ubsan: ubsan_maybe_instrument_array_ref tweak
[official-gcc.git] / gcc / value-relation.h
blobbe6e277421bf16663afae3050e8f7505d6de02c4
1 /* Header file for the value range relational processing.
2 Copyright (C) 2020-2023 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_VALUE_RELATION_H
22 #define GCC_VALUE_RELATION_H
25 // This file provides access to a relation oracle which can be used to
26 // maintain and query relations and equivalences between SSA_NAMES.
28 // The general range_query object provided in value-query.h provides
29 // access to an oracle, if one is available, via the oracle() method.
30 // There are also a couple of access routines provided, which even if there is
31 // no oracle, will return the default VREL_VARYING no relation.
33 // Typically, when a ranger object is active, there will be an oracle, and
34 // any information available can be directly queried. Ranger also sets and
35 // utilizes the relation information to enhance it's range calculations, this
36 // is totally transparent to the client, and they are free to make queries.
38 // relation_kind is a new enum which represents the different relations,
39 // often with a direct mapping to tree codes. ie VREL_EQ is equivalent to
40 // EQ_EXPR.
42 // A query is made requesting the relation between SSA1 and SSA@ in a basic
43 // block, or on an edge, the possible return values are:
45 // VREL_EQ, VREL_NE, VREL_LT, VREL_LE, VREL_GT, and VREL_GE mean the same.
46 // VREL_VARYING : No relation between the 2 names.
47 // VREL_UNDEFINED : Impossible relation (ie, A < B && A > B)
49 // The oracle maintains VREL_EQ relations with equivalency sets, so if a
50 // relation comes back VREL_EQ, it is also possible to query the set of
51 // equivalencies. These are basically bitmaps over ssa_names. An iterator is
52 // provided later for this activity.
54 // Relations are maintained via the dominance trees and are optimized assuming
55 // they are registered in dominance order. When a new relation is added, it
56 // is intersected with whatever existing relation exists in the dominance tree
57 // and registered at the specified block.
60 // These codes are arranged such that VREL_VARYING is the first code, and all
61 // the rest are contiguous.
63 typedef enum relation_kind_t
65 VREL_VARYING = 0, // No known relation, AKA varying.
66 VREL_UNDEFINED, // Impossible relation, ie (r1 < r2) && (r2 > r1)
67 VREL_LT, // r1 < r2
68 VREL_LE, // r1 <= r2
69 VREL_GT, // r1 > r2
70 VREL_GE, // r1 >= r2
71 VREL_EQ, // r1 == r2
72 VREL_NE, // r1 != r2
73 VREL_PE8, // 8 bit partial equivalency
74 VREL_PE16, // 16 bit partial equivalency
75 VREL_PE32, // 32 bit partial equivalency
76 VREL_PE64, // 64 bit partial equivalency
77 VREL_LAST // terminate, not a real relation.
78 } relation_kind;
80 // General relation kind transformations.
81 relation_kind relation_union (relation_kind r1, relation_kind r2);
82 relation_kind relation_intersect (relation_kind r1, relation_kind r2);
83 relation_kind relation_negate (relation_kind r);
84 relation_kind relation_swap (relation_kind r);
85 inline bool relation_lt_le_gt_ge_p (relation_kind r)
86 { return (r >= VREL_LT && r <= VREL_GE); }
87 inline bool relation_partial_equiv_p (relation_kind r)
88 { return (r >= VREL_PE8 && r <= VREL_PE64); }
89 inline bool relation_equiv_p (relation_kind r)
90 { return r == VREL_EQ || relation_partial_equiv_p (r); }
92 void print_relation (FILE *f, relation_kind rel);
94 class relation_oracle
96 public:
97 virtual ~relation_oracle () { }
98 // register a relation between 2 ssa names at a stmt.
99 void register_stmt (gimple *, relation_kind, tree, tree);
100 // register a relation between 2 ssa names on an edge.
101 void register_edge (edge, relation_kind, tree, tree);
103 // register a relation between 2 ssa names in a basic block.
104 virtual void register_relation (basic_block, relation_kind, tree, tree) = 0;
105 // Query for a relation between two ssa names in a basic block.
106 virtual relation_kind query_relation (basic_block, tree, tree) = 0;
108 relation_kind validate_relation (relation_kind, tree, tree);
109 relation_kind validate_relation (relation_kind, vrange &, vrange &);
111 virtual void dump (FILE *, basic_block) const = 0;
112 virtual void dump (FILE *) const = 0;
113 void debug () const;
114 protected:
115 friend class equiv_relation_iterator;
116 // Return equivalency set for an SSA name in a basic block.
117 virtual const_bitmap equiv_set (tree, basic_block) = 0;
118 // Return partial equivalency record for an SSA name.
