* xcoffout.h (xcoffout_source_line): Update prototype.
[official-gcc.git] / gcc / emit-rtl.c
blob98fb243b612723766b6940eeddd9f9ccb89f52ba
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
62 /* Commonly used modes. */
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69 /* Datastructures maintained for currently processed function in RTL form. */
71 struct rtl_data x_rtl;
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
78 rtx * regno_reg_rtx;
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
83 static GTY(()) int label_num = 1;
85 /* Nonzero means do not generate NOTEs for source line numbers. */
87 static int no_line_numbers;
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
94 rtx global_rtl[GR_MAX];
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
108 rtx const_true_rtx;
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconsthalf;
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
118 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_fixed_htab;
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
181 static rtx make_call_insn_raw (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void set_used_decls (tree);
184 static void mark_label_nuses (rtx);
185 static hashval_t const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx lookup_const_double (rtx);
190 static hashval_t const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx lookup_const_fixed (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
196 enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static tree component_ref_for_mem_expr (tree);
201 static rtx gen_const_vector (enum machine_mode, int);
202 static void copy_rtx_if_shared_1 (rtx *orig);
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability = -1;
208 /* Returns a hash code for X (which is a really a CONST_INT). */
210 static hashval_t
211 const_int_htab_hash (const void *x)
213 return (hashval_t) INTVAL ((const_rtx) x);
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
220 static int
221 const_int_htab_eq (const void *x, const void *y)
223 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
226 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
227 static hashval_t
228 const_double_htab_hash (const void *x)
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
233 if (GET_MODE (value) == VOIDmode)
234 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
235 else
237 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h ^= GET_MODE (value);
241 return h;
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...) */
246 static int
247 const_double_htab_eq (const void *x, const void *y)
249 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
251 if (GET_MODE (a) != GET_MODE (b))
252 return 0;
253 if (GET_MODE (a) == VOIDmode)
254 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
255 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
256 else
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
258 CONST_DOUBLE_REAL_VALUE (b));
261 /* Returns a hash code for X (which is really a CONST_FIXED). */
263 static hashval_t
264 const_fixed_htab_hash (const void *x)
266 const_rtx const value = (const_rtx) x;
267 hashval_t h;
269 h = fixed_hash (CONST_FIXED_VALUE (value));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h ^= GET_MODE (value);
272 return h;
275 /* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
278 static int
279 const_fixed_htab_eq (const void *x, const void *y)
281 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
283 if (GET_MODE (a) != GET_MODE (b))
284 return 0;
285 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
288 /* Returns a hash code for X (which is a really a mem_attrs *). */
290 static hashval_t
291 mem_attrs_htab_hash (const void *x)
293 const mem_attrs *const p = (const mem_attrs *) x;
295 return (p->alias ^ (p->align * 1000)
296 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
297 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p->expr, 0));
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
303 mem_attrs *). */
305 static int
306 mem_attrs_htab_eq (const void *x, const void *y)
308 const mem_attrs *const p = (const mem_attrs *) x;
309 const mem_attrs *const q = (const mem_attrs *) y;
311 return (p->alias == q->alias && p->offset == q->offset
312 && p->size == q->size && p->align == q->align
313 && (p->expr == q->expr
314 || (p->expr != NULL_TREE && q->expr != NULL_TREE
315 && operand_equal_p (p->expr, q->expr, 0))));
318 /* Allocate a new mem_attrs structure and insert it into the hash table if
319 one identical to it is not already in the table. We are doing this for
320 MEM of mode MODE. */
322 static mem_attrs *
323 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
324 unsigned int align, enum machine_mode mode)
326 mem_attrs attrs;
327 void **slot;
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
332 if (alias == 0 && expr == 0 && offset == 0
333 && (size == 0
334 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
335 && (STRICT_ALIGNMENT && mode != BLKmode
336 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
337 return 0;
339 attrs.alias = alias;
340 attrs.expr = expr;
341 attrs.offset = offset;
342 attrs.size = size;
343 attrs.align = align;
345 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
346 if (*slot == 0)
348 *slot = ggc_alloc (sizeof (mem_attrs));
349 memcpy (*slot, &attrs, sizeof (mem_attrs));
352 return (mem_attrs *) *slot;
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
357 static hashval_t
358 reg_attrs_htab_hash (const void *x)
360 const reg_attrs *const p = (const reg_attrs *) x;
362 return ((p->offset * 1000) ^ (long) p->decl);
365 /* Returns nonzero if the value represented by X (which is really a
366 reg_attrs *) is the same as that given by Y (which is also really a
367 reg_attrs *). */
369 static int
370 reg_attrs_htab_eq (const void *x, const void *y)
372 const reg_attrs *const p = (const reg_attrs *) x;
373 const reg_attrs *const q = (const reg_attrs *) y;
375 return (p->decl == q->decl && p->offset == q->offset);
377 /* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
379 MEM of mode MODE. */
381 static reg_attrs *
382 get_reg_attrs (tree decl, int offset)
384 reg_attrs attrs;
385 void **slot;
387 /* If everything is the default, we can just return zero. */
388 if (decl == 0 && offset == 0)
389 return 0;
391 attrs.decl = decl;
392 attrs.offset = offset;
394 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
395 if (*slot == 0)
397 *slot = ggc_alloc (sizeof (reg_attrs));
398 memcpy (*slot, &attrs, sizeof (reg_attrs));
401 return (reg_attrs *) *slot;
405 #if !HAVE_blockage
406 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
407 across this insn. */
410 gen_blockage (void)
412 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
413 MEM_VOLATILE_P (x) = true;
414 return x;
416 #endif
419 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
424 gen_raw_REG (enum machine_mode mode, int regno)
426 rtx x = gen_rtx_raw_REG (mode, regno);
427 ORIGINAL_REGNO (x) = regno;
428 return x;
431 /* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
436 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
438 void **slot;
440 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
441 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
443 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx && arg == STORE_FLAG_VALUE)
445 return const_true_rtx;
446 #endif
448 /* Look up the CONST_INT in the hash table. */
449 slot = htab_find_slot_with_hash (const_int_htab, &arg,
450 (hashval_t) arg, INSERT);
451 if (*slot == 0)
452 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
454 return (rtx) *slot;
458 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
460 return GEN_INT (trunc_int_for_mode (c, mode));
463 /* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
467 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
470 static rtx
471 lookup_const_double (rtx real)
473 void **slot = htab_find_slot (const_double_htab, real, INSERT);
474 if (*slot == 0)
475 *slot = real;
477 return (rtx) *slot;
480 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
483 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
485 rtx real = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (real, mode);
488 real->u.rv = value;
490 return lookup_const_double (real);
493 /* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
497 static rtx
498 lookup_const_fixed (rtx fixed)
500 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
501 if (*slot == 0)
502 *slot = fixed;
504 return (rtx) *slot;
507 /* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
511 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
513 rtx fixed = rtx_alloc (CONST_FIXED);
514 PUT_MODE (fixed, mode);
516 fixed->u.fv = value;
518 return lookup_const_fixed (fixed);
521 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
527 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
529 rtx value;
530 unsigned int i;
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
536 gen_int_mode.
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
542 if (mode != VOIDmode)
544 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
545 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
551 return gen_int_mode (i0, mode);
553 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
558 return GEN_INT (i0);
560 /* We use VOIDmode for integers. */
561 value = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (value, VOIDmode);
564 CONST_DOUBLE_LOW (value) = i0;
565 CONST_DOUBLE_HIGH (value) = i1;
567 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
568 XWINT (value, i) = 0;
570 return lookup_const_double (value);
574 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
580 assigned to them.
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
590 if (mode == Pmode && !reload_in_progress)
592 if (regno == FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
594 return frame_pointer_rtx;
595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
596 if (regno == HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed || frame_pointer_needed))
598 return hard_frame_pointer_rtx;
599 #endif
600 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
601 if (regno == ARG_POINTER_REGNUM)
602 return arg_pointer_rtx;
603 #endif
604 #ifdef RETURN_ADDRESS_POINTER_REGNUM
605 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
606 return return_address_pointer_rtx;
607 #endif
608 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
609 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
610 return pic_offset_table_rtx;
611 if (regno == STACK_POINTER_REGNUM)
612 return stack_pointer_rtx;
615 #if 0
616 /* If the per-function register table has been set up, try to re-use
617 an existing entry in that table to avoid useless generation of RTL.
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
622 on the amount of useless RTL that gets generated.
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
627 if (cfun
628 && cfun->emit
629 && regno_reg_rtx
630 && regno < FIRST_PSEUDO_REGISTER
631 && reg_raw_mode[regno] == mode)
632 return regno_reg_rtx[regno];
633 #endif
635 return gen_raw_REG (mode, regno);
639 gen_rtx_MEM (enum machine_mode mode, rtx addr)
641 rtx rt = gen_rtx_raw_MEM (mode, addr);
643 /* This field is not cleared by the mere allocation of the rtx, so
644 we clear it here. */
645 MEM_ATTRS (rt) = 0;
647 return rt;
650 /* Generate a memory referring to non-trapping constant memory. */
653 gen_const_mem (enum machine_mode mode, rtx addr)
655 rtx mem = gen_rtx_MEM (mode, addr);
656 MEM_READONLY_P (mem) = 1;
657 MEM_NOTRAP_P (mem) = 1;
658 return mem;
661 /* Generate a MEM referring to fixed portions of the frame, e.g., register
662 save areas. */
665 gen_frame_mem (enum machine_mode mode, rtx addr)
667 rtx mem = gen_rtx_MEM (mode, addr);
668 MEM_NOTRAP_P (mem) = 1;
669 set_mem_alias_set (mem, get_frame_alias_set ());
670 return mem;
673 /* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
677 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
679 rtx mem = gen_rtx_MEM (mode, addr);
680 MEM_NOTRAP_P (mem) = 1;
681 if (!cfun->calls_alloca)
682 set_mem_alias_set (mem, get_frame_alias_set ());
683 return mem;
686 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
689 bool
690 validate_subreg (enum machine_mode omode, enum machine_mode imode,
691 const_rtx reg, unsigned int offset)
693 unsigned int isize = GET_MODE_SIZE (imode);
694 unsigned int osize = GET_MODE_SIZE (omode);
696 /* All subregs must be aligned. */
697 if (offset % osize != 0)
698 return false;
700 /* The subreg offset cannot be outside the inner object. */
701 if (offset >= isize)
702 return false;
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
707 fix them all. */
708 if (omode == word_mode)
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize >= UNITS_PER_WORD && isize >= osize)
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
717 && GET_MODE_INNER (imode) == omode)
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
731 if (isize != osize)
732 return false;
735 /* Paradoxical subregs must have offset zero. */
736 if (osize > isize)
737 return offset == 0;
739 /* This is a normal subreg. Verify that the offset is representable. */
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
745 unsigned int regno = REGNO (reg);
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
749 && GET_MODE_INNER (imode) == omode)
751 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
752 return false;
753 #endif
755 return subreg_offset_representable_p (regno, imode, offset, omode);
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize < UNITS_PER_WORD)
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
771 return true;
775 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
778 return gen_rtx_raw_SUBREG (mode, reg, offset);
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
785 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
787 enum machine_mode inmode;
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
797 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
799 rtvec
800 gen_rtvec (int n, ...)
802 int i;
803 rtvec rt_val;
804 va_list p;
806 va_start (p, n);
808 /* Don't allocate an empty rtvec... */
809 if (n == 0)
810 return NULL_RTVEC;
812 rt_val = rtvec_alloc (n);
814 for (i = 0; i < n; i++)
815 rt_val->elem[i] = va_arg (p, rtx);
817 va_end (p);
818 return rt_val;
821 rtvec
822 gen_rtvec_v (int n, rtx *argp)
824 int i;
825 rtvec rt_val;
827 /* Don't allocate an empty rtvec... */
828 if (n == 0)
829 return NULL_RTVEC;
831 rt_val = rtvec_alloc (n);
833 for (i = 0; i < n; i++)
834 rt_val->elem[i] = *argp++;
836 return rt_val;
839 /* Return the number of bytes between the start of an OUTER_MODE
840 in-memory value and the start of an INNER_MODE in-memory value,
841 given that the former is a lowpart of the latter. It may be a
842 paradoxical lowpart, in which case the offset will be negative
843 on big-endian targets. */
846 byte_lowpart_offset (enum machine_mode outer_mode,
847 enum machine_mode inner_mode)
849 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
850 return subreg_lowpart_offset (outer_mode, inner_mode);
851 else
852 return -subreg_lowpart_offset (inner_mode, outer_mode);
855 /* Generate a REG rtx for a new pseudo register of mode MODE.
856 This pseudo is assigned the next sequential register number. */
859 gen_reg_rtx (enum machine_mode mode)
861 rtx val;
862 unsigned int align = GET_MODE_ALIGNMENT (mode);
864 gcc_assert (can_create_pseudo_p ());
866 /* If a virtual register with bigger mode alignment is generated,
867 increase stack alignment estimation because it might be spilled
868 to stack later. */
869 if (SUPPORTS_STACK_ALIGNMENT
870 && crtl->stack_alignment_estimated < align
871 && !crtl->stack_realign_processed)
872 crtl->stack_alignment_estimated = align;
874 if (generating_concat_p
875 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
876 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
878 /* For complex modes, don't make a single pseudo.
879 Instead, make a CONCAT of two pseudos.
880 This allows noncontiguous allocation of the real and imaginary parts,
881 which makes much better code. Besides, allocating DCmode
882 pseudos overstrains reload on some machines like the 386. */
883 rtx realpart, imagpart;
884 enum machine_mode partmode = GET_MODE_INNER (mode);
886 realpart = gen_reg_rtx (partmode);
887 imagpart = gen_reg_rtx (partmode);
888 return gen_rtx_CONCAT (mode, realpart, imagpart);
891 /* Make sure regno_pointer_align, and regno_reg_rtx are large
892 enough to have an element for this pseudo reg number. */
894 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
896 int old_size = crtl->emit.regno_pointer_align_length;
897 char *tmp;
898 rtx *new1;
900 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
901 memset (tmp + old_size, 0, old_size);
902 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
904 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
905 memset (new1 + old_size, 0, old_size * sizeof (rtx));
906 regno_reg_rtx = new1;
908 crtl->emit.regno_pointer_align_length = old_size * 2;
911 val = gen_raw_REG (mode, reg_rtx_no);
912 regno_reg_rtx[reg_rtx_no++] = val;
913 return val;
916 /* Update NEW with the same attributes as REG, but with OFFSET added
917 to the REG_OFFSET. */
919 static void
920 update_reg_offset (rtx new_rtx, rtx reg, int offset)
922 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
923 REG_OFFSET (reg) + offset);
926 /* Generate a register with same attributes as REG, but with OFFSET
927 added to the REG_OFFSET. */
930 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
931 int offset)
933 rtx new_rtx = gen_rtx_REG (mode, regno);
935 update_reg_offset (new_rtx, reg, offset);
936 return new_rtx;
939 /* Generate a new pseudo-register with the same attributes as REG, but
940 with OFFSET added to the REG_OFFSET. */
943 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
945 rtx new_rtx = gen_reg_rtx (mode);
947 update_reg_offset (new_rtx, reg, offset);
948 return new_rtx;
951 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
952 new register is a (possibly paradoxical) lowpart of the old one. */
954 void
955 adjust_reg_mode (rtx reg, enum machine_mode mode)
957 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
958 PUT_MODE (reg, mode);
961 /* Copy REG's attributes from X, if X has any attributes. If REG and X
962 have different modes, REG is a (possibly paradoxical) lowpart of X. */
964 void
965 set_reg_attrs_from_value (rtx reg, rtx x)
967 int offset;
969 /* Hard registers can be reused for multiple purposes within the same
970 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
971 on them is wrong. */
972 if (HARD_REGISTER_P (reg))
973 return;
975 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
976 if (MEM_P (x))
978 if (MEM_OFFSET (x) && GET_CODE (MEM_OFFSET (x)) == CONST_INT)
979 REG_ATTRS (reg)
980 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
981 if (MEM_POINTER (x))
982 mark_reg_pointer (reg, 0);
984 else if (REG_P (x))
986 if (REG_ATTRS (x))
987 update_reg_offset (reg, x, offset);
988 if (REG_POINTER (x))
989 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
993 /* Generate a REG rtx for a new pseudo register, copying the mode
994 and attributes from X. */
997 gen_reg_rtx_and_attrs (rtx x)
999 rtx reg = gen_reg_rtx (GET_MODE (x));
1000 set_reg_attrs_from_value (reg, x);
1001 return reg;
1004 /* Set the register attributes for registers contained in PARM_RTX.
