PR debug/84131
[official-gcc.git] / gcc / tree-cfg.c
blobc5318b92c69d965af2c24ce88fa0df086e610ac0
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
64 #include "asan.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity = 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map<edge, tree> *edge_to_cases;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs;
95 /* CFG statistics. */
96 struct cfg_stats_d
98 long num_merged_labels;
101 static struct cfg_stats_d cfg_stats;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map<tree, tree> *vars_map;
107 tree to_context;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
113 location_t locus;
114 int discriminator;
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
121 static inline hashval_t hash (const locus_discrim_map *);
122 static inline bool equal (const locus_discrim_map *,
123 const locus_discrim_map *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const locus_discrim_map *item)
132 return LOCATION_LINE (item->locus);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const locus_discrim_map *a,
140 const locus_discrim_map *b)
142 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
145 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq);
150 /* Edges. */
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block);
154 static void make_gimple_switch_edges (gswitch *, basic_block);
155 static bool make_goto_expr_edges (basic_block);
156 static void make_gimple_asm_edges (basic_block);
157 static edge gimple_redirect_edge_and_branch (edge, basic_block);
158 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple *, gimple *);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge);
164 static gimple *first_non_label_stmt (basic_block);
165 static bool verify_gimple_transaction (gtransaction *);
166 static bool call_can_make_abnormal_goto (gimple *);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (const gcond *, tree);
174 static edge find_taken_edge_switch_expr (const gswitch *, tree);
175 static tree find_case_label_for_value (const gswitch *, tree);
176 static void lower_phi_internal_fn ();
178 void
179 init_empty_tree_cfg_for_function (struct function *fn)
181 /* Initialize the basic block array. */
182 init_flow (fn);
183 profile_status_for_fn (fn) = PROFILE_ABSENT;
184 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
185 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
186 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
188 initial_cfg_capacity);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
193 initial_cfg_capacity);
195 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
196 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
198 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn);
200 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn);
204 void
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun);
210 /*---------------------------------------------------------------------------
211 Create basic blocks
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
217 static void
218 build_gimple_cfg (gimple_seq seq)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
225 init_empty_tree_cfg ();
227 make_blocks (seq);
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
237 n_basic_blocks_for_fn (cfun));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
249 make_edges ();
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus;
254 discriminator_per_locus = NULL;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
261 static void
262 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
264 gimple_stmt_iterator gsi = gsi_last_bb (bb);
265 gimple *stmt = gsi_stmt (gsi);
267 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
268 return;
270 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
272 stmt = gsi_stmt (gsi);
273 if (gimple_code (stmt) != GIMPLE_CALL)
274 break;
275 if (!gimple_call_internal_p (stmt)
276 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
277 break;
279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
281 case annot_expr_ivdep_kind:
282 loop->safelen = INT_MAX;
283 break;
284 case annot_expr_unroll_kind:
285 loop->unroll
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
287 cfun->has_unroll = true;
288 break;
289 case annot_expr_no_vector_kind:
290 loop->dont_vectorize = true;
291 break;
292 case annot_expr_vector_kind:
293 loop->force_vectorize = true;
294 cfun->has_force_vectorize_loops = true;
295 break;
296 case annot_expr_parallel_kind:
297 loop->can_be_parallel = true;
298 loop->safelen = INT_MAX;
299 break;
300 default:
301 gcc_unreachable ();
304 stmt = gimple_build_assign (gimple_call_lhs (stmt),
305 gimple_call_arg (stmt, 0));
306 gsi_replace (&gsi, stmt, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
314 static void
315 replace_loop_annotate (void)
317 struct loop *loop;
318 basic_block bb;
319 gimple_stmt_iterator gsi;
320 gimple *stmt;
322 FOR_EACH_LOOP (loop, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop->header, loop);
327 /* Then look into the latch, if any. */
328 if (loop->latch)
329 replace_loop_annotate_in_block (loop->latch, loop);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb, cfun)
335 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
337 stmt = gsi_stmt (gsi);
338 if (gimple_code (stmt) != GIMPLE_CALL)
339 continue;
340 if (!gimple_call_internal_p (stmt)
341 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
342 continue;
344 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
346 case annot_expr_ivdep_kind:
347 case annot_expr_unroll_kind:
348 case annot_expr_no_vector_kind:
349 case annot_expr_vector_kind:
350 case annot_expr_parallel_kind:
351 break;
352 default:
353 gcc_unreachable ();
356 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
357 stmt = gimple_build_assign (gimple_call_lhs (stmt),
358 gimple_call_arg (stmt, 0));
359 gsi_replace (&gsi, stmt, true);
364 /* Lower internal PHI function from GIMPLE FE. */
366 static void
367 lower_phi_internal_fn ()
369 basic_block bb, pred = NULL;
370 gimple_stmt_iterator gsi;
371 tree lhs;
372 gphi *phi_node;
373 gimple *stmt;
375 /* After edge creation, handle __PHI function from GIMPLE FE. */
376 FOR_EACH_BB_FN (bb, cfun)
378 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
380 stmt = gsi_stmt (gsi);
381 if (! gimple_call_internal_p (stmt, IFN_PHI))
382 break;
384 lhs = gimple_call_lhs (stmt);
385 phi_node = create_phi_node (lhs, bb);
387 /* Add arguments to the PHI node. */
388 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
390 tree arg = gimple_call_arg (stmt, i);
391 if (TREE_CODE (arg) == LABEL_DECL)
392 pred = label_to_block (arg);
393 else
395 edge e = find_edge (pred, bb);
396 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
400 gsi_remove (&gsi, true);
405 static unsigned int
406 execute_build_cfg (void)
408 gimple_seq body = gimple_body (current_function_decl);
410 build_gimple_cfg (body);
411 gimple_set_body (current_function_decl, NULL);
412 if (dump_file && (dump_flags & TDF_DETAILS))
414 fprintf (dump_file, "Scope blocks:\n");
415 dump_scope_blocks (dump_file, dump_flags);
417 cleanup_tree_cfg ();
418 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
419 replace_loop_annotate ();
420 return 0;
423 namespace {
425 const pass_data pass_data_build_cfg =
427 GIMPLE_PASS, /* type */
428 "cfg", /* name */
429 OPTGROUP_NONE, /* optinfo_flags */
430 TV_TREE_CFG, /* tv_id */
431 PROP_gimple_leh, /* properties_required */
432 ( PROP_cfg | PROP_loops ), /* properties_provided */
433 0, /* properties_destroyed */
434 0, /* todo_flags_start */
435 0, /* todo_flags_finish */
438 class pass_build_cfg : public gimple_opt_pass
440 public:
441 pass_build_cfg (gcc::context *ctxt)
442 : gimple_opt_pass (pass_data_build_cfg, ctxt)
445 /* opt_pass methods: */
446 virtual unsigned int execute (function *) { return execute_build_cfg (); }
448 }; // class pass_build_cfg
450 } // anon namespace
452 gimple_opt_pass *
453 make_pass_build_cfg (gcc::context *ctxt)
455 return new pass_build_cfg (ctxt);
459 /* Return true if T is a computed goto. */
461 bool
462 computed_goto_p (gimple *t)
464 return (gimple_code (t) == GIMPLE_GOTO
465 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
468 /* Returns true if the sequence of statements STMTS only contains
469 a call to __builtin_unreachable (). */
471 bool
472 gimple_seq_unreachable_p (gimple_seq stmts)
474 if (stmts == NULL
475 /* Return false if -fsanitize=unreachable, we don't want to
476 optimize away those calls, but rather turn them into
477 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
478 later. */
479 || sanitize_flags_p (SANITIZE_UNREACHABLE))
480 return false;
482 gimple_stmt_iterator gsi = gsi_last (stmts);
484 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
485 return false;
487 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
489 gimple *stmt = gsi_stmt (gsi);
490 if (gimple_code (stmt) != GIMPLE_LABEL
491 && !is_gimple_debug (stmt)
492 && !gimple_clobber_p (stmt))
493 return false;
495 return true;
498 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
499 the other edge points to a bb with just __builtin_unreachable ().
500 I.e. return true for C->M edge in:
501 <bb C>:
503 if (something)
504 goto <bb N>;
505 else
506 goto <bb M>;
507 <bb N>:
508 __builtin_unreachable ();
509 <bb M>: */
511 bool
512 assert_unreachable_fallthru_edge_p (edge e)
514 basic_block pred_bb = e->src;
515 gimple *last = last_stmt (pred_bb);
516 if (last && gimple_code (last) == GIMPLE_COND)
518 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
519 if (other_bb == e->dest)
520 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
521 if (EDGE_COUNT (other_bb->succs) == 0)
522 return gimple_seq_unreachable_p (bb_seq (other_bb));
524 return false;
528 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
529 could alter control flow except via eh. We initialize the flag at
530 CFG build time and only ever clear it later. */
532 static void
533 gimple_call_initialize_ctrl_altering (gimple *stmt)
535 int flags = gimple_call_flags (stmt);
537 /* A call alters control flow if it can make an abnormal goto. */
538 if (call_can_make_abnormal_goto (stmt)
539 /* A call also alters control flow if it does not return. */
540 || flags & ECF_NORETURN
541 /* TM ending statements have backedges out of the transaction.
542 Return true so we split the basic block containing them.
543 Note that the TM_BUILTIN test is merely an optimization. */
544 || ((flags & ECF_TM_BUILTIN)
545 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
546 /* BUILT_IN_RETURN call is same as return statement. */
547 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
548 /* IFN_UNIQUE should be the last insn, to make checking for it
549 as cheap as possible. */
550 || (gimple_call_internal_p (stmt)
551 && gimple_call_internal_unique_p (stmt)))
552 gimple_call_set_ctrl_altering (stmt, true);
553 else
554 gimple_call_set_ctrl_altering (stmt, false);
558 /* Insert SEQ after BB and build a flowgraph. */
560 static basic_block
561 make_blocks_1 (gimple_seq seq, basic_block bb)
563 gimple_stmt_iterator i = gsi_start (seq);
564 gimple *stmt = NULL;
565 gimple *prev_stmt = NULL;
566 bool start_new_block = true;
567 bool first_stmt_of_seq = true;
569 while (!gsi_end_p (i))
571 /* PREV_STMT should only be set to a debug stmt if the debug
572 stmt is before nondebug stmts. Once stmt reaches a nondebug
573 nonlabel, prev_stmt will be set to it, so that
574 stmt_starts_bb_p will know to start a new block if a label is
575 found. However, if stmt was a label after debug stmts only,
576 keep the label in prev_stmt even if we find further debug
577 stmts, for there may be other labels after them, and they
578 should land in the same block. */
579 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
580 prev_stmt = stmt;
581 stmt = gsi_stmt (i);
583 if (stmt && is_gimple_call (stmt))
584 gimple_call_initialize_ctrl_altering (stmt);
586 /* If the statement starts a new basic block or if we have determined
587 in a previous pass that we need to create a new block for STMT, do
588 so now. */
589 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
591 if (!first_stmt_of_seq)
592 gsi_split_seq_before (&i, &seq);
593 bb = create_basic_block (seq, bb);
594 start_new_block = false;
595 prev_stmt = NULL;
598 /* Now add STMT to BB and create the subgraphs for special statement
599 codes. */
600 gimple_set_bb (stmt, bb);
602 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
603 next iteration. */
604 if (stmt_ends_bb_p (stmt))
606 /* If the stmt can make abnormal goto use a new temporary
607 for the assignment to the LHS. This makes sure the old value
608 of the LHS is available on the abnormal edge. Otherwise
609 we will end up with overlapping life-ranges for abnormal
610 SSA names. */
611 if (gimple_has_lhs (stmt)
612 && stmt_can_make_abnormal_goto (stmt)
613 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
615 tree lhs = gimple_get_lhs (stmt);
616 tree tmp = create_tmp_var (TREE_TYPE (lhs));
617 gimple *s = gimple_build_assign (lhs, tmp);
618 gimple_set_location (s, gimple_location (stmt));
619 gimple_set_block (s, gimple_block (stmt));
620 gimple_set_lhs (stmt, tmp);
621 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
622 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
623 DECL_GIMPLE_REG_P (tmp) = 1;
624 gsi_insert_after (&i, s, GSI_SAME_STMT);
626 start_new_block = true;
629 gsi_next (&i);
630 first_stmt_of_seq = false;
632 return bb;
635 /* Build a flowgraph for the sequence of stmts SEQ. */
637 static void
638 make_blocks (gimple_seq seq)
640 /* Look for debug markers right before labels, and move the debug
641 stmts after the labels. Accepting labels among debug markers
642 adds no value, just complexity; if we wanted to annotate labels
643 with view numbers (so sequencing among markers would matter) or
644 somesuch, we're probably better off still moving the labels, but
645 adding other debug annotations in their original positions or
646 emitting nonbind or bind markers associated with the labels in
647 the original position of the labels.
649 Moving labels would probably be simpler, but we can't do that:
650 moving labels assigns label ids to them, and doing so because of
651 debug markers makes for -fcompare-debug and possibly even codegen
652 differences. So, we have to move the debug stmts instead. To
653 that end, we scan SEQ backwards, marking the position of the
654 latest (earliest we find) label, and moving debug stmts that are
655 not separated from it by nondebug nonlabel stmts after the
656 label. */
657 if (MAY_HAVE_DEBUG_MARKER_STMTS)
659 gimple_stmt_iterator label = gsi_none ();
661 for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i))
663 gimple *stmt = gsi_stmt (i);
665 /* If this is the first label we encounter (latest in SEQ)
666 before nondebug stmts, record its position. */
667 if (is_a <glabel *> (stmt))
669 if (gsi_end_p (label))
670 label = i;
671 continue;
674 /* Without a recorded label position to move debug stmts to,
675 there's nothing to do. */
676 if (gsi_end_p (label))
677 continue;
679 /* Move the debug stmt at I after LABEL. */
680 if (is_gimple_debug (stmt))
682 gcc_assert (gimple_debug_nonbind_marker_p (stmt));
683 /* As STMT is removed, I advances to the stmt after
684 STMT, so the gsi_prev in the for "increment"
685 expression gets us to the stmt we're to visit after
686 STMT. LABEL, however, would advance to the moved
687 stmt if we passed it to gsi_move_after, so pass it a
688 copy instead, so as to keep LABEL pointing to the
689 LABEL. */
690 gimple_stmt_iterator copy = label;
691 gsi_move_after (&i, &copy);
692 continue;
695 /* There aren't any (more?) debug stmts before label, so
696 there isn't anything else to move after it. */
697 label = gsi_none ();
701 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
704 /* Create and return a new empty basic block after bb AFTER. */
706 static basic_block
707 create_bb (void *h, void *e, basic_block after)
709 basic_block bb;
711 gcc_assert (!e);
713 /* Create and initialize a new basic block. Since alloc_block uses
714 GC allocation that clears memory to allocate a basic block, we do
715 not have to clear the newly allocated basic block here. */
716 bb = alloc_block ();
718 bb->index = last_basic_block_for_fn (cfun);
719 bb->flags = BB_NEW;
720 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
722 /* Add the new block to the linked list of blocks. */
723 link_block (bb, after);
725 /* Grow the basic block array if needed. */
726 if ((size_t) last_basic_block_for_fn (cfun)
727 == basic_block_info_for_fn (cfun)->length ())
729 size_t new_size =
730 (last_basic_block_for_fn (cfun)
731 + (last_basic_block_for_fn (cfun) + 3) / 4);
732 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
735 /* Add the newly created block to the array. */
736 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
738 n_basic_blocks_for_fn (cfun)++;
739 last_basic_block_for_fn (cfun)++;
741 return bb;
745 /*---------------------------------------------------------------------------
746 Edge creation
747 ---------------------------------------------------------------------------*/
749 /* If basic block BB has an abnormal edge to a basic block
750 containing IFN_ABNORMAL_DISPATCHER internal call, return
751 that the dispatcher's basic block, otherwise return NULL. */
753 basic_block
754 get_abnormal_succ_dispatcher (basic_block bb)
756 edge e;
757 edge_iterator ei;
759 FOR_EACH_EDGE (e, ei, bb->succs)
760 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
762 gimple_stmt_iterator gsi
763 = gsi_start_nondebug_after_labels_bb (e->dest);
764 gimple *g = gsi_stmt (gsi);
765 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
766 return e->dest;
768 return NULL;
771 /* Helper function for make_edges. Create a basic block with
772 with ABNORMAL_DISPATCHER internal call in it if needed, and
773 create abnormal edges from BBS to it and from it to FOR_BB
774 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
776 static void
777 handle_abnormal_edges (basic_block *dispatcher_bbs,
778 basic_block for_bb, int *bb_to_omp_idx,
779 auto_vec<basic_block> *bbs, bool computed_goto)
781 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
782 unsigned int idx = 0;
783 basic_block bb;
784 bool inner = false;
786 if (bb_to_omp_idx)
788 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
789 if (bb_to_omp_idx[for_bb->index] != 0)
790 inner = true;
793 /* If the dispatcher has been created already, then there are basic
794 blocks with abnormal edges to it, so just make a new edge to
795 for_bb. */
796 if (*dispatcher == NULL)
798 /* Check if there are any basic blocks that need to have
799 abnormal edges to this dispatcher. If there are none, return
800 early. */
801 if (bb_to_omp_idx == NULL)
803 if (bbs->is_empty ())
804 return;
806 else
808 FOR_EACH_VEC_ELT (*bbs, idx, bb)
809 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
810 break;
811 if (bb == NULL)
812 return;
815 /* Create the dispatcher bb. */
816 *dispatcher = create_basic_block (NULL, for_bb);
817 if (computed_goto)
819 /* Factor computed gotos into a common computed goto site. Also
820 record the location of that site so that we can un-factor the
821 gotos after we have converted back to normal form. */
822 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
824 /* Create the destination of the factored goto. Each original
825 computed goto will put its desired destination into this
826 variable and jump to the label we create immediately below. */
827 tree var = create_tmp_var (ptr_type_node, "gotovar");
829 /* Build a label for the new block which will contain the
830 factored computed goto. */
831 tree factored_label_decl
832 = create_artificial_label (UNKNOWN_LOCATION);
833 gimple *factored_computed_goto_label
834 = gimple_build_label (factored_label_decl);
835 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
837 /* Build our new computed goto. */
838 gimple *factored_computed_goto = gimple_build_goto (var);
839 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
841 FOR_EACH_VEC_ELT (*bbs, idx, bb)
843 if (bb_to_omp_idx
844 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
845 continue;
847 gsi = gsi_last_bb (bb);
848 gimple *last = gsi_stmt (gsi);
850 gcc_assert (computed_goto_p (last));
852 /* Copy the original computed goto's destination into VAR. */
853 gimple *assignment
854 = gimple_build_assign (var, gimple_goto_dest (last));
855 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
857 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
858 e->goto_locus = gimple_location (last);
859 gsi_remove (&gsi, true);
862 else
864 tree arg = inner ? boolean_true_node : boolean_false_node;
865 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
866 1, arg);
867 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
868 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
870 /* Create predecessor edges of the dispatcher. */
871 FOR_EACH_VEC_ELT (*bbs, idx, bb)
873 if (bb_to_omp_idx
874 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
875 continue;
876 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
881 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
884 /* Creates outgoing edges for BB. Returns 1 when it ends with an
885 computed goto, returns 2 when it ends with a statement that
886 might return to this function via an nonlocal goto, otherwise
887 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
889 static int
890 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
892 gimple *last = last_stmt (bb);
893 bool fallthru = false;
894 int ret = 0;
896 if (!last)
897 return ret;
899 switch (gimple_code (last))
901 case GIMPLE_GOTO:
902 if (make_goto_expr_edges (bb))
903 ret = 1;
904 fallthru = false;
905 break;
906 case GIMPLE_RETURN:
908 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
909 e->goto_locus = gimple_location (last);
910 fallthru = false;
912 break;
913 case GIMPLE_COND:
914 make_cond_expr_edges (bb);
915 fallthru = false;
916 break;
917 case GIMPLE_SWITCH:
918 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
919 fallthru = false;
920 break;
921 case GIMPLE_RESX:
922 make_eh_edges (last);
923 fallthru = false;
924 break;
925 case GIMPLE_EH_DISPATCH:
926 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
927 break;
929 case GIMPLE_CALL:
930 /* If this function receives a nonlocal goto, then we need to
931 make edges from this call site to all the nonlocal goto
932 handlers. */
933 if (stmt_can_make_abnormal_goto (last))
934 ret = 2;
936 /* If this statement has reachable exception handlers, then
937 create abnormal edges to them. */
938 make_eh_edges (last);
940 /* BUILTIN_RETURN is really a return statement. */
941 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
943 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
944 fallthru = false;
946 /* Some calls are known not to return. */
947 else
948 fallthru = !gimple_call_noreturn_p (last);
949 break;
951 case GIMPLE_ASSIGN:
952 /* A GIMPLE_ASSIGN may throw internally and thus be considered
953 control-altering. */
954 if (is_ctrl_altering_stmt (last))
955 make_eh_edges (last);
956 fallthru = true;
957 break;
959 case GIMPLE_ASM:
960 make_gimple_asm_edges (bb);
961 fallthru = true;
962 break;
964 CASE_GIMPLE_OMP:
965 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
966 break;
968 case GIMPLE_TRANSACTION:
970 gtransaction *txn = as_a <gtransaction *> (last);
971 tree label1 = gimple_transaction_label_norm (txn);
972 tree label2 = gimple_transaction_label_uninst (txn);
974 if (label1)
975 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
976 if (label2)
977 make_edge (bb, label_to_block (label2),
978 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
980 tree label3 = gimple_transaction_label_over (txn);
981 if (gimple_transaction_subcode (txn)
982 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
983 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
985 fallthru = false;
987 break;
989 default:
990 gcc_assert (!stmt_ends_bb_p (last));
991 fallthru = true;
992 break;
995 if (fallthru)
996 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
998 return ret;
1001 /* Join all the blocks in the flowgraph. */
1003 static void
1004 make_edges (void)
1006 basic_block bb;
1007 struct omp_region *cur_region = NULL;
1008 auto_vec<basic_block> ab_edge_goto;
1009 auto_vec<basic_block> ab_edge_call;
1010 int *bb_to_omp_idx = NULL;
1011 int cur_omp_region_idx = 0;
1013 /* Create an edge from entry to the first block with executable
1014 statements in it. */
1015 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
1016 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
1017 EDGE_FALLTHRU);
1019 /* Traverse the basic block array placing edges. */
1020 FOR_EACH_BB_FN (bb, cfun)
1022 int mer;
1024 if (bb_to_omp_idx)
1025 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
1027 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1028 if (mer == 1)
1029 ab_edge_goto.safe_push (bb);
1030 else if (mer == 2)
1031 ab_edge_call.safe_push (bb);
1033 if (cur_region && bb_to_omp_idx == NULL)
1034 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
1037 /* Computed gotos are hell to deal with, especially if there are
1038 lots of them with a large number of destinations. So we factor
1039 them to a common computed goto location before we build the
1040 edge list. After we convert back to normal form, we will un-factor
1041 the computed gotos since factoring introduces an unwanted jump.
1042 For non-local gotos and abnormal edges from calls to calls that return
1043 twice or forced labels, factor the abnormal edges too, by having all
1044 abnormal edges from the calls go to a common artificial basic block
1045 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1046 basic block to all forced labels and calls returning twice.
1047 We do this per-OpenMP structured block, because those regions
1048 are guaranteed to be single entry single exit by the standard,
1049 so it is not allowed to enter or exit such regions abnormally this way,
1050 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1051 must not transfer control across SESE region boundaries. */
1052 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
1054 gimple_stmt_iterator gsi;
1055 basic_block dispatcher_bb_array[2] = { NULL, NULL };
1056 basic_block *dispatcher_bbs = dispatcher_bb_array;
1057 int count = n_basic_blocks_for_fn (cfun);
1059 if (bb_to_omp_idx)
1060 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1062 FOR_EACH_BB_FN (bb, cfun)
1064 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1066 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1067 tree target;
1069 if (!label_stmt)
1070 break;
1072 target = gimple_label_label (label_stmt);
1074 /* Make an edge to every label block that has been marked as a
1075 potential target for a computed goto or a non-local goto. */
1076 if (FORCED_LABEL (target))
1077 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1078 &ab_edge_goto, true);
1079 if (DECL_NONLOCAL (target))
1081 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1082 &ab_edge_call, false);
1083 break;
1087 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1088 gsi_next_nondebug (&gsi);
1089 if (!gsi_end_p (gsi))
1091 /* Make an edge to every setjmp-like call. */
1092 gimple *call_stmt = gsi_stmt (gsi);
1093 if (is_gimple_call (call_stmt)
1094 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1095 || gimple_call_builtin_p (call_stmt,
1096 BUILT_IN_SETJMP_RECEIVER)))
1097 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1098 &ab_edge_call, false);
1102 if (bb_to_omp_idx)
1103 XDELETE (dispatcher_bbs);
1106 XDELETE (bb_to_omp_idx);
1108 omp_free_regions ();
1111 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1112 needed. Returns true if new bbs were created.
1113 Note: This is transitional code, and should not be used for new code. We
1114 should be able to get rid of this by rewriting all target va-arg
1115 gimplification hooks to use an interface gimple_build_cond_value as described
1116 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1118 bool
1119 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1121 gimple *stmt = gsi_stmt (*gsi);
1122 basic_block bb = gimple_bb (stmt);
1123 basic_block lastbb, afterbb;
1124 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1125 edge e;
1126 lastbb = make_blocks_1 (seq, bb);
1127 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1128 return false;
1129 e = split_block (bb, stmt);
1130 /* Move e->dest to come after the new basic blocks. */
1131 afterbb = e->dest;
1132 unlink_block (afterbb);
1133 link_block (afterbb, lastbb);
1134 redirect_edge_succ (e, bb->next_bb);
1135 bb = bb->next_bb;
1136 while (bb != afterbb)
1138 struct omp_region *cur_region = NULL;
1139 profile_count cnt = profile_count::zero ();
1140 bool all = true;
1142 int cur_omp_region_idx = 0;
1143 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1144 gcc_assert (!mer && !cur_region);
1145 add_bb_to_loop (bb, afterbb->loop_father);
1147 edge e;
1148 edge_iterator ei;
1149 FOR_EACH_EDGE (e, ei, bb->preds)
1151 if (e->count ().initialized_p ())
1152 cnt += e->count ();
1153 else
1154 all = false;
1156 tree_guess_outgoing_edge_probabilities (bb);
1157 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1158 bb->count = cnt;
1160 bb = bb->next_bb;
1162 return true;
1165 /* Find the next available discriminator value for LOCUS. The
1166 discriminator distinguishes among several basic blocks that
1167 share a common locus, allowing for more accurate sample-based
1168 profiling. */
1170 static int
1171 next_discriminator_for_locus (location_t locus)
1173 struct locus_discrim_map item;
1174 struct locus_discrim_map **slot;
1176 item.locus = locus;
1177 item.discriminator = 0;
1178 slot = discriminator_per_locus->find_slot_with_hash (
1179 &item, LOCATION_LINE (locus), INSERT);
1180 gcc_assert (slot);
1181 if (*slot == HTAB_EMPTY_ENTRY)
1183 *slot = XNEW (struct locus_discrim_map);
1184 gcc_assert (*slot);
1185 (*slot)->locus = locus;
1186 (*slot)->discriminator = 0;
1188 (*slot)->discriminator++;
1189 return (*slot)->discriminator;
1192 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1194 static bool
1195 same_line_p (location_t locus1, location_t locus2)
1197 expanded_location from, to;
1199 if (locus1 == locus2)
1200 return true;
1202 from = expand_location (locus1);
1203 to = expand_location (locus2);
1205 if (from.line != to.line)
1206 return false;
1207 if (from.file == to.file)
1208 return true;
1209 return (from.file != NULL
1210 && to.file != NULL
1211 && filename_cmp (from.file, to.file) == 0);
1214 /* Assign discriminators to each basic block. */
1216 static void
1217 assign_discriminators (void)
1219 basic_block bb;
1221 FOR_EACH_BB_FN (bb, cfun)
1223 edge e;
1224 edge_iterator ei;
1225 gimple *last = last_stmt (bb);
1226 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1228 if (locus == UNKNOWN_LOCATION)
1229 continue;
1231 FOR_EACH_EDGE (e, ei, bb->succs)
1233 gimple *first = first_non_label_stmt (e->dest);
1234 gimple *last = last_stmt (e->dest);
1235 if ((first && same_line_p (locus, gimple_location (first)))
1236 || (last && same_line_p (locus, gimple_location (last))))
1238 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1239 bb->discriminator = next_discriminator_for_locus (locus);
1240 else
1241 e->dest->discriminator = next_discriminator_for_locus (locus);
1247 /* Create the edges for a GIMPLE_COND starting at block BB. */
1249 static void
1250 make_cond_expr_edges (basic_block bb)
1252 gcond *entry = as_a <gcond *> (last_stmt (bb));
1253 gimple *then_stmt, *else_stmt;
1254 basic_block then_bb, else_bb;
1255 tree then_label, else_label;
1256 edge e;
1258 gcc_assert (entry);
1259 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1261 /* Entry basic blocks for each component. */
1262 then_label = gimple_cond_true_label (entry);
1263 else_label = gimple_cond_false_label (entry);
1264 then_bb = label_to_block (then_label);
1265 else_bb = label_to_block (else_label);
1266 then_stmt = first_stmt (then_bb);
1267 else_stmt = first_stmt (else_bb);
1269 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1270 e->goto_locus = gimple_location (then_stmt);
1271 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1272 if (e)
1273 e->goto_locus = gimple_location (else_stmt);
1275 /* We do not need the labels anymore. */
1276 gimple_cond_set_true_label (entry, NULL_TREE);
1277 gimple_cond_set_false_label (entry, NULL_TREE);
1281 /* Called for each element in the hash table (P) as we delete the
1282 edge to cases hash table.
1284 Clear all the CASE_CHAINs to prevent problems with copying of
1285 SWITCH_EXPRs and structure sharing rules, then free the hash table
1286 element. */
1288 bool
1289 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1291 tree t, next;
1293 for (t = value; t; t = next)
1295 next = CASE_CHAIN (t);
1296 CASE_CHAIN (t) = NULL;
1299 return true;
1302 /* Start recording information mapping edges to case labels. */
1304 void
1305 start_recording_case_labels (void)
1307 gcc_assert (edge_to_cases == NULL);
1308 edge_to_cases = new hash_map<edge, tree>;
1309 touched_switch_bbs = BITMAP_ALLOC (NULL);
1312 /* Return nonzero if we are recording information for case labels. */
1314 static bool
1315 recording_case_labels_p (void)
1317 return (edge_to_cases != NULL);
1320 /* Stop recording information mapping edges to case labels and
1321 remove any information we have recorded. */
1322 void
1323 end_recording_case_labels (void)
1325 bitmap_iterator bi;
1326 unsigned i;
1327 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1328 delete edge_to_cases;
1329 edge_to_cases = NULL;
1330 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1332 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1333 if (bb)
1335 gimple *stmt = last_stmt (bb);
1336 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1337 group_case_labels_stmt (as_a <gswitch *> (stmt));
1340 BITMAP_FREE (touched_switch_bbs);
1343 /* If we are inside a {start,end}_recording_cases block, then return
1344 a chain of CASE_LABEL_EXPRs from T which reference E.
