* tm.texi: Fix markup.
[official-gcc.git] / libjava / boehm.cc
blobdcf99507b80e937fc59f792c958c6e55312855ef
1 // boehm.cc - interface between libjava and Boehm GC.
3 /* Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation
5 This file is part of libgcj.
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
9 details. */
11 #include <config.h>
13 #include <stdio.h>
15 #include <jvm.h>
16 #include <gcj/cni.h>
18 #include <java/lang/Class.h>
19 #include <java/lang/reflect/Modifier.h>
20 #include <java-interp.h>
22 // More nastiness: the GC wants to define TRUE and FALSE. We don't
23 // need the Java definitions (themselves a hack), so we undefine them.
24 #undef TRUE
25 #undef FALSE
27 extern "C"
29 #include <private/gc_priv.h>
30 #include <private/gc_pmark.h>
31 #include <gc_gcj.h>
33 // These aren't declared in any Boehm GC header.
34 void GC_finalize_all (void);
35 ptr_t GC_debug_generic_malloc (size_t size, int k, GC_EXTRA_PARAMS);
38 // FIXME: this should probably be defined in some GC header.
39 #ifdef GC_DEBUG
40 # define GC_GENERIC_MALLOC(Size, Type) \
41 GC_debug_generic_malloc (Size, Type, GC_EXTRAS)
42 #else
43 # define GC_GENERIC_MALLOC(Size, Type) GC_generic_malloc (Size, Type)
44 #endif
46 // We must check for plausibility ourselves.
47 #define MAYBE_MARK(Obj, Top, Limit, Source, Exit) \
48 if ((ptr_t) (Obj) >= GC_least_plausible_heap_addr \
49 && (ptr_t) (Obj) <= GC_greatest_plausible_heap_addr) \
50 PUSH_CONTENTS (Obj, Top, Limit, Source, Exit)
54 // Nonzero if this module has been initialized.
55 static int initialized = 0;
57 #if 0
58 // `kind' index used when allocating Java objects.
59 static int obj_kind_x;
61 // Freelist used for Java objects.
62 static ptr_t *obj_free_list;
63 #endif /* 0 */
65 // `kind' index used when allocating Java arrays.
66 static int array_kind_x;
68 // Freelist used for Java arrays.
69 static ptr_t *array_free_list;
71 // Lock used to protect access to Boehm's GC_enable/GC_disable functions.
72 static _Jv_Mutex_t disable_gc_mutex;
76 // This is called by the GC during the mark phase. It marks a Java
77 // object. We use `void *' arguments and return, and not what the
78 // Boehm GC wants, to avoid pollution in our headers.
79 void *
80 _Jv_MarkObj (void *addr, void *msp, void *msl, void * /* env */)
82 mse *mark_stack_ptr = (mse *) msp;
83 mse *mark_stack_limit = (mse *) msl;
84 jobject obj = (jobject) addr;
86 // FIXME: if env is 1, this object was allocated through the debug
87 // interface, and addr points to the beginning of the debug header.
88 // In that case, we should really add the size of the header to addr.
90 _Jv_VTable *dt = *(_Jv_VTable **) addr;
91 // The object might not yet have its vtable set, or it might
92 // really be an object on the freelist. In either case, the vtable slot
93 // will either be 0, or it will point to a cleared object.
94 // This assumes Java objects have size at least 3 words,
95 // including the header. But this should remain true, since this
96 // should only be used with debugging allocation or with large objects.
97 if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
98 return mark_stack_ptr;
99 jclass klass = dt->clas;
100 ptr_t p;
102 # ifndef JV_HASH_SYNCHRONIZATION
103 // Every object has a sync_info pointer.
104 p = (ptr_t) obj->sync_info;
105 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o1label);
106 # endif
107 // Mark the object's class.
108 p = (ptr_t) klass;
109 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o2label);
111 if (__builtin_expect (klass == &java::lang::Class::class$, false))
113 // Currently we allocate some of the memory referenced from class objects
114 // as pointerfree memory, and then mark it more intelligently here.
115 // We ensure that the ClassClass mark descriptor forces invocation of
116 // this procedure.
117 // Correctness of this is subtle, but it looks OK to me for now. For the incremental
118 // collector, we need to make sure that the class object is written whenever
119 // any of the subobjects are altered and may need rescanning. This may be tricky
120 // during construction, and this may not be the right way to do this with
121 // incremental collection.
