1 // Random number extensions -*- C++ -*-
3 // Copyright (C) 2012-2023 Free Software Foundation, Inc.
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
26 * This file is a GNU extension to the Standard C++ Library.
32 #pragma GCC system_header
34 #include <bits/requires_hosted.h> // GNU extensions are currently omitted
36 #if __cplusplus < 201103L
37 # include <bits/c++0x_warning.h>
45 # include <emmintrin.h>
50 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
52 _GLIBCXX_BEGIN_NAMESPACE_VERSION
54 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
56 /* Mersenne twister implementation optimized for vector operations.
58 * Reference: http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/
60 template<typename _UIntType, size_t __m,
61 size_t __pos1, size_t __sl1, size_t __sl2,
62 size_t __sr1, size_t __sr2,
63 uint32_t __msk1, uint32_t __msk2,
64 uint32_t __msk3, uint32_t __msk4,
65 uint32_t __parity1, uint32_t __parity2,
66 uint32_t __parity3, uint32_t __parity4>
67 class simd_fast_mersenne_twister_engine
69 static_assert(std::is_unsigned<_UIntType>::value, "template argument "
70 "substituting _UIntType not an unsigned integral type");
71 static_assert(__sr1 < 32, "first right shift too large");
72 static_assert(__sr2 < 16, "second right shift too large");
73 static_assert(__sl1 < 32, "first left shift too large");
74 static_assert(__sl2 < 16, "second left shift too large");
77 typedef _UIntType result_type;
80 static constexpr size_t m_w = sizeof(result_type) * 8;
81 static constexpr size_t _M_nstate = __m / 128 + 1;
82 static constexpr size_t _M_nstate32 = _M_nstate * 4;
84 static_assert(std::is_unsigned<_UIntType>::value, "template argument "
85 "substituting _UIntType not an unsigned integral type");
86 static_assert(__pos1 < _M_nstate, "POS1 not smaller than state size");
87 static_assert(16 % sizeof(_UIntType) == 0,
88 "UIntType size must divide 16");
90 template<typename _Sseq>
92 = std::__detail::_If_seed_seq_for<_Sseq,
93 simd_fast_mersenne_twister_engine,
97 static constexpr size_t state_size = _M_nstate * (16
98 / sizeof(result_type));
99 static constexpr result_type default_seed = 5489u;
101 // constructors and member functions
103 simd_fast_mersenne_twister_engine()
104 : simd_fast_mersenne_twister_engine(default_seed)
108 simd_fast_mersenne_twister_engine(result_type __sd)
111 template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
113 simd_fast_mersenne_twister_engine(_Sseq& __q)
117 seed(result_type __sd = default_seed);
119 template<typename _Sseq>
123 static constexpr result_type
127 static constexpr result_type
129 { return std::numeric_limits<result_type>::max(); }
132 discard(unsigned long long __z);
137 if (__builtin_expect(_M_pos >= state_size, 0))
140 return _M_stateT[_M_pos++];
143 template<typename _UIntType_2, size_t __m_2,
144 size_t __pos1_2, size_t __sl1_2, size_t __sl2_2,
145 size_t __sr1_2, size_t __sr2_2,
146 uint32_t __msk1_2, uint32_t __msk2_2,
147 uint32_t __msk3_2, uint32_t __msk4_2,
148 uint32_t __parity1_2, uint32_t __parity2_2,
149 uint32_t __parity3_2, uint32_t __parity4_2>
151 operator==(const simd_fast_mersenne_twister_engine<_UIntType_2,
152 __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2,
153 __msk1_2, __msk2_2, __msk3_2, __msk4_2,
154 __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __lhs,