1005 Use needed values from memory attributes of MEM. */
1007 void
1008 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1010 if (REG_P (parm_rtx))
1011 set_reg_attrs_from_value (parm_rtx, mem);
1012 else if (GET_CODE (parm_rtx) == PARALLEL)
1014 /* Check for a NULL entry in the first slot, used to indicate that the
1015 parameter goes both on the stack and in registers. */
1016 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1017 for (; i < XVECLEN (parm_rtx, 0); i++)
1019 rtx x = XVECEXP (parm_rtx, 0, i);
1020 if (REG_P (XEXP (x, 0)))
1021 REG_ATTRS (XEXP (x, 0))
1022 = get_reg_attrs (MEM_EXPR (mem),
1023 INTVAL (XEXP (x, 1)));
1028 /* Set the REG_ATTRS for registers in value X, given that X represents
1029 decl T. */
1031 void
1032 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1034 if (GET_CODE (x) == SUBREG)
1036 gcc_assert (subreg_lowpart_p (x));
1037 x = SUBREG_REG (x);
1039 if (REG_P (x))
1040 REG_ATTRS (x)
1041 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1042 DECL_MODE (t)));
1043 if (GET_CODE (x) == CONCAT)
1045 if (REG_P (XEXP (x, 0)))
1046 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1047 if (REG_P (XEXP (x, 1)))
1048 REG_ATTRS (XEXP (x, 1))
1049 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1051 if (GET_CODE (x) == PARALLEL)
1053 int i, start;
1055 /* Check for a NULL entry, used to indicate that the parameter goes
1056 both on the stack and in registers. */
1057 if (XEXP (XVECEXP (x, 0, 0), 0))
1058 start = 0;
1059 else
1060 start = 1;
1062 for (i = start; i < XVECLEN (x, 0); i++)
1064 rtx y = XVECEXP (x, 0, i);
1065 if (REG_P (XEXP (y, 0)))
1066 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1071 /* Assign the RTX X to declaration T. */
1073 void
1074 set_decl_rtl (tree t, rtx x)
1076 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1077 if (x)
1078 set_reg_attrs_for_decl_rtl (t, x);
1081 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1082 if the ABI requires the parameter to be passed by reference. */
1084 void
1085 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1087 DECL_INCOMING_RTL (t) = x;
1088 if (x && !by_reference_p)
1089 set_reg_attrs_for_decl_rtl (t, x);
1092 /* Identify REG (which may be a CONCAT) as a user register. */
1094 void
1095 mark_user_reg (rtx reg)
1097 if (GET_CODE (reg) == CONCAT)
1099 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1100 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1102 else
1104 gcc_assert (REG_P (reg));
1105 REG_USERVAR_P (reg) = 1;
1109 /* Identify REG as a probable pointer register and show its alignment
1110 as ALIGN, if nonzero. */
1112 void
1113 mark_reg_pointer (rtx reg, int align)
1115 if (! REG_POINTER (reg))
1117 REG_POINTER (reg) = 1;
1119 if (align)
1120 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1122 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1123 /* We can no-longer be sure just how aligned this pointer is. */
1124 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1127 /* Return 1 plus largest pseudo reg number used in the current function. */
1130 max_reg_num (void)
1132 return reg_rtx_no;
1135 /* Return 1 + the largest label number used so far in the current function. */
1138 max_label_num (void)
1140 return label_num;
1143 /* Return first label number used in this function (if any were used). */
1146 get_first_label_num (void)
1148 return first_label_num;
1151 /* If the rtx for label was created during the expansion of a nested
1152 function, then first_label_num won't include this label number.
1153 Fix this now so that array indices work later. */
1155 void
1156 maybe_set_first_label_num (rtx x)
1158 if (CODE_LABEL_NUMBER (x) < first_label_num)
1159 first_label_num = CODE_LABEL_NUMBER (x);
1162 /* Return a value representing some low-order bits of X, where the number
1163 of low-order bits is given by MODE. Note that no conversion is done
1164 between floating-point and fixed-point values, rather, the bit
1165 representation is returned.
1167 This function handles the cases in common between gen_lowpart, below,
1168 and two variants in cse.c and combine.c. These are the cases that can
1169 be safely handled at all points in the compilation.
1171 If this is not a case we can handle, return 0. */
1174 gen_lowpart_common (enum machine_mode mode, rtx x)
1176 int msize = GET_MODE_SIZE (mode);
1177 int xsize;
1178 int offset = 0;
1179 enum machine_mode innermode;
1181 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1182 so we have to make one up. Yuk. */
1183 innermode = GET_MODE (x);
1184 if (GET_CODE (x) == CONST_INT
1185 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1186 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1187 else if (innermode == VOIDmode)
1188 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1190 xsize = GET_MODE_SIZE (innermode);
1192 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1194 if (innermode == mode)
1195 return x;
1197 /* MODE must occupy no more words than the mode of X. */
1198 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1199 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1200 return 0;
1202 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1203 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1204 return 0;
1206 offset = subreg_lowpart_offset (mode, innermode);
1208 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1209 && (GET_MODE_CLASS (mode) == MODE_INT
1210 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1212 /* If we are getting the low-order part of something that has been
1213 sign- or zero-extended, we can either just use the object being
1214 extended or make a narrower extension. If we want an even smaller
1215 piece than the size of the object being extended, call ourselves
1216 recursively.
1218 This case is used mostly by combine and cse. */
1220 if (GET_MODE (XEXP (x, 0)) == mode)
1221 return XEXP (x, 0);
1222 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1223 return gen_lowpart_common (mode, XEXP (x, 0));
1224 else if (msize < xsize)
1225 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1227 else if (GET_CODE (x) == SUBREG || REG_P (x)
1228 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1229 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1230 return simplify_gen_subreg (mode, x, innermode, offset);
1232 /* Otherwise, we can't do this. */
1233 return 0;
1237 gen_highpart (enum machine_mode mode, rtx x)
1239 unsigned int msize = GET_MODE_SIZE (mode);
1240 rtx result;
1242 /* This case loses if X is a subreg. To catch bugs early,
1243 complain if an invalid MODE is used even in other cases. */
1244 gcc_assert (msize <= UNITS_PER_WORD
1245 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1247 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1248 subreg_highpart_offset (mode, GET_MODE (x)));
1249 gcc_assert (result);
1251 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1252 the target if we have a MEM. gen_highpart must return a valid operand,
1253 emitting code if necessary to do so. */
1254 if (MEM_P (result))
1256 result = validize_mem (result);
1257 gcc_assert (result);
1260 return result;
1263 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1264 be VOIDmode constant. */
1266 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1268 if (GET_MODE (exp) != VOIDmode)
1270 gcc_assert (GET_MODE (exp) == innermode);
1271 return gen_highpart (outermode, exp);
1273 return simplify_gen_subreg (outermode, exp, innermode,
1274 subreg_highpart_offset (outermode, innermode));
1277 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1279 unsigned int
1280 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1282 unsigned int offset = 0;
1283 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1285 if (difference > 0)
1287 if (WORDS_BIG_ENDIAN)
1288 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1289 if (BYTES_BIG_ENDIAN)
1290 offset += difference % UNITS_PER_WORD;
1293 return offset;
1296 /* Return offset in bytes to get OUTERMODE high part
1297 of the value in mode INNERMODE stored in memory in target format. */
1298 unsigned int
1299 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1301 unsigned int offset = 0;
1302 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1304 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1306 if (difference > 0)
1308 if (! WORDS_BIG_ENDIAN)
1309 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1310 if (! BYTES_BIG_ENDIAN)
1311 offset += difference % UNITS_PER_WORD;
1314 return offset;
1317 /* Return 1 iff X, assumed to be a SUBREG,
1318 refers to the least significant part of its containing reg.
1319 If X is not a SUBREG, always return 1 (it is its own low part!). */
1322 subreg_lowpart_p (const_rtx x)
1324 if (GET_CODE (x) != SUBREG)
1325 return 1;
1326 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1327 return 0;
1329 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1330 == SUBREG_BYTE (x));
1333 /* Return subword OFFSET of operand OP.
1334 The word number, OFFSET, is interpreted as the word number starting
1335 at the low-order address. OFFSET 0 is the low-order word if not
1336 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1338 If we cannot extract the required word, we return zero. Otherwise,
1339 an rtx corresponding to the requested word will be returned.
1341 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1342 reload has completed, a valid address will always be returned. After
1343 reload, if a valid address cannot be returned, we return zero.
1345 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1346 it is the responsibility of the caller.
1348 MODE is the mode of OP in case it is a CONST_INT.
1350 ??? This is still rather broken for some cases. The problem for the
1351 moment is that all callers of this thing provide no 'goal mode' to
1352 tell us to work with. This exists because all callers were written
1353 in a word based SUBREG world.
1354 Now use of this function can be deprecated by simplify_subreg in most
1355 cases.
1359 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1361 if (mode == VOIDmode)
1362 mode = GET_MODE (op);
1364 gcc_assert (mode != VOIDmode);
1366 /* If OP is narrower than a word, fail. */
1367 if (mode != BLKmode
1368 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1369 return 0;
1371 /* If we want a word outside OP, return zero. */
1372 if (mode != BLKmode
1373 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1374 return const0_rtx;
1376 /* Form a new MEM at the requested address. */
1377 if (MEM_P (op))
1379 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1381 if (! validate_address)
1382 return new_rtx;
1384 else if (reload_completed)
1386 if (! strict_memory_address_p (word_mode, XEXP (new_rtx, 0)))
1387 return 0;
1389 else
1390 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1393 /* Rest can be handled by simplify_subreg. */
1394 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1397 /* Similar to `operand_subword', but never return 0. If we can't
1398 extract the required subword, put OP into a register and try again.
1399 The second attempt must succeed. We always validate the address in
1400 this case.
1402 MODE is the mode of OP, in case it is CONST_INT. */
1405 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1407 rtx result = operand_subword (op, offset, 1, mode);
1409 if (result)
1410 return result;
1412 if (mode != BLKmode && mode != VOIDmode)
1414 /* If this is a register which can not be accessed by words, copy it
1415 to a pseudo register. */
1416 if (REG_P (op))
1417 op = copy_to_reg (op);
1418 else
1419 op = force_reg (mode, op);
1422 result = operand_subword (op, offset, 1, mode);
1423 gcc_assert (result);
1425 return result;
1428 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1429 or (2) a component ref of something variable. Represent the later with
1430 a NULL expression. */
1432 static tree
1433 component_ref_for_mem_expr (tree ref)
1435 tree inner = TREE_OPERAND (ref, 0);
1437 if (TREE_CODE (inner) == COMPONENT_REF)
1438 inner = component_ref_for_mem_expr (inner);
1439 else
1441 /* Now remove any conversions: they don't change what the underlying
1442 object is. Likewise for SAVE_EXPR. */
1443 while (CONVERT_EXPR_P (inner)
1444 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1445 || TREE_CODE (inner) == SAVE_EXPR)
1446 inner = TREE_OPERAND (inner, 0);
1448 if (! DECL_P (inner))
1449 inner = NULL_TREE;
1452 if (inner == TREE_OPERAND (ref, 0)
1453 /* Don't leak SSA-names in the third operand. */
1454 && (!TREE_OPERAND (ref, 2)
1455 || TREE_CODE (TREE_OPERAND (ref, 2)) != SSA_NAME))
1456 return ref;
1457 else
1458 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1459 TREE_OPERAND (ref, 1), NULL_TREE);
1462 /* Returns 1 if both MEM_EXPR can be considered equal
1463 and 0 otherwise. */
1466 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1468 if (expr1 == expr2)
1469 return 1;
1471 if (! expr1 || ! expr2)
1472 return 0;
1474 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1475 return 0;
1477 if (TREE_CODE (expr1) == COMPONENT_REF)
1478 return
1479 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1480 TREE_OPERAND (expr2, 0))
1481 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1482 TREE_OPERAND (expr2, 1));
1484 if (INDIRECT_REF_P (expr1))
1485 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1486 TREE_OPERAND (expr2, 0));
1488 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1489 have been resolved here. */
1490 gcc_assert (DECL_P (expr1));
1492 /* Decls with different pointers can't be equal. */
1493 return 0;
1496 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1497 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1498 -1 if not known. */
1501 get_mem_align_offset (rtx mem, unsigned int align)
1503 tree expr;
1504 unsigned HOST_WIDE_INT offset;
1506 /* This function can't use
1507 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1508 || !CONST_INT_P (MEM_OFFSET (mem))
1509 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1510 < align))
1511 return -1;
1512 else
1513 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1514 for two reasons:
1515 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1516 for <variable>. get_inner_reference doesn't handle it and
1517 even if it did, the alignment in that case needs to be determined
1518 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1519 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1520 isn't sufficiently aligned, the object it is in might be. */
1521 gcc_assert (MEM_P (mem));
1522 expr = MEM_EXPR (mem);
1523 if (expr == NULL_TREE
1524 || MEM_OFFSET (mem) == NULL_RTX
1525 || !CONST_INT_P (MEM_OFFSET (mem)))
1526 return -1;
1528 offset = INTVAL (MEM_OFFSET (mem));
1529 if (DECL_P (expr))
1531 if (DECL_ALIGN (expr) < align)
1532 return -1;
1534 else if (INDIRECT_REF_P (expr))
1536 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1537 return -1;
1539 else if (TREE_CODE (expr) == COMPONENT_REF)
1541 while (1)
1543 tree inner = TREE_OPERAND (expr, 0);
1544 tree field = TREE_OPERAND (expr, 1);
1545 tree byte_offset = component_ref_field_offset (expr);
1546 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1548 if (!byte_offset
1549 || !host_integerp (byte_offset, 1)
1550 || !host_integerp (bit_offset, 1))
1551 return -1;
1553 offset += tree_low_cst (byte_offset, 1);
1554 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1556 if (inner == NULL_TREE)
1558 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1559 < (unsigned int) align)
1560 return -1;
1561 break;
1563 else if (DECL_P (inner))
1565 if (DECL_ALIGN (inner) < align)
1566 return -1;
1567 break;
1569 else if (TREE_CODE (inner) != COMPONENT_REF)
1570 return -1;
1571 expr = inner;
1574 else
1575 return -1;
1577 return offset & ((align / BITS_PER_UNIT) - 1);
1580 /* Given REF (a MEM) and T, either the type of X or the expression
1581 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1582 if we are making a new object of this type. BITPOS is nonzero if
1583 there is an offset outstanding on T that will be applied later. */
1585 void
1586 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1587 HOST_WIDE_INT bitpos)
1589 alias_set_type alias = MEM_ALIAS_SET (ref);
1590 tree expr = MEM_EXPR (ref);
1591 rtx offset = MEM_OFFSET (ref);
1592 rtx size = MEM_SIZE (ref);
1593 unsigned int align = MEM_ALIGN (ref);
1594 HOST_WIDE_INT apply_bitpos = 0;
1595 tree type;
1597 /* It can happen that type_for_mode was given a mode for which there
1598 is no language-level type. In which case it returns NULL, which
1599 we can see here. */
1600 if (t == NULL_TREE)
1601 return;
1603 type = TYPE_P (t) ? t : TREE_TYPE (t);
1604 if (type == error_mark_node)
1605 return;
1607 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1608 wrong answer, as it assumes that DECL_RTL already has the right alias
1609 info. Callers should not set DECL_RTL until after the call to
1610 set_mem_attributes. */
1611 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1613 /* Get the alias set from the expression or type (perhaps using a
1614 front-end routine) and use it. */
1615 alias = get_alias_set (t);
1617 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1618 MEM_IN_STRUCT_P (ref)
1619 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1620 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1622 /* If we are making an object of this type, or if this is a DECL, we know
1623 that it is a scalar if the type is not an aggregate. */
1624 if ((objectp || DECL_P (t))
1625 && ! AGGREGATE_TYPE_P (type)
1626 && TREE_CODE (type) != COMPLEX_TYPE)
1627 MEM_SCALAR_P (ref) = 1;
1629 /* We can set the alignment from the type if we are making an object,
1630 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1631 if (objectp || TREE_CODE (t) == INDIRECT_REF
1632 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1633 || TYPE_ALIGN_OK (type))
1634 align = MAX (align, TYPE_ALIGN (type));
1635 else
1636 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1638 if (integer_zerop (TREE_OPERAND (t, 1)))
1639 /* We don't know anything about the alignment. */
1640 align = BITS_PER_UNIT;
1641 else
1642 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1645 /* If the size is known, we can set that. */
1646 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1647 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1649 /* If T is not a type, we may be able to deduce some more information about
1650 the expression. */
1651 if (! TYPE_P (t))
1653 tree base;
1654 bool align_computed = false;
1656 if (TREE_THIS_VOLATILE (t))
1657 MEM_VOLATILE_P (ref) = 1;
1659 /* Now remove any conversions: they don't change what the underlying
1660 object is. Likewise for SAVE_EXPR. */
1661 while (CONVERT_EXPR_P (t)
1662 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1663 || TREE_CODE (t) == SAVE_EXPR)
1664 t = TREE_OPERAND (t, 0);
1666 /* We may look through structure-like accesses for the purposes of
1667 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1668 base = t;
1669 while (TREE_CODE (base) == COMPONENT_REF
1670 || TREE_CODE (base) == REALPART_EXPR
1671 || TREE_CODE (base) == IMAGPART_EXPR
1672 || TREE_CODE (base) == BIT_FIELD_REF)
1673 base = TREE_OPERAND (base, 0);
1675 if (DECL_P (base))
1677 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1678 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1679 else
1680 MEM_NOTRAP_P (ref) = 1;
1682 else
1683 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1685 base = get_base_address (base);
1686 if (base && DECL_P (base)
1687 && TREE_READONLY (base)
1688 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1690 tree base_type = TREE_TYPE (base);
1691 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1692 || DECL_ARTIFICIAL (base));
1693 MEM_READONLY_P (ref) = 1;
1696 /* If this expression uses it's parent's alias set, mark it such
1697 that we won't change it. */
1698 if (component_uses_parent_alias_set (t))
1699 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1701 /* If this is a decl, set the attributes of the MEM from it. */
1702 if (DECL_P (t))
1704 expr = t;
1705 offset = const0_rtx;
1706 apply_bitpos = bitpos;
1707 size = (DECL_SIZE_UNIT (t)
1708 && host_integerp (DECL_SIZE_UNIT (t), 1)
1709 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1710 align = DECL_ALIGN (t);
1711 align_computed = true;
1714 /* If this is a constant, we know the alignment. */
1715 else if (CONSTANT_CLASS_P (t))
1717 align = TYPE_ALIGN (type);
1718 #ifdef CONSTANT_ALIGNMENT
1719 align = CONSTANT_ALIGNMENT (t, align);
1720 #endif
1721 align_computed = true;
1724 /* If this is a field reference and not a bit-field, record it. */
1725 /* ??? There is some information that can be gleaned from bit-fields,
1726 such as the word offset in the structure that might be modified.
