2003-09-04 Eric Christopher <echristo@redhat.com>
[official-gcc.git] / gcc / explow.c
blobe9ca57b7803b2877cc5e50aadb6c47ad3a55231a
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
50 int width = GET_MODE_BITSIZE (mode);
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode))
54 abort ();
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
60 /* Sign-extend for the requested mode. */
62 if (width < HOST_BITS_PER_WIDE_INT)
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
71 return c;
74 /* Return an rtx for the sum of X and the integer C.
76 This function should be used via the `plus_constant' macro. */
78 rtx
79 plus_constant_wide (rtx x, HOST_WIDE_INT c)
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
87 if (c == 0)
88 return x;
90 restart:
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
96 switch (code)
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
101 case CONST_DOUBLE:
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
110 add_double (l1, h1, l2, h2, &lv, &hv);
112 return immed_double_const (lv, hv, VOIDmode);
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
129 break;
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
158 c += INTVAL (XEXP (x, 1));
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
163 x = XEXP (x, 0);
164 goto restart;
166 else if (CONSTANT_P (XEXP (x, 1)))
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
171 else if (find_constant_term_loc (&y))
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
182 break;
184 default:
185 break;
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
205 eliminate_constant_term (rtx x, rtx *constptr)
207 rtx x0, x1;
208 rtx tem;
210 if (GET_CODE (x) != PLUS)
211 return x;
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
235 return x;
238 /* Return an rtx for the size in bytes of the value of EXP. */
241 expr_size (tree exp)
243 tree size = (*lang_hooks.expr_size) (exp);
245 if (CONTAINS_PLACEHOLDER_P (size))
246 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
248 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
251 /* Return a wide integer for the size in bytes of the value of EXP, or -1
252 if the size can vary or is larger than an integer. */
254 HOST_WIDE_INT
255 int_expr_size (tree exp)
257 tree t = (*lang_hooks.expr_size) (exp);
259 if (t == 0
260 || TREE_CODE (t) != INTEGER_CST
261 || TREE_OVERFLOW (t)
262 || TREE_INT_CST_HIGH (t) != 0
263 /* If the result would appear negative, it's too big to represent. */
264 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
265 return -1;
267 return TREE_INT_CST_LOW (t);
270 /* Return a copy of X in which all memory references
271 and all constants that involve symbol refs
272 have been replaced with new temporary registers.
273 Also emit code to load the memory locations and constants
274 into those registers.
276 If X contains no such constants or memory references,
277 X itself (not a copy) is returned.
279 If a constant is found in the address that is not a legitimate constant
280 in an insn, it is left alone in the hope that it might be valid in the
281 address.
283 X may contain no arithmetic except addition, subtraction and multiplication.
284 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
286 static rtx
287 break_out_memory_refs (rtx x)
289 if (GET_CODE (x) == MEM
290 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
291 && GET_MODE (x) != VOIDmode))
292 x = force_reg (GET_MODE (x), x);
293 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
294 || GET_CODE (x) == MULT)
296 rtx op0 = break_out_memory_refs (XEXP (x, 0));
297 rtx op1 = break_out_memory_refs (XEXP (x, 1));
299 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
300 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
303 return x;
306 #ifdef POINTERS_EXTEND_UNSIGNED
308 /* Given X, a memory address in ptr_mode, convert it to an address
309 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
310 the fact that pointers are not allowed to overflow by commuting arithmetic
311 operations over conversions so that address arithmetic insns can be
312 used. */
315 convert_memory_address (enum machine_mode to_mode, rtx x)
317 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
318 rtx temp;
319 enum rtx_code code;
321 /* Here we handle some special cases. If none of them apply, fall through
322 to the default case. */
323 switch (GET_CODE (x))
325 case CONST_INT:
326 case CONST_DOUBLE:
327 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
328 code = TRUNCATE;
329 else if (POINTERS_EXTEND_UNSIGNED < 0)
330 break;
331 else if (POINTERS_EXTEND_UNSIGNED > 0)
332 code = ZERO_EXTEND;
333 else
334 code = SIGN_EXTEND;
335 temp = simplify_unary_operation (code, to_mode, x, from_mode);
336 if (temp)
337 return temp;
338 break;
340 case SUBREG:
341 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
342 && GET_MODE (SUBREG_REG (x)) == to_mode)
343 return SUBREG_REG (x);
344 break;
346 case LABEL_REF:
347 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
348 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
349 return temp;
350 break;
352 case SYMBOL_REF:
353 temp = shallow_copy_rtx (x);
354 PUT_MODE (temp, to_mode);
355 return temp;
356 break;
358 case CONST:
359 return gen_rtx_CONST (to_mode,
360 convert_memory_address (to_mode, XEXP (x, 0)));
361 break;
363 case PLUS:
364 case MULT:
365 /* For addition we can safely permute the conversion and addition
366 operation if one operand is a constant and converting the constant
367 does not change it. We can always safely permute them if we are
368 making the address narrower. */
369 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
370 || (GET_CODE (x) == PLUS
371 && GET_CODE (XEXP (x, 1)) == CONST_INT
372 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
373 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
374 convert_memory_address (to_mode, XEXP (x, 0)),
375 XEXP (x, 1));
376 break;
378 default:
379 break;
382 return convert_modes (to_mode, from_mode,
383 x, POINTERS_EXTEND_UNSIGNED);
385 #endif
387 /* Given a memory address or facsimile X, construct a new address,
388 currently equivalent, that is stable: future stores won't change it.