155 const simd_fast_mersenne_twister_engine<_UIntType_2,
156 __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2,
157 __msk1_2, __msk2_2, __msk3_2, __msk4_2,
158 __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __rhs);
160 template<typename _UIntType_2, size_t __m_2,
161 size_t __pos1_2, size_t __sl1_2, size_t __sl2_2,
162 size_t __sr1_2, size_t __sr2_2,
163 uint32_t __msk1_2, uint32_t __msk2_2,
164 uint32_t __msk3_2, uint32_t __msk4_2,
165 uint32_t __parity1_2, uint32_t __parity2_2,
166 uint32_t __parity3_2, uint32_t __parity4_2,
167 typename _CharT, typename _Traits>
168 friend std::basic_ostream<_CharT, _Traits>&
169 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
170 const __gnu_cxx::simd_fast_mersenne_twister_engine
172 __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2,
173 __msk1_2, __msk2_2, __msk3_2, __msk4_2,
174 __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __x);
176 template<typename _UIntType_2, size_t __m_2,
177 size_t __pos1_2, size_t __sl1_2, size_t __sl2_2,
178 size_t __sr1_2, size_t __sr2_2,
179 uint32_t __msk1_2, uint32_t __msk2_2,
180 uint32_t __msk3_2, uint32_t __msk4_2,
181 uint32_t __parity1_2, uint32_t __parity2_2,
182 uint32_t __parity3_2, uint32_t __parity4_2,
183 typename _CharT, typename _Traits>
184 friend std::basic_istream<_CharT, _Traits>&
185 operator>>(std::basic_istream<_CharT, _Traits>& __is,
186 __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType_2,
187 __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2,
188 __msk1_2, __msk2_2, __msk3_2, __msk4_2,
189 __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __x);
195 __m128i _M_state[_M_nstate];
199 __Uint32x4_t _M_state[_M_nstate];
202 uint32_t _M_state32[_M_nstate32];
203 result_type _M_stateT[state_size];
204 } __attribute__ ((__aligned__ (16)));
207 void _M_gen_rand(void);
208 void _M_period_certification();
211 #if __cpp_impl_three_way_comparison < 201907L
212 template<typename _UIntType, size_t __m,
213 size_t __pos1, size_t __sl1, size_t __sl2,
214 size_t __sr1, size_t __sr2,
215 uint32_t __msk1, uint32_t __msk2,
216 uint32_t __msk3, uint32_t __msk4,
217 uint32_t __parity1, uint32_t __parity2,
218 uint32_t __parity3, uint32_t __parity4>
220 operator!=(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
221 __m, __pos1, __sl1, __sl2, __sr1, __sr2, __msk1, __msk2, __msk3,
222 __msk4, __parity1, __parity2, __parity3, __parity4>& __lhs,
223 const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
224 __m, __pos1, __sl1, __sl2, __sr1, __sr2, __msk1, __msk2, __msk3,
225 __msk4, __parity1, __parity2, __parity3, __parity4>& __rhs)
226 { return !(__lhs == __rhs); }
229 /* Definitions for the SIMD-oriented Fast Mersenne Twister as defined
230 * in the C implementation by Daito and Matsumoto, as both a 32-bit
231 * and 64-bit version.
233 typedef simd_fast_mersenne_twister_engine<uint32_t, 607, 2,
235 0xfdff37ffU, 0xef7f3f7dU,
236 0xff777b7dU, 0x7ff7fb2fU,
237 0x00000001U, 0x00000000U,
238 0x00000000U, 0x5986f054U>
241 typedef simd_fast_mersenne_twister_engine<uint64_t, 607, 2,
243 0xfdff37ffU, 0xef7f3f7dU,
244 0xff777b7dU, 0x7ff7fb2fU,
245 0x00000001U, 0x00000000U,
246 0x00000000U, 0x5986f054U>
250 typedef simd_fast_mersenne_twister_engine<uint32_t, 1279, 7,
252 0xf7fefffdU, 0x7fefcfffU,
253 0xaff3ef3fU, 0xb5ffff7fU,
254 0x00000001U, 0x00000000U,
255 0x00000000U, 0x20000000U>
