
10378 not on in our mode. */
10379 const_op = INTVAL (op1);
10380 if (mode != VOIDmode)
10381 const_op = trunc_int_for_mode (const_op, mode);
10382 op1 = GEN_INT (const_op);
10384 /* If we are comparing against a constant power of two and the value
10385 being compared can only have that single bit nonzero (e.g., it was
10386 `and'ed with that bit), we can replace this with a comparison
10387 with zero. */
10388 if (const_op
10389 && (code == EQ || code == NE || code == GE || code == GEU
10390 || code == LT || code == LTU)
10391 && mode_width <= HOST_BITS_PER_WIDE_INT
10392 && exact_log2 (const_op) >= 0
10393 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10395 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10396 op1 = const0_rtx, const_op = 0;
10399 /* Similarly, if we are comparing a value known to be either -1 or
10400 0 with -1, change it to the opposite comparison against zero. */
10402 if (const_op == -1
10403 && (code == EQ || code == NE || code == GT || code == LE
10404 || code == GEU || code == LTU)
10405 && num_sign_bit_copies (op0, mode) == mode_width)
10407 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10408 op1 = const0_rtx, const_op = 0;
10411 /* Do some canonicalizations based on the comparison code. We prefer
10412 comparisons against zero and then prefer equality comparisons.
10413 If we can reduce the size of a constant, we will do that too. */
10415 switch (code)
10417 case LT:
10418 /* < C is equivalent to <= (C - 1) */
10419 if (const_op > 0)
10421 const_op -= 1;
10422 op1 = GEN_INT (const_op);
10423 code = LE;
10424 /* ... fall through to LE case below. */
10426 else
10427 break;
10429 case LE:
10430 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10431 if (const_op < 0)
10433 const_op += 1;
10434 op1 = GEN_INT (const_op);
10435 code = LT;
10438 /* If we are doing a <= 0 comparison on a value known to have
10439 a zero sign bit, we can replace this with == 0. */
10440 else if (const_op == 0
10441 && mode_width <= HOST_BITS_PER_WIDE_INT
10442 && (nonzero_bits (op0, mode)
10443 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10444 code = EQ;
10445 break;
10447 case GE:
10448 /* >= C is equivalent to > (C - 1). */
10449 if (const_op > 0)
10451 const_op -= 1;
10452 op1 = GEN_INT (const_op);
10453 code = GT;
10454 /* ... fall through to GT below. */
10456 else
10457 break;
10459 case GT:
10460 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10461 if (const_op < 0)
10463 const_op += 1;
10464 op1 = GEN_INT (const_op);
10465 code = GE;
10468 /* If we are doing a > 0 comparison on a value known to have
10469 a zero sign bit, we can replace this with != 0. */
10470 else if (const_op == 0
10471 && mode_width <= HOST_BITS_PER_WIDE_INT
10472 && (nonzero_bits (op0, mode)
10473 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10474 code = NE;
10475 break;
10477 case LTU:
10478 /* < C is equivalent to <= (C - 1). */
10479 if (const_op > 0)
10481 const_op -= 1;
10482 op1 = GEN_INT (const_op);
10483 code = LEU;
10484 /* ... fall through ... */
10487 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10488 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10489 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10491 const_op = 0, op1 = const0_rtx;
10492 code = GE;
10493 break;
10495 else
10496 break;
10498 case LEU:
10499 /* unsigned <= 0 is equivalent to == 0 */
10500 if (const_op == 0)
10501 code = EQ;
10503 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10504 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10505 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10507 const_op = 0, op1 = const0_rtx;
10508 code = GE;
10510 break;
10512 case GEU:
10513 /* >= C is equivalent to < (C - 1). */
10514 if (const_op > 1)
10516 const_op -= 1;
10517 op1 = GEN_INT (const_op);
10518 code = GTU;
10519 /* ... fall through ... */
10522 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10523 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10524 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10526 const_op = 0, op1 = const0_rtx;
10527 code = LT;
10528 break;
10530 else
10531 break;
10533 case GTU:
10534 /* unsigned > 0 is equivalent to != 0 */
10535 if (const_op == 0)
10536 code = NE;
10538 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10539 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10540 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10542 const_op = 0, op1 = const0_rtx;
10543 code = LT;
10545 break;
10547 default:
10548 break;
10551 /* Compute some predicates to simplify code below. */
10553 equality_comparison_p = (code == EQ || code == NE);
10554 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10555 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10556 || code == GEU);
10558 /* If this is a sign bit comparison and we can do arithmetic in
10559 MODE, say that we will only be needing the sign bit of OP0. */
10560 if (sign_bit_comparison_p
10561 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10562 op0 = force_to_mode (op0, mode,
10563 ((HOST_WIDE_INT) 1
10564 << (GET_MODE_BITSIZE (mode) - 1)),
10565 NULL_RTX, 0);
10567 /* Now try cases based on the opcode of OP0. If none of the cases
10568 does a "continue", we exit this loop immediately after the
10569 switch. */
10571 switch (GET_CODE (op0))
10573 case ZERO_EXTRACT:
10574 /* If we are extracting a single bit from a variable position in
10575 a constant that has only a single bit set and are comparing it
10576 with zero, we can convert this into an equality comparison
10577 between the position and the location of the single bit. */
10579 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10580 && XEXP (op0, 1) == const1_rtx
10581 && equality_comparison_p && const_op == 0
10582 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10584 if (BITS_BIG_ENDIAN)
10586 enum machine_mode new_mode
10587 = mode_for_extraction (EP_extzv, 1);
10588 if (new_mode == MAX_MACHINE_MODE)
10589 i = BITS_PER_WORD - 1 - i;
10590 else
10592 mode = new_mode;
10593 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10597 op0 = XEXP (op0, 2);
10598 op1 = GEN_INT (i);
10599 const_op = i;
10601 /* Result is nonzero iff shift count is equal to I. */
10602 code = reverse_condition (code);
10603 continue;
10606 /* ... fall through ... */
10608 case SIGN_EXTRACT:
10609 tem = expand_compound_operation (op0);
10610 if (tem != op0)
10612 op0 = tem;
10613 continue;
10615 break;
10617 case NOT:
10618 /* If testing for equality, we can take the NOT of the constant. */
10619 if (equality_comparison_p
10620 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10622 op0 = XEXP (op0, 0);
10623 op1 = tem;
10624 continue;
10627 /* If just looking at the sign bit, reverse the sense of the
10628 comparison. */
10629 if (sign_bit_comparison_p)
10631 op0 = XEXP (op0, 0);
10632 code = (code == GE ? LT : GE);
10633 continue;
10635 break;
10637 case NEG:
10638 /* If testing for equality, we can take the NEG of the constant. */
10639 if (equality_comparison_p
10640 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10642 op0 = XEXP (op0, 0);
10643 op1 = tem;
10644 continue;
10647 /* The remaining cases only apply to comparisons with zero. */
10648 if (const_op != 0)
10649 break;
10651 /* When X is ABS or is known positive,
10652 (neg X) is < 0 if and only if X != 0. */
10654 if (sign_bit_comparison_p
10655 && (GET_CODE (XEXP (op0, 0)) == ABS
10656 || (mode_width <= HOST_BITS_PER_WIDE_INT
10657 && (nonzero_bits (XEXP (op0, 0), mode)
10658 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10660 op0 = XEXP (op0, 0);
10661 code = (code == LT ? NE : EQ);
10662 continue;
10665 /* If we have NEG of something whose two high-order bits are the
10666 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10667 if (num_sign_bit_copies (op0, mode) >= 2)
10669 op0 = XEXP (op0, 0);
10670 code = swap_condition (code);
10671 continue;
10673 break;
10675 case ROTATE:
10676 /* If we are testing equality and our count is a constant, we
10677 can perform the inverse operation on our RHS. */
10678 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10679 && (tem = simplify_binary_operation (ROTATERT, mode,
10680 op1, XEXP (op0, 1))) != 0)
10682 op0 = XEXP (op0, 0);
10683 op1 = tem;
10684 continue;
10687 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10688 a particular bit. Convert it to an AND of a constant of that
10689 bit. This will be converted into a ZERO_EXTRACT. */
10690 if (const_op == 0 && sign_bit_comparison_p
10691 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10692 && mode_width <= HOST_BITS_PER_WIDE_INT)
10694 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10695 ((HOST_WIDE_INT) 1
10696 << (mode_width - 1
10697 - INTVAL (XEXP (op0, 1)))));
10698 code = (code == LT ? NE : EQ);
10699 continue;
10702 /* Fall through. */
10704 case ABS:
10705 /* ABS is ignorable inside an equality comparison with zero. */
10706 if (const_op == 0 && equality_comparison_p)
10708 op0 = XEXP (op0, 0);
10709 continue;
10711 break;
10713 case SIGN_EXTEND:
10714 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10715 to (compare FOO CONST) if CONST fits in FOO's mode and we
10716 are either testing inequality or have an unsigned comparison
10717 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10718 if (! unsigned_comparison_p
10719 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10720 <= HOST_BITS_PER_WIDE_INT)
10721 && ((unsigned HOST_WIDE_INT) const_op
10722 < (((unsigned HOST_WIDE_INT) 1
10723 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10725 op0 = XEXP (op0, 0);
10726 continue;
10728 break;
10730 case SUBREG:
10731 /* Check for the case where we are comparing A - C1 with C2,
10732 both constants are smaller than 1/2 the maximum positive
10733 value in MODE, and the comparison is equality or unsigned.
