ubsan: ubsan_maybe_instrument_array_ref tweak
[official-gcc.git] / gcc / function.cc
blobf0ae641512d91ecf088f7c520be35e4ffcf49c2c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "opts.h"
50 #include "regs.h"
51 #include "emit-rtl.h"
52 #include "recog.h"
53 #include "rtl-error.h"
54 #include "hard-reg-set.h"
55 #include "alias.h"
56 #include "fold-const.h"
57 #include "stor-layout.h"
58 #include "varasm.h"
59 #include "except.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "calls.h"
63 #include "expr.h"
64 #include "optabs-tree.h"
65 #include "output.h"
66 #include "langhooks.h"
67 #include "common/common-target.h"
68 #include "gimplify.h"
69 #include "tree-pass.h"
70 #include "cfgrtl.h"
71 #include "cfganal.h"
72 #include "cfgbuild.h"
73 #include "cfgcleanup.h"
74 #include "cfgexpand.h"
75 #include "shrink-wrap.h"
76 #include "toplev.h"
77 #include "rtl-iter.h"
78 #include "tree-dfa.h"
79 #include "tree-ssa.h"
80 #include "stringpool.h"
81 #include "attribs.h"
82 #include "gimple.h"
83 #include "options.h"
84 #include "function-abi.h"
85 #include "value-range.h"
86 #include "gimple-range.h"
88 /* So we can assign to cfun in this file. */
89 #undef cfun
91 #ifndef STACK_ALIGNMENT_NEEDED
92 #define STACK_ALIGNMENT_NEEDED 1
93 #endif
95 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
97 /* Round a value to the lowest integer less than it that is a multiple of
98 the required alignment. Avoid using division in case the value is
99 negative. Assume the alignment is a power of two. */
100 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
102 /* Similar, but round to the next highest integer that meets the
103 alignment. */
104 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.cc:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These hashes record the prologue and epilogue insns. */
124 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
126 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
127 static bool equal (rtx a, rtx b) { return a == b; }
130 static GTY((cache))
131 hash_table<insn_cache_hasher> *prologue_insn_hash;
132 static GTY((cache))
133 hash_table<insn_cache_hasher> *epilogue_insn_hash;
136 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
137 vec<tree, va_gc> *types_used_by_cur_var_decl;
139 /* Forward declarations. */
141 static class temp_slot *find_temp_slot_from_address (rtx);
142 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
143 static void pad_below (struct args_size *, machine_mode, tree);
144 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
145 static int all_blocks (tree, tree *);
146 static tree *get_block_vector (tree, int *);
147 extern tree debug_find_var_in_block_tree (tree, tree);
148 /* We always define `record_insns' even if it's not used so that we
149 can always export `prologue_epilogue_contains'. */
150 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
151 ATTRIBUTE_UNUSED;
152 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 static vec<function *> function_context_stack;
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
166 void
167 push_function_context (void)
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
172 function_context_stack.safe_push (cfun);
173 set_cfun (NULL);
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
179 void
180 pop_function_context (void)
182 struct function *p = function_context_stack.pop ();
183 set_cfun (p);
184 current_function_decl = p->decl;
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
195 void
196 free_after_parsing (struct function *f)
198 f->language = 0;
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
205 void
206 free_after_compilation (struct function *f)
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
211 free (crtl->emit.regno_pointer_align);
213 memset (crtl, 0, sizeof (struct rtl_data));
214 f->eh = NULL;
215 f->machine = NULL;
216 f->cfg = NULL;
217 f->curr_properties &= ~PROP_cfg;
219 regno_reg_rtx = NULL;
222 /* Return size needed for stack frame based on slots so far allocated.
223 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
224 the caller may have to do that. */
226 poly_int64
227 get_frame_size (void)
229 if (FRAME_GROWS_DOWNWARD)
230 return -frame_offset;
231 else
232 return frame_offset;
235 /* Issue an error message and return TRUE if frame OFFSET overflows in
236 the signed target pointer arithmetics for function FUNC. Otherwise
237 return FALSE. */
239 bool
240 frame_offset_overflow (poly_int64 offset, tree func)
242 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
243 unsigned HOST_WIDE_INT limit
244 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
245 /* Leave room for the fixed part of the frame. */
246 - 64 * UNITS_PER_WORD);
248 if (!coeffs_in_range_p (size, 0U, limit))
250 unsigned HOST_WIDE_INT hwisize;
251 if (size.is_constant (&hwisize))
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects %wu exceeds maximum %wu",
254 hwisize, limit);
255 else
256 error_at (DECL_SOURCE_LOCATION (func),
257 "total size of local objects exceeds maximum %wu",
258 limit);
259 return true;
262 return false;
265 /* Return the minimum spill slot alignment for a register of mode MODE. */
267 unsigned int
268 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
270 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
273 /* Return stack slot alignment in bits for TYPE and MODE. */
275 static unsigned int
276 get_stack_local_alignment (tree type, machine_mode mode)
278 unsigned int alignment;
280 if (mode == BLKmode)
281 alignment = BIGGEST_ALIGNMENT;
282 else
283 alignment = GET_MODE_ALIGNMENT (mode);
285 /* Allow the frond-end to (possibly) increase the alignment of this
286 stack slot. */
287 if (! type)
288 type = lang_hooks.types.type_for_mode (mode, 0);
290 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
293 /* Determine whether it is possible to fit a stack slot of size SIZE and
294 alignment ALIGNMENT into an area in the stack frame that starts at
295 frame offset START and has a length of LENGTH. If so, store the frame
296 offset to be used for the stack slot in *POFFSET and return true;
297 return false otherwise. This function will extend the frame size when
298 given a start/length pair that lies at the end of the frame. */
300 static bool
301 try_fit_stack_local (poly_int64 start, poly_int64 length,
302 poly_int64 size, unsigned int alignment,
303 poly_int64_pod *poffset)
305 poly_int64 this_frame_offset;
306 int frame_off, frame_alignment, frame_phase;
308 /* Calculate how many bytes the start of local variables is off from
309 stack alignment. */
310 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
311 frame_off = targetm.starting_frame_offset () % frame_alignment;
312 frame_phase = frame_off ? frame_alignment - frame_off : 0;
314 /* Round the frame offset to the specified alignment. */
316 if (FRAME_GROWS_DOWNWARD)
317 this_frame_offset
318 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
319 + frame_phase);
320 else
321 this_frame_offset
322 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
324 /* See if it fits. If this space is at the edge of the frame,
325 consider extending the frame to make it fit. Our caller relies on
326 this when allocating a new slot. */
327 if (maybe_lt (this_frame_offset, start))
329 if (known_eq (frame_offset, start))
330 frame_offset = this_frame_offset;
331 else
332 return false;
334 else if (maybe_gt (this_frame_offset + size, start + length))
336 if (known_eq (frame_offset, start + length))
337 frame_offset = this_frame_offset + size;
338 else
339 return false;
342 *poffset = this_frame_offset;
343 return true;
346 /* Create a new frame_space structure describing free space in the stack
347 frame beginning at START and ending at END, and chain it into the
348 function's frame_space_list. */
350 static void
351 add_frame_space (poly_int64 start, poly_int64 end)
353 class frame_space *space = ggc_alloc<frame_space> ();
354 space->next = crtl->frame_space_list;
355 crtl->frame_space_list = space;
356 space->start = start;
357 space->length = end - start;
360 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
361 with machine mode MODE.
363 ALIGN controls the amount of alignment for the address of the slot:
364 0 means according to MODE,
365 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
366 -2 means use BITS_PER_UNIT,
367 positive specifies alignment boundary in bits.
369 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
370 alignment and ASLK_RECORD_PAD bit set if we should remember
371 extra space we allocated for alignment purposes. When we are
372 called from assign_stack_temp_for_type, it is not set so we don't
373 track the same stack slot in two independent lists.
375 We do not round to stack_boundary here. */
378 assign_stack_local_1 (machine_mode mode, poly_int64 size,
379 int align, int kind)
381 rtx x, addr;
382 poly_int64 bigend_correction = 0;
383 poly_int64 slot_offset = 0, old_frame_offset;
384 unsigned int alignment, alignment_in_bits;
386 if (align == 0)
388 alignment = get_stack_local_alignment (NULL, mode);
389 alignment /= BITS_PER_UNIT;
391 else if (align == -1)
393 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
394 size = aligned_upper_bound (size, alignment);
396 else if (align == -2)
397 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
398 else
399 alignment = align / BITS_PER_UNIT;
401 alignment_in_bits = alignment * BITS_PER_UNIT;
403 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
404 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
406 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
407 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
410 if (SUPPORTS_STACK_ALIGNMENT)
412 if (crtl->stack_alignment_estimated < alignment_in_bits)
414 if (!crtl->stack_realign_processed)
415 crtl->stack_alignment_estimated = alignment_in_bits;
416 else
418 /* If stack is realigned and stack alignment value
419 hasn't been finalized, it is OK not to increase
420 stack_alignment_estimated. The bigger alignment
421 requirement is recorded in stack_alignment_needed
422 below. */
423 gcc_assert (!crtl->stack_realign_finalized);
424 if (!crtl->stack_realign_needed)
426 /* It is OK to reduce the alignment as long as the
427 requested size is 0 or the estimated stack
428 alignment >= mode alignment. */
429 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
430 || known_eq (size, 0)
431 || (crtl->stack_alignment_estimated
432 >= GET_MODE_ALIGNMENT (mode)));
433 alignment_in_bits = crtl->stack_alignment_estimated;
434 alignment = alignment_in_bits / BITS_PER_UNIT;
440 if (crtl->stack_alignment_needed < alignment_in_bits)
441 crtl->stack_alignment_needed = alignment_in_bits;
442 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
443 crtl->max_used_stack_slot_alignment = alignment_in_bits;
445 if (mode != BLKmode || maybe_ne (size, 0))
447 if (kind & ASLK_RECORD_PAD)
449 class frame_space **psp;
451 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
453 class frame_space *space = *psp;
454 if (!try_fit_stack_local (space->start, space->length, size,
455 alignment, &slot_offset))
456 continue;
457 *psp = space->next;
458 if (known_gt (slot_offset, space->start))
459 add_frame_space (space->start, slot_offset);
460 if (known_lt (slot_offset + size, space->start + space->length))
461 add_frame_space (slot_offset + size,
462 space->start + space->length);
463 goto found_space;
467 else if (!STACK_ALIGNMENT_NEEDED)
469 slot_offset = frame_offset;
470 goto found_space;
473 old_frame_offset = frame_offset;
475 if (FRAME_GROWS_DOWNWARD)
477 frame_offset -= size;
478 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
480 if (kind & ASLK_RECORD_PAD)
482 if (known_gt (slot_offset, frame_offset))
483 add_frame_space (frame_offset, slot_offset);
484 if (known_lt (slot_offset + size, old_frame_offset))
485 add_frame_space (slot_offset + size, old_frame_offset);
488 else
490 frame_offset += size;
491 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
493 if (kind & ASLK_RECORD_PAD)
495 if (known_gt (slot_offset, old_frame_offset))
496 add_frame_space (old_frame_offset, slot_offset);
497 if (known_lt (slot_offset + size, frame_offset))
498 add_frame_space (slot_offset + size, frame_offset);
502 found_space:
503 /* On a big-endian machine, if we are allocating more space than we will use,
504 use the least significant bytes of those that are allocated. */
505 if (mode != BLKmode)
507 /* The slot size can sometimes be smaller than the mode size;
508 e.g. the rs6000 port allocates slots with a vector mode
509 that have the size of only one element. However, the slot
510 size must always be ordered wrt to the mode size, in the
511 same way as for a subreg. */
512 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
513 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
514 bigend_correction = size - GET_MODE_SIZE (mode);
517 /* If we have already instantiated virtual registers, return the actual
518 address relative to the frame pointer. */
519 if (virtuals_instantiated)
520 addr = plus_constant (Pmode, frame_pointer_rtx,
521 trunc_int_for_mode
522 (slot_offset + bigend_correction
523 + targetm.starting_frame_offset (), Pmode));
524 else
525 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
526 trunc_int_for_mode
527 (slot_offset + bigend_correction,
528 Pmode));
530 x = gen_rtx_MEM (mode, addr);
531 set_mem_align (x, alignment_in_bits);
532 MEM_NOTRAP_P (x) = 1;
534 vec_safe_push (stack_slot_list, x);
536 if (frame_offset_overflow (frame_offset, current_function_decl))
537 frame_offset = 0;
539 return x;
542 /* Wrap up assign_stack_local_1 with last parameter as false. */
545 assign_stack_local (machine_mode mode, poly_int64 size, int align)
547 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
550 /* In order to evaluate some expressions, such as function calls returning
551 structures in memory, we need to temporarily allocate stack locations.
552 We record each allocated temporary in the following structure.
554 Associated with each temporary slot is a nesting level. When we pop up
555 one level, all temporaries associated with the previous level are freed.
556 Normally, all temporaries are freed after the execution of the statement
557 in which they were created. However, if we are inside a ({...}) grouping,
558 the result may be in a temporary and hence must be preserved. If the
559 result could be in a temporary, we preserve it if we can determine which
560 one it is in. If we cannot determine which temporary may contain the
561 result, all temporaries are preserved. A temporary is preserved by
562 pretending it was allocated at the previous nesting level. */
564 class GTY(()) temp_slot {
565 public:
566 /* Points to next temporary slot. */
567 class temp_slot *next;
568 /* Points to previous temporary slot. */
569 class temp_slot *prev;
570 /* The rtx to used to reference the slot. */
571 rtx slot;
572 /* The size, in units, of the slot. */
573 poly_int64 size;
574 /* The type of the object in the slot, or zero if it doesn't correspond
575 to a type. We use this to determine whether a slot can be reused.
576 It can be reused if objects of the type of the new slot will always
577 conflict with objects of the type of the old slot. */
578 tree type;
579 /* The alignment (in bits) of the slot. */
580 unsigned int align;
581 /* Nonzero if this temporary is currently in use. */
582 char in_use;
583 /* Nesting level at which this slot is being used. */
584 int level;
585 /* The offset of the slot from the frame_pointer, including extra space
586 for alignment. This info is for combine_temp_slots. */
587 poly_int64 base_offset;
588 /* The size of the slot, including extra space for alignment. This
589 info is for combine_temp_slots. */
590 poly_int64 full_size;
593 /* Entry for the below hash table. */
594 struct GTY((for_user)) temp_slot_address_entry {
595 hashval_t hash;
596 rtx address;
597 class temp_slot *temp_slot;
600 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
602 static hashval_t hash (temp_slot_address_entry *);
603 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
606 /* A table of addresses that represent a stack slot. The table is a mapping
607 from address RTXen to a temp slot. */
608 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
609 static size_t n_temp_slots_in_use;
611 /* Removes temporary slot TEMP from LIST. */
613 static void
614 cut_slot_from_list (class temp_slot *temp, class temp_slot **list)
616 if (temp->next)
617 temp->next->prev = temp->prev;
618 if (temp->prev)
619 temp->prev->next = temp->next;
620 else
621 *list = temp->next;
623 temp->prev = temp->next = NULL;
626 /* Inserts temporary slot TEMP to LIST. */
628 static void
629 insert_slot_to_list (class temp_slot *temp, class temp_slot **list)
631 temp->next = *list;
632 if (*list)
633 (*list)->prev = temp;
634 temp->prev = NULL;
635 *list = temp;
638 /* Returns the list of used temp slots at LEVEL. */
640 static class temp_slot **
641 temp_slots_at_level (int level)
643 if (level >= (int) vec_safe_length (used_temp_slots))
644 vec_safe_grow_cleared (used_temp_slots, level + 1, true);
646 return &(*used_temp_slots)[level];
649 /* Returns the maximal temporary slot level. */
651 static int
652 max_slot_level (void)
654 if (!used_temp_slots)
655 return -1;
657 return used_temp_slots->length () - 1;
660 /* Moves temporary slot TEMP to LEVEL. */
662 static void
663 move_slot_to_level (class temp_slot *temp, int level)
665 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
666 insert_slot_to_list (temp, temp_slots_at_level (level));
667 temp->level = level;
670 /* Make temporary slot TEMP available. */
672 static void
673 make_slot_available (class temp_slot *temp)
675 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
676 insert_slot_to_list (temp, &avail_temp_slots);
677 temp->in_use = 0;
678 temp->level = -1;
679 n_temp_slots_in_use--;
682 /* Compute the hash value for an address -> temp slot mapping.
683 The value is cached on the mapping entry. */
684 static hashval_t
685 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
687 int do_not_record = 0;
688 return hash_rtx (t->address, GET_MODE (t->address),
689 &do_not_record, NULL, false);
692 /* Return the hash value for an address -> temp slot mapping. */
693 hashval_t
694 temp_address_hasher::hash (temp_slot_address_entry *t)
696 return t->hash;
699 /* Compare two address -> temp slot mapping entries. */
700 bool
701 temp_address_hasher::equal (temp_slot_address_entry *t1,
702 temp_slot_address_entry *t2)
704 return exp_equiv_p (t1->address, t2->address, 0, true);
707 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
708 static void
709 insert_temp_slot_address (rtx address, class temp_slot *temp_slot)
711 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
712 t->address = copy_rtx (address);
713 t->temp_slot = temp_slot;
714 t->hash = temp_slot_address_compute_hash (t);
715 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
718 /* Remove an address -> temp slot mapping entry if the temp slot is
719 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
721 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
723 const struct temp_slot_address_entry *t = *slot;
724 if (! t->temp_slot->in_use)
725 temp_slot_address_table->clear_slot (slot);
726 return 1;
729 /* Remove all mappings of addresses to unused temp slots. */
730 static void
731 remove_unused_temp_slot_addresses (void)
733 /* Use quicker clearing if there aren't any active temp slots. */
734 if (n_temp_slots_in_use)
735 temp_slot_address_table->traverse
736 <void *, remove_unused_temp_slot_addresses_1> (NULL);
737 else
738 temp_slot_address_table->empty ();
741 /* Find the temp slot corresponding to the object at address X. */
743 static class temp_slot *
744 find_temp_slot_from_address (rtx x)
746 class temp_slot *p;
747 struct temp_slot_address_entry tmp, *t;
749 /* First try the easy way:
750 See if X exists in the address -> temp slot mapping. */
751 tmp.address = x;
752 tmp.temp_slot = NULL;
753 tmp.hash = temp_slot_address_compute_hash (&tmp);
754 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
755 if (t)
756 return t->temp_slot;
758 /* If we have a sum involving a register, see if it points to a temp
759 slot. */
760 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
761 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
762 return p;
763 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
764 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
765 return p;
767 /* Last resort: Address is a virtual stack var address. */
768 poly_int64 offset;
769 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
771 int i;
772 for (i = max_slot_level (); i >= 0; i--)
773 for (p = *temp_slots_at_level (i); p; p = p->next)
774 if (known_in_range_p (offset, p->base_offset, p->full_size))
775 return p;
778 return NULL;
781 /* Allocate a temporary stack slot and record it for possible later
782 reuse.
784 MODE is the machine mode to be given to the returned rtx.
786 SIZE is the size in units of the space required. We do no rounding here
787 since assign_stack_local will do any required rounding.
789 TYPE is the type that will be used for the stack slot. */
792 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
794 unsigned int align;
795 class temp_slot *p, *best_p = 0, *selected = NULL, **pp;
796 rtx slot;
798 gcc_assert (known_size_p (size));
800 align = get_stack_local_alignment (type, mode);
802 /* Try to find an available, already-allocated temporary of the proper
803 mode which meets the size and alignment requirements. Choose the
804 smallest one with the closest alignment.
806 If assign_stack_temp is called outside of the tree->rtl expansion,
807 we cannot reuse the stack slots (that may still refer to
808 VIRTUAL_STACK_VARS_REGNUM). */
809 if (!virtuals_instantiated)
811 for (p = avail_temp_slots; p; p = p->next)
813 if (p->align >= align
814 && known_ge (p->size, size)
815 && GET_MODE (p->slot) == mode
816 && objects_must_conflict_p (p->type, type)
817 && (best_p == 0
818 || (known_eq (best_p->size, p->size)
819 ? best_p->align > p->align
820 : known_ge (best_p->size, p->size))))
822 if (p->align == align && known_eq (p->size, size))
824 selected = p;
825 cut_slot_from_list (selected, &avail_temp_slots);
826 best_p = 0;
827 break;
829 best_p = p;
834 /* Make our best, if any, the one to use. */
835 if (best_p)
837 selected = best_p;
838 cut_slot_from_list (selected, &avail_temp_slots);
840 /* If there are enough aligned bytes left over, make them into a new
841 temp_slot so that the extra bytes don't get wasted. Do this only
842 for BLKmode slots, so that we can be sure of the alignment. */
843 if (GET_MODE (best_p->slot) == BLKmode)
845 int alignment = best_p->align / BITS_PER_UNIT;
846 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
848 if (known_ge (best_p->size - rounded_size, alignment))
850 p = ggc_alloc<temp_slot> ();
851 p->in_use = 0;
852 p->size = best_p->size - rounded_size;
853 p->base_offset = best_p->base_offset + rounded_size;
854 p->full_size = best_p->full_size - rounded_size;
855 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
856 p->align = best_p->align;
857 p->type = best_p->type;
858 insert_slot_to_list (p, &avail_temp_slots);
860 vec_safe_push (stack_slot_list, p->slot);
862 best_p->size = rounded_size;
863 best_p->full_size = rounded_size;
868 /* If we still didn't find one, make a new temporary. */
869 if (selected == 0)
871 poly_int64 frame_offset_old = frame_offset;
873 p = ggc_alloc<temp_slot> ();
875 /* We are passing an explicit alignment request to assign_stack_local.
876 One side effect of that is assign_stack_local will not round SIZE
877 to ensure the frame offset remains suitably aligned.
879 So for requests which depended on the rounding of SIZE, we go ahead
880 and round it now. We also make sure ALIGNMENT is at least
881 BIGGEST_ALIGNMENT. */
882 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
883 p->slot = assign_stack_local_1 (mode,
884 (mode == BLKmode
885 ? aligned_upper_bound (size,
886 (int) align
887 / BITS_PER_UNIT)
888 : size),
889 align, 0);
891 p->align = align;
893 /* The following slot size computation is necessary because we don't
894 know the actual size of the temporary slot until assign_stack_local
895 has performed all the frame alignment and size rounding for the
896 requested temporary. Note that extra space added for alignment
897 can be either above or below this stack slot depending on which
898 way the frame grows. We include the extra space if and only if it
899 is above this slot. */
900 if (FRAME_GROWS_DOWNWARD)
901 p->size = frame_offset_old - frame_offset;
902 else
903 p->size = size;
905 /* Now define the fields used by combine_temp_slots. */
906 if (FRAME_GROWS_DOWNWARD)
908 p->base_offset = frame_offset;
909 p->full_size = frame_offset_old - frame_offset;
911 else
913 p->base_offset = frame_offset_old;
914 p->full_size = frame_offset - frame_offset_old;
917 selected = p;
920 p = selected;
921 p->in_use = 1;
922 p->type = type;
923 p->level = temp_slot_level;
924 n_temp_slots_in_use++;
926 pp = temp_slots_at_level (p->level);
927 insert_slot_to_list (p, pp);
928 insert_temp_slot_address (XEXP (p->slot, 0), p);
930 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
931 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
932 vec_safe_push (stack_slot_list, slot);
934 /* If we know the alias set for the memory that will be used, use
935 it. If there's no TYPE, then we don't know anything about the
936 alias set for the memory. */
937 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
938 set_mem_align (slot, align);
940 /* If a type is specified, set the relevant flags. */
941 if (type != 0)
942 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
943 MEM_NOTRAP_P (slot) = 1;
945 return slot;
948 /* Allocate a temporary stack slot and record it for possible later
949 reuse. First two arguments are same as in preceding function. */
952 assign_stack_temp (machine_mode mode, poly_int64 size)
954 return assign_stack_temp_for_type (mode, size, NULL_TREE);
957 /* Assign a temporary.
958 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
959 and so that should be used in error messages. In either case, we
960 allocate of the given type.
961 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
962 it is 0 if a register is OK.
