PR debug/84131
[official-gcc.git] / gcc / final.c
blob578e5d6af4c709d29644cfd153962d5f2cc9c226
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "params.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "asan.h"
82 #include "rtl-iter.h"
83 #include "print-rtl.h"
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data declarations. */
87 #endif
89 #include "dwarf2out.h"
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96 So define a null default for it to save conditionalization later. */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
101 /* Is the given character a logical line separator for the assembler? */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
110 /* Bitflags used by final_scan_insn. */
111 #define SEEN_NOTE 1
112 #define SEEN_EMITTED 2
114 /* Last insn processed by final_scan_insn. */
115 static rtx_insn *debug_insn;
116 rtx_insn *current_output_insn;
118 /* Line number of last NOTE. */
119 static int last_linenum;
121 /* Column number of last NOTE. */
122 static int last_columnnum;
124 /* Last discriminator written to assembly. */
125 static int last_discriminator;
127 /* Discriminator of current block. */
128 static int discriminator;
130 /* Highest line number in current block. */
131 static int high_block_linenum;
133 /* Likewise for function. */
134 static int high_function_linenum;
136 /* Filename of last NOTE. */
137 static const char *last_filename;
139 /* Override filename, line and column number. */
140 static const char *override_filename;
141 static int override_linenum;
142 static int override_columnnum;
144 /* Whether to force emission of a line note before the next insn. */
145 static bool force_source_line = false;
147 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
149 /* Nonzero while outputting an `asm' with operands.
150 This means that inconsistencies are the user's fault, so don't die.
151 The precise value is the insn being output, to pass to error_for_asm. */
152 const rtx_insn *this_is_asm_operands;
154 /* Number of operands of this insn, for an `asm' with operands. */
155 static unsigned int insn_noperands;
157 /* Compare optimization flag. */
159 static rtx last_ignored_compare = 0;
161 /* Assign a unique number to each insn that is output.
162 This can be used to generate unique local labels. */
164 static int insn_counter = 0;
166 /* This variable contains machine-dependent flags (defined in tm.h)
167 set and examined by output routines
168 that describe how to interpret the condition codes properly. */
170 CC_STATUS cc_status;
172 /* During output of an insn, this contains a copy of cc_status
173 from before the insn. */
175 CC_STATUS cc_prev_status;
177 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
179 static int block_depth;
181 /* Nonzero if have enabled APP processing of our assembler output. */
183 static int app_on;
185 /* If we are outputting an insn sequence, this contains the sequence rtx.
186 Zero otherwise. */
188 rtx_sequence *final_sequence;
190 #ifdef ASSEMBLER_DIALECT
192 /* Number of the assembler dialect to use, starting at 0. */
193 static int dialect_number;
194 #endif
196 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
197 rtx current_insn_predicate;
199 /* True if printing into -fdump-final-insns= dump. */
200 bool final_insns_dump_p;
202 /* True if profile_function should be called, but hasn't been called yet. */
203 static bool need_profile_function;
205 static int asm_insn_count (rtx);
206 static void profile_function (FILE *);
207 static void profile_after_prologue (FILE *);
208 static bool notice_source_line (rtx_insn *, bool *);
209 static rtx walk_alter_subreg (rtx *, bool *);
210 static void output_asm_name (void);
211 static void output_alternate_entry_point (FILE *, rtx_insn *);
212 static tree get_mem_expr_from_op (rtx, int *);
213 static void output_asm_operand_names (rtx *, int *, int);
214 #ifdef LEAF_REGISTERS
215 static void leaf_renumber_regs (rtx_insn *);
216 #endif
217 #if HAVE_cc0
218 static int alter_cond (rtx);
219 #endif
220 static int align_fuzz (rtx, rtx, int, unsigned);
221 static void collect_fn_hard_reg_usage (void);
222 static tree get_call_fndecl (rtx_insn *);
224 /* Initialize data in final at the beginning of a compilation. */
226 void
227 init_final (const char *filename ATTRIBUTE_UNUSED)
229 app_on = 0;
230 final_sequence = 0;
232 #ifdef ASSEMBLER_DIALECT
233 dialect_number = ASSEMBLER_DIALECT;
234 #endif
237 /* Default target function prologue and epilogue assembler output.
239 If not overridden for epilogue code, then the function body itself
240 contains return instructions wherever needed. */
241 void
242 default_function_pro_epilogue (FILE *)
246 void
247 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
248 tree decl ATTRIBUTE_UNUSED,
249 bool new_is_cold ATTRIBUTE_UNUSED)
253 /* Default target hook that outputs nothing to a stream. */
254 void
255 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
259 /* Enable APP processing of subsequent output.
260 Used before the output from an `asm' statement. */
262 void
263 app_enable (void)
265 if (! app_on)
267 fputs (ASM_APP_ON, asm_out_file);
268 app_on = 1;
272 /* Disable APP processing of subsequent output.
273 Called from varasm.c before most kinds of output. */
275 void
276 app_disable (void)
278 if (app_on)
280 fputs (ASM_APP_OFF, asm_out_file);
281 app_on = 0;
285 /* Return the number of slots filled in the current
286 delayed branch sequence (we don't count the insn needing the
287 delay slot). Zero if not in a delayed branch sequence. */
290 dbr_sequence_length (void)
292 if (final_sequence != 0)
293 return XVECLEN (final_sequence, 0) - 1;
294 else
295 return 0;
298 /* The next two pages contain routines used to compute the length of an insn
299 and to shorten branches. */
301 /* Arrays for insn lengths, and addresses. The latter is referenced by
302 `insn_current_length'. */
304 static int *insn_lengths;
306 vec<int> insn_addresses_;
308 /* Max uid for which the above arrays are valid. */
309 static int insn_lengths_max_uid;
311 /* Address of insn being processed. Used by `insn_current_length'. */
312 int insn_current_address;
314 /* Address of insn being processed in previous iteration. */
315 int insn_last_address;
317 /* known invariant alignment of insn being processed. */
318 int insn_current_align;
320 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
321 gives the next following alignment insn that increases the known
322 alignment, or NULL_RTX if there is no such insn.
323 For any alignment obtained this way, we can again index uid_align with
324 its uid to obtain the next following align that in turn increases the
325 alignment, till we reach NULL_RTX; the sequence obtained this way
326 for each insn we'll call the alignment chain of this insn in the following
327 comments. */
329 struct label_alignment
331 short alignment;
332 short max_skip;
335 static rtx *uid_align;
336 static int *uid_shuid;
337 static struct label_alignment *label_align;
339 /* Indicate that branch shortening hasn't yet been done. */
341 void
342 init_insn_lengths (void)
344 if (uid_shuid)
346 free (uid_shuid);
347 uid_shuid = 0;
349 if (insn_lengths)
351 free (insn_lengths);
352 insn_lengths = 0;
353 insn_lengths_max_uid = 0;
355 if (HAVE_ATTR_length)
356 INSN_ADDRESSES_FREE ();
357 if (uid_align)
359 free (uid_align);
360 uid_align = 0;
364 /* Obtain the current length of an insn. If branch shortening has been done,
365 get its actual length. Otherwise, use FALLBACK_FN to calculate the
366 length. */
367 static int
368 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
370 rtx body;
371 int i;
372 int length = 0;
374 if (!HAVE_ATTR_length)
375 return 0;
377 if (insn_lengths_max_uid > INSN_UID (insn))
378 return insn_lengths[INSN_UID (insn)];
379 else
380 switch (GET_CODE (insn))
382 case NOTE:
383 case BARRIER:
384 case CODE_LABEL:
385 case DEBUG_INSN:
386 return 0;
388 case CALL_INSN:
389 case JUMP_INSN:
390 length = fallback_fn (insn);
391 break;
393 case INSN:
394 body = PATTERN (insn);
395 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
396 return 0;
398 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
399 length = asm_insn_count (body) * fallback_fn (insn);
400 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
401 for (i = 0; i < seq->len (); i++)
402 length += get_attr_length_1 (seq->insn (i), fallback_fn);
403 else
404 length = fallback_fn (insn);
405 break;
407 default:
408 break;
411 #ifdef ADJUST_INSN_LENGTH
412 ADJUST_INSN_LENGTH (insn, length);
413 #endif
414 return length;
417 /* Obtain the current length of an insn. If branch shortening has been done,
418 get its actual length. Otherwise, get its maximum length. */
420 get_attr_length (rtx_insn *insn)
422 return get_attr_length_1 (insn, insn_default_length);
425 /* Obtain the current length of an insn. If branch shortening has been done,
426 get its actual length. Otherwise, get its minimum length. */
428 get_attr_min_length (rtx_insn *insn)
430 return get_attr_length_1 (insn, insn_min_length);
433 /* Code to handle alignment inside shorten_branches. */
435 /* Here is an explanation how the algorithm in align_fuzz can give
436 proper results:
438 Call a sequence of instructions beginning with alignment point X
439 and continuing until the next alignment point `block X'. When `X'
440 is used in an expression, it means the alignment value of the
441 alignment point.
443 Call the distance between the start of the first insn of block X, and
444 the end of the last insn of block X `IX', for the `inner size of X'.
445 This is clearly the sum of the instruction lengths.
447 Likewise with the next alignment-delimited block following X, which we
448 shall call block Y.
450 Call the distance between the start of the first insn of block X, and
451 the start of the first insn of block Y `OX', for the `outer size of X'.
453 The estimated padding is then OX - IX.
455 OX can be safely estimated as
457 if (X >= Y)
458 OX = round_up(IX, Y)
459 else
460 OX = round_up(IX, X) + Y - X
462 Clearly est(IX) >= real(IX), because that only depends on the
463 instruction lengths, and those being overestimated is a given.
465 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
466 we needn't worry about that when thinking about OX.
468 When X >= Y, the alignment provided by Y adds no uncertainty factor
469 for branch ranges starting before X, so we can just round what we have.
470 But when X < Y, we don't know anything about the, so to speak,
471 `middle bits', so we have to assume the worst when aligning up from an
472 address mod X to one mod Y, which is Y - X. */
474 #ifndef LABEL_ALIGN
475 #define LABEL_ALIGN(LABEL) align_labels_log
476 #endif
478 #ifndef LOOP_ALIGN
479 #define LOOP_ALIGN(LABEL) align_loops_log
480 #endif
482 #ifndef LABEL_ALIGN_AFTER_BARRIER
483 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
484 #endif
486 #ifndef JUMP_ALIGN
487 #define JUMP_ALIGN(LABEL) align_jumps_log
488 #endif
491 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
493 return 0;
497 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
499 return align_loops_max_skip;
503 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
505 return align_labels_max_skip;
509 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
511 return align_jumps_max_skip;
514 #ifndef ADDR_VEC_ALIGN
515 static int
516 final_addr_vec_align (rtx_jump_table_data *addr_vec)
518 int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
520 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
521 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
522 return exact_log2 (align);
526 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
527 #endif
529 #ifndef INSN_LENGTH_ALIGNMENT
530 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
531 #endif
533 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
535 static int min_labelno, max_labelno;
537 #define LABEL_TO_ALIGNMENT(LABEL) \
538 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
540 #define LABEL_TO_MAX_SKIP(LABEL) \
541 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
543 /* For the benefit of port specific code do this also as a function. */
546 label_to_alignment (rtx label)
548 if (CODE_LABEL_NUMBER (label) <= max_labelno)
549 return LABEL_TO_ALIGNMENT (label);
550 return 0;
554 label_to_max_skip (rtx label)
556 if (CODE_LABEL_NUMBER (label) <= max_labelno)
557 return LABEL_TO_MAX_SKIP (label);
558 return 0;
561 /* The differences in addresses
562 between a branch and its target might grow or shrink depending on
563 the alignment the start insn of the range (the branch for a forward
564 branch or the label for a backward branch) starts out on; if these
565 differences are used naively, they can even oscillate infinitely.
566 We therefore want to compute a 'worst case' address difference that
567 is independent of the alignment the start insn of the range end
568 up on, and that is at least as large as the actual difference.
569 The function align_fuzz calculates the amount we have to add to the
570 naively computed difference, by traversing the part of the alignment
571 chain of the start insn of the range that is in front of the end insn
572 of the range, and considering for each alignment the maximum amount
573 that it might contribute to a size increase.
575 For casesi tables, we also want to know worst case minimum amounts of
576 address difference, in case a machine description wants to introduce
577 some common offset that is added to all offsets in a table.
578 For this purpose, align_fuzz with a growth argument of 0 computes the
579 appropriate adjustment. */
581 /* Compute the maximum delta by which the difference of the addresses of
582 START and END might grow / shrink due to a different address for start
583 which changes the size of alignment insns between START and END.
584 KNOWN_ALIGN_LOG is the alignment known for START.
585 GROWTH should be ~0 if the objective is to compute potential code size
586 increase, and 0 if the objective is to compute potential shrink.
587 The return value is undefined for any other value of GROWTH. */
589 static int
590 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
592 int uid = INSN_UID (start);
593 rtx align_label;
594 int known_align = 1 << known_align_log;
595 int end_shuid = INSN_SHUID (end);
596 int fuzz = 0;
598 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
600 int align_addr, new_align;
602 uid = INSN_UID (align_label);
603 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
604 if (uid_shuid[uid] > end_shuid)
605 break;
606 known_align_log = LABEL_TO_ALIGNMENT (align_label);
607 new_align = 1 << known_align_log;
608 if (new_align < known_align)
609 continue;
610 fuzz += (-align_addr ^ growth) & (new_align - known_align);
611 known_align = new_align;
613 return fuzz;
616 /* Compute a worst-case reference address of a branch so that it
617 can be safely used in the presence of aligned labels. Since the
618 size of the branch itself is unknown, the size of the branch is
619 not included in the range. I.e. for a forward branch, the reference
620 address is the end address of the branch as known from the previous
621 branch shortening pass, minus a value to account for possible size
622 increase due to alignment. For a backward branch, it is the start
623 address of the branch as known from the current pass, plus a value
624 to account for possible size increase due to alignment.
625 NB.: Therefore, the maximum offset allowed for backward branches needs
626 to exclude the branch size. */
629 insn_current_reference_address (rtx_insn *branch)
631 rtx dest;
632 int seq_uid;
634 if (! INSN_ADDRESSES_SET_P ())
635 return 0;
637 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
638 seq_uid = INSN_UID (seq);
639 if (!JUMP_P (branch))
640 /* This can happen for example on the PA; the objective is to know the
641 offset to address something in front of the start of the function.
642 Thus, we can treat it like a backward branch.
643 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
644 any alignment we'd encounter, so we skip the call to align_fuzz. */
645 return insn_current_address;
646 dest = JUMP_LABEL (branch);
648 /* BRANCH has no proper alignment chain set, so use SEQ.