10734 In that case, if A is either zero-extended to MODE or has
10735 sufficient sign bits so that the high-order bit in MODE
10736 is a copy of the sign in the inner mode, we can prove that it is
10737 safe to do the operation in the wider mode. This simplifies
10738 many range checks. */
10740 if (mode_width <= HOST_BITS_PER_WIDE_INT
10741 && subreg_lowpart_p (op0)
10742 && GET_CODE (SUBREG_REG (op0)) == PLUS
10743 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10744 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10745 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10746 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10747 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10748 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10749 GET_MODE (SUBREG_REG (op0)))
10750 & ~GET_MODE_MASK (mode))
10751 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10752 GET_MODE (SUBREG_REG (op0)))
10753 > (unsigned int)
10754 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10755 - GET_MODE_BITSIZE (mode)))))
10757 op0 = SUBREG_REG (op0);
10758 continue;
10761 /* If the inner mode is narrower and we are extracting the low part,
10762 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10763 if (subreg_lowpart_p (op0)
10764 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10765 /* Fall through */ ;
10766 else
10767 break;
10769 /* ... fall through ... */
10771 case ZERO_EXTEND:
10772 if ((unsigned_comparison_p || equality_comparison_p)
10773 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10774 <= HOST_BITS_PER_WIDE_INT)
10775 && ((unsigned HOST_WIDE_INT) const_op
10776 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10778 op0 = XEXP (op0, 0);
10779 continue;
10781 break;
10783 case PLUS:
10784 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10785 this for equality comparisons due to pathological cases involving
10786 overflows. */
10787 if (equality_comparison_p
10788 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10789 op1, XEXP (op0, 1))))
10791 op0 = XEXP (op0, 0);
10792 op1 = tem;
10793 continue;
10796 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10797 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10798 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10800 op0 = XEXP (XEXP (op0, 0), 0);
10801 code = (code == LT ? EQ : NE);
10802 continue;
10804 break;
10806 case MINUS:
10807 /* We used to optimize signed comparisons against zero, but that
10808 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10809 arrive here as equality comparisons, or (GEU, LTU) are
10810 optimized away. No need to special-case them. */
10812 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10813 (eq B (minus A C)), whichever simplifies. We can only do
10814 this for equality comparisons due to pathological cases involving
10815 overflows. */
10816 if (equality_comparison_p
10817 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10818 XEXP (op0, 1), op1)))
10820 op0 = XEXP (op0, 0);
10821 op1 = tem;
10822 continue;
10825 if (equality_comparison_p
10826 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10827 XEXP (op0, 0), op1)))
10829 op0 = XEXP (op0, 1);
10830 op1 = tem;
10831 continue;
10834 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10835 of bits in X minus 1, is one iff X > 0. */
10836 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10837 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10838 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10839 == mode_width - 1
10840 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10842 op0 = XEXP (op0, 1);
10843 code = (code == GE ? LE : GT);
10844 continue;
10846 break;
10848 case XOR:
10849 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10850 if C is zero or B is a constant. */
10851 if (equality_comparison_p
10852 && 0 != (tem = simplify_binary_operation (XOR, mode,
10853 XEXP (op0, 1), op1)))
10855 op0 = XEXP (op0, 0);
10856 op1 = tem;
10857 continue;
10859 break;
10861 case EQ: case NE:
10862 case UNEQ: case LTGT:
10863 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10864 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10865 case UNORDERED: case ORDERED:
10866 /* We can't do anything if OP0 is a condition code value, rather
10867 than an actual data value. */
10868 if (const_op != 0
10869 #ifdef HAVE_cc0
10870 || XEXP (op0, 0) == cc0_rtx
10871 #endif
10872 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10873 break;
10875 /* Get the two operands being compared. */
10876 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10877 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10878 else
10879 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10881 /* Check for the cases where we simply want the result of the
10882 earlier test or the opposite of that result. */
10883 if (code == NE || code == EQ
10884 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10885 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10886 && (STORE_FLAG_VALUE
10887 & (((HOST_WIDE_INT) 1
10888 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10889 && (code == LT || code == GE)))
10891 enum rtx_code new_code;
10892 if (code == LT || code == NE)
10893 new_code = GET_CODE (op0);
10894 else
10895 new_code = combine_reversed_comparison_code (op0);
10897 if (new_code != UNKNOWN)
10899 code = new_code;
10900 op0 = tem;
10901 op1 = tem1;
10902 continue;
10905 break;
10907 case IOR:
10908 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10909 iff X <= 0. */
10910 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10911 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10912 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10914 op0 = XEXP (op0, 1);
10915 code = (code == GE ? GT : LE);
10916 continue;
10918 break;
10920 case AND:
10921 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10922 will be converted to a ZERO_EXTRACT later. */
10923 if (const_op == 0 && equality_comparison_p
10924 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10925 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10927 op0 = simplify_and_const_int
10928 (op0, mode, gen_rtx_LSHIFTRT (mode,
10929 XEXP (op0, 1),
10930 XEXP (XEXP (op0, 0), 1)),
10931 (HOST_WIDE_INT) 1);
10932 continue;
10935 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10936 zero and X is a comparison and C1 and C2 describe only bits set
10937 in STORE_FLAG_VALUE, we can compare with X. */
10938 if (const_op == 0 && equality_comparison_p
10939 && mode_width <= HOST_BITS_PER_WIDE_INT
10940 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10941 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10942 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10943 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10944 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10946 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10947 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10948 if ((~STORE_FLAG_VALUE & mask) == 0
10949 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10950 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10951 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10953 op0 = XEXP (XEXP (op0, 0), 0);
10954 continue;
10958 /* If we are doing an equality comparison of an AND of a bit equal
10959 to the sign bit, replace this with a LT or GE comparison of
10960 the underlying value. */
10961 if (equality_comparison_p
10962 && const_op == 0
10963 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10964 && mode_width <= HOST_BITS_PER_WIDE_INT
10965 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10966 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10968 op0 = XEXP (op0, 0);
10969 code = (code == EQ ? GE : LT);
10970 continue;
10973 /* If this AND operation is really a ZERO_EXTEND from a narrower
10974 mode, the constant fits within that mode, and this is either an
10975 equality or unsigned comparison, try to do this comparison in
10976 the narrower mode. */
10977 if ((equality_comparison_p || unsigned_comparison_p)
10978 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10979 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10980 & GET_MODE_MASK (mode))
10981 + 1)) >= 0
10982 && const_op >> i == 0
10983 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10985 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10986 continue;
10989 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10990 in both M1 and M2 and the SUBREG is either paradoxical or
10991 represents the low part, permute the SUBREG and the AND and
10992 try again. */
10993 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10994 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10995 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10996 As originally written the upper bits have a defined value
10997 due to the AND operation. However, if we commute the AND
10998 inside the SUBREG then they no longer have defined values
10999 and the meaning of the code has been changed. */
11000 && (0
11001 #ifdef WORD_REGISTER_OPERATIONS
11002 || ((mode_width
11003 > (GET_MODE_BITSIZE
11004 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
11005 && mode_width <= BITS_PER_WORD)
11006 #endif
11007 || ((mode_width
11008 <= (GET_MODE_BITSIZE
11009 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
11010 && subreg_lowpart_p (XEXP (op0, 0))))
11011 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11012 && mode_width <= HOST_BITS_PER_WIDE_INT
11013 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
11014 <= HOST_BITS_PER_WIDE_INT)
11015 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
11016 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
11017 & INTVAL (XEXP (op0, 1)))
11018 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
11019 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11020 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
11024 = gen_lowpart_for_combine
11025 (mode,
11026 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
11027 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
11028 continue;
11031 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11032 (eq (and (lshiftrt X) 1) 0). */
11033 if (const_op == 0 && equality_comparison_p
11034 && XEXP (op0, 1) == const1_rtx
11035 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11036 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
11038 op0 = simplify_and_const_int
11039 (op0, mode,
11040 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
11041 XEXP (XEXP (op0, 0), 1)),
11042 (HOST_WIDE_INT) 1);
11043 code = (code == NE ? EQ : NE);
11044 continue;
11046 break;
11048 case ASHIFT:
11049 /* If we have (compare (ashift FOO N) (const_int C)) and
11050 the high order N bits of FOO (N+1 if an inequality comparison)
11051 are known to be zero, we can do this by comparing FOO with C