963 DONT_PROMOTE is 1 if we should not promote values in register
964 to wider modes. */
967 assign_temp (tree type_or_decl, int memory_required,
968 int dont_promote ATTRIBUTE_UNUSED)
970 tree type, decl;
971 machine_mode mode;
972 #ifdef PROMOTE_MODE
973 int unsignedp;
974 #endif
976 if (DECL_P (type_or_decl))
977 decl = type_or_decl, type = TREE_TYPE (decl);
978 else
979 decl = NULL, type = type_or_decl;
981 mode = TYPE_MODE (type);
982 #ifdef PROMOTE_MODE
983 unsignedp = TYPE_UNSIGNED (type);
984 #endif
986 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
987 end. See also create_tmp_var for the gimplification-time check. */
988 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
990 if (mode == BLKmode || memory_required)
992 poly_int64 size;
993 rtx tmp;
995 /* Unfortunately, we don't yet know how to allocate variable-sized
996 temporaries. However, sometimes we can find a fixed upper limit on
997 the size, so try that instead. */
998 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
999 size = max_int_size_in_bytes (type);
1001 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
1002 problems with allocating the stack space. */
1003 if (known_eq (size, 0))
1004 size = 1;
1006 /* The size of the temporary may be too large to fit into an integer. */
1007 /* ??? Not sure this should happen except for user silliness, so limit
1008 this to things that aren't compiler-generated temporaries. The
1009 rest of the time we'll die in assign_stack_temp_for_type. */
1010 if (decl
1011 && !known_size_p (size)
1012 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1014 error ("size of variable %q+D is too large", decl);
1015 size = 1;
1018 tmp = assign_stack_temp_for_type (mode, size, type);
1019 return tmp;
1022 #ifdef PROMOTE_MODE
1023 if (! dont_promote)
1024 mode = promote_mode (type, mode, &unsignedp);
1025 #endif
1027 return gen_reg_rtx (mode);
1030 /* Combine temporary stack slots which are adjacent on the stack.
1032 This allows for better use of already allocated stack space. This is only
1033 done for BLKmode slots because we can be sure that we won't have alignment
1034 problems in this case. */
1036 static void
1037 combine_temp_slots (void)
1039 class temp_slot *p, *q, *next, *next_q;
1040 int num_slots;
1042 /* We can't combine slots, because the information about which slot
1043 is in which alias set will be lost. */
1044 if (flag_strict_aliasing)
1045 return;
1047 /* If there are a lot of temp slots, don't do anything unless
1048 high levels of optimization. */
1049 if (! flag_expensive_optimizations)
1050 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1051 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1052 return;
1054 for (p = avail_temp_slots; p; p = next)
1056 int delete_p = 0;
1058 next = p->next;
1060 if (GET_MODE (p->slot) != BLKmode)
1061 continue;
1063 for (q = p->next; q; q = next_q)
1065 int delete_q = 0;
1067 next_q = q->next;
1069 if (GET_MODE (q->slot) != BLKmode)
1070 continue;
1072 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1074 /* Q comes after P; combine Q into P. */
1075 p->size += q->size;
1076 p->full_size += q->full_size;
1077 delete_q = 1;
1079 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1081 /* P comes after Q; combine P into Q. */
1082 q->size += p->size;
1083 q->full_size += p->full_size;
1084 delete_p = 1;
1085 break;
1087 if (delete_q)
1088 cut_slot_from_list (q, &avail_temp_slots);
1091 /* Either delete P or advance past it. */
1092 if (delete_p)
1093 cut_slot_from_list (p, &avail_temp_slots);
1097 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1098 slot that previously was known by OLD_RTX. */
1100 void
1101 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1103 class temp_slot *p;
1105 if (rtx_equal_p (old_rtx, new_rtx))
1106 return;
1108 p = find_temp_slot_from_address (old_rtx);
1110 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1111 NEW_RTX is a register, see if one operand of the PLUS is a
1112 temporary location. If so, NEW_RTX points into it. Otherwise,
1113 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1114 in common between them. If so, try a recursive call on those
1115 values. */
1116 if (p == 0)
1118 if (GET_CODE (old_rtx) != PLUS)
1119 return;
1121 if (REG_P (new_rtx))
1123 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1124 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1125 return;
1127 else if (GET_CODE (new_rtx) != PLUS)
1128 return;
1130 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1131 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1132 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1133 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1134 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1135 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1136 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1137 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1139 return;
1142 /* Otherwise add an alias for the temp's address. */
1143 insert_temp_slot_address (new_rtx, p);
1146 /* If X could be a reference to a temporary slot, mark that slot as
1147 belonging to the to one level higher than the current level. If X
1148 matched one of our slots, just mark that one. Otherwise, we can't
1149 easily predict which it is, so upgrade all of them.
1151 This is called when an ({...}) construct occurs and a statement
1152 returns a value in memory. */
1154 void
1155 preserve_temp_slots (rtx x)
1157 class temp_slot *p = 0, *next;
1159 if (x == 0)
1160 return;
1162 /* If X is a register that is being used as a pointer, see if we have
1163 a temporary slot we know it points to. */
1164 if (REG_P (x) && REG_POINTER (x))
1165 p = find_temp_slot_from_address (x);
1167 /* If X is not in memory or is at a constant address, it cannot be in
1168 a temporary slot. */
1169 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1170 return;
1172 /* First see if we can find a match. */
1173 if (p == 0)
1174 p = find_temp_slot_from_address (XEXP (x, 0));
1176 if (p != 0)
1178 if (p->level == temp_slot_level)
1179 move_slot_to_level (p, temp_slot_level - 1);
1180 return;
1183 /* Otherwise, preserve all non-kept slots at this level. */
1184 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1186 next = p->next;
1187 move_slot_to_level (p, temp_slot_level - 1);
1191 /* Free all temporaries used so far. This is normally called at the
1192 end of generating code for a statement. */
1194 void
1195 free_temp_slots (void)
1197 class temp_slot *p, *next;
1198 bool some_available = false;
1200 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1202 next = p->next;
1203 make_slot_available (p);
1204 some_available = true;
1207 if (some_available)
1209 remove_unused_temp_slot_addresses ();
1210 combine_temp_slots ();
1214 /* Push deeper into the nesting level for stack temporaries. */
1216 void
1217 push_temp_slots (void)
1219 temp_slot_level++;
1222 /* Pop a temporary nesting level. All slots in use in the current level
1223 are freed. */
1225 void
1226 pop_temp_slots (void)
1228 free_temp_slots ();
1229 temp_slot_level--;
1232 /* Initialize temporary slots. */
1234 void
1235 init_temp_slots (void)
1237 /* We have not allocated any temporaries yet. */
1238 avail_temp_slots = 0;
1239 vec_alloc (used_temp_slots, 0);
1240 temp_slot_level = 0;
1241 n_temp_slots_in_use = 0;
1243 /* Set up the table to map addresses to temp slots. */
1244 if (! temp_slot_address_table)
1245 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1246 else
1247 temp_slot_address_table->empty ();
1250 /* Functions and data structures to keep track of the values hard regs
1251 had at the start of the function. */
1253 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1254 and has_hard_reg_initial_val.. */
1255 struct GTY(()) initial_value_pair {
1256 rtx hard_reg;
1257 rtx pseudo;
1259 /* ??? This could be a VEC but there is currently no way to define an
1260 opaque VEC type. This could be worked around by defining struct
1261 initial_value_pair in function.h. */
1262 struct GTY(()) initial_value_struct {
1263 int num_entries;
1264 int max_entries;
1265 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1268 /* If a pseudo represents an initial hard reg (or expression), return
1269 it, else return NULL_RTX. */
1272 get_hard_reg_initial_reg (rtx reg)
1274 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1275 int i;
1277 if (ivs == 0)
1278 return NULL_RTX;
1280 for (i = 0; i < ivs->num_entries; i++)
1281 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1282 return ivs->entries[i].hard_reg;
1284 return NULL_RTX;
1287 /* Make sure that there's a pseudo register of mode MODE that stores the
1288 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1291 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1293 struct initial_value_struct *ivs;
1294 rtx rv;
1296 rv = has_hard_reg_initial_val (mode, regno);
1297 if (rv)
1298 return rv;
1300 ivs = crtl->hard_reg_initial_vals;
1301 if (ivs == 0)
1303 ivs = ggc_alloc<initial_value_struct> ();
1304 ivs->num_entries = 0;
1305 ivs->max_entries = 5;
1306 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1307 crtl->hard_reg_initial_vals = ivs;
1310 if (ivs->num_entries >= ivs->max_entries)
1312 ivs->max_entries += 5;
1313 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1314 ivs->max_entries);
1317 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1318 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1320 return ivs->entries[ivs->num_entries++].pseudo;
1323 /* See if get_hard_reg_initial_val has been used to create a pseudo
1324 for the initial value of hard register REGNO in mode MODE. Return
1325 the associated pseudo if so, otherwise return NULL. */
1328 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1330 struct initial_value_struct *ivs;
1331 int i;
1333 ivs = crtl->hard_reg_initial_vals;
1334 if (ivs != 0)
1335 for (i = 0; i < ivs->num_entries; i++)
1336 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1337 && REGNO (ivs->entries[i].hard_reg) == regno)
1338 return ivs->entries[i].pseudo;
1340 return NULL_RTX;
1343 unsigned int
1344 emit_initial_value_sets (void)
1346 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1347 int i;
1348 rtx_insn *seq;
1350 if (ivs == 0)
1351 return 0;
1353 start_sequence ();
1354 for (i = 0; i < ivs->num_entries; i++)
1355 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1356 seq = get_insns ();
1357 end_sequence ();
1359 emit_insn_at_entry (seq);
1360 return 0;
1363 /* Return the hardreg-pseudoreg initial values pair entry I and
1364 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1365 bool
1366 initial_value_entry (int i, rtx *hreg, rtx *preg)
1368 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1369 if (!ivs || i >= ivs->num_entries)
1370 return false;
1372 *hreg = ivs->entries[i].hard_reg;
1373 *preg = ivs->entries[i].pseudo;
1374 return true;
1377 /* These routines are responsible for converting virtual register references
1378 to the actual hard register references once RTL generation is complete.
1380 The following four variables are used for communication between the
1381 routines. They contain the offsets of the virtual registers from their
1382 respective hard registers. */
1384 static poly_int64 in_arg_offset;
1385 static poly_int64 var_offset;
1386 static poly_int64 dynamic_offset;
1387 static poly_int64 out_arg_offset;
1388 static poly_int64 cfa_offset;
1390 /* In most machines, the stack pointer register is equivalent to the bottom
1391 of the stack. */
1393 #ifndef STACK_POINTER_OFFSET
1394 #define STACK_POINTER_OFFSET 0
1395 #endif
1397 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1398 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1399 #endif
1401 /* If not defined, pick an appropriate default for the offset of dynamically
1402 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1403 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1405 #ifndef STACK_DYNAMIC_OFFSET
1407 /* The bottom of the stack points to the actual arguments. If
1408 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1409 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1410 stack space for register parameters is not pushed by the caller, but
1411 rather part of the fixed stack areas and hence not included in
1412 `crtl->outgoing_args_size'. Nevertheless, we must allow
1413 for it when allocating stack dynamic objects. */
1415 #ifdef INCOMING_REG_PARM_STACK_SPACE
1416 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1417 ((ACCUMULATE_OUTGOING_ARGS \
1418 ? (crtl->outgoing_args_size \
1419 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1420 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1421 : 0) + (STACK_POINTER_OFFSET))
1422 #else
1423 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1424 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1425 + (STACK_POINTER_OFFSET))
1426 #endif
1427 #endif
1430 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1431 is a virtual register, return the equivalent hard register and set the
1432 offset indirectly through the pointer. Otherwise, return 0. */
1434 static rtx
1435 instantiate_new_reg (rtx x, poly_int64_pod *poffset)
1437 rtx new_rtx;
1438 poly_int64 offset;
1440 if (x == virtual_incoming_args_rtx)
1442 if (stack_realign_drap)
1444 /* Replace virtual_incoming_args_rtx with internal arg
1445 pointer if DRAP is used to realign stack. */
1446 new_rtx = crtl->args.internal_arg_pointer;
1447 offset = 0;
1449 else
1450 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1452 else if (x == virtual_stack_vars_rtx)
1453 new_rtx = frame_pointer_rtx, offset = var_offset;
1454 else if (x == virtual_stack_dynamic_rtx)
1455 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1456 else if (x == virtual_outgoing_args_rtx)
1457 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1458 else if (x == virtual_cfa_rtx)
1460 #ifdef FRAME_POINTER_CFA_OFFSET
1461 new_rtx = frame_pointer_rtx;
1462 #else
1463 new_rtx = arg_pointer_rtx;
1464 #endif
1465 offset = cfa_offset;
1467 else if (x == virtual_preferred_stack_boundary_rtx)
1469 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1470 offset = 0;
1472 else
1473 return NULL_RTX;
1475 *poffset = offset;
1476 return new_rtx;
1479 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1480 registers present inside of *LOC. The expression is simplified,
1481 as much as possible, but is not to be considered "valid" in any sense
1482 implied by the target. Return true if any change is made. */
1484 static bool
1485 instantiate_virtual_regs_in_rtx (rtx *loc)
1487 if (!*loc)
1488 return false;
1489 bool changed = false;
1490 subrtx_ptr_iterator::array_type array;
1491 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1493 rtx *loc = *iter;
1494 if (rtx x = *loc)
1496 rtx new_rtx;
1497 poly_int64 offset;
1498 switch (GET_CODE (x))
1500 case REG:
1501 new_rtx = instantiate_new_reg (x, &offset);
1502 if (new_rtx)
1504 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1505 changed = true;
1507 iter.skip_subrtxes ();
1508 break;
1510 case PLUS:
1511 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1512 if (new_rtx)
1514 XEXP (x, 0) = new_rtx;
1515 *loc = plus_constant (GET_MODE (x), x, offset, true);
1516 changed = true;
1517 iter.skip_subrtxes ();
1518 break;
1521 /* FIXME -- from old code */
1522 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1523 we can commute the PLUS and SUBREG because pointers into the
1524 frame are well-behaved. */
1525 break;
1527 default:
1528 break;
1532 return changed;
1535 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1536 matches the predicate for insn CODE operand OPERAND. */
1538 static int
1539 safe_insn_predicate (int code, int operand, rtx x)
1541 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1544 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1545 registers present inside of insn. The result will be a valid insn. */
1547 static void
1548 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1550 poly_int64 offset;
1551 int insn_code, i;
1552 bool any_change = false;
1553 rtx set, new_rtx, x;
1554 rtx_insn *seq;
1556 /* There are some special cases to be handled first. */
1557 set = single_set (insn);
1558 if (set)
1560 /* We're allowed to assign to a virtual register. This is interpreted
1561 to mean that the underlying register gets assigned the inverse
1562 transformation. This is used, for example, in the handling of
1563 non-local gotos. */
1564 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1565 if (new_rtx)
1567 start_sequence ();
1569 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1570 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1571 gen_int_mode (-offset, GET_MODE (new_rtx)));
1572 x = force_operand (x, new_rtx);
1573 if (x != new_rtx)
1574 emit_move_insn (new_rtx, x);
1576 seq = get_insns ();
1577 end_sequence ();
1579 emit_insn_before (seq, insn);
1580 delete_insn (insn);
1581 return;
1584 /* Handle a straight copy from a virtual register by generating a
1585 new add insn. The difference between this and falling through
1586 to the generic case is avoiding a new pseudo and eliminating a
1587 move insn in the initial rtl stream. */
1588 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1589 if (new_rtx
1590 && maybe_ne (offset, 0)
1591 && REG_P (SET_DEST (set))
1592 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1594 start_sequence ();
1596 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1597 gen_int_mode (offset,
1598 GET_MODE (SET_DEST (set))),
1599 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1600 if (x != SET_DEST (set))
1601 emit_move_insn (SET_DEST (set), x);
1603 seq = get_insns ();
1604 end_sequence ();
1606 emit_insn_before (seq, insn);
1607 delete_insn (insn);
1608 return;
1611 extract_insn (insn);
1612 insn_code = INSN_CODE (insn);
1614 /* Handle a plus involving a virtual register by determining if the
1615 operands remain valid if they're modified in place. */
1616 poly_int64 delta;
1617 if (GET_CODE (SET_SRC (set)) == PLUS
1618 && recog_data.n_operands >= 3
1619 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1620 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1621 && poly_int_rtx_p (recog_data.operand[2], &delta)
1622 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1624 offset += delta;
1626 /* If the sum is zero, then replace with a plain move. */
1627 if (known_eq (offset, 0)
1628 && REG_P (SET_DEST (set))
1629 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1631 start_sequence ();
1632 emit_move_insn (SET_DEST (set), new_rtx);
1633 seq = get_insns ();
1634 end_sequence ();
1636 emit_insn_before (seq, insn);
1637 delete_insn (insn);
1638 return;
1641 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1643 /* Using validate_change and apply_change_group here leaves
1644 recog_data in an invalid state. Since we know exactly what
1645 we want to check, do those two by hand. */
1646 if (safe_insn_predicate (insn_code, 1, new_rtx)
1647 && safe_insn_predicate (insn_code, 2, x))
1649 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1650 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1651 any_change = true;
1653 /* Fall through into the regular operand fixup loop in
1654 order to take care of operands other than 1 and 2. */
1658 else
1660 extract_insn (insn);
1661 insn_code = INSN_CODE (insn);
1664 /* In the general case, we expect virtual registers to appear only in
1665 operands, and then only as either bare registers or inside memories. */
1666 for (i = 0; i < recog_data.n_operands; ++i)
1668 x = recog_data.operand[i];
1669 switch (GET_CODE (x))
1671 case MEM:
1673 rtx addr = XEXP (x, 0);
1675 if (!instantiate_virtual_regs_in_rtx (&addr))
1676 continue;
1678 start_sequence ();
1679 x = replace_equiv_address (x, addr, true);
1680 /* It may happen that the address with the virtual reg
1681 was valid (e.g. based on the virtual stack reg, which might
1682 be acceptable to the predicates with all offsets), whereas
1683 the address now isn't anymore, for instance when the address
1684 is still offsetted, but the base reg isn't virtual-stack-reg
1685 anymore. Below we would do a force_reg on the whole operand,
1686 but this insn might actually only accept memory. Hence,
1687 before doing that last resort, try to reload the address into
1688 a register, so this operand stays a MEM. */
1689 if (!safe_insn_predicate (insn_code, i, x))
1691 addr = force_reg (GET_MODE (addr), addr);
1692 x = replace_equiv_address (x, addr, true);
1694 seq = get_insns ();
1695 end_sequence ();
1696 if (seq)
1697 emit_insn_before (seq, insn);
1699 break;
1701 case REG:
1702 new_rtx = instantiate_new_reg (x, &offset);
1703 if (new_rtx == NULL)
1704 continue;
1705 if (known_eq (offset, 0))
1706 x = new_rtx;
1707 else
1709 start_sequence ();
1711 /* Careful, special mode predicates may have stuff in
1712 insn_data[insn_code].operand[i].mode that isn't useful
1713 to us for computing a new value. */
1714 /* ??? Recognize address_operand and/or "p" constraints
1715 to see if (plus new offset) is a valid before we put
1716 this through expand_simple_binop. */
1717 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1718 gen_int_mode (offset, GET_MODE (x)),
1719 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1720 seq = get_insns ();
1721 end_sequence ();
1722 emit_insn_before (seq, insn);
1724 break;
1726 case SUBREG:
1727 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1728 if (new_rtx == NULL)
1729 continue;
1730 if (maybe_ne (offset, 0))
1732 start_sequence ();
1733 new_rtx = expand_simple_binop
1734 (GET_MODE (new_rtx), PLUS, new_rtx,
1735 gen_int_mode (offset, GET_MODE (new_rtx)),
1736 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1737 seq = get_insns ();
1738 end_sequence ();
1739 emit_insn_before (seq, insn);
1741 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1742 GET_MODE (new_rtx), SUBREG_BYTE (x));
1743 gcc_assert (x);
1744 break;
1746 default:
1747 continue;
1750 /* At this point, X contains the new value for the operand.
1751 Validate the new value vs the insn predicate. Note that
1752 asm insns will have insn_code -1 here. */
1753 if (!safe_insn_predicate (insn_code, i, x))
1755 start_sequence ();
1756 if (REG_P (x))
1758 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1759 x = copy_to_reg (x);
1761 else
1762 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1763 seq = get_insns ();
1764 end_sequence ();
1765 if (seq)
1766 emit_insn_before (seq, insn);
1769 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1770 any_change = true;
1773 if (any_change)
1775 /* Propagate operand changes into the duplicates. */
1776 for (i = 0; i < recog_data.n_dups; ++i)
1777 *recog_data.dup_loc[i]
1778 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1780 /* Force re-recognition of the instruction for validation. */
1781 INSN_CODE (insn) = -1;
1784 if (asm_noperands (PATTERN (insn)) >= 0)
1786 if (!check_asm_operands (PATTERN (insn)))
1788 error_for_asm (insn, "impossible constraint in %<asm%>");
1789 /* For asm goto, instead of fixing up all the edges
1790 just clear the template and clear input and output operands
1791 and strip away clobbers. */
1792 if (JUMP_P (insn))
1794 rtx asm_op = extract_asm_operands (PATTERN (insn));
1795 PATTERN (insn) = asm_op;
1796 PUT_MODE (asm_op, VOIDmode);
1797 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1798 ASM_OPERANDS_OUTPUT_CONSTRAINT (asm_op) = "";
1799 ASM_OPERANDS_OUTPUT_IDX (asm_op) = 0;
1800 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1801 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1803 else
1804 delete_insn (insn);
1807 else
1809 if (recog_memoized (insn) < 0)
1810 fatal_insn_not_found (insn);
1814 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1815 do any instantiation required. */
1817 void
1818 instantiate_decl_rtl (rtx x)
1820 rtx addr;
1822 if (x == 0)
1823 return;
1825 /* If this is a CONCAT, recurse for the pieces. */
1826 if (GET_CODE (x) == CONCAT)
1828 instantiate_decl_rtl (XEXP (x, 0));
1829 instantiate_decl_rtl (XEXP (x, 1));
1830 return;
1833 /* If this is not a MEM, no need to do anything. Similarly if the
1834 address is a constant or a register that is not a virtual register. */
1835 if (!MEM_P (x))
1836 return;
1838 addr = XEXP (x, 0);
1839 if (CONSTANT_P (addr)
1840 || (REG_P (addr)
1841 && !VIRTUAL_REGISTER_P (addr)))
1842 return;
1844 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1847 /* Helper for instantiate_decls called via walk_tree: Process all decls
1848 in the given DECL_VALUE_EXPR. */
1850 static tree
1851 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1853 tree t = *tp;
1854 if (! EXPR_P (t))
1856 *walk_subtrees = 0;
1857 if (DECL_P (t))
1859 if (DECL_RTL_SET_P (t))
1860 instantiate_decl_rtl (DECL_RTL (t));
1861 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1862 && DECL_INCOMING_RTL (t))
1863 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1864 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1865 && DECL_HAS_VALUE_EXPR_P (t))
1867 tree v = DECL_VALUE_EXPR (t);
1868 walk_tree (&v, instantiate_expr, NULL, NULL);
1872 return NULL;
1875 /* Subroutine of instantiate_decls: Process all decls in the given
1876 BLOCK node and all its subblocks. */
1878 static void
1879 instantiate_decls_1 (tree let)
1881 tree t;
1883 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1885 if (DECL_RTL_SET_P (t))
1886 instantiate_decl_rtl (DECL_RTL (t));
1887 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1889 tree v = DECL_VALUE_EXPR (t);
1890 walk_tree (&v, instantiate_expr, NULL, NULL);
1894 /* Process all subblocks. */
1895 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1896 instantiate_decls_1 (t);
1899 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1900 all virtual registers in their DECL_RTL's. */
1902 static void
1903 instantiate_decls (tree fndecl)
1905 tree decl;
1906 unsigned ix;
1908 /* Process all parameters of the function. */
1909 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1911 instantiate_decl_rtl (DECL_RTL (decl));
1912 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1913 if (DECL_HAS_VALUE_EXPR_P (decl))
1915 tree v = DECL_VALUE_EXPR (decl);
1916 walk_tree (&v, instantiate_expr, NULL, NULL);
1920 if ((decl = DECL_RESULT (fndecl))
1921 && TREE_CODE (decl) == RESULT_DECL)
1923 if (DECL_RTL_SET_P (decl))
1924 instantiate_decl_rtl (DECL_RTL (decl));
1925 if (DECL_HAS_VALUE_EXPR_P (decl))
1927 tree v = DECL_VALUE_EXPR (decl);
1928 walk_tree (&v, instantiate_expr, NULL, NULL);
1932 /* Process the saved static chain if it exists. */
1933 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1934 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1935 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1937 /* Now process all variables defined in the function or its subblocks. */
1938 if (DECL_INITIAL (fndecl))
1939 instantiate_decls_1 (DECL_INITIAL (fndecl));
1941 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1942 if (DECL_RTL_SET_P (decl))
1943 instantiate_decl_rtl (DECL_RTL (decl));
1944 vec_free (cfun->local_decls);
1947 /* Pass through the INSNS of function FNDECL and convert virtual register
1948 references to hard register references. */
1950 static unsigned int
1951 instantiate_virtual_regs (void)
1953 rtx_insn *insn;
1955 /* Compute the offsets to use for this function. */
1956 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1957 var_offset = targetm.starting_frame_offset ();
1958 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1959 out_arg_offset = STACK_POINTER_OFFSET;
1960 #ifdef FRAME_POINTER_CFA_OFFSET
1961 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1962 #else
1963 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1964 #endif
1966 /* Initialize recognition, indicating that volatile is OK. */
1967 init_recog ();
1969 /* Scan through all the insns, instantiating every virtual register still
1970 present. */
1971 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1972 if (INSN_P (insn))
1974 /* These patterns in the instruction stream can never be recognized.