1727 But skip it for now. */
1728 else if (TREE_CODE (t) == COMPONENT_REF
1729 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1731 expr = component_ref_for_mem_expr (t);
1732 offset = const0_rtx;
1733 apply_bitpos = bitpos;
1734 /* ??? Any reason the field size would be different than
1735 the size we got from the type? */
1738 /* If this is an array reference, look for an outer field reference. */
1739 else if (TREE_CODE (t) == ARRAY_REF)
1741 tree off_tree = size_zero_node;
1742 /* We can't modify t, because we use it at the end of the
1743 function. */
1744 tree t2 = t;
1748 tree index = TREE_OPERAND (t2, 1);
1749 tree low_bound = array_ref_low_bound (t2);
1750 tree unit_size = array_ref_element_size (t2);
1752 /* We assume all arrays have sizes that are a multiple of a byte.
1753 First subtract the lower bound, if any, in the type of the
1754 index, then convert to sizetype and multiply by the size of
1755 the array element. */
1756 if (! integer_zerop (low_bound))
1757 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1758 index, low_bound);
1760 off_tree = size_binop (PLUS_EXPR,
1761 size_binop (MULT_EXPR,
1762 fold_convert (sizetype,
1763 index),
1764 unit_size),
1765 off_tree);
1766 t2 = TREE_OPERAND (t2, 0);
1768 while (TREE_CODE (t2) == ARRAY_REF);
1770 if (DECL_P (t2))
1772 expr = t2;
1773 offset = NULL;
1774 if (host_integerp (off_tree, 1))
1776 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1777 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1778 align = DECL_ALIGN (t2);
1779 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1780 align = aoff;
1781 align_computed = true;
1782 offset = GEN_INT (ioff);
1783 apply_bitpos = bitpos;
1786 else if (TREE_CODE (t2) == COMPONENT_REF)
1788 expr = component_ref_for_mem_expr (t2);
1789 if (host_integerp (off_tree, 1))
1791 offset = GEN_INT (tree_low_cst (off_tree, 1));
1792 apply_bitpos = bitpos;
1794 /* ??? Any reason the field size would be different than
1795 the size we got from the type? */
1797 else if (flag_argument_noalias > 1
1798 && (INDIRECT_REF_P (t2))
1799 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1801 expr = t2;
1802 offset = NULL;
1806 /* If this is a Fortran indirect argument reference, record the
1807 parameter decl. */
1808 else if (flag_argument_noalias > 1
1809 && (INDIRECT_REF_P (t))
1810 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1812 expr = t;
1813 offset = NULL;
1816 if (!align_computed && !INDIRECT_REF_P (t))
1818 unsigned int obj_align
1819 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1820 align = MAX (align, obj_align);
1824 /* If we modified OFFSET based on T, then subtract the outstanding
1825 bit position offset. Similarly, increase the size of the accessed
1826 object to contain the negative offset. */
1827 if (apply_bitpos)
1829 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1830 if (size)
1831 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1834 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1836 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1837 we're overlapping. */
1838 offset = NULL;
1839 expr = NULL;
1842 /* Now set the attributes we computed above. */
1843 MEM_ATTRS (ref)
1844 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1846 /* If this is already known to be a scalar or aggregate, we are done. */
1847 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1848 return;
1850 /* If it is a reference into an aggregate, this is part of an aggregate.
1851 Otherwise we don't know. */
1852 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1853 || TREE_CODE (t) == ARRAY_RANGE_REF
1854 || TREE_CODE (t) == BIT_FIELD_REF)
1855 MEM_IN_STRUCT_P (ref) = 1;
1858 void
1859 set_mem_attributes (rtx ref, tree t, int objectp)
1861 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1864 /* Set the alias set of MEM to SET. */
1866 void
1867 set_mem_alias_set (rtx mem, alias_set_type set)
1869 #ifdef ENABLE_CHECKING
1870 /* If the new and old alias sets don't conflict, something is wrong. */
1871 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1872 #endif
1874 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1875 MEM_SIZE (mem), MEM_ALIGN (mem),
1876 GET_MODE (mem));
1879 /* Set the alignment of MEM to ALIGN bits. */
1881 void
1882 set_mem_align (rtx mem, unsigned int align)
1884 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1885 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1886 GET_MODE (mem));
1889 /* Set the expr for MEM to EXPR. */
1891 void
1892 set_mem_expr (rtx mem, tree expr)
1894 MEM_ATTRS (mem)
1895 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1896 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1899 /* Set the offset of MEM to OFFSET. */
1901 void
1902 set_mem_offset (rtx mem, rtx offset)
1904 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1905 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1906 GET_MODE (mem));
1909 /* Set the size of MEM to SIZE. */
1911 void
1912 set_mem_size (rtx mem, rtx size)
1914 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1915 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1916 GET_MODE (mem));
1919 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1920 and its address changed to ADDR. (VOIDmode means don't change the mode.
1921 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1922 returned memory location is required to be valid. The memory
1923 attributes are not changed. */
1925 static rtx
1926 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1928 rtx new_rtx;
1930 gcc_assert (MEM_P (memref));
1931 if (mode == VOIDmode)
1932 mode = GET_MODE (memref);
1933 if (addr == 0)
1934 addr = XEXP (memref, 0);
1935 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1936 && (!validate || memory_address_p (mode, addr)))
1937 return memref;
1939 if (validate)
1941 if (reload_in_progress || reload_completed)
1942 gcc_assert (memory_address_p (mode, addr));
1943 else
1944 addr = memory_address (mode, addr);
1947 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1948 return memref;
1950 new_rtx = gen_rtx_MEM (mode, addr);
1951 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1952 return new_rtx;
1955 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1956 way we are changing MEMREF, so we only preserve the alias set. */
1959 change_address (rtx memref, enum machine_mode mode, rtx addr)
1961 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1962 enum machine_mode mmode = GET_MODE (new_rtx);
1963 unsigned int align;
1965 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1966 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1968 /* If there are no changes, just return the original memory reference. */
1969 if (new_rtx == memref)
1971 if (MEM_ATTRS (memref) == 0
1972 || (MEM_EXPR (memref) == NULL
1973 && MEM_OFFSET (memref) == NULL
1974 && MEM_SIZE (memref) == size
1975 && MEM_ALIGN (memref) == align))
1976 return new_rtx;
1978 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1979 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1982 MEM_ATTRS (new_rtx)
1983 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1985 return new_rtx;
1988 /* Return a memory reference like MEMREF, but with its mode changed
1989 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1990 nonzero, the memory address is forced to be valid.
1991 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1992 and caller is responsible for adjusting MEMREF base register. */
1995 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1996 int validate, int adjust)
1998 rtx addr = XEXP (memref, 0);
1999 rtx new_rtx;
2000 rtx memoffset = MEM_OFFSET (memref);
2001 rtx size = 0;
2002 unsigned int memalign = MEM_ALIGN (memref);
2003 int pbits;
2005 /* If there are no changes, just return the original memory reference. */
2006 if (mode == GET_MODE (memref) && !offset
2007 && (!validate || memory_address_p (mode, addr)))
2008 return memref;
2010 /* ??? Prefer to create garbage instead of creating shared rtl.
2011 This may happen even if offset is nonzero -- consider
2012 (plus (plus reg reg) const_int) -- so do this always. */
2013 addr = copy_rtx (addr);
2015 /* Convert a possibly large offset to a signed value within the
2016 range of the target address space. */
2017 pbits = GET_MODE_BITSIZE (Pmode);
2018 if (HOST_BITS_PER_WIDE_INT > pbits)
2020 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2021 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2022 >> shift);
2025 if (adjust)
2027 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2028 object, we can merge it into the LO_SUM. */
2029 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2030 && offset >= 0
2031 && (unsigned HOST_WIDE_INT) offset
2032 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2033 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2034 plus_constant (XEXP (addr, 1), offset));
2035 else
2036 addr = plus_constant (addr, offset);
2039 new_rtx = change_address_1 (memref, mode, addr, validate);
2041 /* If the address is a REG, change_address_1 rightfully returns memref,
2042 but this would destroy memref's MEM_ATTRS. */
2043 if (new_rtx == memref && offset != 0)
2044 new_rtx = copy_rtx (new_rtx);
2046 /* Compute the new values of the memory attributes due to this adjustment.
2047 We add the offsets and update the alignment. */
2048 if (memoffset)
2049 memoffset = GEN_INT (offset + INTVAL (memoffset));
2051 /* Compute the new alignment by taking the MIN of the alignment and the
2052 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2053 if zero. */
2054 if (offset != 0)
2055 memalign
2056 = MIN (memalign,
2057 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2059 /* We can compute the size in a number of ways. */
2060 if (GET_MODE (new_rtx) != BLKmode)
2061 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2062 else if (MEM_SIZE (memref))
2063 size = plus_constant (MEM_SIZE (memref), -offset);
2065 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2066 memoffset, size, memalign, GET_MODE (new_rtx));
2068 /* At some point, we should validate that this offset is within the object,
2069 if all the appropriate values are known. */
2070 return new_rtx;
2073 /* Return a memory reference like MEMREF, but with its mode changed
2074 to MODE and its address changed to ADDR, which is assumed to be
2075 MEMREF offset by OFFSET bytes. If VALIDATE is
2076 nonzero, the memory address is forced to be valid. */
2079 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2080 HOST_WIDE_INT offset, int validate)
2082 memref = change_address_1 (memref, VOIDmode, addr, validate);
2083 return adjust_address_1 (memref, mode, offset, validate, 0);
2086 /* Return a memory reference like MEMREF, but whose address is changed by
2087 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2088 known to be in OFFSET (possibly 1). */
2091 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2093 rtx new_rtx, addr = XEXP (memref, 0);
2095 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2097 /* At this point we don't know _why_ the address is invalid. It
2098 could have secondary memory references, multiplies or anything.
2100 However, if we did go and rearrange things, we can wind up not
2101 being able to recognize the magic around pic_offset_table_rtx.
2102 This stuff is fragile, and is yet another example of why it is
2103 bad to expose PIC machinery too early. */
2104 if (! memory_address_p (GET_MODE (memref), new_rtx)
2105 && GET_CODE (addr) == PLUS
2106 && XEXP (addr, 0) == pic_offset_table_rtx)
2108 addr = force_reg (GET_MODE (addr), addr);
2109 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2112 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2113 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2115 /* If there are no changes, just return the original memory reference. */
2116 if (new_rtx == memref)
2117 return new_rtx;
2119 /* Update the alignment to reflect the offset. Reset the offset, which
2120 we don't know. */
2121 MEM_ATTRS (new_rtx)
2122 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2123 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2124 GET_MODE (new_rtx));
2125 return new_rtx;
2128 /* Return a memory reference like MEMREF, but with its address changed to
2129 ADDR. The caller is asserting that the actual piece of memory pointed
2130 to is the same, just the form of the address is being changed, such as
2131 by putting something into a register. */
2134 replace_equiv_address (rtx memref, rtx addr)
2136 /* change_address_1 copies the memory attribute structure without change
2137 and that's exactly what we want here. */
2138 update_temp_slot_address (XEXP (memref, 0), addr);
2139 return change_address_1 (memref, VOIDmode, addr, 1);
2142 /* Likewise, but the reference is not required to be valid. */
2145 replace_equiv_address_nv (rtx memref, rtx addr)
2147 return change_address_1 (memref, VOIDmode, addr, 0);
2150 /* Return a memory reference like MEMREF, but with its mode widened to
2151 MODE and offset by OFFSET. This would be used by targets that e.g.
2152 cannot issue QImode memory operations and have to use SImode memory
2153 operations plus masking logic. */
2156 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2158 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2159 tree expr = MEM_EXPR (new_rtx);
2160 rtx memoffset = MEM_OFFSET (new_rtx);
2161 unsigned int size = GET_MODE_SIZE (mode);
2163 /* If there are no changes, just return the original memory reference. */
2164 if (new_rtx == memref)
2165 return new_rtx;
2167 /* If we don't know what offset we were at within the expression, then
2168 we can't know if we've overstepped the bounds. */
2169 if (! memoffset)
2170 expr = NULL_TREE;
2172 while (expr)
2174 if (TREE_CODE (expr) == COMPONENT_REF)
2176 tree field = TREE_OPERAND (expr, 1);
2177 tree offset = component_ref_field_offset (expr);
2179 if (! DECL_SIZE_UNIT (field))
2181 expr = NULL_TREE;
2182 break;
2185 /* Is the field at least as large as the access? If so, ok,
2186 otherwise strip back to the containing structure. */
2187 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2188 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2189 && INTVAL (memoffset) >= 0)
2190 break;
2192 if (! host_integerp (offset, 1))
2194 expr = NULL_TREE;
2195 break;
2198 expr = TREE_OPERAND (expr, 0);
2199 memoffset
2200 = (GEN_INT (INTVAL (memoffset)
2201 + tree_low_cst (offset, 1)
2202 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2203 / BITS_PER_UNIT)));
2205 /* Similarly for the decl. */
2206 else if (DECL_P (expr)
2207 && DECL_SIZE_UNIT (expr)
2208 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2209 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2210 && (! memoffset || INTVAL (memoffset) >= 0))
2211 break;
2212 else
2214 /* The widened memory access overflows the expression, which means
2215 that it could alias another expression. Zap it. */
2216 expr = NULL_TREE;
2217 break;
2221 if (! expr)
2222 memoffset = NULL_RTX;
2224 /* The widened memory may alias other stuff, so zap the alias set. */
2225 /* ??? Maybe use get_alias_set on any remaining expression. */
2227 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2228 MEM_ALIGN (new_rtx), mode);
2230 return new_rtx;
2233 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2234 static GTY(()) tree spill_slot_decl;
2236 tree
2237 get_spill_slot_decl (bool force_build_p)
2239 tree d = spill_slot_decl;
2240 rtx rd;
2242 if (d || !force_build_p)
2243 return d;
2245 d = build_decl (VAR_DECL, get_identifier ("%sfp"), void_type_node);
2246 DECL_ARTIFICIAL (d) = 1;
2247 DECL_IGNORED_P (d) = 1;
2248 TREE_USED (d) = 1;
2249 TREE_THIS_NOTRAP (d) = 1;
2250 spill_slot_decl = d;
2252 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2253 MEM_NOTRAP_P (rd) = 1;
2254 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2255 NULL_RTX, 0, BLKmode);
2256 SET_DECL_RTL (d, rd);
2258 return d;
2261 /* Given MEM, a result from assign_stack_local, fill in the memory
2262 attributes as appropriate for a register allocator spill slot.