649 BRANCH also has no INSN_SHUID. */
650 if (INSN_SHUID (seq) < INSN_SHUID (dest))
652 /* Forward branch. */
653 return (insn_last_address + insn_lengths[seq_uid]
654 - align_fuzz (seq, dest, length_unit_log, ~0));
656 else
658 /* Backward branch. */
659 return (insn_current_address
660 + align_fuzz (dest, seq, length_unit_log, ~0));
664 /* Compute branch alignments based on CFG profile. */
666 unsigned int
667 compute_alignments (void)
669 int log, max_skip, max_log;
670 basic_block bb;
672 if (label_align)
674 free (label_align);
675 label_align = 0;
678 max_labelno = max_label_num ();
679 min_labelno = get_first_label_num ();
680 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
682 /* If not optimizing or optimizing for size, don't assign any alignments. */
683 if (! optimize || optimize_function_for_size_p (cfun))
684 return 0;
686 if (dump_file)
688 dump_reg_info (dump_file);
689 dump_flow_info (dump_file, TDF_DETAILS);
690 flow_loops_dump (dump_file, NULL, 1);
692 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
693 profile_count count_threshold = cfun->cfg->count_max.apply_scale
694 (1, PARAM_VALUE (PARAM_ALIGN_THRESHOLD));
696 if (dump_file)
698 fprintf (dump_file, "count_max: ");
699 cfun->cfg->count_max.dump (dump_file);
700 fprintf (dump_file, "\n");
702 FOR_EACH_BB_FN (bb, cfun)
704 rtx_insn *label = BB_HEAD (bb);
705 bool has_fallthru = 0;
706 edge e;
707 edge_iterator ei;
709 if (!LABEL_P (label)
710 || optimize_bb_for_size_p (bb))
712 if (dump_file)
713 fprintf (dump_file,
714 "BB %4i loop %2i loop_depth %2i skipped.\n",
715 bb->index,
716 bb->loop_father->num,
717 bb_loop_depth (bb));
718 continue;
720 max_log = LABEL_ALIGN (label);
721 max_skip = targetm.asm_out.label_align_max_skip (label);
722 profile_count fallthru_count = profile_count::zero ();
723 profile_count branch_count = profile_count::zero ();
725 FOR_EACH_EDGE (e, ei, bb->preds)
727 if (e->flags & EDGE_FALLTHRU)
728 has_fallthru = 1, fallthru_count += e->count ();
729 else
730 branch_count += e->count ();
732 if (dump_file)
734 fprintf (dump_file, "BB %4i loop %2i loop_depth"
735 " %2i fall ",
736 bb->index, bb->loop_father->num,
737 bb_loop_depth (bb));
738 fallthru_count.dump (dump_file);
739 fprintf (dump_file, " branch ");
740 branch_count.dump (dump_file);
741 if (!bb->loop_father->inner && bb->loop_father->num)
742 fprintf (dump_file, " inner_loop");
743 if (bb->loop_father->header == bb)
744 fprintf (dump_file, " loop_header");
745 fprintf (dump_file, "\n");
747 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
748 continue;
750 /* There are two purposes to align block with no fallthru incoming edge:
751 1) to avoid fetch stalls when branch destination is near cache boundary
752 2) to improve cache efficiency in case the previous block is not executed
753 (so it does not need to be in the cache).
755 We to catch first case, we align frequently executed blocks.
756 To catch the second, we align blocks that are executed more frequently
757 than the predecessor and the predecessor is likely to not be executed
758 when function is called. */
760 if (!has_fallthru
761 && (branch_count > count_threshold
762 || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
763 && (bb->prev_bb->count
764 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
765 ->count.apply_scale (1, 2)))))
767 log = JUMP_ALIGN (label);
768 if (dump_file)
769 fprintf (dump_file, " jump alignment added.\n");
770 if (max_log < log)
772 max_log = log;
773 max_skip = targetm.asm_out.jump_align_max_skip (label);
776 /* In case block is frequent and reached mostly by non-fallthru edge,
777 align it. It is most likely a first block of loop. */
778 if (has_fallthru
779 && !(single_succ_p (bb)
780 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
781 && optimize_bb_for_speed_p (bb)
782 && branch_count + fallthru_count > count_threshold
783 && (branch_count
784 > fallthru_count.apply_scale
785 (PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS), 1)))
787 log = LOOP_ALIGN (label);
788 if (dump_file)
789 fprintf (dump_file, " internal loop alignment added.\n");
790 if (max_log < log)
792 max_log = log;
793 max_skip = targetm.asm_out.loop_align_max_skip (label);
796 LABEL_TO_ALIGNMENT (label) = max_log;
797 LABEL_TO_MAX_SKIP (label) = max_skip;
800 loop_optimizer_finalize ();
801 free_dominance_info (CDI_DOMINATORS);
802 return 0;
805 /* Grow the LABEL_ALIGN array after new labels are created. */
807 static void
808 grow_label_align (void)
810 int old = max_labelno;
811 int n_labels;
812 int n_old_labels;
814 max_labelno = max_label_num ();
816 n_labels = max_labelno - min_labelno + 1;
817 n_old_labels = old - min_labelno + 1;
819 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
821 /* Range of labels grows monotonically in the function. Failing here
822 means that the initialization of array got lost. */
823 gcc_assert (n_old_labels <= n_labels);
825 memset (label_align + n_old_labels, 0,
826 (n_labels - n_old_labels) * sizeof (struct label_alignment));
829 /* Update the already computed alignment information. LABEL_PAIRS is a vector
830 made up of pairs of labels for which the alignment information of the first
831 element will be copied from that of the second element. */
833 void
834 update_alignments (vec<rtx> &label_pairs)
836 unsigned int i = 0;
837 rtx iter, label = NULL_RTX;
839 if (max_labelno != max_label_num ())
840 grow_label_align ();
842 FOR_EACH_VEC_ELT (label_pairs, i, iter)
843 if (i & 1)
845 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
846 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
848 else
849 label = iter;
852 namespace {
854 const pass_data pass_data_compute_alignments =
856 RTL_PASS, /* type */
857 "alignments", /* name */
858 OPTGROUP_NONE, /* optinfo_flags */
859 TV_NONE, /* tv_id */
860 0, /* properties_required */
861 0, /* properties_provided */
862 0, /* properties_destroyed */
863 0, /* todo_flags_start */
864 0, /* todo_flags_finish */
867 class pass_compute_alignments : public rtl_opt_pass
869 public:
870 pass_compute_alignments (gcc::context *ctxt)
871 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
874 /* opt_pass methods: */
875 virtual unsigned int execute (function *) { return compute_alignments (); }
877 }; // class pass_compute_alignments
879 } // anon namespace
881 rtl_opt_pass *
882 make_pass_compute_alignments (gcc::context *ctxt)
884 return new pass_compute_alignments (ctxt);
888 /* Make a pass over all insns and compute their actual lengths by shortening
889 any branches of variable length if possible. */
891 /* shorten_branches might be called multiple times: for example, the SH
892 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
893 In order to do this, it needs proper length information, which it obtains
894 by calling shorten_branches. This cannot be collapsed with
895 shorten_branches itself into a single pass unless we also want to integrate
896 reorg.c, since the branch splitting exposes new instructions with delay
897 slots. */
899 void
900 shorten_branches (rtx_insn *first)
902 rtx_insn *insn;
903 int max_uid;
904 int i;
905 int max_log;
906 int max_skip;
907 #define MAX_CODE_ALIGN 16
908 rtx_insn *seq;
909 int something_changed = 1;
910 char *varying_length;
911 rtx body;
912 int uid;
913 rtx align_tab[MAX_CODE_ALIGN];
915 /* Compute maximum UID and allocate label_align / uid_shuid. */
916 max_uid = get_max_uid ();
918 /* Free uid_shuid before reallocating it. */
919 free (uid_shuid);
921 uid_shuid = XNEWVEC (int, max_uid);
923 if (max_labelno != max_label_num ())
924 grow_label_align ();
926 /* Initialize label_align and set up uid_shuid to be strictly
927 monotonically rising with insn order. */
928 /* We use max_log here to keep track of the maximum alignment we want to
929 impose on the next CODE_LABEL (or the current one if we are processing
930 the CODE_LABEL itself). */
932 max_log = 0;
933 max_skip = 0;
935 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
937 int log;
939 INSN_SHUID (insn) = i++;
940 if (INSN_P (insn))
941 continue;
943 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
945 /* Merge in alignments computed by compute_alignments. */
946 log = LABEL_TO_ALIGNMENT (label);
947 if (max_log < log)
949 max_log = log;
950 max_skip = LABEL_TO_MAX_SKIP (label);
953 rtx_jump_table_data *table = jump_table_for_label (label);
954 if (!table)
956 log = LABEL_ALIGN (label);
957 if (max_log < log)
959 max_log = log;
960 max_skip = targetm.asm_out.label_align_max_skip (label);
963 /* ADDR_VECs only take room if read-only data goes into the text
964 section. */
965 if ((JUMP_TABLES_IN_TEXT_SECTION
966 || readonly_data_section == text_section)
967 && table)
969 log = ADDR_VEC_ALIGN (table);
970 if (max_log < log)
972 max_log = log;
973 max_skip = targetm.asm_out.label_align_max_skip (label);
976 LABEL_TO_ALIGNMENT (label) = max_log;
977 LABEL_TO_MAX_SKIP (label) = max_skip;
978 max_log = 0;
979 max_skip = 0;
981 else if (BARRIER_P (insn))
983 rtx_insn *label;
985 for (label = insn; label && ! INSN_P (label);
986 label = NEXT_INSN (label))
987 if (LABEL_P (label))
989 log = LABEL_ALIGN_AFTER_BARRIER (insn);
990 if (max_log < log)
992 max_log = log;
993 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
995 break;
999 if (!HAVE_ATTR_length)
1000 return;
1002 /* Allocate the rest of the arrays. */
1003 insn_lengths = XNEWVEC (int, max_uid);
1004 insn_lengths_max_uid = max_uid;
1005 /* Syntax errors can lead to labels being outside of the main insn stream.
1006 Initialize insn_addresses, so that we get reproducible results. */
1007 INSN_ADDRESSES_ALLOC (max_uid);
1009 varying_length = XCNEWVEC (char, max_uid);
1011 /* Initialize uid_align. We scan instructions
1012 from end to start, and keep in align_tab[n] the last seen insn
1013 that does an alignment of at least n+1, i.e. the successor
1014 in the alignment chain for an insn that does / has a known
1015 alignment of n. */
1016 uid_align = XCNEWVEC (rtx, max_uid);
1018 for (i = MAX_CODE_ALIGN; --i >= 0;)
1019 align_tab[i] = NULL_RTX;
1020 seq = get_last_insn ();
1021 for (; seq; seq = PREV_INSN (seq))
1023 int uid = INSN_UID (seq);
1024 int log;
1025 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1026 uid_align[uid] = align_tab[0];
1027 if (log)
1029 /* Found an alignment label. */
1030 uid_align[uid] = align_tab[log];
1031 for (i = log - 1; i >= 0; i--)
1032 align_tab[i] = seq;
1036 /* When optimizing, we start assuming minimum length, and keep increasing
1037 lengths as we find the need for this, till nothing changes.
1038 When not optimizing, we start assuming maximum lengths, and
1039 do a single pass to update the lengths. */
1040 bool increasing = optimize != 0;
1042 #ifdef CASE_VECTOR_SHORTEN_MODE
1043 if (optimize)
1045 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1046 label fields. */
1048 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1049 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1050 int rel;
1052 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1054 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1055 int len, i, min, max, insn_shuid;
1056 int min_align;
1057 addr_diff_vec_flags flags;
1059 if (! JUMP_TABLE_DATA_P (insn)
1060 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1061 continue;
1062 pat = PATTERN (insn);
1063 len = XVECLEN (pat, 1);
1064 gcc_assert (len > 0);
1065 min_align = MAX_CODE_ALIGN;
1066 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1068 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1069 int shuid = INSN_SHUID (lab);
1070 if (shuid < min)
1072 min = shuid;
1073 min_lab = lab;
1075 if (shuid > max)
1077 max = shuid;
1078 max_lab = lab;
1080 if (min_align > LABEL_TO_ALIGNMENT (lab))
1081 min_align = LABEL_TO_ALIGNMENT (lab);
1083 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1084 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1085 insn_shuid = INSN_SHUID (insn);
1086 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1087 memset (&flags, 0, sizeof (flags));
1088 flags.min_align = min_align;
1089 flags.base_after_vec = rel > insn_shuid;
1090 flags.min_after_vec = min > insn_shuid;
1091 flags.max_after_vec = max > insn_shuid;
1092 flags.min_after_base = min > rel;
1093 flags.max_after_base = max > rel;
1094 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1096 if (increasing)
1097 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1100 #endif /* CASE_VECTOR_SHORTEN_MODE */
1102 /* Compute initial lengths, addresses, and varying flags for each insn. */
1103 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1105 for (insn_current_address = 0, insn = first;
1106 insn != 0;
1107 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1109 uid = INSN_UID (insn);
1111 insn_lengths[uid] = 0;
1113 if (LABEL_P (insn))
1115 int log = LABEL_TO_ALIGNMENT (insn);
1116 if (log)
1118 int align = 1 << log;
1119 int new_address = (insn_current_address + align - 1) & -align;
1120 insn_lengths[uid] = new_address - insn_current_address;
1124 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1126 if (NOTE_P (insn) || BARRIER_P (insn)
1127 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1128 continue;
1129 if (insn->deleted ())
1130 continue;
1132 body = PATTERN (insn);
1133 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1135 /* This only takes room if read-only data goes into the text
1136 section. */
1137 if (JUMP_TABLES_IN_TEXT_SECTION
1138 || readonly_data_section == text_section)
1139 insn_lengths[uid] = (XVECLEN (body,
1140 GET_CODE (body) == ADDR_DIFF_VEC)
1141 * GET_MODE_SIZE (table->get_data_mode ()));
1142 /* Alignment is handled by ADDR_VEC_ALIGN. */
1144 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1145 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1146 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1148 int i;
1149 int const_delay_slots;
1150 if (DELAY_SLOTS)
1151 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1152 else
1153 const_delay_slots = 0;
1155 int (*inner_length_fun) (rtx_insn *)
1156 = const_delay_slots ? length_fun : insn_default_length;
1157 /* Inside a delay slot sequence, we do not do any branch shortening
1158 if the shortening could change the number of delay slots
1159 of the branch. */
1160 for (i = 0; i < body_seq->len (); i++)
1162 rtx_insn *inner_insn = body_seq->insn (i);
1163 int inner_uid = INSN_UID (inner_insn);
1164 int inner_length;
1166 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1167 || asm_noperands (PATTERN (inner_insn)) >= 0)
1168 inner_length = (asm_insn_count (PATTERN (inner_insn))
1169 * insn_default_length (inner_insn));
1170 else
1171 inner_length = inner_length_fun (inner_insn);
1173 insn_lengths[inner_uid] = inner_length;
1174 if (const_delay_slots)
1176 if ((varying_length[inner_uid]
1177 = insn_variable_length_p (inner_insn)) != 0)
1178 varying_length[uid] = 1;
1179 INSN_ADDRESSES (inner_uid) = (insn_current_address
1180 + insn_lengths[uid]);
1182 else
1183 varying_length[inner_uid] = 0;
1184 insn_lengths[uid] += inner_length;
1187 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1189 insn_lengths[uid] = length_fun (insn);
1190 varying_length[uid] = insn_variable_length_p (insn);
1193 /* If needed, do any adjustment. */
1194 #ifdef ADJUST_INSN_LENGTH
1195 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1196 if (insn_lengths[uid] < 0)
1197 fatal_insn ("negative insn length", insn);
1198 #endif
1201 /* Now loop over all the insns finding varying length insns. For each,
1202 get the current insn length. If it has changed, reflect the change.