1975 Fortunately, they shouldn't contain virtual registers either. */
1976 if (GET_CODE (PATTERN (insn)) == USE
1977 || GET_CODE (PATTERN (insn)) == CLOBBER
1978 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1979 || DEBUG_MARKER_INSN_P (insn))
1980 continue;
1981 else if (DEBUG_BIND_INSN_P (insn))
1982 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1983 else
1984 instantiate_virtual_regs_in_insn (insn);
1986 if (insn->deleted ())
1987 continue;
1989 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1991 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1992 if (CALL_P (insn))
1993 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1996 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1997 instantiate_decls (current_function_decl);
1999 targetm.instantiate_decls ();
2001 /* Indicate that, from now on, assign_stack_local should use
2002 frame_pointer_rtx. */
2003 virtuals_instantiated = 1;
2005 return 0;
2008 namespace {
2010 const pass_data pass_data_instantiate_virtual_regs =
2012 RTL_PASS, /* type */
2013 "vregs", /* name */
2014 OPTGROUP_NONE, /* optinfo_flags */
2015 TV_NONE, /* tv_id */
2016 0, /* properties_required */
2017 0, /* properties_provided */
2018 0, /* properties_destroyed */
2019 0, /* todo_flags_start */
2020 0, /* todo_flags_finish */
2023 class pass_instantiate_virtual_regs : public rtl_opt_pass
2025 public:
2026 pass_instantiate_virtual_regs (gcc::context *ctxt)
2027 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2030 /* opt_pass methods: */
2031 unsigned int execute (function *) final override
2033 return instantiate_virtual_regs ();
2036 }; // class pass_instantiate_virtual_regs
2038 } // anon namespace
2040 rtl_opt_pass *
2041 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2043 return new pass_instantiate_virtual_regs (ctxt);
2047 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2048 This means a type for which function calls must pass an address to the
2049 function or get an address back from the function.
2050 EXP may be a type node or an expression (whose type is tested). */
2053 aggregate_value_p (const_tree exp, const_tree fntype)
2055 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2056 int i, regno, nregs;
2057 rtx reg;
2059 if (fntype)
2060 switch (TREE_CODE (fntype))
2062 case CALL_EXPR:
2064 tree fndecl = get_callee_fndecl (fntype);
2065 if (fndecl)
2066 fntype = TREE_TYPE (fndecl);
2067 else if (CALL_EXPR_FN (fntype))
2068 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2069 else
2070 /* For internal functions, assume nothing needs to be
2071 returned in memory. */
2072 return 0;
2074 break;
2075 case FUNCTION_DECL:
2076 fntype = TREE_TYPE (fntype);
2077 break;
2078 case FUNCTION_TYPE:
2079 case METHOD_TYPE:
2080 break;
2081 case IDENTIFIER_NODE:
2082 fntype = NULL_TREE;
2083 break;
2084 default:
2085 /* We don't expect other tree types here. */
2086 gcc_unreachable ();
2089 if (VOID_TYPE_P (type))
2090 return 0;
2092 if (error_operand_p (fntype))
2093 return 0;
2095 /* If a record should be passed the same as its first (and only) member
2096 don't pass it as an aggregate. */
2097 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2098 return aggregate_value_p (first_field (type), fntype);
2100 /* If the front end has decided that this needs to be passed by
2101 reference, do so. */
2102 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2103 && DECL_BY_REFERENCE (exp))
2104 return 1;
2106 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2107 if (fntype && TREE_ADDRESSABLE (fntype))
2108 return 1;
2110 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2111 and thus can't be returned in registers. */
2112 if (TREE_ADDRESSABLE (type))
2113 return 1;
2115 if (TYPE_EMPTY_P (type))
2116 return 0;
2118 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2119 return 1;
2121 if (targetm.calls.return_in_memory (type, fntype))
2122 return 1;
2124 /* Make sure we have suitable call-clobbered regs to return
2125 the value in; if not, we must return it in memory. */
2126 reg = hard_function_value (type, 0, fntype, 0);
2128 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2129 it is OK. */
2130 if (!REG_P (reg))
2131 return 0;
2133 /* Use the default ABI if the type of the function isn't known.
2134 The scheme for handling interoperability between different ABIs
2135 requires us to be able to tell when we're calling a function with
2136 a nondefault ABI. */
2137 const predefined_function_abi &abi = (fntype
2138 ? fntype_abi (fntype)
2139 : default_function_abi);
2140 regno = REGNO (reg);
2141 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2142 for (i = 0; i < nregs; i++)
2143 if (!fixed_regs[regno + i] && !abi.clobbers_full_reg_p (regno + i))
2144 return 1;
2146 return 0;
2149 /* Return true if we should assign DECL a pseudo register; false if it
2150 should live on the local stack. */
2152 bool
2153 use_register_for_decl (const_tree decl)
2155 if (TREE_CODE (decl) == SSA_NAME)
2157 /* We often try to use the SSA_NAME, instead of its underlying
2158 decl, to get type information and guide decisions, to avoid
2159 differences of behavior between anonymous and named
2160 variables, but in this one case we have to go for the actual
2161 variable if there is one. The main reason is that, at least
2162 at -O0, we want to place user variables on the stack, but we
2163 don't mind using pseudos for anonymous or ignored temps.
2164 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2165 should go in pseudos, whereas their corresponding variables
2166 might have to go on the stack. So, disregarding the decl
2167 here would negatively impact debug info at -O0, enable
2168 coalescing between SSA_NAMEs that ought to get different
2169 stack/pseudo assignments, and get the incoming argument
2170 processing thoroughly confused by PARM_DECLs expected to live
2171 in stack slots but assigned to pseudos. */
2172 if (!SSA_NAME_VAR (decl))
2173 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2174 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2176 decl = SSA_NAME_VAR (decl);
2179 /* Honor volatile. */
2180 if (TREE_SIDE_EFFECTS (decl))
2181 return false;
2183 /* Honor addressability. */
2184 if (TREE_ADDRESSABLE (decl))
2185 return false;
2187 /* RESULT_DECLs are a bit special in that they're assigned without
2188 regard to use_register_for_decl, but we generally only store in
2189 them. If we coalesce their SSA NAMEs, we'd better return a
2190 result that matches the assignment in expand_function_start. */
2191 if (TREE_CODE (decl) == RESULT_DECL)
2193 /* If it's not an aggregate, we're going to use a REG or a
2194 PARALLEL containing a REG. */
2195 if (!aggregate_value_p (decl, current_function_decl))
2196 return true;
2198 /* If expand_function_start determines the return value, we'll
2199 use MEM if it's not by reference. */
2200 if (cfun->returns_pcc_struct
2201 || (targetm.calls.struct_value_rtx
2202 (TREE_TYPE (current_function_decl), 1)))
2203 return DECL_BY_REFERENCE (decl);
2205 /* Otherwise, we're taking an extra all.function_result_decl
2206 argument. It's set up in assign_parms_augmented_arg_list,
2207 under the (negated) conditions above, and then it's used to
2208 set up the RESULT_DECL rtl in assign_params, after looping
2209 over all parameters. Now, if the RESULT_DECL is not by
2210 reference, we'll use a MEM either way. */
2211 if (!DECL_BY_REFERENCE (decl))
2212 return false;
2214 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2215 the function_result_decl's assignment. Since it's a pointer,
2216 we can short-circuit a number of the tests below, and we must
2217 duplicate them because we don't have the function_result_decl
2218 to test. */
2219 if (!targetm.calls.allocate_stack_slots_for_args ())
2220 return true;
2221 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2222 if (optimize)
2223 return true;
2224 if (cfun->tail_call_marked)
2225 return true;
2226 /* We don't set DECL_REGISTER for the function_result_decl. */
2227 return false;
2230 /* Only register-like things go in registers. */
2231 if (DECL_MODE (decl) == BLKmode)
2232 return false;
2234 /* If -ffloat-store specified, don't put explicit float variables
2235 into registers. */
2236 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2237 propagates values across these stores, and it probably shouldn't. */
2238 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2239 return false;
2241 if (!targetm.calls.allocate_stack_slots_for_args ())
2242 return true;
2244 /* If we're not interested in tracking debugging information for
2245 this decl, then we can certainly put it in a register. */
2246 if (DECL_IGNORED_P (decl))
2247 return true;
2249 if (optimize)
2250 return true;
2252 /* Thunks force a tail call even at -O0 so we need to avoid creating a
2253 dangling reference in case the parameter is passed by reference. */
2254 if (TREE_CODE (decl) == PARM_DECL && cfun->tail_call_marked)
2255 return true;
2257 if (!DECL_REGISTER (decl))
2258 return false;
2260 /* When not optimizing, disregard register keyword for types that
2261 could have methods, otherwise the methods won't be callable from
2262 the debugger. */
2263 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2264 return false;
2266 return true;
2269 /* Structures to communicate between the subroutines of assign_parms.
2270 The first holds data persistent across all parameters, the second
2271 is cleared out for each parameter. */
2273 struct assign_parm_data_all
2275 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2276 should become a job of the target or otherwise encapsulated. */
2277 CUMULATIVE_ARGS args_so_far_v;
2278 cumulative_args_t args_so_far;
2279 struct args_size stack_args_size;
2280 tree function_result_decl;
2281 tree orig_fnargs;
2282 rtx_insn *first_conversion_insn;
2283 rtx_insn *last_conversion_insn;
2284 HOST_WIDE_INT pretend_args_size;
2285 HOST_WIDE_INT extra_pretend_bytes;
2286 int reg_parm_stack_space;
2289 struct assign_parm_data_one
2291 tree nominal_type;
2292 function_arg_info arg;
2293 rtx entry_parm;
2294 rtx stack_parm;
2295 machine_mode nominal_mode;
2296 machine_mode passed_mode;
2297 struct locate_and_pad_arg_data locate;
2298 int partial;
2301 /* A subroutine of assign_parms. Initialize ALL. */
2303 static void
2304 assign_parms_initialize_all (struct assign_parm_data_all *all)
2306 tree fntype ATTRIBUTE_UNUSED;
2308 memset (all, 0, sizeof (*all));
2310 fntype = TREE_TYPE (current_function_decl);
2312 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2313 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2314 #else
2315 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2316 current_function_decl, -1);
2317 #endif
2318 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2320 #ifdef INCOMING_REG_PARM_STACK_SPACE
2321 all->reg_parm_stack_space
2322 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2323 #endif
2326 /* If ARGS contains entries with complex types, split the entry into two
2327 entries of the component type. Return a new list of substitutions are
2328 needed, else the old list. */
2330 static void
2331 split_complex_args (vec<tree> *args)
2333 unsigned i;
2334 tree p;
2336 FOR_EACH_VEC_ELT (*args, i, p)
2338 tree type = TREE_TYPE (p);
2339 if (TREE_CODE (type) == COMPLEX_TYPE
2340 && targetm.calls.split_complex_arg (type))
2342 tree decl;
2343 tree subtype = TREE_TYPE (type);
2344 bool addressable = TREE_ADDRESSABLE (p);
2346 /* Rewrite the PARM_DECL's type with its component. */
2347 p = copy_node (p);
2348 TREE_TYPE (p) = subtype;
2349 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2350 SET_DECL_MODE (p, VOIDmode);
2351 DECL_SIZE (p) = NULL;
2352 DECL_SIZE_UNIT (p) = NULL;
2353 /* If this arg must go in memory, put it in a pseudo here.
2354 We can't allow it to go in memory as per normal parms,
2355 because the usual place might not have the imag part
2356 adjacent to the real part. */
2357 DECL_ARTIFICIAL (p) = addressable;
2358 DECL_IGNORED_P (p) = addressable;
2359 TREE_ADDRESSABLE (p) = 0;
2360 layout_decl (p, 0);
2361 (*args)[i] = p;
2363 /* Build a second synthetic decl. */
2364 decl = build_decl (EXPR_LOCATION (p),
2365 PARM_DECL, NULL_TREE, subtype);
2366 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2367 DECL_ARTIFICIAL (decl) = addressable;
2368 DECL_IGNORED_P (decl) = addressable;
2369 layout_decl (decl, 0);
2370 args->safe_insert (++i, decl);
2375 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2376 the hidden struct return argument, and (abi willing) complex args.
2377 Return the new parameter list. */
2379 static vec<tree>
2380 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2382 tree fndecl = current_function_decl;
2383 tree fntype = TREE_TYPE (fndecl);
2384 vec<tree> fnargs = vNULL;
2385 tree arg;
2387 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2388 fnargs.safe_push (arg);
2390 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2392 /* If struct value address is treated as the first argument, make it so. */
2393 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2394 && ! cfun->returns_pcc_struct
2395 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2397 tree type = build_pointer_type (TREE_TYPE (fntype));
2398 tree decl;
2400 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2401 PARM_DECL, get_identifier (".result_ptr"), type);
2402 DECL_ARG_TYPE (decl) = type;
2403 DECL_ARTIFICIAL (decl) = 1;
2404 DECL_NAMELESS (decl) = 1;
2405 TREE_CONSTANT (decl) = 1;
2406 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2407 changes, the end of the RESULT_DECL handling block in
2408 use_register_for_decl must be adjusted to match. */
2410 DECL_CHAIN (decl) = all->orig_fnargs;
2411 all->orig_fnargs = decl;
2412 fnargs.safe_insert (0, decl);
2414 all->function_result_decl = decl;
2417 /* If the target wants to split complex arguments into scalars, do so. */
2418 if (targetm.calls.split_complex_arg)
2419 split_complex_args (&fnargs);
2421 return fnargs;
2424 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2425 data for the parameter. Incorporate ABI specifics such as pass-by-
2426 reference and type promotion. */
2428 static void
2429 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2430 struct assign_parm_data_one *data)
2432 int unsignedp;
2434 #ifndef BROKEN_VALUE_INITIALIZATION
2435 *data = assign_parm_data_one ();
2436 #else
2437 /* Old versions of GCC used to miscompile the above by only initializing
2438 the members with explicit constructors and copying garbage
2439 to the other members. */
2440 assign_parm_data_one zero_data = {};
2441 *data = zero_data;
2442 #endif
2444 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2445 if (!cfun->stdarg)
2446 data->arg.named = 1; /* No variadic parms. */
2447 else if (DECL_CHAIN (parm))
2448 data->arg.named = 1; /* Not the last non-variadic parm. */
2449 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2450 data->arg.named = 1; /* Only variadic ones are unnamed. */
2451 else
2452 data->arg.named = 0; /* Treat as variadic. */
2454 data->nominal_type = TREE_TYPE (parm);
2455 data->arg.type = DECL_ARG_TYPE (parm);
2457 /* Look out for errors propagating this far. Also, if the parameter's
2458 type is void then its value doesn't matter. */
2459 if (TREE_TYPE (parm) == error_mark_node
2460 /* This can happen after weird syntax errors
2461 or if an enum type is defined among the parms. */
2462 || TREE_CODE (parm) != PARM_DECL
2463 || data->arg.type == NULL
2464 || VOID_TYPE_P (data->nominal_type))
2466 data->nominal_type = data->arg.type = void_type_node;
2467 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode;
2468 return;
2471 /* Find mode of arg as it is passed, and mode of arg as it should be
2472 during execution of this function. */
2473 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type);
2474 data->nominal_mode = TYPE_MODE (data->nominal_type);
2476 /* If the parm is to be passed as a transparent union or record, use the
2477 type of the first field for the tests below. We have already verified
2478 that the modes are the same. */
2479 if (RECORD_OR_UNION_TYPE_P (data->arg.type)
2480 && TYPE_TRANSPARENT_AGGR (data->arg.type))
2481 data->arg.type = TREE_TYPE (first_field (data->arg.type));
2483 /* See if this arg was passed by invisible reference. */
2484 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg))
2486 data->nominal_type = data->arg.type;
2487 data->passed_mode = data->nominal_mode = data->arg.mode;
2490 /* Find mode as it is passed by the ABI. */
2491 unsignedp = TYPE_UNSIGNED (data->arg.type);
2492 data->arg.mode
2493 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp,
2494 TREE_TYPE (current_function_decl), 0);
2497 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2499 static void
2500 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2501 struct assign_parm_data_one *data, bool no_rtl)
2503 int varargs_pretend_bytes = 0;
2505 function_arg_info last_named_arg = data->arg;
2506 last_named_arg.named = true;
2507 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg,
2508 &varargs_pretend_bytes, no_rtl);
2510 /* If the back-end has requested extra stack space, record how much is
2511 needed. Do not change pretend_args_size otherwise since it may be
2512 nonzero from an earlier partial argument. */
2513 if (varargs_pretend_bytes > 0)
2514 all->pretend_args_size = varargs_pretend_bytes;
2517 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2518 the incoming location of the current parameter. */
2520 static void
2521 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2522 struct assign_parm_data_one *data)
2524 HOST_WIDE_INT pretend_bytes = 0;
2525 rtx entry_parm;
2526 bool in_regs;
2528 if (data->arg.mode == VOIDmode)
2530 data->entry_parm = data->stack_parm = const0_rtx;
2531 return;
2534 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2535 data->arg.type);
2537 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2538 data->arg);
2539 if (entry_parm == 0)
2540 data->arg.mode = data->passed_mode;
2542 /* Determine parm's home in the stack, in case it arrives in the stack
2543 or we should pretend it did. Compute the stack position and rtx where
2544 the argument arrives and its size.
2546 There is one complexity here: If this was a parameter that would
2547 have been passed in registers, but wasn't only because it is
2548 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2549 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2550 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2551 as it was the previous time. */
2552 in_regs = (entry_parm != 0);
2553 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2554 in_regs = true;
2555 #endif
2556 if (!in_regs && !data->arg.named)
2558 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2560 rtx tem;
2561 function_arg_info named_arg = data->arg;
2562 named_arg.named = true;
2563 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2564 named_arg);
2565 in_regs = tem != NULL;
2569 /* If this parameter was passed both in registers and in the stack, use
2570 the copy on the stack. */
2571 if (targetm.calls.must_pass_in_stack (data->arg))
2572 entry_parm = 0;
2574 if (entry_parm)
2576 int partial;
2578 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg);
2579 data->partial = partial;
2581 /* The caller might already have allocated stack space for the
2582 register parameters. */
2583 if (partial != 0 && all->reg_parm_stack_space == 0)
2585 /* Part of this argument is passed in registers and part
2586 is passed on the stack. Ask the prologue code to extend
2587 the stack part so that we can recreate the full value.
2589 PRETEND_BYTES is the size of the registers we need to store.
2590 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2591 stack space that the prologue should allocate.
2593 Internally, gcc assumes that the argument pointer is aligned
2594 to STACK_BOUNDARY bits. This is used both for alignment
2595 optimizations (see init_emit) and to locate arguments that are
2596 aligned to more than PARM_BOUNDARY bits. We must preserve this
2597 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2598 a stack boundary. */
2600 /* We assume at most one partial arg, and it must be the first
2601 argument on the stack. */
2602 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2604 pretend_bytes = partial;
2605 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2607 /* We want to align relative to the actual stack pointer, so
2608 don't include this in the stack size until later. */
2609 all->extra_pretend_bytes = all->pretend_args_size;
2613 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs,
2614 all->reg_parm_stack_space,
2615 entry_parm ? data->partial : 0, current_function_decl,
2616 &all->stack_args_size, &data->locate);
2618 /* Update parm_stack_boundary if this parameter is passed in the
2619 stack. */
2620 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2621 crtl->parm_stack_boundary = data->locate.boundary;
2623 /* Adjust offsets to include the pretend args. */
2624 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2625 data->locate.slot_offset.constant += pretend_bytes;
2626 data->locate.offset.constant += pretend_bytes;
2628 data->entry_parm = entry_parm;
2631 /* A subroutine of assign_parms. If there is actually space on the stack
2632 for this parm, count it in stack_args_size and return true. */
2634 static bool
2635 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2636 struct assign_parm_data_one *data)
2638 /* Trivially true if we've no incoming register. */
2639 if (data->entry_parm == NULL)
2641 /* Also true if we're partially in registers and partially not,
2642 since we've arranged to drop the entire argument on the stack. */
2643 else if (data->partial != 0)
2645 /* Also true if the target says that it's passed in both registers
2646 and on the stack. */
2647 else if (GET_CODE (data->entry_parm) == PARALLEL
2648 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2650 /* Also true if the target says that there's stack allocated for
2651 all register parameters. */
2652 else if (all->reg_parm_stack_space > 0)
2654 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2655 else
2656 return false;
2658 all->stack_args_size.constant += data->locate.size.constant;
2659 if (data->locate.size.var)
2660 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2662 return true;
2665 /* A subroutine of assign_parms. Given that this parameter is allocated
2666 stack space by the ABI, find it. */
2668 static void
2669 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2671 rtx offset_rtx, stack_parm;
2672 unsigned int align, boundary;
2674 /* If we're passing this arg using a reg, make its stack home the
2675 aligned stack slot. */
2676 if (data->entry_parm)
2677 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2678 else
2679 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2681 stack_parm = crtl->args.internal_arg_pointer;
2682 if (offset_rtx != const0_rtx)
2683 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2684 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm);
2686 if (!data->arg.pass_by_reference)
2688 set_mem_attributes (stack_parm, parm, 1);
2689 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2690 while promoted mode's size is needed. */
2691 if (data->arg.mode != BLKmode
2692 && data->arg.mode != DECL_MODE (parm))
2694 set_mem_size (stack_parm, GET_MODE_SIZE (data->arg.mode));
2695 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2697 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2698 data->arg.mode);
2699 if (maybe_ne (offset, 0))
2700 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2705 boundary = data->locate.boundary;
2706 align = BITS_PER_UNIT;
2708 /* If we're padding upward, we know that the alignment of the slot
2709 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2710 intentionally forcing upward padding. Otherwise we have to come
2711 up with a guess at the alignment based on OFFSET_RTX. */
2712 poly_int64 offset;
2713 if (data->locate.where_pad == PAD_NONE || data->entry_parm)
2714 align = boundary;
2715 else if (data->locate.where_pad == PAD_UPWARD)
2717 align = boundary;
2718 /* If the argument offset is actually more aligned than the nominal
2719 stack slot boundary, take advantage of that excess alignment.
2720 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */
2721 if (poly_int_rtx_p (offset_rtx, &offset)
2722 && known_eq (STACK_POINTER_OFFSET, 0))
2724 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2725 if (offset_align == 0 || offset_align > STACK_BOUNDARY)
2726 offset_align = STACK_BOUNDARY;
2727 align = MAX (align, offset_align);
2730 else if (poly_int_rtx_p (offset_rtx, &offset))
2732 align = least_bit_hwi (boundary);
2733 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2734 if (offset_align != 0)
2735 align = MIN (align, offset_align);
2737 set_mem_align (stack_parm, align);
2739 if (data->entry_parm)
2740 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2742 data->stack_parm = stack_parm;
2745 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2746 always valid and contiguous. */
2748 static void
2749 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2751 rtx entry_parm = data->entry_parm;
2752 rtx stack_parm = data->stack_parm;
2754 /* If this parm was passed part in regs and part in memory, pretend it
2755 arrived entirely in memory by pushing the register-part onto the stack.