11052 shifted right N bits so long as the low-order N bits of C are
11053 zero. */
11054 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11055 && INTVAL (XEXP (op0, 1)) >= 0
11056 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11057 < HOST_BITS_PER_WIDE_INT)
11058 && ((const_op
11059 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11060 && mode_width <= HOST_BITS_PER_WIDE_INT
11061 && (nonzero_bits (XEXP (op0, 0), mode)
11062 & ~(mask >> (INTVAL (XEXP (op0, 1))
11063 + ! equality_comparison_p))) == 0)
11065 /* We must perform a logical shift, not an arithmetic one,
11066 as we want the top N bits of C to be zero. */
11067 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11069 temp >>= INTVAL (XEXP (op0, 1));
11070 op1 = gen_int_mode (temp, mode);
11071 op0 = XEXP (op0, 0);
11072 continue;
11075 /* If we are doing a sign bit comparison, it means we are testing
11076 a particular bit. Convert it to the appropriate AND. */
11077 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
11078 && mode_width <= HOST_BITS_PER_WIDE_INT)
11080 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11081 ((HOST_WIDE_INT) 1
11082 << (mode_width - 1
11083 - INTVAL (XEXP (op0, 1)))));
11084 code = (code == LT ? NE : EQ);
11085 continue;
11088 /* If this an equality comparison with zero and we are shifting
11089 the low bit to the sign bit, we can convert this to an AND of the
11090 low-order bit. */
11091 if (const_op == 0 && equality_comparison_p
11092 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11093 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11094 == mode_width - 1)
11096 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11097 (HOST_WIDE_INT) 1);
11098 continue;
11100 break;
11102 case ASHIFTRT:
11103 /* If this is an equality comparison with zero, we can do this
11104 as a logical shift, which might be much simpler. */
11105 if (equality_comparison_p && const_op == 0
11106 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11108 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11109 XEXP (op0, 0),
11110 INTVAL (XEXP (op0, 1)));
11111 continue;
11114 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11115 do the comparison in a narrower mode. */
11116 if (! unsigned_comparison_p
11117 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11118 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11119 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11120 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11121 MODE_INT, 1)) != BLKmode
11122 && (((unsigned HOST_WIDE_INT) const_op
11123 + (GET_MODE_MASK (tmode) >> 1) + 1)
11124 <= GET_MODE_MASK (tmode)))
11126 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11127 continue;
11130 /* Likewise if OP0 is a PLUS of a sign extension with a
11131 constant, which is usually represented with the PLUS
11132 between the shifts. */
11133 if (! unsigned_comparison_p
11134 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11135 && GET_CODE (XEXP (op0, 0)) == PLUS
11136 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11137 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11138 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11139 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11140 MODE_INT, 1)) != BLKmode
11141 && (((unsigned HOST_WIDE_INT) const_op
11142 + (GET_MODE_MASK (tmode) >> 1) + 1)
11143 <= GET_MODE_MASK (tmode)))
11145 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11146 rtx add_const = XEXP (XEXP (op0, 0), 1);
11147 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11148 XEXP (op0, 1));
11150 op0 = gen_binary (PLUS, tmode,
11151 gen_lowpart_for_combine (tmode, inner),
11152 new_const);
11153 continue;
11156 /* ... fall through ... */
11157 case LSHIFTRT:
11158 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11159 the low order N bits of FOO are known to be zero, we can do this
11160 by comparing FOO with C shifted left N bits so long as no
11161 overflow occurs. */
11162 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11163 && INTVAL (XEXP (op0, 1)) >= 0
11164 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11165 && mode_width <= HOST_BITS_PER_WIDE_INT
11166 && (nonzero_bits (XEXP (op0, 0), mode)
11167 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11168 && (((unsigned HOST_WIDE_INT) const_op
11169 + (GET_CODE (op0) != LSHIFTRT
11170 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11171 + 1)
11172 : 0))
11173 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11175 /* If the shift was logical, then we must make the condition
11176 unsigned. */
11177 if (GET_CODE (op0) == LSHIFTRT)
11178 code = unsigned_condition (code);
11180 const_op <<= INTVAL (XEXP (op0, 1));
11181 op1 = GEN_INT (const_op);
11182 op0 = XEXP (op0, 0);
11183 continue;
11186 /* If we are using this shift to extract just the sign bit, we
11187 can replace this with an LT or GE comparison. */
11188 if (const_op == 0
11189 && (equality_comparison_p || sign_bit_comparison_p)
11190 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11191 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11192 == mode_width - 1)
11194 op0 = XEXP (op0, 0);
11195 code = (code == NE || code == GT ? LT : GE);
11196 continue;
11198 break;
11200 default:
11201 break;
11204 break;
11207 /* Now make any compound operations involved in this comparison. Then,
11208 check for an outmost SUBREG on OP0 that is not doing anything or is
11209 paradoxical. The latter transformation must only be performed when
11210 it is known that the "extra" bits will be the same in op0 and op1 or
11211 that they don't matter. There are three cases to consider:
11213 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11214 care bits and we can assume they have any convenient value. So
11215 making the transformation is safe.
11217 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11218 In this case the upper bits of op0 are undefined. We should not make
11219 the simplification in that case as we do not know the contents of
11220 those bits.
11222 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11223 NIL. In that case we know those bits are zeros or ones. We must
11224 also be sure that they are the same as the upper bits of op1.
11226 We can never remove a SUBREG for a non-equality comparison because
11227 the sign bit is in a different place in the underlying object. */
11229 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11230 op1 = make_compound_operation (op1, SET);
11232 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11233 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
11234 implemented. */
11235 && GET_CODE (SUBREG_REG (op0)) == REG
11236 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11237 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11238 && (code == NE || code == EQ))
11240 if (GET_MODE_SIZE (GET_MODE (op0))
11241 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11243 op0 = SUBREG_REG (op0);
11244 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11246 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11247 <= HOST_BITS_PER_WIDE_INT)
11248 && (nonzero_bits (SUBREG_REG (op0),
11249 GET_MODE (SUBREG_REG (op0)))
11250 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11252 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11254 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11255 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11256 op0 = SUBREG_REG (op0), op1 = tem;
11260 /* We now do the opposite procedure: Some machines don't have compare
11261 insns in all modes. If OP0's mode is an integer mode smaller than a
11262 word and we can't do a compare in that mode, see if there is a larger
11263 mode for which we can do the compare. There are a number of cases in
11264 which we can use the wider mode. */
11266 mode = GET_MODE (op0);
11267 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11268 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11269 && ! have_insn_for (COMPARE, mode))
11270 for (tmode = GET_MODE_WIDER_MODE (mode);
11271 (tmode != VOIDmode
11272 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11273 tmode = GET_MODE_WIDER_MODE (tmode))
11274 if (have_insn_for (COMPARE, tmode))
11276 int zero_extended;
11278 /* If the only nonzero bits in OP0 and OP1 are those in the
11279 narrower mode and this is an equality or unsigned comparison,
11280 we can use the wider mode. Similarly for sign-extended
11281 values, in which case it is true for all comparisons. */
11282 zero_extended = ((code == EQ || code == NE
11283 || code == GEU || code == GTU
11284 || code == LEU || code == LTU)
11285 && (nonzero_bits (op0, tmode)
11286 & ~GET_MODE_MASK (mode)) == 0
11287 && ((GET_CODE (op1) == CONST_INT
11288 || (nonzero_bits (op1, tmode)
11289 & ~GET_MODE_MASK (mode)) == 0)));
11291 if (zero_extended
11292 || ((num_sign_bit_copies (op0, tmode)
11293 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11294 - GET_MODE_BITSIZE (mode)))
11295 && (num_sign_bit_copies (op1, tmode)
11296 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11297 - GET_MODE_BITSIZE (mode)))))
11299 /* If OP0 is an AND and we don't have an AND in MODE either,
11300 make a new AND in the proper mode. */
11301 if (GET_CODE (op0) == AND
11302 && !have_insn_for (AND, mode))
11303 op0 = gen_binary (AND, tmode,
11304 gen_lowpart_for_combine (tmode,
11305 XEXP (op0, 0)),
11306 gen_lowpart_for_combine (tmode,
11307 XEXP (op0, 1)));
11309 op0 = gen_lowpart_for_combine (tmode, op0);
11310 if (zero_extended && GET_CODE (op1) == CONST_INT)
11311 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11312 op1 = gen_lowpart_for_combine (tmode, op1);
11313 break;
11316 /* If this is a test for negative, we can make an explicit
11317 test of the sign bit. */
11319 if (op1 == const0_rtx && (code == LT || code == GE)
11320 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11322 op0 = gen_binary (AND, tmode,
11323 gen_lowpart_for_combine (tmode, op0),
11324 GEN_INT ((HOST_WIDE_INT) 1
11325 << (GET_MODE_BITSIZE (mode) - 1)));
11326 code = (code == LT) ? NE : EQ;
11327 break;
11331 #ifdef CANONICALIZE_COMPARISON
11332 /* If this machine only supports a subset of valid comparisons, see if we
11333 can convert an unsupported one into a supported one. */
11334 CANONICALIZE_COMPARISON (code, op0, op1);
11335 #endif
11337 *pop0 = op0;
11338 *pop1 = op1;
11340 return code;
11343 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11344 searching backward. */
11345 static enum rtx_code
11346 combine_reversed_comparison_code (exp)
11347 rtx exp;
11349 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11350 rtx x;
11352 if (code1 != UNKNOWN
11353 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11354 return code1;
11355 /* Otherwise try and find where the condition codes were last set and