1346 Otherwise return NULL. */
1348 static tree
1349 get_cases_for_edge (edge e, gswitch *t)
1351 tree *slot;
1352 size_t i, n;
1354 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1355 chains available. Return NULL so the caller can detect this case. */
1356 if (!recording_case_labels_p ())
1357 return NULL;
1359 slot = edge_to_cases->get (e);
1360 if (slot)
1361 return *slot;
1363 /* If we did not find E in the hash table, then this must be the first
1364 time we have been queried for information about E & T. Add all the
1365 elements from T to the hash table then perform the query again. */
1367 n = gimple_switch_num_labels (t);
1368 for (i = 0; i < n; i++)
1370 tree elt = gimple_switch_label (t, i);
1371 tree lab = CASE_LABEL (elt);
1372 basic_block label_bb = label_to_block (lab);
1373 edge this_edge = find_edge (e->src, label_bb);
1375 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1376 a new chain. */
1377 tree &s = edge_to_cases->get_or_insert (this_edge);
1378 CASE_CHAIN (elt) = s;
1379 s = elt;
1382 return *edge_to_cases->get (e);
1385 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1387 static void
1388 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1390 size_t i, n;
1392 n = gimple_switch_num_labels (entry);
1394 for (i = 0; i < n; ++i)
1396 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1397 basic_block label_bb = label_to_block (lab);
1398 make_edge (bb, label_bb, 0);
1403 /* Return the basic block holding label DEST. */
1405 basic_block
1406 label_to_block_fn (struct function *ifun, tree dest)
1408 int uid = LABEL_DECL_UID (dest);
1410 /* We would die hard when faced by an undefined label. Emit a label to
1411 the very first basic block. This will hopefully make even the dataflow
1412 and undefined variable warnings quite right. */
1413 if (seen_error () && uid < 0)
1415 gimple_stmt_iterator gsi =
1416 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1417 gimple *stmt;
1419 stmt = gimple_build_label (dest);
1420 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1421 uid = LABEL_DECL_UID (dest);
1423 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1424 return NULL;
1425 return (*ifun->cfg->x_label_to_block_map)[uid];
1428 /* Create edges for a goto statement at block BB. Returns true
1429 if abnormal edges should be created. */
1431 static bool
1432 make_goto_expr_edges (basic_block bb)
1434 gimple_stmt_iterator last = gsi_last_bb (bb);
1435 gimple *goto_t = gsi_stmt (last);
1437 /* A simple GOTO creates normal edges. */
1438 if (simple_goto_p (goto_t))
1440 tree dest = gimple_goto_dest (goto_t);
1441 basic_block label_bb = label_to_block (dest);
1442 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1443 e->goto_locus = gimple_location (goto_t);
1444 gsi_remove (&last, true);
1445 return false;
1448 /* A computed GOTO creates abnormal edges. */
1449 return true;
1452 /* Create edges for an asm statement with labels at block BB. */
1454 static void
1455 make_gimple_asm_edges (basic_block bb)
1457 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1458 int i, n = gimple_asm_nlabels (stmt);
1460 for (i = 0; i < n; ++i)
1462 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1463 basic_block label_bb = label_to_block (label);
1464 make_edge (bb, label_bb, 0);
1468 /*---------------------------------------------------------------------------
1469 Flowgraph analysis
1470 ---------------------------------------------------------------------------*/
1472 /* Cleanup useless labels in basic blocks. This is something we wish
1473 to do early because it allows us to group case labels before creating
1474 the edges for the CFG, and it speeds up block statement iterators in
1475 all passes later on.
1476 We rerun this pass after CFG is created, to get rid of the labels that
1477 are no longer referenced. After then we do not run it any more, since
1478 (almost) no new labels should be created. */
1480 /* A map from basic block index to the leading label of that block. */
1481 static struct label_record
1483 /* The label. */
1484 tree label;
1486 /* True if the label is referenced from somewhere. */
1487 bool used;
1488 } *label_for_bb;
1490 /* Given LABEL return the first label in the same basic block. */
1492 static tree
1493 main_block_label (tree label)
1495 basic_block bb = label_to_block (label);
1496 tree main_label = label_for_bb[bb->index].label;
1498 /* label_to_block possibly inserted undefined label into the chain. */
1499 if (!main_label)
1501 label_for_bb[bb->index].label = label;
1502 main_label = label;
1505 label_for_bb[bb->index].used = true;
1506 return main_label;
1509 /* Clean up redundant labels within the exception tree. */
1511 static void
1512 cleanup_dead_labels_eh (void)
1514 eh_landing_pad lp;
1515 eh_region r;
1516 tree lab;
1517 int i;
1519 if (cfun->eh == NULL)
1520 return;
1522 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1523 if (lp && lp->post_landing_pad)
1525 lab = main_block_label (lp->post_landing_pad);
1526 if (lab != lp->post_landing_pad)
1528 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1529 EH_LANDING_PAD_NR (lab) = lp->index;
1533 FOR_ALL_EH_REGION (r)
1534 switch (r->type)
1536 case ERT_CLEANUP:
1537 case ERT_MUST_NOT_THROW:
1538 break;
1540 case ERT_TRY:
1542 eh_catch c;
1543 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1545 lab = c->label;
1546 if (lab)
1547 c->label = main_block_label (lab);
1550 break;
1552 case ERT_ALLOWED_EXCEPTIONS:
1553 lab = r->u.allowed.label;
1554 if (lab)
1555 r->u.allowed.label = main_block_label (lab);
1556 break;
1561 /* Cleanup redundant labels. This is a three-step process:
1562 1) Find the leading label for each block.
1563 2) Redirect all references to labels to the leading labels.
1564 3) Cleanup all useless labels. */
1566 void
1567 cleanup_dead_labels (void)
1569 basic_block bb;
1570 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1572 /* Find a suitable label for each block. We use the first user-defined
1573 label if there is one, or otherwise just the first label we see. */
1574 FOR_EACH_BB_FN (bb, cfun)
1576 gimple_stmt_iterator i;
1578 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1580 tree label;
1581 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1583 if (!label_stmt)
1584 break;
1586 label = gimple_label_label (label_stmt);
1588 /* If we have not yet seen a label for the current block,
1589 remember this one and see if there are more labels. */
1590 if (!label_for_bb[bb->index].label)
1592 label_for_bb[bb->index].label = label;
1593 continue;
1596 /* If we did see a label for the current block already, but it
1597 is an artificially created label, replace it if the current
1598 label is a user defined label. */
1599 if (!DECL_ARTIFICIAL (label)
1600 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1602 label_for_bb[bb->index].label = label;
1603 break;
1608 /* Now redirect all jumps/branches to the selected label.
1609 First do so for each block ending in a control statement. */
1610 FOR_EACH_BB_FN (bb, cfun)
1612 gimple *stmt = last_stmt (bb);
1613 tree label, new_label;
1615 if (!stmt)
1616 continue;
1618 switch (gimple_code (stmt))
1620 case GIMPLE_COND:
1622 gcond *cond_stmt = as_a <gcond *> (stmt);
1623 label = gimple_cond_true_label (cond_stmt);
1624 if (label)
1626 new_label = main_block_label (label);
1627 if (new_label != label)
1628 gimple_cond_set_true_label (cond_stmt, new_label);
1631 label = gimple_cond_false_label (cond_stmt);
1632 if (label)
1634 new_label = main_block_label (label);
1635 if (new_label != label)
1636 gimple_cond_set_false_label (cond_stmt, new_label);
1639 break;
1641 case GIMPLE_SWITCH:
1643 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1644 size_t i, n = gimple_switch_num_labels (switch_stmt);
1646 /* Replace all destination labels. */
1647 for (i = 0; i < n; ++i)
1649 tree case_label = gimple_switch_label (switch_stmt, i);
1650 label = CASE_LABEL (case_label);
1651 new_label = main_block_label (label);
1652 if (new_label != label)
1653 CASE_LABEL (case_label) = new_label;
1655 break;
1658 case GIMPLE_ASM:
1660 gasm *asm_stmt = as_a <gasm *> (stmt);
1661 int i, n = gimple_asm_nlabels (asm_stmt);
1663 for (i = 0; i < n; ++i)
1665 tree cons = gimple_asm_label_op (asm_stmt, i);
1666 tree label = main_block_label (TREE_VALUE (cons));
1667 TREE_VALUE (cons) = label;
1669 break;
1672 /* We have to handle gotos until they're removed, and we don't
1673 remove them until after we've created the CFG edges. */
1674 case GIMPLE_GOTO:
1675 if (!computed_goto_p (stmt))
1677 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1678 label = gimple_goto_dest (goto_stmt);
1679 new_label = main_block_label (label);
1680 if (new_label != label)
1681 gimple_goto_set_dest (goto_stmt, new_label);
1683 break;
1685 case GIMPLE_TRANSACTION:
1687 gtransaction *txn = as_a <gtransaction *> (stmt);
1689 label = gimple_transaction_label_norm (txn);
1690 if (label)
1692 new_label = main_block_label (label);
1693 if (new_label != label)
1694 gimple_transaction_set_label_norm (txn, new_label);
1697 label = gimple_transaction_label_uninst (txn);
1698 if (label)
1700 new_label = main_block_label (label);
1701 if (new_label != label)
1702 gimple_transaction_set_label_uninst (txn, new_label);
1705 label = gimple_transaction_label_over (txn);
1706 if (label)
1708 new_label = main_block_label (label);
1709 if (new_label != label)
1710 gimple_transaction_set_label_over (txn, new_label);
1713 break;
1715 default:
1716 break;
1720 /* Do the same for the exception region tree labels. */
1721 cleanup_dead_labels_eh ();
1723 /* Finally, purge dead labels. All user-defined labels and labels that
1724 can be the target of non-local gotos and labels which have their
1725 address taken are preserved. */
1726 FOR_EACH_BB_FN (bb, cfun)
1728 gimple_stmt_iterator i;
1729 tree label_for_this_bb = label_for_bb[bb->index].label;
1731 if (!label_for_this_bb)
1732 continue;
1734 /* If the main label of the block is unused, we may still remove it. */
1735 if (!label_for_bb[bb->index].used)
1736 label_for_this_bb = NULL;
1738 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1740 tree label;
1741 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1743 if (!label_stmt)
1744 break;
1746 label = gimple_label_label (label_stmt);
1748 if (label == label_for_this_bb
1749 || !DECL_ARTIFICIAL (label)
1750 || DECL_NONLOCAL (label)
1751 || FORCED_LABEL (label))
1752 gsi_next (&i);
1753 else
1754 gsi_remove (&i, true);
1758 free (label_for_bb);
1761 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1762 the ones jumping to the same label.
1763 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1765 bool
1766 group_case_labels_stmt (gswitch *stmt)
1768 int old_size = gimple_switch_num_labels (stmt);
1769 int i, next_index, new_size;
1770 basic_block default_bb = NULL;
1772 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1774 /* Look for possible opportunities to merge cases. */
1775 new_size = i = 1;
1776 while (i < old_size)
1778 tree base_case, base_high;
1779 basic_block base_bb;
1781 base_case = gimple_switch_label (stmt, i);
1783 gcc_assert (base_case);
1784 base_bb = label_to_block (CASE_LABEL (base_case));
1786 /* Discard cases that have the same destination as the default case or
1787 whose destiniation blocks have already been removed as unreachable. */
1788 if (base_bb == NULL || base_bb == default_bb)
1790 i++;
1791 continue;
1794 base_high = CASE_HIGH (base_case)
1795 ? CASE_HIGH (base_case)
1796 : CASE_LOW (base_case);
1797 next_index = i + 1;
1799 /* Try to merge case labels. Break out when we reach the end
1800 of the label vector or when we cannot merge the next case
1801 label with the current one. */
1802 while (next_index < old_size)
1804 tree merge_case = gimple_switch_label (stmt, next_index);
1805 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1806 wide_int bhp1 = wi::to_wide (base_high) + 1;
1808 /* Merge the cases if they jump to the same place,
1809 and their ranges are consecutive. */
1810 if (merge_bb == base_bb
1811 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1813 base_high = CASE_HIGH (merge_case) ?
1814 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1815 CASE_HIGH (base_case) = base_high;
1816 next_index++;
1818 else
1819 break;
1822 /* Discard cases that have an unreachable destination block. */
1823 if (EDGE_COUNT (base_bb->succs) == 0
1824 && gimple_seq_unreachable_p (bb_seq (base_bb))
1825 /* Don't optimize this if __builtin_unreachable () is the
1826 implicitly added one by the C++ FE too early, before
1827 -Wreturn-type can be diagnosed. We'll optimize it later
1828 during switchconv pass or any other cfg cleanup. */
1829 && (gimple_in_ssa_p (cfun)
1830 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1831 != BUILTINS_LOCATION)))
1833 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1834 if (base_edge != NULL)
1835 remove_edge_and_dominated_blocks (base_edge);
1836 i = next_index;
1837 continue;
1840 if (new_size < i)
1841 gimple_switch_set_label (stmt, new_size,
1842 gimple_switch_label (stmt, i));
1843 i = next_index;
1844 new_size++;
1847 gcc_assert (new_size <= old_size);
1849 if (new_size < old_size)
1850 gimple_switch_set_num_labels (stmt, new_size);
1852 return new_size < old_size;
1855 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1856 and scan the sorted vector of cases. Combine the ones jumping to the
1857 same label. */
1859 bool
1860 group_case_labels (void)
1862 basic_block bb;
1863 bool changed = false;
1865 FOR_EACH_BB_FN (bb, cfun)
1867 gimple *stmt = last_stmt (bb);
1868 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1869 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1872 return changed;
1875 /* Checks whether we can merge block B into block A. */
1877 static bool
1878 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1880 gimple *stmt;
1882 if (!single_succ_p (a))
1883 return false;
1885 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1886 return false;
1888 if (single_succ (a) != b)
1889 return false;
1891 if (!single_pred_p (b))
1892 return false;
1894 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1895 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1896 return false;
1898 /* If A ends by a statement causing exceptions or something similar, we
1899 cannot merge the blocks. */
1900 stmt = last_stmt (a);
1901 if (stmt && stmt_ends_bb_p (stmt))
1902 return false;
1904 /* Do not allow a block with only a non-local label to be merged. */
1905 if (stmt)
1906 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1907 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1908 return false;
1910 /* Examine the labels at the beginning of B. */
1911 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1912 gsi_next (&gsi))
1914 tree lab;
1915 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1916 if (!label_stmt)
1917 break;
1918 lab = gimple_label_label (label_stmt);
1920 /* Do not remove user forced labels or for -O0 any user labels. */
1921 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1922 return false;
1925 /* Protect simple loop latches. We only want to avoid merging
1926 the latch with the loop header or with a block in another
1927 loop in this case. */
1928 if (current_loops
1929 && b->loop_father->latch == b
1930 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1931 && (b->loop_father->header == a
1932 || b->loop_father != a->loop_father))
1933 return false;
1935 /* It must be possible to eliminate all phi nodes in B. If ssa form
1936 is not up-to-date and a name-mapping is registered, we cannot eliminate
1937 any phis. Symbols marked for renaming are never a problem though. */
1938 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1939 gsi_next (&gsi))
1941 gphi *phi = gsi.phi ();
1942 /* Technically only new names matter. */
1943 if (name_registered_for_update_p (PHI_RESULT (phi)))
1944 return false;
1947 /* When not optimizing, don't merge if we'd lose goto_locus. */
1948 if (!optimize
1949 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1951 location_t goto_locus = single_succ_edge (a)->goto_locus;
1952 gimple_stmt_iterator prev, next;
1953 prev = gsi_last_nondebug_bb (a);
1954 next = gsi_after_labels (b);
1955 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1956 gsi_next_nondebug (&next);
1957 if ((gsi_end_p (prev)
1958 || gimple_location (gsi_stmt (prev)) != goto_locus)
1959 && (gsi_end_p (next)
1960 || gimple_location (gsi_stmt (next)) != goto_locus))
1961 return false;
1964 return true;
1967 /* Replaces all uses of NAME by VAL. */
1969 void
1970 replace_uses_by (tree name, tree val)
1972 imm_use_iterator imm_iter;
1973 use_operand_p use;
1974 gimple *stmt;
1975 edge e;
1977 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1979 /* Mark the block if we change the last stmt in it. */
1980 if (cfgcleanup_altered_bbs
1981 && stmt_ends_bb_p (stmt))
1982 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1984 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1986 replace_exp (use, val);
1988 if (gimple_code (stmt) == GIMPLE_PHI)
1990 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1991 PHI_ARG_INDEX_FROM_USE (use));
1992 if (e->flags & EDGE_ABNORMAL
1993 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1995 /* This can only occur for virtual operands, since
1996 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1997 would prevent replacement. */
1998 gcc_checking_assert (virtual_operand_p (name));
1999 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
2004 if (gimple_code (stmt) != GIMPLE_PHI)
2006 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2007 gimple *orig_stmt = stmt;
2008 size_t i;
2010 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2011 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2012 only change sth from non-invariant to invariant, and only
2013 when propagating constants. */
2014 if (is_gimple_min_invariant (val))
2015 for (i = 0; i < gimple_num_ops (stmt); i++)
2017 tree op = gimple_op (stmt, i);
2018 /* Operands may be empty here. For example, the labels
2019 of a GIMPLE_COND are nulled out following the creation
2020 of the corresponding CFG edges. */
2021 if (op && TREE_CODE (op) == ADDR_EXPR)
2022 recompute_tree_invariant_for_addr_expr (op);
2025 if (fold_stmt (&gsi))
2026 stmt = gsi_stmt (gsi);
2028 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
2029 gimple_purge_dead_eh_edges (gimple_bb (stmt));
2031 update_stmt (stmt);
2035 gcc_checking_assert (has_zero_uses (name));
2037 /* Also update the trees stored in loop structures. */
2038 if (current_loops)
2040 struct loop *loop;
2042 FOR_EACH_LOOP (loop, 0)
2044 substitute_in_loop_info (loop, name, val);
2049 /* Merge block B into block A. */
2051 static void
2052 gimple_merge_blocks (basic_block a, basic_block b)
2054 gimple_stmt_iterator last, gsi;
2055 gphi_iterator psi;
2057 if (dump_file)
2058 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2060 /* Remove all single-valued PHI nodes from block B of the form
2061 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2062 gsi = gsi_last_bb (a);
2063 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2065 gimple *phi = gsi_stmt (psi);
2066 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2067 gimple *copy;
2068 bool may_replace_uses = (virtual_operand_p (def)
2069 || may_propagate_copy (def, use));
2071 /* In case we maintain loop closed ssa form, do not propagate arguments
2072 of loop exit phi nodes. */
2073 if (current_loops
2074 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2075 && !virtual_operand_p (def)
2076 && TREE_CODE (use) == SSA_NAME
2077 && a->loop_father != b->loop_father)
2078 may_replace_uses = false;
2080 if (!may_replace_uses)
2082 gcc_assert (!virtual_operand_p (def));
2084 /* Note that just emitting the copies is fine -- there is no problem
2085 with ordering of phi nodes. This is because A is the single
2086 predecessor of B, therefore results of the phi nodes cannot
2087 appear as arguments of the phi nodes. */
2088 copy = gimple_build_assign (def, use);
2089 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2090 remove_phi_node (&psi, false);
2092 else
2094 /* If we deal with a PHI for virtual operands, we can simply
2095 propagate these without fussing with folding or updating
2096 the stmt. */
2097 if (virtual_operand_p (def))
2099 imm_use_iterator iter;
2100 use_operand_p use_p;
2101 gimple *stmt;
2103 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2104 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2105 SET_USE (use_p, use);
2107 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2108 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2110 else
2111 replace_uses_by (def, use);
2113 remove_phi_node (&psi, true);
2117 /* Ensure that B follows A. */
2118 move_block_after (b, a);
2120 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2121 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2123 /* Remove labels from B and set gimple_bb to A for other statements. */
2124 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2126 gimple *stmt = gsi_stmt (gsi);
2127 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2129 tree label = gimple_label_label (label_stmt);
2130 int lp_nr;
2132 gsi_remove (&gsi, false);
2134 /* Now that we can thread computed gotos, we might have
2135 a situation where we have a forced label in block B
2136 However, the label at the start of block B might still be
2137 used in other ways (think about the runtime checking for
2138 Fortran assigned gotos). So we can not just delete the
2139 label. Instead we move the label to the start of block A. */
2140 if (FORCED_LABEL (label))
2142 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2143 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2145 /* Other user labels keep around in a form of a debug stmt. */
2146 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2148 gimple *dbg = gimple_build_debug_bind (label,
2149 integer_zero_node,
2150 stmt);
2151 gimple_debug_bind_reset_value (dbg);
2152 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2155 lp_nr = EH_LANDING_PAD_NR (label);
2156 if (lp_nr)
2158 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2159 lp->post_landing_pad = NULL;
2162 else
2164 gimple_set_bb (stmt, a);
2165 gsi_next (&gsi);
2169 /* When merging two BBs, if their counts are different, the larger count
2170 is selected as the new bb count. This is to handle inconsistent
2171 profiles. */
2172 if (a->loop_father == b->loop_father)
2174 a->count = a->count.merge (b->count);
2177 /* Merge the sequences. */
2178 last = gsi_last_bb (a);
2179 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2180 set_bb_seq (b, NULL);
2182 if (cfgcleanup_altered_bbs)
2183 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2187 /* Return the one of two successors of BB that is not reachable by a
2188 complex edge, if there is one. Else, return BB. We use
2189 this in optimizations that use post-dominators for their heuristics,
2190 to catch the cases in C++ where function calls are involved. */
2192 basic_block
2193 single_noncomplex_succ (basic_block bb)
2195 edge e0, e1;
2196 if (EDGE_COUNT (bb->succs) != 2)
2197 return bb;
2199 e0 = EDGE_SUCC (bb, 0);
2200 e1 = EDGE_SUCC (bb, 1);
2201 if (e0->flags & EDGE_COMPLEX)
2202 return e1->dest;
2203 if (e1->flags & EDGE_COMPLEX)
2204 return e0->dest;
2206 return bb;
2209 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2211 void
2212 notice_special_calls (gcall *call)
2214 int flags = gimple_call_flags (call);
2216 if (flags & ECF_MAY_BE_ALLOCA)
2217 cfun->calls_alloca = true;
2218 if (flags & ECF_RETURNS_TWICE)
2219 cfun->calls_setjmp = true;
2223 /* Clear flags set by notice_special_calls. Used by dead code removal
2224 to update the flags. */
2226 void
2227 clear_special_calls (void)
2229 cfun->calls_alloca = false;
2230 cfun->calls_setjmp = false;
2233 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2235 static void
2236 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2238 /* Since this block is no longer reachable, we can just delete all
2239 of its PHI nodes. */
2240 remove_phi_nodes (bb);
2242 /* Remove edges to BB's successors. */
2243 while (EDGE_COUNT (bb->succs) > 0)
2244 remove_edge (EDGE_SUCC (bb, 0));
2248 /* Remove statements of basic block BB. */
2250 static void
2251 remove_bb (basic_block bb)
2253 gimple_stmt_iterator i;
2255 if (dump_file)
2257 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2258 if (dump_flags & TDF_DETAILS)
2260 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2261 fprintf (dump_file, "\n");
2265 if (current_loops)
2267 struct loop *loop = bb->loop_father;
2269 /* If a loop gets removed, clean up the information associated
2270 with it. */
2271 if (loop->latch == bb
2272 || loop->header == bb)
2273 free_numbers_of_iterations_estimates (loop);
2276 /* Remove all the instructions in the block. */
2277 if (bb_seq (bb) != NULL)
2279 /* Walk backwards so as to get a chance to substitute all
2280 released DEFs into debug stmts. See
2281 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2282 details. */
2283 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2285 gimple *stmt = gsi_stmt (i);
2286 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2287 if (label_stmt
2288 && (FORCED_LABEL (gimple_label_label (label_stmt))
2289 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2291 basic_block new_bb;
2292 gimple_stmt_iterator new_gsi;
2294 /* A non-reachable non-local label may still be referenced.
2295 But it no longer needs to carry the extra semantics of
2296 non-locality. */
2297 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2299 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2300 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2303 new_bb = bb->prev_bb;
2304 new_gsi = gsi_start_bb (new_bb);
2305 gsi_remove (&i, false);
2306 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2308 else
2310 /* Release SSA definitions. */
2311 release_defs (stmt);
2312 gsi_remove (&i, true);
2315 if (gsi_end_p (i))
2316 i = gsi_last_bb (bb);
2317 else
2318 gsi_prev (&i);
2322 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2323 bb->il.gimple.seq = NULL;
2324 bb->il.gimple.phi_nodes = NULL;
2328 /* Given a basic block BB and a value VAL for use in the final statement
2329 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2330 the edge that will be taken out of the block.
2331 If VAL is NULL_TREE, then the current value of the final statement's
2332 predicate or index is used.
2333 If the value does not match a unique edge, NULL is returned. */
2335 edge
2336 find_taken_edge (basic_block bb, tree val)
2338 gimple *stmt;
2340 stmt = last_stmt (bb);
2342 /* Handle ENTRY and EXIT. */
2343 if (!stmt)
2344 return NULL;
2346 if (gimple_code (stmt) == GIMPLE_COND)
2347 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2349 if (gimple_code (stmt) == GIMPLE_SWITCH)
2350 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2352 if (computed_goto_p (stmt))
2354 /* Only optimize if the argument is a label, if the argument is
2355 not a label then we can not construct a proper CFG.
2357 It may be the case that we only need to allow the LABEL_REF to
2358 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2359 appear inside a LABEL_EXPR just to be safe. */
2360 if (val
2361 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2362 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2363 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2366 /* Otherwise we only know the taken successor edge if it's unique. */
2367 return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2370 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2371 statement, determine which of the outgoing edges will be taken out of the
2372 block. Return NULL if either edge may be taken. */
2374 static edge
2375 find_taken_edge_computed_goto (basic_block bb, tree val)
2377 basic_block dest;
2378 edge e = NULL;
2380 dest = label_to_block (val);
2381 if (dest)
2383 e = find_edge (bb, dest);
2384 gcc_assert (e != NULL);
2387 return e;
2390 /* Given COND_STMT and a constant value VAL for use as the predicate,
2391 determine which of the two edges will be taken out of
2392 the statement's block. Return NULL if either edge may be taken.
2393 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2394 is used. */
2396 static edge
2397 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2399 edge true_edge, false_edge;
2401 if (val == NULL_TREE)
2403 /* Use the current value of the predicate. */
2404 if (gimple_cond_true_p (cond_stmt))
2405 val = integer_one_node;
2406 else if (gimple_cond_false_p (cond_stmt))
2407 val = integer_zero_node;
2408 else
2409 return NULL;
2411 else if (TREE_CODE (val) != INTEGER_CST)
2412 return NULL;
2414 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2415 &true_edge, &false_edge);
2417 return (integer_zerop (val) ? false_edge : true_edge);
2420 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2421 which edge will be taken out of the statement's block. Return NULL if any
2422 edge may be taken.
2423 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2424 is used. */
2426 static edge
2427 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2429 basic_block dest_bb;
2430 edge e;
2431 tree taken_case;
2433 if (gimple_switch_num_labels (switch_stmt) == 1)
2434 taken_case = gimple_switch_default_label (switch_stmt);
2435 else
2437 if (val == NULL_TREE)
2438 val = gimple_switch_index (switch_stmt);
2439 if (TREE_CODE (val) != INTEGER_CST)
2440 return NULL;
2441 else
2442 taken_case = find_case_label_for_value (switch_stmt, val);
2444 dest_bb = label_to_block (CASE_LABEL (taken_case));
2446 e = find_edge (gimple_bb (switch_stmt), dest_bb);
2447 gcc_assert (e);
2448 return e;
2452 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2453 We can make optimal use here of the fact that the case labels are
2454 sorted: We can do a binary search for a case matching VAL. */
2456 static tree
2457 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2459 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2460 tree default_case = gimple_switch_default_label (switch_stmt);
2462 for (low = 0, high = n; high - low > 1; )
2464 size_t i = (high + low) / 2;
2465 tree t = gimple_switch_label (switch_stmt, i);
2466 int cmp;
2468 /* Cache the result of comparing CASE_LOW and val. */
2469 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2471 if (cmp > 0)
2472 high = i;
2473 else
2474 low = i;
2476 if (CASE_HIGH (t) == NULL)
2478 /* A singe-valued case label. */
2479 if (cmp == 0)
2480 return t;
2482 else
2484 /* A case range. We can only handle integer ranges. */
2485 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2486 return t;
2490 return default_case;
2494 /* Dump a basic block on stderr. */
2496 void
2497 gimple_debug_bb (basic_block bb)
2499 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2503 /* Dump basic block with index N on stderr. */
2505 basic_block
2506 gimple_debug_bb_n (int n)
2508 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2509 return BASIC_BLOCK_FOR_FN (cfun, n);
2513 /* Dump the CFG on stderr.
2515 FLAGS are the same used by the tree dumping functions
2516 (see TDF_* in dumpfile.h). */
2518 void
2519 gimple_debug_cfg (dump_flags_t flags)
2521 gimple_dump_cfg (stderr, flags);
2525 /* Dump the program showing basic block boundaries on the given FILE.
2527 FLAGS are the same used by the tree dumping functions (see TDF_* in
2528 tree.h). */
2530 void
2531 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2533 if (flags & TDF_DETAILS)
2535 dump_function_header (file, current_function_decl, flags);
2536 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2537 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2538 last_basic_block_for_fn (cfun));
2540 brief_dump_cfg (file, flags);
2541 fprintf (file, "\n");
2544 if (flags & TDF_STATS)
2545 dump_cfg_stats (file);
2547 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2551 /* Dump CFG statistics on FILE. */
2553 void
2554 dump_cfg_stats (FILE *file)
2556 static long max_num_merged_labels = 0;
2557 unsigned long size, total = 0;
2558 long num_edges;
2559 basic_block bb;
2560 const char * const fmt_str = "%-30s%-13s%12s\n";
2561 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2562 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2563 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2564 const char *funcname = current_function_name ();
2566 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2568 fprintf (file, "---------------------------------------------------------\n");
2569 fprintf (file, fmt_str, "", " Number of ", "Memory");
2570 fprintf (file, fmt_str, "", " instances ", "used ");
2571 fprintf (file, "---------------------------------------------------------\n");
2573 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2574 total += size;
2575 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2576 SCALE (size), LABEL (size));
2578 num_edges = 0;
2579 FOR_EACH_BB_FN (bb, cfun)
2580 num_edges += EDGE_COUNT (bb->succs);
2581 size = num_edges * sizeof (struct edge_def);
2582 total += size;
2583 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2585 fprintf (file, "---------------------------------------------------------\n");
2586 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2587 LABEL (total));
2588 fprintf (file, "---------------------------------------------------------\n");
2589 fprintf (file, "\n");
2591 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2592 max_num_merged_labels = cfg_stats.num_merged_labels;
2594 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2595 cfg_stats.num_merged_labels, max_num_merged_labels);
2597 fprintf (file, "\n");
2601 /* Dump CFG statistics on stderr. Keep extern so that it's always
2602 linked in the final executable. */
2604 DEBUG_FUNCTION void
2605 debug_cfg_stats (void)
2607 dump_cfg_stats (stderr);
2610 /*---------------------------------------------------------------------------
2611 Miscellaneous helpers
2612 ---------------------------------------------------------------------------*/
2614 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2615 flow. Transfers of control flow associated with EH are excluded. */
2617 static bool
2618 call_can_make_abnormal_goto (gimple *t)
2620 /* If the function has no non-local labels, then a call cannot make an
2621 abnormal transfer of control. */
2622 if (!cfun->has_nonlocal_label
2623 && !cfun->calls_setjmp)
2624 return false;
2626 /* Likewise if the call has no side effects. */
2627 if (!gimple_has_side_effects (t))
2628 return false;
2630 /* Likewise if the called function is leaf. */
2631 if (gimple_call_flags (t) & ECF_LEAF)
2632 return false;
2634 return true;
2638 /* Return true if T can make an abnormal transfer of control flow.