1203 When nothing changes for a full pass, we are done. */
1205 while (something_changed)
1207 something_changed = 0;
1208 insn_current_align = MAX_CODE_ALIGN - 1;
1209 for (insn_current_address = 0, insn = first;
1210 insn != 0;
1211 insn = NEXT_INSN (insn))
1213 int new_length;
1214 #ifdef ADJUST_INSN_LENGTH
1215 int tmp_length;
1216 #endif
1217 int length_align;
1219 uid = INSN_UID (insn);
1221 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1223 int log = LABEL_TO_ALIGNMENT (label);
1225 #ifdef CASE_VECTOR_SHORTEN_MODE
1226 /* If the mode of a following jump table was changed, we
1227 may need to update the alignment of this label. */
1229 if (JUMP_TABLES_IN_TEXT_SECTION
1230 || readonly_data_section == text_section)
1232 rtx_jump_table_data *table = jump_table_for_label (label);
1233 if (table)
1235 int newlog = ADDR_VEC_ALIGN (table);
1236 if (newlog != log)
1238 log = newlog;
1239 LABEL_TO_ALIGNMENT (insn) = log;
1240 something_changed = 1;
1244 #endif
1246 if (log > insn_current_align)
1248 int align = 1 << log;
1249 int new_address= (insn_current_address + align - 1) & -align;
1250 insn_lengths[uid] = new_address - insn_current_address;
1251 insn_current_align = log;
1252 insn_current_address = new_address;
1254 else
1255 insn_lengths[uid] = 0;
1256 INSN_ADDRESSES (uid) = insn_current_address;
1257 continue;
1260 length_align = INSN_LENGTH_ALIGNMENT (insn);
1261 if (length_align < insn_current_align)
1262 insn_current_align = length_align;
1264 insn_last_address = INSN_ADDRESSES (uid);
1265 INSN_ADDRESSES (uid) = insn_current_address;
1267 #ifdef CASE_VECTOR_SHORTEN_MODE
1268 if (optimize
1269 && JUMP_TABLE_DATA_P (insn)
1270 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1272 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1273 rtx body = PATTERN (insn);
1274 int old_length = insn_lengths[uid];
1275 rtx_insn *rel_lab =
1276 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1277 rtx min_lab = XEXP (XEXP (body, 2), 0);
1278 rtx max_lab = XEXP (XEXP (body, 3), 0);
1279 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1280 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1281 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1282 rtx_insn *prev;
1283 int rel_align = 0;
1284 addr_diff_vec_flags flags;
1285 scalar_int_mode vec_mode;
1287 /* Avoid automatic aggregate initialization. */
1288 flags = ADDR_DIFF_VEC_FLAGS (body);
1290 /* Try to find a known alignment for rel_lab. */
1291 for (prev = rel_lab;
1292 prev
1293 && ! insn_lengths[INSN_UID (prev)]
1294 && ! (varying_length[INSN_UID (prev)] & 1);
1295 prev = PREV_INSN (prev))
1296 if (varying_length[INSN_UID (prev)] & 2)
1298 rel_align = LABEL_TO_ALIGNMENT (prev);
1299 break;
1302 /* See the comment on addr_diff_vec_flags in rtl.h for the
1303 meaning of the flags values. base: REL_LAB vec: INSN */
1304 /* Anything after INSN has still addresses from the last
1305 pass; adjust these so that they reflect our current
1306 estimate for this pass. */
1307 if (flags.base_after_vec)
1308 rel_addr += insn_current_address - insn_last_address;
1309 if (flags.min_after_vec)
1310 min_addr += insn_current_address - insn_last_address;
1311 if (flags.max_after_vec)
1312 max_addr += insn_current_address - insn_last_address;
1313 /* We want to know the worst case, i.e. lowest possible value
1314 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1315 its offset is positive, and we have to be wary of code shrink;
1316 otherwise, it is negative, and we have to be vary of code
1317 size increase. */
1318 if (flags.min_after_base)
1320 /* If INSN is between REL_LAB and MIN_LAB, the size
1321 changes we are about to make can change the alignment
1322 within the observed offset, therefore we have to break
1323 it up into two parts that are independent. */
1324 if (! flags.base_after_vec && flags.min_after_vec)
1326 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1327 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1329 else
1330 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1332 else
1334 if (flags.base_after_vec && ! flags.min_after_vec)
1336 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1337 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1339 else
1340 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1342 /* Likewise, determine the highest lowest possible value
1343 for the offset of MAX_LAB. */
1344 if (flags.max_after_base)
1346 if (! flags.base_after_vec && flags.max_after_vec)
1348 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1349 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1351 else
1352 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1354 else
1356 if (flags.base_after_vec && ! flags.max_after_vec)
1358 max_addr += align_fuzz (max_lab, insn, 0, 0);
1359 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1361 else
1362 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1364 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1365 max_addr - rel_addr, body);
1366 if (!increasing
1367 || (GET_MODE_SIZE (vec_mode)
1368 >= GET_MODE_SIZE (table->get_data_mode ())))
1369 PUT_MODE (body, vec_mode);
1370 if (JUMP_TABLES_IN_TEXT_SECTION
1371 || readonly_data_section == text_section)
1373 insn_lengths[uid]
1374 = (XVECLEN (body, 1)
1375 * GET_MODE_SIZE (table->get_data_mode ()));
1376 insn_current_address += insn_lengths[uid];
1377 if (insn_lengths[uid] != old_length)
1378 something_changed = 1;
1381 continue;
1383 #endif /* CASE_VECTOR_SHORTEN_MODE */
1385 if (! (varying_length[uid]))
1387 if (NONJUMP_INSN_P (insn)
1388 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1390 int i;
1392 body = PATTERN (insn);
1393 for (i = 0; i < XVECLEN (body, 0); i++)
1395 rtx inner_insn = XVECEXP (body, 0, i);
1396 int inner_uid = INSN_UID (inner_insn);
1398 INSN_ADDRESSES (inner_uid) = insn_current_address;
1400 insn_current_address += insn_lengths[inner_uid];
1403 else
1404 insn_current_address += insn_lengths[uid];
1406 continue;
1409 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1411 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1412 int i;
1414 body = PATTERN (insn);
1415 new_length = 0;
1416 for (i = 0; i < seqn->len (); i++)
1418 rtx_insn *inner_insn = seqn->insn (i);
1419 int inner_uid = INSN_UID (inner_insn);
1420 int inner_length;
1422 INSN_ADDRESSES (inner_uid) = insn_current_address;
1424 /* insn_current_length returns 0 for insns with a
1425 non-varying length. */
1426 if (! varying_length[inner_uid])
1427 inner_length = insn_lengths[inner_uid];
1428 else
1429 inner_length = insn_current_length (inner_insn);
1431 if (inner_length != insn_lengths[inner_uid])
1433 if (!increasing || inner_length > insn_lengths[inner_uid])
1435 insn_lengths[inner_uid] = inner_length;
1436 something_changed = 1;
1438 else
1439 inner_length = insn_lengths[inner_uid];
1441 insn_current_address += inner_length;
1442 new_length += inner_length;
1445 else
1447 new_length = insn_current_length (insn);
1448 insn_current_address += new_length;
1451 #ifdef ADJUST_INSN_LENGTH
1452 /* If needed, do any adjustment. */
1453 tmp_length = new_length;
1454 ADJUST_INSN_LENGTH (insn, new_length);
1455 insn_current_address += (new_length - tmp_length);
1456 #endif
1458 if (new_length != insn_lengths[uid]
1459 && (!increasing || new_length > insn_lengths[uid]))
1461 insn_lengths[uid] = new_length;
1462 something_changed = 1;
1464 else
1465 insn_current_address += insn_lengths[uid] - new_length;
1467 /* For a non-optimizing compile, do only a single pass. */
1468 if (!increasing)
1469 break;
1471 crtl->max_insn_address = insn_current_address;
1472 free (varying_length);
1475 /* Given the body of an INSN known to be generated by an ASM statement, return
1476 the number of machine instructions likely to be generated for this insn.
1477 This is used to compute its length. */
1479 static int
1480 asm_insn_count (rtx body)
1482 const char *templ;
1484 if (GET_CODE (body) == ASM_INPUT)
1485 templ = XSTR (body, 0);
1486 else
1487 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1489 return asm_str_count (templ);
1492 /* Return the number of machine instructions likely to be generated for the
1493 inline-asm template. */
1495 asm_str_count (const char *templ)
1497 int count = 1;
1499 if (!*templ)
1500 return 0;
1502 for (; *templ; templ++)
1503 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1504 || *templ == '\n')
1505 count++;
1507 return count;
1510 /* Return true if DWARF2 debug info can be emitted for DECL. */
1512 static bool
1513 dwarf2_debug_info_emitted_p (tree decl)
1515 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1516 return false;
1518 if (DECL_IGNORED_P (decl))
1519 return false;
1521 return true;
1524 /* Return scope resulting from combination of S1 and S2. */
1525 static tree
1526 choose_inner_scope (tree s1, tree s2)
1528 if (!s1)
1529 return s2;
1530 if (!s2)
1531 return s1;
1532 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1533 return s1;
1534 return s2;
1537 /* Emit lexical block notes needed to change scope from S1 to S2. */
1539 static void
1540 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1542 rtx_insn *insn = orig_insn;
1543 tree com = NULL_TREE;
1544 tree ts1 = s1, ts2 = s2;
1545 tree s;
1547 while (ts1 != ts2)
1549 gcc_assert (ts1 && ts2);
1550 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1551 ts1 = BLOCK_SUPERCONTEXT (ts1);
1552 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1553 ts2 = BLOCK_SUPERCONTEXT (ts2);
1554 else
1556 ts1 = BLOCK_SUPERCONTEXT (ts1);
1557 ts2 = BLOCK_SUPERCONTEXT (ts2);
1560 com = ts1;
1562 /* Close scopes. */
1563 s = s1;
1564 while (s != com)
1566 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1567 NOTE_BLOCK (note) = s;
1568 s = BLOCK_SUPERCONTEXT (s);
1571 /* Open scopes. */
1572 s = s2;
1573 while (s != com)
1575 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1576 NOTE_BLOCK (insn) = s;
1577 s = BLOCK_SUPERCONTEXT (s);
1581 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1582 on the scope tree and the newly reordered instructions. */
1584 static void
1585 reemit_insn_block_notes (void)
1587 tree cur_block = DECL_INITIAL (cfun->decl);
1588 rtx_insn *insn;
1590 insn = get_insns ();
1591 for (; insn; insn = NEXT_INSN (insn))
1593 tree this_block;
1595 /* Prevent lexical blocks from straddling section boundaries. */
1596 if (NOTE_P (insn))
1597 switch (NOTE_KIND (insn))
1599 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1601 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1602 s = BLOCK_SUPERCONTEXT (s))
1604 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1605 NOTE_BLOCK (note) = s;
1606 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1607 NOTE_BLOCK (note) = s;
1610 break;
1612 case NOTE_INSN_BEGIN_STMT:
1613 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1614 goto set_cur_block_to_this_block;
1616 default:
1617 continue;
1620 if (!active_insn_p (insn))
1621 continue;
1623 /* Avoid putting scope notes between jump table and its label. */
1624 if (JUMP_TABLE_DATA_P (insn))
1625 continue;
1627 this_block = insn_scope (insn);
1628 /* For sequences compute scope resulting from merging all scopes
1629 of instructions nested inside. */
1630 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1632 int i;
1634 this_block = NULL;
1635 for (i = 0; i < body->len (); i++)
1636 this_block = choose_inner_scope (this_block,
1637 insn_scope (body->insn (i)));
1639 set_cur_block_to_this_block:
1640 if (! this_block)
1642 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1643 continue;
1644 else
1645 this_block = DECL_INITIAL (cfun->decl);
1648 if (this_block != cur_block)
1650 change_scope (insn, cur_block, this_block);
1651 cur_block = this_block;
1655 /* change_scope emits before the insn, not after. */
1656 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1657 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1658 delete_insn (note);
1660 reorder_blocks ();
1663 static const char *some_local_dynamic_name;
1665 /* Locate some local-dynamic symbol still in use by this function
1666 so that we can print its name in local-dynamic base patterns.
1667 Return null if there are no local-dynamic references. */
1669 const char *
1670 get_some_local_dynamic_name ()
1672 subrtx_iterator::array_type array;
1673 rtx_insn *insn;
1675 if (some_local_dynamic_name)
1676 return some_local_dynamic_name;
1678 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1679 if (NONDEBUG_INSN_P (insn))
1680 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1682 const_rtx x = *iter;
1683 if (GET_CODE (x) == SYMBOL_REF)
1685 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1686 return some_local_dynamic_name = XSTR (x, 0);
1687 if (CONSTANT_POOL_ADDRESS_P (x))
1688 iter.substitute (get_pool_constant (x));
1692 return 0;
1695 /* Output assembler code for the start of a function,
1696 and initialize some of the variables in this file
1697 for the new function. The label for the function and associated
1698 assembler pseudo-ops have already been output in `assemble_start_function'.
1700 FIRST is the first insn of the rtl for the function being compiled.
1701 FILE is the file to write assembler code to.
1702 OPTIMIZE_P is nonzero if we should eliminate redundant
1703 test and compare insns. */
1705 void
1706 final_start_function (rtx_insn *first, FILE *file,
1707 int optimize_p ATTRIBUTE_UNUSED)
1709 block_depth = 0;
1711 this_is_asm_operands = 0;
1713 need_profile_function = false;
1715 last_filename = LOCATION_FILE (prologue_location);
1716 last_linenum = LOCATION_LINE (prologue_location);
1717 last_columnnum = LOCATION_COLUMN (prologue_location);
1718 last_discriminator = discriminator = 0;
1720 high_block_linenum = high_function_linenum = last_linenum;
1722 if (flag_sanitize & SANITIZE_ADDRESS)
1723 asan_function_start ();
1725 if (!DECL_IGNORED_P (current_function_decl))
1726 debug_hooks->begin_prologue (last_linenum, last_columnnum, last_filename);
1728 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1729 dwarf2out_begin_prologue (0, 0, NULL);
1731 #ifdef LEAF_REG_REMAP
1732 if (crtl->uses_only_leaf_regs)
1733 leaf_renumber_regs (first);
1734 #endif
1736 /* The Sun386i and perhaps other machines don't work right
1737 if the profiling code comes after the prologue. */
1738 if (targetm.profile_before_prologue () && crtl->profile)
1740 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1741 && targetm.have_prologue ())
1743 rtx_insn *insn;
1744 for (insn = first; insn; insn = NEXT_INSN (insn))
1745 if (!NOTE_P (insn))
1747 insn = NULL;
1748 break;
1750 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1751 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1752 break;
1753 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1754 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1755 continue;
1756 else
1758 insn = NULL;
1759 break;
1762 if (insn)
1763 need_profile_function = true;
1764 else
1765 profile_function (file);
1767 else
1768 profile_function (file);
1771 /* If debugging, assign block numbers to all of the blocks in this
1772 function. */
1773 if (write_symbols)
1775 reemit_insn_block_notes ();
1776 number_blocks (current_function_decl);
1777 /* We never actually put out begin/end notes for the top-level
1778 block in the function. But, conceptually, that block is
1779 always needed. */
1780 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1783 HOST_WIDE_INT min_frame_size = constant_lower_bound (get_frame_size ());
1784 if (warn_frame_larger_than
1785 && min_frame_size > frame_larger_than_size)
1787 /* Issue a warning */
1788 warning (OPT_Wframe_larger_than_,
1789 "the frame size of %wd bytes is larger than %wd bytes",
1790 min_frame_size, frame_larger_than_size);
1793 /* First output the function prologue: code to set up the stack frame. */
1794 targetm.asm_out.function_prologue (file);
1796 /* If the machine represents the prologue as RTL, the profiling code must
1797 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1798 if (! targetm.have_prologue ())
1799 profile_after_prologue (file);
1802 static void
1803 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1805 if (!targetm.profile_before_prologue () && crtl->profile)
1806 profile_function (file);
1809 static void
1810 profile_function (FILE *file ATTRIBUTE_UNUSED)
1812 #ifndef NO_PROFILE_COUNTERS
1813 # define NO_PROFILE_COUNTERS 0
1814 #endif
1815 #ifdef ASM_OUTPUT_REG_PUSH
1816 rtx sval = NULL, chain = NULL;
1818 if (cfun->returns_struct)
1819 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1820 true);
1821 if (cfun->static_chain_decl)
1822 chain = targetm.calls.static_chain (current_function_decl, true);
1823 #endif /* ASM_OUTPUT_REG_PUSH */
1825 if (! NO_PROFILE_COUNTERS)
1827 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1828 switch_to_section (data_section);
1829 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1830 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1831 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1834 switch_to_section (current_function_section ());
1836 #ifdef ASM_OUTPUT_REG_PUSH
1837 if (sval && REG_P (sval))
1838 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1839 if (chain && REG_P (chain))
1840 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1841 #endif
1843 FUNCTION_PROFILER (file, current_function_funcdef_no);
1845 #ifdef ASM_OUTPUT_REG_PUSH
1846 if (chain && REG_P (chain))
1847 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1848 if (sval && REG_P (sval))
1849 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1850 #endif
1853 /* Output assembler code for the end of a function.