11356 use that. */
11357 x = get_last_value (XEXP (exp, 0));
11358 if (!x || GET_CODE (x) != COMPARE)
11359 return UNKNOWN;
11360 return reversed_comparison_code_parts (GET_CODE (exp),
11361 XEXP (x, 0), XEXP (x, 1), NULL);
11364 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11365 Return NULL_RTX in case we fail to do the reversal. */
11366 static rtx
11367 reversed_comparison (exp, mode, op0, op1)
11368 rtx exp, op0, op1;
11369 enum machine_mode mode;
11371 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11372 if (reversed_code == UNKNOWN)
11373 return NULL_RTX;
11374 else
11375 return gen_binary (reversed_code, mode, op0, op1);
11378 /* Utility function for following routine. Called when X is part of a value
11379 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11380 for each register mentioned. Similar to mention_regs in cse.c */
11382 static void
11383 update_table_tick (x)
11384 rtx x;
11386 enum rtx_code code = GET_CODE (x);
11387 const char *fmt = GET_RTX_FORMAT (code);
11388 int i;
11390 if (code == REG)
11392 unsigned int regno = REGNO (x);
11393 unsigned int endregno
11394 = regno + (regno < FIRST_PSEUDO_REGISTER
11395 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11396 unsigned int r;
11398 for (r = regno; r < endregno; r++)
11399 reg_last_set_table_tick[r] = label_tick;
11401 return;
11404 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11405 /* Note that we can't have an "E" in values stored; see
11406 get_last_value_validate. */
11407 if (fmt[i] == 'e')
11408 update_table_tick (XEXP (x, i));
11411 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11412 are saying that the register is clobbered and we no longer know its
11413 value. If INSN is zero, don't update reg_last_set; this is only permitted
11414 with VALUE also zero and is used to invalidate the register. */
11416 static void
11417 record_value_for_reg (reg, insn, value)
11418 rtx reg;
11419 rtx insn;
11420 rtx value;
11422 unsigned int regno = REGNO (reg);
11423 unsigned int endregno
11424 = regno + (regno < FIRST_PSEUDO_REGISTER
11425 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11426 unsigned int i;
11428 /* If VALUE contains REG and we have a previous value for REG, substitute
11429 the previous value. */
11430 if (value && insn && reg_overlap_mentioned_p (reg, value))
11432 rtx tem;
11434 /* Set things up so get_last_value is allowed to see anything set up to
11435 our insn. */
11436 subst_low_cuid = INSN_CUID (insn);
11437 tem = get_last_value (reg);
11439 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11440 it isn't going to be useful and will take a lot of time to process,
11441 so just use the CLOBBER. */
11443 if (tem)
11445 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11446 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11447 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11448 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11449 tem = XEXP (tem, 0);
11451 value = replace_rtx (copy_rtx (value), reg, tem);
11455 /* For each register modified, show we don't know its value, that
11456 we don't know about its bitwise content, that its value has been
11457 updated, and that we don't know the location of the death of the
11458 register. */
11459 for (i = regno; i < endregno; i++)
11461 if (insn)
11462 reg_last_set[i] = insn;
11464 reg_last_set_value[i] = 0;
11465 reg_last_set_mode[i] = 0;
11466 reg_last_set_nonzero_bits[i] = 0;
11467 reg_last_set_sign_bit_copies[i] = 0;
11468 reg_last_death[i] = 0;
11471 /* Mark registers that are being referenced in this value. */
11472 if (value)
11473 update_table_tick (value);
11475 /* Now update the status of each register being set.
11476 If someone is using this register in this block, set this register
11477 to invalid since we will get confused between the two lives in this
11478 basic block. This makes using this register always invalid. In cse, we
11479 scan the table to invalidate all entries using this register, but this
11480 is too much work for us. */
11482 for (i = regno; i < endregno; i++)
11484 reg_last_set_label[i] = label_tick;
11485 if (value && reg_last_set_table_tick[i] == label_tick)
11486 reg_last_set_invalid[i] = 1;
11487 else
11488 reg_last_set_invalid[i] = 0;
11491 /* The value being assigned might refer to X (like in "x++;"). In that
11492 case, we must replace it with (clobber (const_int 0)) to prevent
11493 infinite loops. */
11494 if (value && ! get_last_value_validate (&value, insn,
11495 reg_last_set_label[regno], 0))
11497 value = copy_rtx (value);
11498 if (! get_last_value_validate (&value, insn,
11499 reg_last_set_label[regno], 1))
11500 value = 0;
11503 /* For the main register being modified, update the value, the mode, the
11504 nonzero bits, and the number of sign bit copies. */
11506 reg_last_set_value[regno] = value;
11508 if (value)
11510 enum machine_mode mode = GET_MODE (reg);
11511 subst_low_cuid = INSN_CUID (insn);
11512 reg_last_set_mode[regno] = mode;
11513 if (GET_MODE_CLASS (mode) == MODE_INT
11514 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11515 mode = nonzero_bits_mode;
11516 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11517 reg_last_set_sign_bit_copies[regno]
11518 = num_sign_bit_copies (value, GET_MODE (reg));
11522 /* Called via note_stores from record_dead_and_set_regs to handle one
11523 SET or CLOBBER in an insn. DATA is the instruction in which the
11524 set is occurring. */
11526 static void
11527 record_dead_and_set_regs_1 (dest, setter, data)
11528 rtx dest, setter;
11529 void *data;
11531 rtx record_dead_insn = (rtx) data;
11533 if (GET_CODE (dest) == SUBREG)
11534 dest = SUBREG_REG (dest);
11536 if (GET_CODE (dest) == REG)
11538 /* If we are setting the whole register, we know its value. Otherwise
11539 show that we don't know the value. We can handle SUBREG in
11540 some cases. */
11541 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11542 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11543 else if (GET_CODE (setter) == SET
11544 && GET_CODE (SET_DEST (setter)) == SUBREG
11545 && SUBREG_REG (SET_DEST (setter)) == dest
11546 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11547 && subreg_lowpart_p (SET_DEST (setter)))
11548 record_value_for_reg (dest, record_dead_insn,
11549 gen_lowpart_for_combine (GET_MODE (dest),
11550 SET_SRC (setter)));
11551 else
11552 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11554 else if (GET_CODE (dest) == MEM
11555 /* Ignore pushes, they clobber nothing. */
11556 && ! push_operand (dest, GET_MODE (dest)))
11557 mem_last_set = INSN_CUID (record_dead_insn);
11560 /* Update the records of when each REG was most recently set or killed
11561 for the things done by INSN. This is the last thing done in processing
11562 INSN in the combiner loop.
11564 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11565 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11566 and also the similar information mem_last_set (which insn most recently
11567 modified memory) and last_call_cuid (which insn was the most recent
11568 subroutine call). */
11570 static void
11571 record_dead_and_set_regs (insn)
11572 rtx insn;
11574 rtx link;
11575 unsigned int i;
11577 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11579 if (REG_NOTE_KIND (link) == REG_DEAD
11580 && GET_CODE (XEXP (link, 0)) == REG)
11582 unsigned int regno = REGNO (XEXP (link, 0));
11583 unsigned int endregno
11584 = regno + (regno < FIRST_PSEUDO_REGISTER
11585 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11586 : 1);
11588 for (i = regno; i < endregno; i++)
11589 reg_last_death[i] = insn;
11591 else if (REG_NOTE_KIND (link) == REG_INC)
11592 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11595 if (GET_CODE (insn) == CALL_INSN)
11597 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11598 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11600 reg_last_set_value[i] = 0;
11601 reg_last_set_mode[i] = 0;
11602 reg_last_set_nonzero_bits[i] = 0;
11603 reg_last_set_sign_bit_copies[i] = 0;
11604 reg_last_death[i] = 0;
11607 last_call_cuid = mem_last_set = INSN_CUID (insn);
11609 /* Don't bother recording what this insn does. It might set the
11610 return value register, but we can't combine into a call
11611 pattern anyway, so there's no point trying (and it may cause
11612 a crash, if e.g. we wind up asking for last_set_value of a
11613 SUBREG of the return value register). */
11614 return;
11617 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11620 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11621 register present in the SUBREG, so for each such SUBREG go back and
11622 adjust nonzero and sign bit information of the registers that are
11623 known to have some zero/sign bits set.
11625 This is needed because when combine blows the SUBREGs away, the
11626 information on zero/sign bits is lost and further combines can be
11627 missed because of that. */
11629 static void
11630 record_promoted_value (insn, subreg)
11631 rtx insn;
11632 rtx subreg;
11634 rtx links, set;
11635 unsigned int regno = REGNO (SUBREG_REG (subreg));
11636 enum machine_mode mode = GET_MODE (subreg);
11638 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11639 return;
11641 for (links = LOG_LINKS (insn); links;)
11643 insn = XEXP (links, 0);
11644 set = single_set (insn);
11646 if (! set || GET_CODE (SET_DEST (set)) != REG
11647 || REGNO (SET_DEST (set)) != regno
11648 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11650 links = XEXP (links, 1);
11651 continue;
11654 if (reg_last_set[regno] == insn)
11656 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11657 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11660 if (GET_CODE (SET_SRC (set)) == REG)
11662 regno = REGNO (SET_SRC (set));
11663 links = LOG_LINKS (insn);
11665 else
11666 break;
11670 /* Scan X for promoted SUBREGs. For each one found,
11671 note what it implies to the registers used in it. */
11673 static void
11674 check_promoted_subreg (insn, x)
11675 rtx insn;
11676 rtx x;
11678 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11679 && GET_CODE (SUBREG_REG (x)) == REG)
11680 record_promoted_value (insn, x);
11681 else
11683 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11684 int i, j;
11686 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11687 switch (format[i])
11689 case 'e':
11690 check_promoted_subreg (insn, XEXP (x, i));
11691 break;
11692 case 'V':
11693 case 'E':
11694 if (XVEC (x, i) != 0)
11695 for (j = 0; j < XVECLEN (x, i); j++)
11696 check_promoted_subreg (insn, XVECEXP (x, i, j));
11697 break;
11702 /* Utility routine for the following function. Verify that all the registers
11703 mentioned in *LOC are valid when *LOC was part of a value set when
11704 label_tick == TICK. Return 0 if some are not.