119 virtual const class pe_slice *partial_equiv_set (tree) { return NULL; }
120 void valid_equivs (bitmap b, const_bitmap equivs, basic_block bb);
121 // Query for a relation between two equivalency sets in a basic block.
122 virtual relation_kind query_relation (basic_block, const_bitmap,
123 const_bitmap) = 0;
124 friend class path_oracle;
127 // This class represents an equivalency set, and contains a link to the next
128 // one in the list to be searched.
130 class equiv_chain
132 public:
133 bitmap m_names; // ssa-names in equiv set.
134 basic_block m_bb; // Block this belongs to
135 equiv_chain *m_next; // Next in block list.
136 void dump (FILE *f) const; // Show names in this list.
137 equiv_chain *find (unsigned ssa);
140 class pe_slice
142 public:
143 tree ssa_base; // Slice of this name.
144 relation_kind code; // bits that are equivalent.
145 bitmap members; // Other members in the partial equivalency.
148 // The equivalency oracle maintains equivalencies using the dominator tree.
149 // Equivalencies apply to an entire basic block. Equivalencies on edges
150 // can be represented only on edges whose destination is a single-pred block,
151 // and the equivalence is simply applied to that successor block.
153 class equiv_oracle : public relation_oracle
155 public:
156 equiv_oracle ();
157 ~equiv_oracle ();
159 const_bitmap equiv_set (tree ssa, basic_block bb) final override;
160 const pe_slice *partial_equiv_set (tree name) final override;
161 void register_relation (basic_block bb, relation_kind k, tree ssa1,
162 tree ssa2) override;
164 void add_partial_equiv (relation_kind, tree, tree);
165 relation_kind partial_equiv (tree ssa1, tree ssa2, tree *base = NULL) const;
166 relation_kind query_relation (basic_block, tree, tree) override;
167 relation_kind query_relation (basic_block, const_bitmap, const_bitmap)
168 override;
169 void dump (FILE *f, basic_block bb) const override;
170 void dump (FILE *f) const override;
172 protected:
173 inline bool has_equiv_p (unsigned v) { return bitmap_bit_p (m_equiv_set, v); }
174 bitmap_obstack m_bitmaps;
175 struct obstack m_chain_obstack;
176 private:
177 bitmap m_equiv_set; // Index by ssa-name. true if an equivalence exists.
178 vec <equiv_chain *> m_equiv; // Index by BB. list of equivalences.
179 vec <bitmap> m_self_equiv; // Index by ssa-name, self equivalency set.
180 vec <pe_slice> m_partial; // Partial equivalencies.
182 void limit_check (basic_block bb = NULL);
183 equiv_chain *find_equiv_block (unsigned ssa, int bb) const;
184 equiv_chain *find_equiv_dom (tree name, basic_block bb) const;
186 bitmap register_equiv (basic_block bb, unsigned v, equiv_chain *equiv_1);
187 bitmap register_equiv (basic_block bb, equiv_chain *equiv_1,
188 equiv_chain *equiv_2);
189 void register_initial_def (tree ssa);
190 void add_equiv_to_block (basic_block bb, bitmap equiv);
193 // Summary block header for relations.
195 class relation_chain_head
197 public:
198 bitmap m_names; // ssa_names with relations in this block.
199 class relation_chain *m_head; // List of relations in block.
200 int m_num_relations; // Number of relations in block.
201 relation_kind find_relation (const_bitmap b1, const_bitmap b2) const;
204 // A relation oracle maintains a set of relations between ssa_names using the
205 // dominator tree structures. Equivalencies are considered a subset of
206 // a general relation and maintained by an equivalence oracle by transparently
207 // passing any EQ_EXPR relations to it.
208 // Relations are handled at the basic block level. All relations apply to
209 // an entire block, and are thus kept in a summary index by block.
210 // Similar to the equivalence oracle, edges are handled by applying the
211 // relation to the destination block of the edge, but ONLY if that block
212 // has a single successor. For now.
214 class dom_oracle : public equiv_oracle
216 public:
217 dom_oracle ();
218 ~dom_oracle ();
220 void register_relation (basic_block bb, relation_kind k, tree op1, tree op2)
221 final override;
223 relation_kind query_relation (basic_block bb, tree ssa1, tree ssa2)
224 final override;
225 relation_kind query_relation (basic_block bb, const_bitmap b1,
226 const_bitmap b2) final override;
228 void dump (FILE *f, basic_block bb) const final override;
229 void dump (FILE *f) const final override;
230 private:
231 bitmap m_tmp, m_tmp2;
232 bitmap m_relation_set; // Index by ssa-name. True if a relation exists
233 vec <relation_chain_head> m_relations; // Index by BB, list of relations.