1854 For clarity, args are same as those of `final_start_function'
1855 even though not all of them are needed. */
1857 void
1858 final_end_function (void)
1860 app_disable ();
1862 if (!DECL_IGNORED_P (current_function_decl))
1863 debug_hooks->end_function (high_function_linenum);
1865 /* Finally, output the function epilogue:
1866 code to restore the stack frame and return to the caller. */
1867 targetm.asm_out.function_epilogue (asm_out_file);
1869 /* And debug output. */
1870 if (!DECL_IGNORED_P (current_function_decl))
1871 debug_hooks->end_epilogue (last_linenum, last_filename);
1873 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1874 && dwarf2out_do_frame ())
1875 dwarf2out_end_epilogue (last_linenum, last_filename);
1877 some_local_dynamic_name = 0;
1881 /* Dumper helper for basic block information. FILE is the assembly
1882 output file, and INSN is the instruction being emitted. */
1884 static void
1885 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1886 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1888 basic_block bb;
1890 if (!flag_debug_asm)
1891 return;
1893 if (INSN_UID (insn) < bb_map_size
1894 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1896 edge e;
1897 edge_iterator ei;
1899 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1900 if (bb->count.initialized_p ())
1902 fprintf (file, ", count:");
1903 bb->count.dump (file);
1905 fprintf (file, " seq:%d", (*bb_seqn)++);
1906 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1907 FOR_EACH_EDGE (e, ei, bb->preds)
1909 dump_edge_info (file, e, TDF_DETAILS, 0);
1911 fprintf (file, "\n");
1913 if (INSN_UID (insn) < bb_map_size
1914 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1916 edge e;
1917 edge_iterator ei;
1919 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1920 FOR_EACH_EDGE (e, ei, bb->succs)
1922 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1924 fprintf (file, "\n");
1928 /* Output assembler code for some insns: all or part of a function.
1929 For description of args, see `final_start_function', above. */
1931 void
1932 final (rtx_insn *first, FILE *file, int optimize_p)
1934 rtx_insn *insn, *next;
1935 int seen = 0;
1937 /* Used for -dA dump. */
1938 basic_block *start_to_bb = NULL;
1939 basic_block *end_to_bb = NULL;
1940 int bb_map_size = 0;
1941 int bb_seqn = 0;
1943 last_ignored_compare = 0;
1945 if (HAVE_cc0)
1946 for (insn = first; insn; insn = NEXT_INSN (insn))
1948 /* If CC tracking across branches is enabled, record the insn which
1949 jumps to each branch only reached from one place. */
1950 if (optimize_p && JUMP_P (insn))
1952 rtx lab = JUMP_LABEL (insn);
1953 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
1955 LABEL_REFS (lab) = insn;
1960 init_recog ();
1962 CC_STATUS_INIT;
1964 if (flag_debug_asm)
1966 basic_block bb;
1968 bb_map_size = get_max_uid () + 1;
1969 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
1970 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
1972 /* There is no cfg for a thunk. */
1973 if (!cfun->is_thunk)
1974 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1976 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
1977 end_to_bb[INSN_UID (BB_END (bb))] = bb;
1981 /* Output the insns. */
1982 for (insn = first; insn;)
1984 if (HAVE_ATTR_length)
1986 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1988 /* This can be triggered by bugs elsewhere in the compiler if
1989 new insns are created after init_insn_lengths is called. */
1990 gcc_assert (NOTE_P (insn));
1991 insn_current_address = -1;
1993 else
1994 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1997 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
1998 bb_map_size, &bb_seqn);
1999 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2002 if (flag_debug_asm)
2004 free (start_to_bb);
2005 free (end_to_bb);
2008 /* Remove CFI notes, to avoid compare-debug failures. */
2009 for (insn = first; insn; insn = next)
2011 next = NEXT_INSN (insn);
2012 if (NOTE_P (insn)
2013 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2014 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2015 delete_insn (insn);
2019 const char *
2020 get_insn_template (int code, rtx insn)
2022 switch (insn_data[code].output_format)
2024 case INSN_OUTPUT_FORMAT_SINGLE:
2025 return insn_data[code].output.single;
2026 case INSN_OUTPUT_FORMAT_MULTI:
2027 return insn_data[code].output.multi[which_alternative];
2028 case INSN_OUTPUT_FORMAT_FUNCTION:
2029 gcc_assert (insn);
2030 return (*insn_data[code].output.function) (recog_data.operand,
2031 as_a <rtx_insn *> (insn));
2033 default:
2034 gcc_unreachable ();
2038 /* Emit the appropriate declaration for an alternate-entry-point
2039 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2040 LABEL_KIND != LABEL_NORMAL.
2042 The case fall-through in this function is intentional. */
2043 static void
2044 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2046 const char *name = LABEL_NAME (insn);
2048 switch (LABEL_KIND (insn))
2050 case LABEL_WEAK_ENTRY:
2051 #ifdef ASM_WEAKEN_LABEL
2052 ASM_WEAKEN_LABEL (file, name);
2053 gcc_fallthrough ();
2054 #endif
2055 case LABEL_GLOBAL_ENTRY:
2056 targetm.asm_out.globalize_label (file, name);
2057 gcc_fallthrough ();
2058 case LABEL_STATIC_ENTRY:
2059 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2060 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2061 #endif
2062 ASM_OUTPUT_LABEL (file, name);
2063 break;
2065 case LABEL_NORMAL:
2066 default:
2067 gcc_unreachable ();
2071 /* Given a CALL_INSN, find and return the nested CALL. */
2072 static rtx
2073 call_from_call_insn (rtx_call_insn *insn)
2075 rtx x;
2076 gcc_assert (CALL_P (insn));
2077 x = PATTERN (insn);
2079 while (GET_CODE (x) != CALL)
2081 switch (GET_CODE (x))
2083 default:
2084 gcc_unreachable ();
2085 case COND_EXEC:
2086 x = COND_EXEC_CODE (x);
2087 break;
2088 case PARALLEL:
2089 x = XVECEXP (x, 0, 0);
2090 break;
2091 case SET:
2092 x = XEXP (x, 1);
2093 break;
2096 return x;
2099 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2100 corresponding source line, if available. */
2102 static void
2103 asm_show_source (const char *filename, int linenum)
2105 if (!filename)
2106 return;
2108 int line_size;
2109 const char *line = location_get_source_line (filename, linenum, &line_size);
2110 if (!line)
2111 return;
2113 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2114 /* "line" is not 0-terminated, so we must use line_size. */
2115 fwrite (line, 1, line_size, asm_out_file);
2116 fputc ('\n', asm_out_file);
2119 /* The final scan for one insn, INSN.
2120 Args are same as in `final', except that INSN
2121 is the insn being scanned.
2122 Value returned is the next insn to be scanned.
2124 NOPEEPHOLES is the flag to disallow peephole processing (currently
2125 used for within delayed branch sequence output).
2127 SEEN is used to track the end of the prologue, for emitting
2128 debug information. We force the emission of a line note after
2129 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2131 rtx_insn *
2132 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2133 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2135 #if HAVE_cc0
2136 rtx set;
2137 #endif
2138 rtx_insn *next;
2139 rtx_jump_table_data *table;
2141 insn_counter++;
2143 /* Ignore deleted insns. These can occur when we split insns (due to a
2144 template of "#") while not optimizing. */
2145 if (insn->deleted ())
2146 return NEXT_INSN (insn);
2148 switch (GET_CODE (insn))
2150 case NOTE:
2151 switch (NOTE_KIND (insn))
2153 case NOTE_INSN_DELETED:
2154 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2155 break;
2157 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2158 in_cold_section_p = !in_cold_section_p;
2160 if (in_cold_section_p)
2161 cold_function_name
2162 = clone_function_name (current_function_decl, "cold");
2164 if (dwarf2out_do_frame ())
2166 dwarf2out_switch_text_section ();
2167 if (!dwarf2_debug_info_emitted_p (current_function_decl)
2168 && !DECL_IGNORED_P (current_function_decl))
2169 debug_hooks->switch_text_section ();
2171 else if (!DECL_IGNORED_P (current_function_decl))
2172 debug_hooks->switch_text_section ();
2174 switch_to_section (current_function_section ());
2175 targetm.asm_out.function_switched_text_sections (asm_out_file,
2176 current_function_decl,
2177 in_cold_section_p);
2178 /* Emit a label for the split cold section. Form label name by
2179 suffixing "cold" to the original function's name. */
2180 if (in_cold_section_p)
2182 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2183 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2184 IDENTIFIER_POINTER
2185 (cold_function_name),
2186 current_function_decl);
2187 #else
2188 ASM_OUTPUT_LABEL (asm_out_file,
2189 IDENTIFIER_POINTER (cold_function_name));
2190 #endif
2192 break;
2194 case NOTE_INSN_BASIC_BLOCK:
2195 if (need_profile_function)
2197 profile_function (asm_out_file);
2198 need_profile_function = false;
2201 if (targetm.asm_out.unwind_emit)
2202 targetm.asm_out.unwind_emit (asm_out_file, insn);
2204 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2206 break;
2208 case NOTE_INSN_EH_REGION_BEG:
2209 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2210 NOTE_EH_HANDLER (insn));
2211 break;
2213 case NOTE_INSN_EH_REGION_END:
2214 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2215 NOTE_EH_HANDLER (insn));
2216 break;
2218 case NOTE_INSN_PROLOGUE_END:
2219 targetm.asm_out.function_end_prologue (file);
2220 profile_after_prologue (file);
2222 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2224 *seen |= SEEN_EMITTED;
2225 force_source_line = true;
2227 else
2228 *seen |= SEEN_NOTE;
2230 break;
2232 case NOTE_INSN_EPILOGUE_BEG:
2233 if (!DECL_IGNORED_P (current_function_decl))
2234 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2235 targetm.asm_out.function_begin_epilogue (file);
2236 break;
2238 case NOTE_INSN_CFI:
2239 dwarf2out_emit_cfi (NOTE_CFI (insn));
2240 break;
2242 case NOTE_INSN_CFI_LABEL:
2243 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2244 NOTE_LABEL_NUMBER (insn));
2245 break;
2247 case NOTE_INSN_FUNCTION_BEG:
2248 if (need_profile_function)
2250 profile_function (asm_out_file);
2251 need_profile_function = false;
2254 app_disable ();
2255 if (!DECL_IGNORED_P (current_function_decl))
2256 debug_hooks->end_prologue (last_linenum, last_filename);
2258 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2260 *seen |= SEEN_EMITTED;
2261 force_source_line = true;
2263 else
2264 *seen |= SEEN_NOTE;
2266 break;
2268 case NOTE_INSN_BLOCK_BEG:
2269 if (debug_info_level == DINFO_LEVEL_NORMAL
2270 || debug_info_level == DINFO_LEVEL_VERBOSE
2271 || write_symbols == DWARF2_DEBUG
2272 || write_symbols == VMS_AND_DWARF2_DEBUG
2273 || write_symbols == VMS_DEBUG)
2275 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2277 app_disable ();
2278 ++block_depth;
2279 high_block_linenum = last_linenum;
2281 /* Output debugging info about the symbol-block beginning. */
2282 if (!DECL_IGNORED_P (current_function_decl))
2283 debug_hooks->begin_block (last_linenum, n);
2285 /* Mark this block as output. */
2286 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2287 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2289 if (write_symbols == DBX_DEBUG)
2291 location_t *locus_ptr
2292 = block_nonartificial_location (NOTE_BLOCK (insn));
2294 if (locus_ptr != NULL)
2296 override_filename = LOCATION_FILE (*locus_ptr);
2297 override_linenum = LOCATION_LINE (*locus_ptr);
2298 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2301 break;
2303 case NOTE_INSN_BLOCK_END:
2304 if (debug_info_level == DINFO_LEVEL_NORMAL
2305 || debug_info_level == DINFO_LEVEL_VERBOSE
2306 || write_symbols == DWARF2_DEBUG
2307 || write_symbols == VMS_AND_DWARF2_DEBUG
2308 || write_symbols == VMS_DEBUG)
2310 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2312 app_disable ();
2314 /* End of a symbol-block. */
2315 --block_depth;
2316 gcc_assert (block_depth >= 0);
2318 if (!DECL_IGNORED_P (current_function_decl))
2319 debug_hooks->end_block (high_block_linenum, n);
2320 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2321 == in_cold_section_p);
2323 if (write_symbols == DBX_DEBUG)
2325 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2326 location_t *locus_ptr
2327 = block_nonartificial_location (outer_block);
2329 if (locus_ptr != NULL)
2331 override_filename = LOCATION_FILE (*locus_ptr);
2332 override_linenum = LOCATION_LINE (*locus_ptr);
2333 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2335 else
2337 override_filename = NULL;
2338 override_linenum = 0;
2339 override_columnnum = 0;
2342 break;
2344 case NOTE_INSN_DELETED_LABEL:
2345 /* Emit the label. We may have deleted the CODE_LABEL because
2346 the label could be proved to be unreachable, though still
2347 referenced (in the form of having its address taken. */
2348 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2349 break;
2351 case NOTE_INSN_DELETED_DEBUG_LABEL:
2352 /* Similarly, but need to use different namespace for it. */
2353 if (CODE_LABEL_NUMBER (insn) != -1)
2354 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2355 break;
2357 case NOTE_INSN_VAR_LOCATION:
2358 case NOTE_INSN_CALL_ARG_LOCATION:
2359 if (!DECL_IGNORED_P (current_function_decl))
2360 debug_hooks->var_location (insn);
2361 break;
2363 case NOTE_INSN_BEGIN_STMT:
2364 gcc_checking_assert (cfun->debug_nonbind_markers);
2365 if (!DECL_IGNORED_P (current_function_decl)
2366 && notice_source_line (insn, NULL))
2368 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2369 last_filename, last_discriminator,
2370 true);
2372 break;
2374 default:
2375 gcc_unreachable ();
2376 break;
2378 break;
2380 case BARRIER:
2381 break;
2383 case CODE_LABEL:
2384 /* The target port might emit labels in the output function for
2385 some insn, e.g. sh.c output_branchy_insn. */
2386 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2388 int align = LABEL_TO_ALIGNMENT (insn);
2389 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2390 int max_skip = LABEL_TO_MAX_SKIP (insn);
2391 #endif
2393 if (align && NEXT_INSN (insn))
2395 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2396 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2397 #else
2398 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2399 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2400 #else
2401 ASM_OUTPUT_ALIGN (file, align);
2402 #endif
2403 #endif
2406 CC_STATUS_INIT;
2408 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2409 debug_hooks->label (as_a <rtx_code_label *> (insn));
2411 app_disable ();
2413 /* If this label is followed by a jump-table, make sure we put
2414 the label in the read-only section. Also possibly write the
2415 label and jump table together. */
2416 table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2417 if (table)
2419 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2420 /* In this case, the case vector is being moved by the
2421 target, so don't output the label at all. Leave that
2422 to the back end macros. */
2423 #else
2424 if (! JUMP_TABLES_IN_TEXT_SECTION)
2426 int log_align;
2428 switch_to_section (targetm.asm_out.function_rodata_section
2429 (current_function_decl));
2431 #ifdef ADDR_VEC_ALIGN
2432 log_align = ADDR_VEC_ALIGN (table);
2433 #else
2434 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2435 #endif
2436 ASM_OUTPUT_ALIGN (file, log_align);
2438 else
2439 switch_to_section (current_function_section ());
2441 #ifdef ASM_OUTPUT_CASE_LABEL
2442 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2443 #else
2444 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2445 #endif
2446 #endif
2447 break;
2449 if (LABEL_ALT_ENTRY_P (insn))
2450 output_alternate_entry_point (file, insn);
2451 else
2452 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2453 break;
2455 default:
2457 rtx body = PATTERN (insn);
2458 int insn_code_number;
2459 const char *templ;
2460 bool is_stmt, *is_stmt_p;
2462 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2464 is_stmt = false;
2465 is_stmt_p = NULL;
2467 else
2468 is_stmt_p = &is_stmt;
2470 /* Reset this early so it is correct for ASM statements. */
2471 current_insn_predicate = NULL_RTX;
2473 /* An INSN, JUMP_INSN or CALL_INSN.