2263 These slots are not aliasable by other memory. We arrange for
2264 them all to use a single MEM_EXPR, so that the aliasing code can
2265 work properly in the case of shared spill slots. */
2267 void
2268 set_mem_attrs_for_spill (rtx mem)
2270 alias_set_type alias;
2271 rtx addr, offset;
2272 tree expr;
2274 expr = get_spill_slot_decl (true);
2275 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2277 /* We expect the incoming memory to be of the form:
2278 (mem:MODE (plus (reg sfp) (const_int offset)))
2279 with perhaps the plus missing for offset = 0. */
2280 addr = XEXP (mem, 0);
2281 offset = const0_rtx;
2282 if (GET_CODE (addr) == PLUS
2283 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
2284 offset = XEXP (addr, 1);
2286 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2287 MEM_SIZE (mem), MEM_ALIGN (mem),
2288 GET_MODE (mem));
2289 MEM_NOTRAP_P (mem) = 1;
2292 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2295 gen_label_rtx (void)
2297 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2298 NULL, label_num++, NULL);
2301 /* For procedure integration. */
2303 /* Install new pointers to the first and last insns in the chain.
2304 Also, set cur_insn_uid to one higher than the last in use.
2305 Used for an inline-procedure after copying the insn chain. */
2307 void
2308 set_new_first_and_last_insn (rtx first, rtx last)
2310 rtx insn;
2312 first_insn = first;
2313 last_insn = last;
2314 cur_insn_uid = 0;
2316 for (insn = first; insn; insn = NEXT_INSN (insn))
2317 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2319 cur_insn_uid++;
2322 /* Go through all the RTL insn bodies and copy any invalid shared
2323 structure. This routine should only be called once. */
2325 static void
2326 unshare_all_rtl_1 (rtx insn)
2328 /* Unshare just about everything else. */
2329 unshare_all_rtl_in_chain (insn);
2331 /* Make sure the addresses of stack slots found outside the insn chain
2332 (such as, in DECL_RTL of a variable) are not shared
2333 with the insn chain.
2335 This special care is necessary when the stack slot MEM does not
2336 actually appear in the insn chain. If it does appear, its address
2337 is unshared from all else at that point. */
2338 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2341 /* Go through all the RTL insn bodies and copy any invalid shared
2342 structure, again. This is a fairly expensive thing to do so it
2343 should be done sparingly. */
2345 void
2346 unshare_all_rtl_again (rtx insn)
2348 rtx p;
2349 tree decl;
2351 for (p = insn; p; p = NEXT_INSN (p))
2352 if (INSN_P (p))
2354 reset_used_flags (PATTERN (p));
2355 reset_used_flags (REG_NOTES (p));
2358 /* Make sure that virtual stack slots are not shared. */
2359 set_used_decls (DECL_INITIAL (cfun->decl));
2361 /* Make sure that virtual parameters are not shared. */
2362 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2363 set_used_flags (DECL_RTL (decl));
2365 reset_used_flags (stack_slot_list);
2367 unshare_all_rtl_1 (insn);
2370 unsigned int
2371 unshare_all_rtl (void)
2373 unshare_all_rtl_1 (get_insns ());
2374 return 0;
2377 struct rtl_opt_pass pass_unshare_all_rtl =
2380 RTL_PASS,
2381 "unshare", /* name */
2382 NULL, /* gate */
2383 unshare_all_rtl, /* execute */
2384 NULL, /* sub */
2385 NULL, /* next */
2386 0, /* static_pass_number */
2387 TV_NONE, /* tv_id */
2388 0, /* properties_required */
2389 0, /* properties_provided */
2390 0, /* properties_destroyed */
2391 0, /* todo_flags_start */
2392 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2397 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2398 Recursively does the same for subexpressions. */
2400 static void
2401 verify_rtx_sharing (rtx orig, rtx insn)
2403 rtx x = orig;
2404 int i;
2405 enum rtx_code code;
2406 const char *format_ptr;
2408 if (x == 0)
2409 return;
2411 code = GET_CODE (x);
2413 /* These types may be freely shared. */
2415 switch (code)
2417 case REG:
2418 case CONST_INT:
2419 case CONST_DOUBLE:
2420 case CONST_FIXED:
2421 case CONST_VECTOR:
2422 case SYMBOL_REF:
2423 case LABEL_REF:
2424 case CODE_LABEL:
2425 case PC:
2426 case CC0:
2427 case SCRATCH:
2428 return;
2429 /* SCRATCH must be shared because they represent distinct values. */
2430 case CLOBBER:
2431 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2432 return;
2433 break;
2435 case CONST:
2436 if (shared_const_p (orig))
2437 return;
2438 break;
2440 case MEM:
2441 /* A MEM is allowed to be shared if its address is constant. */
2442 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2443 || reload_completed || reload_in_progress)
2444 return;
2446 break;
2448 default:
2449 break;
2452 /* This rtx may not be shared. If it has already been seen,
2453 replace it with a copy of itself. */
2454 #ifdef ENABLE_CHECKING
2455 if (RTX_FLAG (x, used))
2457 error ("invalid rtl sharing found in the insn");
2458 debug_rtx (insn);
2459 error ("shared rtx");
2460 debug_rtx (x);
2461 internal_error ("internal consistency failure");
2463 #endif
2464 gcc_assert (!RTX_FLAG (x, used));
2466 RTX_FLAG (x, used) = 1;
2468 /* Now scan the subexpressions recursively. */
2470 format_ptr = GET_RTX_FORMAT (code);
2472 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2474 switch (*format_ptr++)
2476 case 'e':
2477 verify_rtx_sharing (XEXP (x, i), insn);
2478 break;
2480 case 'E':
2481 if (XVEC (x, i) != NULL)
2483 int j;
2484 int len = XVECLEN (x, i);
2486 for (j = 0; j < len; j++)
2488 /* We allow sharing of ASM_OPERANDS inside single
2489 instruction. */
2490 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2491 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2492 == ASM_OPERANDS))
2493 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2494 else
2495 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2498 break;
2501 return;
2504 /* Go through all the RTL insn bodies and check that there is no unexpected
2505 sharing in between the subexpressions. */
2507 void
2508 verify_rtl_sharing (void)
2510 rtx p;
2512 for (p = get_insns (); p; p = NEXT_INSN (p))
2513 if (INSN_P (p))
2515 reset_used_flags (PATTERN (p));
2516 reset_used_flags (REG_NOTES (p));
2517 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2519 int i;
2520 rtx q, sequence = PATTERN (p);
2522 for (i = 0; i < XVECLEN (sequence, 0); i++)
2524 q = XVECEXP (sequence, 0, i);
2525 gcc_assert (INSN_P (q));
2526 reset_used_flags (PATTERN (q));
2527 reset_used_flags (REG_NOTES (q));
2532 for (p = get_insns (); p; p = NEXT_INSN (p))
2533 if (INSN_P (p))
2535 verify_rtx_sharing (PATTERN (p), p);
2536 verify_rtx_sharing (REG_NOTES (p), p);
2540 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2541 Assumes the mark bits are cleared at entry. */
2543 void
2544 unshare_all_rtl_in_chain (rtx insn)
2546 for (; insn; insn = NEXT_INSN (insn))
2547 if (INSN_P (insn))
2549 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2550 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2554 /* Go through all virtual stack slots of a function and mark them as
2555 shared. We never replace the DECL_RTLs themselves with a copy,
2556 but expressions mentioned into a DECL_RTL cannot be shared with
2557 expressions in the instruction stream.
2559 Note that reload may convert pseudo registers into memories in-place.
2560 Pseudo registers are always shared, but MEMs never are. Thus if we
2561 reset the used flags on MEMs in the instruction stream, we must set
2562 them again on MEMs that appear in DECL_RTLs. */
2564 static void
2565 set_used_decls (tree blk)
2567 tree t;
2569 /* Mark decls. */
2570 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2571 if (DECL_RTL_SET_P (t))
2572 set_used_flags (DECL_RTL (t));
2574 /* Now process sub-blocks. */
2575 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2576 set_used_decls (t);
2579 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2580 Recursively does the same for subexpressions. Uses
2581 copy_rtx_if_shared_1 to reduce stack space. */
2584 copy_rtx_if_shared (rtx orig)
2586 copy_rtx_if_shared_1 (&orig);
2587 return orig;
2590 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2591 use. Recursively does the same for subexpressions. */
2593 static void
2594 copy_rtx_if_shared_1 (rtx *orig1)
2596 rtx x;
2597 int i;
2598 enum rtx_code code;
2599 rtx *last_ptr;
2600 const char *format_ptr;
2601 int copied = 0;
2602 int length;
2604 /* Repeat is used to turn tail-recursion into iteration. */
2605 repeat:
2606 x = *orig1;
2608 if (x == 0)
2609 return;
2611 code = GET_CODE (x);
2613 /* These types may be freely shared. */
2615 switch (code)
2617 case REG:
2618 case CONST_INT:
2619 case CONST_DOUBLE:
2620 case CONST_FIXED:
2621 case CONST_VECTOR:
2622 case SYMBOL_REF:
2623 case LABEL_REF:
2624 case CODE_LABEL:
2625 case PC:
2626 case CC0:
2627 case SCRATCH:
2628 /* SCRATCH must be shared because they represent distinct values. */
2629 return;
2630 case CLOBBER:
2631 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2632 return;
2633 break;
2635 case CONST:
2636 if (shared_const_p (x))
2637 return;
2638 break;
2640 case INSN:
2641 case JUMP_INSN:
2642 case CALL_INSN:
2643 case NOTE:
2644 case BARRIER:
2645 /* The chain of insns is not being copied. */
2646 return;
2648 default:
2649 break;
2652 /* This rtx may not be shared. If it has already been seen,
2653 replace it with a copy of itself. */
2655 if (RTX_FLAG (x, used))
2657 x = shallow_copy_rtx (x);
2658 copied = 1;
2660 RTX_FLAG (x, used) = 1;
2662 /* Now scan the subexpressions recursively.
2663 We can store any replaced subexpressions directly into X
2664 since we know X is not shared! Any vectors in X
2665 must be copied if X was copied. */
2667 format_ptr = GET_RTX_FORMAT (code);
2668 length = GET_RTX_LENGTH (code);
2669 last_ptr = NULL;
2671 for (i = 0; i < length; i++)
2673 switch (*format_ptr++)
2675 case 'e':
2676 if (last_ptr)
2677 copy_rtx_if_shared_1 (last_ptr);
2678 last_ptr = &XEXP (x, i);
2679 break;
2681 case 'E':
2682 if (XVEC (x, i) != NULL)
2684 int j;
2685 int len = XVECLEN (x, i);
2687 /* Copy the vector iff I copied the rtx and the length
2688 is nonzero. */
2689 if (copied && len > 0)
2690 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2692 /* Call recursively on all inside the vector. */
2693 for (j = 0; j < len; j++)
2695 if (last_ptr)
2696 copy_rtx_if_shared_1 (last_ptr);
2697 last_ptr = &XVECEXP (x, i, j);
2700 break;
2703 *orig1 = x;
2704 if (last_ptr)
2706 orig1 = last_ptr;
2707 goto repeat;
2709 return;
2712 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2713 to look for shared sub-parts. */
2715 void
2716 reset_used_flags (rtx x)
2718 int i, j;
2719 enum rtx_code code;
2720 const char *format_ptr;
2721 int length;
2723 /* Repeat is used to turn tail-recursion into iteration. */
2724 repeat:
2725 if (x == 0)
2726 return;
2728 code = GET_CODE (x);
2730 /* These types may be freely shared so we needn't do any resetting
2731 for them. */
2733 switch (code)
2735 case REG:
2736 case CONST_INT:
2737 case CONST_DOUBLE:
2738 case CONST_FIXED:
2739 case CONST_VECTOR:
2740 case SYMBOL_REF:
2741 case CODE_LABEL:
2742 case PC:
2743 case CC0:
2744 return;
2746 case INSN:
2747 case JUMP_INSN:
2748 case CALL_INSN:
2749 case NOTE:
2750 case LABEL_REF:
2751 case BARRIER:
2752 /* The chain of insns is not being copied. */
2753 return;
2755 default:
2756 break;
2759 RTX_FLAG (x, used) = 0;
2761 format_ptr = GET_RTX_FORMAT (code);
2762 length = GET_RTX_LENGTH (code);
2764 for (i = 0; i < length; i++)
2766 switch (*format_ptr++)
2768 case 'e':
2769 if (i == length-1)
2771 x = XEXP (x, i);
2772 goto repeat;
2774 reset_used_flags (XEXP (x, i));
2775 break;
2777 case 'E':
2778 for (j = 0; j < XVECLEN (x, i); j++)
2779 reset_used_flags (XVECEXP (x, i, j));
2780 break;
2785 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2786 to look for shared sub-parts. */
2788 void
2789 set_used_flags (rtx x)
2791 int i, j;
2792 enum rtx_code code;
2793 const char *format_ptr;
2795 if (x == 0)
2796 return;
2798 code = GET_CODE (x);
2800 /* These types may be freely shared so we needn't do any resetting
2801 for them. */
2803 switch (code)
2805 case REG:
2806 case CONST_INT:
2807 case CONST_DOUBLE:
2808 case CONST_FIXED:
2809 case CONST_VECTOR:
2810 case SYMBOL_REF:
2811 case CODE_LABEL:
2812 case PC:
2813 case CC0:
2814 return;
2816 case INSN:
2817 case JUMP_INSN:
2818 case CALL_INSN:
2819 case NOTE:
2820 case LABEL_REF:
2821 case BARRIER:
2822 /* The chain of insns is not being copied. */
2823 return;
2825 default:
2826 break;
2829 RTX_FLAG (x, used) = 1;
2831 format_ptr = GET_RTX_FORMAT (code);
2832 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2834 switch (*format_ptr++)
2836 case 'e':
2837 set_used_flags (XEXP (x, i));
2838 break;
2840 case 'E':
2841 for (j = 0; j < XVECLEN (x, i); j++)
2842 set_used_flags (XVECEXP (x, i, j));
2843 break;
2848 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2849 Return X or the rtx for the pseudo reg the value of X was copied into.