122 // If we overflow the mark stack, we will rescan the class object, so we should
123 // be OK. The same applies if we redo the mark phase because win32 unmapped part
124 // of our root set. - HB
125 jclass c = (jclass) addr;
127 p = (ptr_t) c->name;
128 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c3label);
129 p = (ptr_t) c->superclass;
130 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c4label);
131 for (int i = 0; i < c->constants.size; ++i)
133 /* FIXME: We could make this more precise by using the tags -KKT */
134 p = (ptr_t) c->constants.data[i].p;
135 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5label);
138 #ifdef INTERPRETER
139 if (_Jv_IsInterpretedClass (c))
141 p = (ptr_t) c->constants.tags;
142 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5alabel);
143 p = (ptr_t) c->constants.data;
144 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5blabel);
145 p = (ptr_t) c->vtable;
146 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5clabel);
148 #endif
150 // If the class is an array, then the methods field holds a
151 // pointer to the element class. If the class is primitive,
152 // then the methods field holds a pointer to the array class.
153 p = (ptr_t) c->methods;
154 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c6label);
157 if (! c->isArray() && ! c->isPrimitive())
159 // Scan each method in the cases where `methods' really
160 // points to a methods structure.
161 for (int i = 0; i < c->method_count; ++i)
163 p = (ptr_t) c->methods[i].name;
164 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
165 cm1label);
166 p = (ptr_t) c->methods[i].signature;
167 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
168 cm2label);
170 // FIXME: `ncode' entry?
172 #ifdef INTERPRETER
173 // The interpreter installs a heap-allocated
174 // trampoline here, so we'll mark it.
175 if (_Jv_IsInterpretedClass (c))
177 p = (ptr_t) c->methods[i].ncode;
178 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
179 cm3label);
181 #endif
185 // Mark all the fields.
186 p = (ptr_t) c->fields;
187 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8label);
188 for (int i = 0; i < c->field_count; ++i)
190 _Jv_Field* field = &c->fields[i];
192 #ifndef COMPACT_FIELDS
193 p = (ptr_t) field->name;
194 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8alabel);
195 #endif
196 p = (ptr_t) field->type;
197 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8blabel);
199 // For the interpreter, we also need to mark the memory
200 // containing static members
201 if ((field->flags & java::lang::reflect::Modifier::STATIC))
203 p = (ptr_t) field->u.addr;
204 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8clabel);
206 // also, if the static member is a reference,
207 // mark also the value pointed to. We check for isResolved
208 // since marking can happen before memory is allocated for
209 // static members.
210 if (JvFieldIsRef (field) && field->isResolved())
212 jobject val = *(jobject*) field->u.addr;
213 p = (ptr_t) val;
214 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit,
215 c, c8elabel);
220 p = (ptr_t) c->vtable;
221 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c9label);
222 p = (ptr_t) c->interfaces;
223 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cAlabel);
224 for (int i = 0; i < c->interface_count; ++i)
226 p = (ptr_t) c->interfaces[i];
227 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cClabel);
229 p = (ptr_t) c->loader;
230 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cBlabel);
231 p = (ptr_t) c->arrayclass;
232 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cDlabel);
234 #ifdef INTERPRETER
235 if (_Jv_IsInterpretedClass (c))
237 _Jv_InterpClass* ic = (_Jv_InterpClass*)c;
239 p = (ptr_t) ic->interpreted_methods;
240 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, cElabel);
242 for (int i = 0; i < c->method_count; i++)
244 p = (ptr_t) ic->interpreted_methods[i];
245 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, \
246 cFlabel);
249 p = (ptr_t) ic->field_initializers;
250 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, cGlabel);
253 #endif
256 else
258 // NOTE: each class only holds information about the class
259 // itself. So we must do the marking for the entire inheritance
260 // tree in order to mark all fields. FIXME: what about
261 // interfaces? We skip Object here, because Object only has a
262 // sync_info, and we handled that earlier.
263 // Note: occasionally `klass' can be null. For instance, this
264 // can happen if a GC occurs between the point where an object
265 // is allocated and where the vtbl slot is set.
266 while (klass && klass != &java::lang::Object::class$)
268 jfieldID field = JvGetFirstInstanceField (klass);
269 jint max = JvNumInstanceFields (klass);
271 for (int i = 0; i < max; ++i)
273 if (JvFieldIsRef (field))
275 jobject val = JvGetObjectField (obj, field);
276 p = (ptr_t) val;
277 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit,
278 obj, elabel);
280 field = field->getNextField ();
282 klass = klass->getSuperclass();
286 return mark_stack_ptr;
289 // This is called by the GC during the mark phase. It marks a Java
290 // array (of objects). We use `void *' arguments and return, and not
291 // what the Boehm GC wants, to avoid pollution in our headers.
292 void *
293 _Jv_MarkArray (void *addr, void *msp, void *msl, void * /*env*/)
295 mse *mark_stack_ptr = (mse *) msp;
296 mse *mark_stack_limit = (mse *) msl;
297 jobjectArray array = (jobjectArray) addr;
299 _Jv_VTable *dt = *(_Jv_VTable **) addr;
300 // Assumes size >= 3 words. That's currently true since arrays have
301 // a vtable, sync pointer, and size. If the sync pointer goes away,
302 // we may need to round up the size.