390 X must be composed of constants, register and memory references
391 combined with addition, subtraction and multiplication:
392 in other words, just what you can get from expand_expr if sum_ok is 1.
394 Works by making copies of all regs and memory locations used
395 by X and combining them the same way X does.
396 You could also stabilize the reference to this address
397 by copying the address to a register with copy_to_reg;
398 but then you wouldn't get indexed addressing in the reference. */
401 copy_all_regs (rtx x)
403 if (GET_CODE (x) == REG)
405 if (REGNO (x) != FRAME_POINTER_REGNUM
406 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
407 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
408 #endif
410 x = copy_to_reg (x);
412 else if (GET_CODE (x) == MEM)
413 x = copy_to_reg (x);
414 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
415 || GET_CODE (x) == MULT)
417 rtx op0 = copy_all_regs (XEXP (x, 0));
418 rtx op1 = copy_all_regs (XEXP (x, 1));
419 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
420 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
422 return x;
425 /* Return something equivalent to X but valid as a memory address
426 for something of mode MODE. When X is not itself valid, this
427 works by copying X or subexpressions of it into registers. */
430 memory_address (enum machine_mode mode, rtx x)
432 rtx oldx = x;
434 if (GET_CODE (x) == ADDRESSOF)
435 return x;
437 #ifdef POINTERS_EXTEND_UNSIGNED
438 if (GET_MODE (x) != Pmode)
439 x = convert_memory_address (Pmode, x);
440 #endif
442 /* By passing constant addresses thru registers
443 we get a chance to cse them. */
444 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
445 x = force_reg (Pmode, x);
447 /* Accept a QUEUED that refers to a REG
448 even though that isn't a valid address.
449 On attempting to put this in an insn we will call protect_from_queue
450 which will turn it into a REG, which is valid. */
451 else if (GET_CODE (x) == QUEUED
452 && GET_CODE (QUEUED_VAR (x)) == REG)
455 /* We get better cse by rejecting indirect addressing at this stage.
456 Let the combiner create indirect addresses where appropriate.
457 For now, generate the code so that the subexpressions useful to share
458 are visible. But not if cse won't be done! */
459 else
461 if (! cse_not_expected && GET_CODE (x) != REG)
462 x = break_out_memory_refs (x);
464 /* At this point, any valid address is accepted. */
465 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
467 /* If it was valid before but breaking out memory refs invalidated it,
468 use it the old way. */
469 if (memory_address_p (mode, oldx))
470 goto win2;
472 /* Perform machine-dependent transformations on X
473 in certain cases. This is not necessary since the code
474 below can handle all possible cases, but machine-dependent
475 transformations can make better code. */
476 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
478 /* PLUS and MULT can appear in special ways
479 as the result of attempts to make an address usable for indexing.
480 Usually they are dealt with by calling force_operand, below.
481 But a sum containing constant terms is special
482 if removing them makes the sum a valid address:
483 then we generate that address in a register
484 and index off of it. We do this because it often makes
485 shorter code, and because the addresses thus generated
486 in registers often become common subexpressions. */
487 if (GET_CODE (x) == PLUS)
489 rtx constant_term = const0_rtx;
490 rtx y = eliminate_constant_term (x, &constant_term);
491 if (constant_term == const0_rtx
492 || ! memory_address_p (mode, y))
493 x = force_operand (x, NULL_RTX);
494 else
496 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
497 if (! memory_address_p (mode, y))
498 x = force_operand (x, NULL_RTX);
499 else
500 x = y;
504 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
505 x = force_operand (x, NULL_RTX);
507 /* If we have a register that's an invalid address,
508 it must be a hard reg of the wrong class. Copy it to a pseudo. */
509 else if (GET_CODE (x) == REG)
510 x = copy_to_reg (x);
512 /* Last resort: copy the value to a register, since
513 the register is a valid address. */
514 else
515 x = force_reg (Pmode, x);
517 goto done;
519 win2:
520 x = oldx;
521 win:
522 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
523 /* Don't copy an addr via a reg if it is one of our stack slots. */
524 && ! (GET_CODE (x) == PLUS
525 && (XEXP (x, 0) == virtual_stack_vars_rtx
526 || XEXP (x, 0) == virtual_incoming_args_rtx)))
528 if (general_operand (x, Pmode))
529 x = force_reg (Pmode, x);
530 else
531 x = force_operand (x, NULL_RTX);
535 done:
537 /* If we didn't change the address, we are done. Otherwise, mark
538 a reg as a pointer if we have REG or REG + CONST_INT. */
539 if (oldx == x)
540 return x;
541 else if (GET_CODE (x) == REG)
542 mark_reg_pointer (x, BITS_PER_UNIT);
543 else if (GET_CODE (x) == PLUS
544 && GET_CODE (XEXP (x, 0)) == REG
545 && GET_CODE (XEXP (x, 1)) == CONST_INT)
546 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
548 /* OLDX may have been the address on a temporary. Update the address
549 to indicate that X is now used. */
550 update_temp_slot_address (oldx, x);
552 return x;
555 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
558 memory_address_noforce (enum machine_mode mode, rtx x)
560 int ambient_force_addr = flag_force_addr;
561 rtx val;
563 flag_force_addr = 0;
564 val = memory_address (mode, x);
565 flag_force_addr = ambient_force_addr;
566 return val;
569 /* Convert a mem ref into one with a valid memory address.