2474 First check for special kinds that recog doesn't recognize. */
2476 if (GET_CODE (body) == USE /* These are just declarations. */
2477 || GET_CODE (body) == CLOBBER)
2478 break;
2480 #if HAVE_cc0
2482 /* If there is a REG_CC_SETTER note on this insn, it means that
2483 the setting of the condition code was done in the delay slot
2484 of the insn that branched here. So recover the cc status
2485 from the insn that set it. */
2487 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2488 if (note)
2490 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2491 NOTICE_UPDATE_CC (PATTERN (other), other);
2492 cc_prev_status = cc_status;
2495 #endif
2497 /* Detect insns that are really jump-tables
2498 and output them as such. */
2500 if (JUMP_TABLE_DATA_P (insn))
2502 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2503 int vlen, idx;
2504 #endif
2506 if (! JUMP_TABLES_IN_TEXT_SECTION)
2507 switch_to_section (targetm.asm_out.function_rodata_section
2508 (current_function_decl));
2509 else
2510 switch_to_section (current_function_section ());
2512 app_disable ();
2514 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2515 if (GET_CODE (body) == ADDR_VEC)
2517 #ifdef ASM_OUTPUT_ADDR_VEC
2518 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2519 #else
2520 gcc_unreachable ();
2521 #endif
2523 else
2525 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2526 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2527 #else
2528 gcc_unreachable ();
2529 #endif
2531 #else
2532 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2533 for (idx = 0; idx < vlen; idx++)
2535 if (GET_CODE (body) == ADDR_VEC)
2537 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2538 ASM_OUTPUT_ADDR_VEC_ELT
2539 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2540 #else
2541 gcc_unreachable ();
2542 #endif
2544 else
2546 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2547 ASM_OUTPUT_ADDR_DIFF_ELT
2548 (file,
2549 body,
2550 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2551 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2552 #else
2553 gcc_unreachable ();
2554 #endif
2557 #ifdef ASM_OUTPUT_CASE_END
2558 ASM_OUTPUT_CASE_END (file,
2559 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2560 insn);
2561 #endif
2562 #endif
2564 switch_to_section (current_function_section ());
2566 break;
2568 /* Output this line note if it is the first or the last line
2569 note in a row. */
2570 if (!DECL_IGNORED_P (current_function_decl)
2571 && notice_source_line (insn, is_stmt_p))
2573 if (flag_verbose_asm)
2574 asm_show_source (last_filename, last_linenum);
2575 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2576 last_filename, last_discriminator,
2577 is_stmt);
2580 if (GET_CODE (body) == PARALLEL
2581 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2582 body = XVECEXP (body, 0, 0);
2584 if (GET_CODE (body) == ASM_INPUT)
2586 const char *string = XSTR (body, 0);
2588 /* There's no telling what that did to the condition codes. */
2589 CC_STATUS_INIT;
2591 if (string[0])
2593 expanded_location loc;
2595 app_enable ();
2596 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2597 if (*loc.file && loc.line)
2598 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2599 ASM_COMMENT_START, loc.line, loc.file);
2600 fprintf (asm_out_file, "\t%s\n", string);
2601 #if HAVE_AS_LINE_ZERO
2602 if (*loc.file && loc.line)
2603 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2604 #endif
2606 break;
2609 /* Detect `asm' construct with operands. */
2610 if (asm_noperands (body) >= 0)
2612 unsigned int noperands = asm_noperands (body);
2613 rtx *ops = XALLOCAVEC (rtx, noperands);
2614 const char *string;
2615 location_t loc;
2616 expanded_location expanded;
2618 /* There's no telling what that did to the condition codes. */
2619 CC_STATUS_INIT;
2621 /* Get out the operand values. */
2622 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2623 /* Inhibit dying on what would otherwise be compiler bugs. */
2624 insn_noperands = noperands;
2625 this_is_asm_operands = insn;
2626 expanded = expand_location (loc);
2628 #ifdef FINAL_PRESCAN_INSN
2629 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2630 #endif
2632 /* Output the insn using them. */
2633 if (string[0])
2635 app_enable ();
2636 if (expanded.file && expanded.line)
2637 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2638 ASM_COMMENT_START, expanded.line, expanded.file);
2639 output_asm_insn (string, ops);
2640 #if HAVE_AS_LINE_ZERO
2641 if (expanded.file && expanded.line)
2642 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2643 #endif
2646 if (targetm.asm_out.final_postscan_insn)
2647 targetm.asm_out.final_postscan_insn (file, insn, ops,
2648 insn_noperands);
2650 this_is_asm_operands = 0;
2651 break;
2654 app_disable ();
2656 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2658 /* A delayed-branch sequence */
2659 int i;
2661 final_sequence = seq;
2663 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2664 force the restoration of a comparison that was previously
2665 thought unnecessary. If that happens, cancel this sequence
2666 and cause that insn to be restored. */
2668 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2669 if (next != seq->insn (1))
2671 final_sequence = 0;
2672 return next;
2675 for (i = 1; i < seq->len (); i++)
2677 rtx_insn *insn = seq->insn (i);
2678 rtx_insn *next = NEXT_INSN (insn);
2679 /* We loop in case any instruction in a delay slot gets
2680 split. */
2682 insn = final_scan_insn (insn, file, 0, 1, seen);
2683 while (insn != next);
2685 #ifdef DBR_OUTPUT_SEQEND
2686 DBR_OUTPUT_SEQEND (file);
2687 #endif
2688 final_sequence = 0;
2690 /* If the insn requiring the delay slot was a CALL_INSN, the
2691 insns in the delay slot are actually executed before the
2692 called function. Hence we don't preserve any CC-setting
2693 actions in these insns and the CC must be marked as being
2694 clobbered by the function. */
2695 if (CALL_P (seq->insn (0)))
2697 CC_STATUS_INIT;
2699 break;
2702 /* We have a real machine instruction as rtl. */
2704 body = PATTERN (insn);
2706 #if HAVE_cc0
2707 set = single_set (insn);
2709 /* Check for redundant test and compare instructions
2710 (when the condition codes are already set up as desired).
2711 This is done only when optimizing; if not optimizing,
2712 it should be possible for the user to alter a variable
2713 with the debugger in between statements
2714 and the next statement should reexamine the variable
2715 to compute the condition codes. */
2717 if (optimize_p)
2719 if (set
2720 && GET_CODE (SET_DEST (set)) == CC0
2721 && insn != last_ignored_compare)
2723 rtx src1, src2;
2724 if (GET_CODE (SET_SRC (set)) == SUBREG)
2725 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2727 src1 = SET_SRC (set);
2728 src2 = NULL_RTX;
2729 if (GET_CODE (SET_SRC (set)) == COMPARE)
2731 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2732 XEXP (SET_SRC (set), 0)
2733 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2734 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2735 XEXP (SET_SRC (set), 1)
2736 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2737 if (XEXP (SET_SRC (set), 1)
2738 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2739 src2 = XEXP (SET_SRC (set), 0);
2741 if ((cc_status.value1 != 0
2742 && rtx_equal_p (src1, cc_status.value1))
2743 || (cc_status.value2 != 0
2744 && rtx_equal_p (src1, cc_status.value2))
2745 || (src2 != 0 && cc_status.value1 != 0
2746 && rtx_equal_p (src2, cc_status.value1))
2747 || (src2 != 0 && cc_status.value2 != 0
2748 && rtx_equal_p (src2, cc_status.value2)))
2750 /* Don't delete insn if it has an addressing side-effect. */
2751 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2752 /* or if anything in it is volatile. */
2753 && ! volatile_refs_p (PATTERN (insn)))
2755 /* We don't really delete the insn; just ignore it. */
2756 last_ignored_compare = insn;
2757 break;
2763 /* If this is a conditional branch, maybe modify it
2764 if the cc's are in a nonstandard state
2765 so that it accomplishes the same thing that it would
2766 do straightforwardly if the cc's were set up normally. */
2768 if (cc_status.flags != 0
2769 && JUMP_P (insn)
2770 && GET_CODE (body) == SET
2771 && SET_DEST (body) == pc_rtx
2772 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2773 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2774 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2776 /* This function may alter the contents of its argument
2777 and clear some of the cc_status.flags bits.
2778 It may also return 1 meaning condition now always true
2779 or -1 meaning condition now always false
2780 or 2 meaning condition nontrivial but altered. */
2781 int result = alter_cond (XEXP (SET_SRC (body), 0));
2782 /* If condition now has fixed value, replace the IF_THEN_ELSE
2783 with its then-operand or its else-operand. */
2784 if (result == 1)
2785 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2786 if (result == -1)
2787 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2789 /* The jump is now either unconditional or a no-op.
2790 If it has become a no-op, don't try to output it.
2791 (It would not be recognized.) */
2792 if (SET_SRC (body) == pc_rtx)
2794 delete_insn (insn);
2795 break;
2797 else if (ANY_RETURN_P (SET_SRC (body)))
2798 /* Replace (set (pc) (return)) with (return). */
2799 PATTERN (insn) = body = SET_SRC (body);
2801 /* Rerecognize the instruction if it has changed. */
2802 if (result != 0)
2803 INSN_CODE (insn) = -1;
2806 /* If this is a conditional trap, maybe modify it if the cc's
2807 are in a nonstandard state so that it accomplishes the same
2808 thing that it would do straightforwardly if the cc's were
2809 set up normally. */
2810 if (cc_status.flags != 0
2811 && NONJUMP_INSN_P (insn)
2812 && GET_CODE (body) == TRAP_IF
2813 && COMPARISON_P (TRAP_CONDITION (body))
2814 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2816 /* This function may alter the contents of its argument
2817 and clear some of the cc_status.flags bits.
2818 It may also return 1 meaning condition now always true
2819 or -1 meaning condition now always false
2820 or 2 meaning condition nontrivial but altered. */
2821 int result = alter_cond (TRAP_CONDITION (body));
2823 /* If TRAP_CONDITION has become always false, delete the
2824 instruction. */
2825 if (result == -1)
2827 delete_insn (insn);
2828 break;
2831 /* If TRAP_CONDITION has become always true, replace
2832 TRAP_CONDITION with const_true_rtx. */
2833 if (result == 1)
2834 TRAP_CONDITION (body) = const_true_rtx;
2836 /* Rerecognize the instruction if it has changed. */
2837 if (result != 0)
2838 INSN_CODE (insn) = -1;
2841 /* Make same adjustments to instructions that examine the
2842 condition codes without jumping and instructions that
2843 handle conditional moves (if this machine has either one). */
2845 if (cc_status.flags != 0
2846 && set != 0)
2848 rtx cond_rtx, then_rtx, else_rtx;
2850 if (!JUMP_P (insn)
2851 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2853 cond_rtx = XEXP (SET_SRC (set), 0);
2854 then_rtx = XEXP (SET_SRC (set), 1);
2855 else_rtx = XEXP (SET_SRC (set), 2);
2857 else
2859 cond_rtx = SET_SRC (set);
2860 then_rtx = const_true_rtx;
2861 else_rtx = const0_rtx;
2864 if (COMPARISON_P (cond_rtx)
2865 && XEXP (cond_rtx, 0) == cc0_rtx)
2867 int result;
2868 result = alter_cond (cond_rtx);
2869 if (result == 1)
2870 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2871 else if (result == -1)
2872 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2873 else if (result == 2)
2874 INSN_CODE (insn) = -1;
2875 if (SET_DEST (set) == SET_SRC (set))
2876 delete_insn (insn);
2880 #endif
2882 /* Do machine-specific peephole optimizations if desired. */
2884 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2886 rtx_insn *next = peephole (insn);
2887 /* When peepholing, if there were notes within the peephole,
2888 emit them before the peephole. */
2889 if (next != 0 && next != NEXT_INSN (insn))
2891 rtx_insn *note, *prev = PREV_INSN (insn);
2893 for (note = NEXT_INSN (insn); note != next;
2894 note = NEXT_INSN (note))
2895 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2897 /* Put the notes in the proper position for a later
2898 rescan. For example, the SH target can do this
2899 when generating a far jump in a delayed branch
2900 sequence. */
2901 note = NEXT_INSN (insn);
2902 SET_PREV_INSN (note) = prev;
2903 SET_NEXT_INSN (prev) = note;
2904 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2905 SET_PREV_INSN (insn) = PREV_INSN (next);
2906 SET_NEXT_INSN (insn) = next;
2907 SET_PREV_INSN (next) = insn;
2910 /* PEEPHOLE might have changed this. */
2911 body = PATTERN (insn);
2914 /* Try to recognize the instruction.
2915 If successful, verify that the operands satisfy the
2916 constraints for the instruction. Crash if they don't,
2917 since `reload' should have changed them so that they do. */
2919 insn_code_number = recog_memoized (insn);
2920 cleanup_subreg_operands (insn);
2922 /* Dump the insn in the assembly for debugging (-dAP).
2923 If the final dump is requested as slim RTL, dump slim
2924 RTL to the assembly file also. */
2925 if (flag_dump_rtl_in_asm)
2927 print_rtx_head = ASM_COMMENT_START;
2928 if (! (dump_flags & TDF_SLIM))
2929 print_rtl_single (asm_out_file, insn);
2930 else
2931 dump_insn_slim (asm_out_file, insn);
2932 print_rtx_head = "";
2935 if (! constrain_operands_cached (insn, 1))
2936 fatal_insn_not_found (insn);
2938 /* Some target machines need to prescan each insn before
2939 it is output. */
2941 #ifdef FINAL_PRESCAN_INSN
2942 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2943 #endif
2945 if (targetm.have_conditional_execution ()
2946 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2947 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2949 #if HAVE_cc0
2950 cc_prev_status = cc_status;
2952 /* Update `cc_status' for this instruction.
2953 The instruction's output routine may change it further.
2954 If the output routine for a jump insn needs to depend
2955 on the cc status, it should look at cc_prev_status. */
2957 NOTICE_UPDATE_CC (body, insn);
2958 #endif
2960 current_output_insn = debug_insn = insn;
2962 /* Find the proper template for this insn. */
2963 templ = get_insn_template (insn_code_number, insn);
2965 /* If the C code returns 0, it means that it is a jump insn
2966 which follows a deleted test insn, and that test insn
2967 needs to be reinserted. */
2968 if (templ == 0)
2970 rtx_insn *prev;
2972 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2974 /* We have already processed the notes between the setter and
2975 the user. Make sure we don't process them again, this is
2976 particularly important if one of the notes is a block
2977 scope note or an EH note. */
2978 for (prev = insn;
2979 prev != last_ignored_compare;
2980 prev = PREV_INSN (prev))
2982 if (NOTE_P (prev))
2983 delete_insn (prev); /* Use delete_note. */
2986 return prev;
2989 /* If the template is the string "#", it means that this insn must
2990 be split. */
2991 if (templ[0] == '#' && templ[1] == '\0')
2993 rtx_insn *new_rtx = try_split (body, insn, 0);
2995 /* If we didn't split the insn, go away. */
2996 if (new_rtx == insn && PATTERN (new_rtx) == body)
2997 fatal_insn ("could not split insn", insn);
2999 /* If we have a length attribute, this instruction should have
3000 been split in shorten_branches, to ensure that we would have
3001 valid length info for the splitees. */
3002 gcc_assert (!HAVE_ATTR_length);
3004 return new_rtx;
3007 /* ??? This will put the directives in the wrong place if
3008 get_insn_template outputs assembly directly. However calling it
3009 before get_insn_template breaks if the insns is split. */
3010 if (targetm.asm_out.unwind_emit_before_insn
3011 && targetm.asm_out.unwind_emit)
3012 targetm.asm_out.unwind_emit (asm_out_file, insn);
3014 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3015 if (call_insn != NULL)
3017 rtx x = call_from_call_insn (call_insn);
3018 x = XEXP (x, 0);
3019 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3021 tree t;
3022 x = XEXP (x, 0);
3023 t = SYMBOL_REF_DECL (x);
3024 if (t)
3025 assemble_external (t);
3029 /* Output assembler code from the template. */
3030 output_asm_insn (templ, recog_data.operand);
3032 /* Some target machines need to postscan each insn after
3033 it is output. */
3034 if (targetm.asm_out.final_postscan_insn)
3035 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3036 recog_data.n_operands);
3038 if (!targetm.asm_out.unwind_emit_before_insn
3039 && targetm.asm_out.unwind_emit)
3040 targetm.asm_out.unwind_emit (asm_out_file, insn);
3042 /* Let the debug info back-end know about this call. We do this only
3043 after the instruction has been emitted because labels that may be
3044 created to reference the call instruction must appear after it. */
3045 if (call_insn != NULL && !DECL_IGNORED_P (current_function_decl))
3046 debug_hooks->var_location (insn);
3048 current_output_insn = debug_insn = 0;
3051 return NEXT_INSN (insn);
3054 /* Return whether a source line note needs to be emitted before INSN.