2756 In the special case of a DImode or DFmode that is split, we could put
2757 it together in a pseudoreg directly, but for now that's not worth
2758 bothering with. */
2759 if (data->partial != 0)
2761 /* Handle calls that pass values in multiple non-contiguous
2762 locations. The Irix 6 ABI has examples of this. */
2763 if (GET_CODE (entry_parm) == PARALLEL)
2764 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2765 data->arg.type, int_size_in_bytes (data->arg.type));
2766 else
2768 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2769 move_block_from_reg (REGNO (entry_parm),
2770 validize_mem (copy_rtx (stack_parm)),
2771 data->partial / UNITS_PER_WORD);
2774 entry_parm = stack_parm;
2777 /* If we didn't decide this parm came in a register, by default it came
2778 on the stack. */
2779 else if (entry_parm == NULL)
2780 entry_parm = stack_parm;
2782 /* When an argument is passed in multiple locations, we can't make use
2783 of this information, but we can save some copying if the whole argument
2784 is passed in a single register. */
2785 else if (GET_CODE (entry_parm) == PARALLEL
2786 && data->nominal_mode != BLKmode
2787 && data->passed_mode != BLKmode)
2789 size_t i, len = XVECLEN (entry_parm, 0);
2791 for (i = 0; i < len; i++)
2792 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2793 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2794 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2795 == data->passed_mode)
2796 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2798 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2799 break;
2803 data->entry_parm = entry_parm;
2806 /* A subroutine of assign_parms. Reconstitute any values which were
2807 passed in multiple registers and would fit in a single register. */
2809 static void
2810 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2812 rtx entry_parm = data->entry_parm;
2814 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2815 This can be done with register operations rather than on the
2816 stack, even if we will store the reconstituted parameter on the
2817 stack later. */
2818 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2820 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2821 emit_group_store (parmreg, entry_parm, data->arg.type,
2822 GET_MODE_SIZE (GET_MODE (entry_parm)));
2823 entry_parm = parmreg;
2826 data->entry_parm = entry_parm;
2829 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2830 always valid and properly aligned. */
2832 static void
2833 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2835 rtx stack_parm = data->stack_parm;
2837 /* If we can't trust the parm stack slot to be aligned enough for its
2838 ultimate type, don't use that slot after entry. We'll make another
2839 stack slot, if we need one. */
2840 if (stack_parm
2841 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)
2842 && ((optab_handler (movmisalign_optab, data->nominal_mode)
2843 != CODE_FOR_nothing)
2844 || targetm.slow_unaligned_access (data->nominal_mode,
2845 MEM_ALIGN (stack_parm))))
2846 || (data->nominal_type
2847 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2848 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2849 stack_parm = NULL;
2851 /* If parm was passed in memory, and we need to convert it on entry,
2852 don't store it back in that same slot. */
2853 else if (data->entry_parm == stack_parm
2854 && data->nominal_mode != BLKmode
2855 && data->nominal_mode != data->passed_mode)
2856 stack_parm = NULL;
2858 /* If stack protection is in effect for this function, don't leave any
2859 pointers in their passed stack slots. */
2860 else if (crtl->stack_protect_guard
2861 && (flag_stack_protect == SPCT_FLAG_ALL
2862 || data->arg.pass_by_reference
2863 || POINTER_TYPE_P (data->nominal_type)))
2864 stack_parm = NULL;
2866 data->stack_parm = stack_parm;
2869 /* A subroutine of assign_parms. Return true if the current parameter
2870 should be stored as a BLKmode in the current frame. */
2872 static bool
2873 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2875 if (data->nominal_mode == BLKmode)
2876 return true;
2877 if (GET_MODE (data->entry_parm) == BLKmode)
2878 return true;
2880 #ifdef BLOCK_REG_PADDING
2881 /* Only assign_parm_setup_block knows how to deal with register arguments
2882 that are padded at the least significant end. */
2883 if (REG_P (data->entry_parm)
2884 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD)
2885 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1)
2886 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2887 return true;
2888 #endif
2890 return false;
2893 /* A subroutine of assign_parms. Arrange for the parameter to be
2894 present and valid in DATA->STACK_RTL. */
2896 static void
2897 assign_parm_setup_block (struct assign_parm_data_all *all,
2898 tree parm, struct assign_parm_data_one *data)
2900 rtx entry_parm = data->entry_parm;
2901 rtx stack_parm = data->stack_parm;
2902 rtx target_reg = NULL_RTX;
2903 bool in_conversion_seq = false;
2904 HOST_WIDE_INT size;
2905 HOST_WIDE_INT size_stored;
2907 if (GET_CODE (entry_parm) == PARALLEL)
2908 entry_parm = emit_group_move_into_temps (entry_parm);
2910 /* If we want the parameter in a pseudo, don't use a stack slot. */
2911 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2913 tree def = ssa_default_def (cfun, parm);
2914 gcc_assert (def);
2915 machine_mode mode = promote_ssa_mode (def, NULL);
2916 rtx reg = gen_reg_rtx (mode);
2917 if (GET_CODE (reg) != CONCAT)
2918 stack_parm = reg;
2919 else
2921 target_reg = reg;
2922 /* Avoid allocating a stack slot, if there isn't one
2923 preallocated by the ABI. It might seem like we should
2924 always prefer a pseudo, but converting between
2925 floating-point and integer modes goes through the stack
2926 on various machines, so it's better to use the reserved
2927 stack slot than to risk wasting it and allocating more
2928 for the conversion. */
2929 if (stack_parm == NULL_RTX)
2931 int save = generating_concat_p;
2932 generating_concat_p = 0;
2933 stack_parm = gen_reg_rtx (mode);
2934 generating_concat_p = save;
2937 data->stack_parm = NULL;
2940 size = int_size_in_bytes (data->arg.type);
2941 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2942 if (stack_parm == 0)
2944 HOST_WIDE_INT parm_align
2945 = (STRICT_ALIGNMENT
2946 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm));
2948 SET_DECL_ALIGN (parm, parm_align);
2949 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT)
2951 rtx allocsize = gen_int_mode (size_stored, Pmode);
2952 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL);
2953 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize),
2954 MAX_SUPPORTED_STACK_ALIGNMENT);
2955 rtx addr = align_dynamic_address (XEXP (stack_parm, 0),
2956 DECL_ALIGN (parm));
2957 mark_reg_pointer (addr, DECL_ALIGN (parm));
2958 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr);
2959 MEM_NOTRAP_P (stack_parm) = 1;
2961 else
2962 stack_parm = assign_stack_local (BLKmode, size_stored,
2963 DECL_ALIGN (parm));
2964 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2965 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2966 set_mem_attributes (stack_parm, parm, 1);
2969 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2970 calls that pass values in multiple non-contiguous locations. */
2971 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2973 rtx mem;
2975 /* Note that we will be storing an integral number of words.
2976 So we have to be careful to ensure that we allocate an
2977 integral number of words. We do this above when we call
2978 assign_stack_local if space was not allocated in the argument
2979 list. If it was, this will not work if PARM_BOUNDARY is not
2980 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2981 if it becomes a problem. Exception is when BLKmode arrives
2982 with arguments not conforming to word_mode. */
2984 if (data->stack_parm == 0)
2986 else if (GET_CODE (entry_parm) == PARALLEL)
2988 else
2989 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2991 mem = validize_mem (copy_rtx (stack_parm));
2993 /* Handle values in multiple non-contiguous locations. */
2994 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2995 emit_group_store (mem, entry_parm, data->arg.type, size);
2996 else if (GET_CODE (entry_parm) == PARALLEL)
2998 push_to_sequence2 (all->first_conversion_insn,
2999 all->last_conversion_insn);
3000 emit_group_store (mem, entry_parm, data->arg.type, size);
3001 all->first_conversion_insn = get_insns ();
3002 all->last_conversion_insn = get_last_insn ();
3003 end_sequence ();
3004 in_conversion_seq = true;
3007 else if (size == 0)
3010 /* If SIZE is that of a mode no bigger than a word, just use
3011 that mode's store operation. */
3012 else if (size <= UNITS_PER_WORD)
3014 unsigned int bits = size * BITS_PER_UNIT;
3015 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
3017 if (mode != BLKmode
3018 #ifdef BLOCK_REG_PADDING
3019 && (size == UNITS_PER_WORD
3020 || (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3021 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
3022 #endif
3025 rtx reg;
3027 /* We are really truncating a word_mode value containing
3028 SIZE bytes into a value of mode MODE. If such an
3029 operation requires no actual instructions, we can refer
3030 to the value directly in mode MODE, otherwise we must
3031 start with the register in word_mode and explicitly
3032 convert it. */
3033 if (mode == word_mode
3034 || TRULY_NOOP_TRUNCATION_MODES_P (mode, word_mode))
3035 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3036 else
3038 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3039 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3042 /* We use adjust_address to get a new MEM with the mode
3043 changed. adjust_address is better than change_address
3044 for this purpose because adjust_address does not lose
3045 the MEM_EXPR associated with the MEM.
3047 If the MEM_EXPR is lost, then optimizations like DSE
3048 assume the MEM escapes and thus is not subject to DSE. */
3049 emit_move_insn (adjust_address (mem, mode, 0), reg);
3052 #ifdef BLOCK_REG_PADDING
3053 /* Storing the register in memory as a full word, as
3054 move_block_from_reg below would do, and then using the
3055 MEM in a smaller mode, has the effect of shifting right
3056 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3057 shifting must be explicit. */
3058 else if (!MEM_P (mem))
3060 rtx x;
3062 /* If the assert below fails, we should have taken the
3063 mode != BLKmode path above, unless we have downward
3064 padding of smaller-than-word arguments on a machine
3065 with little-endian bytes, which would likely require
3066 additional changes to work correctly. */
3067 gcc_checking_assert (BYTES_BIG_ENDIAN
3068 && (BLOCK_REG_PADDING (mode,
3069 data->arg.type, 1)
3070 == PAD_UPWARD));
3072 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3074 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3075 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3076 NULL_RTX, 1);
3077 x = force_reg (word_mode, x);
3078 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3080 emit_move_insn (mem, x);
3082 #endif
3084 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3085 machine must be aligned to the left before storing
3086 to memory. Note that the previous test doesn't
3087 handle all cases (e.g. SIZE == 3). */
3088 else if (size != UNITS_PER_WORD
3089 #ifdef BLOCK_REG_PADDING
3090 && (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3091 == PAD_DOWNWARD)
3092 #else
3093 && BYTES_BIG_ENDIAN
3094 #endif
3097 rtx tem, x;
3098 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3099 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3101 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3102 tem = change_address (mem, word_mode, 0);
3103 emit_move_insn (tem, x);
3105 else
3106 move_block_from_reg (REGNO (entry_parm), mem,
3107 size_stored / UNITS_PER_WORD);
3109 else if (!MEM_P (mem))
3111 gcc_checking_assert (size > UNITS_PER_WORD);
3112 #ifdef BLOCK_REG_PADDING
3113 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3114 data->arg.type, 0)
3115 == PAD_UPWARD);
3116 #endif
3117 emit_move_insn (mem, entry_parm);
3119 else
3120 move_block_from_reg (REGNO (entry_parm), mem,
3121 size_stored / UNITS_PER_WORD);
3123 else if (data->stack_parm == 0 && !TYPE_EMPTY_P (data->arg.type))
3125 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3126 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3127 BLOCK_OP_NORMAL);
3128 all->first_conversion_insn = get_insns ();
3129 all->last_conversion_insn = get_last_insn ();
3130 end_sequence ();
3131 in_conversion_seq = true;
3134 if (target_reg)
3136 if (!in_conversion_seq)
3137 emit_move_insn (target_reg, stack_parm);
3138 else
3140 push_to_sequence2 (all->first_conversion_insn,
3141 all->last_conversion_insn);
3142 emit_move_insn (target_reg, stack_parm);
3143 all->first_conversion_insn = get_insns ();
3144 all->last_conversion_insn = get_last_insn ();
3145 end_sequence ();
3147 stack_parm = target_reg;
3150 data->stack_parm = stack_parm;
3151 set_parm_rtl (parm, stack_parm);
3154 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3155 parameter. Get it there. Perform all ABI specified conversions. */
3157 static void
3158 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3159 struct assign_parm_data_one *data)
3161 rtx parmreg, validated_mem;
3162 rtx equiv_stack_parm;
3163 machine_mode promoted_nominal_mode;
3164 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3165 bool did_conversion = false;
3166 bool need_conversion, moved;
3167 enum insn_code icode;
3168 rtx rtl;
3170 /* Store the parm in a pseudoregister during the function, but we may
3171 need to do it in a wider mode. Using 2 here makes the result
3172 consistent with promote_decl_mode and thus expand_expr_real_1. */
3173 promoted_nominal_mode
3174 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3175 TREE_TYPE (current_function_decl), 2);
3177 parmreg = gen_reg_rtx (promoted_nominal_mode);
3178 if (!DECL_ARTIFICIAL (parm))
3179 mark_user_reg (parmreg);
3181 /* If this was an item that we received a pointer to,
3182 set rtl appropriately. */
3183 if (data->arg.pass_by_reference)
3185 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg);
3186 set_mem_attributes (rtl, parm, 1);
3188 else
3189 rtl = parmreg;
3191 assign_parm_remove_parallels (data);
3193 /* Copy the value into the register, thus bridging between
3194 assign_parm_find_data_types and expand_expr_real_1. */
3196 equiv_stack_parm = data->stack_parm;
3197 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3199 need_conversion = (data->nominal_mode != data->passed_mode
3200 || promoted_nominal_mode != data->arg.mode);
3201 moved = false;
3203 if (need_conversion
3204 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3205 && data->nominal_mode == data->passed_mode
3206 && data->nominal_mode == GET_MODE (data->entry_parm))
3208 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3209 mode, by the caller. We now have to convert it to
3210 NOMINAL_MODE, if different. However, PARMREG may be in
3211 a different mode than NOMINAL_MODE if it is being stored
3212 promoted.
3214 If ENTRY_PARM is a hard register, it might be in a register
3215 not valid for operating in its mode (e.g., an odd-numbered
3216 register for a DFmode). In that case, moves are the only
3217 thing valid, so we can't do a convert from there. This
3218 occurs when the calling sequence allow such misaligned
3219 usages.
3221 In addition, the conversion may involve a call, which could
3222 clobber parameters which haven't been copied to pseudo
3223 registers yet.
3225 First, we try to emit an insn which performs the necessary
3226 conversion. We verify that this insn does not clobber any
3227 hard registers. */
3229 rtx op0, op1;
3231 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3232 unsignedp);
3234 op0 = parmreg;
3235 op1 = validated_mem;
3236 if (icode != CODE_FOR_nothing
3237 && insn_operand_matches (icode, 0, op0)
3238 && insn_operand_matches (icode, 1, op1))
3240 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3241 rtx_insn *insn, *insns;
3242 rtx t = op1;
3243 HARD_REG_SET hardregs;
3245 start_sequence ();
3246 /* If op1 is a hard register that is likely spilled, first
3247 force it into a pseudo, otherwise combiner might extend
3248 its lifetime too much. */
3249 if (GET_CODE (t) == SUBREG)
3250 t = SUBREG_REG (t);
3251 if (REG_P (t)
3252 && HARD_REGISTER_P (t)
3253 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3254 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3256 t = gen_reg_rtx (GET_MODE (op1));
3257 emit_move_insn (t, op1);
3259 else
3260 t = op1;
3261 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3262 data->passed_mode, unsignedp);
3263 emit_insn (pat);
3264 insns = get_insns ();
3266 moved = true;
3267 CLEAR_HARD_REG_SET (hardregs);
3268 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3270 if (INSN_P (insn))
3271 note_stores (insn, record_hard_reg_sets, &hardregs);
3272 if (!hard_reg_set_empty_p (hardregs))
3273 moved = false;
3276 end_sequence ();
3278 if (moved)
3280 emit_insn (insns);
3281 if (equiv_stack_parm != NULL_RTX)
3282 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3283 equiv_stack_parm);
3288 if (moved)
3289 /* Nothing to do. */
3291 else if (need_conversion)
3293 /* We did not have an insn to convert directly, or the sequence
3294 generated appeared unsafe. We must first copy the parm to a
3295 pseudo reg, and save the conversion until after all
3296 parameters have been moved. */
3298 int save_tree_used;
3299 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3301 emit_move_insn (tempreg, validated_mem);
3303 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3304 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3306 if (partial_subreg_p (tempreg)
3307 && GET_MODE (tempreg) == data->nominal_mode
3308 && REG_P (SUBREG_REG (tempreg))
3309 && data->nominal_mode == data->passed_mode
3310 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3312 /* The argument is already sign/zero extended, so note it
3313 into the subreg. */
3314 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3315 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3318 /* TREE_USED gets set erroneously during expand_assignment. */
3319 save_tree_used = TREE_USED (parm);
3320 SET_DECL_RTL (parm, rtl);
3321 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3322 SET_DECL_RTL (parm, NULL_RTX);
3323 TREE_USED (parm) = save_tree_used;
3324 all->first_conversion_insn = get_insns ();
3325 all->last_conversion_insn = get_last_insn ();
3326 end_sequence ();
3328 did_conversion = true;
3330 else if (MEM_P (data->entry_parm)
3331 && GET_MODE_ALIGNMENT (promoted_nominal_mode)
3332 > MEM_ALIGN (data->entry_parm)
3333 && (((icode = optab_handler (movmisalign_optab,
3334 promoted_nominal_mode))
3335 != CODE_FOR_nothing)
3336 || targetm.slow_unaligned_access (promoted_nominal_mode,
3337 MEM_ALIGN (data->entry_parm))))
3339 if (icode != CODE_FOR_nothing)
3340 emit_insn (GEN_FCN (icode) (parmreg, validated_mem));
3341 else
3342 rtl = parmreg = extract_bit_field (validated_mem,
3343 GET_MODE_BITSIZE (promoted_nominal_mode), 0,
3344 unsignedp, parmreg,
3345 promoted_nominal_mode, VOIDmode, false, NULL);
3347 else
3348 emit_move_insn (parmreg, validated_mem);
3350 /* If we were passed a pointer but the actual value can live in a register,
3351 retrieve it and use it directly. Note that we cannot use nominal_mode,
3352 because it will have been set to Pmode above, we must use the actual mode
3353 of the parameter instead. */
3354 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3356 /* Use a stack slot for debugging purposes if possible. */
3357 if (use_register_for_decl (parm))
3359 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3360 mark_user_reg (parmreg);
3362 else
3364 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3365 TYPE_MODE (TREE_TYPE (parm)),
3366 TYPE_ALIGN (TREE_TYPE (parm)));
3367 parmreg
3368 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3369 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3370 align);
3371 set_mem_attributes (parmreg, parm, 1);
3374 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3375 the debug info in case it is not legitimate. */
3376 if (GET_MODE (parmreg) != GET_MODE (rtl))
3378 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3379 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3381 push_to_sequence2 (all->first_conversion_insn,
3382 all->last_conversion_insn);
3383 emit_move_insn (tempreg, rtl);
3384 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3385 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3386 tempreg);
3387 all->first_conversion_insn = get_insns ();
3388 all->last_conversion_insn = get_last_insn ();
3389 end_sequence ();
3391 did_conversion = true;
3393 else
3394 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3396 rtl = parmreg;
3398 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3399 now the parm. */
3400 data->stack_parm = NULL;
3403 set_parm_rtl (parm, rtl);
3405 /* Mark the register as eliminable if we did no conversion and it was
3406 copied from memory at a fixed offset, and the arg pointer was not
3407 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3408 offset formed an invalid address, such memory-equivalences as we
3409 make here would screw up life analysis for it. */
3410 if (data->nominal_mode == data->passed_mode
3411 && !did_conversion
3412 && data->stack_parm != 0
3413 && MEM_P (data->stack_parm)
3414 && data->locate.offset.var == 0
3415 && reg_mentioned_p (virtual_incoming_args_rtx,
3416 XEXP (data->stack_parm, 0)))
3418 rtx_insn *linsn = get_last_insn ();
3419 rtx_insn *sinsn;
3420 rtx set;
3422 /* Mark complex types separately. */
3423 if (GET_CODE (parmreg) == CONCAT)
3425 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3426 int regnor = REGNO (XEXP (parmreg, 0));
3427 int regnoi = REGNO (XEXP (parmreg, 1));
3428 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3429 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3430 GET_MODE_SIZE (submode));
3432 /* Scan backwards for the set of the real and
3433 imaginary parts. */
3434 for (sinsn = linsn; sinsn != 0;
3435 sinsn = prev_nonnote_insn (sinsn))
3437 set = single_set (sinsn);
3438 if (set == 0)
3439 continue;
3441 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3442 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3443 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3444 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3447 else
3448 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3451 /* For pointer data type, suggest pointer register. */
3452 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3453 mark_reg_pointer (parmreg,
3454 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3457 /* A subroutine of assign_parms. Allocate stack space to hold the current
3458 parameter. Get it there. Perform all ABI specified conversions. */
3460 static void
3461 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3462 struct assign_parm_data_one *data)
3464 /* Value must be stored in the stack slot STACK_PARM during function
3465 execution. */
3466 bool to_conversion = false;
3468 assign_parm_remove_parallels (data);
3470 if (data->arg.mode != data->nominal_mode)
3472 /* Conversion is required. */
3473 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3475 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3477 /* Some ABIs require scalar floating point modes to be passed
3478 in a wider scalar integer mode. We need to explicitly
3479 truncate to an integer mode of the correct precision before
3480 using a SUBREG to reinterpret as a floating point value. */
3481 if (SCALAR_FLOAT_MODE_P (data->nominal_mode)
3482 && SCALAR_INT_MODE_P (data->arg.mode)
3483 && known_lt (GET_MODE_SIZE (data->nominal_mode),
3484 GET_MODE_SIZE (data->arg.mode)))
3485 tempreg = convert_wider_int_to_float (data->nominal_mode,
3486 data->arg.mode, tempreg);
3488 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3489 to_conversion = true;
3491 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3492 TYPE_UNSIGNED (TREE_TYPE (parm)));
3494 if (data->stack_parm)
3496 poly_int64 offset
3497 = subreg_lowpart_offset (data->nominal_mode,
3498 GET_MODE (data->stack_parm));
3499 /* ??? This may need a big-endian conversion on sparc64. */
3500 data->stack_parm
3501 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3502 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3503 set_mem_offset (data->stack_parm,
3504 MEM_OFFSET (data->stack_parm) + offset);
3508 if (data->entry_parm != data->stack_parm)
3510 rtx src, dest;
3512 if (data->stack_parm == 0)
3514 int align = STACK_SLOT_ALIGNMENT (data->arg.type,
3515 GET_MODE (data->entry_parm),
3516 TYPE_ALIGN (data->arg.type));
3517 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm))
3518 && ((optab_handler (movmisalign_optab,
3519 GET_MODE (data->entry_parm))
3520 != CODE_FOR_nothing)
3521 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm),
3522 align)))
3523 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm));
3524 data->stack_parm
3525 = assign_stack_local (GET_MODE (data->entry_parm),
3526 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3527 align);
3528 align = MEM_ALIGN (data->stack_parm);
3529 set_mem_attributes (data->stack_parm, parm, 1);
3530 set_mem_align (data->stack_parm, align);
3533 dest = validize_mem (copy_rtx (data->stack_parm));
3534 src = validize_mem (copy_rtx (data->entry_parm));
3536 if (TYPE_EMPTY_P (data->arg.type))
3537 /* Empty types don't really need to be copied. */;
3538 else if (MEM_P (src))
3540 /* Use a block move to handle potentially misaligned entry_parm. */
3541 if (!to_conversion)
3542 push_to_sequence2 (all->first_conversion_insn,