11706 If REPLACE is nonzero, replace the invalid reference with
11707 (clobber (const_int 0)) and return 1. This replacement is useful because
11708 we often can get useful information about the form of a value (e.g., if
11709 it was produced by a shift that always produces -1 or 0) even though
11710 we don't know exactly what registers it was produced from. */
11712 static int
11713 get_last_value_validate (loc, insn, tick, replace)
11714 rtx *loc;
11715 rtx insn;
11716 int tick;
11717 int replace;
11719 rtx x = *loc;
11720 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11721 int len = GET_RTX_LENGTH (GET_CODE (x));
11722 int i;
11724 if (GET_CODE (x) == REG)
11726 unsigned int regno = REGNO (x);
11727 unsigned int endregno
11728 = regno + (regno < FIRST_PSEUDO_REGISTER
11729 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11730 unsigned int j;
11732 for (j = regno; j < endregno; j++)
11733 if (reg_last_set_invalid[j]
11734 /* If this is a pseudo-register that was only set once and not
11735 live at the beginning of the function, it is always valid. */
11736 || (! (regno >= FIRST_PSEUDO_REGISTER
11737 && REG_N_SETS (regno) == 1
11738 && (! REGNO_REG_SET_P
11739 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11740 && reg_last_set_label[j] > tick))
11742 if (replace)
11743 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11744 return replace;
11747 return 1;
11749 /* If this is a memory reference, make sure that there were
11750 no stores after it that might have clobbered the value. We don't
11751 have alias info, so we assume any store invalidates it. */
11752 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11753 && INSN_CUID (insn) <= mem_last_set)
11755 if (replace)
11756 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11757 return replace;
11760 for (i = 0; i < len; i++)
11761 if ((fmt[i] == 'e'
11762 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11763 /* Don't bother with these. They shouldn't occur anyway. */
11764 || fmt[i] == 'E')
11765 return 0;
11767 /* If we haven't found a reason for it to be invalid, it is valid. */
11768 return 1;
11771 /* Get the last value assigned to X, if known. Some registers
11772 in the value may be replaced with (clobber (const_int 0)) if their value
11773 is known longer known reliably. */
11775 static rtx
11776 get_last_value (x)
11777 rtx x;
11779 unsigned int regno;
11780 rtx value;
11782 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11783 then convert it to the desired mode. If this is a paradoxical SUBREG,
11784 we cannot predict what values the "extra" bits might have. */
11785 if (GET_CODE (x) == SUBREG
11786 && subreg_lowpart_p (x)
11787 && (GET_MODE_SIZE (GET_MODE (x))
11788 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11789 && (value = get_last_value (SUBREG_REG (x))) != 0)
11790 return gen_lowpart_for_combine (GET_MODE (x), value);
11792 if (GET_CODE (x) != REG)
11793 return 0;
11795 regno = REGNO (x);
11796 value = reg_last_set_value[regno];
11798 /* If we don't have a value, or if it isn't for this basic block and
11799 it's either a hard register, set more than once, or it's a live
11800 at the beginning of the function, return 0.
11802 Because if it's not live at the beginning of the function then the reg
11803 is always set before being used (is never used without being set).
11804 And, if it's set only once, and it's always set before use, then all
11805 uses must have the same last value, even if it's not from this basic
11806 block. */
11808 if (value == 0
11809 || (reg_last_set_label[regno] != label_tick
11810 && (regno < FIRST_PSEUDO_REGISTER
11811 || REG_N_SETS (regno) != 1
11812 || (REGNO_REG_SET_P
11813 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11814 return 0;
11816 /* If the value was set in a later insn than the ones we are processing,
11817 we can't use it even if the register was only set once. */
11818 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11819 return 0;
11821 /* If the value has all its registers valid, return it. */
11822 if (get_last_value_validate (&value, reg_last_set[regno],
11823 reg_last_set_label[regno], 0))
11824 return value;
11826 /* Otherwise, make a copy and replace any invalid register with
11827 (clobber (const_int 0)). If that fails for some reason, return 0. */
11829 value = copy_rtx (value);
11830 if (get_last_value_validate (&value, reg_last_set[regno],
11831 reg_last_set_label[regno], 1))
11832 return value;
11834 return 0;
11837 /* Return nonzero if expression X refers to a REG or to memory
11838 that is set in an instruction more recent than FROM_CUID. */
11840 static int
11841 use_crosses_set_p (x, from_cuid)
11842 rtx x;
11843 int from_cuid;
11845 const char *fmt;
11846 int i;
11847 enum rtx_code code = GET_CODE (x);
11849 if (code == REG)
11851 unsigned int regno = REGNO (x);
11852 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11853 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11855 #ifdef PUSH_ROUNDING
11856 /* Don't allow uses of the stack pointer to be moved,
11857 because we don't know whether the move crosses a push insn. */
11858 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11859 return 1;
11860 #endif
11861 for (; regno < endreg; regno++)
11862 if (reg_last_set[regno]
11863 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11864 return 1;
11865 return 0;
11868 if (code == MEM && mem_last_set > from_cuid)
11869 return 1;
11871 fmt = GET_RTX_FORMAT (code);
11873 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11875 if (fmt[i] == 'E')
11877 int j;
11878 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11879 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11880 return 1;
11882 else if (fmt[i] == 'e'
11883 && use_crosses_set_p (XEXP (x, i), from_cuid))
11884 return 1;
11886 return 0;
11889 /* Define three variables used for communication between the following
11890 routines. */
11892 static unsigned int reg_dead_regno, reg_dead_endregno;
11893 static int reg_dead_flag;
11895 /* Function called via note_stores from reg_dead_at_p.
11897 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11898 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11900 static void
11901 reg_dead_at_p_1 (dest, x, data)
11902 rtx dest;
11903 rtx x;
11904 void *data ATTRIBUTE_UNUSED;
11906 unsigned int regno, endregno;
11908 if (GET_CODE (dest) != REG)
11909 return;
11911 regno = REGNO (dest);
11912 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11913 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11915 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11916 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11919 /* Return nonzero if REG is known to be dead at INSN.
11921 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11922 referencing REG, it is dead. If we hit a SET referencing REG, it is
11923 live. Otherwise, see if it is live or dead at the start of the basic
11924 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11925 must be assumed to be always live. */
11927 static int
11928 reg_dead_at_p (reg, insn)
11929 rtx reg;
11930 rtx insn;
11932 basic_block block;
11933 unsigned int i;
11935 /* Set variables for reg_dead_at_p_1. */
11936 reg_dead_regno = REGNO (reg);
11937 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11938 ? HARD_REGNO_NREGS (reg_dead_regno,
11939 GET_MODE (reg))
11940 : 1);
11942 reg_dead_flag = 0;
11944 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11945 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11947 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11948 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11949 return 0;
11952 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11953 beginning of function. */
11954 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11955 insn = prev_nonnote_insn (insn))
11957 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11958 if (reg_dead_flag)
11959 return reg_dead_flag == 1 ? 1 : 0;
11961 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11962 return 1;
11965 /* Get the basic block that we were in. */
11966 if (insn == 0)
11967 block = ENTRY_BLOCK_PTR->next_bb;
11968 else
11970 FOR_EACH_BB (block)
11971 if (insn == block->head)
11972 break;
11974 if (block == EXIT_BLOCK_PTR)
11975 return 0;
11978 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11979 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11980 return 0;
11982 return 1;
11985 /* Note hard registers in X that are used. This code is similar to
11986 that in flow.c, but much simpler since we don't care about pseudos. */
11988 static void
11989 mark_used_regs_combine (x)
11990 rtx x;
11992 RTX_CODE code = GET_CODE (x);
11993 unsigned int regno;
11994 int i;
11996 switch (code)
11998 case LABEL_REF:
11999 case SYMBOL_REF:
12000 case CONST_INT:
12001 case CONST:
12002 case CONST_DOUBLE:
12003 case CONST_VECTOR:
12004 case PC:
12005 case ADDR_VEC:
12006 case ADDR_DIFF_VEC:
12007 case ASM_INPUT:
12008 #ifdef HAVE_cc0
12009 /* CC0 must die in the insn after it is set, so we don't need to take
12010 special note of it here. */
12011 case CC0:
12012 #endif
12013 return;
12015 case CLOBBER:
12016 /* If we are clobbering a MEM, mark any hard registers inside the
12017 address as used. */
12018 if (GET_CODE (XEXP (x, 0)) == MEM)
12019 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12020 return;
12022 case REG:
12023 regno = REGNO (x);
12024 /* A hard reg in a wide mode may really be multiple registers.