570 Pass through anything else unchanged. */
573 validize_mem (rtx ref)
575 if (GET_CODE (ref) != MEM)
576 return ref;
577 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
578 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
579 return ref;
581 /* Don't alter REF itself, since that is probably a stack slot. */
582 return replace_equiv_address (ref, XEXP (ref, 0));
585 /* Given REF, either a MEM or a REG, and T, either the type of X or
586 the expression corresponding to REF, set RTX_UNCHANGING_P if
587 appropriate. */
589 void
590 maybe_set_unchanging (rtx ref, tree t)
592 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
593 initialization is only executed once, or whose initializer always
594 has the same value. Currently we simplify this to PARM_DECLs in the
595 first case, and decls with TREE_CONSTANT initializers in the second.
597 We cannot do this for non-static aggregates, because of the double
598 writes that can be generated by store_constructor, depending on the
599 contents of the initializer. Yes, this does eliminate a good fraction
600 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
601 It also eliminates a good quantity of bugs. Let this be incentive to
602 eliminate RTX_UNCHANGING_P entirely in favor of a more reliable
603 solution, perhaps based on alias sets. */
605 if ((TREE_READONLY (t) && DECL_P (t)
606 && (TREE_STATIC (t) || ! AGGREGATE_TYPE_P (TREE_TYPE (t)))
607 && (TREE_CODE (t) == PARM_DECL
608 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
609 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
610 RTX_UNCHANGING_P (ref) = 1;
613 /* Return a modified copy of X with its memory address copied
614 into a temporary register to protect it from side effects.
615 If X is not a MEM, it is returned unchanged (and not copied).
616 Perhaps even if it is a MEM, if there is no need to change it. */
619 stabilize (rtx x)
621 if (GET_CODE (x) != MEM
622 || ! rtx_unstable_p (XEXP (x, 0)))
623 return x;
625 return
626 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
629 /* Copy the value or contents of X to a new temp reg and return that reg. */
632 copy_to_reg (rtx x)
634 rtx temp = gen_reg_rtx (GET_MODE (x));
636 /* If not an operand, must be an address with PLUS and MULT so
637 do the computation. */
638 if (! general_operand (x, VOIDmode))
639 x = force_operand (x, temp);
641 if (x != temp)
642 emit_move_insn (temp, x);
644 return temp;
647 /* Like copy_to_reg but always give the new register mode Pmode
648 in case X is a constant. */
651 copy_addr_to_reg (rtx x)
653 return copy_to_mode_reg (Pmode, x);
656 /* Like copy_to_reg but always give the new register mode MODE
657 in case X is a constant. */
660 copy_to_mode_reg (enum machine_mode mode, rtx x)
662 rtx temp = gen_reg_rtx (mode);
664 /* If not an operand, must be an address with PLUS and MULT so
665 do the computation. */
666 if (! general_operand (x, VOIDmode))
667 x = force_operand (x, temp);
669 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
670 abort ();
671 if (x != temp)
672 emit_move_insn (temp, x);
673 return temp;
676 /* Load X into a register if it is not already one.
677 Use mode MODE for the register.
678 X should be valid for mode MODE, but it may be a constant which
679 is valid for all integer modes; that's why caller must specify MODE.
681 The caller must not alter the value in the register we return,
682 since we mark it as a "constant" register. */
685 force_reg (enum machine_mode mode, rtx x)
687 rtx temp, insn, set;
689 if (GET_CODE (x) == REG)
690 return x;
692 if (general_operand (x, mode))
694 temp = gen_reg_rtx (mode);
695 insn = emit_move_insn (temp, x);
697 else
699 temp = force_operand (x, NULL_RTX);
700 if (GET_CODE (temp) == REG)
701 insn = get_last_insn ();
702 else
704 rtx temp2 = gen_reg_rtx (mode);
705 insn = emit_move_insn (temp2, temp);
706 temp = temp2;
710 /* Let optimizers know that TEMP's value never changes
711 and that X can be substituted for it. Don't get confused
712 if INSN set something else (such as a SUBREG of TEMP). */
713 if (CONSTANT_P (x)
714 && (set = single_set (insn)) != 0
715 && SET_DEST (set) == temp
716 && ! rtx_equal_p (x, SET_SRC (set)))
717 set_unique_reg_note (insn, REG_EQUAL, x);
719 return temp;
722 /* If X is a memory ref, copy its contents to a new temp reg and return
723 that reg. Otherwise, return X. */
726 force_not_mem (rtx x)
728 rtx temp;
730 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
731 return x;
733 temp = gen_reg_rtx (GET_MODE (x));
734 emit_move_insn (temp, x);
735 return temp;
738 /* Copy X to TARGET (if it's nonzero and a reg)
739 or to a new temp reg and return that reg.