2639 Transfers of control flow associated with EH are excluded. */
2641 bool
2642 stmt_can_make_abnormal_goto (gimple *t)
2644 if (computed_goto_p (t))
2645 return true;
2646 if (is_gimple_call (t))
2647 return call_can_make_abnormal_goto (t);
2648 return false;
2652 /* Return true if T represents a stmt that always transfers control. */
2654 bool
2655 is_ctrl_stmt (gimple *t)
2657 switch (gimple_code (t))
2659 case GIMPLE_COND:
2660 case GIMPLE_SWITCH:
2661 case GIMPLE_GOTO:
2662 case GIMPLE_RETURN:
2663 case GIMPLE_RESX:
2664 return true;
2665 default:
2666 return false;
2671 /* Return true if T is a statement that may alter the flow of control
2672 (e.g., a call to a non-returning function). */
2674 bool
2675 is_ctrl_altering_stmt (gimple *t)
2677 gcc_assert (t);
2679 switch (gimple_code (t))
2681 case GIMPLE_CALL:
2682 /* Per stmt call flag indicates whether the call could alter
2683 controlflow. */
2684 if (gimple_call_ctrl_altering_p (t))
2685 return true;
2686 break;
2688 case GIMPLE_EH_DISPATCH:
2689 /* EH_DISPATCH branches to the individual catch handlers at
2690 this level of a try or allowed-exceptions region. It can
2691 fallthru to the next statement as well. */
2692 return true;
2694 case GIMPLE_ASM:
2695 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2696 return true;
2697 break;
2699 CASE_GIMPLE_OMP:
2700 /* OpenMP directives alter control flow. */
2701 return true;
2703 case GIMPLE_TRANSACTION:
2704 /* A transaction start alters control flow. */
2705 return true;
2707 default:
2708 break;
2711 /* If a statement can throw, it alters control flow. */
2712 return stmt_can_throw_internal (t);
2716 /* Return true if T is a simple local goto. */
2718 bool
2719 simple_goto_p (gimple *t)
2721 return (gimple_code (t) == GIMPLE_GOTO
2722 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2726 /* Return true if STMT should start a new basic block. PREV_STMT is
2727 the statement preceding STMT. It is used when STMT is a label or a
2728 case label. Labels should only start a new basic block if their
2729 previous statement wasn't a label. Otherwise, sequence of labels
2730 would generate unnecessary basic blocks that only contain a single
2731 label. */
2733 static inline bool
2734 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2736 if (stmt == NULL)
2737 return false;
2739 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2740 any nondebug stmts in the block. We don't want to start another
2741 block in this case: the debug stmt will already have started the
2742 one STMT would start if we weren't outputting debug stmts. */
2743 if (prev_stmt && is_gimple_debug (prev_stmt))
2744 return false;
2746 /* Labels start a new basic block only if the preceding statement
2747 wasn't a label of the same type. This prevents the creation of
2748 consecutive blocks that have nothing but a single label. */
2749 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2751 /* Nonlocal and computed GOTO targets always start a new block. */
2752 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2753 || FORCED_LABEL (gimple_label_label (label_stmt)))
2754 return true;
2756 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2758 if (DECL_NONLOCAL (gimple_label_label (
2759 as_a <glabel *> (prev_stmt))))
2760 return true;
2762 cfg_stats.num_merged_labels++;
2763 return false;
2765 else
2766 return true;
2768 else if (gimple_code (stmt) == GIMPLE_CALL)
2770 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2771 /* setjmp acts similar to a nonlocal GOTO target and thus should
2772 start a new block. */
2773 return true;
2774 if (gimple_call_internal_p (stmt, IFN_PHI)
2775 && prev_stmt
2776 && gimple_code (prev_stmt) != GIMPLE_LABEL
2777 && (gimple_code (prev_stmt) != GIMPLE_CALL
2778 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2779 /* PHI nodes start a new block unless preceeded by a label
2780 or another PHI. */
2781 return true;
2784 return false;
2788 /* Return true if T should end a basic block. */
2790 bool
2791 stmt_ends_bb_p (gimple *t)
2793 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2796 /* Remove block annotations and other data structures. */
2798 void
2799 delete_tree_cfg_annotations (struct function *fn)
2801 vec_free (label_to_block_map_for_fn (fn));
2804 /* Return the virtual phi in BB. */
2806 gphi *
2807 get_virtual_phi (basic_block bb)
2809 for (gphi_iterator gsi = gsi_start_phis (bb);
2810 !gsi_end_p (gsi);
2811 gsi_next (&gsi))
2813 gphi *phi = gsi.phi ();
2815 if (virtual_operand_p (PHI_RESULT (phi)))
2816 return phi;
2819 return NULL;
2822 /* Return the first statement in basic block BB. */
2824 gimple *
2825 first_stmt (basic_block bb)
2827 gimple_stmt_iterator i = gsi_start_bb (bb);
2828 gimple *stmt = NULL;
2830 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2832 gsi_next (&i);
2833 stmt = NULL;
2835 return stmt;
2838 /* Return the first non-label statement in basic block BB. */
2840 static gimple *
2841 first_non_label_stmt (basic_block bb)
2843 gimple_stmt_iterator i = gsi_start_bb (bb);
2844 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2845 gsi_next (&i);
2846 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2849 /* Return the last statement in basic block BB. */
2851 gimple *
2852 last_stmt (basic_block bb)
2854 gimple_stmt_iterator i = gsi_last_bb (bb);
2855 gimple *stmt = NULL;
2857 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2859 gsi_prev (&i);
2860 stmt = NULL;
2862 return stmt;
2865 /* Return the last statement of an otherwise empty block. Return NULL
2866 if the block is totally empty, or if it contains more than one
2867 statement. */
2869 gimple *
2870 last_and_only_stmt (basic_block bb)
2872 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2873 gimple *last, *prev;
2875 if (gsi_end_p (i))
2876 return NULL;
2878 last = gsi_stmt (i);
2879 gsi_prev_nondebug (&i);
2880 if (gsi_end_p (i))
2881 return last;
2883 /* Empty statements should no longer appear in the instruction stream.
2884 Everything that might have appeared before should be deleted by
2885 remove_useless_stmts, and the optimizers should just gsi_remove
2886 instead of smashing with build_empty_stmt.
2888 Thus the only thing that should appear here in a block containing
2889 one executable statement is a label. */
2890 prev = gsi_stmt (i);
2891 if (gimple_code (prev) == GIMPLE_LABEL)
2892 return last;
2893 else
2894 return NULL;
2897 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2899 static void
2900 reinstall_phi_args (edge new_edge, edge old_edge)
2902 edge_var_map *vm;
2903 int i;
2904 gphi_iterator phis;
2906 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2907 if (!v)
2908 return;
2910 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2911 v->iterate (i, &vm) && !gsi_end_p (phis);
2912 i++, gsi_next (&phis))
2914 gphi *phi = phis.phi ();
2915 tree result = redirect_edge_var_map_result (vm);
2916 tree arg = redirect_edge_var_map_def (vm);
2918 gcc_assert (result == gimple_phi_result (phi));
2920 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2923 redirect_edge_var_map_clear (old_edge);
2926 /* Returns the basic block after which the new basic block created
2927 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2928 near its "logical" location. This is of most help to humans looking
2929 at debugging dumps. */
2931 basic_block
2932 split_edge_bb_loc (edge edge_in)
2934 basic_block dest = edge_in->dest;
2935 basic_block dest_prev = dest->prev_bb;
2937 if (dest_prev)
2939 edge e = find_edge (dest_prev, dest);
2940 if (e && !(e->flags & EDGE_COMPLEX))
2941 return edge_in->src;
2943 return dest_prev;
2946 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2947 Abort on abnormal edges. */
2949 static basic_block
2950 gimple_split_edge (edge edge_in)
2952 basic_block new_bb, after_bb, dest;
2953 edge new_edge, e;
2955 /* Abnormal edges cannot be split. */
2956 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2958 dest = edge_in->dest;
2960 after_bb = split_edge_bb_loc (edge_in);
2962 new_bb = create_empty_bb (after_bb);
2963 new_bb->count = edge_in->count ();
2965 e = redirect_edge_and_branch (edge_in, new_bb);
2966 gcc_assert (e == edge_in);
2968 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2969 reinstall_phi_args (new_edge, e);
2971 return new_bb;
2975 /* Verify properties of the address expression T with base object BASE. */
2977 static tree
2978 verify_address (tree t, tree base)
2980 bool old_constant;
2981 bool old_side_effects;
2982 bool new_constant;
2983 bool new_side_effects;
2985 old_constant = TREE_CONSTANT (t);
2986 old_side_effects = TREE_SIDE_EFFECTS (t);
2988 recompute_tree_invariant_for_addr_expr (t);
2989 new_side_effects = TREE_SIDE_EFFECTS (t);
2990 new_constant = TREE_CONSTANT (t);
2992 if (old_constant != new_constant)
2994 error ("constant not recomputed when ADDR_EXPR changed");
2995 return t;
2997 if (old_side_effects != new_side_effects)
2999 error ("side effects not recomputed when ADDR_EXPR changed");
3000 return t;
3003 if (!(VAR_P (base)
3004 || TREE_CODE (base) == PARM_DECL
3005 || TREE_CODE (base) == RESULT_DECL))
3006 return NULL_TREE;
3008 if (DECL_GIMPLE_REG_P (base))
3010 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3011 return base;
3014 return NULL_TREE;
3017 /* Callback for walk_tree, check that all elements with address taken are
3018 properly noticed as such. The DATA is an int* that is 1 if TP was seen
3019 inside a PHI node. */
3021 static tree
3022 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3024 tree t = *tp, x;
3026 if (TYPE_P (t))
3027 *walk_subtrees = 0;
3029 /* Check operand N for being valid GIMPLE and give error MSG if not. */
3030 #define CHECK_OP(N, MSG) \
3031 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
3032 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
3034 switch (TREE_CODE (t))
3036 case SSA_NAME:
3037 if (SSA_NAME_IN_FREE_LIST (t))
3039 error ("SSA name in freelist but still referenced");
3040 return *tp;
3042 break;
3044 case PARM_DECL:
3045 case VAR_DECL:
3046 case RESULT_DECL:
3048 tree context = decl_function_context (t);
3049 if (context != cfun->decl
3050 && !SCOPE_FILE_SCOPE_P (context)
3051 && !TREE_STATIC (t)
3052 && !DECL_EXTERNAL (t))
3054 error ("Local declaration from a different function");
3055 return t;
3058 break;
3060 case INDIRECT_REF:
3061 error ("INDIRECT_REF in gimple IL");
3062 return t;
3064 case MEM_REF:
3065 x = TREE_OPERAND (t, 0);
3066 if (!POINTER_TYPE_P (TREE_TYPE (x))
3067 || !is_gimple_mem_ref_addr (x))
3069 error ("invalid first operand of MEM_REF");
3070 return x;
3072 if (!poly_int_tree_p (TREE_OPERAND (t, 1))
3073 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
3075 error ("invalid offset operand of MEM_REF");
3076 return TREE_OPERAND (t, 1);
3078 if (TREE_CODE (x) == ADDR_EXPR)
3080 tree va = verify_address (x, TREE_OPERAND (x, 0));
3081 if (va)
3082 return va;
3083 x = TREE_OPERAND (x, 0);
3085 walk_tree (&x, verify_expr, data, NULL);
3086 *walk_subtrees = 0;
3087 break;
3089 case ASSERT_EXPR:
3090 x = fold (ASSERT_EXPR_COND (t));
3091 if (x == boolean_false_node)
3093 error ("ASSERT_EXPR with an always-false condition");
3094 return *tp;
3096 break;
3098 case MODIFY_EXPR:
3099 error ("MODIFY_EXPR not expected while having tuples");
3100 return *tp;
3102 case ADDR_EXPR:
3104 tree tem;
3106 gcc_assert (is_gimple_address (t));
3108 /* Skip any references (they will be checked when we recurse down the
3109 tree) and ensure that any variable used as a prefix is marked
3110 addressable. */
3111 for (x = TREE_OPERAND (t, 0);
3112 handled_component_p (x);
3113 x = TREE_OPERAND (x, 0))
3116 if ((tem = verify_address (t, x)))
3117 return tem;
3119 if (!(VAR_P (x)
3120 || TREE_CODE (x) == PARM_DECL
3121 || TREE_CODE (x) == RESULT_DECL))
3122 return NULL;
3124 if (!TREE_ADDRESSABLE (x))
3126 error ("address taken, but ADDRESSABLE bit not set");
3127 return x;
3130 break;
3133 case COND_EXPR:
3134 x = COND_EXPR_COND (t);
3135 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
3137 error ("non-integral used in condition");
3138 return x;
3140 if (!is_gimple_condexpr (x))
3142 error ("invalid conditional operand");
3143 return x;
3145 break;
3147 case NON_LVALUE_EXPR:
3148 case TRUTH_NOT_EXPR:
3149 gcc_unreachable ();
3151 CASE_CONVERT:
3152 case FIX_TRUNC_EXPR:
3153 case FLOAT_EXPR:
3154 case NEGATE_EXPR:
3155 case ABS_EXPR:
3156 case BIT_NOT_EXPR:
3157 CHECK_OP (0, "invalid operand to unary operator");
3158 break;
3160 case REALPART_EXPR:
3161 case IMAGPART_EXPR:
3162 case BIT_FIELD_REF:
3163 if (!is_gimple_reg_type (TREE_TYPE (t)))
3165 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3166 return t;
3169 if (TREE_CODE (t) == BIT_FIELD_REF)
3171 tree t0 = TREE_OPERAND (t, 0);
3172 tree t1 = TREE_OPERAND (t, 1);
3173 tree t2 = TREE_OPERAND (t, 2);
3174 poly_uint64 size, bitpos;
3175 if (!poly_int_tree_p (t1, &size)
3176 || !poly_int_tree_p (t2, &bitpos)
3177 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3178 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3180 error ("invalid position or size operand to BIT_FIELD_REF");
3181 return t;
3183 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
3184 && maybe_ne (TYPE_PRECISION (TREE_TYPE (t)), size))
3186 error ("integral result type precision does not match "
3187 "field size of BIT_FIELD_REF");
3188 return t;
3190 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
3191 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
3192 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))),
3193 size))
3195 error ("mode size of non-integral result does not "
3196 "match field size of BIT_FIELD_REF");
3197 return t;
3199 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
3200 && maybe_gt (size + bitpos,
3201 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (t0)))))
3203 error ("position plus size exceeds size of referenced object in "
3204 "BIT_FIELD_REF");
3205 return t;
3208 t = TREE_OPERAND (t, 0);
3210 /* Fall-through. */
3211 case COMPONENT_REF:
3212 case ARRAY_REF:
3213 case ARRAY_RANGE_REF:
3214 case VIEW_CONVERT_EXPR:
3215 /* We have a nest of references. Verify that each of the operands
3216 that determine where to reference is either a constant or a variable,
3217 verify that the base is valid, and then show we've already checked
3218 the subtrees. */
3219 while (handled_component_p (t))
3221 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3222 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3223 else if (TREE_CODE (t) == ARRAY_REF
3224 || TREE_CODE (t) == ARRAY_RANGE_REF)
3226 CHECK_OP (1, "invalid array index");
3227 if (TREE_OPERAND (t, 2))
3228 CHECK_OP (2, "invalid array lower bound");
3229 if (TREE_OPERAND (t, 3))
3230 CHECK_OP (3, "invalid array stride");
3232 else if (TREE_CODE (t) == BIT_FIELD_REF
3233 || TREE_CODE (t) == REALPART_EXPR
3234 || TREE_CODE (t) == IMAGPART_EXPR)
3236 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3237 "REALPART_EXPR");
3238 return t;
3241 t = TREE_OPERAND (t, 0);
3244 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3246 error ("invalid reference prefix");
3247 return t;
3249 walk_tree (&t, verify_expr, data, NULL);
3250 *walk_subtrees = 0;
3251 break;
3252 case PLUS_EXPR:
3253 case MINUS_EXPR:
3254 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3255 POINTER_PLUS_EXPR. */
3256 if (POINTER_TYPE_P (TREE_TYPE (t)))
3258 error ("invalid operand to plus/minus, type is a pointer");
3259 return t;
3261 CHECK_OP (0, "invalid operand to binary operator");
3262 CHECK_OP (1, "invalid operand to binary operator");
3263 break;
3265 case POINTER_DIFF_EXPR:
3266 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0)))
3267 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
3269 error ("invalid operand to pointer diff, operand is not a pointer");
3270 return t;
3272 if (TREE_CODE (TREE_TYPE (t)) != INTEGER_TYPE
3273 || TYPE_UNSIGNED (TREE_TYPE (t))
3274 || (TYPE_PRECISION (TREE_TYPE (t))
3275 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (t, 0)))))
3277 error ("invalid type for pointer diff");
3278 return t;
3280 CHECK_OP (0, "invalid operand to pointer diff");
3281 CHECK_OP (1, "invalid operand to pointer diff");
3282 break;
3284 case POINTER_PLUS_EXPR:
3285 /* Check to make sure the first operand is a pointer or reference type. */
3286 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3288 error ("invalid operand to pointer plus, first operand is not a pointer");
3289 return t;
3291 /* Check to make sure the second operand is a ptrofftype. */
3292 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
3294 error ("invalid operand to pointer plus, second operand is not an "
3295 "integer type of appropriate width");
3296 return t;
3298 /* FALLTHROUGH */
3299 case LT_EXPR:
3300 case LE_EXPR:
3301 case GT_EXPR:
3302 case GE_EXPR:
3303 case EQ_EXPR:
3304 case NE_EXPR:
3305 case UNORDERED_EXPR:
3306 case ORDERED_EXPR:
3307 case UNLT_EXPR:
3308 case UNLE_EXPR:
3309 case UNGT_EXPR:
3310 case UNGE_EXPR:
3311 case UNEQ_EXPR:
3312 case LTGT_EXPR:
3313 case MULT_EXPR:
3314 case TRUNC_DIV_EXPR:
3315 case CEIL_DIV_EXPR:
3316 case FLOOR_DIV_EXPR:
3317 case ROUND_DIV_EXPR:
3318 case TRUNC_MOD_EXPR:
3319 case CEIL_MOD_EXPR:
3320 case FLOOR_MOD_EXPR:
3321 case ROUND_MOD_EXPR:
3322 case RDIV_EXPR:
3323 case EXACT_DIV_EXPR:
3324 case MIN_EXPR:
3325 case MAX_EXPR:
3326 case LSHIFT_EXPR:
3327 case RSHIFT_EXPR:
3328 case LROTATE_EXPR:
3329 case RROTATE_EXPR:
3330 case BIT_IOR_EXPR:
3331 case BIT_XOR_EXPR:
3332 case BIT_AND_EXPR:
3333 CHECK_OP (0, "invalid operand to binary operator");
3334 CHECK_OP (1, "invalid operand to binary operator");
3335 break;
3337 case CONSTRUCTOR:
3338 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3339 *walk_subtrees = 0;
3340 break;
3342 case CASE_LABEL_EXPR:
3343 if (CASE_CHAIN (t))
3345 error ("invalid CASE_CHAIN");
3346 return t;
3348 break;
3350 default:
3351 break;
3353 return NULL;
3355 #undef CHECK_OP
3359 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3360 Returns true if there is an error, otherwise false. */
3362 static bool
3363 verify_types_in_gimple_min_lval (tree expr)
3365 tree op;
3367 if (is_gimple_id (expr))
3368 return false;
3370 if (TREE_CODE (expr) != TARGET_MEM_REF
3371 && TREE_CODE (expr) != MEM_REF)
3373 error ("invalid expression for min lvalue");
3374 return true;
3377 /* TARGET_MEM_REFs are strange beasts. */
3378 if (TREE_CODE (expr) == TARGET_MEM_REF)
3379 return false;
3381 op = TREE_OPERAND (expr, 0);
3382 if (!is_gimple_val (op))
3384 error ("invalid operand in indirect reference");
3385 debug_generic_stmt (op);
3386 return true;
3388 /* Memory references now generally can involve a value conversion. */
3390 return false;
3393 /* Verify if EXPR is a valid GIMPLE reference expression. If
3394 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3395 if there is an error, otherwise false. */
3397 static bool
3398 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3400 while (handled_component_p (expr))
3402 tree op = TREE_OPERAND (expr, 0);
3404 if (TREE_CODE (expr) == ARRAY_REF
3405 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3407 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3408 || (TREE_OPERAND (expr, 2)
3409 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3410 || (TREE_OPERAND (expr, 3)
3411 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3413 error ("invalid operands to array reference");
3414 debug_generic_stmt (expr);
3415 return true;
3419 /* Verify if the reference array element types are compatible. */
3420 if (TREE_CODE (expr) == ARRAY_REF
3421 && !useless_type_conversion_p (TREE_TYPE (expr),
3422 TREE_TYPE (TREE_TYPE (op))))
3424 error ("type mismatch in array reference");
3425 debug_generic_stmt (TREE_TYPE (expr));
3426 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3427 return true;
3429 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3430 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3431 TREE_TYPE (TREE_TYPE (op))))
3433 error ("type mismatch in array range reference");
3434 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3435 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3436 return true;
3439 if ((TREE_CODE (expr) == REALPART_EXPR
3440 || TREE_CODE (expr) == IMAGPART_EXPR)
3441 && !useless_type_conversion_p (TREE_TYPE (expr),
3442 TREE_TYPE (TREE_TYPE (op))))
3444 error ("type mismatch in real/imagpart reference");
3445 debug_generic_stmt (TREE_TYPE (expr));
3446 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3447 return true;
3450 if (TREE_CODE (expr) == COMPONENT_REF
3451 && !useless_type_conversion_p (TREE_TYPE (expr),
3452 TREE_TYPE (TREE_OPERAND (expr, 1))))
3454 error ("type mismatch in component reference");
3455 debug_generic_stmt (TREE_TYPE (expr));
3456 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3457 return true;
3460 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3462 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3463 that their operand is not an SSA name or an invariant when
3464 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3465 bug). Otherwise there is nothing to verify, gross mismatches at
3466 most invoke undefined behavior. */
3467 if (require_lvalue
3468 && (TREE_CODE (op) == SSA_NAME
3469 || is_gimple_min_invariant (op)))
3471 error ("conversion of an SSA_NAME on the left hand side");
3472 debug_generic_stmt (expr);
3473 return true;
3475 else if (TREE_CODE (op) == SSA_NAME
3476 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3478 error ("conversion of register to a different size");
3479 debug_generic_stmt (expr);
3480 return true;
3482 else if (!handled_component_p (op))
3483 return false;
3486 expr = op;
3489 if (TREE_CODE (expr) == MEM_REF)
3491 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3493 error ("invalid address operand in MEM_REF");
3494 debug_generic_stmt (expr);
3495 return true;
3497 if (!poly_int_tree_p (TREE_OPERAND (expr, 1))
3498 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3500 error ("invalid offset operand in MEM_REF");
3501 debug_generic_stmt (expr);
3502 return true;
3505 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3507 if (!TMR_BASE (expr)
3508 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3510 error ("invalid address operand in TARGET_MEM_REF");
3511 return true;
3513 if (!TMR_OFFSET (expr)
3514 || !poly_int_tree_p (TMR_OFFSET (expr))
3515 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3517 error ("invalid offset operand in TARGET_MEM_REF");
3518 debug_generic_stmt (expr);
3519 return true;
3523 return ((require_lvalue || !is_gimple_min_invariant (expr))
3524 && verify_types_in_gimple_min_lval (expr));
3527 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3528 list of pointer-to types that is trivially convertible to DEST. */
3530 static bool
3531 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3533 tree src;
3535 if (!TYPE_POINTER_TO (src_obj))
3536 return true;
3538 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3539 if (useless_type_conversion_p (dest, src))
3540 return true;
3542 return false;
3545 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3546 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3548 static bool
3549 valid_fixed_convert_types_p (tree type1, tree type2)
3551 return (FIXED_POINT_TYPE_P (type1)
3552 && (INTEGRAL_TYPE_P (type2)
3553 || SCALAR_FLOAT_TYPE_P (type2)
3554 || FIXED_POINT_TYPE_P (type2)));
3557 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3558 is a problem, otherwise false. */
3560 static bool
3561 verify_gimple_call (gcall *stmt)
3563 tree fn = gimple_call_fn (stmt);
3564 tree fntype, fndecl;
3565 unsigned i;
3567 if (gimple_call_internal_p (stmt))
3569 if (fn)
3571 error ("gimple call has two targets");
3572 debug_generic_stmt (fn);
3573 return true;
3575 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3576 else if (gimple_call_internal_fn (stmt) == IFN_PHI)
3578 return false;
3581 else
3583 if (!fn)
3585 error ("gimple call has no target");
3586 return true;
3590 if (fn && !is_gimple_call_addr (fn))
3592 error ("invalid function in gimple call");
3593 debug_generic_stmt (fn);
3594 return true;
3597 if (fn
3598 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3599 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3600 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3602 error ("non-function in gimple call");
3603 return true;
3606 fndecl = gimple_call_fndecl (stmt);
3607 if (fndecl
3608 && TREE_CODE (fndecl) == FUNCTION_DECL
3609 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3610 && !DECL_PURE_P (fndecl)
3611 && !TREE_READONLY (fndecl))
3613 error ("invalid pure const state for function");
3614 return true;
3617 tree lhs = gimple_call_lhs (stmt);
3618 if (lhs
3619 && (!is_gimple_lvalue (lhs)
3620 || verify_types_in_gimple_reference (lhs, true)))
3622 error ("invalid LHS in gimple call");
3623 return true;
3626 if (gimple_call_ctrl_altering_p (stmt)
3627 && gimple_call_noreturn_p (stmt)
3628 && should_remove_lhs_p (lhs))
3630 error ("LHS in noreturn call");
3631 return true;
3634 fntype = gimple_call_fntype (stmt);
3635 if (fntype
3636 && lhs
3637 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3638 /* ??? At least C++ misses conversions at assignments from
3639 void * call results.
3640 For now simply allow arbitrary pointer type conversions. */
3641 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3642 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3644 error ("invalid conversion in gimple call");
3645 debug_generic_stmt (TREE_TYPE (lhs));
3646 debug_generic_stmt (TREE_TYPE (fntype));
3647 return true;
3650 if (gimple_call_chain (stmt)
3651 && !is_gimple_val (gimple_call_chain (stmt)))
3653 error ("invalid static chain in gimple call");
3654 debug_generic_stmt (gimple_call_chain (stmt));
3655 return true;
3658 /* If there is a static chain argument, the call should either be
3659 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3660 if (gimple_call_chain (stmt)
3661 && fndecl
3662 && !DECL_STATIC_CHAIN (fndecl))
3664 error ("static chain with function that doesn%'t use one");
3665 return true;
3668 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3670 switch (DECL_FUNCTION_CODE (fndecl))
3672 case BUILT_IN_UNREACHABLE:
3673 case BUILT_IN_TRAP:
3674 if (gimple_call_num_args (stmt) > 0)
3676 /* Built-in unreachable with parameters might not be caught by
3677 undefined behavior sanitizer. Front-ends do check users do not
3678 call them that way but we also produce calls to
3679 __builtin_unreachable internally, for example when IPA figures
3680 out a call cannot happen in a legal program. In such cases,
3681 we must make sure arguments are stripped off. */
3682 error ("__builtin_unreachable or __builtin_trap call with "
3683 "arguments");
3684 return true;
3686 break;
3687 default:
3688 break;
3692 /* ??? The C frontend passes unpromoted arguments in case it
3693 didn't see a function declaration before the call. So for now
3694 leave the call arguments mostly unverified. Once we gimplify
3695 unit-at-a-time we have a chance to fix this. */
3697 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3699 tree arg = gimple_call_arg (stmt, i);
3700 if ((is_gimple_reg_type (TREE_TYPE (arg))
3701 && !is_gimple_val (arg))
3702 || (!is_gimple_reg_type (TREE_TYPE (arg))
3703 && !is_gimple_lvalue (arg)))
3705 error ("invalid argument to gimple call");
3706 debug_generic_expr (arg);
3707 return true;
3711 return false;
3714 /* Verifies the gimple comparison with the result type TYPE and
3715 the operands OP0 and OP1, comparison code is CODE. */
3717 static bool
3718 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3720 tree op0_type = TREE_TYPE (op0);
3721 tree op1_type = TREE_TYPE (op1);
3723 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3725 error ("invalid operands in gimple comparison");
3726 return true;
3729 /* For comparisons we do not have the operations type as the
3730 effective type the comparison is carried out in. Instead
3731 we require that either the first operand is trivially
3732 convertible into the second, or the other way around.
3733 Because we special-case pointers to void we allow
3734 comparisons of pointers with the same mode as well. */
3735 if (!useless_type_conversion_p (op0_type, op1_type)
3736 && !useless_type_conversion_p (op1_type, op0_type)
3737 && (!POINTER_TYPE_P (op0_type)
3738 || !POINTER_TYPE_P (op1_type)
3739 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3741 error ("mismatching comparison operand types");
3742 debug_generic_expr (op0_type);
3743 debug_generic_expr (op1_type);
3744 return true;
3747 /* The resulting type of a comparison may be an effective boolean type. */
3748 if (INTEGRAL_TYPE_P (type)
3749 && (TREE_CODE (type) == BOOLEAN_TYPE
3750 || TYPE_PRECISION (type) == 1))
3752 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3753 || TREE_CODE (op1_type) == VECTOR_TYPE)
3754 && code != EQ_EXPR && code != NE_EXPR
3755 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3756 && !VECTOR_INTEGER_TYPE_P (op0_type))
3758 error ("unsupported operation or type for vector comparison"
3759 " returning a boolean");
3760 debug_generic_expr (op0_type);
3761 debug_generic_expr (op1_type);
3762 return true;
3765 /* Or a boolean vector type with the same element count
3766 as the comparison operand types. */
3767 else if (TREE_CODE (type) == VECTOR_TYPE
3768 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3770 if (TREE_CODE (op0_type) != VECTOR_TYPE
3771 || TREE_CODE (op1_type) != VECTOR_TYPE)
3773 error ("non-vector operands in vector comparison");
3774 debug_generic_expr (op0_type);
3775 debug_generic_expr (op1_type);
3776 return true;
3779 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type),
3780 TYPE_VECTOR_SUBPARTS (op0_type)))
3782 error ("invalid vector comparison resulting type");
3783 debug_generic_expr (type);
3784 return true;
3787 else
3789 error ("bogus comparison result type");
3790 debug_generic_expr (type);
3791 return true;
3794 return false;
3797 /* Verify a gimple assignment statement STMT with an unary rhs.
3798 Returns true if anything is wrong. */
3800 static bool
3801 verify_gimple_assign_unary (gassign *stmt)
3803 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3804 tree lhs = gimple_assign_lhs (stmt);
3805 tree lhs_type = TREE_TYPE (lhs);
3806 tree rhs1 = gimple_assign_rhs1 (stmt);
3807 tree rhs1_type = TREE_TYPE (rhs1);
3809 if (!is_gimple_reg (lhs))
3811 error ("non-register as LHS of unary operation");
3812 return true;
3815 if (!is_gimple_val (rhs1))
3817 error ("invalid operand in unary operation");
3818 return true;
3821 /* First handle conversions. */
3822 switch (rhs_code)
3824 CASE_CONVERT:
3826 /* Allow conversions from pointer type to integral type only if
3827 there is no sign or zero extension involved.
3828 For targets were the precision of ptrofftype doesn't match that
3829 of pointers we need to allow arbitrary conversions to ptrofftype. */
3830 if ((POINTER_TYPE_P (lhs_type)
3831 && INTEGRAL_TYPE_P (rhs1_type))
3832 || (POINTER_TYPE_P (rhs1_type)
3833 && INTEGRAL_TYPE_P (lhs_type)
3834 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3835 || ptrofftype_p (sizetype))))
3836 return false;
3838 /* Allow conversion from integral to offset type and vice versa. */
3839 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3840 && INTEGRAL_TYPE_P (rhs1_type))
3841 || (INTEGRAL_TYPE_P (lhs_type)
3842 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3843 return false;
3845 /* Otherwise assert we are converting between types of the
3846 same kind. */
3847 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3849 error ("invalid types in nop conversion");
3850 debug_generic_expr (lhs_type);
3851 debug_generic_expr (rhs1_type);
3852 return true;
3855 return false;
3858 case ADDR_SPACE_CONVERT_EXPR:
3860 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3861 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3862 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3864 error ("invalid types in address space conversion");
3865 debug_generic_expr (lhs_type);
3866 debug_generic_expr (rhs1_type);
3867 return true;
3870 return false;
3873 case FIXED_CONVERT_EXPR:
3875 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3876 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3878 error ("invalid types in fixed-point conversion");
3879 debug_generic_expr (lhs_type);
3880 debug_generic_expr (rhs1_type);
3881 return true;
3884 return false;
3887 case FLOAT_EXPR:
3889 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3890 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3891 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3893 error ("invalid types in conversion to floating point");
3894 debug_generic_expr (lhs_type);
3895 debug_generic_expr (rhs1_type);
3896 return true;
3899 return false;
3902 case FIX_TRUNC_EXPR:
3904 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3905 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3906 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3908 error ("invalid types in conversion to integer");
3909 debug_generic_expr (lhs_type);
3910 debug_generic_expr (rhs1_type);
3911 return true;
3914 return false;
3917 case VEC_UNPACK_HI_EXPR:
3918 case VEC_UNPACK_LO_EXPR:
3919 case VEC_UNPACK_FLOAT_HI_EXPR:
3920 case VEC_UNPACK_FLOAT_LO_EXPR:
3921 /* FIXME. */
3922 return false;
3924 case NEGATE_EXPR:
3925 case ABS_EXPR:
3926 case BIT_NOT_EXPR:
3927 case PAREN_EXPR:
3928 case CONJ_EXPR:
3929 break;
3931 case VEC_DUPLICATE_EXPR:
3932 if (TREE_CODE (lhs_type) != VECTOR_TYPE
3933 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
3935 error ("vec_duplicate should be from a scalar to a like vector");
3936 debug_generic_expr (lhs_type);
3937 debug_generic_expr (rhs1_type);
3938 return true;
3940 return false;
3942 default:
3943 gcc_unreachable ();
3946 /* For the remaining codes assert there is no conversion involved. */
3947 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3949 error ("non-trivial conversion in unary operation");
3950 debug_generic_expr (lhs_type);
3951 debug_generic_expr (rhs1_type);
3952 return true;
3955 return false;
3958 /* Verify a gimple assignment statement STMT with a binary rhs.