12025 If so, mark all of them just like the first. */
12026 if (regno < FIRST_PSEUDO_REGISTER)
12028 unsigned int endregno, r;
12030 /* None of this applies to the stack, frame or arg pointers. */
12031 if (regno == STACK_POINTER_REGNUM
12032 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12033 || regno == HARD_FRAME_POINTER_REGNUM
12034 #endif
12035 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12036 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12037 #endif
12038 || regno == FRAME_POINTER_REGNUM)
12039 return;
12041 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12042 for (r = regno; r < endregno; r++)
12043 SET_HARD_REG_BIT (newpat_used_regs, r);
12045 return;
12047 case SET:
12049 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12050 the address. */
12051 rtx testreg = SET_DEST (x);
12053 while (GET_CODE (testreg) == SUBREG
12054 || GET_CODE (testreg) == ZERO_EXTRACT
12055 || GET_CODE (testreg) == SIGN_EXTRACT
12056 || GET_CODE (testreg) == STRICT_LOW_PART)
12057 testreg = XEXP (testreg, 0);
12059 if (GET_CODE (testreg) == MEM)
12060 mark_used_regs_combine (XEXP (testreg, 0));
12062 mark_used_regs_combine (SET_SRC (x));
12064 return;
12066 default:
12067 break;
12070 /* Recursively scan the operands of this expression. */
12073 const char *fmt = GET_RTX_FORMAT (code);
12075 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12077 if (fmt[i] == 'e')
12078 mark_used_regs_combine (XEXP (x, i));
12079 else if (fmt[i] == 'E')
12081 int j;
12083 for (j = 0; j < XVECLEN (x, i); j++)
12084 mark_used_regs_combine (XVECEXP (x, i, j));
12090 /* Remove register number REGNO from the dead registers list of INSN.
12092 Return the note used to record the death, if there was one. */
12095 remove_death (regno, insn)
12096 unsigned int regno;
12097 rtx insn;
12099 rtx note = find_regno_note (insn, REG_DEAD, regno);
12101 if (note)
12103 REG_N_DEATHS (regno)--;
12104 remove_note (insn, note);
12107 return note;
12110 /* For each register (hardware or pseudo) used within expression X, if its
12111 death is in an instruction with cuid between FROM_CUID (inclusive) and
12112 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12113 list headed by PNOTES.
12115 That said, don't move registers killed by maybe_kill_insn.
12117 This is done when X is being merged by combination into TO_INSN. These
12118 notes will then be distributed as needed. */
12120 static void
12121 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
12122 rtx x;
12123 rtx maybe_kill_insn;
12124 int from_cuid;
12125 rtx to_insn;
12126 rtx *pnotes;
12128 const char *fmt;
12129 int len, i;
12130 enum rtx_code code = GET_CODE (x);
12132 if (code == REG)
12134 unsigned int regno = REGNO (x);
12135 rtx where_dead = reg_last_death[regno];
12136 rtx before_dead, after_dead;
12138 /* Don't move the register if it gets killed in between from and to. */
12139 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12140 && ! reg_referenced_p (x, maybe_kill_insn))
12141 return;
12143 /* WHERE_DEAD could be a USE insn made by combine, so first we
12144 make sure that we have insns with valid INSN_CUID values. */
12145 before_dead = where_dead;
12146 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12147 before_dead = PREV_INSN (before_dead);
12149 after_dead = where_dead;
12150 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12151 after_dead = NEXT_INSN (after_dead);
12153 if (before_dead && after_dead
12154 && INSN_CUID (before_dead) >= from_cuid
12155 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12156 || (where_dead != after_dead
12157 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12159 rtx note = remove_death (regno, where_dead);
12161 /* It is possible for the call above to return 0. This can occur
12162 when reg_last_death points to I2 or I1 that we combined with.
12163 In that case make a new note.
12165 We must also check for the case where X is a hard register
12166 and NOTE is a death note for a range of hard registers
12167 including X. In that case, we must put REG_DEAD notes for
12168 the remaining registers in place of NOTE. */
12170 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12171 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12172 > GET_MODE_SIZE (GET_MODE (x))))
12174 unsigned int deadregno = REGNO (XEXP (note, 0));
12175 unsigned int deadend
12176 = (deadregno + HARD_REGNO_NREGS (deadregno,
12177 GET_MODE (XEXP (note, 0))));
12178 unsigned int ourend
12179 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12180 unsigned int i;
12182 for (i = deadregno; i < deadend; i++)
12183 if (i < regno || i >= ourend)
12184 REG_NOTES (where_dead)
12185 = gen_rtx_EXPR_LIST (REG_DEAD,
12186 regno_reg_rtx[i],
12187 REG_NOTES (where_dead));
12190 /* If we didn't find any note, or if we found a REG_DEAD note that
12191 covers only part of the given reg, and we have a multi-reg hard
12192 register, then to be safe we must check for REG_DEAD notes
12193 for each register other than the first. They could have
12194 their own REG_DEAD notes lying around. */
12195 else if ((note == 0
12196 || (note != 0
12197 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12198 < GET_MODE_SIZE (GET_MODE (x)))))
12199 && regno < FIRST_PSEUDO_REGISTER
12200 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12202 unsigned int ourend
12203 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12204 unsigned int i, offset;
12205 rtx oldnotes = 0;
12207 if (note)
12208 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12209 else
12210 offset = 1;
12212 for (i = regno + offset; i < ourend; i++)
12213 move_deaths (regno_reg_rtx[i],
12214 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12217 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12219 XEXP (note, 1) = *pnotes;
12220 *pnotes = note;
12222 else
12223 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12225 REG_N_DEATHS (regno)++;
12228 return;
12231 else if (GET_CODE (x) == SET)
12233 rtx dest = SET_DEST (x);
12235 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12237 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12238 that accesses one word of a multi-word item, some
12239 piece of everything register in the expression is used by
12240 this insn, so remove any old death. */
12241 /* ??? So why do we test for equality of the sizes? */
12243 if (GET_CODE (dest) == ZERO_EXTRACT
12244 || GET_CODE (dest) == STRICT_LOW_PART
12245 || (GET_CODE (dest) == SUBREG
12246 && (((GET_MODE_SIZE (GET_MODE (dest))
12247 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12248 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12249 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12251 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12252 return;
12255 /* If this is some other SUBREG, we know it replaces the entire
12256 value, so use that as the destination. */
12257 if (GET_CODE (dest) == SUBREG)
12258 dest = SUBREG_REG (dest);
12260 /* If this is a MEM, adjust deaths of anything used in the address.
12261 For a REG (the only other possibility), the entire value is
12262 being replaced so the old value is not used in this insn. */
12264 if (GET_CODE (dest) == MEM)
12265 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12266 to_insn, pnotes);
12267 return;
12270 else if (GET_CODE (x) == CLOBBER)
12271 return;
12273 len = GET_RTX_LENGTH (code);
12274 fmt = GET_RTX_FORMAT (code);
12276 for (i = 0; i < len; i++)
12278 if (fmt[i] == 'E')
12280 int j;
12281 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12282 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12283 to_insn, pnotes);
12285 else if (fmt[i] == 'e')
12286 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12290 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12291 pattern of an insn. X must be a REG. */
12293 static int
12294 reg_bitfield_target_p (x, body)
12295 rtx x;
12296 rtx body;
12298 int i;
12300 if (GET_CODE (body) == SET)
12302 rtx dest = SET_DEST (body);
12303 rtx target;
12304 unsigned int regno, tregno, endregno, endtregno;
12306 if (GET_CODE (dest) == ZERO_EXTRACT)
12307 target = XEXP (dest, 0);
12308 else if (GET_CODE (dest) == STRICT_LOW_PART)
12309 target = SUBREG_REG (XEXP (dest, 0));
12310 else
12311 return 0;
12313 if (GET_CODE (target) == SUBREG)
12314 target = SUBREG_REG (target);
12316 if (GET_CODE (target) != REG)
12317 return 0;
12319 tregno = REGNO (target), regno = REGNO (x);
12320 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12321 return target == x;
12323 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12324 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12326 return endregno > tregno && regno < endtregno;
12329 else if (GET_CODE (body) == PARALLEL)
12330 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12331 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12332 return 1;
12334 return 0;
12337 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12338 as appropriate. I3 and I2 are the insns resulting from the combination
12339 insns including FROM (I2 may be zero).
12341 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12342 not need REG_DEAD notes because they are being substituted for. This
12343 saves searching in the most common cases.
12345 Each note in the list is either ignored or placed on some insns, depending
12346 on the type of note. */
12348 static void
12349 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12350 rtx notes;
12351 rtx from_insn;
12352 rtx i3, i2;
12353 rtx elim_i2, elim_i1;
12355 rtx note, next_note;
12356 rtx tem;
12358 for (note = notes; note; note = next_note)
12360 rtx place = 0, place2 = 0;
12362 /* If this NOTE references a pseudo register, ensure it references
12363 the latest copy of that register. */
12364 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12365 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12366 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12368 next_note = XEXP (note, 1);
12369 switch (REG_NOTE_KIND (note))
12371 case REG_BR_PROB:
12372 case REG_BR_PRED:
12373 case REG_EXEC_COUNT:
12374 /* Doesn't matter much where we put this, as long as it's somewhere.