3543 all->last_conversion_insn);
3544 to_conversion = true;
3546 emit_block_move (dest, src,
3547 GEN_INT (int_size_in_bytes (data->arg.type)),
3548 BLOCK_OP_NORMAL);
3550 else
3552 if (!REG_P (src))
3553 src = force_reg (GET_MODE (src), src);
3554 emit_move_insn (dest, src);
3558 if (to_conversion)
3560 all->first_conversion_insn = get_insns ();
3561 all->last_conversion_insn = get_last_insn ();
3562 end_sequence ();
3565 set_parm_rtl (parm, data->stack_parm);
3568 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3569 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3571 static void
3572 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3573 vec<tree> fnargs)
3575 tree parm;
3576 tree orig_fnargs = all->orig_fnargs;
3577 unsigned i = 0;
3579 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3581 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3582 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3584 rtx tmp, real, imag;
3585 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3587 real = DECL_RTL (fnargs[i]);
3588 imag = DECL_RTL (fnargs[i + 1]);
3589 if (inner != GET_MODE (real))
3591 real = gen_lowpart_SUBREG (inner, real);
3592 imag = gen_lowpart_SUBREG (inner, imag);
3595 if (TREE_ADDRESSABLE (parm))
3597 rtx rmem, imem;
3598 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3599 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3600 DECL_MODE (parm),
3601 TYPE_ALIGN (TREE_TYPE (parm)));
3603 /* split_complex_arg put the real and imag parts in
3604 pseudos. Move them to memory. */
3605 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3606 set_mem_attributes (tmp, parm, 1);
3607 rmem = adjust_address_nv (tmp, inner, 0);
3608 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3609 push_to_sequence2 (all->first_conversion_insn,
3610 all->last_conversion_insn);
3611 emit_move_insn (rmem, real);
3612 emit_move_insn (imem, imag);
3613 all->first_conversion_insn = get_insns ();
3614 all->last_conversion_insn = get_last_insn ();
3615 end_sequence ();
3617 else
3618 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3619 set_parm_rtl (parm, tmp);
3621 real = DECL_INCOMING_RTL (fnargs[i]);
3622 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3623 if (inner != GET_MODE (real))
3625 real = gen_lowpart_SUBREG (inner, real);
3626 imag = gen_lowpart_SUBREG (inner, imag);
3628 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3629 set_decl_incoming_rtl (parm, tmp, false);
3630 i++;
3635 /* Assign RTL expressions to the function's parameters. This may involve
3636 copying them into registers and using those registers as the DECL_RTL. */
3638 static void
3639 assign_parms (tree fndecl)
3641 struct assign_parm_data_all all;
3642 tree parm;
3643 vec<tree> fnargs;
3644 unsigned i;
3646 crtl->args.internal_arg_pointer
3647 = targetm.calls.internal_arg_pointer ();
3649 assign_parms_initialize_all (&all);
3650 fnargs = assign_parms_augmented_arg_list (&all);
3652 if (TYPE_NO_NAMED_ARGS_STDARG_P (TREE_TYPE (fndecl)))
3654 struct assign_parm_data_one data = {};
3655 assign_parms_setup_varargs (&all, &data, false);
3658 FOR_EACH_VEC_ELT (fnargs, i, parm)
3660 struct assign_parm_data_one data;
3662 /* Extract the type of PARM; adjust it according to ABI. */
3663 assign_parm_find_data_types (&all, parm, &data);
3665 /* Early out for errors and void parameters. */
3666 if (data.passed_mode == VOIDmode)
3668 SET_DECL_RTL (parm, const0_rtx);
3669 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3670 continue;
3673 /* Estimate stack alignment from parameter alignment. */
3674 if (SUPPORTS_STACK_ALIGNMENT)
3676 unsigned int align
3677 = targetm.calls.function_arg_boundary (data.arg.mode,
3678 data.arg.type);
3679 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align);
3680 if (TYPE_ALIGN (data.nominal_type) > align)
3681 align = MINIMUM_ALIGNMENT (data.nominal_type,
3682 TYPE_MODE (data.nominal_type),
3683 TYPE_ALIGN (data.nominal_type));
3684 if (crtl->stack_alignment_estimated < align)
3686 gcc_assert (!crtl->stack_realign_processed);
3687 crtl->stack_alignment_estimated = align;
3691 /* Find out where the parameter arrives in this function. */
3692 assign_parm_find_entry_rtl (&all, &data);
3694 /* Find out where stack space for this parameter might be. */
3695 if (assign_parm_is_stack_parm (&all, &data))
3697 assign_parm_find_stack_rtl (parm, &data);
3698 assign_parm_adjust_entry_rtl (&data);
3699 /* For arguments that occupy no space in the parameter
3700 passing area, have non-zero size and have address taken,
3701 force creation of a stack slot so that they have distinct
3702 address from other parameters. */
3703 if (TYPE_EMPTY_P (data.arg.type)
3704 && TREE_ADDRESSABLE (parm)
3705 && data.entry_parm == data.stack_parm
3706 && MEM_P (data.entry_parm)
3707 && int_size_in_bytes (data.arg.type))
3708 data.stack_parm = NULL_RTX;
3710 /* Record permanently how this parm was passed. */
3711 if (data.arg.pass_by_reference)
3713 rtx incoming_rtl
3714 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)),
3715 data.entry_parm);
3716 set_decl_incoming_rtl (parm, incoming_rtl, true);
3718 else
3719 set_decl_incoming_rtl (parm, data.entry_parm, false);
3721 assign_parm_adjust_stack_rtl (&data);
3723 if (assign_parm_setup_block_p (&data))
3724 assign_parm_setup_block (&all, parm, &data);
3725 else if (data.arg.pass_by_reference || use_register_for_decl (parm))
3726 assign_parm_setup_reg (&all, parm, &data);
3727 else
3728 assign_parm_setup_stack (&all, parm, &data);
3730 if (cfun->stdarg && !DECL_CHAIN (parm))
3731 assign_parms_setup_varargs (&all, &data, false);
3733 /* Update info on where next arg arrives in registers. */
3734 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3737 if (targetm.calls.split_complex_arg)
3738 assign_parms_unsplit_complex (&all, fnargs);
3740 fnargs.release ();
3742 /* Output all parameter conversion instructions (possibly including calls)
3743 now that all parameters have been copied out of hard registers. */
3744 emit_insn (all.first_conversion_insn);
3746 /* Estimate reload stack alignment from scalar return mode. */
3747 if (SUPPORTS_STACK_ALIGNMENT)
3749 if (DECL_RESULT (fndecl))
3751 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3752 machine_mode mode = TYPE_MODE (type);
3754 if (mode != BLKmode
3755 && mode != VOIDmode
3756 && !AGGREGATE_TYPE_P (type))
3758 unsigned int align = GET_MODE_ALIGNMENT (mode);
3759 if (crtl->stack_alignment_estimated < align)
3761 gcc_assert (!crtl->stack_realign_processed);
3762 crtl->stack_alignment_estimated = align;
3768 /* If we are receiving a struct value address as the first argument, set up
3769 the RTL for the function result. As this might require code to convert
3770 the transmitted address to Pmode, we do this here to ensure that possible
3771 preliminary conversions of the address have been emitted already. */
3772 if (all.function_result_decl)
3774 tree result = DECL_RESULT (current_function_decl);
3775 rtx addr = DECL_RTL (all.function_result_decl);
3776 rtx x;
3778 if (DECL_BY_REFERENCE (result))
3780 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3781 x = addr;
3783 else
3785 SET_DECL_VALUE_EXPR (result,
3786 build1 (INDIRECT_REF, TREE_TYPE (result),
3787 all.function_result_decl));
3788 addr = convert_memory_address (Pmode, addr);
3789 x = gen_rtx_MEM (DECL_MODE (result), addr);
3790 set_mem_attributes (x, result, 1);
3793 DECL_HAS_VALUE_EXPR_P (result) = 1;
3795 set_parm_rtl (result, x);
3798 /* We have aligned all the args, so add space for the pretend args. */
3799 crtl->args.pretend_args_size = all.pretend_args_size;
3800 all.stack_args_size.constant += all.extra_pretend_bytes;
3801 crtl->args.size = all.stack_args_size.constant;
3803 /* Adjust function incoming argument size for alignment and
3804 minimum length. */
3806 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3807 crtl->args.size = aligned_upper_bound (crtl->args.size,
3808 PARM_BOUNDARY / BITS_PER_UNIT);
3810 if (ARGS_GROW_DOWNWARD)
3812 crtl->args.arg_offset_rtx
3813 = (all.stack_args_size.var == 0
3814 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3815 : expand_expr (size_diffop (all.stack_args_size.var,
3816 size_int (-all.stack_args_size.constant)),
3817 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3819 else
3820 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3822 /* See how many bytes, if any, of its args a function should try to pop
3823 on return. */
3825 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3826 TREE_TYPE (fndecl),
3827 crtl->args.size);
3829 /* For stdarg.h function, save info about
3830 regs and stack space used by the named args. */
3832 crtl->args.info = all.args_so_far_v;
3834 /* Set the rtx used for the function return value. Put this in its
3835 own variable so any optimizers that need this information don't have
3836 to include tree.h. Do this here so it gets done when an inlined
3837 function gets output. */
3839 crtl->return_rtx
3840 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3841 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3843 /* If scalar return value was computed in a pseudo-reg, or was a named
3844 return value that got dumped to the stack, copy that to the hard
3845 return register. */
3846 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3848 tree decl_result = DECL_RESULT (fndecl);
3849 rtx decl_rtl = DECL_RTL (decl_result);
3851 if (REG_P (decl_rtl)
3852 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3853 : DECL_REGISTER (decl_result))
3855 rtx real_decl_rtl;
3857 /* Unless the psABI says not to. */
3858 if (TYPE_EMPTY_P (TREE_TYPE (decl_result)))
3859 real_decl_rtl = NULL_RTX;
3860 else
3862 real_decl_rtl
3863 = targetm.calls.function_value (TREE_TYPE (decl_result),
3864 fndecl, true);
3865 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3867 /* The delay slot scheduler assumes that crtl->return_rtx
3868 holds the hard register containing the return value, not a
3869 temporary pseudo. */
3870 crtl->return_rtx = real_decl_rtl;
3875 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3876 For all seen types, gimplify their sizes. */
3878 static tree
3879 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3881 tree t = *tp;
3883 *walk_subtrees = 0;
3884 if (TYPE_P (t))
3886 if (POINTER_TYPE_P (t))
3887 *walk_subtrees = 1;
3888 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3889 && !TYPE_SIZES_GIMPLIFIED (t))
3891 gimplify_type_sizes (t, (gimple_seq *) data);
3892 *walk_subtrees = 1;
3896 return NULL;
3899 /* Gimplify the parameter list for current_function_decl. This involves
3900 evaluating SAVE_EXPRs of variable sized parameters and generating code
3901 to implement callee-copies reference parameters. Returns a sequence of
3902 statements to add to the beginning of the function. */
3904 gimple_seq
3905 gimplify_parameters (gimple_seq *cleanup)
3907 struct assign_parm_data_all all;
3908 tree parm;
3909 gimple_seq stmts = NULL;
3910 vec<tree> fnargs;
3911 unsigned i;
3913 assign_parms_initialize_all (&all);
3914 fnargs = assign_parms_augmented_arg_list (&all);
3916 FOR_EACH_VEC_ELT (fnargs, i, parm)
3918 struct assign_parm_data_one data;
3920 /* Extract the type of PARM; adjust it according to ABI. */
3921 assign_parm_find_data_types (&all, parm, &data);
3923 /* Early out for errors and void parameters. */
3924 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3925 continue;
3927 /* Update info on where next arg arrives in registers. */
3928 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3930 /* ??? Once upon a time variable_size stuffed parameter list
3931 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3932 turned out to be less than manageable in the gimple world.
3933 Now we have to hunt them down ourselves. */
3934 walk_tree_without_duplicates (&data.arg.type,
3935 gimplify_parm_type, &stmts);
3937 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3939 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3940 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3943 if (data.arg.pass_by_reference)
3945 tree type = TREE_TYPE (data.arg.type);
3946 function_arg_info orig_arg (type, data.arg.named);
3947 if (reference_callee_copied (&all.args_so_far_v, orig_arg))
3949 tree local, t;
3951 /* For constant-sized objects, this is trivial; for
3952 variable-sized objects, we have to play games. */
3953 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3954 && !(flag_stack_check == GENERIC_STACK_CHECK
3955 && compare_tree_int (DECL_SIZE_UNIT (parm),
3956 STACK_CHECK_MAX_VAR_SIZE) > 0))
3958 local = create_tmp_var (type, get_name (parm));
3959 DECL_IGNORED_P (local) = 0;
3960 /* If PARM was addressable, move that flag over
3961 to the local copy, as its address will be taken,
3962 not the PARMs. Keep the parms address taken
3963 as we'll query that flag during gimplification. */
3964 if (TREE_ADDRESSABLE (parm))
3965 TREE_ADDRESSABLE (local) = 1;
3966 if (DECL_NOT_GIMPLE_REG_P (parm))
3967 DECL_NOT_GIMPLE_REG_P (local) = 1;
3969 if (!is_gimple_reg (local)
3970 && flag_stack_reuse != SR_NONE)
3972 tree clobber = build_clobber (type);
3973 gimple *clobber_stmt;
3974 clobber_stmt = gimple_build_assign (local, clobber);
3975 gimple_seq_add_stmt (cleanup, clobber_stmt);
3978 else
3980 tree ptr_type, addr;
3982 ptr_type = build_pointer_type (type);
3983 addr = create_tmp_reg (ptr_type, get_name (parm));
3984 DECL_IGNORED_P (addr) = 0;
3985 local = build_fold_indirect_ref (addr);
3987 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3988 DECL_ALIGN (parm),
3989 max_int_size_in_bytes (type));
3990 /* The call has been built for a variable-sized object. */
3991 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3992 t = fold_convert (ptr_type, t);
3993 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3994 gimplify_and_add (t, &stmts);
3997 gimplify_assign (local, parm, &stmts);
3999 SET_DECL_VALUE_EXPR (parm, local);
4000 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4005 fnargs.release ();
4007 return stmts;
4010 /* Compute the size and offset from the start of the stacked arguments for a
4011 parm passed in mode PASSED_MODE and with type TYPE.
4013 INITIAL_OFFSET_PTR points to the current offset into the stacked
4014 arguments.
4016 The starting offset and size for this parm are returned in
4017 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4018 nonzero, the offset is that of stack slot, which is returned in
4019 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4020 padding required from the initial offset ptr to the stack slot.
4022 IN_REGS is nonzero if the argument will be passed in registers. It will
4023 never be set if REG_PARM_STACK_SPACE is not defined.
4025 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4026 for arguments which are passed in registers.
4028 FNDECL is the function in which the argument was defined.
4030 There are two types of rounding that are done. The first, controlled by
4031 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4032 argument list to be aligned to the specific boundary (in bits). This
4033 rounding affects the initial and starting offsets, but not the argument
4034 size.
4036 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4037 optionally rounds the size of the parm to PARM_BOUNDARY. The
4038 initial offset is not affected by this rounding, while the size always
4039 is and the starting offset may be. */
4041 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4042 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4043 callers pass in the total size of args so far as
4044 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4046 void
4047 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4048 int reg_parm_stack_space, int partial,
4049 tree fndecl ATTRIBUTE_UNUSED,
4050 struct args_size *initial_offset_ptr,
4051 struct locate_and_pad_arg_data *locate)
4053 tree sizetree;
4054 pad_direction where_pad;
4055 unsigned int boundary, round_boundary;
4056 int part_size_in_regs;
4058 /* If we have found a stack parm before we reach the end of the
4059 area reserved for registers, skip that area. */
4060 if (! in_regs)
4062 if (reg_parm_stack_space > 0)
4064 if (initial_offset_ptr->var
4065 || !ordered_p (initial_offset_ptr->constant,
4066 reg_parm_stack_space))
4068 initial_offset_ptr->var
4069 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4070 ssize_int (reg_parm_stack_space));
4071 initial_offset_ptr->constant = 0;
4073 else
4074 initial_offset_ptr->constant
4075 = ordered_max (initial_offset_ptr->constant,
4076 reg_parm_stack_space);
4080 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4082 sizetree = (type
4083 ? arg_size_in_bytes (type)
4084 : size_int (GET_MODE_SIZE (passed_mode)));
4085 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4086 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4087 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4088 type);
4089 locate->where_pad = where_pad;
4091 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4092 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4093 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4095 locate->boundary = boundary;
4097 if (SUPPORTS_STACK_ALIGNMENT)
4099 /* stack_alignment_estimated can't change after stack has been
4100 realigned. */
4101 if (crtl->stack_alignment_estimated < boundary)
4103 if (!crtl->stack_realign_processed)
4104 crtl->stack_alignment_estimated = boundary;
4105 else
4107 /* If stack is realigned and stack alignment value
4108 hasn't been finalized, it is OK not to increase
4109 stack_alignment_estimated. The bigger alignment
4110 requirement is recorded in stack_alignment_needed
4111 below. */
4112 gcc_assert (!crtl->stack_realign_finalized
4113 && crtl->stack_realign_needed);
4118 if (ARGS_GROW_DOWNWARD)
4120 locate->slot_offset.constant = -initial_offset_ptr->constant;
4121 if (initial_offset_ptr->var)
4122 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4123 initial_offset_ptr->var);
4126 tree s2 = sizetree;
4127 if (where_pad != PAD_NONE
4128 && (!tree_fits_uhwi_p (sizetree)
4129 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4130 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4131 SUB_PARM_SIZE (locate->slot_offset, s2);
4134 locate->slot_offset.constant += part_size_in_regs;
4136 if (!in_regs || reg_parm_stack_space > 0)
4137 pad_to_arg_alignment (&locate->slot_offset, boundary,
4138 &locate->alignment_pad);
4140 locate->size.constant = (-initial_offset_ptr->constant
4141 - locate->slot_offset.constant);
4142 if (initial_offset_ptr->var)
4143 locate->size.var = size_binop (MINUS_EXPR,
4144 size_binop (MINUS_EXPR,
4145 ssize_int (0),
4146 initial_offset_ptr->var),
4147 locate->slot_offset.var);
4149 /* Pad_below needs the pre-rounded size to know how much to pad
4150 below. */
4151 locate->offset = locate->slot_offset;
4152 if (where_pad == PAD_DOWNWARD)
4153 pad_below (&locate->offset, passed_mode, sizetree);
4156 else
4158 if (!in_regs || reg_parm_stack_space > 0)
4159 pad_to_arg_alignment (initial_offset_ptr, boundary,
4160 &locate->alignment_pad);
4161 locate->slot_offset = *initial_offset_ptr;
4163 #ifdef PUSH_ROUNDING
4164 if (passed_mode != BLKmode)
4165 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4166 #endif
4168 /* Pad_below needs the pre-rounded size to know how much to pad below
4169 so this must be done before rounding up. */
4170 locate->offset = locate->slot_offset;
4171 if (where_pad == PAD_DOWNWARD)
4172 pad_below (&locate->offset, passed_mode, sizetree);
4174 if (where_pad != PAD_NONE
4175 && (!tree_fits_uhwi_p (sizetree)
4176 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4177 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4179 ADD_PARM_SIZE (locate->size, sizetree);
4181 locate->size.constant -= part_size_in_regs;
4184 locate->offset.constant
4185 += targetm.calls.function_arg_offset (passed_mode, type);
4188 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4189 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4191 static void
4192 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4193 struct args_size *alignment_pad)
4195 tree save_var = NULL_TREE;
4196 poly_int64 save_constant = 0;
4197 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4198 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4200 #ifdef SPARC_STACK_BOUNDARY_HACK
4201 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4202 the real alignment of %sp. However, when it does this, the
4203 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4204 if (SPARC_STACK_BOUNDARY_HACK)
4205 sp_offset = 0;
4206 #endif
4208 if (boundary > PARM_BOUNDARY)
4210 save_var = offset_ptr->var;
4211 save_constant = offset_ptr->constant;
4214 alignment_pad->var = NULL_TREE;
4215 alignment_pad->constant = 0;
4217 if (boundary > BITS_PER_UNIT)
4219 int misalign;
4220 if (offset_ptr->var
4221 || !known_misalignment (offset_ptr->constant + sp_offset,
4222 boundary_in_bytes, &misalign))
4224 tree sp_offset_tree = ssize_int (sp_offset);
4225 tree offset = size_binop (PLUS_EXPR,
4226 ARGS_SIZE_TREE (*offset_ptr),
4227 sp_offset_tree);
4228 tree rounded;
4229 if (ARGS_GROW_DOWNWARD)
4230 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4231 else
4232 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4234 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4235 /* ARGS_SIZE_TREE includes constant term. */
4236 offset_ptr->constant = 0;
4237 if (boundary > PARM_BOUNDARY)
4238 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4239 save_var);
4241 else
4243 if (ARGS_GROW_DOWNWARD)
4244 offset_ptr->constant -= misalign;
4245 else
4246 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4248 if (boundary > PARM_BOUNDARY)
4249 alignment_pad->constant = offset_ptr->constant - save_constant;
4254 static void
4255 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4257 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4258 int misalign;
4259 if (passed_mode != BLKmode
4260 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4261 offset_ptr->constant += -misalign & (align - 1);
4262 else
4264 if (TREE_CODE (sizetree) != INTEGER_CST
4265 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4267 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4268 tree s2 = round_up (sizetree, align);
4269 /* Add it in. */
4270 ADD_PARM_SIZE (*offset_ptr, s2);
4271 SUB_PARM_SIZE (*offset_ptr, sizetree);
4277 /* True if register REGNO was alive at a place where `setjmp' was
4278 called and was set more than once or is an argument. Such regs may
4279 be clobbered by `longjmp'. */
4281 static bool
4282 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4284 /* There appear to be cases where some local vars never reach the
4285 backend but have bogus regnos. */
4286 if (regno >= max_reg_num ())
4287 return false;
4289 return ((REG_N_SETS (regno) > 1
4290 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4291 regno))
4292 && REGNO_REG_SET_P (setjmp_crosses, regno));
4295 /* Walk the tree of blocks describing the binding levels within a
4296 function and warn about variables the might be killed by setjmp or
4297 vfork. This is done after calling flow_analysis before register
4298 allocation since that will clobber the pseudo-regs to hard
4299 regs. */
4301 static void
4302 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4304 tree decl, sub;
4306 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4308 if (VAR_P (decl)
4309 && DECL_RTL_SET_P (decl)
4310 && REG_P (DECL_RTL (decl))
4311 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4312 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4313 " %<longjmp%> or %<vfork%>", decl);
4316 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4317 setjmp_vars_warning (setjmp_crosses, sub);
4320 /* Do the appropriate part of setjmp_vars_warning
4321 but for arguments instead of local variables. */
4323 static void
4324 setjmp_args_warning (bitmap setjmp_crosses)
4326 tree decl;
4327 for (decl = DECL_ARGUMENTS (current_function_decl);
4328 decl; decl = DECL_CHAIN (decl))
4329 if (DECL_RTL (decl) != 0
4330 && REG_P (DECL_RTL (decl))
4331 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4332 warning (OPT_Wclobbered,
4333 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4334 decl);
4337 /* Generate warning messages for variables live across setjmp. */
4339 void
4340 generate_setjmp_warnings (void)
4342 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4344 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4345 || bitmap_empty_p (setjmp_crosses))
4346 return;
4348 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4349 setjmp_args_warning (setjmp_crosses);
4353 /* Reverse the order of elements in the fragment chain T of blocks,
4354 and return the new head of the chain (old last element).
4355 In addition to that clear BLOCK_SAME_RANGE flags when needed
4356 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4357 its super fragment origin. */
4359 static tree
4360 block_fragments_nreverse (tree t)
4362 tree prev = 0, block, next, prev_super = 0;
4363 tree super = BLOCK_SUPERCONTEXT (t);
4364 if (BLOCK_FRAGMENT_ORIGIN (super))
4365 super = BLOCK_FRAGMENT_ORIGIN (super);
4366 for (block = t; block; block = next)
4368 next = BLOCK_FRAGMENT_CHAIN (block);
4369 BLOCK_FRAGMENT_CHAIN (block) = prev;
4370 if ((prev && !BLOCK_SAME_RANGE (prev))
4371 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4372 != prev_super))
4373 BLOCK_SAME_RANGE (block) = 0;
4374 prev_super = BLOCK_SUPERCONTEXT (block);
4375 BLOCK_SUPERCONTEXT (block) = super;
4376 prev = block;
4378 t = BLOCK_FRAGMENT_ORIGIN (t);
4379 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4380 != prev_super)
4381 BLOCK_SAME_RANGE (t) = 0;
4382 BLOCK_SUPERCONTEXT (t) = super;
4383 return prev;
4386 /* Reverse the order of elements in the chain T of blocks,
4387 and return the new head of the chain (old last element).