2850 OTHER must be valid as a SET_DEST. */
2853 make_safe_from (rtx x, rtx other)
2855 while (1)
2856 switch (GET_CODE (other))
2858 case SUBREG:
2859 other = SUBREG_REG (other);
2860 break;
2861 case STRICT_LOW_PART:
2862 case SIGN_EXTEND:
2863 case ZERO_EXTEND:
2864 other = XEXP (other, 0);
2865 break;
2866 default:
2867 goto done;
2869 done:
2870 if ((MEM_P (other)
2871 && ! CONSTANT_P (x)
2872 && !REG_P (x)
2873 && GET_CODE (x) != SUBREG)
2874 || (REG_P (other)
2875 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2876 || reg_mentioned_p (other, x))))
2878 rtx temp = gen_reg_rtx (GET_MODE (x));
2879 emit_move_insn (temp, x);
2880 return temp;
2882 return x;
2885 /* Emission of insns (adding them to the doubly-linked list). */
2887 /* Return the first insn of the current sequence or current function. */
2890 get_insns (void)
2892 return first_insn;
2895 /* Specify a new insn as the first in the chain. */
2897 void
2898 set_first_insn (rtx insn)
2900 gcc_assert (!PREV_INSN (insn));
2901 first_insn = insn;
2904 /* Return the last insn emitted in current sequence or current function. */
2907 get_last_insn (void)
2909 return last_insn;
2912 /* Specify a new insn as the last in the chain. */
2914 void
2915 set_last_insn (rtx insn)
2917 gcc_assert (!NEXT_INSN (insn));
2918 last_insn = insn;
2921 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2924 get_last_insn_anywhere (void)
2926 struct sequence_stack *stack;
2927 if (last_insn)
2928 return last_insn;
2929 for (stack = seq_stack; stack; stack = stack->next)
2930 if (stack->last != 0)
2931 return stack->last;
2932 return 0;
2935 /* Return the first nonnote insn emitted in current sequence or current
2936 function. This routine looks inside SEQUENCEs. */
2939 get_first_nonnote_insn (void)
2941 rtx insn = first_insn;
2943 if (insn)
2945 if (NOTE_P (insn))
2946 for (insn = next_insn (insn);
2947 insn && NOTE_P (insn);
2948 insn = next_insn (insn))
2949 continue;
2950 else
2952 if (NONJUMP_INSN_P (insn)
2953 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2954 insn = XVECEXP (PATTERN (insn), 0, 0);
2958 return insn;
2961 /* Return the last nonnote insn emitted in current sequence or current
2962 function. This routine looks inside SEQUENCEs. */
2965 get_last_nonnote_insn (void)
2967 rtx insn = last_insn;
2969 if (insn)
2971 if (NOTE_P (insn))
2972 for (insn = previous_insn (insn);
2973 insn && NOTE_P (insn);
2974 insn = previous_insn (insn))
2975 continue;
2976 else
2978 if (NONJUMP_INSN_P (insn)
2979 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2980 insn = XVECEXP (PATTERN (insn), 0,
2981 XVECLEN (PATTERN (insn), 0) - 1);
2985 return insn;
2988 /* Return a number larger than any instruction's uid in this function. */
2991 get_max_uid (void)
2993 return cur_insn_uid;
2996 /* Return the next insn. If it is a SEQUENCE, return the first insn
2997 of the sequence. */
3000 next_insn (rtx insn)
3002 if (insn)
3004 insn = NEXT_INSN (insn);
3005 if (insn && NONJUMP_INSN_P (insn)
3006 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3007 insn = XVECEXP (PATTERN (insn), 0, 0);
3010 return insn;
3013 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3014 of the sequence. */
3017 previous_insn (rtx insn)
3019 if (insn)
3021 insn = PREV_INSN (insn);
3022 if (insn && NONJUMP_INSN_P (insn)
3023 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3024 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3027 return insn;
3030 /* Return the next insn after INSN that is not a NOTE. This routine does not
3031 look inside SEQUENCEs. */
3034 next_nonnote_insn (rtx insn)
3036 while (insn)
3038 insn = NEXT_INSN (insn);
3039 if (insn == 0 || !NOTE_P (insn))
3040 break;
3043 return insn;
3046 /* Return the previous insn before INSN that is not a NOTE. This routine does
3047 not look inside SEQUENCEs. */
3050 prev_nonnote_insn (rtx insn)
3052 while (insn)
3054 insn = PREV_INSN (insn);
3055 if (insn == 0 || !NOTE_P (insn))
3056 break;
3059 return insn;
3062 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3063 or 0, if there is none. This routine does not look inside
3064 SEQUENCEs. */
3067 next_real_insn (rtx insn)
3069 while (insn)
3071 insn = NEXT_INSN (insn);
3072 if (insn == 0 || INSN_P (insn))
3073 break;
3076 return insn;
3079 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3080 or 0, if there is none. This routine does not look inside
3081 SEQUENCEs. */
3084 prev_real_insn (rtx insn)
3086 while (insn)
3088 insn = PREV_INSN (insn);
3089 if (insn == 0 || INSN_P (insn))
3090 break;
3093 return insn;
3096 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3097 This routine does not look inside SEQUENCEs. */
3100 last_call_insn (void)
3102 rtx insn;
3104 for (insn = get_last_insn ();
3105 insn && !CALL_P (insn);
3106 insn = PREV_INSN (insn))
3109 return insn;
3112 /* Find the next insn after INSN that really does something. This routine
3113 does not look inside SEQUENCEs. Until reload has completed, this is the
3114 same as next_real_insn. */
3117 active_insn_p (const_rtx insn)
3119 return (CALL_P (insn) || JUMP_P (insn)
3120 || (NONJUMP_INSN_P (insn)
3121 && (! reload_completed
3122 || (GET_CODE (PATTERN (insn)) != USE
3123 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3127 next_active_insn (rtx insn)
3129 while (insn)
3131 insn = NEXT_INSN (insn);
3132 if (insn == 0 || active_insn_p (insn))
3133 break;
3136 return insn;
3139 /* Find the last insn before INSN that really does something. This routine
3140 does not look inside SEQUENCEs. Until reload has completed, this is the
3141 same as prev_real_insn. */
3144 prev_active_insn (rtx insn)
3146 while (insn)
3148 insn = PREV_INSN (insn);
3149 if (insn == 0 || active_insn_p (insn))
3150 break;
3153 return insn;
3156 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3159 next_label (rtx insn)
3161 while (insn)
3163 insn = NEXT_INSN (insn);
3164 if (insn == 0 || LABEL_P (insn))
3165 break;
3168 return insn;
3171 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3174 prev_label (rtx insn)
3176 while (insn)
3178 insn = PREV_INSN (insn);
3179 if (insn == 0 || LABEL_P (insn))
3180 break;
3183 return insn;
3186 /* Return the last label to mark the same position as LABEL. Return null
3187 if LABEL itself is null. */
3190 skip_consecutive_labels (rtx label)
3192 rtx insn;
3194 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3195 if (LABEL_P (insn))
3196 label = insn;
3198 return label;
3201 #ifdef HAVE_cc0
3202 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3203 and REG_CC_USER notes so we can find it. */
3205 void
3206 link_cc0_insns (rtx insn)
3208 rtx user = next_nonnote_insn (insn);
3210 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3211 user = XVECEXP (PATTERN (user), 0, 0);
3213 add_reg_note (user, REG_CC_SETTER, insn);
3214 add_reg_note (insn, REG_CC_USER, user);
3217 /* Return the next insn that uses CC0 after INSN, which is assumed to
3218 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3219 applied to the result of this function should yield INSN).
3221 Normally, this is simply the next insn. However, if a REG_CC_USER note
3222 is present, it contains the insn that uses CC0.
3224 Return 0 if we can't find the insn. */
3227 next_cc0_user (rtx insn)
3229 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3231 if (note)
3232 return XEXP (note, 0);
3234 insn = next_nonnote_insn (insn);
3235 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3236 insn = XVECEXP (PATTERN (insn), 0, 0);
3238 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3239 return insn;
3241 return 0;
3244 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3245 note, it is the previous insn. */
3248 prev_cc0_setter (rtx insn)
3250 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3252 if (note)
3253 return XEXP (note, 0);
3255 insn = prev_nonnote_insn (insn);
3256 gcc_assert (sets_cc0_p (PATTERN (insn)));
3258 return insn;
3260 #endif
3262 #ifdef AUTO_INC_DEC
3263 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3265 static int
3266 find_auto_inc (rtx *xp, void *data)
3268 rtx x = *xp;
3269 rtx reg = (rtx) data;
3271 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3272 return 0;
3274 switch (GET_CODE (x))
3276 case PRE_DEC:
3277 case PRE_INC:
3278 case POST_DEC:
3279 case POST_INC:
3280 case PRE_MODIFY:
3281 case POST_MODIFY:
3282 if (rtx_equal_p (reg, XEXP (x, 0)))
3283 return 1;
3284 break;
3286 default:
3287 gcc_unreachable ();
3289 return -1;
3291 #endif
3293 /* Increment the label uses for all labels present in rtx. */
3295 static void
3296 mark_label_nuses (rtx x)
3298 enum rtx_code code;
3299 int i, j;
3300 const char *fmt;
3302 code = GET_CODE (x);
3303 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3304 LABEL_NUSES (XEXP (x, 0))++;
3306 fmt = GET_RTX_FORMAT (code);
3307 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3309 if (fmt[i] == 'e')
3310 mark_label_nuses (XEXP (x, i));
3311 else if (fmt[i] == 'E')
3312 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3313 mark_label_nuses (XVECEXP (x, i, j));
3318 /* Try splitting insns that can be split for better scheduling.
3319 PAT is the pattern which might split.
3320 TRIAL is the insn providing PAT.
3321 LAST is nonzero if we should return the last insn of the sequence produced.
3323 If this routine succeeds in splitting, it returns the first or last
3324 replacement insn depending on the value of LAST. Otherwise, it
3325 returns TRIAL. If the insn to be returned can be split, it will be. */
3328 try_split (rtx pat, rtx trial, int last)
3330 rtx before = PREV_INSN (trial);
3331 rtx after = NEXT_INSN (trial);
3332 int has_barrier = 0;
3333 rtx note, seq, tem;
3334 int probability;
3335 rtx insn_last, insn;
3336 int njumps = 0;
3338 /* We're not good at redistributing frame information. */
3339 if (RTX_FRAME_RELATED_P (trial))
3340 return trial;
3342 if (any_condjump_p (trial)
3343 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3344 split_branch_probability = INTVAL (XEXP (note, 0));
3345 probability = split_branch_probability;
3347 seq = split_insns (pat, trial);
3349 split_branch_probability = -1;
3351 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3352 We may need to handle this specially. */
3353 if (after && BARRIER_P (after))
3355 has_barrier = 1;
3356 after = NEXT_INSN (after);
3359 if (!seq)
3360 return trial;
3362 /* Avoid infinite loop if any insn of the result matches
3363 the original pattern. */
3364 insn_last = seq;
3365 while (1)
3367 if (INSN_P (insn_last)
3368 && rtx_equal_p (PATTERN (insn_last), pat))
3369 return trial;
3370 if (!NEXT_INSN (insn_last))
3371 break;
3372 insn_last = NEXT_INSN (insn_last);
3375 /* We will be adding the new sequence to the function. The splitters
3376 may have introduced invalid RTL sharing, so unshare the sequence now. */
3377 unshare_all_rtl_in_chain (seq);
3379 /* Mark labels. */
3380 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3382 if (JUMP_P (insn))
3384 mark_jump_label (PATTERN (insn), insn, 0);
3385 njumps++;
3386 if (probability != -1
3387 && any_condjump_p (insn)
3388 && !find_reg_note (insn, REG_BR_PROB, 0))
3390 /* We can preserve the REG_BR_PROB notes only if exactly
3391 one jump is created, otherwise the machine description
3392 is responsible for this step using
3393 split_branch_probability variable. */
3394 gcc_assert (njumps == 1);
3395 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3400 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3401 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3402 if (CALL_P (trial))
3404 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3405 if (CALL_P (insn))
3407 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3408 while (*p)
3409 p = &XEXP (*p, 1);
3410 *p = CALL_INSN_FUNCTION_USAGE (trial);
3411 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3415 /* Copy notes, particularly those related to the CFG. */
3416 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3418 switch (REG_NOTE_KIND (note))
3420 case REG_EH_REGION:
3421 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3423 if (CALL_P (insn)
3424 || (flag_non_call_exceptions && INSN_P (insn)
3425 && may_trap_p (PATTERN (insn))))
3426 add_reg_note (insn, REG_EH_REGION, XEXP (note, 0));
3428 break;
3430 case REG_NORETURN:
3431 case REG_SETJMP:
3432 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3434 if (CALL_P (insn))
3435 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3437 break;
3439 case REG_NON_LOCAL_GOTO:
3440 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3442 if (JUMP_P (insn))
3443 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3445 break;
3447 #ifdef AUTO_INC_DEC
3448 case REG_INC:
3449 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3451 rtx reg = XEXP (note, 0);
3452 if (!FIND_REG_INC_NOTE (insn, reg)
3453 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3454 add_reg_note (insn, REG_INC, reg);
3456 break;
3457 #endif
3459 default:
3460 break;
3464 /* If there are LABELS inside the split insns increment the
3465 usage count so we don't delete the label. */
3466 if (INSN_P (trial))
3468 insn = insn_last;
3469 while (insn != NULL_RTX)
3471 /* JUMP_P insns have already been "marked" above. */
3472 if (NONJUMP_INSN_P (insn))
3473 mark_label_nuses (PATTERN (insn));
3475 insn = PREV_INSN (insn);
3479 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3481 delete_insn (trial);
3482 if (has_barrier)
3483 emit_barrier_after (tem);
3485 /* Recursively call try_split for each new insn created; by the
3486 time control returns here that insn will be fully split, so
3487 set LAST and continue from the insn after the one returned.
3488 We can't use next_active_insn here since AFTER may be a note.
3489 Ignore deleted insns, which can be occur if not optimizing. */
3490 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3491 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3492 tem = try_split (PATTERN (tem), tem, 1);
3494 /* Return either the first or the last insn, depending on which was
3495 requested. */
3496 return last
3497 ? (after ? PREV_INSN (after) : last_insn)
3498 : NEXT_INSN (before);
3501 /* Make and return an INSN rtx, initializing all its slots.
3502 Store PATTERN in the pattern slots. */
3505 make_insn_raw (rtx pattern)
3507 rtx insn;
3509 insn = rtx_alloc (INSN);
3511 INSN_UID (insn) = cur_insn_uid++;
3512 PATTERN (insn) = pattern;
3513 INSN_CODE (insn) = -1;
3514 REG_NOTES (insn) = NULL;
3515 INSN_LOCATOR (insn) = curr_insn_locator ();
3516 BLOCK_FOR_INSN (insn) = NULL;
3518 #ifdef ENABLE_RTL_CHECKING
3519 if (insn
3520 && INSN_P (insn)
3521 && (returnjump_p (insn)
3522 || (GET_CODE (insn) == SET
3523 && SET_DEST (insn) == pc_rtx)))
3525 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3526 debug_rtx (insn);
3528 #endif
3530 return insn;
3533 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3536 make_jump_insn_raw (rtx pattern)
3538 rtx insn;
3540 insn = rtx_alloc (JUMP_INSN);
3541 INSN_UID (insn) = cur_insn_uid++;
3543 PATTERN (insn) = pattern;
3544 INSN_CODE (insn) = -1;
3545 REG_NOTES (insn) = NULL;
3546 JUMP_LABEL (insn) = NULL;
3547 INSN_LOCATOR (insn) = curr_insn_locator ();
3548 BLOCK_FOR_INSN (insn) = NULL;
3550 return insn;
3553 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3555 static rtx
3556 make_call_insn_raw (rtx pattern)
3558 rtx insn;
3560 insn = rtx_alloc (CALL_INSN);
3561 INSN_UID (insn) = cur_insn_uid++;
3563 PATTERN (insn) = pattern;
3564 INSN_CODE (insn) = -1;
3565 REG_NOTES (insn) = NULL;
3566 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3567 INSN_LOCATOR (insn) = curr_insn_locator ();
3568 BLOCK_FOR_INSN (insn) = NULL;
3570 return insn;
3573 /* Add INSN to the end of the doubly-linked list.