258 typedef simd_fast_mersenne_twister_engine<uint64_t, 1279, 7,
260 0xf7fefffdU, 0x7fefcfffU,
261 0xaff3ef3fU, 0xb5ffff7fU,
262 0x00000001U, 0x00000000U,
263 0x00000000U, 0x20000000U>
267 typedef simd_fast_mersenne_twister_engine<uint32_t, 2281, 12,
269 0xbff7ffbfU, 0xfdfffffeU,
270 0xf7ffef7fU, 0xf2f7cbbfU,
271 0x00000001U, 0x00000000U,
272 0x00000000U, 0x41dfa600U>
275 typedef simd_fast_mersenne_twister_engine<uint64_t, 2281, 12,
277 0xbff7ffbfU, 0xfdfffffeU,
278 0xf7ffef7fU, 0xf2f7cbbfU,
279 0x00000001U, 0x00000000U,
280 0x00000000U, 0x41dfa600U>
284 typedef simd_fast_mersenne_twister_engine<uint32_t, 4253, 17,
286 0x9f7bffffU, 0x9fffff5fU,
287 0x3efffffbU, 0xfffff7bbU,
288 0xa8000001U, 0xaf5390a3U,
289 0xb740b3f8U, 0x6c11486dU>
292 typedef simd_fast_mersenne_twister_engine<uint64_t, 4253, 17,
294 0x9f7bffffU, 0x9fffff5fU,
295 0x3efffffbU, 0xfffff7bbU,
296 0xa8000001U, 0xaf5390a3U,
297 0xb740b3f8U, 0x6c11486dU>
301 typedef simd_fast_mersenne_twister_engine<uint32_t, 11213, 68,
303 0xeffff7fbU, 0xffffffefU,
304 0xdfdfbfffU, 0x7fffdbfdU,
305 0x00000001U, 0x00000000U,
306 0xe8148000U, 0xd0c7afa3U>
309 typedef simd_fast_mersenne_twister_engine<uint64_t, 11213, 68,
311 0xeffff7fbU, 0xffffffefU,
312 0xdfdfbfffU, 0x7fffdbfdU,
313 0x00000001U, 0x00000000U,
314 0xe8148000U, 0xd0c7afa3U>
318 typedef simd_fast_mersenne_twister_engine<uint32_t, 19937, 122,
320 0xdfffffefU, 0xddfecb7fU,
321 0xbffaffffU, 0xbffffff6U,
322 0x00000001U, 0x00000000U,
323 0x00000000U, 0x13c9e684U>
326 typedef simd_fast_mersenne_twister_engine<uint64_t, 19937, 122,
328 0xdfffffefU, 0xddfecb7fU,
329 0xbffaffffU, 0xbffffff6U,
330 0x00000001U, 0x00000000U,
331 0x00000000U, 0x13c9e684U>
335 typedef simd_fast_mersenne_twister_engine<uint32_t, 44497, 330,
337 0xeffffffbU, 0xdfbebfffU,
338 0xbfbf7befU, 0x9ffd7bffU,
339 0x00000001U, 0x00000000U,
340 0xa3ac4000U, 0xecc1327aU>
343 typedef simd_fast_mersenne_twister_engine<uint64_t, 44497, 330,
345 0xeffffffbU, 0xdfbebfffU,
346 0xbfbf7befU, 0x9ffd7bffU,
347 0x00000001U, 0x00000000U,
348 0xa3ac4000U, 0xecc1327aU>
351 #if __SIZE_WIDTH__ >= 32
353 typedef simd_fast_mersenne_twister_engine<uint32_t, 86243, 366,
355 0xfdbffbffU, 0xbff7ff3fU,
356 0xfd77efffU, 0xbf9ff3ffU,
357 0x00000001U, 0x00000000U,
358 0x00000000U, 0xe9528d85U>
361 typedef simd_fast_mersenne_twister_engine<uint64_t, 86243, 366,
363 0xfdbffbffU, 0xbff7ff3fU,
364 0xfd77efffU, 0xbf9ff3ffU,
365 0x00000001U, 0x00000000U,
366 0x00000000U, 0xe9528d85U>
370 typedef simd_fast_mersenne_twister_engine<uint32_t, 132049, 110,
372 0xffffbb5fU, 0xfb6ebf95U,
373 0xfffefffaU, 0xcff77fffU,
374 0x00000001U, 0x00000000U,
375 0xcb520000U, 0xc7e91c7dU>
378 typedef simd_fast_mersenne_twister_engine<uint64_t, 132049, 110,
380 0xffffbb5fU, 0xfb6ebf95U,
381 0xfffefffaU, 0xcff77fffU,
382 0x00000001U, 0x00000000U,
383 0xcb520000U, 0xc7e91c7dU>
387 typedef simd_fast_mersenne_twister_engine<uint32_t, 216091, 627,
389 0xbff7bff7U, 0xbfffffffU,
390 0xbffffa7fU, 0xffddfbfbU,
391 0xf8000001U, 0x89e80709U,
392 0x3bd2b64bU, 0x0c64b1e4U>
395 typedef simd_fast_mersenne_twister_engine<uint64_t, 216091, 627,
397 0xbff7bff7U, 0xbfffffffU,
398 0xbffffa7fU, 0xffddfbfbU,
399 0xf8000001U, 0x89e80709U,
400 0x3bd2b64bU, 0x0c64b1e4U>
402 #endif // __SIZE_WIDTH__ >= 32
404 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
407 * @brief A beta continuous distribution for random numbers.