4388 Also do the same on subblocks and reverse the order of elements
4389 in BLOCK_FRAGMENT_CHAIN as well. */
4391 static tree
4392 blocks_nreverse_all (tree t)
4394 tree prev = 0, block, next;
4395 for (block = t; block; block = next)
4397 next = BLOCK_CHAIN (block);
4398 BLOCK_CHAIN (block) = prev;
4399 if (BLOCK_FRAGMENT_CHAIN (block)
4400 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4402 BLOCK_FRAGMENT_CHAIN (block)
4403 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4404 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4405 BLOCK_SAME_RANGE (block) = 0;
4407 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4408 prev = block;
4410 return prev;
4414 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4415 and create duplicate blocks. */
4416 /* ??? Need an option to either create block fragments or to create
4417 abstract origin duplicates of a source block. It really depends
4418 on what optimization has been performed. */
4420 void
4421 reorder_blocks (void)
4423 tree block = DECL_INITIAL (current_function_decl);
4425 if (block == NULL_TREE)
4426 return;
4428 auto_vec<tree, 10> block_stack;
4430 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4431 clear_block_marks (block);
4433 /* Prune the old trees away, so that they don't get in the way. */
4434 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4435 BLOCK_CHAIN (block) = NULL_TREE;
4437 /* Recreate the block tree from the note nesting. */
4438 reorder_blocks_1 (get_insns (), block, &block_stack);
4439 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4442 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4444 void
4445 clear_block_marks (tree block)
4447 while (block)
4449 TREE_ASM_WRITTEN (block) = 0;
4450 clear_block_marks (BLOCK_SUBBLOCKS (block));
4451 block = BLOCK_CHAIN (block);
4455 static void
4456 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4457 vec<tree> *p_block_stack)
4459 rtx_insn *insn;
4460 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4462 for (insn = insns; insn; insn = NEXT_INSN (insn))
4464 if (NOTE_P (insn))
4466 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4468 tree block = NOTE_BLOCK (insn);
4469 tree origin;
4471 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4472 origin = block;
4474 if (prev_end)
4475 BLOCK_SAME_RANGE (prev_end) = 0;
4476 prev_end = NULL_TREE;
4478 /* If we have seen this block before, that means it now
4479 spans multiple address regions. Create a new fragment. */
4480 if (TREE_ASM_WRITTEN (block))
4482 tree new_block = copy_node (block);
4484 BLOCK_SAME_RANGE (new_block) = 0;
4485 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4486 BLOCK_FRAGMENT_CHAIN (new_block)
4487 = BLOCK_FRAGMENT_CHAIN (origin);
4488 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4490 NOTE_BLOCK (insn) = new_block;
4491 block = new_block;
4494 if (prev_beg == current_block && prev_beg)
4495 BLOCK_SAME_RANGE (block) = 1;
4497 prev_beg = origin;
4499 BLOCK_SUBBLOCKS (block) = 0;
4500 TREE_ASM_WRITTEN (block) = 1;
4501 /* When there's only one block for the entire function,
4502 current_block == block and we mustn't do this, it
4503 will cause infinite recursion. */
4504 if (block != current_block)
4506 tree super;
4507 if (block != origin)
4508 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4509 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4510 (origin))
4511 == current_block);
4512 if (p_block_stack->is_empty ())
4513 super = current_block;
4514 else
4516 super = p_block_stack->last ();
4517 gcc_assert (super == current_block
4518 || BLOCK_FRAGMENT_ORIGIN (super)
4519 == current_block);
4521 BLOCK_SUPERCONTEXT (block) = super;
4522 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4523 BLOCK_SUBBLOCKS (current_block) = block;
4524 current_block = origin;
4526 p_block_stack->safe_push (block);
4528 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4530 NOTE_BLOCK (insn) = p_block_stack->pop ();
4531 current_block = BLOCK_SUPERCONTEXT (current_block);
4532 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4533 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4534 prev_beg = NULL_TREE;
4535 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4536 ? NOTE_BLOCK (insn) : NULL_TREE;
4539 else
4541 prev_beg = NULL_TREE;
4542 if (prev_end)
4543 BLOCK_SAME_RANGE (prev_end) = 0;
4544 prev_end = NULL_TREE;
4549 /* Reverse the order of elements in the chain T of blocks,
4550 and return the new head of the chain (old last element). */
4552 tree
4553 blocks_nreverse (tree t)
4555 tree prev = 0, block, next;
4556 for (block = t; block; block = next)
4558 next = BLOCK_CHAIN (block);
4559 BLOCK_CHAIN (block) = prev;
4560 prev = block;
4562 return prev;
4565 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4566 by modifying the last node in chain 1 to point to chain 2. */
4568 tree
4569 block_chainon (tree op1, tree op2)
4571 tree t1;
4573 if (!op1)
4574 return op2;
4575 if (!op2)
4576 return op1;
4578 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4579 continue;
4580 BLOCK_CHAIN (t1) = op2;
4582 #ifdef ENABLE_TREE_CHECKING
4584 tree t2;
4585 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4586 gcc_assert (t2 != t1);
4588 #endif
4590 return op1;
4593 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4594 non-NULL, list them all into VECTOR, in a depth-first preorder
4595 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4596 blocks. */
4598 static int
4599 all_blocks (tree block, tree *vector)
4601 int n_blocks = 0;
4603 while (block)
4605 TREE_ASM_WRITTEN (block) = 0;
4607 /* Record this block. */
4608 if (vector)
4609 vector[n_blocks] = block;
4611 ++n_blocks;
4613 /* Record the subblocks, and their subblocks... */
4614 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4615 vector ? vector + n_blocks : 0);
4616 block = BLOCK_CHAIN (block);
4619 return n_blocks;
4622 /* Return a vector containing all the blocks rooted at BLOCK. The
4623 number of elements in the vector is stored in N_BLOCKS_P. The
4624 vector is dynamically allocated; it is the caller's responsibility
4625 to call `free' on the pointer returned. */
4627 static tree *
4628 get_block_vector (tree block, int *n_blocks_p)
4630 tree *block_vector;
4632 *n_blocks_p = all_blocks (block, NULL);
4633 block_vector = XNEWVEC (tree, *n_blocks_p);
4634 all_blocks (block, block_vector);
4636 return block_vector;
4639 static GTY(()) int next_block_index = 2;
4641 /* Set BLOCK_NUMBER for all the blocks in FN. */
4643 void
4644 number_blocks (tree fn)
4646 int i;
4647 int n_blocks;
4648 tree *block_vector;
4650 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4652 /* The top-level BLOCK isn't numbered at all. */
4653 for (i = 1; i < n_blocks; ++i)
4654 /* We number the blocks from two. */
4655 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4657 free (block_vector);
4659 return;
4662 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4664 DEBUG_FUNCTION tree
4665 debug_find_var_in_block_tree (tree var, tree block)
4667 tree t;
4669 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4670 if (t == var)
4671 return block;
4673 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4675 tree ret = debug_find_var_in_block_tree (var, t);
4676 if (ret)
4677 return ret;
4680 return NULL_TREE;
4683 /* Keep track of whether we're in a dummy function context. If we are,
4684 we don't want to invoke the set_current_function hook, because we'll
4685 get into trouble if the hook calls target_reinit () recursively or
4686 when the initial initialization is not yet complete. */
4688 static bool in_dummy_function;
4690 /* Invoke the target hook when setting cfun. Update the optimization options
4691 if the function uses different options than the default. */
4693 static void
4694 invoke_set_current_function_hook (tree fndecl)
4696 if (!in_dummy_function)
4698 tree opts = ((fndecl)
4699 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4700 : optimization_default_node);
4702 if (!opts)
4703 opts = optimization_default_node;
4705 /* Change optimization options if needed. */
4706 if (optimization_current_node != opts)
4708 optimization_current_node = opts;
4709 cl_optimization_restore (&global_options, &global_options_set,
4710 TREE_OPTIMIZATION (opts));
4713 targetm.set_current_function (fndecl);
4714 this_fn_optabs = this_target_optabs;
4716 /* Initialize global alignment variables after op. */
4717 parse_alignment_opts ();
4719 if (opts != optimization_default_node)
4721 init_tree_optimization_optabs (opts);
4722 if (TREE_OPTIMIZATION_OPTABS (opts))
4723 this_fn_optabs = (struct target_optabs *)
4724 TREE_OPTIMIZATION_OPTABS (opts);
4729 /* cfun should never be set directly; use this function. */
4731 void
4732 set_cfun (struct function *new_cfun, bool force)
4734 if (cfun != new_cfun || force)
4736 cfun = new_cfun;
4737 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4738 redirect_edge_var_map_empty ();
4742 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4744 static vec<function *> cfun_stack;
4746 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4747 current_function_decl accordingly. */
4749 void
4750 push_cfun (struct function *new_cfun)
4752 gcc_assert ((!cfun && !current_function_decl)
4753 || (cfun && current_function_decl == cfun->decl));
4754 cfun_stack.safe_push (cfun);
4755 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4756 set_cfun (new_cfun);
4759 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4761 void
4762 pop_cfun (void)
4764 struct function *new_cfun = cfun_stack.pop ();
4765 /* When in_dummy_function, we do have a cfun but current_function_decl is
4766 NULL. We also allow pushing NULL cfun and subsequently changing
4767 current_function_decl to something else and have both restored by
4768 pop_cfun. */
4769 gcc_checking_assert (in_dummy_function
4770 || !cfun
4771 || current_function_decl == cfun->decl);
4772 set_cfun (new_cfun);
4773 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4776 /* Return value of funcdef and increase it. */
4778 get_next_funcdef_no (void)
4780 return funcdef_no++;
4783 /* Return value of funcdef. */
4785 get_last_funcdef_no (void)
4787 return funcdef_no;
4790 /* Allocate and initialize the stack usage info data structure for the
4791 current function. */
4792 static void
4793 allocate_stack_usage_info (void)
4795 gcc_assert (!cfun->su);
4796 cfun->su = ggc_cleared_alloc<stack_usage> ();
4797 cfun->su->static_stack_size = -1;
4800 /* Allocate a function structure for FNDECL and set its contents
4801 to the defaults. Set cfun to the newly-allocated object.
4802 Some of the helper functions invoked during initialization assume
4803 that cfun has already been set. Therefore, assign the new object
4804 directly into cfun and invoke the back end hook explicitly at the
4805 very end, rather than initializing a temporary and calling set_cfun
4806 on it.
4808 ABSTRACT_P is true if this is a function that will never be seen by
4809 the middle-end. Such functions are front-end concepts (like C++
4810 function templates) that do not correspond directly to functions
4811 placed in object files. */
4813 void
4814 allocate_struct_function (tree fndecl, bool abstract_p)
4816 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4818 cfun = ggc_cleared_alloc<function> ();
4820 init_eh_for_function ();
4822 if (init_machine_status)
4823 cfun->machine = (*init_machine_status) ();
4825 #ifdef OVERRIDE_ABI_FORMAT
4826 OVERRIDE_ABI_FORMAT (fndecl);
4827 #endif
4829 if (fndecl != NULL_TREE)
4831 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4832 cfun->decl = fndecl;
4833 current_function_funcdef_no = get_next_funcdef_no ();
4836 invoke_set_current_function_hook (fndecl);
4838 if (fndecl != NULL_TREE)
4840 tree result = DECL_RESULT (fndecl);
4842 if (!abstract_p)
4844 /* Now that we have activated any function-specific attributes
4845 that might affect layout, particularly vector modes, relayout
4846 each of the parameters and the result. */
4847 relayout_decl (result);
4848 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4849 parm = DECL_CHAIN (parm))
4850 relayout_decl (parm);
4852 /* Similarly relayout the function decl. */
4853 targetm.target_option.relayout_function (fndecl);
4856 if (!abstract_p && aggregate_value_p (result, fndecl))
4858 #ifdef PCC_STATIC_STRUCT_RETURN
4859 cfun->returns_pcc_struct = 1;
4860 #endif
4861 cfun->returns_struct = 1;
4864 cfun->stdarg = stdarg_p (fntype);
4866 /* Assume all registers in stdarg functions need to be saved. */
4867 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4868 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4870 /* ??? This could be set on a per-function basis by the front-end
4871 but is this worth the hassle? */
4872 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4873 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4875 if (!profile_flag && !flag_instrument_function_entry_exit)
4876 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4878 if (flag_callgraph_info)
4879 allocate_stack_usage_info ();
4882 /* Don't enable begin stmt markers if var-tracking at assignments is
4883 disabled. The markers make little sense without the variable
4884 binding annotations among them. */
4885 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4886 && MAY_HAVE_DEBUG_MARKER_STMTS;
4889 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4890 instead of just setting it. */
4892 void
4893 push_struct_function (tree fndecl, bool abstract_p)
4895 /* When in_dummy_function we might be in the middle of a pop_cfun and
4896 current_function_decl and cfun may not match. */
4897 gcc_assert (in_dummy_function
4898 || (!cfun && !current_function_decl)
4899 || (cfun && current_function_decl == cfun->decl));
4900 cfun_stack.safe_push (cfun);
4901 current_function_decl = fndecl;
4902 allocate_struct_function (fndecl, abstract_p);
4905 /* Reset crtl and other non-struct-function variables to defaults as
4906 appropriate for emitting rtl at the start of a function. */
4908 static void
4909 prepare_function_start (void)
4911 gcc_assert (!get_last_insn ());
4913 if (in_dummy_function)
4914 crtl->abi = &default_function_abi;
4915 else
4916 crtl->abi = &fndecl_abi (cfun->decl).base_abi ();
4918 init_temp_slots ();
4919 init_emit ();
4920 init_varasm_status ();
4921 init_expr ();
4922 default_rtl_profile ();
4924 if (flag_stack_usage_info && !flag_callgraph_info)
4925 allocate_stack_usage_info ();
4927 cse_not_expected = ! optimize;
4929 /* Caller save not needed yet. */
4930 caller_save_needed = 0;
4932 /* We haven't done register allocation yet. */
4933 reg_renumber = 0;
4935 /* Indicate that we have not instantiated virtual registers yet. */
4936 virtuals_instantiated = 0;
4938 /* Indicate that we want CONCATs now. */
4939 generating_concat_p = 1;
4941 /* Indicate we have no need of a frame pointer yet. */
4942 frame_pointer_needed = 0;
4945 void
4946 push_dummy_function (bool with_decl)
4948 tree fn_decl, fn_type, fn_result_decl;
4950 gcc_assert (!in_dummy_function);
4951 in_dummy_function = true;
4953 if (with_decl)
4955 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4956 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4957 fn_type);
4958 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4959 NULL_TREE, void_type_node);
4960 DECL_RESULT (fn_decl) = fn_result_decl;
4961 DECL_ARTIFICIAL (fn_decl) = 1;
4962 tree fn_name = get_identifier (" ");
4963 SET_DECL_ASSEMBLER_NAME (fn_decl, fn_name);
4965 else
4966 fn_decl = NULL_TREE;
4968 push_struct_function (fn_decl);
4971 /* Initialize the rtl expansion mechanism so that we can do simple things
4972 like generate sequences. This is used to provide a context during global
4973 initialization of some passes. You must call expand_dummy_function_end
4974 to exit this context. */
4976 void
4977 init_dummy_function_start (void)
4979 push_dummy_function (false);
4980 prepare_function_start ();
4983 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4984 and initialize static variables for generating RTL for the statements
4985 of the function. */
4987 void
4988 init_function_start (tree subr)
4990 /* Initialize backend, if needed. */
4991 initialize_rtl ();
4993 prepare_function_start ();
4994 decide_function_section (subr);
4996 /* Warn if this value is an aggregate type,
4997 regardless of which calling convention we are using for it. */
4998 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4999 warning_at (DECL_SOURCE_LOCATION (DECL_RESULT (subr)),
5000 OPT_Waggregate_return, "function returns an aggregate");
5003 /* Expand code to verify the stack_protect_guard. This is invoked at
5004 the end of a function to be protected. */
5006 void
5007 stack_protect_epilogue (void)
5009 tree guard_decl = crtl->stack_protect_guard_decl;
5010 rtx_code_label *label = gen_label_rtx ();
5011 rtx x, y;
5012 rtx_insn *seq = NULL;
5014 x = expand_normal (crtl->stack_protect_guard);
5016 if (targetm.have_stack_protect_combined_test () && guard_decl)
5018 gcc_assert (DECL_P (guard_decl));
5019 y = DECL_RTL (guard_decl);
5020 /* Allow the target to compute address of Y and compare it with X without
5021 leaking Y into a register. This combined address + compare pattern
5022 allows the target to prevent spilling of any intermediate results by
5023 splitting it after register allocator. */
5024 seq = targetm.gen_stack_protect_combined_test (x, y, label);
5026 else
5028 if (guard_decl)
5029 y = expand_normal (guard_decl);
5030 else
5031 y = const0_rtx;
5033 /* Allow the target to compare Y with X without leaking either into
5034 a register. */
5035 if (targetm.have_stack_protect_test ())
5036 seq = targetm.gen_stack_protect_test (x, y, label);
5039 if (seq)
5040 emit_insn (seq);
5041 else
5042 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5044 /* The noreturn predictor has been moved to the tree level. The rtl-level
5045 predictors estimate this branch about 20%, which isn't enough to get
5046 things moved out of line. Since this is the only extant case of adding
5047 a noreturn function at the rtl level, it doesn't seem worth doing ought
5048 except adding the prediction by hand. */
5049 rtx_insn *tmp = get_last_insn ();
5050 if (JUMP_P (tmp))
5051 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5053 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5054 free_temp_slots ();
5055 emit_label (label);
5058 /* Start the RTL for a new function, and set variables used for
5059 emitting RTL.
5060 SUBR is the FUNCTION_DECL node.
5061 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5062 the function's parameters, which must be run at any return statement. */
5064 bool currently_expanding_function_start;
5065 void
5066 expand_function_start (tree subr)
5068 currently_expanding_function_start = true;
5070 /* Make sure volatile mem refs aren't considered
5071 valid operands of arithmetic insns. */
5072 init_recog_no_volatile ();
5074 crtl->profile
5075 = (profile_flag
5076 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5078 crtl->limit_stack
5079 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5081 /* Make the label for return statements to jump to. Do not special
5082 case machines with special return instructions -- they will be
5083 handled later during jump, ifcvt, or epilogue creation. */
5084 return_label = gen_label_rtx ();
5086 /* Initialize rtx used to return the value. */
5087 /* Do this before assign_parms so that we copy the struct value address
5088 before any library calls that assign parms might generate. */
5090 /* Decide whether to return the value in memory or in a register. */
5091 tree res = DECL_RESULT (subr);
5092 if (aggregate_value_p (res, subr))
5094 /* Returning something that won't go in a register. */
5095 rtx value_address = 0;
5097 #ifdef PCC_STATIC_STRUCT_RETURN
5098 if (cfun->returns_pcc_struct)
5100 int size = int_size_in_bytes (TREE_TYPE (res));
5101 value_address = assemble_static_space (size);
5103 else
5104 #endif
5106 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5107 /* Expect to be passed the address of a place to store the value.
5108 If it is passed as an argument, assign_parms will take care of
5109 it. */
5110 if (sv)
5112 value_address = gen_reg_rtx (Pmode);
5113 emit_move_insn (value_address, sv);
5116 if (value_address)
5118 rtx x = value_address;
5119 if (!DECL_BY_REFERENCE (res))
5121 x = gen_rtx_MEM (DECL_MODE (res), x);
5122 set_mem_attributes (x, res, 1);
5124 set_parm_rtl (res, x);
5127 else if (DECL_MODE (res) == VOIDmode)
5128 /* If return mode is void, this decl rtl should not be used. */
5129 set_parm_rtl (res, NULL_RTX);
5130 else
5132 /* Compute the return values into a pseudo reg, which we will copy
5133 into the true return register after the cleanups are done. */
5134 tree return_type = TREE_TYPE (res);
5136 /* If we may coalesce this result, make sure it has the expected mode
5137 in case it was promoted. But we need not bother about BLKmode. */
5138 machine_mode promoted_mode
5139 = flag_tree_coalesce_vars && is_gimple_reg (res)
5140 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5141 : BLKmode;
5143 if (promoted_mode != BLKmode)
5144 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5145 else if (TYPE_MODE (return_type) != BLKmode
5146 && targetm.calls.return_in_msb (return_type))
5147 /* expand_function_end will insert the appropriate padding in
5148 this case. Use the return value's natural (unpadded) mode
5149 within the function proper. */
5150 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5151 else
5153 /* In order to figure out what mode to use for the pseudo, we
5154 figure out what the mode of the eventual return register will
5155 actually be, and use that. */
5156 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5158 /* Structures that are returned in registers are not
5159 aggregate_value_p, so we may see a PARALLEL or a REG. */
5160 if (REG_P (hard_reg))
5161 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5162 else
5164 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5165 set_parm_rtl (res, gen_group_rtx (hard_reg));
5169 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5170 result to the real return register(s). */
5171 DECL_REGISTER (res) = 1;
5174 /* Initialize rtx for parameters and local variables.
5175 In some cases this requires emitting insns. */
5176 assign_parms (subr);
5178 /* If function gets a static chain arg, store it. */
5179 if (cfun->static_chain_decl)
5181 tree parm = cfun->static_chain_decl;
5182 rtx local, chain;
5183 rtx_insn *insn;
5184 int unsignedp;
5186 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5187 chain = targetm.calls.static_chain (current_function_decl, true);
5189 set_decl_incoming_rtl (parm, chain, false);
5190 set_parm_rtl (parm, local);
5191 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5193 if (GET_MODE (local) != GET_MODE (chain))
5195 convert_move (local, chain, unsignedp);
5196 insn = get_last_insn ();
5198 else
5199 insn = emit_move_insn (local, chain);
5201 /* Mark the register as eliminable, similar to parameters. */
5202 if (MEM_P (chain)
5203 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5204 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5206 /* If we aren't optimizing, save the static chain onto the stack. */
5207 if (!optimize)
5209 tree saved_static_chain_decl
5210 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5211 DECL_NAME (parm), TREE_TYPE (parm));
5212 rtx saved_static_chain_rtx
5213 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5214 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5215 emit_move_insn (saved_static_chain_rtx, chain);
5216 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5217 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5221 /* The following was moved from init_function_start.