3574 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3576 void
3577 add_insn (rtx insn)
3579 PREV_INSN (insn) = last_insn;
3580 NEXT_INSN (insn) = 0;
3582 if (NULL != last_insn)
3583 NEXT_INSN (last_insn) = insn;
3585 if (NULL == first_insn)
3586 first_insn = insn;
3588 last_insn = insn;
3591 /* Add INSN into the doubly-linked list after insn AFTER. This and
3592 the next should be the only functions called to insert an insn once
3593 delay slots have been filled since only they know how to update a
3594 SEQUENCE. */
3596 void
3597 add_insn_after (rtx insn, rtx after, basic_block bb)
3599 rtx next = NEXT_INSN (after);
3601 gcc_assert (!optimize || !INSN_DELETED_P (after));
3603 NEXT_INSN (insn) = next;
3604 PREV_INSN (insn) = after;
3606 if (next)
3608 PREV_INSN (next) = insn;
3609 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3610 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3612 else if (last_insn == after)
3613 last_insn = insn;
3614 else
3616 struct sequence_stack *stack = seq_stack;
3617 /* Scan all pending sequences too. */
3618 for (; stack; stack = stack->next)
3619 if (after == stack->last)
3621 stack->last = insn;
3622 break;
3625 gcc_assert (stack);
3628 if (!BARRIER_P (after)
3629 && !BARRIER_P (insn)
3630 && (bb = BLOCK_FOR_INSN (after)))
3632 set_block_for_insn (insn, bb);
3633 if (INSN_P (insn))
3634 df_insn_rescan (insn);
3635 /* Should not happen as first in the BB is always
3636 either NOTE or LABEL. */
3637 if (BB_END (bb) == after
3638 /* Avoid clobbering of structure when creating new BB. */
3639 && !BARRIER_P (insn)
3640 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3641 BB_END (bb) = insn;
3644 NEXT_INSN (after) = insn;
3645 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3647 rtx sequence = PATTERN (after);
3648 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3652 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3653 the previous should be the only functions called to insert an insn
3654 once delay slots have been filled since only they know how to
3655 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3656 bb from before. */
3658 void
3659 add_insn_before (rtx insn, rtx before, basic_block bb)
3661 rtx prev = PREV_INSN (before);
3663 gcc_assert (!optimize || !INSN_DELETED_P (before));
3665 PREV_INSN (insn) = prev;
3666 NEXT_INSN (insn) = before;
3668 if (prev)
3670 NEXT_INSN (prev) = insn;
3671 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3673 rtx sequence = PATTERN (prev);
3674 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3677 else if (first_insn == before)
3678 first_insn = insn;
3679 else
3681 struct sequence_stack *stack = seq_stack;
3682 /* Scan all pending sequences too. */
3683 for (; stack; stack = stack->next)
3684 if (before == stack->first)
3686 stack->first = insn;
3687 break;
3690 gcc_assert (stack);
3693 if (!bb
3694 && !BARRIER_P (before)
3695 && !BARRIER_P (insn))
3696 bb = BLOCK_FOR_INSN (before);
3698 if (bb)
3700 set_block_for_insn (insn, bb);
3701 if (INSN_P (insn))
3702 df_insn_rescan (insn);
3703 /* Should not happen as first in the BB is always either NOTE or
3704 LABEL. */
3705 gcc_assert (BB_HEAD (bb) != insn
3706 /* Avoid clobbering of structure when creating new BB. */
3707 || BARRIER_P (insn)
3708 || NOTE_INSN_BASIC_BLOCK_P (insn));
3711 PREV_INSN (before) = insn;
3712 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3713 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3717 /* Replace insn with an deleted instruction note. */
3719 void
3720 set_insn_deleted (rtx insn)
3722 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3723 PUT_CODE (insn, NOTE);
3724 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3728 /* Remove an insn from its doubly-linked list. This function knows how
3729 to handle sequences. */
3730 void
3731 remove_insn (rtx insn)
3733 rtx next = NEXT_INSN (insn);
3734 rtx prev = PREV_INSN (insn);
3735 basic_block bb;
3737 /* Later in the code, the block will be marked dirty. */
3738 df_insn_delete (NULL, INSN_UID (insn));
3740 if (prev)
3742 NEXT_INSN (prev) = next;
3743 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3745 rtx sequence = PATTERN (prev);
3746 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3749 else if (first_insn == insn)
3750 first_insn = next;
3751 else
3753 struct sequence_stack *stack = seq_stack;
3754 /* Scan all pending sequences too. */
3755 for (; stack; stack = stack->next)
3756 if (insn == stack->first)
3758 stack->first = next;
3759 break;
3762 gcc_assert (stack);
3765 if (next)
3767 PREV_INSN (next) = prev;
3768 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3769 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3771 else if (last_insn == insn)
3772 last_insn = prev;
3773 else
3775 struct sequence_stack *stack = seq_stack;
3776 /* Scan all pending sequences too. */
3777 for (; stack; stack = stack->next)
3778 if (insn == stack->last)
3780 stack->last = prev;
3781 break;
3784 gcc_assert (stack);
3786 if (!BARRIER_P (insn)
3787 && (bb = BLOCK_FOR_INSN (insn)))
3789 if (INSN_P (insn))
3790 df_set_bb_dirty (bb);
3791 if (BB_HEAD (bb) == insn)
3793 /* Never ever delete the basic block note without deleting whole
3794 basic block. */
3795 gcc_assert (!NOTE_P (insn));
3796 BB_HEAD (bb) = next;
3798 if (BB_END (bb) == insn)
3799 BB_END (bb) = prev;
3803 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3805 void
3806 add_function_usage_to (rtx call_insn, rtx call_fusage)
3808 gcc_assert (call_insn && CALL_P (call_insn));
3810 /* Put the register usage information on the CALL. If there is already
3811 some usage information, put ours at the end. */
3812 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3814 rtx link;
3816 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3817 link = XEXP (link, 1))
3820 XEXP (link, 1) = call_fusage;
3822 else
3823 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3826 /* Delete all insns made since FROM.
3827 FROM becomes the new last instruction. */
3829 void
3830 delete_insns_since (rtx from)
3832 if (from == 0)
3833 first_insn = 0;
3834 else
3835 NEXT_INSN (from) = 0;
3836 last_insn = from;
3839 /* This function is deprecated, please use sequences instead.
3841 Move a consecutive bunch of insns to a different place in the chain.
3842 The insns to be moved are those between FROM and TO.
3843 They are moved to a new position after the insn AFTER.
3844 AFTER must not be FROM or TO or any insn in between.
3846 This function does not know about SEQUENCEs and hence should not be
3847 called after delay-slot filling has been done. */
3849 void
3850 reorder_insns_nobb (rtx from, rtx to, rtx after)
3852 /* Splice this bunch out of where it is now. */
3853 if (PREV_INSN (from))
3854 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3855 if (NEXT_INSN (to))
3856 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3857 if (last_insn == to)
3858 last_insn = PREV_INSN (from);
3859 if (first_insn == from)
3860 first_insn = NEXT_INSN (to);
3862 /* Make the new neighbors point to it and it to them. */
3863 if (NEXT_INSN (after))
3864 PREV_INSN (NEXT_INSN (after)) = to;
3866 NEXT_INSN (to) = NEXT_INSN (after);
3867 PREV_INSN (from) = after;
3868 NEXT_INSN (after) = from;
3869 if (after == last_insn)
3870 last_insn = to;
3873 /* Same as function above, but take care to update BB boundaries. */
3874 void
3875 reorder_insns (rtx from, rtx to, rtx after)
3877 rtx prev = PREV_INSN (from);
3878 basic_block bb, bb2;
3880 reorder_insns_nobb (from, to, after);
3882 if (!BARRIER_P (after)
3883 && (bb = BLOCK_FOR_INSN (after)))
3885 rtx x;
3886 df_set_bb_dirty (bb);
3888 if (!BARRIER_P (from)
3889 && (bb2 = BLOCK_FOR_INSN (from)))
3891 if (BB_END (bb2) == to)
3892 BB_END (bb2) = prev;
3893 df_set_bb_dirty (bb2);
3896 if (BB_END (bb) == after)
3897 BB_END (bb) = to;
3899 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3900 if (!BARRIER_P (x))
3901 df_insn_change_bb (x, bb);
3906 /* Emit insn(s) of given code and pattern
3907 at a specified place within the doubly-linked list.
3909 All of the emit_foo global entry points accept an object
3910 X which is either an insn list or a PATTERN of a single
3911 instruction.
3913 There are thus a few canonical ways to generate code and
3914 emit it at a specific place in the instruction stream. For
3915 example, consider the instruction named SPOT and the fact that
3916 we would like to emit some instructions before SPOT. We might
3917 do it like this:
3919 start_sequence ();
3920 ... emit the new instructions ...
3921 insns_head = get_insns ();
3922 end_sequence ();
3924 emit_insn_before (insns_head, SPOT);
3926 It used to be common to generate SEQUENCE rtl instead, but that
3927 is a relic of the past which no longer occurs. The reason is that
3928 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3929 generated would almost certainly die right after it was created. */
3931 /* Make X be output before the instruction BEFORE. */
3934 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3936 rtx last = before;
3937 rtx insn;
3939 gcc_assert (before);
3941 if (x == NULL_RTX)
3942 return last;
3944 switch (GET_CODE (x))
3946 case INSN:
3947 case JUMP_INSN:
3948 case CALL_INSN:
3949 case CODE_LABEL:
3950 case BARRIER:
3951 case NOTE:
3952 insn = x;
3953 while (insn)
3955 rtx next = NEXT_INSN (insn);
3956 add_insn_before (insn, before, bb);
3957 last = insn;
3958 insn = next;
3960 break;
3962 #ifdef ENABLE_RTL_CHECKING
3963 case SEQUENCE:
3964 gcc_unreachable ();
3965 break;
3966 #endif
3968 default:
3969 last = make_insn_raw (x);
3970 add_insn_before (last, before, bb);
3971 break;
3974 return last;
3977 /* Make an instruction with body X and code JUMP_INSN
3978 and output it before the instruction BEFORE. */
3981 emit_jump_insn_before_noloc (rtx x, rtx before)
3983 rtx insn, last = NULL_RTX;
3985 gcc_assert (before);
3987 switch (GET_CODE (x))
3989 case INSN:
3990 case JUMP_INSN:
3991 case CALL_INSN:
3992 case CODE_LABEL:
3993 case BARRIER:
3994 case NOTE:
3995 insn = x;
3996 while (insn)
3998 rtx next = NEXT_INSN (insn);
3999 add_insn_before (insn, before, NULL);
4000 last = insn;
4001 insn = next;
4003 break;
4005 #ifdef ENABLE_RTL_CHECKING
4006 case SEQUENCE:
4007 gcc_unreachable ();
4008 break;
4009 #endif
4011 default:
4012 last = make_jump_insn_raw (x);
4013 add_insn_before (last, before, NULL);
4014 break;
4017 return last;
4020 /* Make an instruction with body X and code CALL_INSN
4021 and output it before the instruction BEFORE. */
4024 emit_call_insn_before_noloc (rtx x, rtx before)
4026 rtx last = NULL_RTX, insn;
4028 gcc_assert (before);
4030 switch (GET_CODE (x))
4032 case INSN:
4033 case JUMP_INSN:
4034 case CALL_INSN:
4035 case CODE_LABEL:
4036 case BARRIER:
4037 case NOTE:
4038 insn = x;
4039 while (insn)
4041 rtx next = NEXT_INSN (insn);
4042 add_insn_before (insn, before, NULL);
4043 last = insn;
4044 insn = next;
4046 break;
4048 #ifdef ENABLE_RTL_CHECKING
4049 case SEQUENCE:
4050 gcc_unreachable ();
4051 break;
4052 #endif
4054 default:
4055 last = make_call_insn_raw (x);
4056 add_insn_before (last, before, NULL);
4057 break;
4060 return last;
4063 /* Make an insn of code BARRIER
4064 and output it before the insn BEFORE. */
4067 emit_barrier_before (rtx before)
4069 rtx insn = rtx_alloc (BARRIER);
4071 INSN_UID (insn) = cur_insn_uid++;
4073 add_insn_before (insn, before, NULL);
4074 return insn;
4077 /* Emit the label LABEL before the insn BEFORE. */
4080 emit_label_before (rtx label, rtx before)
4082 /* This can be called twice for the same label as a result of the
4083 confusion that follows a syntax error! So make it harmless. */
4084 if (INSN_UID (label) == 0)
4086 INSN_UID (label) = cur_insn_uid++;
4087 add_insn_before (label, before, NULL);
4090 return label;
4093 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4096 emit_note_before (enum insn_note subtype, rtx before)
4098 rtx note = rtx_alloc (NOTE);
4099 INSN_UID (note) = cur_insn_uid++;
4100 NOTE_KIND (note) = subtype;
4101 BLOCK_FOR_INSN (note) = NULL;
4102 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4104 add_insn_before (note, before, NULL);
4105 return note;
4108 /* Helper for emit_insn_after, handles lists of instructions
4109 efficiently. */
4111 static rtx
4112 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4114 rtx last;
4115 rtx after_after;
4116 if (!bb && !BARRIER_P (after))
4117 bb = BLOCK_FOR_INSN (after);
4119 if (bb)
4121 df_set_bb_dirty (bb);
4122 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4123 if (!BARRIER_P (last))
4125 set_block_for_insn (last, bb);
4126 df_insn_rescan (last);
4128 if (!BARRIER_P (last))
4130 set_block_for_insn (last, bb);
4131 df_insn_rescan (last);
4133 if (BB_END (bb) == after)
4134 BB_END (bb) = last;
4136 else
4137 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4138 continue;
4140 after_after = NEXT_INSN (after);
4142 NEXT_INSN (after) = first;
4143 PREV_INSN (first) = after;
4144 NEXT_INSN (last) = after_after;
4145 if (after_after)
4146 PREV_INSN (after_after) = last;
4148 if (after == last_insn)
4149 last_insn = last;
4151 return last;
4154 /* Make X be output after the insn AFTER and set the BB of insn. If
4155 BB is NULL, an attempt is made to infer the BB from AFTER. */
4158 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4160 rtx last = after;
4162 gcc_assert (after);
4164 if (x == NULL_RTX)
4165 return last;
4167 switch (GET_CODE (x))
4169 case INSN:
4170 case JUMP_INSN:
4171 case CALL_INSN:
4172 case CODE_LABEL:
4173 case BARRIER:
4174 case NOTE:
4175 last = emit_insn_after_1 (x, after, bb);
4176 break;
4178 #ifdef ENABLE_RTL_CHECKING
4179 case SEQUENCE:
4180 gcc_unreachable ();
4181 break;
4182 #endif
4184 default:
4185 last = make_insn_raw (x);
4186 add_insn_after (last, after, bb);
4187 break;
4190 return last;
4194 /* Make an insn of code JUMP_INSN with body X
4195 and output it after the insn AFTER. */
4198 emit_jump_insn_after_noloc (rtx x, rtx after)
4200 rtx last;
4202 gcc_assert (after);
4204 switch (GET_CODE (x))
4206 case INSN:
4207 case JUMP_INSN:
4208 case CALL_INSN:
4209 case CODE_LABEL:
4210 case BARRIER:
4211 case NOTE:
4212 last = emit_insn_after_1 (x, after, NULL);
4213 break;
4215 #ifdef ENABLE_RTL_CHECKING
4216 case SEQUENCE:
4217 gcc_unreachable ();
4218 break;
4219 #endif
4221 default:
4222 last = make_jump_insn_raw (x);
4223 add_insn_after (last, after, NULL);
4224 break;
4227 return last;
4230 /* Make an instruction with body X and code CALL_INSN
4231 and output it after the instruction AFTER. */
4234 emit_call_insn_after_noloc (rtx x, rtx after)
4236 rtx last;
4238 gcc_assert (after);
4240 switch (GET_CODE (x))
4242 case INSN:
4243 case JUMP_INSN:
4244 case CALL_INSN:
4245 case CODE_LABEL:
4246 case BARRIER:
4247 case NOTE:
4248 last = emit_insn_after_1 (x, after, NULL);
4249 break;
4251 #ifdef ENABLE_RTL_CHECKING
4252 case SEQUENCE:
4253 gcc_unreachable ();
4254 break;
4255 #endif
4257 default:
4258 last = make_call_insn_raw (x);
4259 add_insn_after (last, after, NULL);
4260 break;
4263 return last;
4266 /* Make an insn of code BARRIER
4267 and output it after the insn AFTER. */
4270 emit_barrier_after (rtx after)
4272 rtx insn = rtx_alloc (BARRIER);
4274 INSN_UID (insn) = cur_insn_uid++;
4276 add_insn_after (insn, after, NULL);
4277 return insn;
4280 /* Emit the label LABEL after the insn AFTER. */
4283 emit_label_after (rtx label, rtx after)
4285 /* This can be called twice for the same label
4286 as a result of the confusion that follows a syntax error!