3055 Sets IS_STMT to TRUE if the line should be marked as a possible
3056 breakpoint location. */
3058 static bool
3059 notice_source_line (rtx_insn *insn, bool *is_stmt)
3061 const char *filename;
3062 int linenum, columnnum;
3064 if (NOTE_MARKER_P (insn))
3066 location_t loc = NOTE_MARKER_LOCATION (insn);
3067 expanded_location xloc = expand_location (loc);
3068 if (xloc.line == 0)
3070 gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3071 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION);
3072 return false;
3074 filename = xloc.file;
3075 linenum = xloc.line;
3076 columnnum = xloc.column;
3077 force_source_line = true;
3079 else if (override_filename)
3081 filename = override_filename;
3082 linenum = override_linenum;
3083 columnnum = override_columnnum;
3085 else if (INSN_HAS_LOCATION (insn))
3087 expanded_location xloc = insn_location (insn);
3088 filename = xloc.file;
3089 linenum = xloc.line;
3090 columnnum = xloc.column;
3092 else
3094 filename = NULL;
3095 linenum = 0;
3096 columnnum = 0;
3099 if (filename == NULL)
3100 return false;
3102 if (force_source_line
3103 || filename != last_filename
3104 || last_linenum != linenum
3105 || (debug_column_info && last_columnnum != columnnum))
3107 force_source_line = false;
3108 last_filename = filename;
3109 last_linenum = linenum;
3110 last_columnnum = columnnum;
3111 last_discriminator = discriminator;
3112 if (is_stmt)
3113 *is_stmt = true;
3114 high_block_linenum = MAX (last_linenum, high_block_linenum);
3115 high_function_linenum = MAX (last_linenum, high_function_linenum);
3116 return true;
3119 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3121 /* If the discriminator changed, but the line number did not,
3122 output the line table entry with is_stmt false so the
3123 debugger does not treat this as a breakpoint location. */
3124 last_discriminator = discriminator;
3125 if (is_stmt)
3126 *is_stmt = false;
3127 return true;
3130 return false;
3133 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3134 directly to the desired hard register. */
3136 void
3137 cleanup_subreg_operands (rtx_insn *insn)
3139 int i;
3140 bool changed = false;
3141 extract_insn_cached (insn);
3142 for (i = 0; i < recog_data.n_operands; i++)
3144 /* The following test cannot use recog_data.operand when testing
3145 for a SUBREG: the underlying object might have been changed
3146 already if we are inside a match_operator expression that
3147 matches the else clause. Instead we test the underlying
3148 expression directly. */
3149 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3151 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3152 changed = true;
3154 else if (GET_CODE (recog_data.operand[i]) == PLUS
3155 || GET_CODE (recog_data.operand[i]) == MULT
3156 || MEM_P (recog_data.operand[i]))
3157 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3160 for (i = 0; i < recog_data.n_dups; i++)
3162 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3164 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3165 changed = true;
3167 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3168 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3169 || MEM_P (*recog_data.dup_loc[i]))
3170 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3172 if (changed)
3173 df_insn_rescan (insn);
3176 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3177 the thing it is a subreg of. Do it anyway if FINAL_P. */
3180 alter_subreg (rtx *xp, bool final_p)
3182 rtx x = *xp;
3183 rtx y = SUBREG_REG (x);
3185 /* simplify_subreg does not remove subreg from volatile references.
3186 We are required to. */
3187 if (MEM_P (y))
3189 poly_int64 offset = SUBREG_BYTE (x);
3191 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3192 contains 0 instead of the proper offset. See simplify_subreg. */
3193 if (paradoxical_subreg_p (x))
3194 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3196 if (final_p)
3197 *xp = adjust_address (y, GET_MODE (x), offset);
3198 else
3199 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3201 else if (REG_P (y) && HARD_REGISTER_P (y))
3203 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3204 SUBREG_BYTE (x));
3206 if (new_rtx != 0)
3207 *xp = new_rtx;
3208 else if (final_p && REG_P (y))
3210 /* Simplify_subreg can't handle some REG cases, but we have to. */
3211 unsigned int regno;
3212 poly_int64 offset;
3214 regno = subreg_regno (x);
3215 if (subreg_lowpart_p (x))
3216 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3217 else
3218 offset = SUBREG_BYTE (x);
3219 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3223 return *xp;
3226 /* Do alter_subreg on all the SUBREGs contained in X. */
3228 static rtx
3229 walk_alter_subreg (rtx *xp, bool *changed)
3231 rtx x = *xp;
3232 switch (GET_CODE (x))
3234 case PLUS:
3235 case MULT:
3236 case AND:
3237 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3238 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3239 break;
3241 case MEM:
3242 case ZERO_EXTEND:
3243 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3244 break;
3246 case SUBREG:
3247 *changed = true;
3248 return alter_subreg (xp, true);
3250 default:
3251 break;
3254 return *xp;
3257 #if HAVE_cc0
3259 /* Given BODY, the body of a jump instruction, alter the jump condition
3260 as required by the bits that are set in cc_status.flags.
3261 Not all of the bits there can be handled at this level in all cases.
3263 The value is normally 0.
3264 1 means that the condition has become always true.
3265 -1 means that the condition has become always false.
3266 2 means that COND has been altered. */
3268 static int
3269 alter_cond (rtx cond)
3271 int value = 0;
3273 if (cc_status.flags & CC_REVERSED)
3275 value = 2;
3276 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3279 if (cc_status.flags & CC_INVERTED)
3281 value = 2;
3282 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3285 if (cc_status.flags & CC_NOT_POSITIVE)
3286 switch (GET_CODE (cond))
3288 case LE:
3289 case LEU:
3290 case GEU:
3291 /* Jump becomes unconditional. */
3292 return 1;
3294 case GT:
3295 case GTU:
3296 case LTU:
3297 /* Jump becomes no-op. */
3298 return -1;
3300 case GE:
3301 PUT_CODE (cond, EQ);
3302 value = 2;
3303 break;
3305 case LT:
3306 PUT_CODE (cond, NE);
3307 value = 2;
3308 break;
3310 default:
3311 break;
3314 if (cc_status.flags & CC_NOT_NEGATIVE)
3315 switch (GET_CODE (cond))
3317 case GE:
3318 case GEU:
3319 /* Jump becomes unconditional. */
3320 return 1;
3322 case LT:
3323 case LTU:
3324 /* Jump becomes no-op. */
3325 return -1;
3327 case LE:
3328 case LEU:
3329 PUT_CODE (cond, EQ);
3330 value = 2;
3331 break;
3333 case GT:
3334 case GTU:
3335 PUT_CODE (cond, NE);
3336 value = 2;
3337 break;
3339 default:
3340 break;
3343 if (cc_status.flags & CC_NO_OVERFLOW)
3344 switch (GET_CODE (cond))
3346 case GEU:
3347 /* Jump becomes unconditional. */
3348 return 1;
3350 case LEU:
3351 PUT_CODE (cond, EQ);
3352 value = 2;
3353 break;
3355 case GTU:
3356 PUT_CODE (cond, NE);
3357 value = 2;
3358 break;
3360 case LTU:
3361 /* Jump becomes no-op. */
3362 return -1;
3364 default:
3365 break;
3368 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3369 switch (GET_CODE (cond))
3371 default:
3372 gcc_unreachable ();
3374 case NE:
3375 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3376 value = 2;
3377 break;
3379 case EQ:
3380 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3381 value = 2;
3382 break;
3385 if (cc_status.flags & CC_NOT_SIGNED)
3386 /* The flags are valid if signed condition operators are converted
3387 to unsigned. */
3388 switch (GET_CODE (cond))
3390 case LE:
3391 PUT_CODE (cond, LEU);
3392 value = 2;
3393 break;
3395 case LT:
3396 PUT_CODE (cond, LTU);
3397 value = 2;
3398 break;
3400 case GT:
3401 PUT_CODE (cond, GTU);
3402 value = 2;
3403 break;
3405 case GE:
3406 PUT_CODE (cond, GEU);
3407 value = 2;
3408 break;
3410 default:
3411 break;
3414 return value;
3416 #endif
3418 /* Report inconsistency between the assembler template and the operands.
3419 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3421 void
3422 output_operand_lossage (const char *cmsgid, ...)
3424 char *fmt_string;
3425 char *new_message;
3426 const char *pfx_str;
3427 va_list ap;
3429 va_start (ap, cmsgid);
3431 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3432 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3433 new_message = xvasprintf (fmt_string, ap);
3435 if (this_is_asm_operands)
3436 error_for_asm (this_is_asm_operands, "%s", new_message);
3437 else
3438 internal_error ("%s", new_message);
3440 free (fmt_string);
3441 free (new_message);
3442 va_end (ap);
3445 /* Output of assembler code from a template, and its subroutines. */
3447 /* Annotate the assembly with a comment describing the pattern and
3448 alternative used. */
3450 static void
3451 output_asm_name (void)
3453 if (debug_insn)
3455 fprintf (asm_out_file, "\t%s %d\t",
3456 ASM_COMMENT_START, INSN_UID (debug_insn));
3458 fprintf (asm_out_file, "[c=%d",
3459 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3460 if (HAVE_ATTR_length)
3461 fprintf (asm_out_file, " l=%d",
3462 get_attr_length (debug_insn));
3463 fprintf (asm_out_file, "] ");
3465 int num = INSN_CODE (debug_insn);
3466 fprintf (asm_out_file, "%s", insn_data[num].name);
3467 if (insn_data[num].n_alternatives > 1)
3468 fprintf (asm_out_file, "/%d", which_alternative);
3470 /* Clear this so only the first assembler insn
3471 of any rtl insn will get the special comment for -dp. */
3472 debug_insn = 0;
3476 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3477 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3478 corresponds to the address of the object and 0 if to the object. */
3480 static tree
3481 get_mem_expr_from_op (rtx op, int *paddressp)
3483 tree expr;
3484 int inner_addressp;
3486 *paddressp = 0;
3488 if (REG_P (op))
3489 return REG_EXPR (op);
3490 else if (!MEM_P (op))
3491 return 0;
3493 if (MEM_EXPR (op) != 0)
3494 return MEM_EXPR (op);
3496 /* Otherwise we have an address, so indicate it and look at the address. */
3497 *paddressp = 1;
3498 op = XEXP (op, 0);
3500 /* First check if we have a decl for the address, then look at the right side
3501 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3502 But don't allow the address to itself be indirect. */
3503 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3504 return expr;
3505 else if (GET_CODE (op) == PLUS
3506 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3507 return expr;
3509 while (UNARY_P (op)
3510 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3511 op = XEXP (op, 0);
3513 expr = get_mem_expr_from_op (op, &inner_addressp);
3514 return inner_addressp ? 0 : expr;
3517 /* Output operand names for assembler instructions. OPERANDS is the
3518 operand vector, OPORDER is the order to write the operands, and NOPS
3519 is the number of operands to write. */
3521 static void
3522 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3524 int wrote = 0;
3525 int i;
3527 for (i = 0; i < nops; i++)
3529 int addressp;
3530 rtx op = operands[oporder[i]];
3531 tree expr = get_mem_expr_from_op (op, &addressp);
3533 fprintf (asm_out_file, "%c%s",
3534 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3535 wrote = 1;
3536 if (expr)
3538 fprintf (asm_out_file, "%s",
3539 addressp ? "*" : "");
3540 print_mem_expr (asm_out_file, expr);
3541 wrote = 1;
3543 else if (REG_P (op) && ORIGINAL_REGNO (op)
3544 && ORIGINAL_REGNO (op) != REGNO (op))
3545 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3549 #ifdef ASSEMBLER_DIALECT
3550 /* Helper function to parse assembler dialects in the asm string.
3551 This is called from output_asm_insn and asm_fprintf. */
3552 static const char *
3553 do_assembler_dialects (const char *p, int *dialect)
3555 char c = *(p - 1);
3557 switch (c)
3559 case '{':
3561 int i;
3563 if (*dialect)
3564 output_operand_lossage ("nested assembly dialect alternatives");
3565 else
3566 *dialect = 1;
3568 /* If we want the first dialect, do nothing. Otherwise, skip
3569 DIALECT_NUMBER of strings ending with '|'. */
3570 for (i = 0; i < dialect_number; i++)
3572 while (*p && *p != '}')
3574 if (*p == '|')
3576 p++;
3577 break;
3580 /* Skip over any character after a percent sign. */
3581 if (*p == '%')
3582 p++;
3583 if (*p)
3584 p++;
3587 if (*p == '}')
3588 break;
3591 if (*p == '\0')
3592 output_operand_lossage ("unterminated assembly dialect alternative");
3594 break;
3596 case '|':
3597 if (*dialect)
3599 /* Skip to close brace. */
3602 if (*p == '\0')
3604 output_operand_lossage ("unterminated assembly dialect alternative");
3605 break;
3608 /* Skip over any character after a percent sign. */
3609 if (*p == '%' && p[1])
3611 p += 2;
3612 continue;
3615 if (*p++ == '}')
3616 break;
3618 while (1);
3620 *dialect = 0;
3622 else
3623 putc (c, asm_out_file);
3624 break;
3626 case '}':
3627 if (! *dialect)
3628 putc (c, asm_out_file);
3629 *dialect = 0;
3630 break;
3631 default:
3632 gcc_unreachable ();
3635 return p;
3637 #endif
3639 /* Output text from TEMPLATE to the assembler output file,
3640 obeying %-directions to substitute operands taken from
3641 the vector OPERANDS.
3643 %N (for N a digit) means print operand N in usual manner.
3644 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3645 and print the label name with no punctuation.
3646 %cN means require operand N to be a constant
3647 and print the constant expression with no punctuation.
3648 %aN means expect operand N to be a memory address
3649 (not a memory reference!) and print a reference
3650 to that address.
3651 %nN means expect operand N to be a constant
3652 and print a constant expression for minus the value
3653 of the operand, with no other punctuation. */
3655 void
3656 output_asm_insn (const char *templ, rtx *operands)
3658 const char *p;
3659 int c;
3660 #ifdef ASSEMBLER_DIALECT
3661 int dialect = 0;
3662 #endif
3663 int oporder[MAX_RECOG_OPERANDS];
3664 char opoutput[MAX_RECOG_OPERANDS];
3665 int ops = 0;
3667 /* An insn may return a null string template
3668 in a case where no assembler code is needed. */
3669 if (*templ == 0)
3670 return;
3672 memset (opoutput, 0, sizeof opoutput);
3673 p = templ;
3674 putc ('\t', asm_out_file);
3676 #ifdef ASM_OUTPUT_OPCODE
3677 ASM_OUTPUT_OPCODE (asm_out_file, p);
3678 #endif
3680 while ((c = *p++))
3681 switch (c)
3683 case '\n':
3684 if (flag_verbose_asm)
3685 output_asm_operand_names (operands, oporder, ops);
3686 if (flag_print_asm_name)
3687 output_asm_name ();
3689 ops = 0;
3690 memset (opoutput, 0, sizeof opoutput);
3692 putc (c, asm_out_file);
3693 #ifdef ASM_OUTPUT_OPCODE
3694 while ((c = *p) == '\t')
3696 putc (c, asm_out_file);
3697 p++;
3699 ASM_OUTPUT_OPCODE (asm_out_file, p);
3700 #endif
3701 break;
3703 #ifdef ASSEMBLER_DIALECT
3704 case '{':
3705 case '}':
3706 case '|':
3707 p = do_assembler_dialects (p, &dialect);
3708 break;
3709 #endif
3711 case '%':
3712 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3713 if ASSEMBLER_DIALECT defined and these characters have a special
3714 meaning as dialect delimiters.*/
3715 if (*p == '%'
3716 #ifdef ASSEMBLER_DIALECT
3717 || *p == '{' || *p == '}' || *p == '|'
3718 #endif
3721 putc (*p, asm_out_file);
3722 p++;
3724 /* %= outputs a number which is unique to each insn in the entire
3725 compilation. This is useful for making local labels that are
3726 referred to more than once in a given insn. */
3727 else if (*p == '=')
3729 p++;
3730 fprintf (asm_out_file, "%d", insn_counter);
3732 /* % followed by a letter and some digits
3733 outputs an operand in a special way depending on the letter.