409 * The formula for the beta probability density function is:
411 * p(x|\alpha,\beta) = \frac{1}{B(\alpha,\beta)}
412 * x^{\alpha - 1} (1 - x)^{\beta - 1}
415 template<typename _RealType = double>
416 class beta_distribution
418 static_assert(std::is_floating_point<_RealType>::value,
419 "template argument not a floating point type");
422 /** The type of the range of the distribution. */
423 typedef _RealType result_type;
425 /** Parameter type. */
428 typedef beta_distribution<_RealType> distribution_type;
429 friend class beta_distribution<_RealType>;
431 param_type() : param_type(1) { }
434 param_type(_RealType __alpha_val, _RealType __beta_val = _RealType(1))
435 : _M_alpha(__alpha_val), _M_beta(__beta_val)
437 __glibcxx_assert(_M_alpha > _RealType(0));
438 __glibcxx_assert(_M_beta > _RealType(0));
450 operator==(const param_type& __p1, const param_type& __p2)
451 { return (__p1._M_alpha == __p2._M_alpha
452 && __p1._M_beta == __p2._M_beta); }
454 #if __cpp_impl_three_way_comparison < 201907L
456 operator!=(const param_type& __p1, const param_type& __p2)
457 { return !(__p1 == __p2); }
469 beta_distribution() : beta_distribution(1.0) { }
472 * @brief Constructs a beta distribution with parameters
473 * @f$\alpha@f$ and @f$\beta@f$.
476 beta_distribution(_RealType __alpha_val,
477 _RealType __beta_val = _RealType(1))
478 : _M_param(__alpha_val, __beta_val)
482 beta_distribution(const param_type& __p)
487 * @brief Resets the distribution state.
494 * @brief Returns the @f$\alpha@f$ of the distribution.
498 { return _M_param.alpha(); }
501 * @brief Returns the @f$\beta@f$ of the distribution.
505 { return _M_param.beta(); }
508 * @brief Returns the parameter set of the distribution.
515 * @brief Sets the parameter set of the distribution.
516 * @param __param The new parameter set of the distribution.
519 param(const param_type& __param)
520 { _M_param = __param; }
523 * @brief Returns the greatest lower bound value of the distribution.
527 { return result_type(0); }
530 * @brief Returns the least upper bound value of the distribution.
534 { return result_type(1); }
537 * @brief Generating functions.
539 template<typename _UniformRandomNumberGenerator>
541 operator()(_UniformRandomNumberGenerator& __urng)
542 { return this->operator()(__urng, _M_param); }
544 template<typename _UniformRandomNumberGenerator>
546 operator()(_UniformRandomNumberGenerator& __urng,
547 const param_type& __p);
549 template<typename _ForwardIterator,
550 typename _UniformRandomNumberGenerator>
552 __generate(_ForwardIterator __f, _ForwardIterator __t,
553 _UniformRandomNumberGenerator& __urng)
554 { this->__generate(__f, __t, __urng, _M_param); }
556 template<typename _ForwardIterator,
557 typename _UniformRandomNumberGenerator>
559 __generate(_ForwardIterator __f, _ForwardIterator __t,
560 _UniformRandomNumberGenerator& __urng,
561 const param_type& __p)
562 { this->__generate_impl(__f, __t, __urng, __p); }
564 template<typename _UniformRandomNumberGenerator>
566 __generate(result_type* __f, result_type* __t,
567 _UniformRandomNumberGenerator& __urng,
568 const param_type& __p)
569 { this->__generate_impl(__f, __t, __urng, __p); }
572 * @brief Return true if two beta distributions have the same
573 * parameters and the sequences that would be generated
577 operator==(const beta_distribution& __d1,
578 const beta_distribution& __d2)
579 { return __d1._M_param == __d2._M_param; }
582 * @brief Inserts a %beta_distribution random number distribution
583 * @p __x into the output stream @p __os.
585 * @param __os An output stream.
586 * @param __x A %beta_distribution random number distribution.
588 * @returns The output stream with the state of @p __x inserted or in
591 template<typename _RealType1, typename _CharT, typename _Traits>
592 friend std::basic_ostream<_CharT, _Traits>&
593 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
594 const __gnu_cxx::beta_distribution<_RealType1>& __x);
597 * @brief Extracts a %beta_distribution random number distribution
598 * @p __x from the input stream @p __is.
600 * @param __is An input stream.
601 * @param __x A %beta_distribution random number generator engine.
603 * @returns The input stream with @p __x extracted or in an error state.