4287 So make it harmless. */
4288 if (INSN_UID (label) == 0)
4290 INSN_UID (label) = cur_insn_uid++;
4291 add_insn_after (label, after, NULL);
4294 return label;
4297 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4300 emit_note_after (enum insn_note subtype, rtx after)
4302 rtx note = rtx_alloc (NOTE);
4303 INSN_UID (note) = cur_insn_uid++;
4304 NOTE_KIND (note) = subtype;
4305 BLOCK_FOR_INSN (note) = NULL;
4306 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4307 add_insn_after (note, after, NULL);
4308 return note;
4311 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4313 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4315 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4317 if (pattern == NULL_RTX || !loc)
4318 return last;
4320 after = NEXT_INSN (after);
4321 while (1)
4323 if (active_insn_p (after) && !INSN_LOCATOR (after))
4324 INSN_LOCATOR (after) = loc;
4325 if (after == last)
4326 break;
4327 after = NEXT_INSN (after);
4329 return last;
4332 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4334 emit_insn_after (rtx pattern, rtx after)
4336 if (INSN_P (after))
4337 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4338 else
4339 return emit_insn_after_noloc (pattern, after, NULL);
4342 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4344 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4346 rtx last = emit_jump_insn_after_noloc (pattern, after);
4348 if (pattern == NULL_RTX || !loc)
4349 return last;
4351 after = NEXT_INSN (after);
4352 while (1)
4354 if (active_insn_p (after) && !INSN_LOCATOR (after))
4355 INSN_LOCATOR (after) = loc;
4356 if (after == last)
4357 break;
4358 after = NEXT_INSN (after);
4360 return last;
4363 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4365 emit_jump_insn_after (rtx pattern, rtx after)
4367 if (INSN_P (after))
4368 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4369 else
4370 return emit_jump_insn_after_noloc (pattern, after);
4373 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4375 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4377 rtx last = emit_call_insn_after_noloc (pattern, after);
4379 if (pattern == NULL_RTX || !loc)
4380 return last;
4382 after = NEXT_INSN (after);
4383 while (1)
4385 if (active_insn_p (after) && !INSN_LOCATOR (after))
4386 INSN_LOCATOR (after) = loc;
4387 if (after == last)
4388 break;
4389 after = NEXT_INSN (after);
4391 return last;
4394 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4396 emit_call_insn_after (rtx pattern, rtx after)
4398 if (INSN_P (after))
4399 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4400 else
4401 return emit_call_insn_after_noloc (pattern, after);
4404 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4406 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4408 rtx first = PREV_INSN (before);
4409 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4411 if (pattern == NULL_RTX || !loc)
4412 return last;
4414 if (!first)
4415 first = get_insns ();
4416 else
4417 first = NEXT_INSN (first);
4418 while (1)
4420 if (active_insn_p (first) && !INSN_LOCATOR (first))
4421 INSN_LOCATOR (first) = loc;
4422 if (first == last)
4423 break;
4424 first = NEXT_INSN (first);
4426 return last;
4429 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4431 emit_insn_before (rtx pattern, rtx before)
4433 if (INSN_P (before))
4434 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4435 else
4436 return emit_insn_before_noloc (pattern, before, NULL);
4439 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4441 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4443 rtx first = PREV_INSN (before);
4444 rtx last = emit_jump_insn_before_noloc (pattern, before);
4446 if (pattern == NULL_RTX)
4447 return last;
4449 first = NEXT_INSN (first);
4450 while (1)
4452 if (active_insn_p (first) && !INSN_LOCATOR (first))
4453 INSN_LOCATOR (first) = loc;
4454 if (first == last)
4455 break;
4456 first = NEXT_INSN (first);
4458 return last;
4461 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4463 emit_jump_insn_before (rtx pattern, rtx before)
4465 if (INSN_P (before))
4466 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4467 else
4468 return emit_jump_insn_before_noloc (pattern, before);
4471 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4473 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4475 rtx first = PREV_INSN (before);
4476 rtx last = emit_call_insn_before_noloc (pattern, before);
4478 if (pattern == NULL_RTX)
4479 return last;
4481 first = NEXT_INSN (first);
4482 while (1)
4484 if (active_insn_p (first) && !INSN_LOCATOR (first))
4485 INSN_LOCATOR (first) = loc;
4486 if (first == last)
4487 break;
4488 first = NEXT_INSN (first);
4490 return last;
4493 /* like emit_call_insn_before_noloc,
4494 but set insn_locator according to before. */
4496 emit_call_insn_before (rtx pattern, rtx before)
4498 if (INSN_P (before))
4499 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4500 else
4501 return emit_call_insn_before_noloc (pattern, before);
4504 /* Take X and emit it at the end of the doubly-linked
4505 INSN list.
4507 Returns the last insn emitted. */
4510 emit_insn (rtx x)
4512 rtx last = last_insn;
4513 rtx insn;
4515 if (x == NULL_RTX)
4516 return last;
4518 switch (GET_CODE (x))
4520 case INSN:
4521 case JUMP_INSN:
4522 case CALL_INSN:
4523 case CODE_LABEL:
4524 case BARRIER:
4525 case NOTE:
4526 insn = x;
4527 while (insn)
4529 rtx next = NEXT_INSN (insn);
4530 add_insn (insn);
4531 last = insn;
4532 insn = next;
4534 break;
4536 #ifdef ENABLE_RTL_CHECKING
4537 case SEQUENCE:
4538 gcc_unreachable ();
4539 break;
4540 #endif
4542 default:
4543 last = make_insn_raw (x);
4544 add_insn (last);
4545 break;
4548 return last;
4551 /* Make an insn of code JUMP_INSN with pattern X
4552 and add it to the end of the doubly-linked list. */
4555 emit_jump_insn (rtx x)
4557 rtx last = NULL_RTX, insn;
4559 switch (GET_CODE (x))
4561 case INSN:
4562 case JUMP_INSN:
4563 case CALL_INSN:
4564 case CODE_LABEL:
4565 case BARRIER:
4566 case NOTE:
4567 insn = x;
4568 while (insn)
4570 rtx next = NEXT_INSN (insn);
4571 add_insn (insn);
4572 last = insn;
4573 insn = next;
4575 break;
4577 #ifdef ENABLE_RTL_CHECKING
4578 case SEQUENCE:
4579 gcc_unreachable ();
4580 break;
4581 #endif
4583 default:
4584 last = make_jump_insn_raw (x);
4585 add_insn (last);
4586 break;
4589 return last;
4592 /* Make an insn of code CALL_INSN with pattern X
4593 and add it to the end of the doubly-linked list. */
4596 emit_call_insn (rtx x)
4598 rtx insn;
4600 switch (GET_CODE (x))
4602 case INSN:
4603 case JUMP_INSN:
4604 case CALL_INSN:
4605 case CODE_LABEL:
4606 case BARRIER:
4607 case NOTE:
4608 insn = emit_insn (x);
4609 break;
4611 #ifdef ENABLE_RTL_CHECKING
4612 case SEQUENCE:
4613 gcc_unreachable ();
4614 break;
4615 #endif
4617 default:
4618 insn = make_call_insn_raw (x);
4619 add_insn (insn);
4620 break;
4623 return insn;
4626 /* Add the label LABEL to the end of the doubly-linked list. */
4629 emit_label (rtx label)
4631 /* This can be called twice for the same label
4632 as a result of the confusion that follows a syntax error!
4633 So make it harmless. */
4634 if (INSN_UID (label) == 0)
4636 INSN_UID (label) = cur_insn_uid++;
4637 add_insn (label);
4639 return label;
4642 /* Make an insn of code BARRIER
4643 and add it to the end of the doubly-linked list. */
4646 emit_barrier (void)
4648 rtx barrier = rtx_alloc (BARRIER);
4649 INSN_UID (barrier) = cur_insn_uid++;
4650 add_insn (barrier);
4651 return barrier;
4654 /* Emit a copy of note ORIG. */
4657 emit_note_copy (rtx orig)
4659 rtx note;
4661 note = rtx_alloc (NOTE);
4663 INSN_UID (note) = cur_insn_uid++;
4664 NOTE_DATA (note) = NOTE_DATA (orig);
4665 NOTE_KIND (note) = NOTE_KIND (orig);
4666 BLOCK_FOR_INSN (note) = NULL;
4667 add_insn (note);
4669 return note;
4672 /* Make an insn of code NOTE or type NOTE_NO
4673 and add it to the end of the doubly-linked list. */
4676 emit_note (enum insn_note kind)
4678 rtx note;
4680 note = rtx_alloc (NOTE);
4681 INSN_UID (note) = cur_insn_uid++;
4682 NOTE_KIND (note) = kind;
4683 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4684 BLOCK_FOR_INSN (note) = NULL;
4685 add_insn (note);
4686 return note;
4689 /* Emit a clobber of lvalue X. */
4692 emit_clobber (rtx x)
4694 /* CONCATs should not appear in the insn stream. */
4695 if (GET_CODE (x) == CONCAT)
4697 emit_clobber (XEXP (x, 0));
4698 return emit_clobber (XEXP (x, 1));
4700 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4703 /* Return a sequence of insns to clobber lvalue X. */
4706 gen_clobber (rtx x)
4708 rtx seq;
4710 start_sequence ();
4711 emit_clobber (x);
4712 seq = get_insns ();
4713 end_sequence ();
4714 return seq;
4717 /* Emit a use of rvalue X. */
4720 emit_use (rtx x)
4722 /* CONCATs should not appear in the insn stream. */
4723 if (GET_CODE (x) == CONCAT)
4725 emit_use (XEXP (x, 0));
4726 return emit_use (XEXP (x, 1));
4728 return emit_insn (gen_rtx_USE (VOIDmode, x));
4731 /* Return a sequence of insns to use rvalue X. */
4734 gen_use (rtx x)
4736 rtx seq;
4738 start_sequence ();
4739 emit_use (x);
4740 seq = get_insns ();
4741 end_sequence ();
4742 return seq;
4745 /* Cause next statement to emit a line note even if the line number
4746 has not changed. */
4748 void
4749 force_next_line_note (void)
4751 last_location = -1;
4754 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4755 note of this type already exists, remove it first. */
4758 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4760 rtx note = find_reg_note (insn, kind, NULL_RTX);
4762 switch (kind)
4764 case REG_EQUAL:
4765 case REG_EQUIV:
4766 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4767 has multiple sets (some callers assume single_set
4768 means the insn only has one set, when in fact it
4769 means the insn only has one * useful * set). */
4770 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4772 gcc_assert (!note);
4773 return NULL_RTX;
4776 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4777 It serves no useful purpose and breaks eliminate_regs. */
4778 if (GET_CODE (datum) == ASM_OPERANDS)
4779 return NULL_RTX;
4781 if (note)
4783 XEXP (note, 0) = datum;
4784 df_notes_rescan (insn);
4785 return note;
4787 break;
4789 default:
4790 if (note)
4792 XEXP (note, 0) = datum;
4793 return note;
4795 break;
4798 add_reg_note (insn, kind, datum);
4800 switch (kind)
4802 case REG_EQUAL:
4803 case REG_EQUIV:
4804 df_notes_rescan (insn);
4805 break;
4806 default:
4807 break;
4810 return REG_NOTES (insn);
4813 /* Return an indication of which type of insn should have X as a body.
4814 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4816 static enum rtx_code
4817 classify_insn (rtx x)
4819 if (LABEL_P (x))
4820 return CODE_LABEL;
4821 if (GET_CODE (x) == CALL)
4822 return CALL_INSN;
4823 if (GET_CODE (x) == RETURN)
4824 return JUMP_INSN;
4825 if (GET_CODE (x) == SET)
4827 if (SET_DEST (x) == pc_rtx)
4828 return JUMP_INSN;
4829 else if (GET_CODE (SET_SRC (x)) == CALL)
4830 return CALL_INSN;
4831 else
4832 return INSN;
4834 if (GET_CODE (x) == PARALLEL)
4836 int j;
4837 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4838 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4839 return CALL_INSN;
4840 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4841 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4842 return JUMP_INSN;
4843 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4844 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4845 return CALL_INSN;
4847 return INSN;
4850 /* Emit the rtl pattern X as an appropriate kind of insn.
4851 If X is a label, it is simply added into the insn chain. */
4854 emit (rtx x)
4856 enum rtx_code code = classify_insn (x);
4858 switch (code)
4860 case CODE_LABEL:
4861 return emit_label (x);
4862 case INSN:
4863 return emit_insn (x);
4864 case JUMP_INSN:
4866 rtx insn = emit_jump_insn (x);
4867 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4868 return emit_barrier ();
4869 return insn;
4871 case CALL_INSN:
4872 return emit_call_insn (x);
4873 default:
4874 gcc_unreachable ();
4878 /* Space for free sequence stack entries. */
4879 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4881 /* Begin emitting insns to a sequence. If this sequence will contain
4882 something that might cause the compiler to pop arguments to function
4883 calls (because those pops have previously been deferred; see
4884 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4885 before calling this function. That will ensure that the deferred
4886 pops are not accidentally emitted in the middle of this sequence. */
4888 void
4889 start_sequence (void)
4891 struct sequence_stack *tem;
4893 if (free_sequence_stack != NULL)
4895 tem = free_sequence_stack;
4896 free_sequence_stack = tem->next;
4898 else
4899 tem = GGC_NEW (struct sequence_stack);
4901 tem->next = seq_stack;
4902 tem->first = first_insn;
4903 tem->last = last_insn;
4905 seq_stack = tem;
4907 first_insn = 0;
4908 last_insn = 0;
4911 /* Set up the insn chain starting with FIRST as the current sequence,
4912 saving the previously current one. See the documentation for
4913 start_sequence for more information about how to use this function. */
4915 void
4916 push_to_sequence (rtx first)
4918 rtx last;
4920 start_sequence ();
4922 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4924 first_insn = first;
4925 last_insn = last;
4928 /* Like push_to_sequence, but take the last insn as an argument to avoid
4929 looping through the list. */
4931 void
4932 push_to_sequence2 (rtx first, rtx last)
4934 start_sequence ();
4936 first_insn = first;
4937 last_insn = last;
4940 /* Set up the outer-level insn chain
4941 as the current sequence, saving the previously current one. */
4943 void
4944 push_topmost_sequence (void)
4946 struct sequence_stack *stack, *top = NULL;
4948 start_sequence ();
4950 for (stack = seq_stack; stack; stack = stack->next)
4951 top = stack;
4953 first_insn = top->first;
4954 last_insn = top->last;
4957 /* After emitting to the outer-level insn chain, update the outer-level
4958 insn chain, and restore the previous saved state. */
4960 void
4961 pop_topmost_sequence (void)
4963 struct sequence_stack *stack, *top = NULL;
4965 for (stack = seq_stack; stack; stack = stack->next)
4966 top = stack;
4968 top->first = first_insn;
4969 top->last = last_insn;
4971 end_sequence ();
4974 /* After emitting to a sequence, restore previous saved state.
4976 To get the contents of the sequence just made, you must call
4977 `get_insns' *before* calling here.
4979 If the compiler might have deferred popping arguments while
4980 generating this sequence, and this sequence will not be immediately
4981 inserted into the instruction stream, use do_pending_stack_adjust
4982 before calling get_insns. That will ensure that the deferred
4983 pops are inserted into this sequence, and not into some random
4984 location in the instruction stream. See INHIBIT_DEFER_POP for more
4985 information about deferred popping of arguments. */
4987 void
4988 end_sequence (void)
4990 struct sequence_stack *tem = seq_stack;
4992 first_insn = tem->first;
4993 last_insn = tem->last;
4994 seq_stack = tem->next;
4996 memset (tem, 0, sizeof (*tem));
4997 tem->next = free_sequence_stack;
4998 free_sequence_stack = tem;
5001 /* Return 1 if currently emitting into a sequence. */
5004 in_sequence_p (void)
5006 return seq_stack != 0;
5009 /* Put the various virtual registers into REGNO_REG_RTX. */
5011 static void
5012 init_virtual_regs (void)
5014 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5015 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5016 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5017 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5018 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5022 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5023 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5024 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5025 static int copy_insn_n_scratches;
5027 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5028 copied an ASM_OPERANDS.
5029 In that case, it is the original input-operand vector. */
5030 static rtvec orig_asm_operands_vector;
5032 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5033 copied an ASM_OPERANDS.