3734 Letters `acln' are implemented directly.
3735 Other letters are passed to `output_operand' so that
3736 the TARGET_PRINT_OPERAND hook can define them. */
3737 else if (ISALPHA (*p))
3739 int letter = *p++;
3740 unsigned long opnum;
3741 char *endptr;
3743 opnum = strtoul (p, &endptr, 10);
3745 if (endptr == p)
3746 output_operand_lossage ("operand number missing "
3747 "after %%-letter");
3748 else if (this_is_asm_operands && opnum >= insn_noperands)
3749 output_operand_lossage ("operand number out of range");
3750 else if (letter == 'l')
3751 output_asm_label (operands[opnum]);
3752 else if (letter == 'a')
3753 output_address (VOIDmode, operands[opnum]);
3754 else if (letter == 'c')
3756 if (CONSTANT_ADDRESS_P (operands[opnum]))
3757 output_addr_const (asm_out_file, operands[opnum]);
3758 else
3759 output_operand (operands[opnum], 'c');
3761 else if (letter == 'n')
3763 if (CONST_INT_P (operands[opnum]))
3764 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3765 - INTVAL (operands[opnum]));
3766 else
3768 putc ('-', asm_out_file);
3769 output_addr_const (asm_out_file, operands[opnum]);
3772 else
3773 output_operand (operands[opnum], letter);
3775 if (!opoutput[opnum])
3776 oporder[ops++] = opnum;
3777 opoutput[opnum] = 1;
3779 p = endptr;
3780 c = *p;
3782 /* % followed by a digit outputs an operand the default way. */
3783 else if (ISDIGIT (*p))
3785 unsigned long opnum;
3786 char *endptr;
3788 opnum = strtoul (p, &endptr, 10);
3789 if (this_is_asm_operands && opnum >= insn_noperands)
3790 output_operand_lossage ("operand number out of range");
3791 else
3792 output_operand (operands[opnum], 0);
3794 if (!opoutput[opnum])
3795 oporder[ops++] = opnum;
3796 opoutput[opnum] = 1;
3798 p = endptr;
3799 c = *p;
3801 /* % followed by punctuation: output something for that
3802 punctuation character alone, with no operand. The
3803 TARGET_PRINT_OPERAND hook decides what is actually done. */
3804 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3805 output_operand (NULL_RTX, *p++);
3806 else
3807 output_operand_lossage ("invalid %%-code");
3808 break;
3810 default:
3811 putc (c, asm_out_file);
3814 /* Try to keep the asm a bit more readable. */
3815 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
3816 putc ('\t', asm_out_file);
3818 /* Write out the variable names for operands, if we know them. */
3819 if (flag_verbose_asm)
3820 output_asm_operand_names (operands, oporder, ops);
3821 if (flag_print_asm_name)
3822 output_asm_name ();
3824 putc ('\n', asm_out_file);
3827 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3829 void
3830 output_asm_label (rtx x)
3832 char buf[256];
3834 if (GET_CODE (x) == LABEL_REF)
3835 x = label_ref_label (x);
3836 if (LABEL_P (x)
3837 || (NOTE_P (x)
3838 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3839 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3840 else
3841 output_operand_lossage ("'%%l' operand isn't a label");
3843 assemble_name (asm_out_file, buf);
3846 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3848 void
3849 mark_symbol_refs_as_used (rtx x)
3851 subrtx_iterator::array_type array;
3852 FOR_EACH_SUBRTX (iter, array, x, ALL)
3854 const_rtx x = *iter;
3855 if (GET_CODE (x) == SYMBOL_REF)
3856 if (tree t = SYMBOL_REF_DECL (x))
3857 assemble_external (t);
3861 /* Print operand X using machine-dependent assembler syntax.
3862 CODE is a non-digit that preceded the operand-number in the % spec,
3863 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3864 between the % and the digits.
3865 When CODE is a non-letter, X is 0.
3867 The meanings of the letters are machine-dependent and controlled
3868 by TARGET_PRINT_OPERAND. */
3870 void
3871 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3873 if (x && GET_CODE (x) == SUBREG)
3874 x = alter_subreg (&x, true);
3876 /* X must not be a pseudo reg. */
3877 if (!targetm.no_register_allocation)
3878 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3880 targetm.asm_out.print_operand (asm_out_file, x, code);
3882 if (x == NULL_RTX)
3883 return;
3885 mark_symbol_refs_as_used (x);
3888 /* Print a memory reference operand for address X using
3889 machine-dependent assembler syntax. */
3891 void
3892 output_address (machine_mode mode, rtx x)
3894 bool changed = false;
3895 walk_alter_subreg (&x, &changed);
3896 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
3899 /* Print an integer constant expression in assembler syntax.
3900 Addition and subtraction are the only arithmetic
3901 that may appear in these expressions. */
3903 void
3904 output_addr_const (FILE *file, rtx x)
3906 char buf[256];
3908 restart:
3909 switch (GET_CODE (x))
3911 case PC:
3912 putc ('.', file);
3913 break;
3915 case SYMBOL_REF:
3916 if (SYMBOL_REF_DECL (x))
3917 assemble_external (SYMBOL_REF_DECL (x));
3918 #ifdef ASM_OUTPUT_SYMBOL_REF
3919 ASM_OUTPUT_SYMBOL_REF (file, x);
3920 #else
3921 assemble_name (file, XSTR (x, 0));
3922 #endif
3923 break;
3925 case LABEL_REF:
3926 x = label_ref_label (x);
3927 /* Fall through. */
3928 case CODE_LABEL:
3929 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3930 #ifdef ASM_OUTPUT_LABEL_REF
3931 ASM_OUTPUT_LABEL_REF (file, buf);
3932 #else
3933 assemble_name (file, buf);
3934 #endif
3935 break;
3937 case CONST_INT:
3938 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3939 break;
3941 case CONST:
3942 /* This used to output parentheses around the expression,
3943 but that does not work on the 386 (either ATT or BSD assembler). */
3944 output_addr_const (file, XEXP (x, 0));
3945 break;
3947 case CONST_WIDE_INT:
3948 /* We do not know the mode here so we have to use a round about
3949 way to build a wide-int to get it printed properly. */
3951 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
3952 CONST_WIDE_INT_NUNITS (x),
3953 CONST_WIDE_INT_NUNITS (x)
3954 * HOST_BITS_PER_WIDE_INT,
3955 false);
3956 print_decs (w, file);
3958 break;
3960 case CONST_DOUBLE:
3961 if (CONST_DOUBLE_AS_INT_P (x))
3963 /* We can use %d if the number is one word and positive. */
3964 if (CONST_DOUBLE_HIGH (x))
3965 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3966 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3967 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3968 else if (CONST_DOUBLE_LOW (x) < 0)
3969 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3970 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3971 else
3972 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3974 else
3975 /* We can't handle floating point constants;
3976 PRINT_OPERAND must handle them. */
3977 output_operand_lossage ("floating constant misused");
3978 break;
3980 case CONST_FIXED:
3981 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3982 break;
3984 case PLUS:
3985 /* Some assemblers need integer constants to appear last (eg masm). */
3986 if (CONST_INT_P (XEXP (x, 0)))
3988 output_addr_const (file, XEXP (x, 1));
3989 if (INTVAL (XEXP (x, 0)) >= 0)
3990 fprintf (file, "+");
3991 output_addr_const (file, XEXP (x, 0));
3993 else
3995 output_addr_const (file, XEXP (x, 0));
3996 if (!CONST_INT_P (XEXP (x, 1))
3997 || INTVAL (XEXP (x, 1)) >= 0)
3998 fprintf (file, "+");
3999 output_addr_const (file, XEXP (x, 1));
4001 break;
4003 case MINUS:
4004 /* Avoid outputting things like x-x or x+5-x,
4005 since some assemblers can't handle that. */
4006 x = simplify_subtraction (x);
4007 if (GET_CODE (x) != MINUS)
4008 goto restart;
4010 output_addr_const (file, XEXP (x, 0));
4011 fprintf (file, "-");
4012 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4013 || GET_CODE (XEXP (x, 1)) == PC
4014 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4015 output_addr_const (file, XEXP (x, 1));
4016 else
4018 fputs (targetm.asm_out.open_paren, file);
4019 output_addr_const (file, XEXP (x, 1));
4020 fputs (targetm.asm_out.close_paren, file);
4022 break;
4024 case ZERO_EXTEND:
4025 case SIGN_EXTEND:
4026 case SUBREG:
4027 case TRUNCATE:
4028 output_addr_const (file, XEXP (x, 0));
4029 break;
4031 default:
4032 if (targetm.asm_out.output_addr_const_extra (file, x))
4033 break;
4035 output_operand_lossage ("invalid expression as operand");
4039 /* Output a quoted string. */
4041 void
4042 output_quoted_string (FILE *asm_file, const char *string)
4044 #ifdef OUTPUT_QUOTED_STRING
4045 OUTPUT_QUOTED_STRING (asm_file, string);
4046 #else
4047 char c;
4049 putc ('\"', asm_file);
4050 while ((c = *string++) != 0)
4052 if (ISPRINT (c))
4054 if (c == '\"' || c == '\\')
4055 putc ('\\', asm_file);
4056 putc (c, asm_file);
4058 else
4059 fprintf (asm_file, "\\%03o", (unsigned char) c);
4061 putc ('\"', asm_file);
4062 #endif
4065 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4067 void
4068 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4070 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4071 if (value == 0)
4072 putc ('0', f);
4073 else
4075 char *p = buf + sizeof (buf);
4077 *--p = "0123456789abcdef"[value % 16];
4078 while ((value /= 16) != 0);
4079 *--p = 'x';
4080 *--p = '0';
4081 fwrite (p, 1, buf + sizeof (buf) - p, f);
4085 /* Internal function that prints an unsigned long in decimal in reverse.
4086 The output string IS NOT null-terminated. */
4088 static int
4089 sprint_ul_rev (char *s, unsigned long value)
4091 int i = 0;
4094 s[i] = "0123456789"[value % 10];
4095 value /= 10;
4096 i++;
4097 /* alternate version, without modulo */
4098 /* oldval = value; */
4099 /* value /= 10; */
4100 /* s[i] = "0123456789" [oldval - 10*value]; */
4101 /* i++ */
4103 while (value != 0);
4104 return i;
4107 /* Write an unsigned long as decimal to a file, fast. */
4109 void
4110 fprint_ul (FILE *f, unsigned long value)
4112 /* python says: len(str(2**64)) == 20 */
4113 char s[20];
4114 int i;
4116 i = sprint_ul_rev (s, value);
4118 /* It's probably too small to bother with string reversal and fputs. */
4121 i--;
4122 putc (s[i], f);
4124 while (i != 0);
4127 /* Write an unsigned long as decimal to a string, fast.
4128 s must be wide enough to not overflow, at least 21 chars.
4129 Returns the length of the string (without terminating '\0'). */
4132 sprint_ul (char *s, unsigned long value)
4134 int len = sprint_ul_rev (s, value);
4135 s[len] = '\0';
4137 std::reverse (s, s + len);
4138 return len;
4141 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4142 %R prints the value of REGISTER_PREFIX.
4143 %L prints the value of LOCAL_LABEL_PREFIX.
4144 %U prints the value of USER_LABEL_PREFIX.
4145 %I prints the value of IMMEDIATE_PREFIX.
4146 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4147 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4149 We handle alternate assembler dialects here, just like output_asm_insn. */
4151 void
4152 asm_fprintf (FILE *file, const char *p, ...)
4154 char buf[10];
4155 char *q, c;
4156 #ifdef ASSEMBLER_DIALECT
4157 int dialect = 0;
4158 #endif
4159 va_list argptr;
4161 va_start (argptr, p);
4163 buf[0] = '%';
4165 while ((c = *p++))
4166 switch (c)
4168 #ifdef ASSEMBLER_DIALECT
4169 case '{':
4170 case '}':
4171 case '|':
4172 p = do_assembler_dialects (p, &dialect);
4173 break;
4174 #endif
4176 case '%':
4177 c = *p++;
4178 q = &buf[1];
4179 while (strchr ("-+ #0", c))
4181 *q++ = c;
4182 c = *p++;
4184 while (ISDIGIT (c) || c == '.')
4186 *q++ = c;
4187 c = *p++;
4189 switch (c)
4191 case '%':
4192 putc ('%', file);
4193 break;
4195 case 'd': case 'i': case 'u':
4196 case 'x': case 'X': case 'o':
4197 case 'c':
4198 *q++ = c;
4199 *q = 0;
4200 fprintf (file, buf, va_arg (argptr, int));
4201 break;
4203 case 'w':
4204 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4205 'o' cases, but we do not check for those cases. It
4206 means that the value is a HOST_WIDE_INT, which may be
4207 either `long' or `long long'. */
4208 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4209 q += strlen (HOST_WIDE_INT_PRINT);
4210 *q++ = *p++;
4211 *q = 0;
4212 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4213 break;
4215 case 'l':
4216 *q++ = c;
4217 #ifdef HAVE_LONG_LONG
4218 if (*p == 'l')
4220 *q++ = *p++;
4221 *q++ = *p++;
4222 *q = 0;
4223 fprintf (file, buf, va_arg (argptr, long long));
4225 else
4226 #endif
4228 *q++ = *p++;
4229 *q = 0;
4230 fprintf (file, buf, va_arg (argptr, long));
4233 break;
4235 case 's':
4236 *q++ = c;
4237 *q = 0;
4238 fprintf (file, buf, va_arg (argptr, char *));
4239 break;
4241 case 'O':
4242 #ifdef ASM_OUTPUT_OPCODE
4243 ASM_OUTPUT_OPCODE (asm_out_file, p);
4244 #endif
4245 break;
4247 case 'R':
4248 #ifdef REGISTER_PREFIX
4249 fprintf (file, "%s", REGISTER_PREFIX);
4250 #endif
4251 break;
4253 case 'I':
4254 #ifdef IMMEDIATE_PREFIX
4255 fprintf (file, "%s", IMMEDIATE_PREFIX);
4256 #endif
4257 break;
4259 case 'L':
4260 #ifdef LOCAL_LABEL_PREFIX
4261 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4262 #endif
4263 break;
4265 case 'U':
4266 fputs (user_label_prefix, file);
4267 break;
4269 #ifdef ASM_FPRINTF_EXTENSIONS
4270 /* Uppercase letters are reserved for general use by asm_fprintf
4271 and so are not available to target specific code. In order to
4272 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4273 they are defined here. As they get turned into real extensions
4274 to asm_fprintf they should be removed from this list. */
4275 case 'A': case 'B': case 'C': case 'D': case 'E':
4276 case 'F': case 'G': case 'H': case 'J': case 'K':
4277 case 'M': case 'N': case 'P': case 'Q': case 'S':
4278 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4279 break;
4281 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4282 #endif
4283 default:
4284 gcc_unreachable ();
4286 break;
4288 default:
4289 putc (c, file);
4291 va_end (argptr);
4294 /* Return nonzero if this function has no function calls. */
4297 leaf_function_p (void)
4299 rtx_insn *insn;
4301 /* Ensure we walk the entire function body. */
4302 gcc_assert (!in_sequence_p ());
4304 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4305 functions even if they call mcount. */
4306 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4307 return 0;
4309 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4311 if (CALL_P (insn)
4312 && ! SIBLING_CALL_P (insn))
4313 return 0;
4314 if (NONJUMP_INSN_P (insn)
4315 && GET_CODE (PATTERN (insn)) == SEQUENCE
4316 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4317 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4318 return 0;
4321 return 1;
4324 /* Return 1 if branch is a forward branch.