3959 Returns true if anything is wrong. */
3961 static bool
3962 verify_gimple_assign_binary (gassign *stmt)
3964 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3965 tree lhs = gimple_assign_lhs (stmt);
3966 tree lhs_type = TREE_TYPE (lhs);
3967 tree rhs1 = gimple_assign_rhs1 (stmt);
3968 tree rhs1_type = TREE_TYPE (rhs1);
3969 tree rhs2 = gimple_assign_rhs2 (stmt);
3970 tree rhs2_type = TREE_TYPE (rhs2);
3972 if (!is_gimple_reg (lhs))
3974 error ("non-register as LHS of binary operation");
3975 return true;
3978 if (!is_gimple_val (rhs1)
3979 || !is_gimple_val (rhs2))
3981 error ("invalid operands in binary operation");
3982 return true;
3985 /* First handle operations that involve different types. */
3986 switch (rhs_code)
3988 case COMPLEX_EXPR:
3990 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3991 || !(INTEGRAL_TYPE_P (rhs1_type)
3992 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3993 || !(INTEGRAL_TYPE_P (rhs2_type)
3994 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3996 error ("type mismatch in complex expression");
3997 debug_generic_expr (lhs_type);
3998 debug_generic_expr (rhs1_type);
3999 debug_generic_expr (rhs2_type);
4000 return true;
4003 return false;
4006 case LSHIFT_EXPR:
4007 case RSHIFT_EXPR:
4008 case LROTATE_EXPR:
4009 case RROTATE_EXPR:
4011 /* Shifts and rotates are ok on integral types, fixed point
4012 types and integer vector types. */
4013 if ((!INTEGRAL_TYPE_P (rhs1_type)
4014 && !FIXED_POINT_TYPE_P (rhs1_type)
4015 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
4016 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
4017 || (!INTEGRAL_TYPE_P (rhs2_type)
4018 /* Vector shifts of vectors are also ok. */
4019 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
4020 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4021 && TREE_CODE (rhs2_type) == VECTOR_TYPE
4022 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
4023 || !useless_type_conversion_p (lhs_type, rhs1_type))
4025 error ("type mismatch in shift expression");
4026 debug_generic_expr (lhs_type);
4027 debug_generic_expr (rhs1_type);
4028 debug_generic_expr (rhs2_type);
4029 return true;
4032 return false;
4035 case WIDEN_LSHIFT_EXPR:
4037 if (!INTEGRAL_TYPE_P (lhs_type)
4038 || !INTEGRAL_TYPE_P (rhs1_type)
4039 || TREE_CODE (rhs2) != INTEGER_CST
4040 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
4042 error ("type mismatch in widening vector shift expression");
4043 debug_generic_expr (lhs_type);
4044 debug_generic_expr (rhs1_type);
4045 debug_generic_expr (rhs2_type);
4046 return true;
4049 return false;
4052 case VEC_WIDEN_LSHIFT_HI_EXPR:
4053 case VEC_WIDEN_LSHIFT_LO_EXPR:
4055 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4056 || TREE_CODE (lhs_type) != VECTOR_TYPE
4057 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4058 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
4059 || TREE_CODE (rhs2) != INTEGER_CST
4060 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
4061 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
4063 error ("type mismatch in widening vector shift expression");
4064 debug_generic_expr (lhs_type);
4065 debug_generic_expr (rhs1_type);
4066 debug_generic_expr (rhs2_type);
4067 return true;
4070 return false;
4073 case PLUS_EXPR:
4074 case MINUS_EXPR:
4076 tree lhs_etype = lhs_type;
4077 tree rhs1_etype = rhs1_type;
4078 tree rhs2_etype = rhs2_type;
4079 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
4081 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4082 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
4084 error ("invalid non-vector operands to vector valued plus");
4085 return true;
4087 lhs_etype = TREE_TYPE (lhs_type);
4088 rhs1_etype = TREE_TYPE (rhs1_type);
4089 rhs2_etype = TREE_TYPE (rhs2_type);
4091 if (POINTER_TYPE_P (lhs_etype)
4092 || POINTER_TYPE_P (rhs1_etype)
4093 || POINTER_TYPE_P (rhs2_etype))
4095 error ("invalid (pointer) operands to plus/minus");
4096 return true;
4099 /* Continue with generic binary expression handling. */
4100 break;
4103 case POINTER_PLUS_EXPR:
4105 if (!POINTER_TYPE_P (rhs1_type)
4106 || !useless_type_conversion_p (lhs_type, rhs1_type)
4107 || !ptrofftype_p (rhs2_type))
4109 error ("type mismatch in pointer plus expression");
4110 debug_generic_stmt (lhs_type);
4111 debug_generic_stmt (rhs1_type);
4112 debug_generic_stmt (rhs2_type);
4113 return true;
4116 return false;
4119 case POINTER_DIFF_EXPR:
4121 if (!POINTER_TYPE_P (rhs1_type)
4122 || !POINTER_TYPE_P (rhs2_type)
4123 /* Because we special-case pointers to void we allow difference
4124 of arbitrary pointers with the same mode. */
4125 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
4126 || TREE_CODE (lhs_type) != INTEGER_TYPE
4127 || TYPE_UNSIGNED (lhs_type)
4128 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
4130 error ("type mismatch in pointer diff expression");
4131 debug_generic_stmt (lhs_type);
4132 debug_generic_stmt (rhs1_type);
4133 debug_generic_stmt (rhs2_type);
4134 return true;
4137 return false;
4140 case TRUTH_ANDIF_EXPR:
4141 case TRUTH_ORIF_EXPR:
4142 case TRUTH_AND_EXPR:
4143 case TRUTH_OR_EXPR:
4144 case TRUTH_XOR_EXPR:
4146 gcc_unreachable ();
4148 case LT_EXPR:
4149 case LE_EXPR:
4150 case GT_EXPR:
4151 case GE_EXPR:
4152 case EQ_EXPR:
4153 case NE_EXPR:
4154 case UNORDERED_EXPR:
4155 case ORDERED_EXPR:
4156 case UNLT_EXPR:
4157 case UNLE_EXPR:
4158 case UNGT_EXPR:
4159 case UNGE_EXPR:
4160 case UNEQ_EXPR:
4161 case LTGT_EXPR:
4162 /* Comparisons are also binary, but the result type is not
4163 connected to the operand types. */
4164 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
4166 case WIDEN_MULT_EXPR:
4167 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
4168 return true;
4169 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
4170 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
4172 case WIDEN_SUM_EXPR:
4174 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4175 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4176 && ((!INTEGRAL_TYPE_P (rhs1_type)
4177 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4178 || (!INTEGRAL_TYPE_P (lhs_type)
4179 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4180 || !useless_type_conversion_p (lhs_type, rhs2_type)
4181 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)),
4182 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4184 error ("type mismatch in widening sum reduction");
4185 debug_generic_expr (lhs_type);
4186 debug_generic_expr (rhs1_type);
4187 debug_generic_expr (rhs2_type);
4188 return true;
4190 return false;
4193 case VEC_WIDEN_MULT_HI_EXPR:
4194 case VEC_WIDEN_MULT_LO_EXPR:
4195 case VEC_WIDEN_MULT_EVEN_EXPR:
4196 case VEC_WIDEN_MULT_ODD_EXPR:
4198 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4199 || TREE_CODE (lhs_type) != VECTOR_TYPE
4200 || !types_compatible_p (rhs1_type, rhs2_type)
4201 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
4202 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4204 error ("type mismatch in vector widening multiplication");
4205 debug_generic_expr (lhs_type);
4206 debug_generic_expr (rhs1_type);
4207 debug_generic_expr (rhs2_type);
4208 return true;
4210 return false;
4213 case VEC_PACK_TRUNC_EXPR:
4214 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4215 vector boolean types. */
4216 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4217 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4218 && types_compatible_p (rhs1_type, rhs2_type)
4219 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
4220 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4221 return false;
4223 /* Fallthru. */
4224 case VEC_PACK_SAT_EXPR:
4225 case VEC_PACK_FIX_TRUNC_EXPR:
4227 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4228 || TREE_CODE (lhs_type) != VECTOR_TYPE
4229 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4230 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4231 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4232 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4233 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4234 || !types_compatible_p (rhs1_type, rhs2_type)
4235 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4236 2 * GET_MODE_SIZE (element_mode (lhs_type))))
4238 error ("type mismatch in vector pack expression");
4239 debug_generic_expr (lhs_type);
4240 debug_generic_expr (rhs1_type);
4241 debug_generic_expr (rhs2_type);
4242 return true;
4245 return false;
4248 case MULT_EXPR:
4249 case MULT_HIGHPART_EXPR:
4250 case TRUNC_DIV_EXPR:
4251 case CEIL_DIV_EXPR:
4252 case FLOOR_DIV_EXPR:
4253 case ROUND_DIV_EXPR:
4254 case TRUNC_MOD_EXPR:
4255 case CEIL_MOD_EXPR:
4256 case FLOOR_MOD_EXPR:
4257 case ROUND_MOD_EXPR:
4258 case RDIV_EXPR:
4259 case EXACT_DIV_EXPR:
4260 case MIN_EXPR:
4261 case MAX_EXPR:
4262 case BIT_IOR_EXPR:
4263 case BIT_XOR_EXPR:
4264 case BIT_AND_EXPR:
4265 /* Continue with generic binary expression handling. */
4266 break;
4268 case VEC_SERIES_EXPR:
4269 if (!useless_type_conversion_p (rhs1_type, rhs2_type))
4271 error ("type mismatch in series expression");
4272 debug_generic_expr (rhs1_type);
4273 debug_generic_expr (rhs2_type);
4274 return true;
4276 if (TREE_CODE (lhs_type) != VECTOR_TYPE
4277 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
4279 error ("vector type expected in series expression");
4280 debug_generic_expr (lhs_type);
4281 return true;
4283 return false;
4285 default:
4286 gcc_unreachable ();
4289 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4290 || !useless_type_conversion_p (lhs_type, rhs2_type))
4292 error ("type mismatch in binary expression");
4293 debug_generic_stmt (lhs_type);
4294 debug_generic_stmt (rhs1_type);
4295 debug_generic_stmt (rhs2_type);
4296 return true;
4299 return false;
4302 /* Verify a gimple assignment statement STMT with a ternary rhs.
4303 Returns true if anything is wrong. */
4305 static bool
4306 verify_gimple_assign_ternary (gassign *stmt)
4308 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4309 tree lhs = gimple_assign_lhs (stmt);
4310 tree lhs_type = TREE_TYPE (lhs);
4311 tree rhs1 = gimple_assign_rhs1 (stmt);
4312 tree rhs1_type = TREE_TYPE (rhs1);
4313 tree rhs2 = gimple_assign_rhs2 (stmt);
4314 tree rhs2_type = TREE_TYPE (rhs2);
4315 tree rhs3 = gimple_assign_rhs3 (stmt);
4316 tree rhs3_type = TREE_TYPE (rhs3);
4318 if (!is_gimple_reg (lhs))
4320 error ("non-register as LHS of ternary operation");
4321 return true;
4324 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
4325 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4326 || !is_gimple_val (rhs2)
4327 || !is_gimple_val (rhs3))
4329 error ("invalid operands in ternary operation");
4330 return true;
4333 /* First handle operations that involve different types. */
4334 switch (rhs_code)
4336 case WIDEN_MULT_PLUS_EXPR:
4337 case WIDEN_MULT_MINUS_EXPR:
4338 if ((!INTEGRAL_TYPE_P (rhs1_type)
4339 && !FIXED_POINT_TYPE_P (rhs1_type))
4340 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4341 || !useless_type_conversion_p (lhs_type, rhs3_type)
4342 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4343 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4345 error ("type mismatch in widening multiply-accumulate expression");
4346 debug_generic_expr (lhs_type);
4347 debug_generic_expr (rhs1_type);
4348 debug_generic_expr (rhs2_type);
4349 debug_generic_expr (rhs3_type);
4350 return true;
4352 break;
4354 case FMA_EXPR:
4355 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4356 || !useless_type_conversion_p (lhs_type, rhs2_type)
4357 || !useless_type_conversion_p (lhs_type, rhs3_type))
4359 error ("type mismatch in fused multiply-add expression");
4360 debug_generic_expr (lhs_type);
4361 debug_generic_expr (rhs1_type);
4362 debug_generic_expr (rhs2_type);
4363 debug_generic_expr (rhs3_type);
4364 return true;
4366 break;
4368 case VEC_COND_EXPR:
4369 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4370 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4371 TYPE_VECTOR_SUBPARTS (lhs_type)))
4373 error ("the first argument of a VEC_COND_EXPR must be of a "
4374 "boolean vector type of the same number of elements "
4375 "as the result");
4376 debug_generic_expr (lhs_type);
4377 debug_generic_expr (rhs1_type);
4378 return true;
4380 /* Fallthrough. */
4381 case COND_EXPR:
4382 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4383 || !useless_type_conversion_p (lhs_type, rhs3_type))
4385 error ("type mismatch in conditional expression");
4386 debug_generic_expr (lhs_type);
4387 debug_generic_expr (rhs2_type);
4388 debug_generic_expr (rhs3_type);
4389 return true;
4391 break;
4393 case VEC_PERM_EXPR:
4394 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4395 || !useless_type_conversion_p (lhs_type, rhs2_type))
4397 error ("type mismatch in vector permute expression");
4398 debug_generic_expr (lhs_type);
4399 debug_generic_expr (rhs1_type);
4400 debug_generic_expr (rhs2_type);
4401 debug_generic_expr (rhs3_type);
4402 return true;
4405 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4406 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4407 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4409 error ("vector types expected in vector permute expression");
4410 debug_generic_expr (lhs_type);
4411 debug_generic_expr (rhs1_type);
4412 debug_generic_expr (rhs2_type);
4413 debug_generic_expr (rhs3_type);
4414 return true;
4417 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4418 TYPE_VECTOR_SUBPARTS (rhs2_type))
4419 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type),
4420 TYPE_VECTOR_SUBPARTS (rhs3_type))
4421 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type),
4422 TYPE_VECTOR_SUBPARTS (lhs_type)))
4424 error ("vectors with different element number found "
4425 "in vector permute expression");
4426 debug_generic_expr (lhs_type);
4427 debug_generic_expr (rhs1_type);
4428 debug_generic_expr (rhs2_type);
4429 debug_generic_expr (rhs3_type);
4430 return true;
4433 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4434 || (TREE_CODE (rhs3) != VECTOR_CST
4435 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4436 (TREE_TYPE (rhs3_type)))
4437 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4438 (TREE_TYPE (rhs1_type))))))
4440 error ("invalid mask type in vector permute expression");
4441 debug_generic_expr (lhs_type);
4442 debug_generic_expr (rhs1_type);
4443 debug_generic_expr (rhs2_type);
4444 debug_generic_expr (rhs3_type);
4445 return true;
4448 return false;
4450 case SAD_EXPR:
4451 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4452 || !useless_type_conversion_p (lhs_type, rhs3_type)
4453 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4454 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4456 error ("type mismatch in sad expression");
4457 debug_generic_expr (lhs_type);
4458 debug_generic_expr (rhs1_type);
4459 debug_generic_expr (rhs2_type);
4460 debug_generic_expr (rhs3_type);
4461 return true;
4464 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4465 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4466 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4468 error ("vector types expected in sad expression");
4469 debug_generic_expr (lhs_type);
4470 debug_generic_expr (rhs1_type);
4471 debug_generic_expr (rhs2_type);
4472 debug_generic_expr (rhs3_type);
4473 return true;
4476 return false;
4478 case BIT_INSERT_EXPR:
4479 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4481 error ("type mismatch in BIT_INSERT_EXPR");
4482 debug_generic_expr (lhs_type);
4483 debug_generic_expr (rhs1_type);
4484 return true;
4486 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4487 && INTEGRAL_TYPE_P (rhs2_type))
4488 || (VECTOR_TYPE_P (rhs1_type)
4489 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4491 error ("not allowed type combination in BIT_INSERT_EXPR");
4492 debug_generic_expr (rhs1_type);
4493 debug_generic_expr (rhs2_type);
4494 return true;
4496 if (! tree_fits_uhwi_p (rhs3)
4497 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4498 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4500 error ("invalid position or size in BIT_INSERT_EXPR");
4501 return true;
4503 if (INTEGRAL_TYPE_P (rhs1_type))
4505 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4506 if (bitpos >= TYPE_PRECISION (rhs1_type)
4507 || (bitpos + TYPE_PRECISION (rhs2_type)
4508 > TYPE_PRECISION (rhs1_type)))
4510 error ("insertion out of range in BIT_INSERT_EXPR");
4511 return true;
4514 else if (VECTOR_TYPE_P (rhs1_type))
4516 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4517 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4518 if (bitpos % bitsize != 0)
4520 error ("vector insertion not at element boundary");
4521 return true;
4524 return false;
4526 case DOT_PROD_EXPR:
4528 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4529 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4530 && ((!INTEGRAL_TYPE_P (rhs1_type)
4531 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4532 || (!INTEGRAL_TYPE_P (lhs_type)
4533 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4534 || !types_compatible_p (rhs1_type, rhs2_type)
4535 || !useless_type_conversion_p (lhs_type, rhs3_type)
4536 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)),
4537 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4539 error ("type mismatch in dot product reduction");
4540 debug_generic_expr (lhs_type);
4541 debug_generic_expr (rhs1_type);
4542 debug_generic_expr (rhs2_type);
4543 return true;
4545 return false;
4548 case REALIGN_LOAD_EXPR:
4549 /* FIXME. */
4550 return false;
4552 default:
4553 gcc_unreachable ();
4555 return false;
4558 /* Verify a gimple assignment statement STMT with a single rhs.
4559 Returns true if anything is wrong. */
4561 static bool
4562 verify_gimple_assign_single (gassign *stmt)
4564 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4565 tree lhs = gimple_assign_lhs (stmt);
4566 tree lhs_type = TREE_TYPE (lhs);
4567 tree rhs1 = gimple_assign_rhs1 (stmt);
4568 tree rhs1_type = TREE_TYPE (rhs1);
4569 bool res = false;
4571 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4573 error ("non-trivial conversion at assignment");
4574 debug_generic_expr (lhs_type);
4575 debug_generic_expr (rhs1_type);
4576 return true;
4579 if (gimple_clobber_p (stmt)
4580 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4582 error ("non-decl/MEM_REF LHS in clobber statement");
4583 debug_generic_expr (lhs);
4584 return true;
4587 if (handled_component_p (lhs)
4588 || TREE_CODE (lhs) == MEM_REF
4589 || TREE_CODE (lhs) == TARGET_MEM_REF)
4590 res |= verify_types_in_gimple_reference (lhs, true);
4592 /* Special codes we cannot handle via their class. */
4593 switch (rhs_code)
4595 case ADDR_EXPR:
4597 tree op = TREE_OPERAND (rhs1, 0);
4598 if (!is_gimple_addressable (op))
4600 error ("invalid operand in unary expression");
4601 return true;
4604 /* Technically there is no longer a need for matching types, but
4605 gimple hygiene asks for this check. In LTO we can end up
4606 combining incompatible units and thus end up with addresses
4607 of globals that change their type to a common one. */
4608 if (!in_lto_p
4609 && !types_compatible_p (TREE_TYPE (op),
4610 TREE_TYPE (TREE_TYPE (rhs1)))
4611 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4612 TREE_TYPE (op)))
4614 error ("type mismatch in address expression");
4615 debug_generic_stmt (TREE_TYPE (rhs1));
4616 debug_generic_stmt (TREE_TYPE (op));
4617 return true;
4620 return verify_types_in_gimple_reference (op, true);
4623 /* tcc_reference */
4624 case INDIRECT_REF:
4625 error ("INDIRECT_REF in gimple IL");
4626 return true;
4628 case COMPONENT_REF:
4629 case BIT_FIELD_REF:
4630 case ARRAY_REF:
4631 case ARRAY_RANGE_REF:
4632 case VIEW_CONVERT_EXPR:
4633 case REALPART_EXPR:
4634 case IMAGPART_EXPR:
4635 case TARGET_MEM_REF:
4636 case MEM_REF:
4637 if (!is_gimple_reg (lhs)
4638 && is_gimple_reg_type (TREE_TYPE (lhs)))
4640 error ("invalid rhs for gimple memory store");
4641 debug_generic_stmt (lhs);
4642 debug_generic_stmt (rhs1);
4643 return true;
4645 return res || verify_types_in_gimple_reference (rhs1, false);
4647 /* tcc_constant */
4648 case SSA_NAME:
4649 case INTEGER_CST:
4650 case REAL_CST:
4651 case FIXED_CST:
4652 case COMPLEX_CST:
4653 case VECTOR_CST:
4654 case STRING_CST:
4655 return res;
4657 /* tcc_declaration */
4658 case CONST_DECL:
4659 return res;
4660 case VAR_DECL:
4661 case PARM_DECL:
4662 if (!is_gimple_reg (lhs)
4663 && !is_gimple_reg (rhs1)
4664 && is_gimple_reg_type (TREE_TYPE (lhs)))
4666 error ("invalid rhs for gimple memory store");
4667 debug_generic_stmt (lhs);
4668 debug_generic_stmt (rhs1);
4669 return true;
4671 return res;
4673 case CONSTRUCTOR:
4674 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4676 unsigned int i;
4677 tree elt_i, elt_v, elt_t = NULL_TREE;
4679 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4680 return res;
4681 /* For vector CONSTRUCTORs we require that either it is empty
4682 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4683 (then the element count must be correct to cover the whole
4684 outer vector and index must be NULL on all elements, or it is
4685 a CONSTRUCTOR of scalar elements, where we as an exception allow
4686 smaller number of elements (assuming zero filling) and
4687 consecutive indexes as compared to NULL indexes (such
4688 CONSTRUCTORs can appear in the IL from FEs). */
4689 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4691 if (elt_t == NULL_TREE)
4693 elt_t = TREE_TYPE (elt_v);
4694 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4696 tree elt_t = TREE_TYPE (elt_v);
4697 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4698 TREE_TYPE (elt_t)))
4700 error ("incorrect type of vector CONSTRUCTOR"
4701 " elements");
4702 debug_generic_stmt (rhs1);
4703 return true;
4705 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1)
4706 * TYPE_VECTOR_SUBPARTS (elt_t),
4707 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4709 error ("incorrect number of vector CONSTRUCTOR"
4710 " elements");
4711 debug_generic_stmt (rhs1);
4712 return true;
4715 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4716 elt_t))
4718 error ("incorrect type of vector CONSTRUCTOR elements");
4719 debug_generic_stmt (rhs1);
4720 return true;
4722 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1),
4723 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4725 error ("incorrect number of vector CONSTRUCTOR elements");
4726 debug_generic_stmt (rhs1);
4727 return true;
4730 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4732 error ("incorrect type of vector CONSTRUCTOR elements");
4733 debug_generic_stmt (rhs1);
4734 return true;
4736 if (elt_i != NULL_TREE
4737 && (TREE_CODE (elt_t) == VECTOR_TYPE
4738 || TREE_CODE (elt_i) != INTEGER_CST
4739 || compare_tree_int (elt_i, i) != 0))
4741 error ("vector CONSTRUCTOR with non-NULL element index");
4742 debug_generic_stmt (rhs1);
4743 return true;
4745 if (!is_gimple_val (elt_v))
4747 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4748 debug_generic_stmt (rhs1);
4749 return true;
4753 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4755 error ("non-vector CONSTRUCTOR with elements");
4756 debug_generic_stmt (rhs1);
4757 return true;
4759 return res;
4760 case OBJ_TYPE_REF:
4761 case ASSERT_EXPR:
4762 case WITH_SIZE_EXPR:
4763 /* FIXME. */
4764 return res;
4766 default:;
4769 return res;
4772 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4773 is a problem, otherwise false. */
4775 static bool
4776 verify_gimple_assign (gassign *stmt)
4778 switch (gimple_assign_rhs_class (stmt))
4780 case GIMPLE_SINGLE_RHS:
4781 return verify_gimple_assign_single (stmt);
4783 case GIMPLE_UNARY_RHS:
4784 return verify_gimple_assign_unary (stmt);
4786 case GIMPLE_BINARY_RHS:
4787 return verify_gimple_assign_binary (stmt);
4789 case GIMPLE_TERNARY_RHS:
4790 return verify_gimple_assign_ternary (stmt);
4792 default:
4793 gcc_unreachable ();
4797 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4798 is a problem, otherwise false. */
4800 static bool
4801 verify_gimple_return (greturn *stmt)
4803 tree op = gimple_return_retval (stmt);
4804 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4806 /* We cannot test for present return values as we do not fix up missing
4807 return values from the original source. */
4808 if (op == NULL)
4809 return false;
4811 if (!is_gimple_val (op)
4812 && TREE_CODE (op) != RESULT_DECL)
4814 error ("invalid operand in return statement");
4815 debug_generic_stmt (op);
4816 return true;
4819 if ((TREE_CODE (op) == RESULT_DECL
4820 && DECL_BY_REFERENCE (op))
4821 || (TREE_CODE (op) == SSA_NAME
4822 && SSA_NAME_VAR (op)
4823 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4824 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4825 op = TREE_TYPE (op);
4827 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4829 error ("invalid conversion in return statement");
4830 debug_generic_stmt (restype);
4831 debug_generic_stmt (TREE_TYPE (op));
4832 return true;
4835 return false;
4839 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4840 is a problem, otherwise false. */
4842 static bool
4843 verify_gimple_goto (ggoto *stmt)
4845 tree dest = gimple_goto_dest (stmt);
4847 /* ??? We have two canonical forms of direct goto destinations, a
4848 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4849 if (TREE_CODE (dest) != LABEL_DECL
4850 && (!is_gimple_val (dest)
4851 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4853 error ("goto destination is neither a label nor a pointer");
4854 return true;
4857 return false;
4860 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4861 is a problem, otherwise false. */
4863 static bool
4864 verify_gimple_switch (gswitch *stmt)
4866 unsigned int i, n;
4867 tree elt, prev_upper_bound = NULL_TREE;
4868 tree index_type, elt_type = NULL_TREE;
4870 if (!is_gimple_val (gimple_switch_index (stmt)))
4872 error ("invalid operand to switch statement");
4873 debug_generic_stmt (gimple_switch_index (stmt));
4874 return true;
4877 index_type = TREE_TYPE (gimple_switch_index (stmt));
4878 if (! INTEGRAL_TYPE_P (index_type))
4880 error ("non-integral type switch statement");
4881 debug_generic_expr (index_type);
4882 return true;
4885 elt = gimple_switch_label (stmt, 0);
4886 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4888 error ("invalid default case label in switch statement");
4889 debug_generic_expr (elt);
4890 return true;
4893 n = gimple_switch_num_labels (stmt);
4894 for (i = 1; i < n; i++)
4896 elt = gimple_switch_label (stmt, i);
4898 if (! CASE_LOW (elt))
4900 error ("invalid case label in switch statement");
4901 debug_generic_expr (elt);
4902 return true;
4904 if (CASE_HIGH (elt)
4905 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4907 error ("invalid case range in switch statement");
4908 debug_generic_expr (elt);
4909 return true;
4912 if (elt_type)
4914 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4915 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4917 error ("type mismatch for case label in switch statement");
4918 debug_generic_expr (elt);
4919 return true;
4922 else
4924 elt_type = TREE_TYPE (CASE_LOW (elt));
4925 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4927 error ("type precision mismatch in switch statement");
4928 return true;
4932 if (prev_upper_bound)
4934 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4936 error ("case labels not sorted in switch statement");
4937 return true;
4941 prev_upper_bound = CASE_HIGH (elt);
4942 if (! prev_upper_bound)
4943 prev_upper_bound = CASE_LOW (elt);
4946 return false;
4949 /* Verify a gimple debug statement STMT.
4950 Returns true if anything is wrong. */
4952 static bool
4953 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4955 /* There isn't much that could be wrong in a gimple debug stmt. A
4956 gimple debug bind stmt, for example, maps a tree, that's usually
4957 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4958 component or member of an aggregate type, to another tree, that
4959 can be an arbitrary expression. These stmts expand into debug
4960 insns, and are converted to debug notes by var-tracking.c. */
4961 return false;
4964 /* Verify a gimple label statement STMT.
4965 Returns true if anything is wrong. */
4967 static bool
4968 verify_gimple_label (glabel *stmt)
4970 tree decl = gimple_label_label (stmt);
4971 int uid;
4972 bool err = false;
4974 if (TREE_CODE (decl) != LABEL_DECL)
4975 return true;
4976 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4977 && DECL_CONTEXT (decl) != current_function_decl)
4979 error ("label's context is not the current function decl");
4980 err |= true;
4983 uid = LABEL_DECL_UID (decl);
4984 if (cfun->cfg
4985 && (uid == -1
4986 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4988 error ("incorrect entry in label_to_block_map");
4989 err |= true;
4992 uid = EH_LANDING_PAD_NR (decl);
4993 if (uid)
4995 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4996 if (decl != lp->post_landing_pad)
4998 error ("incorrect setting of landing pad number");
4999 err |= true;
5003 return err;
5006 /* Verify a gimple cond statement STMT.