740 MODE is the mode to use for X in case it is a constant. */
743 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
745 rtx temp;
747 if (target && GET_CODE (target) == REG)
748 temp = target;
749 else
750 temp = gen_reg_rtx (mode);
752 emit_move_insn (temp, x);
753 return temp;
756 /* Return the mode to use to store a scalar of TYPE and MODE.
757 PUNSIGNEDP points to the signedness of the type and may be adjusted
758 to show what signedness to use on extension operations.
760 FOR_CALL is nonzero if this call is promoting args for a call. */
762 enum machine_mode
763 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
764 int for_call ATTRIBUTE_UNUSED)
766 enum tree_code code = TREE_CODE (type);
767 int unsignedp = *punsignedp;
769 #ifdef PROMOTE_FOR_CALL_ONLY
770 if (! for_call)
771 return mode;
772 #endif
774 switch (code)
776 #ifdef PROMOTE_MODE
777 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
778 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
779 PROMOTE_MODE (mode, unsignedp, type);
780 break;
781 #endif
783 #ifdef POINTERS_EXTEND_UNSIGNED
784 case REFERENCE_TYPE:
785 case POINTER_TYPE:
786 mode = Pmode;
787 unsignedp = POINTERS_EXTEND_UNSIGNED;
788 break;
789 #endif
791 default:
792 break;
795 *punsignedp = unsignedp;
796 return mode;
799 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
800 This pops when ADJUST is positive. ADJUST need not be constant. */
802 void
803 adjust_stack (rtx adjust)
805 rtx temp;
806 adjust = protect_from_queue (adjust, 0);
808 if (adjust == const0_rtx)
809 return;
811 /* We expect all variable sized adjustments to be multiple of
812 PREFERRED_STACK_BOUNDARY. */
813 if (GET_CODE (adjust) == CONST_INT)
814 stack_pointer_delta -= INTVAL (adjust);
816 temp = expand_binop (Pmode,
817 #ifdef STACK_GROWS_DOWNWARD
818 add_optab,
819 #else
820 sub_optab,
821 #endif
822 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
823 OPTAB_LIB_WIDEN);
825 if (temp != stack_pointer_rtx)
826 emit_move_insn (stack_pointer_rtx, temp);
829 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
830 This pushes when ADJUST is positive. ADJUST need not be constant. */
832 void
833 anti_adjust_stack (rtx adjust)
835 rtx temp;
836 adjust = protect_from_queue (adjust, 0);
838 if (adjust == const0_rtx)
839 return;
841 /* We expect all variable sized adjustments to be multiple of
842 PREFERRED_STACK_BOUNDARY. */
843 if (GET_CODE (adjust) == CONST_INT)
844 stack_pointer_delta += INTVAL (adjust);
846 temp = expand_binop (Pmode,
847 #ifdef STACK_GROWS_DOWNWARD
848 sub_optab,
849 #else
850 add_optab,
851 #endif
852 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
853 OPTAB_LIB_WIDEN);
855 if (temp != stack_pointer_rtx)
856 emit_move_insn (stack_pointer_rtx, temp);
859 /* Round the size of a block to be pushed up to the boundary required
860 by this machine. SIZE is the desired size, which need not be constant. */
863 round_push (rtx size)
865 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
867 if (align == 1)
868 return size;
870 if (GET_CODE (size) == CONST_INT)
872 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
874 if (INTVAL (size) != new)
875 size = GEN_INT (new);
877 else
879 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
880 but we know it can't. So add ourselves and then do
881 TRUNC_DIV_EXPR. */
882 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
883 NULL_RTX, 1, OPTAB_LIB_WIDEN);
884 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
885 NULL_RTX, 1);
886 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
889 return size;
892 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
893 to a previously-created save area. If no save area has been allocated,
894 this function will allocate one. If a save area is specified, it
895 must be of the proper mode.