234 relation_kind find_relation_block (unsigned bb, const_bitmap b1,
235 const_bitmap b2) const;
236 relation_kind find_relation_block (int bb, unsigned v1, unsigned v2,
237 relation_chain **obj = NULL) const;
238 relation_kind find_relation_dom (basic_block bb, unsigned v1, unsigned v2) const;
239 relation_chain *set_one_relation (basic_block bb, relation_kind k, tree op1,
240 tree op2);
241 void register_transitives (basic_block, const class value_relation &);
245 // A path_oracle implements relations in a list. The only sense of ordering
246 // is the latest registered relation is the first found during a search.
247 // It can be constructed with an optional "root" oracle which will be used
248 // to look up any relations not found in the list.
249 // This allows the client to walk paths starting at some block and register
250 // and query relations along that path, ignoring other edges.
252 // For registering a relation, a query if made of the root oracle if there is
253 // any known relationship at block BB, and it is combined with this new
254 // relation and entered in the list.
256 // Queries are resolved by looking first in the list, and only if nothing is
257 // found is the root oracle queried at block BB.
259 // reset_path is used to clear all locally registered paths to initial state.
261 class path_oracle : public relation_oracle
263 public:
264 path_oracle (relation_oracle *oracle = NULL);
265 ~path_oracle ();
266 const_bitmap equiv_set (tree, basic_block) final override;
267 void register_relation (basic_block, relation_kind, tree, tree) final override;
268 void killing_def (tree);
269 relation_kind query_relation (basic_block, tree, tree) final override;
270 relation_kind query_relation (basic_block, const_bitmap, const_bitmap)
271 final override;
272 void reset_path (relation_oracle *oracle = NULL);
273 void set_root_oracle (relation_oracle *oracle) { m_root = oracle; }
274 void dump (FILE *, basic_block) const final override;
275 void dump (FILE *) const final override;
276 private:
277 void register_equiv (basic_block bb, tree ssa1, tree ssa2);
278 equiv_chain m_equiv;
279 relation_chain_head m_relations;
280 relation_oracle *m_root;
281 bitmap m_killed_defs;
283 bitmap_obstack m_bitmaps;
284 struct obstack m_chain_obstack;
287 // Used to assist with iterating over the equivalence list.
288 class equiv_relation_iterator {
289 public:
290 equiv_relation_iterator (relation_oracle *oracle, basic_block bb, tree name,
291 bool full = true, bool partial = false);
292 void next ();
293 tree get_name (relation_kind *rel = NULL);
294 protected:
295 relation_oracle *m_oracle;
296 const_bitmap m_bm;
297 const pe_slice *m_pe;
298 bitmap_iterator m_bi;
299 unsigned m_y;
300 tree m_name;
303 #define FOR_EACH_EQUIVALENCE(oracle, bb, name, equiv_name) \
304 for (equiv_relation_iterator iter (oracle, bb, name, true, false); \
305 ((equiv_name) = iter.get_name ()); \
306 iter.next ())
308 #define FOR_EACH_PARTIAL_EQUIV(oracle, bb, name, equiv_name, equiv_rel) \
309 for (equiv_relation_iterator iter (oracle, bb, name, false, true); \
310 ((equiv_name) = iter.get_name (&equiv_rel)); \
311 iter.next ())
313 #define FOR_EACH_PARTIAL_AND_FULL_EQUIV(oracle, bb, name, equiv_name, \
314 equiv_rel) \
315 for (equiv_relation_iterator iter (oracle, bb, name, true, true); \
316 ((equiv_name) = iter.get_name (&equiv_rel)); \
317 iter.next ())
319 // -----------------------------------------------------------------------
321 // Range-ops deals with a LHS and 2 operands. A relation trio is a set of
322 // 3 potential relations packed into a single unsigned value.
323 // 1 - LHS relation OP1
324 // 2 - LHS relation OP2
325 // 3 - OP1 relation OP2
326 // VREL_VARYING is a value of 0, and is the default for each position.
327 class relation_trio
329 public:
330 relation_trio ();
331 relation_trio (relation_kind lhs_op1, relation_kind lhs_op2,
332 relation_kind op1_op2);
333 relation_kind lhs_op1 ();
334 relation_kind lhs_op2 ();
335 relation_kind op1_op2 ();
336 relation_trio swap_op1_op2 ();
338 static relation_trio lhs_op1 (relation_kind k);
339 static relation_trio lhs_op2 (relation_kind k);
340 static relation_trio op1_op2 (relation_kind k);
342 protected:
343 unsigned m_val;
346 // Default VREL_VARYING for all 3 relations.
347 #define TRIO_VARYING relation_trio ()
349 #define TRIO_SHIFT 4
350 #define TRIO_MASK 0x000F
352 // These 3 classes are shortcuts for when a caller has a single relation to
353 // pass as a trio, it can simply construct the appropriate one. The other
354 // unspecified relations will be VREL_VARYING.