5222 The move was supposed to make sdb output more accurate. */
5223 /* Indicate the beginning of the function body,
5224 as opposed to parm setup. */
5225 emit_note (NOTE_INSN_FUNCTION_BEG);
5227 gcc_assert (NOTE_P (get_last_insn ()));
5229 parm_birth_insn = get_last_insn ();
5231 /* If the function receives a non-local goto, then store the
5232 bits we need to restore the frame pointer. */
5233 if (cfun->nonlocal_goto_save_area)
5235 tree t_save;
5236 rtx r_save;
5238 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5239 gcc_assert (DECL_RTL_SET_P (var));
5241 t_save = build4 (ARRAY_REF,
5242 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5243 cfun->nonlocal_goto_save_area,
5244 integer_zero_node, NULL_TREE, NULL_TREE);
5245 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5246 gcc_assert (GET_MODE (r_save) == Pmode);
5248 emit_move_insn (r_save, hard_frame_pointer_rtx);
5249 update_nonlocal_goto_save_area ();
5252 if (crtl->profile)
5254 #ifdef PROFILE_HOOK
5255 PROFILE_HOOK (current_function_funcdef_no);
5256 #endif
5259 /* If we are doing generic stack checking, the probe should go here. */
5260 if (flag_stack_check == GENERIC_STACK_CHECK)
5261 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5263 currently_expanding_function_start = false;
5266 void
5267 pop_dummy_function (void)
5269 pop_cfun ();
5270 in_dummy_function = false;
5273 /* Undo the effects of init_dummy_function_start. */
5274 void
5275 expand_dummy_function_end (void)
5277 gcc_assert (in_dummy_function);
5279 /* End any sequences that failed to be closed due to syntax errors. */
5280 while (in_sequence_p ())
5281 end_sequence ();
5283 /* Outside function body, can't compute type's actual size
5284 until next function's body starts. */
5286 free_after_parsing (cfun);
5287 free_after_compilation (cfun);
5288 pop_dummy_function ();
5291 /* Helper for diddle_return_value. */
5293 void
5294 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5296 if (! outgoing)
5297 return;
5299 if (REG_P (outgoing))
5300 (*doit) (outgoing, arg);
5301 else if (GET_CODE (outgoing) == PARALLEL)
5303 int i;
5305 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5307 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5309 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5310 (*doit) (x, arg);
5315 /* Call DOIT for each hard register used as a return value from
5316 the current function. */
5318 void
5319 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5321 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5324 static void
5325 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5327 emit_clobber (reg);
5330 void
5331 clobber_return_register (void)
5333 diddle_return_value (do_clobber_return_reg, NULL);
5335 /* In case we do use pseudo to return value, clobber it too. */
5336 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5338 tree decl_result = DECL_RESULT (current_function_decl);
5339 rtx decl_rtl = DECL_RTL (decl_result);
5340 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5342 do_clobber_return_reg (decl_rtl, NULL);
5347 static void
5348 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5350 emit_use (reg);
5353 static void
5354 use_return_register (void)
5356 diddle_return_value (do_use_return_reg, NULL);
5359 /* Generate RTL for the end of the current function. */
5361 void
5362 expand_function_end (void)
5364 /* If arg_pointer_save_area was referenced only from a nested
5365 function, we will not have initialized it yet. Do that now. */
5366 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5367 get_arg_pointer_save_area ();
5369 /* If we are doing generic stack checking and this function makes calls,
5370 do a stack probe at the start of the function to ensure we have enough
5371 space for another stack frame. */
5372 if (flag_stack_check == GENERIC_STACK_CHECK)
5374 rtx_insn *insn, *seq;
5376 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5377 if (CALL_P (insn))
5379 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5380 start_sequence ();
5381 if (STACK_CHECK_MOVING_SP)
5382 anti_adjust_stack_and_probe (max_frame_size, true);
5383 else
5384 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5385 seq = get_insns ();
5386 end_sequence ();
5387 set_insn_locations (seq, prologue_location);
5388 emit_insn_before (seq, stack_check_probe_note);
5389 break;
5393 /* End any sequences that failed to be closed due to syntax errors. */
5394 while (in_sequence_p ())
5395 end_sequence ();
5397 clear_pending_stack_adjust ();
5398 do_pending_stack_adjust ();
5400 /* Output a linenumber for the end of the function.
5401 SDB depended on this. */
5402 set_curr_insn_location (input_location);
5404 /* Before the return label (if any), clobber the return
5405 registers so that they are not propagated live to the rest of
5406 the function. This can only happen with functions that drop
5407 through; if there had been a return statement, there would
5408 have either been a return rtx, or a jump to the return label.
5410 We delay actual code generation after the current_function_value_rtx
5411 is computed. */
5412 rtx_insn *clobber_after = get_last_insn ();
5414 /* Output the label for the actual return from the function. */
5415 emit_label (return_label);
5417 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5419 /* Let except.cc know where it should emit the call to unregister
5420 the function context for sjlj exceptions. */
5421 if (flag_exceptions)
5422 sjlj_emit_function_exit_after (get_last_insn ());
5425 /* If this is an implementation of throw, do what's necessary to
5426 communicate between __builtin_eh_return and the epilogue. */
5427 expand_eh_return ();
5429 /* If stack protection is enabled for this function, check the guard. */
5430 if (crtl->stack_protect_guard
5431 && targetm.stack_protect_runtime_enabled_p ()
5432 && naked_return_label == NULL_RTX)
5433 stack_protect_epilogue ();
5435 /* If scalar return value was computed in a pseudo-reg, or was a named
5436 return value that got dumped to the stack, copy that to the hard
5437 return register. */
5438 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5440 tree decl_result = DECL_RESULT (current_function_decl);
5441 rtx decl_rtl = DECL_RTL (decl_result);
5443 if ((REG_P (decl_rtl)
5444 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5445 : DECL_REGISTER (decl_result))
5446 /* Unless the psABI says not to. */
5447 && !TYPE_EMPTY_P (TREE_TYPE (decl_result)))
5449 rtx real_decl_rtl = crtl->return_rtx;
5450 complex_mode cmode;
5452 /* This should be set in assign_parms. */
5453 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5455 /* If this is a BLKmode structure being returned in registers,
5456 then use the mode computed in expand_return. Note that if
5457 decl_rtl is memory, then its mode may have been changed,
5458 but that crtl->return_rtx has not. */
5459 if (GET_MODE (real_decl_rtl) == BLKmode)
5460 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5462 /* If a non-BLKmode return value should be padded at the least
5463 significant end of the register, shift it left by the appropriate
5464 amount. BLKmode results are handled using the group load/store
5465 machinery. */
5466 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5467 && REG_P (real_decl_rtl)
5468 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5470 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5471 REGNO (real_decl_rtl)),
5472 decl_rtl);
5473 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5475 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5477 /* If expand_function_start has created a PARALLEL for decl_rtl,
5478 move the result to the real return registers. Otherwise, do
5479 a group load from decl_rtl for a named return. */
5480 if (GET_CODE (decl_rtl) == PARALLEL)
5481 emit_group_move (real_decl_rtl, decl_rtl);
5482 else
5483 emit_group_load (real_decl_rtl, decl_rtl,
5484 TREE_TYPE (decl_result),
5485 int_size_in_bytes (TREE_TYPE (decl_result)));
5487 /* In the case of complex integer modes smaller than a word, we'll
5488 need to generate some non-trivial bitfield insertions. Do that
5489 on a pseudo and not the hard register. */
5490 else if (GET_CODE (decl_rtl) == CONCAT
5491 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5492 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5494 int old_generating_concat_p;
5495 rtx tmp;
5497 old_generating_concat_p = generating_concat_p;
5498 generating_concat_p = 0;
5499 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5500 generating_concat_p = old_generating_concat_p;
5502 emit_move_insn (tmp, decl_rtl);
5503 emit_move_insn (real_decl_rtl, tmp);
5505 /* If a named return value dumped decl_return to memory, then
5506 we may need to re-do the PROMOTE_MODE signed/unsigned
5507 extension. */
5508 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5510 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5511 promote_function_mode (TREE_TYPE (decl_result),
5512 GET_MODE (decl_rtl), &unsignedp,
5513 TREE_TYPE (current_function_decl), 1);
5515 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5517 else
5518 emit_move_insn (real_decl_rtl, decl_rtl);
5522 /* If returning a structure, arrange to return the address of the value
5523 in a place where debuggers expect to find it.
5525 If returning a structure PCC style,
5526 the caller also depends on this value.
5527 And cfun->returns_pcc_struct is not necessarily set. */
5528 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5529 && !targetm.calls.omit_struct_return_reg)
5531 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5532 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5533 rtx outgoing;
5535 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5536 type = TREE_TYPE (type);
5537 else
5538 value_address = XEXP (value_address, 0);
5540 outgoing = targetm.calls.function_value (build_pointer_type (type),
5541 current_function_decl, true);
5543 /* Mark this as a function return value so integrate will delete the
5544 assignment and USE below when inlining this function. */
5545 REG_FUNCTION_VALUE_P (outgoing) = 1;
5547 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5548 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5549 value_address = convert_memory_address (mode, value_address);
5551 emit_move_insn (outgoing, value_address);
5553 /* Show return register used to hold result (in this case the address
5554 of the result. */
5555 crtl->return_rtx = outgoing;
5558 /* Emit the actual code to clobber return register. Don't emit
5559 it if clobber_after is a barrier, then the previous basic block
5560 certainly doesn't fall thru into the exit block. */
5561 if (!BARRIER_P (clobber_after))
5563 start_sequence ();
5564 clobber_return_register ();
5565 rtx_insn *seq = get_insns ();
5566 end_sequence ();
5568 emit_insn_after (seq, clobber_after);
5571 /* Output the label for the naked return from the function. */
5572 if (naked_return_label)
5573 emit_label (naked_return_label);
5575 /* @@@ This is a kludge. We want to ensure that instructions that
5576 may trap are not moved into the epilogue by scheduling, because
5577 we don't always emit unwind information for the epilogue. */
5578 if (cfun->can_throw_non_call_exceptions
5579 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5580 emit_insn (gen_blockage ());
5582 /* If stack protection is enabled for this function, check the guard. */
5583 if (crtl->stack_protect_guard
5584 && targetm.stack_protect_runtime_enabled_p ()
5585 && naked_return_label)
5586 stack_protect_epilogue ();
5588 /* If we had calls to alloca, and this machine needs
5589 an accurate stack pointer to exit the function,
5590 insert some code to save and restore the stack pointer. */
5591 if (! EXIT_IGNORE_STACK
5592 && cfun->calls_alloca)
5594 rtx tem = 0;
5596 start_sequence ();
5597 emit_stack_save (SAVE_FUNCTION, &tem);
5598 rtx_insn *seq = get_insns ();
5599 end_sequence ();
5600 emit_insn_before (seq, parm_birth_insn);
5602 emit_stack_restore (SAVE_FUNCTION, tem);
5605 /* ??? This should no longer be necessary since stupid is no longer with
5606 us, but there are some parts of the compiler (eg reload_combine, and
5607 sh mach_dep_reorg) that still try and compute their own lifetime info
5608 instead of using the general framework. */
5609 use_return_register ();
5613 get_arg_pointer_save_area (void)
5615 rtx ret = arg_pointer_save_area;
5617 if (! ret)
5619 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5620 arg_pointer_save_area = ret;
5623 if (! crtl->arg_pointer_save_area_init)
5625 /* Save the arg pointer at the beginning of the function. The
5626 generated stack slot may not be a valid memory address, so we
5627 have to check it and fix it if necessary. */
5628 start_sequence ();
5629 emit_move_insn (validize_mem (copy_rtx (ret)),
5630 crtl->args.internal_arg_pointer);
5631 rtx_insn *seq = get_insns ();
5632 end_sequence ();
5634 push_topmost_sequence ();
5635 emit_insn_after (seq, entry_of_function ());
5636 pop_topmost_sequence ();
5638 crtl->arg_pointer_save_area_init = true;
5641 return ret;
5645 /* If debugging dumps are requested, dump information about how the
5646 target handled -fstack-check=clash for the prologue.
5648 PROBES describes what if any probes were emitted.
5650 RESIDUALS indicates if the prologue had any residual allocation
5651 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5653 void
5654 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5656 if (!dump_file)
5657 return;
5659 switch (probes)
5661 case NO_PROBE_NO_FRAME:
5662 fprintf (dump_file,
5663 "Stack clash no probe no stack adjustment in prologue.\n");
5664 break;
5665 case NO_PROBE_SMALL_FRAME:
5666 fprintf (dump_file,
5667 "Stack clash no probe small stack adjustment in prologue.\n");
5668 break;
5669 case PROBE_INLINE:
5670 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5671 break;
5672 case PROBE_LOOP:
5673 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5674 break;
5677 if (residuals)
5678 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5679 else
5680 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5682 if (frame_pointer_needed)
5683 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5684 else
5685 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5687 if (TREE_THIS_VOLATILE (cfun->decl))
5688 fprintf (dump_file,
5689 "Stack clash noreturn prologue, assuming no implicit"
5690 " probes in caller.\n");
5691 else
5692 fprintf (dump_file,
5693 "Stack clash not noreturn prologue.\n");
5696 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5697 for the first time. */
5699 static void
5700 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5702 rtx_insn *tmp;
5703 hash_table<insn_cache_hasher> *hash = *hashp;
5705 if (hash == NULL)
5706 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5708 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5710 rtx *slot = hash->find_slot (tmp, INSERT);
5711 gcc_assert (*slot == NULL);
5712 *slot = tmp;
5716 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5717 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5718 insn, then record COPY as well. */
5720 void
5721 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5723 hash_table<insn_cache_hasher> *hash;
5724 rtx *slot;
5726 hash = epilogue_insn_hash;
5727 if (!hash || !hash->find (insn))
5729 hash = prologue_insn_hash;
5730 if (!hash || !hash->find (insn))
5731 return;
5734 slot = hash->find_slot (copy, INSERT);
5735 gcc_assert (*slot == NULL);
5736 *slot = copy;
5739 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5740 we can be running after reorg, SEQUENCE rtl is possible. */
5742 static bool
5743 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5745 if (hash == NULL)
5746 return false;
5748 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5750 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5751 int i;
5752 for (i = seq->len () - 1; i >= 0; i--)
5753 if (hash->find (seq->element (i)))
5754 return true;
5755 return false;
5758 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5762 prologue_contains (const rtx_insn *insn)
5764 return contains (insn, prologue_insn_hash);
5768 epilogue_contains (const rtx_insn *insn)
5770 return contains (insn, epilogue_insn_hash);
5774 prologue_epilogue_contains (const rtx_insn *insn)
5776 if (contains (insn, prologue_insn_hash))
5777 return 1;
5778 if (contains (insn, epilogue_insn_hash))
5779 return 1;
5780 return 0;
5783 void
5784 record_prologue_seq (rtx_insn *seq)
5786 record_insns (seq, NULL, &prologue_insn_hash);
5789 void
5790 record_epilogue_seq (rtx_insn *seq)
5792 record_insns (seq, NULL, &epilogue_insn_hash);
5795 /* Set JUMP_LABEL for a return insn. */
5797 void
5798 set_return_jump_label (rtx_insn *returnjump)
5800 rtx pat = PATTERN (returnjump);
5801 if (GET_CODE (pat) == PARALLEL)
5802 pat = XVECEXP (pat, 0, 0);
5803 if (ANY_RETURN_P (pat))
5804 JUMP_LABEL (returnjump) = pat;
5805 else
5806 JUMP_LABEL (returnjump) = ret_rtx;
5809 /* Return a sequence to be used as the split prologue for the current
5810 function, or NULL. */
5812 static rtx_insn *
5813 make_split_prologue_seq (void)
5815 if (!flag_split_stack
5816 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5817 return NULL;
5819 start_sequence ();
5820 emit_insn (targetm.gen_split_stack_prologue ());
5821 rtx_insn *seq = get_insns ();
5822 end_sequence ();
5824 record_insns (seq, NULL, &prologue_insn_hash);
5825 set_insn_locations (seq, prologue_location);
5827 return seq;
5830 /* Return a sequence to be used as the prologue for the current function,
5831 or NULL. */
5833 static rtx_insn *
5834 make_prologue_seq (void)
5836 if (!targetm.have_prologue ())
5837 return NULL;
5839 start_sequence ();
5840 rtx_insn *seq = targetm.gen_prologue ();
5841 emit_insn (seq);
5843 /* Insert an explicit USE for the frame pointer
5844 if the profiling is on and the frame pointer is required. */
5845 if (crtl->profile && frame_pointer_needed)
5846 emit_use (hard_frame_pointer_rtx);
5848 /* Retain a map of the prologue insns. */
5849 record_insns (seq, NULL, &prologue_insn_hash);
5850 emit_note (NOTE_INSN_PROLOGUE_END);
5852 /* Ensure that instructions are not moved into the prologue when
5853 profiling is on. The call to the profiling routine can be
5854 emitted within the live range of a call-clobbered register. */
5855 if (!targetm.profile_before_prologue () && crtl->profile)
5856 emit_insn (gen_blockage ());
5858 seq = get_insns ();
5859 end_sequence ();
5860 set_insn_locations (seq, prologue_location);
5862 return seq;
5865 /* Emit a sequence of insns to zero the call-used registers before RET
5866 according to ZERO_REGS_TYPE. */
5868 static void
5869 gen_call_used_regs_seq (rtx_insn *ret, unsigned int zero_regs_type)
5871 bool only_gpr = true;
5872 bool only_used = true;
5873 bool only_arg = true;
5875 /* No need to zero call-used-regs in main (). */
5876 if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
5877 return;
5879 /* No need to zero call-used-regs if __builtin_eh_return is called
5880 since it isn't a normal function return. */
5881 if (crtl->calls_eh_return)
5882 return;
5884 /* If only_gpr is true, only zero call-used registers that are
5885 general-purpose registers; if only_used is true, only zero
5886 call-used registers that are used in the current function;
5887 if only_arg is true, only zero call-used registers that pass
5888 parameters defined by the flatform's calling conversion. */
5890 using namespace zero_regs_flags;
5892 only_gpr = zero_regs_type & ONLY_GPR;
5893 only_used = zero_regs_type & ONLY_USED;
5894 only_arg = zero_regs_type & ONLY_ARG;
5896 /* For each of the hard registers, we should zero it if:
5897 1. it is a call-used register;
5898 and 2. it is not a fixed register;
5899 and 3. it is not live at the return of the routine;
5900 and 4. it is general registor if only_gpr is true;
5901 and 5. it is used in the routine if only_used is true;
5902 and 6. it is a register that passes parameter if only_arg is true. */
5904 /* First, prepare the data flow information. */
5905 basic_block bb = BLOCK_FOR_INSN (ret);
5906 auto_bitmap live_out;
5907 bitmap_copy (live_out, df_get_live_out (bb));
5908 df_simulate_initialize_backwards (bb, live_out);
5909 df_simulate_one_insn_backwards (bb, ret, live_out);
5911 HARD_REG_SET selected_hardregs;
5912 HARD_REG_SET all_call_used_regs;
5913 CLEAR_HARD_REG_SET (selected_hardregs);
5914 CLEAR_HARD_REG_SET (all_call_used_regs);
5915 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5917 if (!crtl->abi->clobbers_full_reg_p (regno))
5918 continue;
5919 if (fixed_regs[regno])
5920 continue;
5921 if (REGNO_REG_SET_P (live_out, regno))
5922 continue;
5923 #ifdef LEAF_REG_REMAP
5924 if (crtl->uses_only_leaf_regs && LEAF_REG_REMAP (regno) < 0)
5925 continue;
5926 #endif
5927 /* This is a call used register that is dead at return. */
5928 SET_HARD_REG_BIT (all_call_used_regs, regno);
5930 if (only_gpr
5931 && !TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], regno))
5932 continue;
5933 if (only_used && !df_regs_ever_live_p (regno))
5934 continue;
5935 if (only_arg && !FUNCTION_ARG_REGNO_P (regno))
5936 continue;
5938 /* Now this is a register that we might want to zero. */
5939 SET_HARD_REG_BIT (selected_hardregs, regno);
5942 if (hard_reg_set_empty_p (selected_hardregs))
5943 return;
5945 /* Now that we have a hard register set that needs to be zeroed, pass it to
5946 target to generate zeroing sequence. */
5947 HARD_REG_SET zeroed_hardregs;
5948 start_sequence ();
5949 zeroed_hardregs = targetm.calls.zero_call_used_regs (selected_hardregs);
5951 /* For most targets, the returned set of registers is a subset of
5952 selected_hardregs, however, for some of the targets (for example MIPS),
5953 clearing some registers that are in selected_hardregs requires clearing
5954 other call used registers that are not in the selected_hardregs, under
5955 such situation, the returned set of registers must be a subset of
5956 all call used registers. */
5957 gcc_assert (hard_reg_set_subset_p (zeroed_hardregs, all_call_used_regs));
5959 rtx_insn *seq = get_insns ();
5960 end_sequence ();
5961 if (seq)
5963 /* Emit the memory blockage and register clobber asm volatile before
5964 the whole sequence. */
5965 start_sequence ();
5966 expand_asm_reg_clobber_mem_blockage (zeroed_hardregs);
5967 rtx_insn *seq_barrier = get_insns ();
5968 end_sequence ();
5970 emit_insn_before (seq_barrier, ret);
5971 emit_insn_before (seq, ret);
5973 /* Update the data flow information. */
5974 crtl->must_be_zero_on_return |= zeroed_hardregs;
5975 df_update_exit_block_uses ();
5980 /* Return a sequence to be used as the epilogue for the current function,
5981 or NULL. */
5983 static rtx_insn *
5984 make_epilogue_seq (void)
5986 if (!targetm.have_epilogue ())
5987 return NULL;
5989 start_sequence ();
5990 emit_note (NOTE_INSN_EPILOGUE_BEG);
5991 rtx_insn *seq = targetm.gen_epilogue ();
5992 if (seq)
5993 emit_jump_insn (seq);
5995 /* Retain a map of the epilogue insns. */
5996 record_insns (seq, NULL, &epilogue_insn_hash);
5997 set_insn_locations (seq, epilogue_location);
5999 seq = get_insns ();
6000 rtx_insn *returnjump = get_last_insn ();
6001 end_sequence ();
6003 if (JUMP_P (returnjump))
6004 set_return_jump_label (returnjump);
6006 return seq;
6010 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6011 this into place with notes indicating where the prologue ends and where
6012 the epilogue begins. Update the basic block information when possible.
6014 Notes on epilogue placement:
6015 There are several kinds of edges to the exit block:
6016 * a single fallthru edge from LAST_BB
6017 * possibly, edges from blocks containing sibcalls
6018 * possibly, fake edges from infinite loops
6020 The epilogue is always emitted on the fallthru edge from the last basic
6021 block in the function, LAST_BB, into the exit block.
6023 If LAST_BB is empty except for a label, it is the target of every
6024 other basic block in the function that ends in a return. If a
6025 target has a return or simple_return pattern (possibly with
6026 conditional variants), these basic blocks can be changed so that a
6027 return insn is emitted into them, and their target is adjusted to
6028 the real exit block.
6030 Notes on shrink wrapping: We implement a fairly conservative
6031 version of shrink-wrapping rather than the textbook one. We only
6032 generate a single prologue and a single epilogue. This is
6033 sufficient to catch a number of interesting cases involving early
6034 exits.
6036 First, we identify the blocks that require the prologue to occur before
6037 them. These are the ones that modify a call-saved register, or reference
6038 any of the stack or frame pointer registers. To simplify things, we then
6039 mark everything reachable from these blocks as also requiring a prologue.
6040 This takes care of loops automatically, and avoids the need to examine
6041 whether MEMs reference the frame, since it is sufficient to check for
6042 occurrences of the stack or frame pointer.
6044 We then compute the set of blocks for which the need for a prologue
6045 is anticipatable (borrowing terminology from the shrink-wrapping
6046 description in Muchnick's book). These are the blocks which either
6047 require a prologue themselves, or those that have only successors
6048 where the prologue is anticipatable. The prologue needs to be
6049 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6050 is not. For the moment, we ensure that only one such edge exists.
6052 The epilogue is placed as described above, but we make a
6053 distinction between inserting return and simple_return patterns
6054 when modifying other blocks that end in a return. Blocks that end
6055 in a sibcall omit the sibcall_epilogue if the block is not in
6056 ANTIC. */
6058 void
6059 thread_prologue_and_epilogue_insns (void)
6061 df_analyze ();
6063 /* Can't deal with multiple successors of the entry block at the
6064 moment. Function should always have at least one entry
6065 point. */
6066 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6068 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6069 edge orig_entry_edge = entry_edge;
6071 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
6072 rtx_insn *prologue_seq = make_prologue_seq ();
6073 rtx_insn *epilogue_seq = make_epilogue_seq ();
6075 /* Try to perform a kind of shrink-wrapping, making sure the
6076 prologue/epilogue is emitted only around those parts of the
6077 function that require it. */
6078 try_shrink_wrapping (&entry_edge, prologue_seq);
6080 /* If the target can handle splitting the prologue/epilogue into separate
6081 components, try to shrink-wrap these components separately. */
6082 try_shrink_wrapping_separate (entry_edge->dest);
6084 /* If that did anything for any component we now need the generate the
6085 "main" prologue again. Because some targets require some of these
6086 to be called in a specific order (i386 requires the split prologue
6087 to be first, for example), we create all three sequences again here.