605 template<typename _RealType1, typename _CharT, typename _Traits>
606 friend std::basic_istream<_CharT, _Traits>&
607 operator>>(std::basic_istream<_CharT, _Traits>& __is,
608 __gnu_cxx::beta_distribution<_RealType1>& __x);
611 template<typename _ForwardIterator,
612 typename _UniformRandomNumberGenerator>
614 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
615 _UniformRandomNumberGenerator& __urng,
616 const param_type& __p);
621 #if __cpp_impl_three_way_comparison < 201907L
623 * @brief Return true if two beta distributions are different.
625 template<typename _RealType>
627 operator!=(const __gnu_cxx::beta_distribution<_RealType>& __d1,
628 const __gnu_cxx::beta_distribution<_RealType>& __d2)
629 { return !(__d1 == __d2); }
633 * @brief A multi-variate normal continuous distribution for random numbers.
635 * The formula for the normal probability density function is
637 * p(\overrightarrow{x}|\overrightarrow{\mu },\Sigma) =
638 * \frac{1}{\sqrt{(2\pi )^k\det(\Sigma))}}
639 * e^{-\frac{1}{2}(\overrightarrow{x}-\overrightarrow{\mu})^\text{T}
640 * \Sigma ^{-1}(\overrightarrow{x}-\overrightarrow{\mu})}
643 * where @f$\overrightarrow{x}@f$ and @f$\overrightarrow{\mu}@f$ are
644 * vectors of dimension @f$k@f$ and @f$\Sigma@f$ is the covariance
645 * matrix (which must be positive-definite).
647 template<std::size_t _Dimen, typename _RealType = double>
648 class normal_mv_distribution
650 static_assert(std::is_floating_point<_RealType>::value,
651 "template argument not a floating point type");
652 static_assert(_Dimen != 0, "dimension is zero");
655 /** The type of the range of the distribution. */
656 typedef std::array<_RealType, _Dimen> result_type;
657 /** Parameter type. */
660 static constexpr size_t _M_t_size = _Dimen * (_Dimen + 1) / 2;
663 typedef normal_mv_distribution<_Dimen, _RealType> distribution_type;
664 friend class normal_mv_distribution<_Dimen, _RealType>;
668 std::fill(_M_mean.begin(), _M_mean.end(), _RealType(0));
669 auto __it = _M_t.begin();
670 for (size_t __i = 0; __i < _Dimen; ++__i)
672 std::fill_n(__it, __i, _RealType(0));
674 *__it++ = _RealType(1);
678 template<typename _ForwardIterator1, typename _ForwardIterator2>
679 param_type(_ForwardIterator1 __meanbegin,
680 _ForwardIterator1 __meanend,
681 _ForwardIterator2 __varcovbegin,
682 _ForwardIterator2 __varcovend)
684 __glibcxx_function_requires(_ForwardIteratorConcept<
686 __glibcxx_function_requires(_ForwardIteratorConcept<
688 _GLIBCXX_DEBUG_ASSERT(std::distance(__meanbegin, __meanend)
690 const auto __dist = std::distance(__varcovbegin, __varcovend);
691 _GLIBCXX_DEBUG_ASSERT(__dist == _Dimen * _Dimen
692 || __dist == _Dimen * (_Dimen + 1) / 2
693 || __dist == _Dimen);
695 if (__dist == _Dimen * _Dimen)
696 _M_init_full(__meanbegin, __meanend, __varcovbegin, __varcovend);
697 else if (__dist == _Dimen * (_Dimen + 1) / 2)
698 _M_init_lower(__meanbegin, __meanend, __varcovbegin, __varcovend);
701 __glibcxx_assert(__dist == _Dimen);
702 _M_init_diagonal(__meanbegin, __meanend,
703 __varcovbegin, __varcovend);
707 param_type(std::initializer_list<_RealType> __mean,
708 std::initializer_list<_RealType> __varcov)
710 _GLIBCXX_DEBUG_ASSERT(__mean.size() <= _Dimen);
711 _GLIBCXX_DEBUG_ASSERT(__varcov.size() == _Dimen * _Dimen
712 || __varcov.size() == _Dimen * (_Dimen + 1) / 2
713 || __varcov.size() == _Dimen);
715 if (__varcov.size() == _Dimen * _Dimen)
716 _M_init_full(__mean.begin(), __mean.end(),
717 __varcov.begin(), __varcov.end());
718 else if (__varcov.size() == _Dimen * (_Dimen + 1) / 2)
719 _M_init_lower(__mean.begin(), __mean.end(),
720 __varcov.begin(), __varcov.end());
723 __glibcxx_assert(__varcov.size() == _Dimen);
724 _M_init_diagonal(__mean.begin(), __mean.end(),
725 __varcov.begin(), __varcov.end());
729 std::array<_RealType, _Dimen>
733 std::array<_RealType, _M_t_size>
738 operator==(const param_type& __p1, const param_type& __p2)
739 { return __p1._M_mean == __p2._M_mean && __p1._M_t == __p2._M_t; }