5007 Returns true if anything is wrong. */
5009 static bool
5010 verify_gimple_cond (gcond *stmt)
5012 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
5014 error ("invalid comparison code in gimple cond");
5015 return true;
5017 if (!(!gimple_cond_true_label (stmt)
5018 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
5019 || !(!gimple_cond_false_label (stmt)
5020 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
5022 error ("invalid labels in gimple cond");
5023 return true;
5026 return verify_gimple_comparison (boolean_type_node,
5027 gimple_cond_lhs (stmt),
5028 gimple_cond_rhs (stmt),
5029 gimple_cond_code (stmt));
5032 /* Verify the GIMPLE statement STMT. Returns true if there is an
5033 error, otherwise false. */
5035 static bool
5036 verify_gimple_stmt (gimple *stmt)
5038 switch (gimple_code (stmt))
5040 case GIMPLE_ASSIGN:
5041 return verify_gimple_assign (as_a <gassign *> (stmt));
5043 case GIMPLE_LABEL:
5044 return verify_gimple_label (as_a <glabel *> (stmt));
5046 case GIMPLE_CALL:
5047 return verify_gimple_call (as_a <gcall *> (stmt));
5049 case GIMPLE_COND:
5050 return verify_gimple_cond (as_a <gcond *> (stmt));
5052 case GIMPLE_GOTO:
5053 return verify_gimple_goto (as_a <ggoto *> (stmt));
5055 case GIMPLE_SWITCH:
5056 return verify_gimple_switch (as_a <gswitch *> (stmt));
5058 case GIMPLE_RETURN:
5059 return verify_gimple_return (as_a <greturn *> (stmt));
5061 case GIMPLE_ASM:
5062 return false;
5064 case GIMPLE_TRANSACTION:
5065 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
5067 /* Tuples that do not have tree operands. */
5068 case GIMPLE_NOP:
5069 case GIMPLE_PREDICT:
5070 case GIMPLE_RESX:
5071 case GIMPLE_EH_DISPATCH:
5072 case GIMPLE_EH_MUST_NOT_THROW:
5073 return false;
5075 CASE_GIMPLE_OMP:
5076 /* OpenMP directives are validated by the FE and never operated
5077 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
5078 non-gimple expressions when the main index variable has had
5079 its address taken. This does not affect the loop itself
5080 because the header of an GIMPLE_OMP_FOR is merely used to determine
5081 how to setup the parallel iteration. */
5082 return false;
5084 case GIMPLE_DEBUG:
5085 return verify_gimple_debug (stmt);
5087 default:
5088 gcc_unreachable ();
5092 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
5093 and false otherwise. */
5095 static bool
5096 verify_gimple_phi (gimple *phi)
5098 bool err = false;
5099 unsigned i;
5100 tree phi_result = gimple_phi_result (phi);
5101 bool virtual_p;
5103 if (!phi_result)
5105 error ("invalid PHI result");
5106 return true;
5109 virtual_p = virtual_operand_p (phi_result);
5110 if (TREE_CODE (phi_result) != SSA_NAME
5111 || (virtual_p
5112 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
5114 error ("invalid PHI result");
5115 err = true;
5118 for (i = 0; i < gimple_phi_num_args (phi); i++)
5120 tree t = gimple_phi_arg_def (phi, i);
5122 if (!t)
5124 error ("missing PHI def");
5125 err |= true;
5126 continue;
5128 /* Addressable variables do have SSA_NAMEs but they
5129 are not considered gimple values. */
5130 else if ((TREE_CODE (t) == SSA_NAME
5131 && virtual_p != virtual_operand_p (t))
5132 || (virtual_p
5133 && (TREE_CODE (t) != SSA_NAME
5134 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
5135 || (!virtual_p
5136 && !is_gimple_val (t)))
5138 error ("invalid PHI argument");
5139 debug_generic_expr (t);
5140 err |= true;
5142 #ifdef ENABLE_TYPES_CHECKING
5143 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
5145 error ("incompatible types in PHI argument %u", i);
5146 debug_generic_stmt (TREE_TYPE (phi_result));
5147 debug_generic_stmt (TREE_TYPE (t));
5148 err |= true;
5150 #endif
5153 return err;
5156 /* Verify the GIMPLE statements inside the sequence STMTS. */
5158 static bool
5159 verify_gimple_in_seq_2 (gimple_seq stmts)
5161 gimple_stmt_iterator ittr;
5162 bool err = false;
5164 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
5166 gimple *stmt = gsi_stmt (ittr);
5168 switch (gimple_code (stmt))
5170 case GIMPLE_BIND:
5171 err |= verify_gimple_in_seq_2 (
5172 gimple_bind_body (as_a <gbind *> (stmt)));
5173 break;
5175 case GIMPLE_TRY:
5176 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5177 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5178 break;
5180 case GIMPLE_EH_FILTER:
5181 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5182 break;
5184 case GIMPLE_EH_ELSE:
5186 geh_else *eh_else = as_a <geh_else *> (stmt);
5187 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5188 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5190 break;
5192 case GIMPLE_CATCH:
5193 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5194 as_a <gcatch *> (stmt)));
5195 break;
5197 case GIMPLE_TRANSACTION:
5198 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5199 break;
5201 default:
5203 bool err2 = verify_gimple_stmt (stmt);
5204 if (err2)
5205 debug_gimple_stmt (stmt);
5206 err |= err2;
5211 return err;
5214 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5215 is a problem, otherwise false. */
5217 static bool
5218 verify_gimple_transaction (gtransaction *stmt)
5220 tree lab;
5222 lab = gimple_transaction_label_norm (stmt);
5223 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5224 return true;
5225 lab = gimple_transaction_label_uninst (stmt);
5226 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5227 return true;
5228 lab = gimple_transaction_label_over (stmt);
5229 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5230 return true;
5232 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5236 /* Verify the GIMPLE statements inside the statement list STMTS. */
5238 DEBUG_FUNCTION void
5239 verify_gimple_in_seq (gimple_seq stmts)
5241 timevar_push (TV_TREE_STMT_VERIFY);
5242 if (verify_gimple_in_seq_2 (stmts))
5243 internal_error ("verify_gimple failed");
5244 timevar_pop (TV_TREE_STMT_VERIFY);
5247 /* Return true when the T can be shared. */
5249 static bool
5250 tree_node_can_be_shared (tree t)
5252 if (IS_TYPE_OR_DECL_P (t)
5253 || is_gimple_min_invariant (t)
5254 || TREE_CODE (t) == SSA_NAME
5255 || t == error_mark_node
5256 || TREE_CODE (t) == IDENTIFIER_NODE)
5257 return true;
5259 if (TREE_CODE (t) == CASE_LABEL_EXPR)
5260 return true;
5262 if (DECL_P (t))
5263 return true;
5265 return false;
5268 /* Called via walk_tree. Verify tree sharing. */
5270 static tree
5271 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5273 hash_set<void *> *visited = (hash_set<void *> *) data;
5275 if (tree_node_can_be_shared (*tp))
5277 *walk_subtrees = false;
5278 return NULL;
5281 if (visited->add (*tp))
5282 return *tp;
5284 return NULL;
5287 /* Called via walk_gimple_stmt. Verify tree sharing. */
5289 static tree
5290 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5292 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5293 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5296 static bool eh_error_found;
5297 bool
5298 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5299 hash_set<gimple *> *visited)
5301 if (!visited->contains (stmt))
5303 error ("dead STMT in EH table");
5304 debug_gimple_stmt (stmt);
5305 eh_error_found = true;
5307 return true;
5310 /* Verify if the location LOCs block is in BLOCKS. */
5312 static bool
5313 verify_location (hash_set<tree> *blocks, location_t loc)
5315 tree block = LOCATION_BLOCK (loc);
5316 if (block != NULL_TREE
5317 && !blocks->contains (block))
5319 error ("location references block not in block tree");
5320 return true;
5322 if (block != NULL_TREE)
5323 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5324 return false;
5327 /* Called via walk_tree. Verify that expressions have no blocks. */
5329 static tree
5330 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5332 if (!EXPR_P (*tp))
5334 *walk_subtrees = false;
5335 return NULL;
5338 location_t loc = EXPR_LOCATION (*tp);
5339 if (LOCATION_BLOCK (loc) != NULL)
5340 return *tp;
5342 return NULL;
5345 /* Called via walk_tree. Verify locations of expressions. */
5347 static tree
5348 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5350 hash_set<tree> *blocks = (hash_set<tree> *) data;
5352 if (VAR_P (*tp) && DECL_HAS_DEBUG_EXPR_P (*tp))
5354 tree t = DECL_DEBUG_EXPR (*tp);
5355 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5356 if (addr)
5357 return addr;
5359 if ((VAR_P (*tp)
5360 || TREE_CODE (*tp) == PARM_DECL
5361 || TREE_CODE (*tp) == RESULT_DECL)
5362 && DECL_HAS_VALUE_EXPR_P (*tp))
5364 tree t = DECL_VALUE_EXPR (*tp);
5365 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5366 if (addr)
5367 return addr;
5370 if (!EXPR_P (*tp))
5372 *walk_subtrees = false;
5373 return NULL;
5376 location_t loc = EXPR_LOCATION (*tp);
5377 if (verify_location (blocks, loc))
5378 return *tp;
5380 return NULL;
5383 /* Called via walk_gimple_op. Verify locations of expressions. */
5385 static tree
5386 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5388 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5389 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5392 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5394 static void
5395 collect_subblocks (hash_set<tree> *blocks, tree block)
5397 tree t;
5398 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5400 blocks->add (t);
5401 collect_subblocks (blocks, t);
5405 /* Verify the GIMPLE statements in the CFG of FN. */
5407 DEBUG_FUNCTION void
5408 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5410 basic_block bb;
5411 bool err = false;
5413 timevar_push (TV_TREE_STMT_VERIFY);
5414 hash_set<void *> visited;
5415 hash_set<gimple *> visited_stmts;
5417 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5418 hash_set<tree> blocks;
5419 if (DECL_INITIAL (fn->decl))
5421 blocks.add (DECL_INITIAL (fn->decl));
5422 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5425 FOR_EACH_BB_FN (bb, fn)
5427 gimple_stmt_iterator gsi;
5429 for (gphi_iterator gpi = gsi_start_phis (bb);
5430 !gsi_end_p (gpi);
5431 gsi_next (&gpi))
5433 gphi *phi = gpi.phi ();
5434 bool err2 = false;
5435 unsigned i;
5437 visited_stmts.add (phi);
5439 if (gimple_bb (phi) != bb)
5441 error ("gimple_bb (phi) is set to a wrong basic block");
5442 err2 = true;
5445 err2 |= verify_gimple_phi (phi);
5447 /* Only PHI arguments have locations. */
5448 if (gimple_location (phi) != UNKNOWN_LOCATION)
5450 error ("PHI node with location");
5451 err2 = true;
5454 for (i = 0; i < gimple_phi_num_args (phi); i++)
5456 tree arg = gimple_phi_arg_def (phi, i);
5457 tree addr = walk_tree (&arg, verify_node_sharing_1,
5458 &visited, NULL);
5459 if (addr)
5461 error ("incorrect sharing of tree nodes");
5462 debug_generic_expr (addr);
5463 err2 |= true;
5465 location_t loc = gimple_phi_arg_location (phi, i);
5466 if (virtual_operand_p (gimple_phi_result (phi))
5467 && loc != UNKNOWN_LOCATION)
5469 error ("virtual PHI with argument locations");
5470 err2 = true;
5472 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5473 if (addr)
5475 debug_generic_expr (addr);
5476 err2 = true;
5478 err2 |= verify_location (&blocks, loc);
5481 if (err2)
5482 debug_gimple_stmt (phi);
5483 err |= err2;
5486 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5488 gimple *stmt = gsi_stmt (gsi);
5489 bool err2 = false;
5490 struct walk_stmt_info wi;
5491 tree addr;
5492 int lp_nr;
5494 visited_stmts.add (stmt);
5496 if (gimple_bb (stmt) != bb)
5498 error ("gimple_bb (stmt) is set to a wrong basic block");
5499 err2 = true;
5502 err2 |= verify_gimple_stmt (stmt);
5503 err2 |= verify_location (&blocks, gimple_location (stmt));
5505 memset (&wi, 0, sizeof (wi));
5506 wi.info = (void *) &visited;
5507 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5508 if (addr)
5510 error ("incorrect sharing of tree nodes");
5511 debug_generic_expr (addr);
5512 err2 |= true;
5515 memset (&wi, 0, sizeof (wi));
5516 wi.info = (void *) &blocks;
5517 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5518 if (addr)
5520 debug_generic_expr (addr);
5521 err2 |= true;
5524 /* ??? Instead of not checking these stmts at all the walker
5525 should know its context via wi. */
5526 if (!is_gimple_debug (stmt)
5527 && !is_gimple_omp (stmt))
5529 memset (&wi, 0, sizeof (wi));
5530 addr = walk_gimple_op (stmt, verify_expr, &wi);
5531 if (addr)
5533 debug_generic_expr (addr);
5534 inform (gimple_location (stmt), "in statement");
5535 err2 |= true;
5539 /* If the statement is marked as part of an EH region, then it is
5540 expected that the statement could throw. Verify that when we
5541 have optimizations that simplify statements such that we prove
5542 that they cannot throw, that we update other data structures
5543 to match. */
5544 lp_nr = lookup_stmt_eh_lp (stmt);
5545 if (lp_nr > 0)
5547 if (!stmt_could_throw_p (stmt))
5549 if (verify_nothrow)
5551 error ("statement marked for throw, but doesn%'t");
5552 err2 |= true;
5555 else if (!gsi_one_before_end_p (gsi))
5557 error ("statement marked for throw in middle of block");
5558 err2 |= true;
5562 if (err2)
5563 debug_gimple_stmt (stmt);
5564 err |= err2;
5568 eh_error_found = false;
5569 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5570 if (eh_table)
5571 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5572 (&visited_stmts);
5574 if (err || eh_error_found)
5575 internal_error ("verify_gimple failed");
5577 verify_histograms ();
5578 timevar_pop (TV_TREE_STMT_VERIFY);
5582 /* Verifies that the flow information is OK. */
5584 static int
5585 gimple_verify_flow_info (void)
5587 int err = 0;
5588 basic_block bb;
5589 gimple_stmt_iterator gsi;
5590 gimple *stmt;
5591 edge e;
5592 edge_iterator ei;
5594 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5595 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5597 error ("ENTRY_BLOCK has IL associated with it");
5598 err = 1;
5601 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5602 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5604 error ("EXIT_BLOCK has IL associated with it");
5605 err = 1;
5608 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5609 if (e->flags & EDGE_FALLTHRU)
5611 error ("fallthru to exit from bb %d", e->src->index);
5612 err = 1;
5615 FOR_EACH_BB_FN (bb, cfun)
5617 bool found_ctrl_stmt = false;
5619 stmt = NULL;
5621 /* Skip labels on the start of basic block. */
5622 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5624 tree label;
5625 gimple *prev_stmt = stmt;
5627 stmt = gsi_stmt (gsi);
5629 if (gimple_code (stmt) != GIMPLE_LABEL)
5630 break;
5632 label = gimple_label_label (as_a <glabel *> (stmt));
5633 if (prev_stmt && DECL_NONLOCAL (label))
5635 error ("nonlocal label ");
5636 print_generic_expr (stderr, label);
5637 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5638 bb->index);
5639 err = 1;
5642 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5644 error ("EH landing pad label ");
5645 print_generic_expr (stderr, label);
5646 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5647 bb->index);
5648 err = 1;
5651 if (label_to_block (label) != bb)
5653 error ("label ");
5654 print_generic_expr (stderr, label);
5655 fprintf (stderr, " to block does not match in bb %d",
5656 bb->index);
5657 err = 1;
5660 if (decl_function_context (label) != current_function_decl)
5662 error ("label ");
5663 print_generic_expr (stderr, label);
5664 fprintf (stderr, " has incorrect context in bb %d",
5665 bb->index);
5666 err = 1;
5670 /* Verify that body of basic block BB is free of control flow. */
5671 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5673 gimple *stmt = gsi_stmt (gsi);
5675 if (found_ctrl_stmt)
5677 error ("control flow in the middle of basic block %d",
5678 bb->index);
5679 err = 1;
5682 if (stmt_ends_bb_p (stmt))
5683 found_ctrl_stmt = true;
5685 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5687 error ("label ");
5688 print_generic_expr (stderr, gimple_label_label (label_stmt));
5689 fprintf (stderr, " in the middle of basic block %d", bb->index);
5690 err = 1;
5694 gsi = gsi_last_nondebug_bb (bb);
5695 if (gsi_end_p (gsi))
5696 continue;
5698 stmt = gsi_stmt (gsi);
5700 if (gimple_code (stmt) == GIMPLE_LABEL)
5701 continue;
5703 err |= verify_eh_edges (stmt);
5705 if (is_ctrl_stmt (stmt))
5707 FOR_EACH_EDGE (e, ei, bb->succs)
5708 if (e->flags & EDGE_FALLTHRU)
5710 error ("fallthru edge after a control statement in bb %d",
5711 bb->index);
5712 err = 1;
5716 if (gimple_code (stmt) != GIMPLE_COND)
5718 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5719 after anything else but if statement. */
5720 FOR_EACH_EDGE (e, ei, bb->succs)
5721 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5723 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5724 bb->index);
5725 err = 1;
5729 switch (gimple_code (stmt))
5731 case GIMPLE_COND:
5733 edge true_edge;
5734 edge false_edge;
5736 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5738 if (!true_edge
5739 || !false_edge
5740 || !(true_edge->flags & EDGE_TRUE_VALUE)
5741 || !(false_edge->flags & EDGE_FALSE_VALUE)
5742 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5743 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5744 || EDGE_COUNT (bb->succs) >= 3)
5746 error ("wrong outgoing edge flags at end of bb %d",
5747 bb->index);
5748 err = 1;
5751 break;
5753 case GIMPLE_GOTO:
5754 if (simple_goto_p (stmt))
5756 error ("explicit goto at end of bb %d", bb->index);
5757 err = 1;
5759 else
5761 /* FIXME. We should double check that the labels in the
5762 destination blocks have their address taken. */
5763 FOR_EACH_EDGE (e, ei, bb->succs)
5764 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5765 | EDGE_FALSE_VALUE))
5766 || !(e->flags & EDGE_ABNORMAL))
5768 error ("wrong outgoing edge flags at end of bb %d",
5769 bb->index);
5770 err = 1;
5773 break;
5775 case GIMPLE_CALL:
5776 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5777 break;
5778 /* fallthru */
5779 case GIMPLE_RETURN:
5780 if (!single_succ_p (bb)
5781 || (single_succ_edge (bb)->flags
5782 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5783 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5785 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5786 err = 1;
5788 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5790 error ("return edge does not point to exit in bb %d",
5791 bb->index);
5792 err = 1;
5794 break;
5796 case GIMPLE_SWITCH:
5798 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5799 tree prev;
5800 edge e;
5801 size_t i, n;
5803 n = gimple_switch_num_labels (switch_stmt);
5805 /* Mark all the destination basic blocks. */
5806 for (i = 0; i < n; ++i)
5808 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5809 basic_block label_bb = label_to_block (lab);
5810 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5811 label_bb->aux = (void *)1;
5814 /* Verify that the case labels are sorted. */
5815 prev = gimple_switch_label (switch_stmt, 0);
5816 for (i = 1; i < n; ++i)
5818 tree c = gimple_switch_label (switch_stmt, i);
5819 if (!CASE_LOW (c))
5821 error ("found default case not at the start of "
5822 "case vector");
5823 err = 1;
5824 continue;
5826 if (CASE_LOW (prev)
5827 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5829 error ("case labels not sorted: ");
5830 print_generic_expr (stderr, prev);
5831 fprintf (stderr," is greater than ");
5832 print_generic_expr (stderr, c);
5833 fprintf (stderr," but comes before it.\n");
5834 err = 1;
5836 prev = c;
5838 /* VRP will remove the default case if it can prove it will
5839 never be executed. So do not verify there always exists
5840 a default case here. */
5842 FOR_EACH_EDGE (e, ei, bb->succs)
5844 if (!e->dest->aux)
5846 error ("extra outgoing edge %d->%d",
5847 bb->index, e->dest->index);
5848 err = 1;
5851 e->dest->aux = (void *)2;
5852 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5853 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5855 error ("wrong outgoing edge flags at end of bb %d",
5856 bb->index);
5857 err = 1;
5861 /* Check that we have all of them. */
5862 for (i = 0; i < n; ++i)
5864 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5865 basic_block label_bb = label_to_block (lab);
5867 if (label_bb->aux != (void *)2)
5869 error ("missing edge %i->%i", bb->index, label_bb->index);
5870 err = 1;
5874 FOR_EACH_EDGE (e, ei, bb->succs)
5875 e->dest->aux = (void *)0;
5877 break;
5879 case GIMPLE_EH_DISPATCH:
5880 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5881 break;
5883 default:
5884 break;
5888 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5889 verify_dominators (CDI_DOMINATORS);
5891 return err;
5895 /* Updates phi nodes after creating a forwarder block joined
5896 by edge FALLTHRU. */
5898 static void
5899 gimple_make_forwarder_block (edge fallthru)
5901 edge e;
5902 edge_iterator ei;
5903 basic_block dummy, bb;
5904 tree var;
5905 gphi_iterator gsi;
5907 dummy = fallthru->src;
5908 bb = fallthru->dest;
5910 if (single_pred_p (bb))
5911 return;
5913 /* If we redirected a branch we must create new PHI nodes at the
5914 start of BB. */
5915 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5917 gphi *phi, *new_phi;
5919 phi = gsi.phi ();
5920 var = gimple_phi_result (phi);
5921 new_phi = create_phi_node (var, bb);
5922 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5923 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5924 UNKNOWN_LOCATION);
5927 /* Add the arguments we have stored on edges. */
5928 FOR_EACH_EDGE (e, ei, bb->preds)
5930 if (e == fallthru)
5931 continue;
5933 flush_pending_stmts (e);
5938 /* Return a non-special label in the head of basic block BLOCK.
5939 Create one if it doesn't exist. */
5941 tree
5942 gimple_block_label (basic_block bb)
5944 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5945 bool first = true;
5946 tree label;
5947 glabel *stmt;
5949 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5951 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5952 if (!stmt)
5953 break;
5954 label = gimple_label_label (stmt);
5955 if (!DECL_NONLOCAL (label))
5957 if (!first)
5958 gsi_move_before (&i, &s);
5959 return label;
5963 label = create_artificial_label (UNKNOWN_LOCATION);
5964 stmt = gimple_build_label (label);
5965 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5966 return label;
5970 /* Attempt to perform edge redirection by replacing a possibly complex
5971 jump instruction by a goto or by removing the jump completely.
5972 This can apply only if all edges now point to the same block. The
5973 parameters and return values are equivalent to
5974 redirect_edge_and_branch. */
5976 static edge
5977 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5979 basic_block src = e->src;
5980 gimple_stmt_iterator i;
5981 gimple *stmt;
5983 /* We can replace or remove a complex jump only when we have exactly
5984 two edges. */
5985 if (EDGE_COUNT (src->succs) != 2
5986 /* Verify that all targets will be TARGET. Specifically, the
5987 edge that is not E must also go to TARGET. */
5988 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5989 return NULL;
5991 i = gsi_last_bb (src);
5992 if (gsi_end_p (i))
5993 return NULL;
5995 stmt = gsi_stmt (i);
5997 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5999 gsi_remove (&i, true);
6000 e = ssa_redirect_edge (e, target);
6001 e->flags = EDGE_FALLTHRU;
6002 return e;
6005 return NULL;
6009 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
6010 edge representing the redirected branch. */
6012 static edge
6013 gimple_redirect_edge_and_branch (edge e, basic_block dest)
6015 basic_block bb = e->src;
6016 gimple_stmt_iterator gsi;
6017 edge ret;
6018 gimple *stmt;
6020 if (e->flags & EDGE_ABNORMAL)
6021 return NULL;
6023 if (e->dest == dest)
6024 return NULL;
6026 if (e->flags & EDGE_EH)
6027 return redirect_eh_edge (e, dest);
6029 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
6031 ret = gimple_try_redirect_by_replacing_jump (e, dest);
6032 if (ret)
6033 return ret;
6036 gsi = gsi_last_nondebug_bb (bb);
6037 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
6039 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
6041 case GIMPLE_COND:
6042 /* For COND_EXPR, we only need to redirect the edge. */
6043 break;
6045 case GIMPLE_GOTO:
6046 /* No non-abnormal edges should lead from a non-simple goto, and
6047 simple ones should be represented implicitly. */
6048 gcc_unreachable ();
6050 case GIMPLE_SWITCH:
6052 gswitch *switch_stmt = as_a <gswitch *> (stmt);
6053 tree label = gimple_block_label (dest);
6054 tree cases = get_cases_for_edge (e, switch_stmt);
6056 /* If we have a list of cases associated with E, then use it
6057 as it's a lot faster than walking the entire case vector. */
6058 if (cases)
6060 edge e2 = find_edge (e->src, dest);
6061 tree last, first;
6063 first = cases;
6064 while (cases)
6066 last = cases;
6067 CASE_LABEL (cases) = label;
6068 cases = CASE_CHAIN (cases);
6071 /* If there was already an edge in the CFG, then we need
6072 to move all the cases associated with E to E2. */
6073 if (e2)
6075 tree cases2 = get_cases_for_edge (e2, switch_stmt);
6077 CASE_CHAIN (last) = CASE_CHAIN (cases2);
6078 CASE_CHAIN (cases2) = first;
6080 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
6082 else
6084 size_t i, n = gimple_switch_num_labels (switch_stmt);
6086 for (i = 0; i < n; i++)
6088 tree elt = gimple_switch_label (switch_stmt, i);
6089 if (label_to_block (CASE_LABEL (elt)) == e->dest)
6090 CASE_LABEL (elt) = label;
6094 break;
6096 case GIMPLE_ASM:
6098 gasm *asm_stmt = as_a <gasm *> (stmt);
6099 int i, n = gimple_asm_nlabels (asm_stmt);
6100 tree label = NULL;
6102 for (i = 0; i < n; ++i)
6104 tree cons = gimple_asm_label_op (asm_stmt, i);
6105 if (label_to_block (TREE_VALUE (cons)) == e->dest)
6107 if (!label)
6108 label = gimple_block_label (dest);
6109 TREE_VALUE (cons) = label;
6113 /* If we didn't find any label matching the former edge in the
6114 asm labels, we must be redirecting the fallthrough
6115 edge. */
6116 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
6118 break;
6120 case GIMPLE_RETURN:
6121 gsi_remove (&gsi, true);
6122 e->flags |= EDGE_FALLTHRU;
6123 break;
6125 case GIMPLE_OMP_RETURN:
6126 case GIMPLE_OMP_CONTINUE:
6127 case GIMPLE_OMP_SECTIONS_SWITCH:
6128 case GIMPLE_OMP_FOR:
6129 /* The edges from OMP constructs can be simply redirected. */
6130 break;
6132 case GIMPLE_EH_DISPATCH:
6133 if (!(e->flags & EDGE_FALLTHRU))
6134 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
6135 break;
6137 case GIMPLE_TRANSACTION:
6138 if (e->flags & EDGE_TM_ABORT)
6139 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
6140 gimple_block_label (dest));
6141 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
6142 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
6143 gimple_block_label (dest));
6144 else
6145 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
6146 gimple_block_label (dest));
6147 break;
6149 default:
6150 /* Otherwise it must be a fallthru edge, and we don't need to
6151 do anything besides redirecting it. */
6152 gcc_assert (e->flags & EDGE_FALLTHRU);
6153 break;
6156 /* Update/insert PHI nodes as necessary. */
6158 /* Now update the edges in the CFG. */
6159 e = ssa_redirect_edge (e, dest);
6161 return e;
6164 /* Returns true if it is possible to remove edge E by redirecting
6165 it to the destination of the other edge from E->src. */
6167 static bool
6168 gimple_can_remove_branch_p (const_edge e)
6170 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
6171 return false;
6173 return true;
6176 /* Simple wrapper, as we can always redirect fallthru edges. */
6178 static basic_block
6179 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6181 e = gimple_redirect_edge_and_branch (e, dest);
6182 gcc_assert (e);
6184 return NULL;
6188 /* Splits basic block BB after statement STMT (but at least after the
6189 labels). If STMT is NULL, BB is split just after the labels. */
6191 static basic_block
6192 gimple_split_block (basic_block bb, void *stmt)
6194 gimple_stmt_iterator gsi;
6195 gimple_stmt_iterator gsi_tgt;
6196 gimple_seq list;
6197 basic_block new_bb;
6198 edge e;
6199 edge_iterator ei;
6201 new_bb = create_empty_bb (bb);
6203 /* Redirect the outgoing edges. */
6204 new_bb->succs = bb->succs;
6205 bb->succs = NULL;
6206 FOR_EACH_EDGE (e, ei, new_bb->succs)
6207 e->src = new_bb;
6209 /* Get a stmt iterator pointing to the first stmt to move. */
6210 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6211 gsi = gsi_after_labels (bb);
6212 else
6214 gsi = gsi_for_stmt ((gimple *) stmt);
6215 gsi_next (&gsi);
6218 /* Move everything from GSI to the new basic block. */
6219 if (gsi_end_p (gsi))
6220 return new_bb;
6222 /* Split the statement list - avoid re-creating new containers as this
6223 brings ugly quadratic memory consumption in the inliner.
6224 (We are still quadratic since we need to update stmt BB pointers,
6225 sadly.) */
6226 gsi_split_seq_before (&gsi, &list);
6227 set_bb_seq (new_bb, list);
6228 for (gsi_tgt = gsi_start (list);
6229 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6230 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6232 return new_bb;
6236 /* Moves basic block BB after block AFTER. */
6238 static bool
6239 gimple_move_block_after (basic_block bb, basic_block after)
6241 if (bb->prev_bb == after)
6242 return true;
6244 unlink_block (bb);
6245 link_block (bb, after);
6247 return true;
6251 /* Return TRUE if block BB has no executable statements, otherwise return
6252 FALSE. */
6254 static bool
6255 gimple_empty_block_p (basic_block bb)
6257 /* BB must have no executable statements. */
6258 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6259 if (phi_nodes (bb))
6260 return false;
6261 if (gsi_end_p (gsi))
6262 return true;
6263 if (is_gimple_debug (gsi_stmt (gsi)))
6264 gsi_next_nondebug (&gsi);
6265 return gsi_end_p (gsi);
6269 /* Split a basic block if it ends with a conditional branch and if the
6270 other part of the block is not empty. */
6272 static basic_block
6273 gimple_split_block_before_cond_jump (basic_block bb)
6275 gimple *last, *split_point;
6276 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6277 if (gsi_end_p (gsi))
6278 return NULL;
6279 last = gsi_stmt (gsi);
6280 if (gimple_code (last) != GIMPLE_COND
6281 && gimple_code (last) != GIMPLE_SWITCH)
6282 return NULL;
6283 gsi_prev (&gsi);
6284 split_point = gsi_stmt (gsi);
6285 return split_block (bb, split_point)->dest;
6289 /* Return true if basic_block can be duplicated. */
6291 static bool
6292 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6294 return true;
6297 /* Create a duplicate of the basic block BB. NOTE: This does not
6298 preserve SSA form. */
6300 static basic_block
6301 gimple_duplicate_bb (basic_block bb)
6303 basic_block new_bb;
6304 gimple_stmt_iterator gsi_tgt;
6306 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6308 /* Copy the PHI nodes. We ignore PHI node arguments here because
6309 the incoming edges have not been setup yet. */
6310 for (gphi_iterator gpi = gsi_start_phis (bb);
6311 !gsi_end_p (gpi);
6312 gsi_next (&gpi))
6314 gphi *phi, *copy;
6315 phi = gpi.phi ();
6316 copy = create_phi_node (NULL_TREE, new_bb);
6317 create_new_def_for (gimple_phi_result (phi), copy,
6318 gimple_phi_result_ptr (copy));
6319 gimple_set_uid (copy, gimple_uid (phi));
6322 gsi_tgt = gsi_start_bb (new_bb);
6323 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6324 !gsi_end_p (gsi);
6325 gsi_next (&gsi))
6327 def_operand_p def_p;
6328 ssa_op_iter op_iter;
6329 tree lhs;
6330 gimple *stmt, *copy;
6332 stmt = gsi_stmt (gsi);
6333 if (gimple_code (stmt) == GIMPLE_LABEL)
6334 continue;
6336 /* Don't duplicate label debug stmts. */
6337 if (gimple_debug_bind_p (stmt)
6338 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6339 == LABEL_DECL)
6340 continue;
6342 /* Create a new copy of STMT and duplicate STMT's virtual
6343 operands. */
6344 copy = gimple_copy (stmt);
6345 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6347 maybe_duplicate_eh_stmt (copy, stmt);
6348 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6350 /* When copying around a stmt writing into a local non-user
6351 aggregate, make sure it won't share stack slot with other
6352 vars. */
6353 lhs = gimple_get_lhs (stmt);
6354 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6356 tree base = get_base_address (lhs);
6357 if (base
6358 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6359 && DECL_IGNORED_P (base)
6360 && !TREE_STATIC (base)
6361 && !DECL_EXTERNAL (base)
6362 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6363 DECL_NONSHAREABLE (base) = 1;
6366 /* Create new names for all the definitions created by COPY and
6367 add replacement mappings for each new name. */
6368 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6369 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6372 return new_bb;
6375 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6377 static void
6378 add_phi_args_after_copy_edge (edge e_copy)
6380 basic_block bb, bb_copy = e_copy->src, dest;
6381 edge e;
6382 edge_iterator ei;
6383 gphi *phi, *phi_copy;
6384 tree def;
6385 gphi_iterator psi, psi_copy;
6387 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6388 return;
6390 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6392 if (e_copy->dest->flags & BB_DUPLICATED)
6393 dest = get_bb_original (e_copy->dest);
6394 else
6395 dest = e_copy->dest;
6397 e = find_edge (bb, dest);
6398 if (!e)
6400 /* During loop unrolling the target of the latch edge is copied.