356 inline relation_trio::relation_trio ()
358 STATIC_ASSERT (VREL_LAST <= (1 << TRIO_SHIFT));
359 m_val = 0;
362 inline relation_trio::relation_trio (relation_kind lhs_op1,
363 relation_kind lhs_op2,
364 relation_kind op1_op2)
366 STATIC_ASSERT (VREL_LAST <= (1 << TRIO_SHIFT));
367 unsigned i1 = (unsigned) lhs_op1;
368 unsigned i2 = ((unsigned) lhs_op2) << TRIO_SHIFT;
369 unsigned i3 = ((unsigned) op1_op2) << (TRIO_SHIFT * 2);
370 m_val = i1 | i2 | i3;
373 inline relation_trio
374 relation_trio::lhs_op1 (relation_kind k)
376 return relation_trio (k, VREL_VARYING, VREL_VARYING);
378 inline relation_trio
379 relation_trio::lhs_op2 (relation_kind k)
381 return relation_trio (VREL_VARYING, k, VREL_VARYING);
383 inline relation_trio
384 relation_trio::op1_op2 (relation_kind k)
386 return relation_trio (VREL_VARYING, VREL_VARYING, k);
389 inline relation_kind
390 relation_trio::lhs_op1 ()
392 return (relation_kind) (m_val & TRIO_MASK);
395 inline relation_kind
396 relation_trio::lhs_op2 ()
398 return (relation_kind) ((m_val >> TRIO_SHIFT) & TRIO_MASK);
401 inline relation_kind
402 relation_trio::op1_op2 ()
404 return (relation_kind) ((m_val >> (TRIO_SHIFT * 2)) & TRIO_MASK);
407 inline relation_trio
408 relation_trio::swap_op1_op2 ()
410 return relation_trio (lhs_op2 (), lhs_op1 (), relation_swap (op1_op2 ()));
413 // -----------------------------------------------------------------------
415 // The value-relation class is used to encapsulate the representation of an
416 // individual relation between 2 ssa-names, and to facilitate operating on
417 // the relation.
419 class value_relation
421 public:
422 value_relation ();
423 value_relation (relation_kind kind, tree n1, tree n2);
424 void set_relation (relation_kind kind, tree n1, tree n2);
426 inline relation_kind kind () const { return related; }
427 inline tree op1 () const { return name1; }
428 inline tree op2 () const { return name2; }
430 relation_trio create_trio (tree lhs, tree op1, tree op2);
431 bool union_ (value_relation &p);
432 bool intersect (value_relation &p);
433 void negate ();
434 bool apply_transitive (const value_relation &rel);
436 void dump (FILE *f) const;
437 private:
438 relation_kind related;
439 tree name1, name2;
442 // Set relation R between ssa_name N1 and N2.
444 inline void
445 value_relation::set_relation (relation_kind r, tree n1, tree n2)
447 gcc_checking_assert (TREE_CODE (n1) == SSA_NAME
448 && TREE_CODE (n2) == SSA_NAME);
449 related = r;
450 name1 = n1;
451 name2 = n2;
454 // Default constructor.
456 inline
457 value_relation::value_relation ()
459 related = VREL_VARYING;
460 name1 = NULL_TREE;
461 name2 = NULL_TREE;
464 // Constructor for relation R between SSA version N1 and N2.
466 inline
467 value_relation::value_relation (relation_kind kind, tree n1, tree n2)
469 set_relation (kind, n1, n2);
472 // Return the number of bits associated with partial equivalency T.
473 // Return 0 if this is not a supported partial equivalency relation.
475 inline int
476 pe_to_bits (relation_kind t)
478 switch (t)
480 case VREL_PE8:
481 return 8;
482 case VREL_PE16:
483 return 16;
484 case VREL_PE32:
485 return 32;
486 case VREL_PE64:
487 return 64;
488 default:
489 return 0;
493 // Return the partial equivalency code associated with the number of BITS.
494 // return VREL_VARYING if there is no exact match.
496 inline relation_kind
497 bits_to_pe (int bits)
499 switch (bits)
501 case 8:
502 return VREL_PE8;
503 case 16:
504 return VREL_PE16;
505 case 32:
506 return VREL_PE32;
507 case 64:
508 return VREL_PE64;
509 default:
510 return VREL_VARYING;
514 // Given partial equivalencies T1 and T2, return the smallest kind.
516 inline relation_kind
517 pe_min (relation_kind t1, relation_kind t2)
519 gcc_checking_assert (relation_partial_equiv_p (t1));
520 gcc_checking_assert (relation_partial_equiv_p (t2));
521 // VREL_PE are declared small to large, so simple min will suffice.
522 return MIN (t1, t2);
524 #endif /* GCC_VALUE_RELATION_H */