741 #if __cpp_impl_three_way_comparison < 201907L
743 operator!=(const param_type& __p1, const param_type& __p2)
744 { return !(__p1 == __p2); }
748 template <typename _InputIterator1, typename _InputIterator2>
749 void _M_init_full(_InputIterator1 __meanbegin,
750 _InputIterator1 __meanend,
751 _InputIterator2 __varcovbegin,
752 _InputIterator2 __varcovend);
753 template <typename _InputIterator1, typename _InputIterator2>
754 void _M_init_lower(_InputIterator1 __meanbegin,
755 _InputIterator1 __meanend,
756 _InputIterator2 __varcovbegin,
757 _InputIterator2 __varcovend);
758 template <typename _InputIterator1, typename _InputIterator2>
759 void _M_init_diagonal(_InputIterator1 __meanbegin,
760 _InputIterator1 __meanend,
761 _InputIterator2 __varbegin,
762 _InputIterator2 __varend);
764 // param_type constructors apply Cholesky decomposition to the
765 // varcov matrix in _M_init_full and _M_init_lower, but the
766 // varcov matrix output ot a stream is already decomposed, so
767 // we need means to restore it as-is when reading it back in.
768 template<size_t _Dimen1, typename _RealType1,
769 typename _CharT, typename _Traits>
770 friend std::basic_istream<_CharT, _Traits>&
771 operator>>(std::basic_istream<_CharT, _Traits>& __is,
772 __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
774 param_type(std::array<_RealType, _Dimen> const &__mean,
775 std::array<_RealType, _M_t_size> const &__varcov)
776 : _M_mean (__mean), _M_t (__varcov)
779 std::array<_RealType, _Dimen> _M_mean;
780 std::array<_RealType, _M_t_size> _M_t;
784 normal_mv_distribution()
785 : _M_param(), _M_nd()
788 template<typename _ForwardIterator1, typename _ForwardIterator2>
789 normal_mv_distribution(_ForwardIterator1 __meanbegin,
790 _ForwardIterator1 __meanend,
791 _ForwardIterator2 __varcovbegin,
792 _ForwardIterator2 __varcovend)
793 : _M_param(__meanbegin, __meanend, __varcovbegin, __varcovend),
797 normal_mv_distribution(std::initializer_list<_RealType> __mean,
798 std::initializer_list<_RealType> __varcov)
799 : _M_param(__mean, __varcov), _M_nd()
803 normal_mv_distribution(const param_type& __p)
804 : _M_param(__p), _M_nd()
808 * @brief Resets the distribution state.
815 * @brief Returns the mean of the distribution.
819 { return _M_param.mean(); }
822 * @brief Returns the compact form of the variance/covariance
823 * matrix of the distribution.
825 std::array<_RealType, _Dimen * (_Dimen + 1) / 2>
827 { return _M_param.varcov(); }
830 * @brief Returns the parameter set of the distribution.
837 * @brief Sets the parameter set of the distribution.
838 * @param __param The new parameter set of the distribution.
841 param(const param_type& __param)
842 { _M_param = __param; }
845 * @brief Returns the greatest lower bound value of the distribution.
850 __res.fill(std::numeric_limits<_RealType>::lowest());
854 * @brief Returns the least upper bound value of the distribution.
859 __res.fill(std::numeric_limits<_RealType>::max());
863 * @brief Generating functions.
865 template<typename _UniformRandomNumberGenerator>
867 operator()(_UniformRandomNumberGenerator& __urng)
868 { return this->operator()(__urng, _M_param); }
870 template<typename _UniformRandomNumberGenerator>
872 operator()(_UniformRandomNumberGenerator& __urng,
873 const param_type& __p);
875 template<typename _ForwardIterator,
876 typename _UniformRandomNumberGenerator>
878 __generate(_ForwardIterator __f, _ForwardIterator __t,
879 _UniformRandomNumberGenerator& __urng)
880 { return this->__generate_impl(__f, __t, __urng, _M_param); }
882 template<typename _ForwardIterator,
883 typename _UniformRandomNumberGenerator>
885 __generate(_ForwardIterator __f, _ForwardIterator __t,
886 _UniformRandomNumberGenerator& __urng,
887 const param_type& __p)
888 { return this->__generate_impl(__f, __t, __urng, __p); }
891 * @brief Return true if two multi-variant normal distributions have
892 * the same parameters and the sequences that would
893 * be generated are equal.