6401 In this case we are not looking for edge to dest, but to
6402 duplicated block whose original was dest. */
6403 FOR_EACH_EDGE (e, ei, bb->succs)
6405 if ((e->dest->flags & BB_DUPLICATED)
6406 && get_bb_original (e->dest) == dest)
6407 break;
6410 gcc_assert (e != NULL);
6413 for (psi = gsi_start_phis (e->dest),
6414 psi_copy = gsi_start_phis (e_copy->dest);
6415 !gsi_end_p (psi);
6416 gsi_next (&psi), gsi_next (&psi_copy))
6418 phi = psi.phi ();
6419 phi_copy = psi_copy.phi ();
6420 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6421 add_phi_arg (phi_copy, def, e_copy,
6422 gimple_phi_arg_location_from_edge (phi, e));
6427 /* Basic block BB_COPY was created by code duplication. Add phi node
6428 arguments for edges going out of BB_COPY. The blocks that were
6429 duplicated have BB_DUPLICATED set. */
6431 void
6432 add_phi_args_after_copy_bb (basic_block bb_copy)
6434 edge e_copy;
6435 edge_iterator ei;
6437 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6439 add_phi_args_after_copy_edge (e_copy);
6443 /* Blocks in REGION_COPY array of length N_REGION were created by
6444 duplication of basic blocks. Add phi node arguments for edges
6445 going from these blocks. If E_COPY is not NULL, also add
6446 phi node arguments for its destination.*/
6448 void
6449 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6450 edge e_copy)
6452 unsigned i;
6454 for (i = 0; i < n_region; i++)
6455 region_copy[i]->flags |= BB_DUPLICATED;
6457 for (i = 0; i < n_region; i++)
6458 add_phi_args_after_copy_bb (region_copy[i]);
6459 if (e_copy)
6460 add_phi_args_after_copy_edge (e_copy);
6462 for (i = 0; i < n_region; i++)
6463 region_copy[i]->flags &= ~BB_DUPLICATED;
6466 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6467 important exit edge EXIT. By important we mean that no SSA name defined
6468 inside region is live over the other exit edges of the region. All entry
6469 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6470 to the duplicate of the region. Dominance and loop information is
6471 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6472 UPDATE_DOMINANCE is false then we assume that the caller will update the
6473 dominance information after calling this function. The new basic
6474 blocks are stored to REGION_COPY in the same order as they had in REGION,
6475 provided that REGION_COPY is not NULL.
6476 The function returns false if it is unable to copy the region,
6477 true otherwise. */
6479 bool
6480 gimple_duplicate_sese_region (edge entry, edge exit,
6481 basic_block *region, unsigned n_region,
6482 basic_block *region_copy,
6483 bool update_dominance)
6485 unsigned i;
6486 bool free_region_copy = false, copying_header = false;
6487 struct loop *loop = entry->dest->loop_father;
6488 edge exit_copy;
6489 vec<basic_block> doms = vNULL;
6490 edge redirected;
6491 profile_count total_count = profile_count::uninitialized ();
6492 profile_count entry_count = profile_count::uninitialized ();
6494 if (!can_copy_bbs_p (region, n_region))
6495 return false;
6497 /* Some sanity checking. Note that we do not check for all possible
6498 missuses of the functions. I.e. if you ask to copy something weird,
6499 it will work, but the state of structures probably will not be
6500 correct. */
6501 for (i = 0; i < n_region; i++)
6503 /* We do not handle subloops, i.e. all the blocks must belong to the
6504 same loop. */
6505 if (region[i]->loop_father != loop)
6506 return false;
6508 if (region[i] != entry->dest
6509 && region[i] == loop->header)
6510 return false;
6513 /* In case the function is used for loop header copying (which is the primary
6514 use), ensure that EXIT and its copy will be new latch and entry edges. */
6515 if (loop->header == entry->dest)
6517 copying_header = true;
6519 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6520 return false;
6522 for (i = 0; i < n_region; i++)
6523 if (region[i] != exit->src
6524 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6525 return false;
6528 initialize_original_copy_tables ();
6530 if (copying_header)
6531 set_loop_copy (loop, loop_outer (loop));
6532 else
6533 set_loop_copy (loop, loop);
6535 if (!region_copy)
6537 region_copy = XNEWVEC (basic_block, n_region);
6538 free_region_copy = true;
6541 /* Record blocks outside the region that are dominated by something
6542 inside. */
6543 if (update_dominance)
6545 doms.create (0);
6546 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6549 if (entry->dest->count.initialized_p ())
6551 total_count = entry->dest->count;
6552 entry_count = entry->count ();
6553 /* Fix up corner cases, to avoid division by zero or creation of negative
6554 frequencies. */
6555 if (entry_count > total_count)
6556 entry_count = total_count;
6559 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6560 split_edge_bb_loc (entry), update_dominance);
6561 if (total_count.initialized_p () && entry_count.initialized_p ())
6563 scale_bbs_frequencies_profile_count (region, n_region,
6564 total_count - entry_count,
6565 total_count);
6566 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6567 total_count);
6570 if (copying_header)
6572 loop->header = exit->dest;
6573 loop->latch = exit->src;
6576 /* Redirect the entry and add the phi node arguments. */
6577 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6578 gcc_assert (redirected != NULL);
6579 flush_pending_stmts (entry);
6581 /* Concerning updating of dominators: We must recount dominators
6582 for entry block and its copy. Anything that is outside of the
6583 region, but was dominated by something inside needs recounting as
6584 well. */
6585 if (update_dominance)
6587 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6588 doms.safe_push (get_bb_original (entry->dest));
6589 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6590 doms.release ();
6593 /* Add the other PHI node arguments. */
6594 add_phi_args_after_copy (region_copy, n_region, NULL);
6596 if (free_region_copy)
6597 free (region_copy);
6599 free_original_copy_tables ();
6600 return true;
6603 /* Checks if BB is part of the region defined by N_REGION BBS. */
6604 static bool
6605 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6607 unsigned int n;
6609 for (n = 0; n < n_region; n++)
6611 if (bb == bbs[n])
6612 return true;
6614 return false;
6617 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6618 are stored to REGION_COPY in the same order in that they appear
6619 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6620 the region, EXIT an exit from it. The condition guarding EXIT
6621 is moved to ENTRY. Returns true if duplication succeeds, false
6622 otherwise.
6624 For example,
6626 some_code;
6627 if (cond)
6629 else
6632 is transformed to
6634 if (cond)
6636 some_code;
6639 else
6641 some_code;
6646 bool
6647 gimple_duplicate_sese_tail (edge entry, edge exit,
6648 basic_block *region, unsigned n_region,
6649 basic_block *region_copy)
6651 unsigned i;
6652 bool free_region_copy = false;
6653 struct loop *loop = exit->dest->loop_father;
6654 struct loop *orig_loop = entry->dest->loop_father;
6655 basic_block switch_bb, entry_bb, nentry_bb;
6656 vec<basic_block> doms;
6657 profile_count total_count = profile_count::uninitialized (),
6658 exit_count = profile_count::uninitialized ();
6659 edge exits[2], nexits[2], e;
6660 gimple_stmt_iterator gsi;
6661 gimple *cond_stmt;
6662 edge sorig, snew;
6663 basic_block exit_bb;
6664 gphi_iterator psi;
6665 gphi *phi;
6666 tree def;
6667 struct loop *target, *aloop, *cloop;
6669 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6670 exits[0] = exit;
6671 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6673 if (!can_copy_bbs_p (region, n_region))
6674 return false;
6676 initialize_original_copy_tables ();
6677 set_loop_copy (orig_loop, loop);
6679 target= loop;
6680 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6682 if (bb_part_of_region_p (aloop->header, region, n_region))
6684 cloop = duplicate_loop (aloop, target);
6685 duplicate_subloops (aloop, cloop);
6689 if (!region_copy)
6691 region_copy = XNEWVEC (basic_block, n_region);
6692 free_region_copy = true;
6695 gcc_assert (!need_ssa_update_p (cfun));
6697 /* Record blocks outside the region that are dominated by something
6698 inside. */
6699 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6701 total_count = exit->src->count;
6702 exit_count = exit->count ();
6703 /* Fix up corner cases, to avoid division by zero or creation of negative
6704 frequencies. */
6705 if (exit_count > total_count)
6706 exit_count = total_count;
6708 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6709 split_edge_bb_loc (exit), true);
6710 if (total_count.initialized_p () && exit_count.initialized_p ())
6712 scale_bbs_frequencies_profile_count (region, n_region,
6713 total_count - exit_count,
6714 total_count);
6715 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6716 total_count);
6719 /* Create the switch block, and put the exit condition to it. */
6720 entry_bb = entry->dest;
6721 nentry_bb = get_bb_copy (entry_bb);
6722 if (!last_stmt (entry->src)
6723 || !stmt_ends_bb_p (last_stmt (entry->src)))
6724 switch_bb = entry->src;
6725 else
6726 switch_bb = split_edge (entry);
6727 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6729 gsi = gsi_last_bb (switch_bb);
6730 cond_stmt = last_stmt (exit->src);
6731 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6732 cond_stmt = gimple_copy (cond_stmt);
6734 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6736 sorig = single_succ_edge (switch_bb);
6737 sorig->flags = exits[1]->flags;
6738 sorig->probability = exits[1]->probability;
6739 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6740 snew->probability = exits[0]->probability;
6743 /* Register the new edge from SWITCH_BB in loop exit lists. */
6744 rescan_loop_exit (snew, true, false);
6746 /* Add the PHI node arguments. */
6747 add_phi_args_after_copy (region_copy, n_region, snew);
6749 /* Get rid of now superfluous conditions and associated edges (and phi node
6750 arguments). */
6751 exit_bb = exit->dest;
6753 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6754 PENDING_STMT (e) = NULL;
6756 /* The latch of ORIG_LOOP was copied, and so was the backedge
6757 to the original header. We redirect this backedge to EXIT_BB. */
6758 for (i = 0; i < n_region; i++)
6759 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6761 gcc_assert (single_succ_edge (region_copy[i]));
6762 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6763 PENDING_STMT (e) = NULL;
6764 for (psi = gsi_start_phis (exit_bb);
6765 !gsi_end_p (psi);
6766 gsi_next (&psi))
6768 phi = psi.phi ();
6769 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6770 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6773 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6774 PENDING_STMT (e) = NULL;
6776 /* Anything that is outside of the region, but was dominated by something
6777 inside needs to update dominance info. */
6778 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6779 doms.release ();
6780 /* Update the SSA web. */
6781 update_ssa (TODO_update_ssa);
6783 if (free_region_copy)
6784 free (region_copy);
6786 free_original_copy_tables ();
6787 return true;
6790 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6791 adding blocks when the dominator traversal reaches EXIT. This
6792 function silently assumes that ENTRY strictly dominates EXIT. */
6794 void
6795 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6796 vec<basic_block> *bbs_p)
6798 basic_block son;
6800 for (son = first_dom_son (CDI_DOMINATORS, entry);
6801 son;
6802 son = next_dom_son (CDI_DOMINATORS, son))
6804 bbs_p->safe_push (son);
6805 if (son != exit)
6806 gather_blocks_in_sese_region (son, exit, bbs_p);
6810 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6811 The duplicates are recorded in VARS_MAP. */
6813 static void
6814 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6815 tree to_context)
6817 tree t = *tp, new_t;
6818 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6820 if (DECL_CONTEXT (t) == to_context)
6821 return;
6823 bool existed;
6824 tree &loc = vars_map->get_or_insert (t, &existed);
6826 if (!existed)
6828 if (SSA_VAR_P (t))
6830 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6831 add_local_decl (f, new_t);
6833 else
6835 gcc_assert (TREE_CODE (t) == CONST_DECL);
6836 new_t = copy_node (t);
6838 DECL_CONTEXT (new_t) = to_context;
6840 loc = new_t;
6842 else
6843 new_t = loc;
6845 *tp = new_t;
6849 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6850 VARS_MAP maps old ssa names and var_decls to the new ones. */
6852 static tree
6853 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6854 tree to_context)
6856 tree new_name;
6858 gcc_assert (!virtual_operand_p (name));
6860 tree *loc = vars_map->get (name);
6862 if (!loc)
6864 tree decl = SSA_NAME_VAR (name);
6865 if (decl)
6867 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6868 replace_by_duplicate_decl (&decl, vars_map, to_context);
6869 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6870 decl, SSA_NAME_DEF_STMT (name));
6872 else
6873 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6874 name, SSA_NAME_DEF_STMT (name));
6876 /* Now that we've used the def stmt to define new_name, make sure it
6877 doesn't define name anymore. */
6878 SSA_NAME_DEF_STMT (name) = NULL;
6880 vars_map->put (name, new_name);
6882 else
6883 new_name = *loc;
6885 return new_name;
6888 struct move_stmt_d
6890 tree orig_block;
6891 tree new_block;
6892 tree from_context;
6893 tree to_context;
6894 hash_map<tree, tree> *vars_map;
6895 htab_t new_label_map;
6896 hash_map<void *, void *> *eh_map;
6897 bool remap_decls_p;
6900 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6901 contained in *TP if it has been ORIG_BLOCK previously and change the
6902 DECL_CONTEXT of every local variable referenced in *TP. */
6904 static tree
6905 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6907 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6908 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6909 tree t = *tp;
6911 if (EXPR_P (t))
6913 tree block = TREE_BLOCK (t);
6914 if (block == NULL_TREE)
6916 else if (block == p->orig_block
6917 || p->orig_block == NULL_TREE)
6918 TREE_SET_BLOCK (t, p->new_block);
6919 else if (flag_checking)
6921 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6922 block = BLOCK_SUPERCONTEXT (block);
6923 gcc_assert (block == p->orig_block);
6926 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6928 if (TREE_CODE (t) == SSA_NAME)
6929 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6930 else if (TREE_CODE (t) == PARM_DECL
6931 && gimple_in_ssa_p (cfun))
6932 *tp = *(p->vars_map->get (t));
6933 else if (TREE_CODE (t) == LABEL_DECL)
6935 if (p->new_label_map)
6937 struct tree_map in, *out;
6938 in.base.from = t;
6939 out = (struct tree_map *)
6940 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6941 if (out)
6942 *tp = t = out->to;
6945 /* For FORCED_LABELs we can end up with references from other
6946 functions if some SESE regions are outlined. It is UB to
6947 jump in between them, but they could be used just for printing
6948 addresses etc. In that case, DECL_CONTEXT on the label should
6949 be the function containing the glabel stmt with that LABEL_DECL,
6950 rather than whatever function a reference to the label was seen
6951 last time. */
6952 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
6953 DECL_CONTEXT (t) = p->to_context;
6955 else if (p->remap_decls_p)
6957 /* Replace T with its duplicate. T should no longer appear in the
6958 parent function, so this looks wasteful; however, it may appear
6959 in referenced_vars, and more importantly, as virtual operands of
6960 statements, and in alias lists of other variables. It would be
6961 quite difficult to expunge it from all those places. ??? It might
6962 suffice to do this for addressable variables. */
6963 if ((VAR_P (t) && !is_global_var (t))
6964 || TREE_CODE (t) == CONST_DECL)
6965 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6967 *walk_subtrees = 0;
6969 else if (TYPE_P (t))
6970 *walk_subtrees = 0;
6972 return NULL_TREE;
6975 /* Helper for move_stmt_r. Given an EH region number for the source
6976 function, map that to the duplicate EH regio number in the dest. */
6978 static int
6979 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6981 eh_region old_r, new_r;
6983 old_r = get_eh_region_from_number (old_nr);
6984 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6986 return new_r->index;
6989 /* Similar, but operate on INTEGER_CSTs. */
6991 static tree
6992 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6994 int old_nr, new_nr;
6996 old_nr = tree_to_shwi (old_t_nr);
6997 new_nr = move_stmt_eh_region_nr (old_nr, p);
6999 return build_int_cst (integer_type_node, new_nr);
7002 /* Like move_stmt_op, but for gimple statements.
7004 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
7005 contained in the current statement in *GSI_P and change the
7006 DECL_CONTEXT of every local variable referenced in the current
7007 statement. */
7009 static tree
7010 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
7011 struct walk_stmt_info *wi)
7013 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
7014 gimple *stmt = gsi_stmt (*gsi_p);
7015 tree block = gimple_block (stmt);
7017 if (block == p->orig_block
7018 || (p->orig_block == NULL_TREE
7019 && block != NULL_TREE))
7020 gimple_set_block (stmt, p->new_block);
7022 switch (gimple_code (stmt))
7024 case GIMPLE_CALL:
7025 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
7027 tree r, fndecl = gimple_call_fndecl (stmt);
7028 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
7029 switch (DECL_FUNCTION_CODE (fndecl))
7031 case BUILT_IN_EH_COPY_VALUES:
7032 r = gimple_call_arg (stmt, 1);
7033 r = move_stmt_eh_region_tree_nr (r, p);
7034 gimple_call_set_arg (stmt, 1, r);
7035 /* FALLTHRU */
7037 case BUILT_IN_EH_POINTER:
7038 case BUILT_IN_EH_FILTER:
7039 r = gimple_call_arg (stmt, 0);
7040 r = move_stmt_eh_region_tree_nr (r, p);
7041 gimple_call_set_arg (stmt, 0, r);
7042 break;
7044 default:
7045 break;
7048 break;
7050 case GIMPLE_RESX:
7052 gresx *resx_stmt = as_a <gresx *> (stmt);
7053 int r = gimple_resx_region (resx_stmt);
7054 r = move_stmt_eh_region_nr (r, p);
7055 gimple_resx_set_region (resx_stmt, r);
7057 break;
7059 case GIMPLE_EH_DISPATCH:
7061 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
7062 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
7063 r = move_stmt_eh_region_nr (r, p);
7064 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
7066 break;
7068 case GIMPLE_OMP_RETURN:
7069 case GIMPLE_OMP_CONTINUE:
7070 break;
7072 case GIMPLE_LABEL:
7074 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
7075 so that such labels can be referenced from other regions.
7076 Make sure to update it when seeing a GIMPLE_LABEL though,
7077 that is the owner of the label. */
7078 walk_gimple_op (stmt, move_stmt_op, wi);
7079 *handled_ops_p = true;
7080 tree label = gimple_label_label (as_a <glabel *> (stmt));
7081 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
7082 DECL_CONTEXT (label) = p->to_context;
7084 break;
7086 default:
7087 if (is_gimple_omp (stmt))
7089 /* Do not remap variables inside OMP directives. Variables
7090 referenced in clauses and directive header belong to the
7091 parent function and should not be moved into the child
7092 function. */
7093 bool save_remap_decls_p = p->remap_decls_p;
7094 p->remap_decls_p = false;
7095 *handled_ops_p = true;
7097 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
7098 move_stmt_op, wi);
7100 p->remap_decls_p = save_remap_decls_p;
7102 break;
7105 return NULL_TREE;
7108 /* Move basic block BB from function CFUN to function DEST_FN. The
7109 block is moved out of the original linked list and placed after
7110 block AFTER in the new list. Also, the block is removed from the
7111 original array of blocks and placed in DEST_FN's array of blocks.
7112 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7113 updated to reflect the moved edges.
7115 The local variables are remapped to new instances, VARS_MAP is used
7116 to record the mapping. */
7118 static void
7119 move_block_to_fn (struct function *dest_cfun, basic_block bb,
7120 basic_block after, bool update_edge_count_p,
7121 struct move_stmt_d *d)
7123 struct control_flow_graph *cfg;
7124 edge_iterator ei;
7125 edge e;
7126 gimple_stmt_iterator si;
7127 unsigned old_len, new_len;
7129 /* Remove BB from dominance structures. */
7130 delete_from_dominance_info (CDI_DOMINATORS, bb);
7132 /* Move BB from its current loop to the copy in the new function. */
7133 if (current_loops)
7135 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
7136 if (new_loop)
7137 bb->loop_father = new_loop;
7140 /* Link BB to the new linked list. */
7141 move_block_after (bb, after);
7143 /* Update the edge count in the corresponding flowgraphs. */
7144 if (update_edge_count_p)
7145 FOR_EACH_EDGE (e, ei, bb->succs)
7147 cfun->cfg->x_n_edges--;
7148 dest_cfun->cfg->x_n_edges++;
7151 /* Remove BB from the original basic block array. */
7152 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
7153 cfun->cfg->x_n_basic_blocks--;
7155 /* Grow DEST_CFUN's basic block array if needed. */
7156 cfg = dest_cfun->cfg;
7157 cfg->x_n_basic_blocks++;
7158 if (bb->index >= cfg->x_last_basic_block)
7159 cfg->x_last_basic_block = bb->index + 1;
7161 old_len = vec_safe_length (cfg->x_basic_block_info);
7162 if ((unsigned) cfg->x_last_basic_block >= old_len)
7164 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
7165 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
7168 (*cfg->x_basic_block_info)[bb->index] = bb;
7170 /* Remap the variables in phi nodes. */
7171 for (gphi_iterator psi = gsi_start_phis (bb);
7172 !gsi_end_p (psi); )
7174 gphi *phi = psi.phi ();
7175 use_operand_p use;
7176 tree op = PHI_RESULT (phi);
7177 ssa_op_iter oi;
7178 unsigned i;
7180 if (virtual_operand_p (op))
7182 /* Remove the phi nodes for virtual operands (alias analysis will be
7183 run for the new function, anyway). */
7184 remove_phi_node (&psi, true);
7185 continue;
7188 SET_PHI_RESULT (phi,
7189 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7190 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7192 op = USE_FROM_PTR (use);
7193 if (TREE_CODE (op) == SSA_NAME)
7194 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7197 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7199 location_t locus = gimple_phi_arg_location (phi, i);
7200 tree block = LOCATION_BLOCK (locus);
7202 if (locus == UNKNOWN_LOCATION)
7203 continue;
7204 if (d->orig_block == NULL_TREE || block == d->orig_block)
7206 locus = set_block (locus, d->new_block);
7207 gimple_phi_arg_set_location (phi, i, locus);
7211 gsi_next (&psi);
7214 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7216 gimple *stmt = gsi_stmt (si);
7217 struct walk_stmt_info wi;
7219 memset (&wi, 0, sizeof (wi));
7220 wi.info = d;
7221 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7223 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7225 tree label = gimple_label_label (label_stmt);
7226 int uid = LABEL_DECL_UID (label);
7228 gcc_assert (uid > -1);
7230 old_len = vec_safe_length (cfg->x_label_to_block_map);
7231 if (old_len <= (unsigned) uid)
7233 new_len = 3 * uid / 2 + 1;
7234 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
7237 (*cfg->x_label_to_block_map)[uid] = bb;
7238 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7240 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7242 if (uid >= dest_cfun->cfg->last_label_uid)
7243 dest_cfun->cfg->last_label_uid = uid + 1;
7246 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7247 remove_stmt_from_eh_lp_fn (cfun, stmt);
7249 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7250 gimple_remove_stmt_histograms (cfun, stmt);
7252 /* We cannot leave any operands allocated from the operand caches of
7253 the current function. */
7254 free_stmt_operands (cfun, stmt);
7255 push_cfun (dest_cfun);
7256 update_stmt (stmt);
7257 pop_cfun ();
7260 FOR_EACH_EDGE (e, ei, bb->succs)
7261 if (e->goto_locus != UNKNOWN_LOCATION)
7263 tree block = LOCATION_BLOCK (e->goto_locus);
7264 if (d->orig_block == NULL_TREE
7265 || block == d->orig_block)
7266 e->goto_locus = set_block (e->goto_locus, d->new_block);
7270 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7271 the outermost EH region. Use REGION as the incoming base EH region. */
7273 static eh_region
7274 find_outermost_region_in_block (struct function *src_cfun,
7275 basic_block bb, eh_region region)
7277 gimple_stmt_iterator si;
7279 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7281 gimple *stmt = gsi_stmt (si);
7282 eh_region stmt_region;
7283 int lp_nr;
7285 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7286 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7287 if (stmt_region)
7289 if (region == NULL)
7290 region = stmt_region;
7291 else if (stmt_region != region)
7293 region = eh_region_outermost (src_cfun, stmt_region, region);
7294 gcc_assert (region != NULL);
7299 return region;
7302 static tree
7303 new_label_mapper (tree decl, void *data)
7305 htab_t hash = (htab_t) data;
7306 struct tree_map *m;
7307 void **slot;
7309 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7311 m = XNEW (struct tree_map);
7312 m->hash = DECL_UID (decl);
7313 m->base.from = decl;
7314 m->to = create_artificial_label (UNKNOWN_LOCATION);
7315 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7316 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7317 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7319 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7320 gcc_assert (*slot == NULL);
7322 *slot = m;
7324 return m->to;
7327 /* Tree walker to replace the decls used inside value expressions by
7328 duplicates. */
7330 static tree
7331 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7333 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7335 switch (TREE_CODE (*tp))
7337 case VAR_DECL:
7338 case PARM_DECL:
7339 case RESULT_DECL:
7340 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7341 break;
7342 default:
7343 break;
7346 if (IS_TYPE_OR_DECL_P (*tp))
7347 *walk_subtrees = false;
7349 return NULL;
7352 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7353 subblocks. */
7355 static void
7356 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7357 tree to_context)
7359 tree *tp, t;
7361 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7363 t = *tp;
7364 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7365 continue;
7366 replace_by_duplicate_decl (&t, vars_map, to_context);
7367 if (t != *tp)
7369 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7371 tree x = DECL_VALUE_EXPR (*tp);
7372 struct replace_decls_d rd = { vars_map, to_context };
7373 unshare_expr (x);
7374 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7375 SET_DECL_VALUE_EXPR (t, x);
7376 DECL_HAS_VALUE_EXPR_P (t) = 1;
7378 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7379 *tp = t;
7383 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7384 replace_block_vars_by_duplicates (block, vars_map, to_context);
7387 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7388 from FN1 to FN2. */
7390 static void
7391 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7392 struct loop *loop)
7394 /* Discard it from the old loop array. */
7395 (*get_loops (fn1))[loop->num] = NULL;
7397 /* Place it in the new loop array, assigning it a new number. */
7398 loop->num = number_of_loops (fn2);
7399 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7401 /* Recurse to children. */
7402 for (loop = loop->inner; loop; loop = loop->next)
7403 fixup_loop_arrays_after_move (fn1, fn2, loop);
7406 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7407 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7409 DEBUG_FUNCTION void
7410 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7412 basic_block bb;
7413 edge_iterator ei;
7414 edge e;
7415 bitmap bbs = BITMAP_ALLOC (NULL);
7416 int i;
7418 gcc_assert (entry != NULL);
7419 gcc_assert (entry != exit);
7420 gcc_assert (bbs_p != NULL);
7422 gcc_assert (bbs_p->length () > 0);
7424 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7425 bitmap_set_bit (bbs, bb->index);
7427 gcc_assert (bitmap_bit_p (bbs, entry->index));
7428 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7430 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7432 if (bb == entry)
7434 gcc_assert (single_pred_p (entry));
7435 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7437 else
7438 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7440 e = ei_edge (ei);
7441 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7444 if (bb == exit)
7446 gcc_assert (single_succ_p (exit));
7447 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7449 else
7450 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7452 e = ei_edge (ei);
7453 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7457 BITMAP_FREE (bbs);
7460 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7462 bool
7463 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7465 bitmap release_names = (bitmap)data;
7467 if (TREE_CODE (from) != SSA_NAME)
7468 return true;
7470 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7471 return true;
7474 /* Return LOOP_DIST_ALIAS call if present in BB. */
7476 static gimple *
7477 find_loop_dist_alias (basic_block bb)
7479 gimple *g = last_stmt (bb);
7480 if (g == NULL || gimple_code (g) != GIMPLE_COND)
7481 return NULL;
7483 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7484 gsi_prev (&gsi);
7485 if (gsi_end_p (gsi))
7486 return NULL;
7488 g = gsi_stmt (gsi);
7489 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7490 return g;
7491 return NULL;
7494 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7495 to VALUE and update any immediate uses of it's LHS. */
7497 void
7498 fold_loop_internal_call (gimple *g, tree value)
7500 tree lhs = gimple_call_lhs (g);
7501 use_operand_p use_p;
7502 imm_use_iterator iter;
7503 gimple *use_stmt;
7504 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7506 update_call_from_tree (&gsi, value);
7507 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7509 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7510 SET_USE (use_p, value);
7511 update_stmt (use_stmt);
7515 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7516 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7517 single basic block in the original CFG and the new basic block is
7518 returned. DEST_CFUN must not have a CFG yet.
7520 Note that the region need not be a pure SESE region. Blocks inside
7521 the region may contain calls to abort/exit. The only restriction
7522 is that ENTRY_BB should be the only entry point and it must
7523 dominate EXIT_BB.
7525 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7526 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7527 to the new function.
7529 All local variables referenced in the region are assumed to be in
7530 the corresponding BLOCK_VARS and unexpanded variable lists
7531 associated with DEST_CFUN.
7533 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7534 reimplement move_sese_region_to_fn by duplicating the region rather than
7535 moving it. */
7537 basic_block
7538 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7539 basic_block exit_bb, tree orig_block)
7541 vec<basic_block> bbs, dom_bbs;
7542 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7543 basic_block after, bb, *entry_pred, *exit_succ, abb;
7544 struct function *saved_cfun = cfun;
7545 int *entry_flag, *exit_flag;
7546 profile_probability *entry_prob, *exit_prob;
7547 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7548 edge e;
7549 edge_iterator ei;
7550 htab_t new_label_map;
7551 hash_map<void *, void *> *eh_map;
7552 struct loop *loop = entry_bb->loop_father;
7553 struct loop *loop0 = get_loop (saved_cfun, 0);
7554 struct move_stmt_d d;
7556 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7557 region. */
7558 gcc_assert (entry_bb != exit_bb
7559 && (!exit_bb
7560 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7562 /* Collect all the blocks in the region. Manually add ENTRY_BB
7563 because it won't be added by dfs_enumerate_from. */
7564 bbs.create (0);
7565 bbs.safe_push (entry_bb);
7566 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7568 if (flag_checking)
7569 verify_sese (entry_bb, exit_bb, &bbs);
7571 /* The blocks that used to be dominated by something in BBS will now be
7572 dominated by the new block. */
7573 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7574 bbs.address (),
7575 bbs.length ());
7577 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7578 the predecessor edges to ENTRY_BB and the successor edges to
7579 EXIT_BB so that we can re-attach them to the new basic block that
7580 will replace the region. */
7581 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7582 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7583 entry_flag = XNEWVEC (int, num_entry_edges);
7584 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7585 i = 0;
7586 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7588 entry_prob[i] = e->probability;
7589 entry_flag[i] = e->flags;
7590 entry_pred[i++] = e->src;
7591 remove_edge (e);
7594 if (exit_bb)
7596 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7597 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7598 exit_flag = XNEWVEC (int, num_exit_edges);
7599 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7600 i = 0;
7601 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7603 exit_prob[i] = e->probability;
7604 exit_flag[i] = e->flags;
7605 exit_succ[i++] = e->dest;
7606 remove_edge (e);
7609 else
7611 num_exit_edges = 0;
7612 exit_succ = NULL;
7613 exit_flag = NULL;
7614 exit_prob = NULL;
7617 /* Switch context to the child function to initialize DEST_FN's CFG. */
7618 gcc_assert (dest_cfun->cfg == NULL);
7619 push_cfun (dest_cfun);
7621 init_empty_tree_cfg ();
7623 /* Initialize EH information for the new function. */
7624 eh_map = NULL;
7625 new_label_map = NULL;
7626 if (saved_cfun->eh)
7628 eh_region region = NULL;
7630 FOR_EACH_VEC_ELT (bbs, i, bb)
7631 region = find_outermost_region_in_block (saved_cfun, bb, region);
7633 init_eh_for_function ();
7634 if (region != NULL)
7636 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7637 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7638 new_label_mapper, new_label_map);
7642 /* Initialize an empty loop tree. */
7643 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7644 init_loops_structure (dest_cfun, loops, 1);
7645 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7646 set_loops_for_fn (dest_cfun, loops);
7648 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7650 /* Move the outlined loop tree part. */
7651 num_nodes = bbs.length ();
7652 FOR_EACH_VEC_ELT (bbs, i, bb)
7654 if (bb->loop_father->header == bb)
7656 struct loop *this_loop = bb->loop_father;
7657 struct loop *outer = loop_outer (this_loop);
7658 if (outer == loop
7659 /* If the SESE region contains some bbs ending with
7660 a noreturn call, those are considered to belong
7661 to the outermost loop in saved_cfun, rather than
7662 the entry_bb's loop_father. */
7663 || outer == loop0)
7665 if (outer != loop)
7666 num_nodes -= this_loop->num_nodes;
7667 flow_loop_tree_node_remove (bb->loop_father);
7668 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7669 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7672 else if (bb->loop_father == loop0 && loop0 != loop)
7673 num_nodes--;
7675 /* Remove loop exits from the outlined region. */
7676 if (loops_for_fn (saved_cfun)->exits)
7677 FOR_EACH_EDGE (e, ei, bb->succs)
7679 struct loops *l = loops_for_fn (saved_cfun);
7680 loop_exit **slot
7681 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7682 NO_INSERT);
7683 if (slot)
7684 l->exits->clear_slot (slot);
7688 /* Adjust the number of blocks in the tree root of the outlined part. */
7689 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7691 /* Setup a mapping to be used by move_block_to_fn. */
7692 loop->aux = current_loops->tree_root;
7693 loop0->aux = current_loops->tree_root;
7695 /* Fix up orig_loop_num. If the block referenced in it has been moved
7696 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7697 struct loop *dloop;
7698 signed char *moved_orig_loop_num = NULL;
7699 FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
7700 if (dloop->orig_loop_num)
7702 if (moved_orig_loop_num == NULL)
7703 moved_orig_loop_num
7704 = XCNEWVEC (signed char, vec_safe_length (larray));
7705 if ((*larray)[dloop->orig_loop_num] != NULL
7706 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7708 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7709 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7710 moved_orig_loop_num[dloop->orig_loop_num]++;
7711 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7713 else
7715 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7716 dloop->orig_loop_num = 0;
7719 pop_cfun ();
7721 if (moved_orig_loop_num)
7723 FOR_EACH_VEC_ELT (bbs, i, bb)
7725 gimple *g = find_loop_dist_alias (bb);
7726 if (g == NULL)
7727 continue;
7729 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7730 gcc_assert (orig_loop_num
7731 && (unsigned) orig_loop_num < vec_safe_length (larray));
7732 if (moved_orig_loop_num[orig_loop_num] == 2)
7734 /* If we have moved both loops with this orig_loop_num into
7735 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7736 too, update the first argument. */
7737 gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
7738 && (get_loop (saved_cfun, dloop->orig_loop_num)
7739 == NULL));
7740 tree t = build_int_cst (integer_type_node,
7741 (*larray)[dloop->orig_loop_num]->num);
7742 gimple_call_set_arg (g, 0, t);
7743 update_stmt (g);
7744 /* Make sure the following loop will not update it. */
7745 moved_orig_loop_num[orig_loop_num] = 0;
7747 else
7748 /* Otherwise at least one of the loops stayed in saved_cfun.