4325 Uses insn_shuid array, so it works only in the final pass. May be used by
4326 output templates to customary add branch prediction hints.
4329 final_forward_branch_p (rtx_insn *insn)
4331 int insn_id, label_id;
4333 gcc_assert (uid_shuid);
4334 insn_id = INSN_SHUID (insn);
4335 label_id = INSN_SHUID (JUMP_LABEL (insn));
4336 /* We've hit some insns that does not have id information available. */
4337 gcc_assert (insn_id && label_id);
4338 return insn_id < label_id;
4341 /* On some machines, a function with no call insns
4342 can run faster if it doesn't create its own register window.
4343 When output, the leaf function should use only the "output"
4344 registers. Ordinarily, the function would be compiled to use
4345 the "input" registers to find its arguments; it is a candidate
4346 for leaf treatment if it uses only the "input" registers.
4347 Leaf function treatment means renumbering so the function
4348 uses the "output" registers instead. */
4350 #ifdef LEAF_REGISTERS
4352 /* Return 1 if this function uses only the registers that can be
4353 safely renumbered. */
4356 only_leaf_regs_used (void)
4358 int i;
4359 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4361 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4362 if ((df_regs_ever_live_p (i) || global_regs[i])
4363 && ! permitted_reg_in_leaf_functions[i])
4364 return 0;
4366 if (crtl->uses_pic_offset_table
4367 && pic_offset_table_rtx != 0
4368 && REG_P (pic_offset_table_rtx)
4369 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4370 return 0;
4372 return 1;
4375 /* Scan all instructions and renumber all registers into those
4376 available in leaf functions. */
4378 static void
4379 leaf_renumber_regs (rtx_insn *first)
4381 rtx_insn *insn;
4383 /* Renumber only the actual patterns.
4384 The reg-notes can contain frame pointer refs,
4385 and renumbering them could crash, and should not be needed. */
4386 for (insn = first; insn; insn = NEXT_INSN (insn))
4387 if (INSN_P (insn))
4388 leaf_renumber_regs_insn (PATTERN (insn));
4391 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4392 available in leaf functions. */
4394 void
4395 leaf_renumber_regs_insn (rtx in_rtx)
4397 int i, j;
4398 const char *format_ptr;
4400 if (in_rtx == 0)
4401 return;
4403 /* Renumber all input-registers into output-registers.
4404 renumbered_regs would be 1 for an output-register;
4405 they */
4407 if (REG_P (in_rtx))
4409 int newreg;
4411 /* Don't renumber the same reg twice. */
4412 if (in_rtx->used)
4413 return;
4415 newreg = REGNO (in_rtx);
4416 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4417 to reach here as part of a REG_NOTE. */
4418 if (newreg >= FIRST_PSEUDO_REGISTER)
4420 in_rtx->used = 1;
4421 return;
4423 newreg = LEAF_REG_REMAP (newreg);
4424 gcc_assert (newreg >= 0);
4425 df_set_regs_ever_live (REGNO (in_rtx), false);
4426 df_set_regs_ever_live (newreg, true);
4427 SET_REGNO (in_rtx, newreg);
4428 in_rtx->used = 1;
4429 return;
4432 if (INSN_P (in_rtx))
4434 /* Inside a SEQUENCE, we find insns.
4435 Renumber just the patterns of these insns,
4436 just as we do for the top-level insns. */
4437 leaf_renumber_regs_insn (PATTERN (in_rtx));
4438 return;
4441 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4443 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4444 switch (*format_ptr++)
4446 case 'e':
4447 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4448 break;
4450 case 'E':
4451 if (XVEC (in_rtx, i) != NULL)
4452 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4453 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4454 break;
4456 case 'S':
4457 case 's':
4458 case '0':
4459 case 'i':
4460 case 'w':
4461 case 'p':
4462 case 'n':
4463 case 'u':
4464 break;
4466 default:
4467 gcc_unreachable ();
4470 #endif
4472 /* Turn the RTL into assembly. */
4473 static unsigned int
4474 rest_of_handle_final (void)
4476 const char *fnname = get_fnname_from_decl (current_function_decl);
4478 /* Turn debug markers into notes if the var-tracking pass has not
4479 been invoked. */
4480 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4481 delete_vta_debug_insns (false);
4483 assemble_start_function (current_function_decl, fnname);
4484 final_start_function (get_insns (), asm_out_file, optimize);
4485 final (get_insns (), asm_out_file, optimize);
4486 if (flag_ipa_ra
4487 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl)))
4488 collect_fn_hard_reg_usage ();
4489 final_end_function ();
4491 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4492 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4493 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4494 output_function_exception_table (fnname);
4496 assemble_end_function (current_function_decl, fnname);
4498 /* Free up reg info memory. */
4499 free_reg_info ();
4501 if (! quiet_flag)
4502 fflush (asm_out_file);
4504 /* Write DBX symbols if requested. */
4506 /* Note that for those inline functions where we don't initially
4507 know for certain that we will be generating an out-of-line copy,
4508 the first invocation of this routine (rest_of_compilation) will
4509 skip over this code by doing a `goto exit_rest_of_compilation;'.
4510 Later on, wrapup_global_declarations will (indirectly) call
4511 rest_of_compilation again for those inline functions that need
4512 to have out-of-line copies generated. During that call, we
4513 *will* be routed past here. */
4515 timevar_push (TV_SYMOUT);
4516 if (!DECL_IGNORED_P (current_function_decl))
4517 debug_hooks->function_decl (current_function_decl);
4518 timevar_pop (TV_SYMOUT);
4520 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4521 DECL_INITIAL (current_function_decl) = error_mark_node;
4523 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4524 && targetm.have_ctors_dtors)
4525 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4526 decl_init_priority_lookup
4527 (current_function_decl));
4528 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4529 && targetm.have_ctors_dtors)
4530 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4531 decl_fini_priority_lookup
4532 (current_function_decl));
4533 return 0;
4536 namespace {
4538 const pass_data pass_data_final =
4540 RTL_PASS, /* type */
4541 "final", /* name */
4542 OPTGROUP_NONE, /* optinfo_flags */
4543 TV_FINAL, /* tv_id */
4544 0, /* properties_required */
4545 0, /* properties_provided */
4546 0, /* properties_destroyed */
4547 0, /* todo_flags_start */
4548 0, /* todo_flags_finish */
4551 class pass_final : public rtl_opt_pass
4553 public:
4554 pass_final (gcc::context *ctxt)
4555 : rtl_opt_pass (pass_data_final, ctxt)
4558 /* opt_pass methods: */
4559 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4561 }; // class pass_final
4563 } // anon namespace
4565 rtl_opt_pass *
4566 make_pass_final (gcc::context *ctxt)
4568 return new pass_final (ctxt);
4572 static unsigned int
4573 rest_of_handle_shorten_branches (void)
4575 /* Shorten branches. */
4576 shorten_branches (get_insns ());
4577 return 0;
4580 namespace {
4582 const pass_data pass_data_shorten_branches =
4584 RTL_PASS, /* type */
4585 "shorten", /* name */
4586 OPTGROUP_NONE, /* optinfo_flags */
4587 TV_SHORTEN_BRANCH, /* tv_id */
4588 0, /* properties_required */
4589 0, /* properties_provided */
4590 0, /* properties_destroyed */
4591 0, /* todo_flags_start */
4592 0, /* todo_flags_finish */
4595 class pass_shorten_branches : public rtl_opt_pass
4597 public:
4598 pass_shorten_branches (gcc::context *ctxt)
4599 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4602 /* opt_pass methods: */
4603 virtual unsigned int execute (function *)
4605 return rest_of_handle_shorten_branches ();
4608 }; // class pass_shorten_branches
4610 } // anon namespace
4612 rtl_opt_pass *
4613 make_pass_shorten_branches (gcc::context *ctxt)
4615 return new pass_shorten_branches (ctxt);
4619 static unsigned int
4620 rest_of_clean_state (void)
4622 rtx_insn *insn, *next;
4623 FILE *final_output = NULL;
4624 int save_unnumbered = flag_dump_unnumbered;
4625 int save_noaddr = flag_dump_noaddr;
4627 if (flag_dump_final_insns)
4629 final_output = fopen (flag_dump_final_insns, "a");
4630 if (!final_output)
4632 error ("could not open final insn dump file %qs: %m",
4633 flag_dump_final_insns);
4634 flag_dump_final_insns = NULL;
4636 else
4638 flag_dump_noaddr = flag_dump_unnumbered = 1;
4639 if (flag_compare_debug_opt || flag_compare_debug)
4640 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4641 dump_function_header (final_output, current_function_decl,
4642 dump_flags);
4643 final_insns_dump_p = true;
4645 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4646 if (LABEL_P (insn))
4647 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4648 else
4650 if (NOTE_P (insn))
4651 set_block_for_insn (insn, NULL);
4652 INSN_UID (insn) = 0;
4657 /* It is very important to decompose the RTL instruction chain here:
4658 debug information keeps pointing into CODE_LABEL insns inside the function
4659 body. If these remain pointing to the other insns, we end up preserving
4660 whole RTL chain and attached detailed debug info in memory. */
4661 for (insn = get_insns (); insn; insn = next)
4663 next = NEXT_INSN (insn);
4664 SET_NEXT_INSN (insn) = NULL;
4665 SET_PREV_INSN (insn) = NULL;
4667 if (final_output
4668 && (!NOTE_P (insn) ||
4669 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4670 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4671 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4672 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4673 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4674 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4675 print_rtl_single (final_output, insn);
4678 if (final_output)
4680 flag_dump_noaddr = save_noaddr;
4681 flag_dump_unnumbered = save_unnumbered;
4682 final_insns_dump_p = false;
4684 if (fclose (final_output))
4686 error ("could not close final insn dump file %qs: %m",
4687 flag_dump_final_insns);
4688 flag_dump_final_insns = NULL;
4692 flag_rerun_cse_after_global_opts = 0;
4693 reload_completed = 0;
4694 epilogue_completed = 0;
4695 #ifdef STACK_REGS
4696 regstack_completed = 0;
4697 #endif
4699 /* Clear out the insn_length contents now that they are no
4700 longer valid. */
4701 init_insn_lengths ();
4703 /* Show no temporary slots allocated. */
4704 init_temp_slots ();
4706 free_bb_for_insn ();
4708 if (cfun->gimple_df)
4709 delete_tree_ssa (cfun);
4711 /* We can reduce stack alignment on call site only when we are sure that
4712 the function body just produced will be actually used in the final
4713 executable. */
4714 if (decl_binds_to_current_def_p (current_function_decl))
4716 unsigned int pref = crtl->preferred_stack_boundary;
4717 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4718 pref = crtl->stack_alignment_needed;
4719 cgraph_node::rtl_info (current_function_decl)
4720 ->preferred_incoming_stack_boundary = pref;
4723 /* Make sure volatile mem refs aren't considered valid operands for
4724 arithmetic insns. We must call this here if this is a nested inline
4725 function, since the above code leaves us in the init_recog state,
4726 and the function context push/pop code does not save/restore volatile_ok.
4728 ??? Maybe it isn't necessary for expand_start_function to call this
4729 anymore if we do it here? */
4731 init_recog_no_volatile ();
4733 /* We're done with this function. Free up memory if we can. */
4734 free_after_parsing (cfun);
4735 free_after_compilation (cfun);
4736 return 0;
4739 namespace {
4741 const pass_data pass_data_clean_state =
4743 RTL_PASS, /* type */
4744 "*clean_state", /* name */
4745 OPTGROUP_NONE, /* optinfo_flags */
4746 TV_FINAL, /* tv_id */
4747 0, /* properties_required */
4748 0, /* properties_provided */
4749 PROP_rtl, /* properties_destroyed */
4750 0, /* todo_flags_start */
4751 0, /* todo_flags_finish */
4754 class pass_clean_state : public rtl_opt_pass
4756 public:
4757 pass_clean_state (gcc::context *ctxt)
4758 : rtl_opt_pass (pass_data_clean_state, ctxt)
4761 /* opt_pass methods: */
4762 virtual unsigned int execute (function *)
4764 return rest_of_clean_state ();
4767 }; // class pass_clean_state
4769 } // anon namespace
4771 rtl_opt_pass *
4772 make_pass_clean_state (gcc::context *ctxt)
4774 return new pass_clean_state (ctxt);
4777 /* Return true if INSN is a call to the current function. */
4779 static bool
4780 self_recursive_call_p (rtx_insn *insn)
4782 tree fndecl = get_call_fndecl (insn);
4783 return (fndecl == current_function_decl
4784 && decl_binds_to_current_def_p (fndecl));
4787 /* Collect hard register usage for the current function. */
4789 static void
4790 collect_fn_hard_reg_usage (void)
4792 rtx_insn *insn;
4793 #ifdef STACK_REGS
4794 int i;
4795 #endif
4796 struct cgraph_rtl_info *node;
4797 HARD_REG_SET function_used_regs;
4799 /* ??? To be removed when all the ports have been fixed. */
4800 if (!targetm.call_fusage_contains_non_callee_clobbers)
4801 return;
4803 CLEAR_HARD_REG_SET (function_used_regs);
4805 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4807 HARD_REG_SET insn_used_regs;
4809 if (!NONDEBUG_INSN_P (insn))
4810 continue;
4812 if (CALL_P (insn)
4813 && !self_recursive_call_p (insn))
4815 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4816 call_used_reg_set))
4817 return;
4819 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4822 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4823 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4826 /* Be conservative - mark fixed and global registers as used. */
4827 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4829 #ifdef STACK_REGS
4830 /* Handle STACK_REGS conservatively, since the df-framework does not
4831 provide accurate information for them. */
4833 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4834 SET_HARD_REG_BIT (function_used_regs, i);
4835 #endif
4837 /* The information we have gathered is only interesting if it exposes a
4838 register from the call_used_regs that is not used in this function. */
4839 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4840 return;
4842 node = cgraph_node::rtl_info (current_function_decl);
4843 gcc_assert (node != NULL);
4845 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4846 node->function_used_regs_valid = 1;
4849 /* Get the declaration of the function called by INSN. */
4851 static tree
4852 get_call_fndecl (rtx_insn *insn)
4854 rtx note, datum;
4856 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4857 if (note == NULL_RTX)
4858 return NULL_TREE;
4860 datum = XEXP (note, 0);
4861 if (datum != NULL_RTX)
4862 return SYMBOL_REF_DECL (datum);
4864 return NULL_TREE;
4867 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4868 call targets that can be overwritten. */
4870 static struct cgraph_rtl_info *
4871 get_call_cgraph_rtl_info (rtx_insn *insn)
4873 tree fndecl;
4875 if (insn == NULL_RTX)
4876 return NULL;
4878 fndecl = get_call_fndecl (insn);
4879 if (fndecl == NULL_TREE
4880 || !decl_binds_to_current_def_p (fndecl))
4881 return NULL;
4883 return cgraph_node::rtl_info (fndecl);
4886 /* Find hard registers used by function call instruction INSN, and return them
4887 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4889 bool
4890 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
4891 HARD_REG_SET default_set)
4893 if (flag_ipa_ra)
4895 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
4896 if (node != NULL
4897 && node->function_used_regs_valid)
4899 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
4900 AND_HARD_REG_SET (*reg_set, default_set);
4901 return true;
4905 COPY_HARD_REG_SET (*reg_set, default_set);
4906 return false;