12375 It is preferable to keep these notes on branches, which is most
12376 likely to be i3. */
12377 place = i3;
12378 break;
12380 case REG_VTABLE_REF:
12381 /* ??? Should remain with *a particular* memory load. Given the
12382 nature of vtable data, the last insn seems relatively safe. */
12383 place = i3;
12384 break;
12386 case REG_NON_LOCAL_GOTO:
12387 if (GET_CODE (i3) == JUMP_INSN)
12388 place = i3;
12389 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12390 place = i2;
12391 else
12392 abort ();
12393 break;
12395 case REG_EH_REGION:
12396 /* These notes must remain with the call or trapping instruction. */
12397 if (GET_CODE (i3) == CALL_INSN)
12398 place = i3;
12399 else if (i2 && GET_CODE (i2) == CALL_INSN)
12400 place = i2;
12401 else if (flag_non_call_exceptions)
12403 if (may_trap_p (i3))
12404 place = i3;
12405 else if (i2 && may_trap_p (i2))
12406 place = i2;
12407 /* ??? Otherwise assume we've combined things such that we
12408 can now prove that the instructions can't trap. Drop the
12409 note in this case. */
12411 else
12412 abort ();
12413 break;
12415 case REG_NORETURN:
12416 case REG_SETJMP:
12417 /* These notes must remain with the call. It should not be
12418 possible for both I2 and I3 to be a call. */
12419 if (GET_CODE (i3) == CALL_INSN)
12420 place = i3;
12421 else if (i2 && GET_CODE (i2) == CALL_INSN)
12422 place = i2;
12423 else
12424 abort ();
12425 break;
12427 case REG_UNUSED:
12428 /* Any clobbers for i3 may still exist, and so we must process
12429 REG_UNUSED notes from that insn.
12431 Any clobbers from i2 or i1 can only exist if they were added by
12432 recog_for_combine. In that case, recog_for_combine created the
12433 necessary REG_UNUSED notes. Trying to keep any original
12434 REG_UNUSED notes from these insns can cause incorrect output
12435 if it is for the same register as the original i3 dest.
12436 In that case, we will notice that the register is set in i3,
12437 and then add a REG_UNUSED note for the destination of i3, which
12438 is wrong. However, it is possible to have REG_UNUSED notes from
12439 i2 or i1 for register which were both used and clobbered, so
12440 we keep notes from i2 or i1 if they will turn into REG_DEAD
12441 notes. */
12443 /* If this register is set or clobbered in I3, put the note there
12444 unless there is one already. */
12445 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12447 if (from_insn != i3)
12448 break;
12450 if (! (GET_CODE (XEXP (note, 0)) == REG
12451 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12452 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12453 place = i3;
12455 /* Otherwise, if this register is used by I3, then this register
12456 now dies here, so we must put a REG_DEAD note here unless there
12457 is one already. */
12458 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12459 && ! (GET_CODE (XEXP (note, 0)) == REG
12460 ? find_regno_note (i3, REG_DEAD,
12461 REGNO (XEXP (note, 0)))
12462 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12464 PUT_REG_NOTE_KIND (note, REG_DEAD);
12465 place = i3;
12467 break;
12469 case REG_EQUAL:
12470 case REG_EQUIV:
12471 case REG_NOALIAS:
12472 /* These notes say something about results of an insn. We can
12473 only support them if they used to be on I3 in which case they
12474 remain on I3. Otherwise they are ignored.
12476 If the note refers to an expression that is not a constant, we
12477 must also ignore the note since we cannot tell whether the
12478 equivalence is still true. It might be possible to do
12479 slightly better than this (we only have a problem if I2DEST
12480 or I1DEST is present in the expression), but it doesn't
12481 seem worth the trouble. */
12483 if (from_insn == i3
12484 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12485 place = i3;
12486 break;
12488 case REG_INC:
12489 case REG_NO_CONFLICT:
12490 /* These notes say something about how a register is used. They must
12491 be present on any use of the register in I2 or I3. */
12492 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12493 place = i3;
12495 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12497 if (place)
12498 place2 = i2;
12499 else
12500 place = i2;
12502 break;
12504 case REG_LABEL:
12505 /* This can show up in several ways -- either directly in the
12506 pattern, or hidden off in the constant pool with (or without?)
12507 a REG_EQUAL note. */
12508 /* ??? Ignore the without-reg_equal-note problem for now. */
12509 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12510 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12511 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12512 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12513 place = i3;
12515 if (i2
12516 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12517 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12518 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12519 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12521 if (place)
12522 place2 = i2;
12523 else
12524 place = i2;
12527 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12528 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12529 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12531 if (JUMP_LABEL (place) != XEXP (note, 0))
12532 abort ();
12533 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12534 LABEL_NUSES (JUMP_LABEL (place))--;
12535 place = 0;
12537 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12539 if (JUMP_LABEL (place2) != XEXP (note, 0))
12540 abort ();
12541 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12542 LABEL_NUSES (JUMP_LABEL (place2))--;
12543 place2 = 0;
12545 break;
12547 case REG_NONNEG:
12548 case REG_WAS_0:
12549 /* These notes say something about the value of a register prior
12550 to the execution of an insn. It is too much trouble to see
12551 if the note is still correct in all situations. It is better
12552 to simply delete it. */
12553 break;
12555 case REG_RETVAL:
12556 /* If the insn previously containing this note still exists,
12557 put it back where it was. Otherwise move it to the previous
12558 insn. Adjust the corresponding REG_LIBCALL note. */
12559 if (GET_CODE (from_insn) != NOTE)
12560 place = from_insn;
12561 else
12563 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12564 place = prev_real_insn (from_insn);
12565 if (tem && place)
12566 XEXP (tem, 0) = place;
12567 /* If we're deleting the last remaining instruction of a
12568 libcall sequence, don't add the notes. */
12569 else if (XEXP (note, 0) == from_insn)
12570 tem = place = 0;
12572 break;
12574 case REG_LIBCALL:
12575 /* This is handled similarly to REG_RETVAL. */
12576 if (GET_CODE (from_insn) != NOTE)
12577 place = from_insn;
12578 else
12580 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12581 place = next_real_insn (from_insn);
12582 if (tem && place)
12583 XEXP (tem, 0) = place;
12584 /* If we're deleting the last remaining instruction of a
12585 libcall sequence, don't add the notes. */
12586 else if (XEXP (note, 0) == from_insn)
12587 tem = place = 0;
12589 break;
12591 case REG_DEAD:
12592 /* If the register is used as an input in I3, it dies there.
12593 Similarly for I2, if it is nonzero and adjacent to I3.
12595 If the register is not used as an input in either I3 or I2
12596 and it is not one of the registers we were supposed to eliminate,
12597 there are two possibilities. We might have a non-adjacent I2
12598 or we might have somehow eliminated an additional register
12599 from a computation. For example, we might have had A & B where
12600 we discover that B will always be zero. In this case we will
12601 eliminate the reference to A.
12603 In both cases, we must search to see if we can find a previous
12604 use of A and put the death note there. */
12606 if (from_insn
12607 && GET_CODE (from_insn) == CALL_INSN
12608 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12609 place = from_insn;
12610 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12611 place = i3;
12612 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12613 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12614 place = i2;
12616 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12617 || rtx_equal_p (XEXP (note, 0), elim_i1))
12618 break;
12620 if (place == 0)
12622 basic_block bb = this_basic_block;
12624 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12626 if (! INSN_P (tem))
12628 if (tem == bb->head)
12629 break;
12630 continue;
12633 /* If the register is being set at TEM, see if that is all
12634 TEM is doing. If so, delete TEM. Otherwise, make this
12635 into a REG_UNUSED note instead. */
12636 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12638 rtx set = single_set (tem);
12639 rtx inner_dest = 0;
12640 #ifdef HAVE_cc0
12641 rtx cc0_setter = NULL_RTX;
12642 #endif
12644 if (set != 0)
12645 for (inner_dest = SET_DEST (set);
12646 (GET_CODE (inner_dest) == STRICT_LOW_PART
12647 || GET_CODE (inner_dest) == SUBREG
12648 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12649 inner_dest = XEXP (inner_dest, 0))
12652 /* Verify that it was the set, and not a clobber that
12653 modified the register.
12655 CC0 targets must be careful to maintain setter/user
12656 pairs. If we cannot delete the setter due to side
12657 effects, mark the user with an UNUSED note instead
12658 of deleting it. */
12660 if (set != 0 && ! side_effects_p (SET_SRC (set))
12661 && rtx_equal_p (XEXP (note, 0), inner_dest)
12662 #ifdef HAVE_cc0
12663 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12664 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12665 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12666 #endif
12669 /* Move the notes and links of TEM elsewhere.