303 if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
304 return mark_stack_ptr;
305 jclass klass = dt->clas;
306 ptr_t p;
308 # ifndef JV_HASH_SYNCHRONIZATION
309 // Every object has a sync_info pointer.
310 p = (ptr_t) array->sync_info;
311 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array, e1label);
312 # endif
313 // Mark the object's class.
314 p = (ptr_t) klass;
315 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o2label);
317 for (int i = 0; i < JvGetArrayLength (array); ++i)
319 jobject obj = elements (array)[i];
320 p = (ptr_t) obj;
321 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array, e2label);
324 return mark_stack_ptr;
327 // Return GC descriptor for interpreted class
328 #ifdef INTERPRETER
330 // We assume that the gcj mark proc has index 0. This is a dubious assumption,
331 // since another one could be registered first. But the compiler also
332 // knows this, so in that case everything else will break, too.
333 #define GCJ_DEFAULT_DESCR GC_MAKE_PROC(GC_GCJ_RESERVED_MARK_PROC_INDEX,0)
334 void *
335 _Jv_BuildGCDescr(jclass)
337 /* FIXME: We should really look at the class and build the descriptor. */
338 return (void *)(GCJ_DEFAULT_DESCR);
340 #endif
342 // Allocate some space that is known to be pointer-free.
343 void *
344 _Jv_AllocBytes (jsize size)
346 void *r = GC_MALLOC_ATOMIC (size);
347 // We have to explicitly zero memory here, as the GC doesn't
348 // guarantee that PTRFREE allocations are zeroed. Note that we
349 // don't have to do this for other allocation types because we set
350 // the `ok_init' flag in the type descriptor.
351 memset (r, 0, size);
352 return r;
355 // Allocate space for a new Java array.
356 // Used only for arrays of objects.
357 void *
358 _Jv_AllocArray (jsize size, jclass klass)
360 void *obj;
361 const jsize min_heap_addr = 16*1024;
362 // A heuristic. If size is less than this value, the size
363 // stored in the array can't possibly be misinterpreted as
364 // a pointer. Thus we lose nothing by scanning the object
365 // completely conservatively, since no misidentification can
366 // take place.
368 #ifdef GC_DEBUG
369 // There isn't much to lose by scanning this conservatively.
370 // If we didn't, the mark proc would have to understand that
371 // it needed to skip the header.
372 obj = GC_MALLOC(size);
373 #else
374 if (size < min_heap_addr)
375 obj = GC_MALLOC(size);
376 else
377 obj = GC_GENERIC_MALLOC (size, array_kind_x);
378 #endif
379 *((_Jv_VTable **) obj) = klass->vtable;
380 return obj;
383 static void
384 call_finalizer (GC_PTR obj, GC_PTR client_data)
386 _Jv_FinalizerFunc *fn = (_Jv_FinalizerFunc *) client_data;
387 jobject jobj = (jobject) obj;
389 (*fn) (jobj);
392 void
393 _Jv_RegisterFinalizer (void *object, _Jv_FinalizerFunc *meth)
395 GC_REGISTER_FINALIZER_NO_ORDER (object, call_finalizer, (GC_PTR) meth,
396 NULL, NULL);
399 void
400 _Jv_RunFinalizers (void)
402 GC_invoke_finalizers ();
405 void
406 _Jv_RunAllFinalizers (void)
408 GC_finalize_all ();
411 void
412 _Jv_RunGC (void)
414 GC_gcollect ();
417 long
418 _Jv_GCTotalMemory (void)
420 return GC_get_heap_size ();
423 long
424 _Jv_GCFreeMemory (void)
426 return GC_get_free_bytes ();
429 void
430 _Jv_GCSetInitialHeapSize (size_t size)
432 size_t current = GC_get_heap_size ();
433 if (size > current)
434 GC_expand_hp (size - current);
437 void
438 _Jv_GCSetMaximumHeapSize (size_t size)
440 GC_set_max_heap_size ((GC_word) size);
443 // From boehm's misc.c
444 extern "C" void GC_enable();
445 extern "C" void GC_disable();
447 void
448 _Jv_DisableGC (void)
450 _Jv_MutexLock (&disable_gc_mutex);
451 GC_disable();
452 _Jv_MutexUnlock (&disable_gc_mutex);
455 void
456 _Jv_EnableGC (void)
458 _Jv_MutexLock (&disable_gc_mutex);
459 GC_enable();
460 _Jv_MutexUnlock (&disable_gc_mutex);
463 static void * handle_out_of_memory(size_t)
465 _Jv_ThrowNoMemory();
468 void
469 _Jv_InitGC (void)
471 int proc;
472 DCL_LOCK_STATE;
474 DISABLE_SIGNALS ();
475 LOCK ();
477 if (initialized)
479 UNLOCK ();
480 ENABLE_SIGNALS ();
481 return;
483 initialized = 1;
484 UNLOCK ();
486 // Configure the collector to use the bitmap marking descriptors that we
487 // stash in the class vtable.