895 template<size_t _Dimen1, typename _RealType1>
898 __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
901 __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
905 * @brief Inserts a %normal_mv_distribution random number distribution
906 * @p __x into the output stream @p __os.
908 * @param __os An output stream.
909 * @param __x A %normal_mv_distribution random number distribution.
911 * @returns The output stream with the state of @p __x inserted or in
914 template<size_t _Dimen1, typename _RealType1,
915 typename _CharT, typename _Traits>
916 friend std::basic_ostream<_CharT, _Traits>&
917 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
919 __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
923 * @brief Extracts a %normal_mv_distribution random number distribution
924 * @p __x from the input stream @p __is.
926 * @param __is An input stream.
927 * @param __x A %normal_mv_distribution random number generator engine.
929 * @returns The input stream with @p __x extracted or in an error
932 template<size_t _Dimen1, typename _RealType1,
933 typename _CharT, typename _Traits>
934 friend std::basic_istream<_CharT, _Traits>&
935 operator>>(std::basic_istream<_CharT, _Traits>& __is,
936 __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
940 template<typename _ForwardIterator,
941 typename _UniformRandomNumberGenerator>
943 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
944 _UniformRandomNumberGenerator& __urng,
945 const param_type& __p);
948 std::normal_distribution<_RealType> _M_nd;
951 #if __cpp_impl_three_way_comparison < 201907L
953 * @brief Return true if two multi-variate normal distributions are
956 template<size_t _Dimen, typename _RealType>
958 operator!=(const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
960 const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
962 { return !(__d1 == __d2); }
966 * @brief A Rice continuous distribution for random numbers.
968 * The formula for the Rice probability density function is
970 * p(x|\nu,\sigma) = \frac{x}{\sigma^2}
971 * \exp\left(-\frac{x^2+\nu^2}{2\sigma^2}\right)
972 * I_0\left(\frac{x \nu}{\sigma^2}\right)
974 * where @f$I_0(z)@f$ is the modified Bessel function of the first kind
975 * of order 0 and @f$\nu >= 0@f$ and @f$\sigma > 0@f$.
977 * <table border=1 cellpadding=10 cellspacing=0>
978 * <caption align=top>Distribution Statistics</caption>
979 * <tr><td>Mean</td><td>@f$\sqrt{\pi/2}L_{1/2}(-\nu^2/2\sigma^2)@f$</td></tr>
980 * <tr><td>Variance</td><td>@f$2\sigma^2 + \nu^2
981 * + (\pi\sigma^2/2)L^2_{1/2}(-\nu^2/2\sigma^2)@f$</td></tr>
982 * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr>
984 * where @f$L_{1/2}(x)@f$ is the Laguerre polynomial of order 1/2.
986 template<typename _RealType = double>
990 static_assert(std::is_floating_point<_RealType>::value,
991 "template argument not a floating point type");
993 /** The type of the range of the distribution. */
994 typedef _RealType result_type;
996 /** Parameter type. */
999 typedef rice_distribution<result_type> distribution_type;
1001 param_type() : param_type(0) { }
1003 param_type(result_type __nu_val,
1004 result_type __sigma_val = result_type(1))
1005 : _M_nu(__nu_val), _M_sigma(__sigma_val)
1007 __glibcxx_assert(_M_nu >= result_type(0));
1008 __glibcxx_assert(_M_sigma > result_type(0));
1017 { return _M_sigma; }
1020 operator==(const param_type& __p1, const param_type& __p2)
1021 { return __p1._M_nu == __p2._M_nu && __p1._M_sigma == __p2._M_sigma; }
1023 #if __cpp_impl_three_way_comparison < 201907L
1025 operator!=(const param_type& __p1, const param_type& __p2)
1026 { return !(__p1 == __p2); }
1030 void _M_initialize();
1033 result_type _M_sigma;
1037 * @brief Constructors.