5034 In that case, it is the copied input-operand vector. */
5035 static rtvec copy_asm_operands_vector;
5037 /* Likewise for the constraints vector. */
5038 static rtvec orig_asm_constraints_vector;
5039 static rtvec copy_asm_constraints_vector;
5041 /* Recursively create a new copy of an rtx for copy_insn.
5042 This function differs from copy_rtx in that it handles SCRATCHes and
5043 ASM_OPERANDs properly.
5044 Normally, this function is not used directly; use copy_insn as front end.
5045 However, you could first copy an insn pattern with copy_insn and then use
5046 this function afterwards to properly copy any REG_NOTEs containing
5047 SCRATCHes. */
5050 copy_insn_1 (rtx orig)
5052 rtx copy;
5053 int i, j;
5054 RTX_CODE code;
5055 const char *format_ptr;
5057 if (orig == NULL)
5058 return NULL;
5060 code = GET_CODE (orig);
5062 switch (code)
5064 case REG:
5065 case CONST_INT:
5066 case CONST_DOUBLE:
5067 case CONST_FIXED:
5068 case CONST_VECTOR:
5069 case SYMBOL_REF:
5070 case CODE_LABEL:
5071 case PC:
5072 case CC0:
5073 return orig;
5074 case CLOBBER:
5075 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5076 return orig;
5077 break;
5079 case SCRATCH:
5080 for (i = 0; i < copy_insn_n_scratches; i++)
5081 if (copy_insn_scratch_in[i] == orig)
5082 return copy_insn_scratch_out[i];
5083 break;
5085 case CONST:
5086 if (shared_const_p (orig))
5087 return orig;
5088 break;
5090 /* A MEM with a constant address is not sharable. The problem is that
5091 the constant address may need to be reloaded. If the mem is shared,
5092 then reloading one copy of this mem will cause all copies to appear
5093 to have been reloaded. */
5095 default:
5096 break;
5099 /* Copy the various flags, fields, and other information. We assume
5100 that all fields need copying, and then clear the fields that should
5101 not be copied. That is the sensible default behavior, and forces
5102 us to explicitly document why we are *not* copying a flag. */
5103 copy = shallow_copy_rtx (orig);
5105 /* We do not copy the USED flag, which is used as a mark bit during
5106 walks over the RTL. */
5107 RTX_FLAG (copy, used) = 0;
5109 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5110 if (INSN_P (orig))
5112 RTX_FLAG (copy, jump) = 0;
5113 RTX_FLAG (copy, call) = 0;
5114 RTX_FLAG (copy, frame_related) = 0;
5117 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5119 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5120 switch (*format_ptr++)
5122 case 'e':
5123 if (XEXP (orig, i) != NULL)
5124 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5125 break;
5127 case 'E':
5128 case 'V':
5129 if (XVEC (orig, i) == orig_asm_constraints_vector)
5130 XVEC (copy, i) = copy_asm_constraints_vector;
5131 else if (XVEC (orig, i) == orig_asm_operands_vector)
5132 XVEC (copy, i) = copy_asm_operands_vector;
5133 else if (XVEC (orig, i) != NULL)
5135 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5136 for (j = 0; j < XVECLEN (copy, i); j++)
5137 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5139 break;
5141 case 't':
5142 case 'w':
5143 case 'i':
5144 case 's':
5145 case 'S':
5146 case 'u':
5147 case '0':
5148 /* These are left unchanged. */
5149 break;
5151 default:
5152 gcc_unreachable ();
5155 if (code == SCRATCH)
5157 i = copy_insn_n_scratches++;
5158 gcc_assert (i < MAX_RECOG_OPERANDS);
5159 copy_insn_scratch_in[i] = orig;
5160 copy_insn_scratch_out[i] = copy;
5162 else if (code == ASM_OPERANDS)
5164 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5165 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5166 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5167 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5170 return copy;
5173 /* Create a new copy of an rtx.
5174 This function differs from copy_rtx in that it handles SCRATCHes and
5175 ASM_OPERANDs properly.
5176 INSN doesn't really have to be a full INSN; it could be just the
5177 pattern. */
5179 copy_insn (rtx insn)
5181 copy_insn_n_scratches = 0;
5182 orig_asm_operands_vector = 0;
5183 orig_asm_constraints_vector = 0;
5184 copy_asm_operands_vector = 0;
5185 copy_asm_constraints_vector = 0;
5186 return copy_insn_1 (insn);
5189 /* Initialize data structures and variables in this file
5190 before generating rtl for each function. */
5192 void
5193 init_emit (void)
5195 first_insn = NULL;
5196 last_insn = NULL;
5197 cur_insn_uid = 1;
5198 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5199 last_location = UNKNOWN_LOCATION;
5200 first_label_num = label_num;
5201 seq_stack = NULL;
5203 /* Init the tables that describe all the pseudo regs. */
5205 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5207 crtl->emit.regno_pointer_align
5208 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5210 regno_reg_rtx
5211 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5213 /* Put copies of all the hard registers into regno_reg_rtx. */
5214 memcpy (regno_reg_rtx,
5215 static_regno_reg_rtx,
5216 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5218 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5219 init_virtual_regs ();
5221 /* Indicate that the virtual registers and stack locations are
5222 all pointers. */
5223 REG_POINTER (stack_pointer_rtx) = 1;
5224 REG_POINTER (frame_pointer_rtx) = 1;
5225 REG_POINTER (hard_frame_pointer_rtx) = 1;
5226 REG_POINTER (arg_pointer_rtx) = 1;
5228 REG_POINTER (virtual_incoming_args_rtx) = 1;
5229 REG_POINTER (virtual_stack_vars_rtx) = 1;
5230 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5231 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5232 REG_POINTER (virtual_cfa_rtx) = 1;
5234 #ifdef STACK_BOUNDARY
5235 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5236 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5237 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5238 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5240 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5241 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5242 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5243 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5244 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5245 #endif
5247 #ifdef INIT_EXPANDERS
5248 INIT_EXPANDERS;
5249 #endif
5252 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5254 static rtx
5255 gen_const_vector (enum machine_mode mode, int constant)
5257 rtx tem;
5258 rtvec v;
5259 int units, i;
5260 enum machine_mode inner;
5262 units = GET_MODE_NUNITS (mode);
5263 inner = GET_MODE_INNER (mode);
5265 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5267 v = rtvec_alloc (units);
5269 /* We need to call this function after we set the scalar const_tiny_rtx
5270 entries. */
5271 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5273 for (i = 0; i < units; ++i)
5274 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5276 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5277 return tem;
5280 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5281 all elements are zero, and the one vector when all elements are one. */
5283 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5285 enum machine_mode inner = GET_MODE_INNER (mode);
5286 int nunits = GET_MODE_NUNITS (mode);
5287 rtx x;
5288 int i;
5290 /* Check to see if all of the elements have the same value. */
5291 x = RTVEC_ELT (v, nunits - 1);
5292 for (i = nunits - 2; i >= 0; i--)
5293 if (RTVEC_ELT (v, i) != x)
5294 break;
5296 /* If the values are all the same, check to see if we can use one of the
5297 standard constant vectors. */
5298 if (i == -1)
5300 if (x == CONST0_RTX (inner))
5301 return CONST0_RTX (mode);
5302 else if (x == CONST1_RTX (inner))
5303 return CONST1_RTX (mode);
5306 return gen_rtx_raw_CONST_VECTOR (mode, v);
5309 /* Initialise global register information required by all functions. */
5311 void
5312 init_emit_regs (void)
5314 int i;
5316 /* Reset register attributes */
5317 htab_empty (reg_attrs_htab);
5319 /* We need reg_raw_mode, so initialize the modes now. */
5320 init_reg_modes_target ();
5322 /* Assign register numbers to the globally defined register rtx. */
5323 pc_rtx = gen_rtx_PC (VOIDmode);
5324 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5325 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5326 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5327 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5328 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5329 virtual_incoming_args_rtx =
5330 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5331 virtual_stack_vars_rtx =
5332 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5333 virtual_stack_dynamic_rtx =
5334 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5335 virtual_outgoing_args_rtx =
5336 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5337 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5339 /* Initialize RTL for commonly used hard registers. These are
5340 copied into regno_reg_rtx as we begin to compile each function. */
5341 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5342 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5344 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5345 return_address_pointer_rtx
5346 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5347 #endif
5349 #ifdef STATIC_CHAIN_REGNUM
5350 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5352 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5353 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5354 static_chain_incoming_rtx
5355 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5356 else
5357 #endif
5358 static_chain_incoming_rtx = static_chain_rtx;
5359 #endif
5361 #ifdef STATIC_CHAIN
5362 static_chain_rtx = STATIC_CHAIN;
5364 #ifdef STATIC_CHAIN_INCOMING
5365 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5366 #else
5367 static_chain_incoming_rtx = static_chain_rtx;
5368 #endif
5369 #endif
5371 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5372 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5373 else
5374 pic_offset_table_rtx = NULL_RTX;
5377 /* Create some permanent unique rtl objects shared between all functions.
5378 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5380 void
5381 init_emit_once (int line_numbers)
5383 int i;
5384 enum machine_mode mode;
5385 enum machine_mode double_mode;
5387 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5388 hash tables. */
5389 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5390 const_int_htab_eq, NULL);
5392 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5393 const_double_htab_eq, NULL);
5395 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5396 const_fixed_htab_eq, NULL);
5398 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5399 mem_attrs_htab_eq, NULL);
5400 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5401 reg_attrs_htab_eq, NULL);
5403 no_line_numbers = ! line_numbers;
5405 /* Compute the word and byte modes. */
5407 byte_mode = VOIDmode;
5408 word_mode = VOIDmode;
5409 double_mode = VOIDmode;
5411 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5412 mode != VOIDmode;
5413 mode = GET_MODE_WIDER_MODE (mode))
5415 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5416 && byte_mode == VOIDmode)
5417 byte_mode = mode;
5419 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5420 && word_mode == VOIDmode)
5421 word_mode = mode;
5424 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5425 mode != VOIDmode;
5426 mode = GET_MODE_WIDER_MODE (mode))
5428 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5429 && double_mode == VOIDmode)
5430 double_mode = mode;
5433 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5435 #ifdef INIT_EXPANDERS
5436 /* This is to initialize {init|mark|free}_machine_status before the first
5437 call to push_function_context_to. This is needed by the Chill front
5438 end which calls push_function_context_to before the first call to
5439 init_function_start. */
5440 INIT_EXPANDERS;
5441 #endif
5443 /* Create the unique rtx's for certain rtx codes and operand values. */
5445 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5446 tries to use these variables. */
5447 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5448 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5449 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5451 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5452 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5453 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5454 else
5455 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5457 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5458 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5459 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5461 dconstm1 = dconst1;
5462 dconstm1.sign = 1;
5464 dconsthalf = dconst1;
5465 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5467 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5469 const REAL_VALUE_TYPE *const r =
5470 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5472 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5473 mode != VOIDmode;
5474 mode = GET_MODE_WIDER_MODE (mode))
5475 const_tiny_rtx[i][(int) mode] =
5476 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5478 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5479 mode != VOIDmode;
5480 mode = GET_MODE_WIDER_MODE (mode))
5481 const_tiny_rtx[i][(int) mode] =
5482 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5484 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5486 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5487 mode != VOIDmode;
5488 mode = GET_MODE_WIDER_MODE (mode))
5489 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5491 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5492 mode != VOIDmode;
5493 mode = GET_MODE_WIDER_MODE (mode))
5494 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5497 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5498 mode != VOIDmode;
5499 mode = GET_MODE_WIDER_MODE (mode))
5501 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5502 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5505 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5506 mode != VOIDmode;
5507 mode = GET_MODE_WIDER_MODE (mode))
5509 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5510 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5513 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5514 mode != VOIDmode;
5515 mode = GET_MODE_WIDER_MODE (mode))
5517 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5518 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5521 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5522 mode != VOIDmode;
5523 mode = GET_MODE_WIDER_MODE (mode))
5525 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5526 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5529 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5530 mode != VOIDmode;
5531 mode = GET_MODE_WIDER_MODE (mode))
5533 FCONST0(mode).data.high = 0;
5534 FCONST0(mode).data.low = 0;
5535 FCONST0(mode).mode = mode;
5536 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5537 FCONST0 (mode), mode);
5540 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5541 mode != VOIDmode;
5542 mode = GET_MODE_WIDER_MODE (mode))
5544 FCONST0(mode).data.high = 0;
5545 FCONST0(mode).data.low = 0;
5546 FCONST0(mode).mode = mode;
5547 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5548 FCONST0 (mode), mode);
5551 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5552 mode != VOIDmode;
5553 mode = GET_MODE_WIDER_MODE (mode))
5555 FCONST0(mode).data.high = 0;
5556 FCONST0(mode).data.low = 0;
5557 FCONST0(mode).mode = mode;
5558 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5559 FCONST0 (mode), mode);
5561 /* We store the value 1. */
5562 FCONST1(mode).data.high = 0;
5563 FCONST1(mode).data.low = 0;
5564 FCONST1(mode).mode = mode;
5565 lshift_double (1, 0, GET_MODE_FBIT (mode),
5566 2 * HOST_BITS_PER_WIDE_INT,
5567 &FCONST1(mode).data.low,
5568 &FCONST1(mode).data.high,
5569 SIGNED_FIXED_POINT_MODE_P (mode));
5570 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5571 FCONST1 (mode), mode);
5574 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5575 mode != VOIDmode;
5576 mode = GET_MODE_WIDER_MODE (mode))
5578 FCONST0(mode).data.high = 0;
5579 FCONST0(mode).data.low = 0;
5580 FCONST0(mode).mode = mode;
5581 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5582 FCONST0 (mode), mode);
5584 /* We store the value 1. */
5585 FCONST1(mode).data.high = 0;
5586 FCONST1(mode).data.low = 0;
5587 FCONST1(mode).mode = mode;
5588 lshift_double (1, 0, GET_MODE_FBIT (mode),
5589 2 * HOST_BITS_PER_WIDE_INT,
5590 &FCONST1(mode).data.low,
5591 &FCONST1(mode).data.high,
5592 SIGNED_FIXED_POINT_MODE_P (mode));
5593 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5594 FCONST1 (mode), mode);
5597 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5598 mode != VOIDmode;
5599 mode = GET_MODE_WIDER_MODE (mode))
5601 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5604 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5605 mode != VOIDmode;
5606 mode = GET_MODE_WIDER_MODE (mode))
5608 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5611 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5612 mode != VOIDmode;
5613 mode = GET_MODE_WIDER_MODE (mode))
5615 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5616 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5619 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5620 mode != VOIDmode;
5621 mode = GET_MODE_WIDER_MODE (mode))
5623 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5624 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5627 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5628 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5629 const_tiny_rtx[0][i] = const0_rtx;
5631 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5632 if (STORE_FLAG_VALUE == 1)
5633 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5636 /* Produce exact duplicate of insn INSN after AFTER.
5637 Care updating of libcall regions if present. */
5640 emit_copy_of_insn_after (rtx insn, rtx after)
5642 rtx new_rtx, link;
5644 switch (GET_CODE (insn))
5646 case INSN:
5647 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5648 break;
5650 case JUMP_INSN:
5651 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5652 break;
5654 case CALL_INSN:
5655 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5656 if (CALL_INSN_FUNCTION_USAGE (insn))
5657 CALL_INSN_FUNCTION_USAGE (new_rtx)
5658 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5659 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5660 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5661 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5662 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5663 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5664 break;
5666 default:
5667 gcc_unreachable ();
5670 /* Update LABEL_NUSES. */
5671 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5673 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5675 /* If the old insn is frame related, then so is the new one. This is
5676 primarily needed for IA-64 unwind info which marks epilogue insns,
5677 which may be duplicated by the basic block reordering code. */
5678 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5680 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5681 will make them. REG_LABEL_TARGETs are created there too, but are
5682 supposed to be sticky, so we copy them. */
5683 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5684 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5686 if (GET_CODE (link) == EXPR_LIST)
5687 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5688 copy_insn_1 (XEXP (link, 0)));
5689 else
5690 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5693 INSN_CODE (new_rtx) = INSN_CODE (insn);
5694 return new_rtx;
5697 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5699 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5701 if (hard_reg_clobbers[mode][regno])
5702 return hard_reg_clobbers[mode][regno];
5703 else
5704 return (hard_reg_clobbers[mode][regno] =
5705 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5708 #include "gt-emit-rtl.h"