6088 If this does not work for some target, that target should not enable
6089 separate shrink-wrapping. */
6090 if (crtl->shrink_wrapped_separate)
6092 split_prologue_seq = make_split_prologue_seq ();
6093 prologue_seq = make_prologue_seq ();
6094 epilogue_seq = make_epilogue_seq ();
6097 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6099 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6100 this marker for the splits of EH_RETURN patterns, and nothing else
6101 uses the flag in the meantime. */
6102 epilogue_completed = 1;
6104 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6105 some targets, these get split to a special version of the epilogue
6106 code. In order to be able to properly annotate these with unwind
6107 info, try to split them now. If we get a valid split, drop an
6108 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6109 edge e;
6110 edge_iterator ei;
6111 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6113 rtx_insn *prev, *last, *trial;
6115 if (e->flags & EDGE_FALLTHRU)
6116 continue;
6117 last = BB_END (e->src);
6118 if (!eh_returnjump_p (last))
6119 continue;
6121 prev = PREV_INSN (last);
6122 trial = try_split (PATTERN (last), last, 1);
6123 if (trial == last)
6124 continue;
6126 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6127 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6130 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6132 if (exit_fallthru_edge)
6134 if (epilogue_seq)
6136 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
6137 commit_edge_insertions ();
6139 /* The epilogue insns we inserted may cause the exit edge to no longer
6140 be fallthru. */
6141 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6143 if (((e->flags & EDGE_FALLTHRU) != 0)
6144 && returnjump_p (BB_END (e->src)))
6145 e->flags &= ~EDGE_FALLTHRU;
6148 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
6150 /* We have a fall-through edge to the exit block, the source is not
6151 at the end of the function, and there will be an assembler epilogue
6152 at the end of the function.
6153 We can't use force_nonfallthru here, because that would try to
6154 use return. Inserting a jump 'by hand' is extremely messy, so
6155 we take advantage of cfg_layout_finalize using
6156 fixup_fallthru_exit_predecessor. */
6157 cfg_layout_initialize (0);
6158 basic_block cur_bb;
6159 FOR_EACH_BB_FN (cur_bb, cfun)
6160 if (cur_bb->index >= NUM_FIXED_BLOCKS
6161 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6162 cur_bb->aux = cur_bb->next_bb;
6163 cfg_layout_finalize ();
6167 /* Insert the prologue. */
6169 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6171 if (split_prologue_seq || prologue_seq)
6173 rtx_insn *split_prologue_insn = split_prologue_seq;
6174 if (split_prologue_seq)
6176 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
6177 split_prologue_insn = NEXT_INSN (split_prologue_insn);
6178 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6181 rtx_insn *prologue_insn = prologue_seq;
6182 if (prologue_seq)
6184 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
6185 prologue_insn = NEXT_INSN (prologue_insn);
6186 insert_insn_on_edge (prologue_seq, entry_edge);
6189 commit_edge_insertions ();
6191 /* Look for basic blocks within the prologue insns. */
6192 if (split_prologue_insn
6193 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
6194 split_prologue_insn = NULL;
6195 if (prologue_insn
6196 && BLOCK_FOR_INSN (prologue_insn) == NULL)
6197 prologue_insn = NULL;
6198 if (split_prologue_insn || prologue_insn)
6200 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6201 bitmap_clear (blocks);
6202 if (split_prologue_insn)
6203 bitmap_set_bit (blocks,
6204 BLOCK_FOR_INSN (split_prologue_insn)->index);
6205 if (prologue_insn)
6206 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
6207 find_many_sub_basic_blocks (blocks);
6211 default_rtl_profile ();
6213 /* Emit sibling epilogues before any sibling call sites. */
6214 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6215 (e = ei_safe_edge (ei));
6216 ei_next (&ei))
6218 /* Skip those already handled, the ones that run without prologue. */
6219 if (e->flags & EDGE_IGNORE)
6221 e->flags &= ~EDGE_IGNORE;
6222 continue;
6225 rtx_insn *insn = BB_END (e->src);
6227 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6228 continue;
6230 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6232 start_sequence ();
6233 emit_note (NOTE_INSN_EPILOGUE_BEG);
6234 emit_insn (ep_seq);
6235 rtx_insn *seq = get_insns ();
6236 end_sequence ();
6238 /* Retain a map of the epilogue insns. Used in life analysis to
6239 avoid getting rid of sibcall epilogue insns. Do this before we
6240 actually emit the sequence. */
6241 record_insns (seq, NULL, &epilogue_insn_hash);
6242 set_insn_locations (seq, epilogue_location);
6244 emit_insn_before (seq, insn);
6248 if (epilogue_seq)
6250 rtx_insn *insn, *next;
6252 /* Similarly, move any line notes that appear after the epilogue.
6253 There is no need, however, to be quite so anal about the existence
6254 of such a note. Also possibly move
6255 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6256 info generation. */
6257 for (insn = epilogue_seq; insn; insn = next)
6259 next = NEXT_INSN (insn);
6260 if (NOTE_P (insn)
6261 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6262 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6266 /* Threading the prologue and epilogue changes the artificial refs in the
6267 entry and exit blocks, and may invalidate DF info for tail calls. */
6268 if (optimize
6269 || flag_optimize_sibling_calls
6270 || flag_ipa_icf_functions
6271 || in_lto_p)
6272 df_update_entry_exit_and_calls ();
6273 else
6275 df_update_entry_block_defs ();
6276 df_update_exit_block_uses ();
6280 /* Reposition the prologue-end and epilogue-begin notes after
6281 instruction scheduling. */
6283 void
6284 reposition_prologue_and_epilogue_notes (void)
6286 if (!targetm.have_prologue ()
6287 && !targetm.have_epilogue ()
6288 && !targetm.have_sibcall_epilogue ())
6289 return;
6291 /* Since the hash table is created on demand, the fact that it is
6292 non-null is a signal that it is non-empty. */
6293 if (prologue_insn_hash != NULL)
6295 size_t len = prologue_insn_hash->elements ();
6296 rtx_insn *insn, *last = NULL, *note = NULL;
6298 /* Scan from the beginning until we reach the last prologue insn. */
6299 /* ??? While we do have the CFG intact, there are two problems:
6300 (1) The prologue can contain loops (typically probing the stack),
6301 which means that the end of the prologue isn't in the first bb.
6302 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6303 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6305 if (NOTE_P (insn))
6307 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6308 note = insn;
6310 else if (contains (insn, prologue_insn_hash))
6312 last = insn;
6313 if (--len == 0)
6314 break;
6318 if (last)
6320 if (note == NULL)
6322 /* Scan forward looking for the PROLOGUE_END note. It should
6323 be right at the beginning of the block, possibly with other
6324 insn notes that got moved there. */
6325 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6327 if (NOTE_P (note)
6328 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6329 break;
6333 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6334 if (LABEL_P (last))
6335 last = NEXT_INSN (last);
6336 reorder_insns (note, note, last);
6340 if (epilogue_insn_hash != NULL)
6342 edge_iterator ei;
6343 edge e;
6345 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6347 rtx_insn *insn, *first = NULL, *note = NULL;
6348 basic_block bb = e->src;
6350 /* Scan from the beginning until we reach the first epilogue insn. */
6351 FOR_BB_INSNS (bb, insn)
6353 if (NOTE_P (insn))
6355 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6357 note = insn;
6358 if (first != NULL)
6359 break;
6362 else if (first == NULL && contains (insn, epilogue_insn_hash))
6364 first = insn;
6365 if (note != NULL)
6366 break;
6370 if (note)
6372 /* If the function has a single basic block, and no real
6373 epilogue insns (e.g. sibcall with no cleanup), the
6374 epilogue note can get scheduled before the prologue
6375 note. If we have frame related prologue insns, having
6376 them scanned during the epilogue will result in a crash.
6377 In this case re-order the epilogue note to just before
6378 the last insn in the block. */
6379 if (first == NULL)
6380 first = BB_END (bb);
6382 if (PREV_INSN (first) != note)
6383 reorder_insns (note, note, PREV_INSN (first));
6389 /* Returns the name of function declared by FNDECL. */
6390 const char *
6391 fndecl_name (tree fndecl)
6393 if (fndecl == NULL)
6394 return "(nofn)";
6395 return lang_hooks.decl_printable_name (fndecl, 1);
6398 /* Returns the name of function FN. */
6399 const char *
6400 function_name (struct function *fn)
6402 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6403 return fndecl_name (fndecl);
6406 /* Returns the name of the current function. */
6407 const char *
6408 current_function_name (void)
6410 return function_name (cfun);
6414 static unsigned int
6415 rest_of_handle_check_leaf_regs (void)
6417 #ifdef LEAF_REGISTERS
6418 crtl->uses_only_leaf_regs
6419 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6420 #endif
6421 return 0;
6424 /* Insert a TYPE into the used types hash table of CFUN. */
6426 static void
6427 used_types_insert_helper (tree type, struct function *func)
6429 if (type != NULL && func != NULL)
6431 if (func->used_types_hash == NULL)
6432 func->used_types_hash = hash_set<tree>::create_ggc (37);
6434 func->used_types_hash->add (type);
6438 /* Given a type, insert it into the used hash table in cfun. */
6439 void
6440 used_types_insert (tree t)
6442 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6443 if (TYPE_NAME (t))
6444 break;
6445 else
6446 t = TREE_TYPE (t);
6447 if (TREE_CODE (t) == ERROR_MARK)
6448 return;
6449 if (TYPE_NAME (t) == NULL_TREE
6450 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6451 t = TYPE_MAIN_VARIANT (t);
6452 if (debug_info_level > DINFO_LEVEL_NONE)
6454 if (cfun)
6455 used_types_insert_helper (t, cfun);
6456 else
6458 /* So this might be a type referenced by a global variable.
6459 Record that type so that we can later decide to emit its
6460 debug information. */
6461 vec_safe_push (types_used_by_cur_var_decl, t);
6466 /* Helper to Hash a struct types_used_by_vars_entry. */
6468 static hashval_t
6469 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6471 gcc_assert (entry && entry->var_decl && entry->type);
6473 return iterative_hash_object (entry->type,
6474 iterative_hash_object (entry->var_decl, 0));
6477 /* Hash function of the types_used_by_vars_entry hash table. */
6479 hashval_t
6480 used_type_hasher::hash (types_used_by_vars_entry *entry)
6482 return hash_types_used_by_vars_entry (entry);
6485 /*Equality function of the types_used_by_vars_entry hash table. */
6487 bool
6488 used_type_hasher::equal (types_used_by_vars_entry *e1,
6489 types_used_by_vars_entry *e2)
6491 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6494 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6496 void
6497 types_used_by_var_decl_insert (tree type, tree var_decl)
6499 if (type != NULL && var_decl != NULL)
6501 types_used_by_vars_entry **slot;
6502 struct types_used_by_vars_entry e;
6503 e.var_decl = var_decl;
6504 e.type = type;
6505 if (types_used_by_vars_hash == NULL)
6506 types_used_by_vars_hash
6507 = hash_table<used_type_hasher>::create_ggc (37);
6509 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6510 if (*slot == NULL)
6512 struct types_used_by_vars_entry *entry;
6513 entry = ggc_alloc<types_used_by_vars_entry> ();
6514 entry->type = type;
6515 entry->var_decl = var_decl;
6516 *slot = entry;
6521 namespace {
6523 const pass_data pass_data_leaf_regs =
6525 RTL_PASS, /* type */
6526 "*leaf_regs", /* name */
6527 OPTGROUP_NONE, /* optinfo_flags */
6528 TV_NONE, /* tv_id */
6529 0, /* properties_required */
6530 0, /* properties_provided */
6531 0, /* properties_destroyed */
6532 0, /* todo_flags_start */
6533 0, /* todo_flags_finish */
6536 class pass_leaf_regs : public rtl_opt_pass
6538 public:
6539 pass_leaf_regs (gcc::context *ctxt)
6540 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6543 /* opt_pass methods: */
6544 unsigned int execute (function *) final override
6546 return rest_of_handle_check_leaf_regs ();
6549 }; // class pass_leaf_regs
6551 } // anon namespace
6553 rtl_opt_pass *
6554 make_pass_leaf_regs (gcc::context *ctxt)
6556 return new pass_leaf_regs (ctxt);
6559 static unsigned int
6560 rest_of_handle_thread_prologue_and_epilogue (function *fun)
6562 /* prepare_shrink_wrap is sensitive to the block structure of the control
6563 flow graph, so clean it up first. */
6564 if (optimize)
6565 cleanup_cfg (0);
6567 /* On some machines, the prologue and epilogue code, or parts thereof,
6568 can be represented as RTL. Doing so lets us schedule insns between
6569 it and the rest of the code and also allows delayed branch
6570 scheduling to operate in the epilogue. */
6571 thread_prologue_and_epilogue_insns ();
6573 /* Some non-cold blocks may now be only reachable from cold blocks.
6574 Fix that up. */
6575 fixup_partitions ();
6577 /* After prologue and epilogue generation, the judgement on whether
6578 one memory access onto stack frame may trap or not could change,
6579 since we get more exact stack information by now. So try to
6580 remove any EH edges here, see PR90259. */
6581 if (fun->can_throw_non_call_exceptions)
6582 purge_all_dead_edges ();
6584 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6585 see PR57320. */
6586 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6588 /* The stack usage info is finalized during prologue expansion. */
6589 if (flag_stack_usage_info || flag_callgraph_info)
6590 output_stack_usage ();
6592 return 0;
6595 /* Record a final call to CALLEE at LOCATION. */
6597 void
6598 record_final_call (tree callee, location_t location)
6600 struct callinfo_callee datum = { location, callee };
6601 vec_safe_push (cfun->su->callees, datum);
6604 /* Record a dynamic allocation made for DECL_OR_EXP. */
6606 void
6607 record_dynamic_alloc (tree decl_or_exp)
6609 struct callinfo_dalloc datum;
6611 if (DECL_P (decl_or_exp))
6613 datum.location = DECL_SOURCE_LOCATION (decl_or_exp);
6614 const char *name = lang_hooks.decl_printable_name (decl_or_exp, 2);
6615 const char *dot = strrchr (name, '.');
6616 if (dot)
6617 name = dot + 1;
6618 datum.name = ggc_strdup (name);
6620 else
6622 datum.location = EXPR_LOCATION (decl_or_exp);
6623 datum.name = NULL;
6626 vec_safe_push (cfun->su->dallocs, datum);
6629 namespace {
6631 const pass_data pass_data_thread_prologue_and_epilogue =
6633 RTL_PASS, /* type */
6634 "pro_and_epilogue", /* name */
6635 OPTGROUP_NONE, /* optinfo_flags */
6636 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6637 0, /* properties_required */
6638 0, /* properties_provided */
6639 0, /* properties_destroyed */
6640 0, /* todo_flags_start */
6641 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6644 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6646 public:
6647 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6648 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6651 /* opt_pass methods: */
6652 unsigned int execute (function * fun) final override
6654 return rest_of_handle_thread_prologue_and_epilogue (fun);
6657 }; // class pass_thread_prologue_and_epilogue
6659 } // anon namespace
6661 rtl_opt_pass *
6662 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6664 return new pass_thread_prologue_and_epilogue (ctxt);
6667 namespace {
6669 const pass_data pass_data_zero_call_used_regs =
6671 RTL_PASS, /* type */
6672 "zero_call_used_regs", /* name */
6673 OPTGROUP_NONE, /* optinfo_flags */
6674 TV_NONE, /* tv_id */
6675 0, /* properties_required */
6676 0, /* properties_provided */
6677 0, /* properties_destroyed */
6678 0, /* todo_flags_start */
6679 0, /* todo_flags_finish */
6682 class pass_zero_call_used_regs: public rtl_opt_pass
6684 public:
6685 pass_zero_call_used_regs (gcc::context *ctxt)
6686 : rtl_opt_pass (pass_data_zero_call_used_regs, ctxt)
6689 /* opt_pass methods: */
6690 unsigned int execute (function *) final override;
6692 }; // class pass_zero_call_used_regs
6694 unsigned int
6695 pass_zero_call_used_regs::execute (function *fun)
6697 using namespace zero_regs_flags;
6698 unsigned int zero_regs_type = UNSET;
6700 tree attr_zero_regs = lookup_attribute ("zero_call_used_regs",
6701 DECL_ATTRIBUTES (fun->decl));
6703 /* Get the type of zero_call_used_regs from function attribute.
6704 We have filtered out invalid attribute values already at this point. */
6705 if (attr_zero_regs)
6707 /* The TREE_VALUE of an attribute is a TREE_LIST whose TREE_VALUE
6708 is the attribute argument's value. */
6709 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6710 gcc_assert (TREE_CODE (attr_zero_regs) == TREE_LIST);
6711 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6712 gcc_assert (TREE_CODE (attr_zero_regs) == STRING_CST);
6714 for (unsigned int i = 0; zero_call_used_regs_opts[i].name != NULL; ++i)
6715 if (strcmp (TREE_STRING_POINTER (attr_zero_regs),
6716 zero_call_used_regs_opts[i].name) == 0)
6718 zero_regs_type = zero_call_used_regs_opts[i].flag;
6719 break;
6723 if (!zero_regs_type)
6724 zero_regs_type = flag_zero_call_used_regs;
6726 /* No need to zero call-used-regs when no user request is present. */
6727 if (!(zero_regs_type & ENABLED))
6728 return 0;
6730 edge_iterator ei;
6731 edge e;
6733 /* This pass needs data flow information. */
6734 df_analyze ();
6736 /* Iterate over the function's return instructions and insert any
6737 register zeroing required by the -fzero-call-used-regs command-line
6738 option or the "zero_call_used_regs" function attribute. */
6739 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6741 rtx_insn *insn = BB_END (e->src);
6742 if (JUMP_P (insn) && ANY_RETURN_P (JUMP_LABEL (insn)))
6743 gen_call_used_regs_seq (insn, zero_regs_type);
6746 return 0;
6749 } // anon namespace
6751 rtl_opt_pass *
6752 make_pass_zero_call_used_regs (gcc::context *ctxt)
6754 return new pass_zero_call_used_regs (ctxt);
6757 /* If CONSTRAINT is a matching constraint, then return its number.
6758 Otherwise, return -1. */
6760 static int
6761 matching_constraint_num (const char *constraint)
6763 if (*constraint == '%')
6764 constraint++;
6766 if (IN_RANGE (*constraint, '0', '9'))
6767 return strtoul (constraint, NULL, 10);
6769 return -1;
6772 /* This mini-pass fixes fall-out from SSA in asm statements that have
6773 in-out constraints. Say you start with
6775 orig = inout;
6776 asm ("": "+mr" (inout));
6777 use (orig);
6779 which is transformed very early to use explicit output and match operands:
6781 orig = inout;
6782 asm ("": "=mr" (inout) : "0" (inout));
6783 use (orig);
6785 Or, after SSA and copyprop,
6787 asm ("": "=mr" (inout_2) : "0" (inout_1));
6788 use (inout_1);
6790 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6791 they represent two separate values, so they will get different pseudo
6792 registers during expansion. Then, since the two operands need to match
6793 per the constraints, but use different pseudo registers, reload can
6794 only register a reload for these operands. But reloads can only be
6795 satisfied by hardregs, not by memory, so we need a register for this
6796 reload, just because we are presented with non-matching operands.
6797 So, even though we allow memory for this operand, no memory can be
6798 used for it, just because the two operands don't match. This can
6799 cause reload failures on register-starved targets.
6801 So it's a symptom of reload not being able to use memory for reloads
6802 or, alternatively it's also a symptom of both operands not coming into
6803 reload as matching (in which case the pseudo could go to memory just
6804 fine, as the alternative allows it, and no reload would be necessary).
6805 We fix the latter problem here, by transforming
6807 asm ("": "=mr" (inout_2) : "0" (inout_1));
6809 back to
6811 inout_2 = inout_1;
6812 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6814 static void
6815 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6817 int i;
6818 bool changed = false;
6819 rtx op = SET_SRC (p_sets[0]);
6820 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6821 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6822 bool *output_matched = XALLOCAVEC (bool, noutputs);
6824 memset (output_matched, 0, noutputs * sizeof (bool));
6825 for (i = 0; i < ninputs; i++)
6827 rtx input, output;
6828 rtx_insn *insns;
6829 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6830 int match, j;
6832 match = matching_constraint_num (constraint);
6833 if (match < 0)
6834 continue;
6836 gcc_assert (match < noutputs);
6837 output = SET_DEST (p_sets[match]);
6838 input = RTVEC_ELT (inputs, i);
6839 /* Only do the transformation for pseudos. */
6840 if (! REG_P (output)
6841 || rtx_equal_p (output, input)
6842 || !(REG_P (input) || SUBREG_P (input)
6843 || MEM_P (input) || CONSTANT_P (input))
6844 || !general_operand (input, GET_MODE (output)))
6845 continue;
6847 /* We can't do anything if the output is also used as input,
6848 as we're going to overwrite it. */
6849 for (j = 0; j < ninputs; j++)
6850 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6851 break;
6852 if (j != ninputs)
6853 continue;
6855 /* Avoid changing the same input several times. For
6856 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6857 only change it once (to out1), rather than changing it
6858 first to out1 and afterwards to out2. */
6859 if (i > 0)
6861 for (j = 0; j < noutputs; j++)
6862 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6863 break;
6864 if (j != noutputs)
6865 continue;
6867 output_matched[match] = true;
6869 start_sequence ();
6870 emit_move_insn (output, copy_rtx (input));
6871 insns = get_insns ();
6872 end_sequence ();
6873 emit_insn_before (insns, insn);
6875 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match]));
6876 bool early_clobber_p = strchr (constraint, '&') != NULL;
6878 /* Now replace all mentions of the input with output. We can't
6879 just replace the occurrence in inputs[i], as the register might
6880 also be used in some other input (or even in an address of an
6881 output), which would mean possibly increasing the number of
6882 inputs by one (namely 'output' in addition), which might pose
6883 a too complicated problem for reload to solve. E.g. this situation:
6885 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6887 Here 'input' is used in two occurrences as input (once for the
6888 input operand, once for the address in the second output operand).
6889 If we would replace only the occurrence of the input operand (to
6890 make the matching) we would be left with this:
6892 output = input
6893 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6895 Now we suddenly have two different input values (containing the same
6896 value, but different pseudos) where we formerly had only one.
6897 With more complicated asms this might lead to reload failures
6898 which wouldn't have happen without this pass. So, iterate over
6899 all operands and replace all occurrences of the register used.
6901 However, if one or more of the 'input' uses have a non-matching
6902 constraint and the matched output operand is an early clobber
6903 operand, then do not replace the input operand, since by definition
6904 it conflicts with the output operand and cannot share the same
6905 register. See PR89313 for details. */
6907 for (j = 0; j < noutputs; j++)
6908 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6909 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6910 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6911 input, output);
6912 for (j = 0; j < ninputs; j++)
6913 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6915 if (!early_clobber_p
6916 || match == matching_constraint_num
6917 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j)))
6918 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6919 input, output);
6922 changed = true;
6925 if (changed)
6926 df_insn_rescan (insn);
6929 /* Add the decl D to the local_decls list of FUN. */
6931 void
6932 add_local_decl (struct function *fun, tree d)
6934 gcc_assert (VAR_P (d));
6935 vec_safe_push (fun->local_decls, d);
6938 namespace {
6940 const pass_data pass_data_match_asm_constraints =
6942 RTL_PASS, /* type */
6943 "asmcons", /* name */
6944 OPTGROUP_NONE, /* optinfo_flags */
6945 TV_NONE, /* tv_id */
6946 0, /* properties_required */
6947 0, /* properties_provided */
6948 0, /* properties_destroyed */
6949 0, /* todo_flags_start */
6950 0, /* todo_flags_finish */
6953 class pass_match_asm_constraints : public rtl_opt_pass
6955 public:
6956 pass_match_asm_constraints (gcc::context *ctxt)
6957 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6960 /* opt_pass methods: */
6961 unsigned int execute (function *) final override;
6963 }; // class pass_match_asm_constraints
6965 unsigned
6966 pass_match_asm_constraints::execute (function *fun)
6968 basic_block bb;
6969 rtx_insn *insn;
6970 rtx pat, *p_sets;
6971 int noutputs;
6973 if (!crtl->has_asm_statement)
6974 return 0;
6976 df_set_flags (DF_DEFER_INSN_RESCAN);
6977 FOR_EACH_BB_FN (bb, fun)
6979 FOR_BB_INSNS (bb, insn)
6981 if (!INSN_P (insn))
6982 continue;
6984 pat = PATTERN (insn);
6985 if (GET_CODE (pat) == PARALLEL)
6986 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6987 else if (GET_CODE (pat) == SET)
6988 p_sets = &PATTERN (insn), noutputs = 1;
6989 else
6990 continue;
6992 if (GET_CODE (*p_sets) == SET
6993 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6994 match_asm_constraints_1 (insn, p_sets, noutputs);
6998 return TODO_df_finish;
7001 } // anon namespace
7003 rtl_opt_pass *
7004 make_pass_match_asm_constraints (gcc::context *ctxt)
7006 return new pass_match_asm_constraints (ctxt);
7010 #include "gt-function.h"