897 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
898 are emitted at the current position. */
900 void
901 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
903 rtx sa = *psave;
904 /* The default is that we use a move insn and save in a Pmode object. */
905 rtx (*fcn) (rtx, rtx) = gen_move_insn;
906 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
908 /* See if this machine has anything special to do for this kind of save. */
909 switch (save_level)
911 #ifdef HAVE_save_stack_block
912 case SAVE_BLOCK:
913 if (HAVE_save_stack_block)
914 fcn = gen_save_stack_block;
915 break;
916 #endif
917 #ifdef HAVE_save_stack_function
918 case SAVE_FUNCTION:
919 if (HAVE_save_stack_function)
920 fcn = gen_save_stack_function;
921 break;
922 #endif
923 #ifdef HAVE_save_stack_nonlocal
924 case SAVE_NONLOCAL:
925 if (HAVE_save_stack_nonlocal)
926 fcn = gen_save_stack_nonlocal;
927 break;
928 #endif
929 default:
930 break;
933 /* If there is no save area and we have to allocate one, do so. Otherwise
934 verify the save area is the proper mode. */
936 if (sa == 0)
938 if (mode != VOIDmode)
940 if (save_level == SAVE_NONLOCAL)
941 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
942 else
943 *psave = sa = gen_reg_rtx (mode);
946 else
948 if (mode == VOIDmode || GET_MODE (sa) != mode)
949 abort ();
952 if (after)
954 rtx seq;
956 start_sequence ();
957 /* We must validize inside the sequence, to ensure that any instructions
958 created by the validize call also get moved to the right place. */
959 if (sa != 0)
960 sa = validize_mem (sa);
961 emit_insn (fcn (sa, stack_pointer_rtx));
962 seq = get_insns ();
963 end_sequence ();
964 emit_insn_after (seq, after);
966 else
968 if (sa != 0)
969 sa = validize_mem (sa);
970 emit_insn (fcn (sa, stack_pointer_rtx));
974 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
975 area made by emit_stack_save. If it is zero, we have nothing to do.
977 Put any emitted insns after insn AFTER, if nonzero, otherwise at
978 current position. */
980 void
981 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
983 /* The default is that we use a move insn. */
984 rtx (*fcn) (rtx, rtx) = gen_move_insn;
986 /* See if this machine has anything special to do for this kind of save. */
987 switch (save_level)
989 #ifdef HAVE_restore_stack_block
990 case SAVE_BLOCK:
991 if (HAVE_restore_stack_block)
992 fcn = gen_restore_stack_block;
993 break;
994 #endif
995 #ifdef HAVE_restore_stack_function
996 case SAVE_FUNCTION:
997 if (HAVE_restore_stack_function)
998 fcn = gen_restore_stack_function;
999 break;
1000 #endif
1001 #ifdef HAVE_restore_stack_nonlocal
1002 case SAVE_NONLOCAL:
1003 if (HAVE_restore_stack_nonlocal)
1004 fcn = gen_restore_stack_nonlocal;
1005 break;
1006 #endif
1007 default:
1008 break;
1011 if (sa != 0)
1013 sa = validize_mem (sa);
1014 /* These clobbers prevent the scheduler from moving
1015 references to variable arrays below the code
1016 that deletes (pops) the arrays. */
1017 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1018 gen_rtx_MEM (BLKmode,
1019 gen_rtx_SCRATCH (VOIDmode))));
1020 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1021 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1024 if (after)
1026 rtx seq;
1028 start_sequence ();
1029 emit_insn (fcn (stack_pointer_rtx, sa));
1030 seq = get_insns ();
1031 end_sequence ();
1032 emit_insn_after (seq, after);
1034 else
1035 emit_insn (fcn (stack_pointer_rtx, sa));
1038 #ifdef SETJMP_VIA_SAVE_AREA
1039 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1040 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1041 platforms, the dynamic stack space used can corrupt the original
1042 frame, thus causing a crash if a longjmp unwinds to it. */
1044 void
1045 optimize_save_area_alloca (rtx insns)
1047 rtx insn;
1049 for (insn = insns; insn; insn = NEXT_INSN(insn))
1051 rtx note;
1053 if (GET_CODE (insn) != INSN)
1054 continue;
1056 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1058 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1059 continue;
1061 if (!current_function_calls_setjmp)
1063 rtx pat = PATTERN (insn);
1065 /* If we do not see the note in a pattern matching
1066 these precise characteristics, we did something
1067 entirely wrong in allocate_dynamic_stack_space.
1069 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1070 was defined on a machine where stacks grow towards higher
1071 addresses.
1073 Right now only supported port with stack that grow upward
1074 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1075 if (GET_CODE (pat) != SET
1076 || SET_DEST (pat) != stack_pointer_rtx
1077 || GET_CODE (SET_SRC (pat)) != MINUS
1078 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1079 abort ();
1081 /* This will now be transformed into a (set REG REG)
1082 so we can just blow away all the other notes. */
1083 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1084 REG_NOTES (insn) = NULL_RTX;
1086 else
1088 /* setjmp was called, we must remove the REG_SAVE_AREA
1089 note so that later passes do not get confused by its
1090 presence. */
1091 if (note == REG_NOTES (insn))
1093 REG_NOTES (insn) = XEXP (note, 1);
1095 else
1097 rtx srch;
1099 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1100 if (XEXP (srch, 1) == note)
1101 break;
1103 if (srch == NULL_RTX)
1104 abort ();
1106 XEXP (srch, 1) = XEXP (note, 1);
1109 /* Once we've seen the note of interest, we need not look at
1110 the rest of them. */
1111 break;
1115 #endif /* SETJMP_VIA_SAVE_AREA */
1117 /* Return an rtx representing the address of an area of memory dynamically
1118 pushed on the stack. This region of memory is always aligned to
1119 a multiple of BIGGEST_ALIGNMENT.