7749 Remove the LOOP_DIST_ALIAS call. */
7750 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7752 FOR_EACH_BB_FN (bb, saved_cfun)
7754 gimple *g = find_loop_dist_alias (bb);
7755 if (g == NULL)
7756 continue;
7757 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7758 gcc_assert (orig_loop_num
7759 && (unsigned) orig_loop_num < vec_safe_length (larray));
7760 if (moved_orig_loop_num[orig_loop_num])
7761 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7762 of the corresponding loops was moved, remove it. */
7763 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7765 XDELETEVEC (moved_orig_loop_num);
7767 ggc_free (larray);
7769 /* Move blocks from BBS into DEST_CFUN. */
7770 gcc_assert (bbs.length () >= 2);
7771 after = dest_cfun->cfg->x_entry_block_ptr;
7772 hash_map<tree, tree> vars_map;
7774 memset (&d, 0, sizeof (d));
7775 d.orig_block = orig_block;
7776 d.new_block = DECL_INITIAL (dest_cfun->decl);
7777 d.from_context = cfun->decl;
7778 d.to_context = dest_cfun->decl;
7779 d.vars_map = &vars_map;
7780 d.new_label_map = new_label_map;
7781 d.eh_map = eh_map;
7782 d.remap_decls_p = true;
7784 if (gimple_in_ssa_p (cfun))
7785 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7787 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7788 set_ssa_default_def (dest_cfun, arg, narg);
7789 vars_map.put (arg, narg);
7792 FOR_EACH_VEC_ELT (bbs, i, bb)
7794 /* No need to update edge counts on the last block. It has
7795 already been updated earlier when we detached the region from
7796 the original CFG. */
7797 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7798 after = bb;
7801 loop->aux = NULL;
7802 loop0->aux = NULL;
7803 /* Loop sizes are no longer correct, fix them up. */
7804 loop->num_nodes -= num_nodes;
7805 for (struct loop *outer = loop_outer (loop);
7806 outer; outer = loop_outer (outer))
7807 outer->num_nodes -= num_nodes;
7808 loop0->num_nodes -= bbs.length () - num_nodes;
7810 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7812 struct loop *aloop;
7813 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7814 if (aloop != NULL)
7816 if (aloop->simduid)
7818 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7819 d.to_context);
7820 dest_cfun->has_simduid_loops = true;
7822 if (aloop->force_vectorize)
7823 dest_cfun->has_force_vectorize_loops = true;
7827 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7828 if (orig_block)
7830 tree block;
7831 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7832 == NULL_TREE);
7833 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7834 = BLOCK_SUBBLOCKS (orig_block);
7835 for (block = BLOCK_SUBBLOCKS (orig_block);
7836 block; block = BLOCK_CHAIN (block))
7837 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7838 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7841 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7842 &vars_map, dest_cfun->decl);
7844 if (new_label_map)
7845 htab_delete (new_label_map);
7846 if (eh_map)
7847 delete eh_map;
7849 if (gimple_in_ssa_p (cfun))
7851 /* We need to release ssa-names in a defined order, so first find them,
7852 and then iterate in ascending version order. */
7853 bitmap release_names = BITMAP_ALLOC (NULL);
7854 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7855 bitmap_iterator bi;
7856 unsigned i;
7857 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7858 release_ssa_name (ssa_name (i));
7859 BITMAP_FREE (release_names);
7862 /* Rewire the entry and exit blocks. The successor to the entry
7863 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7864 the child function. Similarly, the predecessor of DEST_FN's
7865 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7866 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7867 various CFG manipulation function get to the right CFG.
7869 FIXME, this is silly. The CFG ought to become a parameter to
7870 these helpers. */
7871 push_cfun (dest_cfun);
7872 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7873 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7874 if (exit_bb)
7876 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7877 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7879 else
7880 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7881 pop_cfun ();
7883 /* Back in the original function, the SESE region has disappeared,
7884 create a new basic block in its place. */
7885 bb = create_empty_bb (entry_pred[0]);
7886 if (current_loops)
7887 add_bb_to_loop (bb, loop);
7888 for (i = 0; i < num_entry_edges; i++)
7890 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7891 e->probability = entry_prob[i];
7894 for (i = 0; i < num_exit_edges; i++)
7896 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7897 e->probability = exit_prob[i];
7900 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7901 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7902 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7903 dom_bbs.release ();
7905 if (exit_bb)
7907 free (exit_prob);
7908 free (exit_flag);
7909 free (exit_succ);
7911 free (entry_prob);
7912 free (entry_flag);
7913 free (entry_pred);
7914 bbs.release ();
7916 return bb;
7919 /* Dump default def DEF to file FILE using FLAGS and indentation
7920 SPC. */
7922 static void
7923 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7925 for (int i = 0; i < spc; ++i)
7926 fprintf (file, " ");
7927 dump_ssaname_info_to_file (file, def, spc);
7929 print_generic_expr (file, TREE_TYPE (def), flags);
7930 fprintf (file, " ");
7931 print_generic_expr (file, def, flags);
7932 fprintf (file, " = ");
7933 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7934 fprintf (file, ";\n");
7937 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7939 static void
7940 print_no_sanitize_attr_value (FILE *file, tree value)
7942 unsigned int flags = tree_to_uhwi (value);
7943 bool first = true;
7944 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
7946 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
7948 if (!first)
7949 fprintf (file, " | ");
7950 fprintf (file, "%s", sanitizer_opts[i].name);
7951 first = false;
7956 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7959 void
7960 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
7962 tree arg, var, old_current_fndecl = current_function_decl;
7963 struct function *dsf;
7964 bool ignore_topmost_bind = false, any_var = false;
7965 basic_block bb;
7966 tree chain;
7967 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7968 && decl_is_tm_clone (fndecl));
7969 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7971 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7973 fprintf (file, "__attribute__((");
7975 bool first = true;
7976 tree chain;
7977 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7978 first = false, chain = TREE_CHAIN (chain))
7980 if (!first)
7981 fprintf (file, ", ");
7983 tree name = get_attribute_name (chain);
7984 print_generic_expr (file, name, dump_flags);
7985 if (TREE_VALUE (chain) != NULL_TREE)
7987 fprintf (file, " (");
7989 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
7990 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
7991 else
7992 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7993 fprintf (file, ")");
7997 fprintf (file, "))\n");
8000 current_function_decl = fndecl;
8001 if (flags & TDF_GIMPLE)
8003 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
8004 dump_flags | TDF_SLIM);
8005 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
8007 else
8008 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
8010 arg = DECL_ARGUMENTS (fndecl);
8011 while (arg)
8013 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
8014 fprintf (file, " ");
8015 print_generic_expr (file, arg, dump_flags);
8016 if (DECL_CHAIN (arg))
8017 fprintf (file, ", ");
8018 arg = DECL_CHAIN (arg);
8020 fprintf (file, ")\n");
8022 dsf = DECL_STRUCT_FUNCTION (fndecl);
8023 if (dsf && (flags & TDF_EH))
8024 dump_eh_tree (file, dsf);
8026 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
8028 dump_node (fndecl, TDF_SLIM | flags, file);
8029 current_function_decl = old_current_fndecl;
8030 return;
8033 /* When GIMPLE is lowered, the variables are no longer available in
8034 BIND_EXPRs, so display them separately. */
8035 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
8037 unsigned ix;
8038 ignore_topmost_bind = true;
8040 fprintf (file, "{\n");
8041 if (gimple_in_ssa_p (fun)
8042 && (flags & TDF_ALIAS))
8044 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
8045 arg = DECL_CHAIN (arg))
8047 tree def = ssa_default_def (fun, arg);
8048 if (def)
8049 dump_default_def (file, def, 2, flags);
8052 tree res = DECL_RESULT (fun->decl);
8053 if (res != NULL_TREE
8054 && DECL_BY_REFERENCE (res))
8056 tree def = ssa_default_def (fun, res);
8057 if (def)
8058 dump_default_def (file, def, 2, flags);
8061 tree static_chain = fun->static_chain_decl;
8062 if (static_chain != NULL_TREE)
8064 tree def = ssa_default_def (fun, static_chain);
8065 if (def)
8066 dump_default_def (file, def, 2, flags);
8070 if (!vec_safe_is_empty (fun->local_decls))
8071 FOR_EACH_LOCAL_DECL (fun, ix, var)
8073 print_generic_decl (file, var, flags);
8074 fprintf (file, "\n");
8076 any_var = true;
8079 tree name;
8081 if (gimple_in_ssa_p (cfun))
8082 FOR_EACH_SSA_NAME (ix, name, cfun)
8084 if (!SSA_NAME_VAR (name))
8086 fprintf (file, " ");
8087 print_generic_expr (file, TREE_TYPE (name), flags);
8088 fprintf (file, " ");
8089 print_generic_expr (file, name, flags);
8090 fprintf (file, ";\n");
8092 any_var = true;
8097 if (fun && fun->decl == fndecl
8098 && fun->cfg
8099 && basic_block_info_for_fn (fun))
8101 /* If the CFG has been built, emit a CFG-based dump. */
8102 if (!ignore_topmost_bind)
8103 fprintf (file, "{\n");
8105 if (any_var && n_basic_blocks_for_fn (fun))
8106 fprintf (file, "\n");
8108 FOR_EACH_BB_FN (bb, fun)
8109 dump_bb (file, bb, 2, flags);
8111 fprintf (file, "}\n");
8113 else if (fun->curr_properties & PROP_gimple_any)
8115 /* The function is now in GIMPLE form but the CFG has not been
8116 built yet. Emit the single sequence of GIMPLE statements
8117 that make up its body. */
8118 gimple_seq body = gimple_body (fndecl);
8120 if (gimple_seq_first_stmt (body)
8121 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
8122 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
8123 print_gimple_seq (file, body, 0, flags);
8124 else
8126 if (!ignore_topmost_bind)
8127 fprintf (file, "{\n");
8129 if (any_var)
8130 fprintf (file, "\n");
8132 print_gimple_seq (file, body, 2, flags);
8133 fprintf (file, "}\n");
8136 else
8138 int indent;
8140 /* Make a tree based dump. */
8141 chain = DECL_SAVED_TREE (fndecl);
8142 if (chain && TREE_CODE (chain) == BIND_EXPR)
8144 if (ignore_topmost_bind)
8146 chain = BIND_EXPR_BODY (chain);
8147 indent = 2;
8149 else
8150 indent = 0;
8152 else
8154 if (!ignore_topmost_bind)
8156 fprintf (file, "{\n");
8157 /* No topmost bind, pretend it's ignored for later. */
8158 ignore_topmost_bind = true;
8160 indent = 2;
8163 if (any_var)
8164 fprintf (file, "\n");
8166 print_generic_stmt_indented (file, chain, flags, indent);
8167 if (ignore_topmost_bind)
8168 fprintf (file, "}\n");
8171 if (flags & TDF_ENUMERATE_LOCALS)
8172 dump_enumerated_decls (file, flags);
8173 fprintf (file, "\n\n");
8175 current_function_decl = old_current_fndecl;
8178 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8180 DEBUG_FUNCTION void
8181 debug_function (tree fn, dump_flags_t flags)
8183 dump_function_to_file (fn, stderr, flags);
8187 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8189 static void
8190 print_pred_bbs (FILE *file, basic_block bb)
8192 edge e;
8193 edge_iterator ei;
8195 FOR_EACH_EDGE (e, ei, bb->preds)
8196 fprintf (file, "bb_%d ", e->src->index);
8200 /* Print on FILE the indexes for the successors of basic_block BB. */
8202 static void
8203 print_succ_bbs (FILE *file, basic_block bb)
8205 edge e;
8206 edge_iterator ei;
8208 FOR_EACH_EDGE (e, ei, bb->succs)
8209 fprintf (file, "bb_%d ", e->dest->index);
8212 /* Print to FILE the basic block BB following the VERBOSITY level. */
8214 void
8215 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8217 char *s_indent = (char *) alloca ((size_t) indent + 1);
8218 memset ((void *) s_indent, ' ', (size_t) indent);
8219 s_indent[indent] = '\0';
8221 /* Print basic_block's header. */
8222 if (verbosity >= 2)
8224 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8225 print_pred_bbs (file, bb);
8226 fprintf (file, "}, succs = {");
8227 print_succ_bbs (file, bb);
8228 fprintf (file, "})\n");
8231 /* Print basic_block's body. */
8232 if (verbosity >= 3)
8234 fprintf (file, "%s {\n", s_indent);
8235 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8236 fprintf (file, "%s }\n", s_indent);
8240 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
8242 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8243 VERBOSITY level this outputs the contents of the loop, or just its
8244 structure. */
8246 static void
8247 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
8249 char *s_indent;
8250 basic_block bb;
8252 if (loop == NULL)
8253 return;
8255 s_indent = (char *) alloca ((size_t) indent + 1);
8256 memset ((void *) s_indent, ' ', (size_t) indent);
8257 s_indent[indent] = '\0';
8259 /* Print loop's header. */
8260 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8261 if (loop->header)
8262 fprintf (file, "header = %d", loop->header->index);
8263 else
8265 fprintf (file, "deleted)\n");
8266 return;
8268 if (loop->latch)
8269 fprintf (file, ", latch = %d", loop->latch->index);
8270 else
8271 fprintf (file, ", multiple latches");
8272 fprintf (file, ", niter = ");
8273 print_generic_expr (file, loop->nb_iterations);
8275 if (loop->any_upper_bound)
8277 fprintf (file, ", upper_bound = ");
8278 print_decu (loop->nb_iterations_upper_bound, file);
8280 if (loop->any_likely_upper_bound)
8282 fprintf (file, ", likely_upper_bound = ");
8283 print_decu (loop->nb_iterations_likely_upper_bound, file);
8286 if (loop->any_estimate)
8288 fprintf (file, ", estimate = ");
8289 print_decu (loop->nb_iterations_estimate, file);
8291 if (loop->unroll)
8292 fprintf (file, ", unroll = %d", loop->unroll);
8293 fprintf (file, ")\n");
8295 /* Print loop's body. */
8296 if (verbosity >= 1)
8298 fprintf (file, "%s{\n", s_indent);
8299 FOR_EACH_BB_FN (bb, cfun)
8300 if (bb->loop_father == loop)
8301 print_loops_bb (file, bb, indent, verbosity);
8303 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8304 fprintf (file, "%s}\n", s_indent);
8308 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8309 spaces. Following VERBOSITY level this outputs the contents of the
8310 loop, or just its structure. */
8312 static void
8313 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
8314 int verbosity)
8316 if (loop == NULL)
8317 return;
8319 print_loop (file, loop, indent, verbosity);
8320 print_loop_and_siblings (file, loop->next, indent, verbosity);
8323 /* Follow a CFG edge from the entry point of the program, and on entry
8324 of a loop, pretty print the loop structure on FILE. */
8326 void
8327 print_loops (FILE *file, int verbosity)
8329 basic_block bb;
8331 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8332 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8333 if (bb && bb->loop_father)
8334 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8337 /* Dump a loop. */
8339 DEBUG_FUNCTION void
8340 debug (struct loop &ref)
8342 print_loop (stderr, &ref, 0, /*verbosity*/0);
8345 DEBUG_FUNCTION void
8346 debug (struct loop *ptr)
8348 if (ptr)
8349 debug (*ptr);
8350 else
8351 fprintf (stderr, "<nil>\n");
8354 /* Dump a loop verbosely. */
8356 DEBUG_FUNCTION void
8357 debug_verbose (struct loop &ref)
8359 print_loop (stderr, &ref, 0, /*verbosity*/3);
8362 DEBUG_FUNCTION void
8363 debug_verbose (struct loop *ptr)
8365 if (ptr)
8366 debug (*ptr);
8367 else
8368 fprintf (stderr, "<nil>\n");
8372 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8374 DEBUG_FUNCTION void
8375 debug_loops (int verbosity)
8377 print_loops (stderr, verbosity);
8380 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8382 DEBUG_FUNCTION void
8383 debug_loop (struct loop *loop, int verbosity)
8385 print_loop (stderr, loop, 0, verbosity);
8388 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8389 level. */
8391 DEBUG_FUNCTION void
8392 debug_loop_num (unsigned num, int verbosity)
8394 debug_loop (get_loop (cfun, num), verbosity);
8397 /* Return true if BB ends with a call, possibly followed by some
8398 instructions that must stay with the call. Return false,
8399 otherwise. */
8401 static bool
8402 gimple_block_ends_with_call_p (basic_block bb)
8404 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8405 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8409 /* Return true if BB ends with a conditional branch. Return false,
8410 otherwise. */
8412 static bool
8413 gimple_block_ends_with_condjump_p (const_basic_block bb)
8415 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8416 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8420 /* Return true if statement T may terminate execution of BB in ways not
8421 explicitly represtented in the CFG. */
8423 bool
8424 stmt_can_terminate_bb_p (gimple *t)
8426 tree fndecl = NULL_TREE;
8427 int call_flags = 0;
8429 /* Eh exception not handled internally terminates execution of the whole
8430 function. */
8431 if (stmt_can_throw_external (t))
8432 return true;
8434 /* NORETURN and LONGJMP calls already have an edge to exit.
8435 CONST and PURE calls do not need one.
8436 We don't currently check for CONST and PURE here, although
8437 it would be a good idea, because those attributes are
8438 figured out from the RTL in mark_constant_function, and
8439 the counter incrementation code from -fprofile-arcs
8440 leads to different results from -fbranch-probabilities. */
8441 if (is_gimple_call (t))
8443 fndecl = gimple_call_fndecl (t);
8444 call_flags = gimple_call_flags (t);
8447 if (is_gimple_call (t)
8448 && fndecl
8449 && DECL_BUILT_IN (fndecl)
8450 && (call_flags & ECF_NOTHROW)
8451 && !(call_flags & ECF_RETURNS_TWICE)
8452 /* fork() doesn't really return twice, but the effect of
8453 wrapping it in __gcov_fork() which calls __gcov_flush()
8454 and clears the counters before forking has the same
8455 effect as returning twice. Force a fake edge. */
8456 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
8457 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
8458 return false;
8460 if (is_gimple_call (t))
8462 edge_iterator ei;
8463 edge e;
8464 basic_block bb;
8466 if (call_flags & (ECF_PURE | ECF_CONST)
8467 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8468 return false;
8470 /* Function call may do longjmp, terminate program or do other things.
8471 Special case noreturn that have non-abnormal edges out as in this case
8472 the fact is sufficiently represented by lack of edges out of T. */
8473 if (!(call_flags & ECF_NORETURN))
8474 return true;
8476 bb = gimple_bb (t);
8477 FOR_EACH_EDGE (e, ei, bb->succs)
8478 if ((e->flags & EDGE_FAKE) == 0)
8479 return true;
8482 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8483 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8484 return true;
8486 return false;
8490 /* Add fake edges to the function exit for any non constant and non
8491 noreturn calls (or noreturn calls with EH/abnormal edges),
8492 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8493 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8494 that were split.
8496 The goal is to expose cases in which entering a basic block does
8497 not imply that all subsequent instructions must be executed. */
8499 static int
8500 gimple_flow_call_edges_add (sbitmap blocks)
8502 int i;
8503 int blocks_split = 0;
8504 int last_bb = last_basic_block_for_fn (cfun);
8505 bool check_last_block = false;
8507 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8508 return 0;
8510 if (! blocks)
8511 check_last_block = true;
8512 else
8513 check_last_block = bitmap_bit_p (blocks,
8514 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8516 /* In the last basic block, before epilogue generation, there will be
8517 a fallthru edge to EXIT. Special care is required if the last insn
8518 of the last basic block is a call because make_edge folds duplicate
8519 edges, which would result in the fallthru edge also being marked
8520 fake, which would result in the fallthru edge being removed by
8521 remove_fake_edges, which would result in an invalid CFG.
8523 Moreover, we can't elide the outgoing fake edge, since the block
8524 profiler needs to take this into account in order to solve the minimal
8525 spanning tree in the case that the call doesn't return.
8527 Handle this by adding a dummy instruction in a new last basic block. */
8528 if (check_last_block)
8530 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8531 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8532 gimple *t = NULL;
8534 if (!gsi_end_p (gsi))
8535 t = gsi_stmt (gsi);
8537 if (t && stmt_can_terminate_bb_p (t))
8539 edge e;
8541 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8542 if (e)
8544 gsi_insert_on_edge (e, gimple_build_nop ());
8545 gsi_commit_edge_inserts ();
8550 /* Now add fake edges to the function exit for any non constant
8551 calls since there is no way that we can determine if they will
8552 return or not... */
8553 for (i = 0; i < last_bb; i++)
8555 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8556 gimple_stmt_iterator gsi;
8557 gimple *stmt, *last_stmt;
8559 if (!bb)
8560 continue;
8562 if (blocks && !bitmap_bit_p (blocks, i))
8563 continue;
8565 gsi = gsi_last_nondebug_bb (bb);
8566 if (!gsi_end_p (gsi))
8568 last_stmt = gsi_stmt (gsi);
8571 stmt = gsi_stmt (gsi);
8572 if (stmt_can_terminate_bb_p (stmt))
8574 edge e;
8576 /* The handling above of the final block before the
8577 epilogue should be enough to verify that there is
8578 no edge to the exit block in CFG already.
8579 Calling make_edge in such case would cause us to
8580 mark that edge as fake and remove it later. */
8581 if (flag_checking && stmt == last_stmt)
8583 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8584 gcc_assert (e == NULL);
8587 /* Note that the following may create a new basic block
8588 and renumber the existing basic blocks. */
8589 if (stmt != last_stmt)
8591 e = split_block (bb, stmt);
8592 if (e)
8593 blocks_split++;
8595 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8596 e->probability = profile_probability::guessed_never ();
8598 gsi_prev (&gsi);
8600 while (!gsi_end_p (gsi));
8604 if (blocks_split)
8605 checking_verify_flow_info ();
8607 return blocks_split;
8610 /* Removes edge E and all the blocks dominated by it, and updates dominance
8611 information. The IL in E->src needs to be updated separately.
8612 If dominance info is not available, only the edge E is removed.*/
8614 void
8615 remove_edge_and_dominated_blocks (edge e)
8617 vec<basic_block> bbs_to_remove = vNULL;
8618 vec<basic_block> bbs_to_fix_dom = vNULL;
8619 edge f;
8620 edge_iterator ei;
8621 bool none_removed = false;
8622 unsigned i;
8623 basic_block bb, dbb;
8624 bitmap_iterator bi;
8626 /* If we are removing a path inside a non-root loop that may change
8627 loop ownership of blocks or remove loops. Mark loops for fixup. */
8628 if (current_loops
8629 && loop_outer (e->src->loop_father) != NULL
8630 && e->src->loop_father == e->dest->loop_father)
8631 loops_state_set (LOOPS_NEED_FIXUP);
8633 if (!dom_info_available_p (CDI_DOMINATORS))
8635 remove_edge (e);
8636 return;
8639 /* No updating is needed for edges to exit. */
8640 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8642 if (cfgcleanup_altered_bbs)
8643 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8644 remove_edge (e);
8645 return;
8648 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8649 that is not dominated by E->dest, then this set is empty. Otherwise,
8650 all the basic blocks dominated by E->dest are removed.
8652 Also, to DF_IDOM we store the immediate dominators of the blocks in
8653 the dominance frontier of E (i.e., of the successors of the
8654 removed blocks, if there are any, and of E->dest otherwise). */
8655 FOR_EACH_EDGE (f, ei, e->dest->preds)
8657 if (f == e)
8658 continue;
8660 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8662 none_removed = true;
8663 break;
8667 auto_bitmap df, df_idom;
8668 if (none_removed)
8669 bitmap_set_bit (df_idom,
8670 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8671 else
8673 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8674 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8676 FOR_EACH_EDGE (f, ei, bb->succs)
8678 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8679 bitmap_set_bit (df, f->dest->index);
8682 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8683 bitmap_clear_bit (df, bb->index);
8685 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8687 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8688 bitmap_set_bit (df_idom,
8689 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8693 if (cfgcleanup_altered_bbs)
8695 /* Record the set of the altered basic blocks. */
8696 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8697 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8700 /* Remove E and the cancelled blocks. */
8701 if (none_removed)
8702 remove_edge (e);
8703 else
8705 /* Walk backwards so as to get a chance to substitute all
8706 released DEFs into debug stmts. See
8707 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8708 details. */
8709 for (i = bbs_to_remove.length (); i-- > 0; )
8710 delete_basic_block (bbs_to_remove[i]);
8713 /* Update the dominance information. The immediate dominator may change only
8714 for blocks whose immediate dominator belongs to DF_IDOM:
8716 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8717 removal. Let Z the arbitrary block such that idom(Z) = Y and
8718 Z dominates X after the removal. Before removal, there exists a path P
8719 from Y to X that avoids Z. Let F be the last edge on P that is
8720 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8721 dominates W, and because of P, Z does not dominate W), and W belongs to
8722 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8723 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8725 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8726 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8727 dbb;
8728 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8729 bbs_to_fix_dom.safe_push (dbb);
8732 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8734 bbs_to_remove.release ();
8735 bbs_to_fix_dom.release ();
8738 /* Purge dead EH edges from basic block BB. */
8740 bool
8741 gimple_purge_dead_eh_edges (basic_block bb)
8743 bool changed = false;
8744 edge e;
8745 edge_iterator ei;
8746 gimple *stmt = last_stmt (bb);
8748 if (stmt && stmt_can_throw_internal (stmt))
8749 return false;
8751 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8753 if (e->flags & EDGE_EH)
8755 remove_edge_and_dominated_blocks (e);
8756 changed = true;
8758 else
8759 ei_next (&ei);
8762 return changed;
8765 /* Purge dead EH edges from basic block listed in BLOCKS. */
8767 bool
8768 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8770 bool changed = false;
8771 unsigned i;
8772 bitmap_iterator bi;
8774 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8776 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8778 /* Earlier gimple_purge_dead_eh_edges could have removed
8779 this basic block already. */
8780 gcc_assert (bb || changed);
8781 if (bb != NULL)
8782 changed |= gimple_purge_dead_eh_edges (bb);
8785 return changed;
8788 /* Purge dead abnormal call edges from basic block BB. */
8790 bool
8791 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8793 bool changed = false;
8794 edge e;
8795 edge_iterator ei;
8796 gimple *stmt = last_stmt (bb);
8798 if (!cfun->has_nonlocal_label
8799 && !cfun->calls_setjmp)
8800 return false;
8802 if (stmt && stmt_can_make_abnormal_goto (stmt))
8803 return false;
8805 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8807 if (e->flags & EDGE_ABNORMAL)
8809 if (e->flags & EDGE_FALLTHRU)
8810 e->flags &= ~EDGE_ABNORMAL;
8811 else
8812 remove_edge_and_dominated_blocks (e);
8813 changed = true;
8815 else
8816 ei_next (&ei);
8819 return changed;
8822 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8824 bool
8825 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8827 bool changed = false;
8828 unsigned i;
8829 bitmap_iterator bi;
8831 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8833 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8835 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8836 this basic block already. */
8837 gcc_assert (bb || changed);
8838 if (bb != NULL)
8839 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8842 return changed;
8845 /* This function is called whenever a new edge is created or
8846 redirected. */
8848 static void
8849 gimple_execute_on_growing_pred (edge e)
8851 basic_block bb = e->dest;
8853 if (!gimple_seq_empty_p (phi_nodes (bb)))
8854 reserve_phi_args_for_new_edge (bb);
8857 /* This function is called immediately before edge E is removed from
8858 the edge vector E->dest->preds. */
8860 static void
8861 gimple_execute_on_shrinking_pred (edge e)
8863 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8864 remove_phi_args (e);
8867 /*---------------------------------------------------------------------------
8868 Helper functions for Loop versioning
8869 ---------------------------------------------------------------------------*/
8871 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8872 of 'first'. Both of them are dominated by 'new_head' basic block. When
8873 'new_head' was created by 'second's incoming edge it received phi arguments
8874 on the edge by split_edge(). Later, additional edge 'e' was created to
8875 connect 'new_head' and 'first'. Now this routine adds phi args on this
8876 additional edge 'e' that new_head to second edge received as part of edge
8877 splitting. */
8879 static void
8880 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8881 basic_block new_head, edge e)
8883 gphi *phi1, *phi2;
8884 gphi_iterator psi1, psi2;
8885 tree def;
8886 edge e2 = find_edge (new_head, second);
8888 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8889 edge, we should always have an edge from NEW_HEAD to SECOND. */
8890 gcc_assert (e2 != NULL);
8892 /* Browse all 'second' basic block phi nodes and add phi args to
8893 edge 'e' for 'first' head. PHI args are always in correct order. */
8895 for (psi2 = gsi_start_phis (second),
8896 psi1 = gsi_start_phis (first);
8897 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8898 gsi_next (&psi2), gsi_next (&psi1))
8900 phi1 = psi1.phi ();
8901 phi2 = psi2.phi ();
8902 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8903 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8908 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8909 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8910 the destination of the ELSE part. */
8912 static void
8913 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8914 basic_block second_head ATTRIBUTE_UNUSED,
8915 basic_block cond_bb, void *cond_e)
8917 gimple_stmt_iterator gsi;
8918 gimple *new_cond_expr;
8919 tree cond_expr = (tree) cond_e;
8920 edge e0;
8922 /* Build new conditional expr */
8923 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8924 NULL_TREE, NULL_TREE);
8926 /* Add new cond in cond_bb. */
8927 gsi = gsi_last_bb (cond_bb);
8928 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8930 /* Adjust edges appropriately to connect new head with first head
8931 as well as second head. */
8932 e0 = single_succ_edge (cond_bb);
8933 e0->flags &= ~EDGE_FALLTHRU;
8934 e0->flags |= EDGE_FALSE_VALUE;
8938 /* Do book-keeping of basic block BB for the profile consistency checker.