12670 This might delete other dead insns recursively.
12671 First set the pattern to something that won't use
12672 any register. */
12674 PATTERN (tem) = pc_rtx;
12676 distribute_notes (REG_NOTES (tem), tem, tem,
12677 NULL_RTX, NULL_RTX, NULL_RTX);
12678 distribute_links (LOG_LINKS (tem));
12680 PUT_CODE (tem, NOTE);
12681 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12682 NOTE_SOURCE_FILE (tem) = 0;
12684 #ifdef HAVE_cc0
12685 /* Delete the setter too. */
12686 if (cc0_setter)
12688 PATTERN (cc0_setter) = pc_rtx;
12690 distribute_notes (REG_NOTES (cc0_setter),
12691 cc0_setter, cc0_setter,
12692 NULL_RTX, NULL_RTX, NULL_RTX);
12693 distribute_links (LOG_LINKS (cc0_setter));
12695 PUT_CODE (cc0_setter, NOTE);
12696 NOTE_LINE_NUMBER (cc0_setter)
12697 = NOTE_INSN_DELETED;
12698 NOTE_SOURCE_FILE (cc0_setter) = 0;
12700 #endif
12702 /* If the register is both set and used here, put the
12703 REG_DEAD note here, but place a REG_UNUSED note
12704 here too unless there already is one. */
12705 else if (reg_referenced_p (XEXP (note, 0),
12706 PATTERN (tem)))
12708 place = tem;
12710 if (! find_regno_note (tem, REG_UNUSED,
12711 REGNO (XEXP (note, 0))))
12712 REG_NOTES (tem)
12713 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12714 REG_NOTES (tem));
12716 else
12718 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12720 /* If there isn't already a REG_UNUSED note, put one
12721 here. */
12722 if (! find_regno_note (tem, REG_UNUSED,
12723 REGNO (XEXP (note, 0))))
12724 place = tem;
12725 break;
12728 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12729 || (GET_CODE (tem) == CALL_INSN
12730 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12732 place = tem;
12734 /* If we are doing a 3->2 combination, and we have a
12735 register which formerly died in i3 and was not used
12736 by i2, which now no longer dies in i3 and is used in
12737 i2 but does not die in i2, and place is between i2
12738 and i3, then we may need to move a link from place to
12739 i2. */
12740 if (i2 && INSN_UID (place) <= max_uid_cuid
12741 && INSN_CUID (place) > INSN_CUID (i2)
12742 && from_insn
12743 && INSN_CUID (from_insn) > INSN_CUID (i2)
12744 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12746 rtx links = LOG_LINKS (place);
12747 LOG_LINKS (place) = 0;
12748 distribute_links (links);
12750 break;
12753 if (tem == bb->head)
12754 break;
12757 /* We haven't found an insn for the death note and it
12758 is still a REG_DEAD note, but we have hit the beginning
12759 of the block. If the existing life info says the reg
12760 was dead, there's nothing left to do. Otherwise, we'll
12761 need to do a global life update after combine. */
12762 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12763 && REGNO_REG_SET_P (bb->global_live_at_start,
12764 REGNO (XEXP (note, 0))))
12765 SET_BIT (refresh_blocks, this_basic_block->index);
12768 /* If the register is set or already dead at PLACE, we needn't do
12769 anything with this note if it is still a REG_DEAD note.
12770 We can here if it is set at all, not if is it totally replace,
12771 which is what `dead_or_set_p' checks, so also check for it being
12772 set partially. */
12774 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12776 unsigned int regno = REGNO (XEXP (note, 0));
12778 /* Similarly, if the instruction on which we want to place
12779 the note is a noop, we'll need do a global live update
12780 after we remove them in delete_noop_moves. */
12781 if (noop_move_p (place))
12782 SET_BIT (refresh_blocks, this_basic_block->index);
12784 if (dead_or_set_p (place, XEXP (note, 0))
12785 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12787 /* Unless the register previously died in PLACE, clear
12788 reg_last_death. [I no longer understand why this is
12789 being done.] */
12790 if (reg_last_death[regno] != place)
12791 reg_last_death[regno] = 0;
12792 place = 0;
12794 else
12795 reg_last_death[regno] = place;
12797 /* If this is a death note for a hard reg that is occupying
12798 multiple registers, ensure that we are still using all
12799 parts of the object. If we find a piece of the object
12800 that is unused, we must arrange for an appropriate REG_DEAD
12801 note to be added for it. However, we can't just emit a USE
12802 and tag the note to it, since the register might actually
12803 be dead; so we recourse, and the recursive call then finds
12804 the previous insn that used this register. */
12806 if (place && regno < FIRST_PSEUDO_REGISTER
12807 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12809 unsigned int endregno
12810 = regno + HARD_REGNO_NREGS (regno,
12811 GET_MODE (XEXP (note, 0)));
12812 int all_used = 1;
12813 unsigned int i;
12815 for (i = regno; i < endregno; i++)
12816 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12817 && ! find_regno_fusage (place, USE, i))
12818 || dead_or_set_regno_p (place, i))
12819 all_used = 0;
12821 if (! all_used)
12823 /* Put only REG_DEAD notes for pieces that are
12824 not already dead or set. */
12826 for (i = regno; i < endregno;
12827 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12829 rtx piece = regno_reg_rtx[i];
12830 basic_block bb = this_basic_block;
12832 if (! dead_or_set_p (place, piece)
12833 && ! reg_bitfield_target_p (piece,
12834 PATTERN (place)))
12836 rtx new_note
12837 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12839 distribute_notes (new_note, place, place,
12840 NULL_RTX, NULL_RTX, NULL_RTX);
12842 else if (! refers_to_regno_p (i, i + 1,
12843 PATTERN (place), 0)
12844 && ! find_regno_fusage (place, USE, i))
12845 for (tem = PREV_INSN (place); ;
12846 tem = PREV_INSN (tem))
12848 if (! INSN_P (tem))
12850 if (tem == bb->head)
12852 SET_BIT (refresh_blocks,
12853 this_basic_block->index);
12854 break;
12856 continue;
12858 if (dead_or_set_p (tem, piece)
12859 || reg_bitfield_target_p (piece,
12860 PATTERN (tem)))
12862 REG_NOTES (tem)
12863 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12864 REG_NOTES (tem));
12865 break;
12871 place = 0;
12875 break;
12877 default:
12878 /* Any other notes should not be present at this point in the
12879 compilation. */
12880 abort ();
12883 if (place)
12885 XEXP (note, 1) = REG_NOTES (place);
12886 REG_NOTES (place) = note;
12888 else if ((REG_NOTE_KIND (note) == REG_DEAD
12889 || REG_NOTE_KIND (note) == REG_UNUSED)
12890 && GET_CODE (XEXP (note, 0)) == REG)
12891 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12893 if (place2)
12895 if ((REG_NOTE_KIND (note) == REG_DEAD
12896 || REG_NOTE_KIND (note) == REG_UNUSED)
12897 && GET_CODE (XEXP (note, 0)) == REG)
12898 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12900 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12901 REG_NOTE_KIND (note),
12902 XEXP (note, 0),
12903 REG_NOTES (place2));
12908 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12909 I3, I2, and I1 to new locations. This is also called in one case to
12910 add a link pointing at I3 when I3's destination is changed. */
12912 static void
12913 distribute_links (links)
12914 rtx links;
12916 rtx link, next_link;
12918 for (link = links; link; link = next_link)
12920 rtx place = 0;
12921 rtx insn;
12922 rtx set, reg;
12924 next_link = XEXP (link, 1);
12926 /* If the insn that this link points to is a NOTE or isn't a single
12927 set, ignore it. In the latter case, it isn't clear what we
12928 can do other than ignore the link, since we can't tell which
12929 register it was for. Such links wouldn't be used by combine
12930 anyway.
12932 It is not possible for the destination of the target of the link to
12933 have been changed by combine. The only potential of this is if we
12934 replace I3, I2, and I1 by I3 and I2. But in that case the
12935 destination of I2 also remains unchanged. */
12937 if (GET_CODE (XEXP (link, 0)) == NOTE
12938 || (set = single_set (XEXP (link, 0))) == 0)
12939 continue;
12941 reg = SET_DEST (set);
12942 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12943 || GET_CODE (reg) == SIGN_EXTRACT
12944 || GET_CODE (reg) == STRICT_LOW_PART)
12945 reg = XEXP (reg, 0);
12947 /* A LOG_LINK is defined as being placed on the first insn that uses
12948 a register and points to the insn that sets the register. Start
12949 searching at the next insn after the target of the link and stop
12950 when we reach a set of the register or the end of the basic block.
12952 Note that this correctly handles the link that used to point from
12953 I3 to I2. Also note that not much searching is typically done here
12954 since most links don't point very far away. */
12956 for (insn = NEXT_INSN (XEXP (link, 0));
12957 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12958 || this_basic_block->next_bb->head != insn));
12959 insn = NEXT_INSN (insn))
12960 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12962 if (reg_referenced_p (reg, PATTERN (insn)))
12963 place = insn;
12964 break;
12966 else if (GET_CODE (insn) == CALL_INSN
12967 && find_reg_fusage (insn, USE, reg))
12969 place = insn;
12970 break;
12973 /* If we found a place to put the link, place it there unless there
12974 is already a link to the same insn as LINK at that point. */
12976 if (place)
12978 rtx link2;
12980 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12981 if (XEXP (link2, 0) == XEXP (link, 0))
12982 break;
12984 if (link2 == 0)
12986 XEXP (link, 1) = LOG_LINKS (place);
12987 LOG_LINKS (place) = link;
12989 /* Set added_links_insn to the earliest insn we added a
12990 link to. */
12991 if (added_links_insn == 0
12992 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12993 added_links_insn = place;
12999 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
13001 static int
13002 insn_cuid (insn)
13003 rtx insn;
13005 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
13006 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
13007 insn = NEXT_INSN (insn);
13009 if (INSN_UID (insn) > max_uid_cuid)
13010 abort ();
13012 return INSN_CUID (insn);
13015 void
13016 dump_combine_stats (file)
13017 FILE *file;
13019 fnotice
13020 (file,
13021 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13022 combine_attempts, combine_merges, combine_extras, combine_successes);
13025 void
13026 dump_combine_total_stats (file)
13027 FILE *file;
13029 fnotice
13030 (file,
13031 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13032 total_attempts, total_merges, total_extras, total_successes);