1121 Any required stack pointer alignment is preserved.
1123 SIZE is an rtx representing the size of the area.
1124 TARGET is a place in which the address can be placed.
1126 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1129 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1131 #ifdef SETJMP_VIA_SAVE_AREA
1132 rtx setjmpless_size = NULL_RTX;
1133 #endif
1135 /* If we're asking for zero bytes, it doesn't matter what we point
1136 to since we can't dereference it. But return a reasonable
1137 address anyway. */
1138 if (size == const0_rtx)
1139 return virtual_stack_dynamic_rtx;
1141 /* Otherwise, show we're calling alloca or equivalent. */
1142 current_function_calls_alloca = 1;
1144 /* Ensure the size is in the proper mode. */
1145 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1146 size = convert_to_mode (Pmode, size, 1);
1148 /* We can't attempt to minimize alignment necessary, because we don't
1149 know the final value of preferred_stack_boundary yet while executing
1150 this code. */
1151 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1153 /* We will need to ensure that the address we return is aligned to
1154 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1155 always know its final value at this point in the compilation (it
1156 might depend on the size of the outgoing parameter lists, for
1157 example), so we must align the value to be returned in that case.
1158 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1159 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1160 We must also do an alignment operation on the returned value if
1161 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1163 If we have to align, we must leave space in SIZE for the hole
1164 that might result from the alignment operation. */
1166 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1167 #define MUST_ALIGN 1
1168 #else
1169 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1170 #endif
1172 if (MUST_ALIGN)
1173 size
1174 = force_operand (plus_constant (size,
1175 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1176 NULL_RTX);
1178 #ifdef SETJMP_VIA_SAVE_AREA
1179 /* If setjmp restores regs from a save area in the stack frame,
1180 avoid clobbering the reg save area. Note that the offset of
1181 virtual_incoming_args_rtx includes the preallocated stack args space.
1182 It would be no problem to clobber that, but it's on the wrong side
1183 of the old save area. */
1185 rtx dynamic_offset
1186 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1187 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1189 if (!current_function_calls_setjmp)
1191 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1193 /* See optimize_save_area_alloca to understand what is being
1194 set up here. */
1196 /* ??? Code below assumes that the save area needs maximal
1197 alignment. This constraint may be too strong. */
1198 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1199 abort ();
1201 if (GET_CODE (size) == CONST_INT)
1203 HOST_WIDE_INT new = INTVAL (size) / align * align;
1205 if (INTVAL (size) != new)
1206 setjmpless_size = GEN_INT (new);
1207 else
1208 setjmpless_size = size;
1210 else
1212 /* Since we know overflow is not possible, we avoid using
1213 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1214 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1215 GEN_INT (align), NULL_RTX, 1);
1216 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1217 GEN_INT (align), NULL_RTX, 1);
1219 /* Our optimization works based upon being able to perform a simple
1220 transformation of this RTL into a (set REG REG) so make sure things
1221 did in fact end up in a REG. */
1222 if (!register_operand (setjmpless_size, Pmode))
1223 setjmpless_size = force_reg (Pmode, setjmpless_size);
1226 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1227 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1229 #endif /* SETJMP_VIA_SAVE_AREA */
1231 /* Round the size to a multiple of the required stack alignment.
1232 Since the stack if presumed to be rounded before this allocation,
1233 this will maintain the required alignment.