8939 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8940 then do post-pass accounting. Store the counting in RECORD. */
8941 static void
8942 gimple_account_profile_record (basic_block bb, int after_pass,
8943 struct profile_record *record)
8945 gimple_stmt_iterator i;
8946 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8948 record->size[after_pass]
8949 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8950 if (bb->count.initialized_p ())
8951 record->time[after_pass]
8952 += estimate_num_insns (gsi_stmt (i),
8953 &eni_time_weights) * bb->count.to_gcov_type ();
8954 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8955 record->time[after_pass]
8956 += estimate_num_insns (gsi_stmt (i),
8957 &eni_time_weights) * bb->count.to_frequency (cfun);
8961 struct cfg_hooks gimple_cfg_hooks = {
8962 "gimple",
8963 gimple_verify_flow_info,
8964 gimple_dump_bb, /* dump_bb */
8965 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8966 create_bb, /* create_basic_block */
8967 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8968 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8969 gimple_can_remove_branch_p, /* can_remove_branch_p */
8970 remove_bb, /* delete_basic_block */
8971 gimple_split_block, /* split_block */
8972 gimple_move_block_after, /* move_block_after */
8973 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8974 gimple_merge_blocks, /* merge_blocks */
8975 gimple_predict_edge, /* predict_edge */
8976 gimple_predicted_by_p, /* predicted_by_p */
8977 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8978 gimple_duplicate_bb, /* duplicate_block */
8979 gimple_split_edge, /* split_edge */
8980 gimple_make_forwarder_block, /* make_forward_block */
8981 NULL, /* tidy_fallthru_edge */
8982 NULL, /* force_nonfallthru */
8983 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8984 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8985 gimple_flow_call_edges_add, /* flow_call_edges_add */
8986 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8987 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8988 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8989 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8990 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8991 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8992 flush_pending_stmts, /* flush_pending_stmts */
8993 gimple_empty_block_p, /* block_empty_p */
8994 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8995 gimple_account_profile_record,
8999 /* Split all critical edges. */
9001 unsigned int
9002 split_critical_edges (void)
9004 basic_block bb;
9005 edge e;
9006 edge_iterator ei;
9008 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
9009 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
9010 mappings around the calls to split_edge. */
9011 start_recording_case_labels ();
9012 FOR_ALL_BB_FN (bb, cfun)
9014 FOR_EACH_EDGE (e, ei, bb->succs)
9016 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
9017 split_edge (e);
9018 /* PRE inserts statements to edges and expects that
9019 since split_critical_edges was done beforehand, committing edge
9020 insertions will not split more edges. In addition to critical
9021 edges we must split edges that have multiple successors and
9022 end by control flow statements, such as RESX.
9023 Go ahead and split them too. This matches the logic in
9024 gimple_find_edge_insert_loc. */
9025 else if ((!single_pred_p (e->dest)
9026 || !gimple_seq_empty_p (phi_nodes (e->dest))
9027 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
9028 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
9029 && !(e->flags & EDGE_ABNORMAL))
9031 gimple_stmt_iterator gsi;
9033 gsi = gsi_last_bb (e->src);
9034 if (!gsi_end_p (gsi)
9035 && stmt_ends_bb_p (gsi_stmt (gsi))
9036 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
9037 && !gimple_call_builtin_p (gsi_stmt (gsi),
9038 BUILT_IN_RETURN)))
9039 split_edge (e);
9043 end_recording_case_labels ();
9044 return 0;
9047 namespace {
9049 const pass_data pass_data_split_crit_edges =
9051 GIMPLE_PASS, /* type */
9052 "crited", /* name */
9053 OPTGROUP_NONE, /* optinfo_flags */
9054 TV_TREE_SPLIT_EDGES, /* tv_id */
9055 PROP_cfg, /* properties_required */
9056 PROP_no_crit_edges, /* properties_provided */
9057 0, /* properties_destroyed */
9058 0, /* todo_flags_start */
9059 0, /* todo_flags_finish */
9062 class pass_split_crit_edges : public gimple_opt_pass
9064 public:
9065 pass_split_crit_edges (gcc::context *ctxt)
9066 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
9069 /* opt_pass methods: */
9070 virtual unsigned int execute (function *) { return split_critical_edges (); }
9072 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
9073 }; // class pass_split_crit_edges
9075 } // anon namespace
9077 gimple_opt_pass *
9078 make_pass_split_crit_edges (gcc::context *ctxt)
9080 return new pass_split_crit_edges (ctxt);
9084 /* Insert COND expression which is GIMPLE_COND after STMT
9085 in basic block BB with appropriate basic block split
9086 and creation of a new conditionally executed basic block.
9087 Update profile so the new bb is visited with probability PROB.
9088 Return created basic block. */
9089 basic_block
9090 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
9091 profile_probability prob)
9093 edge fall = split_block (bb, stmt);
9094 gimple_stmt_iterator iter = gsi_last_bb (bb);
9095 basic_block new_bb;
9097 /* Insert cond statement. */
9098 gcc_assert (gimple_code (cond) == GIMPLE_COND);
9099 if (gsi_end_p (iter))
9100 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
9101 else
9102 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
9104 /* Create conditionally executed block. */
9105 new_bb = create_empty_bb (bb);
9106 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
9107 e->probability = prob;
9108 new_bb->count = e->count ();
9109 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
9111 /* Fix edge for split bb. */
9112 fall->flags = EDGE_FALSE_VALUE;
9113 fall->probability -= e->probability;
9115 /* Update dominance info. */
9116 if (dom_info_available_p (CDI_DOMINATORS))
9118 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
9119 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
9122 /* Update loop info. */
9123 if (current_loops)
9124 add_bb_to_loop (new_bb, bb->loop_father);
9126 return new_bb;
9129 /* Build a ternary operation and gimplify it. Emit code before GSI.
9130 Return the gimple_val holding the result. */
9132 tree
9133 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
9134 tree type, tree a, tree b, tree c)
9136 tree ret;
9137 location_t loc = gimple_location (gsi_stmt (*gsi));
9139 ret = fold_build3_loc (loc, code, type, a, b, c);
9140 STRIP_NOPS (ret);
9142 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9143 GSI_SAME_STMT);
9146 /* Build a binary operation and gimplify it. Emit code before GSI.
9147 Return the gimple_val holding the result. */
9149 tree
9150 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
9151 tree type, tree a, tree b)
9153 tree ret;
9155 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
9156 STRIP_NOPS (ret);
9158 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9159 GSI_SAME_STMT);
9162 /* Build a unary operation and gimplify it. Emit code before GSI.
9163 Return the gimple_val holding the result. */
9165 tree
9166 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
9167 tree a)
9169 tree ret;
9171 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
9172 STRIP_NOPS (ret);
9174 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9175 GSI_SAME_STMT);
9180 /* Given a basic block B which ends with a conditional and has
9181 precisely two successors, determine which of the edges is taken if
9182 the conditional is true and which is taken if the conditional is
9183 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9185 void
9186 extract_true_false_edges_from_block (basic_block b,
9187 edge *true_edge,
9188 edge *false_edge)
9190 edge e = EDGE_SUCC (b, 0);
9192 if (e->flags & EDGE_TRUE_VALUE)
9194 *true_edge = e;
9195 *false_edge = EDGE_SUCC (b, 1);
9197 else
9199 *false_edge = e;
9200 *true_edge = EDGE_SUCC (b, 1);
9205 /* From a controlling predicate in the immediate dominator DOM of
9206 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9207 predicate evaluates to true and false and store them to
9208 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9209 they are non-NULL. Returns true if the edges can be determined,
9210 else return false. */
9212 bool
9213 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9214 edge *true_controlled_edge,
9215 edge *false_controlled_edge)
9217 basic_block bb = phiblock;
9218 edge true_edge, false_edge, tem;
9219 edge e0 = NULL, e1 = NULL;
9221 /* We have to verify that one edge into the PHI node is dominated
9222 by the true edge of the predicate block and the other edge
9223 dominated by the false edge. This ensures that the PHI argument
9224 we are going to take is completely determined by the path we
9225 take from the predicate block.
9226 We can only use BB dominance checks below if the destination of
9227 the true/false edges are dominated by their edge, thus only
9228 have a single predecessor. */
9229 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9230 tem = EDGE_PRED (bb, 0);
9231 if (tem == true_edge
9232 || (single_pred_p (true_edge->dest)
9233 && (tem->src == true_edge->dest
9234 || dominated_by_p (CDI_DOMINATORS,
9235 tem->src, true_edge->dest))))
9236 e0 = tem;
9237 else if (tem == false_edge
9238 || (single_pred_p (false_edge->dest)
9239 && (tem->src == false_edge->dest
9240 || dominated_by_p (CDI_DOMINATORS,
9241 tem->src, false_edge->dest))))
9242 e1 = tem;
9243 else
9244 return false;
9245 tem = EDGE_PRED (bb, 1);
9246 if (tem == true_edge
9247 || (single_pred_p (true_edge->dest)
9248 && (tem->src == true_edge->dest
9249 || dominated_by_p (CDI_DOMINATORS,
9250 tem->src, true_edge->dest))))
9251 e0 = tem;
9252 else if (tem == false_edge
9253 || (single_pred_p (false_edge->dest)
9254 && (tem->src == false_edge->dest
9255 || dominated_by_p (CDI_DOMINATORS,
9256 tem->src, false_edge->dest))))
9257 e1 = tem;
9258 else
9259 return false;
9260 if (!e0 || !e1)
9261 return false;
9263 if (true_controlled_edge)
9264 *true_controlled_edge = e0;
9265 if (false_controlled_edge)
9266 *false_controlled_edge = e1;
9268 return true;
9271 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9272 range [low, high]. Place associated stmts before *GSI. */
9274 void
9275 generate_range_test (basic_block bb, tree index, tree low, tree high,
9276 tree *lhs, tree *rhs)
9278 tree type = TREE_TYPE (index);
9279 tree utype = unsigned_type_for (type);
9281 low = fold_convert (type, low);
9282 high = fold_convert (type, high);
9284 tree tmp = make_ssa_name (type);
9285 gassign *sub1
9286 = gimple_build_assign (tmp, MINUS_EXPR, index, low);
9288 *lhs = make_ssa_name (utype);
9289 gassign *a = gimple_build_assign (*lhs, NOP_EXPR, tmp);
9291 *rhs = fold_build2 (MINUS_EXPR, utype, high, low);
9292 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9293 gsi_insert_before (&gsi, sub1, GSI_SAME_STMT);
9294 gsi_insert_before (&gsi, a, GSI_SAME_STMT);
9297 /* Emit return warnings. */
9299 namespace {
9301 const pass_data pass_data_warn_function_return =
9303 GIMPLE_PASS, /* type */
9304 "*warn_function_return", /* name */
9305 OPTGROUP_NONE, /* optinfo_flags */
9306 TV_NONE, /* tv_id */
9307 PROP_cfg, /* properties_required */
9308 0, /* properties_provided */
9309 0, /* properties_destroyed */
9310 0, /* todo_flags_start */
9311 0, /* todo_flags_finish */
9314 class pass_warn_function_return : public gimple_opt_pass
9316 public:
9317 pass_warn_function_return (gcc::context *ctxt)
9318 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9321 /* opt_pass methods: */
9322 virtual unsigned int execute (function *);
9324 }; // class pass_warn_function_return
9326 unsigned int
9327 pass_warn_function_return::execute (function *fun)
9329 source_location location;
9330 gimple *last;
9331 edge e;
9332 edge_iterator ei;
9334 if (!targetm.warn_func_return (fun->decl))
9335 return 0;
9337 /* If we have a path to EXIT, then we do return. */
9338 if (TREE_THIS_VOLATILE (fun->decl)
9339 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9341 location = UNKNOWN_LOCATION;
9342 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9343 (e = ei_safe_edge (ei)); )
9345 last = last_stmt (e->src);
9346 if ((gimple_code (last) == GIMPLE_RETURN
9347 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9348 && location == UNKNOWN_LOCATION
9349 && ((location = LOCATION_LOCUS (gimple_location (last)))
9350 != UNKNOWN_LOCATION)
9351 && !optimize)
9352 break;
9353 /* When optimizing, replace return stmts in noreturn functions
9354 with __builtin_unreachable () call. */
9355 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9357 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9358 gimple *new_stmt = gimple_build_call (fndecl, 0);
9359 gimple_set_location (new_stmt, gimple_location (last));
9360 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9361 gsi_replace (&gsi, new_stmt, true);
9362 remove_edge (e);
9364 else
9365 ei_next (&ei);
9367 if (location == UNKNOWN_LOCATION)
9368 location = cfun->function_end_locus;
9369 warning_at (location, 0, "%<noreturn%> function does return");
9372 /* If we see "return;" in some basic block, then we do reach the end
9373 without returning a value. */
9374 else if (warn_return_type > 0
9375 && !TREE_NO_WARNING (fun->decl)
9376 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9378 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9380 gimple *last = last_stmt (e->src);
9381 greturn *return_stmt = dyn_cast <greturn *> (last);
9382 if (return_stmt
9383 && gimple_return_retval (return_stmt) == NULL
9384 && !gimple_no_warning_p (last))
9386 location = gimple_location (last);
9387 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9388 location = fun->function_end_locus;
9389 warning_at (location, OPT_Wreturn_type,
9390 "control reaches end of non-void function");
9391 TREE_NO_WARNING (fun->decl) = 1;
9392 break;
9395 /* The C++ FE turns fallthrough from the end of non-void function
9396 into __builtin_unreachable () call with BUILTINS_LOCATION.
9397 Recognize those too. */
9398 basic_block bb;
9399 if (!TREE_NO_WARNING (fun->decl))
9400 FOR_EACH_BB_FN (bb, fun)
9401 if (EDGE_COUNT (bb->succs) == 0)
9403 gimple *last = last_stmt (bb);
9404 const enum built_in_function ubsan_missing_ret
9405 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9406 if (last
9407 && ((LOCATION_LOCUS (gimple_location (last))
9408 == BUILTINS_LOCATION
9409 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9410 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9412 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9413 gsi_prev_nondebug (&gsi);
9414 gimple *prev = gsi_stmt (gsi);
9415 if (prev == NULL)
9416 location = UNKNOWN_LOCATION;
9417 else
9418 location = gimple_location (prev);
9419 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9420 location = fun->function_end_locus;
9421 warning_at (location, OPT_Wreturn_type,
9422 "control reaches end of non-void function");
9423 TREE_NO_WARNING (fun->decl) = 1;
9424 break;
9428 return 0;
9431 } // anon namespace
9433 gimple_opt_pass *
9434 make_pass_warn_function_return (gcc::context *ctxt)
9436 return new pass_warn_function_return (ctxt);
9439 /* Walk a gimplified function and warn for functions whose return value is
9440 ignored and attribute((warn_unused_result)) is set. This is done before
9441 inlining, so we don't have to worry about that. */
9443 static void
9444 do_warn_unused_result (gimple_seq seq)
9446 tree fdecl, ftype;
9447 gimple_stmt_iterator i;
9449 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9451 gimple *g = gsi_stmt (i);
9453 switch (gimple_code (g))
9455 case GIMPLE_BIND:
9456 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9457 break;
9458 case GIMPLE_TRY:
9459 do_warn_unused_result (gimple_try_eval (g));
9460 do_warn_unused_result (gimple_try_cleanup (g));
9461 break;
9462 case GIMPLE_CATCH:
9463 do_warn_unused_result (gimple_catch_handler (
9464 as_a <gcatch *> (g)));
9465 break;
9466 case GIMPLE_EH_FILTER:
9467 do_warn_unused_result (gimple_eh_filter_failure (g));
9468 break;
9470 case GIMPLE_CALL:
9471 if (gimple_call_lhs (g))
9472 break;
9473 if (gimple_call_internal_p (g))
9474 break;
9476 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9477 LHS. All calls whose value is ignored should be
9478 represented like this. Look for the attribute. */
9479 fdecl = gimple_call_fndecl (g);
9480 ftype = gimple_call_fntype (g);
9482 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9484 location_t loc = gimple_location (g);
9486 if (fdecl)
9487 warning_at (loc, OPT_Wunused_result,
9488 "ignoring return value of %qD, "
9489 "declared with attribute warn_unused_result",
9490 fdecl);
9491 else
9492 warning_at (loc, OPT_Wunused_result,
9493 "ignoring return value of function "
9494 "declared with attribute warn_unused_result");
9496 break;
9498 default:
9499 /* Not a container, not a call, or a call whose value is used. */
9500 break;
9505 namespace {
9507 const pass_data pass_data_warn_unused_result =
9509 GIMPLE_PASS, /* type */
9510 "*warn_unused_result", /* name */
9511 OPTGROUP_NONE, /* optinfo_flags */
9512 TV_NONE, /* tv_id */
9513 PROP_gimple_any, /* properties_required */
9514 0, /* properties_provided */
9515 0, /* properties_destroyed */
9516 0, /* todo_flags_start */
9517 0, /* todo_flags_finish */
9520 class pass_warn_unused_result : public gimple_opt_pass
9522 public:
9523 pass_warn_unused_result (gcc::context *ctxt)
9524 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9527 /* opt_pass methods: */
9528 virtual bool gate (function *) { return flag_warn_unused_result; }
9529 virtual unsigned int execute (function *)
9531 do_warn_unused_result (gimple_body (current_function_decl));
9532 return 0;
9535 }; // class pass_warn_unused_result
9537 } // anon namespace
9539 gimple_opt_pass *
9540 make_pass_warn_unused_result (gcc::context *ctxt)
9542 return new pass_warn_unused_result (ctxt);
9545 /* IPA passes, compilation of earlier functions or inlining
9546 might have changed some properties, such as marked functions nothrow,
9547 pure, const or noreturn.
9548 Remove redundant edges and basic blocks, and create new ones if necessary.
9550 This pass can't be executed as stand alone pass from pass manager, because
9551 in between inlining and this fixup the verify_flow_info would fail. */
9553 unsigned int
9554 execute_fixup_cfg (void)
9556 basic_block bb;
9557 gimple_stmt_iterator gsi;
9558 int todo = 0;
9559 cgraph_node *node = cgraph_node::get (current_function_decl);
9560 profile_count num = node->count;
9561 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9562 bool scale = num.initialized_p () && !(num == den);
9564 if (scale)
9566 profile_count::adjust_for_ipa_scaling (&num, &den);
9567 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9568 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9569 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9572 FOR_EACH_BB_FN (bb, cfun)
9574 if (scale)
9575 bb->count = bb->count.apply_scale (num, den);
9576 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9578 gimple *stmt = gsi_stmt (gsi);
9579 tree decl = is_gimple_call (stmt)
9580 ? gimple_call_fndecl (stmt)
9581 : NULL;
9582 if (decl)
9584 int flags = gimple_call_flags (stmt);
9585 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9587 if (gimple_purge_dead_abnormal_call_edges (bb))
9588 todo |= TODO_cleanup_cfg;
9590 if (gimple_in_ssa_p (cfun))
9592 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9593 update_stmt (stmt);
9597 if (flags & ECF_NORETURN
9598 && fixup_noreturn_call (stmt))
9599 todo |= TODO_cleanup_cfg;
9602 /* Remove stores to variables we marked write-only.
9603 Keep access when store has side effect, i.e. in case when source
9604 is volatile. */
9605 if (gimple_store_p (stmt)
9606 && !gimple_has_side_effects (stmt))
9608 tree lhs = get_base_address (gimple_get_lhs (stmt));
9610 if (VAR_P (lhs)
9611 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9612 && varpool_node::get (lhs)->writeonly)
9614 unlink_stmt_vdef (stmt);
9615 gsi_remove (&gsi, true);
9616 release_defs (stmt);
9617 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9618 continue;
9621 /* For calls we can simply remove LHS when it is known
9622 to be write-only. */
9623 if (is_gimple_call (stmt)
9624 && gimple_get_lhs (stmt))
9626 tree lhs = get_base_address (gimple_get_lhs (stmt));
9628 if (VAR_P (lhs)
9629 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9630 && varpool_node::get (lhs)->writeonly)
9632 gimple_call_set_lhs (stmt, NULL);
9633 update_stmt (stmt);
9634 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9638 if (maybe_clean_eh_stmt (stmt)
9639 && gimple_purge_dead_eh_edges (bb))
9640 todo |= TODO_cleanup_cfg;
9641 gsi_next (&gsi);
9644 /* If we have a basic block with no successors that does not
9645 end with a control statement or a noreturn call end it with
9646 a call to __builtin_unreachable. This situation can occur
9647 when inlining a noreturn call that does in fact return. */
9648 if (EDGE_COUNT (bb->succs) == 0)
9650 gimple *stmt = last_stmt (bb);
9651 if (!stmt
9652 || (!is_ctrl_stmt (stmt)
9653 && (!is_gimple_call (stmt)
9654 || !gimple_call_noreturn_p (stmt))))
9656 if (stmt && is_gimple_call (stmt))
9657 gimple_call_set_ctrl_altering (stmt, false);
9658 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9659 stmt = gimple_build_call (fndecl, 0);
9660 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9661 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9662 if (!cfun->after_inlining)
9664 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9665 node->create_edge (cgraph_node::get_create (fndecl),
9666 call_stmt, bb->count);
9671 if (scale)
9672 compute_function_frequency ();
9674 if (current_loops
9675 && (todo & TODO_cleanup_cfg))
9676 loops_state_set (LOOPS_NEED_FIXUP);
9678 return todo;
9681 namespace {
9683 const pass_data pass_data_fixup_cfg =
9685 GIMPLE_PASS, /* type */
9686 "fixup_cfg", /* name */
9687 OPTGROUP_NONE, /* optinfo_flags */
9688 TV_NONE, /* tv_id */
9689 PROP_cfg, /* properties_required */
9690 0, /* properties_provided */
9691 0, /* properties_destroyed */
9692 0, /* todo_flags_start */
9693 0, /* todo_flags_finish */
9696 class pass_fixup_cfg : public gimple_opt_pass
9698 public:
9699 pass_fixup_cfg (gcc::context *ctxt)
9700 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9703 /* opt_pass methods: */
9704 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9705 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9707 }; // class pass_fixup_cfg
9709 } // anon namespace
9711 gimple_opt_pass *
9712 make_pass_fixup_cfg (gcc::context *ctxt)
9714 return new pass_fixup_cfg (ctxt);
9717 /* Garbage collection support for edge_def. */
9719 extern void gt_ggc_mx (tree&);
9720 extern void gt_ggc_mx (gimple *&);
9721 extern void gt_ggc_mx (rtx&);
9722 extern void gt_ggc_mx (basic_block&);
9724 static void
9725 gt_ggc_mx (rtx_insn *& x)
9727 if (x)
9728 gt_ggc_mx_rtx_def ((void *) x);
9731 void
9732 gt_ggc_mx (edge_def *e)
9734 tree block = LOCATION_BLOCK (e->goto_locus);
9735 gt_ggc_mx (e->src);
9736 gt_ggc_mx (e->dest);
9737 if (current_ir_type () == IR_GIMPLE)
9738 gt_ggc_mx (e->insns.g);
9739 else
9740 gt_ggc_mx (e->insns.r);
9741 gt_ggc_mx (block);
9744 /* PCH support for edge_def. */
9746 extern void gt_pch_nx (tree&);
9747 extern void gt_pch_nx (gimple *&);
9748 extern void gt_pch_nx (rtx&);
9749 extern void gt_pch_nx (basic_block&);
9751 static void
9752 gt_pch_nx (rtx_insn *& x)
9754 if (x)
9755 gt_pch_nx_rtx_def ((void *) x);
9758 void
9759 gt_pch_nx (edge_def *e)
9761 tree block = LOCATION_BLOCK (e->goto_locus);
9762 gt_pch_nx (e->src);
9763 gt_pch_nx (e->dest);
9764 if (current_ir_type () == IR_GIMPLE)
9765 gt_pch_nx (e->insns.g);
9766 else
9767 gt_pch_nx (e->insns.r);
9768 gt_pch_nx (block);
9771 void
9772 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9774 tree block = LOCATION_BLOCK (e->goto_locus);
9775 op (&(e->src), cookie);
9776 op (&(e->dest), cookie);
9777 if (current_ir_type () == IR_GIMPLE)
9778 op (&(e->insns.g), cookie);
9779 else
9780 op (&(e->insns.r), cookie);
9781 op (&(block), cookie);
9784 #if CHECKING_P
9786 namespace selftest {
9788 /* Helper function for CFG selftests: create a dummy function decl
9789 and push it as cfun. */
9791 static tree
9792 push_fndecl (const char *name)
9794 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9795 /* FIXME: this uses input_location: */
9796 tree fndecl = build_fn_decl (name, fn_type);
9797 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9798 NULL_TREE, integer_type_node);
9799 DECL_RESULT (fndecl) = retval;
9800 push_struct_function (fndecl);
9801 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9802 ASSERT_TRUE (fun != NULL);
9803 init_empty_tree_cfg_for_function (fun);
9804 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9805 ASSERT_EQ (0, n_edges_for_fn (fun));
9806 return fndecl;
9809 /* These tests directly create CFGs.
9810 Compare with the static fns within tree-cfg.c:
9811 - build_gimple_cfg
9812 - make_blocks: calls create_basic_block (seq, bb);
9813 - make_edges. */
9815 /* Verify a simple cfg of the form:
9816 ENTRY -> A -> B -> C -> EXIT. */
9818 static void
9819 test_linear_chain ()
9821 gimple_register_cfg_hooks ();
9823 tree fndecl = push_fndecl ("cfg_test_linear_chain");
9824 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9826 /* Create some empty blocks. */
9827 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9828 basic_block bb_b = create_empty_bb (bb_a);
9829 basic_block bb_c = create_empty_bb (bb_b);
9831 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9832 ASSERT_EQ (0, n_edges_for_fn (fun));
9834 /* Create some edges: a simple linear chain of BBs. */
9835 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9836 make_edge (bb_a, bb_b, 0);
9837 make_edge (bb_b, bb_c, 0);
9838 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9840 /* Verify the edges. */
9841 ASSERT_EQ (4, n_edges_for_fn (fun));
9842 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9843 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9844 ASSERT_EQ (1, bb_a->preds->length ());
9845 ASSERT_EQ (1, bb_a->succs->length ());
9846 ASSERT_EQ (1, bb_b->preds->length ());
9847 ASSERT_EQ (1, bb_b->succs->length ());
9848 ASSERT_EQ (1, bb_c->preds->length ());
9849 ASSERT_EQ (1, bb_c->succs->length ());
9850 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9851 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9853 /* Verify the dominance information
9854 Each BB in our simple chain should be dominated by the one before
9855 it. */
9856 calculate_dominance_info (CDI_DOMINATORS);
9857 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9858 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9859 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9860 ASSERT_EQ (1, dom_by_b.length ());
9861 ASSERT_EQ (bb_c, dom_by_b[0]);
9862 free_dominance_info (CDI_DOMINATORS);
9863 dom_by_b.release ();
9865 /* Similarly for post-dominance: each BB in our chain is post-dominated
9866 by the one after it. */
9867 calculate_dominance_info (CDI_POST_DOMINATORS);
9868 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9869 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9870 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9871 ASSERT_EQ (1, postdom_by_b.length ());
9872 ASSERT_EQ (bb_a, postdom_by_b[0]);
9873 free_dominance_info (CDI_POST_DOMINATORS);
9874 postdom_by_b.release ();
9876 pop_cfun ();
9879 /* Verify a simple CFG of the form:
9880 ENTRY
9884 /t \f
9890 EXIT. */
9892 static void
9893 test_diamond ()
9895 gimple_register_cfg_hooks ();
9897 tree fndecl = push_fndecl ("cfg_test_diamond");
9898 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9900 /* Create some empty blocks. */
9901 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9902 basic_block bb_b = create_empty_bb (bb_a);
9903 basic_block bb_c = create_empty_bb (bb_a);
9904 basic_block bb_d = create_empty_bb (bb_b);
9906 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9907 ASSERT_EQ (0, n_edges_for_fn (fun));
9909 /* Create the edges. */
9910 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9911 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9912 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9913 make_edge (bb_b, bb_d, 0);
9914 make_edge (bb_c, bb_d, 0);
9915 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9917 /* Verify the edges. */
9918 ASSERT_EQ (6, n_edges_for_fn (fun));
9919 ASSERT_EQ (1, bb_a->preds->length ());
9920 ASSERT_EQ (2, bb_a->succs->length ());
9921 ASSERT_EQ (1, bb_b->preds->length ());
9922 ASSERT_EQ (1, bb_b->succs->length ());
9923 ASSERT_EQ (1, bb_c->preds->length ());
9924 ASSERT_EQ (1, bb_c->succs->length ());
9925 ASSERT_EQ (2, bb_d->preds->length ());
9926 ASSERT_EQ (1, bb_d->succs->length ());
9928 /* Verify the dominance information. */
9929 calculate_dominance_info (CDI_DOMINATORS);
9930 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9931 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9932 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
9933 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
9934 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
9935 dom_by_a.release ();
9936 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9937 ASSERT_EQ (0, dom_by_b.length ());
9938 dom_by_b.release ();
9939 free_dominance_info (CDI_DOMINATORS);
9941 /* Similarly for post-dominance. */
9942 calculate_dominance_info (CDI_POST_DOMINATORS);
9943 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9944 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9945 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
9946 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
9947 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
9948 postdom_by_d.release ();
9949 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9950 ASSERT_EQ (0, postdom_by_b.length ());
9951 postdom_by_b.release ();
9952 free_dominance_info (CDI_POST_DOMINATORS);
9954 pop_cfun ();
9957 /* Verify that we can handle a CFG containing a "complete" aka
9958 fully-connected subgraph (where A B C D below all have edges
9959 pointing to each other node, also to themselves).
9960 e.g.:
9961 ENTRY EXIT
9967 A<--->B
9968 ^^ ^^
9969 | \ / |
9970 | X |
9971 | / \ |
9972 VV VV
9973 C<--->D
9976 static void
9977 test_fully_connected ()
9979 gimple_register_cfg_hooks ();
9981 tree fndecl = push_fndecl ("cfg_fully_connected");
9982 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9984 const int n = 4;
9986 /* Create some empty blocks. */
9987 auto_vec <basic_block> subgraph_nodes;
9988 for (int i = 0; i < n; i++)
9989 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
9991 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
9992 ASSERT_EQ (0, n_edges_for_fn (fun));
9994 /* Create the edges. */
9995 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
9996 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9997 for (int i = 0; i < n; i++)
9998 for (int j = 0; j < n; j++)
9999 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
10001 /* Verify the edges. */
10002 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
10003 /* The first one is linked to ENTRY/EXIT as well as itself and
10004 everything else. */
10005 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
10006 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
10007 /* The other ones in the subgraph are linked to everything in
10008 the subgraph (including themselves). */
10009 for (int i = 1; i < n; i++)
10011 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
10012 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
10015 /* Verify the dominance information. */
10016 calculate_dominance_info (CDI_DOMINATORS);
10017 /* The initial block in the subgraph should be dominated by ENTRY. */
10018 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
10019 get_immediate_dominator (CDI_DOMINATORS,
10020 subgraph_nodes[0]));
10021 /* Every other block in the subgraph should be dominated by the
10022 initial block. */
10023 for (int i = 1; i < n; i++)
10024 ASSERT_EQ (subgraph_nodes[0],
10025 get_immediate_dominator (CDI_DOMINATORS,
10026 subgraph_nodes[i]));
10027 free_dominance_info (CDI_DOMINATORS);
10029 /* Similarly for post-dominance. */
10030 calculate_dominance_info (CDI_POST_DOMINATORS);
10031 /* The initial block in the subgraph should be postdominated by EXIT. */
10032 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
10033 get_immediate_dominator (CDI_POST_DOMINATORS,
10034 subgraph_nodes[0]));
10035 /* Every other block in the subgraph should be postdominated by the
10036 initial block, since that leads to EXIT. */
10037 for (int i = 1; i < n; i++)
10038 ASSERT_EQ (subgraph_nodes[0],
10039 get_immediate_dominator (CDI_POST_DOMINATORS,
10040 subgraph_nodes[i]));
10041 free_dominance_info (CDI_POST_DOMINATORS);
10043 pop_cfun ();
10046 /* Run all of the selftests within this file. */
10048 void
10049 tree_cfg_c_tests ()
10051 test_linear_chain ();
10052 test_diamond ();
10053 test_fully_connected ();
10056 } // namespace selftest
10058 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
10059 - loop
10060 - nested loops
10061 - switch statement (a block with many out-edges)
10062 - something that jumps to itself
10063 - etc */
10065 #endif /* CHECKING_P */