488 GC_init_gcj_malloc (0, (void *) _Jv_MarkObj);
490 // Cause an out of memory error to be thrown from the allocators,
491 // instead of returning 0. This is cheaper than checking on allocation.
492 GC_oom_fn = handle_out_of_memory;
494 LOCK ();
495 GC_java_finalization = 1;
497 // We use a different mark procedure for object arrays. This code
498 // configures a different object `kind' for object array allocation and
499 // marking. FIXME: see above.
500 array_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
501 * sizeof (ptr_t),
502 PTRFREE);
503 memset (array_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
505 proc = GC_n_mark_procs++;
506 GC_mark_procs[proc] = (GC_mark_proc) _Jv_MarkArray;
508 array_kind_x = GC_n_kinds++;
509 GC_obj_kinds[array_kind_x].ok_freelist = array_free_list;
510 GC_obj_kinds[array_kind_x].ok_reclaim_list = 0;
511 GC_obj_kinds[array_kind_x].ok_descriptor = GC_MAKE_PROC (proc, 0);
512 GC_obj_kinds[array_kind_x].ok_relocate_descr = FALSE;
513 GC_obj_kinds[array_kind_x].ok_init = TRUE;
515 _Jv_MutexInit (&disable_gc_mutex);
517 UNLOCK ();
518 ENABLE_SIGNALS ();
521 #ifdef JV_HASH_SYNCHRONIZATION
522 // Allocate an object with a fake vtable pointer, which causes only
523 // the first field (beyond the fake vtable pointer) to be traced.
524 // Eventually this should probably be generalized.
526 static _Jv_VTable trace_one_vtable = {
527 0, // class pointer
528 (void *)(2 * sizeof(void *)),
529 // descriptor; scan 2 words incl. vtable ptr.
530 // Least significant bits must be zero to
531 // identify this as a lenght descriptor
532 {0} // First method
535 void *
536 _Jv_AllocTraceOne (jsize size /* includes vtable slot */)
538 return GC_GCJ_MALLOC (size, &trace_one_vtable);
541 #endif /* JV_HASH_SYNCHRONIZATION */
543 #if 0
544 void
545 _Jv_InitGC (void)
547 int proc;
548 DCL_LOCK_STATE;
550 DISABLE_SIGNALS ();
551 LOCK ();
553 if (initialized)
555 UNLOCK ();
556 ENABLE_SIGNALS ();
557 return;
559 initialized = 1;
561 GC_java_finalization = 1;
563 // Set up state for marking and allocation of Java objects.
564 obj_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
565 * sizeof (ptr_t),
566 PTRFREE);
567 memset (obj_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
569 proc = GC_n_mark_procs++;
570 GC_mark_procs[proc] = (GC_mark_proc) _Jv_MarkObj;
572 obj_kind_x = GC_n_kinds++;
573 GC_obj_kinds[obj_kind_x].ok_freelist = obj_free_list;
574 GC_obj_kinds[obj_kind_x].ok_reclaim_list = 0;
575 GC_obj_kinds[obj_kind_x].ok_descriptor = GC_MAKE_PROC (proc, 0);
576 GC_obj_kinds[obj_kind_x].ok_relocate_descr = FALSE;
577 GC_obj_kinds[obj_kind_x].ok_init = TRUE;
579 // Set up state for marking and allocation of arrays of Java
580 // objects.
581 array_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
582 * sizeof (ptr_t),
583 PTRFREE);
584 memset (array_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
586 proc = GC_n_mark_procs++;
587 GC_mark_procs[proc] = (GC_mark_proc) _Jv_MarkArray;
589 array_kind_x = GC_n_kinds++;
590 GC_obj_kinds[array_kind_x].ok_freelist = array_free_list;
591 GC_obj_kinds[array_kind_x].ok_reclaim_list = 0;
592 GC_obj_kinds[array_kind_x].ok_descriptor = GC_MAKE_PROC (proc, 0);
593 GC_obj_kinds[array_kind_x].ok_relocate_descr = FALSE;
594 GC_obj_kinds[array_kind_x].ok_init = TRUE;
596 _Jv_MutexInit (&disable_gc_mutex);
598 UNLOCK ();
599 ENABLE_SIGNALS ();
601 #endif /* 0 */