1235 If the stack grows downward, we could save an insn by subtracting
1236 SIZE from the stack pointer and then aligning the stack pointer.
1237 The problem with this is that the stack pointer may be unaligned
1238 between the execution of the subtraction and alignment insns and
1239 some machines do not allow this. Even on those that do, some
1240 signal handlers malfunction if a signal should occur between those
1241 insns. Since this is an extremely rare event, we have no reliable
1242 way of knowing which systems have this problem. So we avoid even
1243 momentarily mis-aligning the stack. */
1245 /* If we added a variable amount to SIZE,
1246 we can no longer assume it is aligned. */
1247 #if !defined (SETJMP_VIA_SAVE_AREA)
1248 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1249 #endif
1250 size = round_push (size);
1252 do_pending_stack_adjust ();
1254 /* We ought to be called always on the toplevel and stack ought to be aligned
1255 properly. */
1256 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1257 abort ();
1259 /* If needed, check that we have the required amount of stack. Take into
1260 account what has already been checked. */
1261 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1262 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1264 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1265 if (target == 0 || GET_CODE (target) != REG
1266 || REGNO (target) < FIRST_PSEUDO_REGISTER
1267 || GET_MODE (target) != Pmode)
1268 target = gen_reg_rtx (Pmode);
1270 mark_reg_pointer (target, known_align);
1272 /* Perform the required allocation from the stack. Some systems do
1273 this differently than simply incrementing/decrementing from the
1274 stack pointer, such as acquiring the space by calling malloc(). */
1275 #ifdef HAVE_allocate_stack
1276 if (HAVE_allocate_stack)
1278 enum machine_mode mode = STACK_SIZE_MODE;
1279 insn_operand_predicate_fn pred;
1281 /* We don't have to check against the predicate for operand 0 since
1282 TARGET is known to be a pseudo of the proper mode, which must
1283 be valid for the operand. For operand 1, convert to the
1284 proper mode and validate. */
1285 if (mode == VOIDmode)
1286 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1288 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1289 if (pred && ! ((*pred) (size, mode)))
1290 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1292 emit_insn (gen_allocate_stack (target, size));
1294 else
1295 #endif
1297 #ifndef STACK_GROWS_DOWNWARD
1298 emit_move_insn (target, virtual_stack_dynamic_rtx);
1299 #endif
1301 /* Check stack bounds if necessary. */
1302 if (current_function_limit_stack)
1304 rtx available;
1305 rtx space_available = gen_label_rtx ();
1306 #ifdef STACK_GROWS_DOWNWARD
1307 available = expand_binop (Pmode, sub_optab,
1308 stack_pointer_rtx, stack_limit_rtx,
1309 NULL_RTX, 1, OPTAB_WIDEN);
1310 #else
1311 available = expand_binop (Pmode, sub_optab,
1312 stack_limit_rtx, stack_pointer_rtx,
1313 NULL_RTX, 1, OPTAB_WIDEN);
1314 #endif
1315 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1316 space_available);
1317 #ifdef HAVE_trap
1318 if (HAVE_trap)
1319 emit_insn (gen_trap ());
1320 else
1321 #endif
1322 error ("stack limits not supported on this target");
1323 emit_barrier ();
1324 emit_label (space_available);
1327 anti_adjust_stack (size);
1328 #ifdef SETJMP_VIA_SAVE_AREA
1329 if (setjmpless_size != NULL_RTX)
1331 rtx note_target = get_last_insn ();
1333 REG_NOTES (note_target)
1334 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1335 REG_NOTES (note_target));
1337 #endif /* SETJMP_VIA_SAVE_AREA */
1339 #ifdef STACK_GROWS_DOWNWARD
1340 emit_move_insn (target, virtual_stack_dynamic_rtx);
1341 #endif
1344 if (MUST_ALIGN)
1346 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1347 but we know it can't. So add ourselves and then do
1348 TRUNC_DIV_EXPR. */
1349 target = expand_binop (Pmode, add_optab, target,
1350 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1351 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1352 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1353 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1354 NULL_RTX, 1);
1355 target = expand_mult (Pmode, target,
1356 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1357 NULL_RTX, 1);
1360 /* Record the new stack level for nonlocal gotos. */
1361 if (nonlocal_goto_handler_slots != 0)
1362 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1364 return target;
1367 /* A front end may want to override GCC's stack checking by providing a
1368 run-time routine to call to check the stack, so provide a mechanism for
1369 calling that routine. */
1371 static GTY(()) rtx stack_check_libfunc;
1373 void
1374 set_stack_check_libfunc (rtx libfunc)
1376 stack_check_libfunc = libfunc;
1379 /* Emit one stack probe at ADDRESS, an address within the stack. */
1381 static void
1382 emit_stack_probe (rtx address)
1384 rtx memref = gen_rtx_MEM (word_mode, address);
1386 MEM_VOLATILE_P (memref) = 1;
1388 if (STACK_CHECK_PROBE_LOAD)
1389 emit_move_insn (gen_reg_rtx (word_mode), memref);
1390 else
1391 emit_move_insn (memref, const0_rtx);
1394 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1395 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1396 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1397 subtract from the stack. If SIZE is constant, this is done
1398 with a fixed number of probes. Otherwise, we must make a loop. */
1400 #ifdef STACK_GROWS_DOWNWARD
1401 #define STACK_GROW_OP MINUS
1402 #else
1403 #define STACK_GROW_OP PLUS
1404 #endif
1406 void
1407 probe_stack_range (HOST_WIDE_INT first, rtx size)
1409 /* First ensure SIZE is Pmode. */
1410 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1411 size = convert_to_mode (Pmode, size, 1);
1413 /* Next see if the front end has set up a function for us to call to
1414 check the stack. */
1415 if (stack_check_libfunc != 0)
1417 rtx addr = memory_address (QImode,
1418 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1419 stack_pointer_rtx,
1420 plus_constant (size, first)));
1422 #ifdef POINTERS_EXTEND_UNSIGNED
1423 if (GET_MODE (addr) != ptr_mode)
1424 addr = convert_memory_address (ptr_mode, addr);
1425 #endif
1427 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1428 ptr_mode);
1431 /* Next see if we have an insn to check the stack. Use it if so. */
1432 #ifdef HAVE_check_stack
1433 else if (HAVE_check_stack)
1435 insn_operand_predicate_fn pred;
1436 rtx last_addr
1437 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1438 stack_pointer_rtx,
1439 plus_constant (size, first)),
1440 NULL_RTX);
1442 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1443 if (pred && ! ((*pred) (last_addr, Pmode)))
1444 last_addr = copy_to_mode_reg (Pmode, last_addr);
1446 emit_insn (gen_check_stack (last_addr));
1448 #endif
1450 /* If we have to generate explicit probes, see if we have a constant
1451 small number of them to generate. If so, that's the easy case. */
1452 else if (GET_CODE (size) == CONST_INT
1453 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1455 HOST_WIDE_INT offset;
1457 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1458 for values of N from 1 until it exceeds LAST. If only one
1459 probe is needed, this will not generate any code. Then probe
1460 at LAST. */
1461 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1462 offset < INTVAL (size);
1463 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1464 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1465 stack_pointer_rtx,
1466 GEN_INT (offset)));
1468 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1469 stack_pointer_rtx,
1470 plus_constant (size, first)));
1473 /* In the variable case, do the same as above, but in a loop. We emit loop
1474 notes so that loop optimization can be done. */
1475 else
1477 rtx test_addr
1478 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1479 stack_pointer_rtx,
1480 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1481 NULL_RTX);
1482 rtx last_addr
1483 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1484 stack_pointer_rtx,
1485 plus_constant (size, first)),
1486 NULL_RTX);
1487 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1488 rtx loop_lab = gen_label_rtx ();
1489 rtx test_lab = gen_label_rtx ();
1490 rtx end_lab = gen_label_rtx ();
1491 rtx temp;
1493 if (GET_CODE (test_addr) != REG
1494 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1495 test_addr = force_reg (Pmode, test_addr);
1497 emit_note (NOTE_INSN_LOOP_BEG);
1498 emit_jump (test_lab);
1500 emit_label (loop_lab);
1501 emit_stack_probe (test_addr);
1503 emit_note (NOTE_INSN_LOOP_CONT);
1505 #ifdef STACK_GROWS_DOWNWARD
1506 #define CMP_OPCODE GTU
1507 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1508 1, OPTAB_WIDEN);
1509 #else
1510 #define CMP_OPCODE LTU
1511 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1512 1, OPTAB_WIDEN);
1513 #endif
1515 if (temp != test_addr)
1516 abort ();
1518 emit_label (test_lab);
1519 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1520 NULL_RTX, Pmode, 1, loop_lab);
1521 emit_jump (end_lab);
1522 emit_note (NOTE_INSN_LOOP_END);
1523 emit_label (end_lab);
1525 emit_stack_probe (last_addr);
1529 /* Return an rtx representing the register or memory location
1530 in which a scalar value of data type VALTYPE
1531 was returned by a function call to function FUNC.
1532 FUNC is a FUNCTION_DECL node if the precise function is known,
1533 otherwise 0.
1534 OUTGOING is 1 if on a machine with register windows this function
1535 should return the register in which the function will put its result
1536 and 0 otherwise. */
1539 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1540 int outgoing ATTRIBUTE_UNUSED)
1542 rtx val;
1544 #ifdef FUNCTION_OUTGOING_VALUE
1545 if (outgoing)
1546 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1547 else
1548 #endif
1549 val = FUNCTION_VALUE (valtype, func);
1551 if (GET_CODE (val) == REG
1552 && GET_MODE (val) == BLKmode)
1554 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1555 enum machine_mode tmpmode;
1557 /* int_size_in_bytes can return -1. We don't need a check here
1558 since the value of bytes will be large enough that no mode
1559 will match and we will abort later in this function. */
1561 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1562 tmpmode != VOIDmode;
1563 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1565 /* Have we found a large enough mode? */
1566 if (GET_MODE_SIZE (tmpmode) >= bytes)
1567 break;
1570 /* No suitable mode found. */
1571 if (tmpmode == VOIDmode)
1572 abort ();
1574 PUT_MODE (val, tmpmode);
1576 return val;
1579 /* Return an rtx representing the register or memory location
1580 in which a scalar value of mode MODE was returned by a library call. */
1583 hard_libcall_value (enum machine_mode mode)
1585 return LIBCALL_VALUE (mode);
1588 /* Look up the tree code for a given rtx code
1589 to provide the arithmetic operation for REAL_ARITHMETIC.
1590 The function returns an int because the caller may not know
1591 what `enum tree_code' means. */
1594 rtx_to_tree_code (enum rtx_code code)
1596 enum tree_code tcode;
1598 switch (code)
1600 case PLUS:
1601 tcode = PLUS_EXPR;
1602 break;
1603 case MINUS:
1604 tcode = MINUS_EXPR;
1605 break;
1606 case MULT:
1607 tcode = MULT_EXPR;
1608 break;
1609 case DIV:
1610 tcode = RDIV_EXPR;
1611 break;
1612 case SMIN:
1613 tcode = MIN_EXPR;
1614 break;
1615 case SMAX:
1616 tcode = MAX_EXPR;
1617 break;
1618 default:
1619 tcode = LAST_AND_UNUSED_TREE_CODE;
1620 break;
1622 return ((int) tcode);
1625 #include "gt-explow.h"