1041 rice_distribution() : rice_distribution(0) { }
1044 rice_distribution(result_type __nu_val,
1045 result_type __sigma_val = result_type(1))
1046 : _M_param(__nu_val, __sigma_val),
1047 _M_ndx(__nu_val, __sigma_val),
1048 _M_ndy(result_type(0), __sigma_val)
1052 rice_distribution(const param_type& __p)
1054 _M_ndx(__p.nu(), __p.sigma()),
1055 _M_ndy(result_type(0), __p.sigma())
1061 * @brief Resets the distribution state.
1071 * @brief Return the parameters of the distribution.
1075 { return _M_param.nu(); }
1079 { return _M_param.sigma(); }
1082 * @brief Returns the parameter set of the distribution.
1086 { return _M_param; }
1089 * @brief Sets the parameter set of the distribution.
1090 * @param __param The new parameter set of the distribution.
1093 param(const param_type& __param)
1094 { _M_param = __param; }
1097 * @brief Returns the greatest lower bound value of the distribution.
1101 { return result_type(0); }
1104 * @brief Returns the least upper bound value of the distribution.
1108 { return std::numeric_limits<result_type>::max(); }
1111 * @brief Generating functions.
1113 template<typename _UniformRandomNumberGenerator>
1115 operator()(_UniformRandomNumberGenerator& __urng)
1117 result_type __x = this->_M_ndx(__urng);
1118 result_type __y = this->_M_ndy(__urng);
1119 #if _GLIBCXX_USE_C99_MATH_FUNCS
1120 return std::hypot(__x, __y);
1122 return std::sqrt(__x * __x + __y * __y);
1126 template<typename _UniformRandomNumberGenerator>
1128 operator()(_UniformRandomNumberGenerator& __urng,
1129 const param_type& __p)
1131 typename std::normal_distribution<result_type>::param_type
1132 __px(__p.nu(), __p.sigma()), __py(result_type(0), __p.sigma());
1133 result_type __x = this->_M_ndx(__px, __urng);
1134 result_type __y = this->_M_ndy(__py, __urng);
1135 #if _GLIBCXX_USE_C99_MATH_FUNCS
1136 return std::hypot(__x, __y);
1138 return std::sqrt(__x * __x + __y * __y);
1142 template<typename _ForwardIterator,
1143 typename _UniformRandomNumberGenerator>
1145 __generate(_ForwardIterator __f, _ForwardIterator __t,
1146 _UniformRandomNumberGenerator& __urng)
1147 { this->__generate(__f, __t, __urng, _M_param); }
1149 template<typename _ForwardIterator,
1150 typename _UniformRandomNumberGenerator>
1152 __generate(_ForwardIterator __f, _ForwardIterator __t,
1153 _UniformRandomNumberGenerator& __urng,
1154 const param_type& __p)
1155 { this->__generate_impl(__f, __t, __urng, __p); }
1157 template<typename _UniformRandomNumberGenerator>
1159 __generate(result_type* __f, result_type* __t,
1160 _UniformRandomNumberGenerator& __urng,
1161 const param_type& __p)
1162 { this->__generate_impl(__f, __t, __urng, __p); }
1165 * @brief Return true if two Rice distributions have
1166 * the same parameters and the sequences that would
1167 * be generated are equal.
1170 operator==(const rice_distribution& __d1,
1171 const rice_distribution& __d2)
1172 { return (__d1._M_param == __d2._M_param
1173 && __d1._M_ndx == __d2._M_ndx
1174 && __d1._M_ndy == __d2._M_ndy); }
1177 * @brief Inserts a %rice_distribution random number distribution
1178 * @p __x into the output stream @p __os.
1180 * @param __os An output stream.
1181 * @param __x A %rice_distribution random number distribution.
1183 * @returns The output stream with the state of @p __x inserted or in
1186 template<typename _RealType1, typename _CharT, typename _Traits>
1187 friend std::basic_ostream<_CharT, _Traits>&
1188 operator<<(std::basic_ostream<_CharT, _Traits>&,
1189 const rice_distribution<_RealType1>&);
1192 * @brief Extracts a %rice_distribution random number distribution
1193 * @p __x from the input stream @p __is.
1195 * @param __is An input stream.
1196 * @param __x A %rice_distribution random number
1199 * @returns The input stream with @p __x extracted or in an error state.
1201 template<typename _RealType1, typename _CharT, typename _Traits>
1202 friend std::basic_istream<_CharT, _Traits>&
1203 operator>>(std::basic_istream<_CharT, _Traits>&,
1204 rice_distribution<_RealType1>&);
1207 template<typename _ForwardIterator,
1208 typename _UniformRandomNumberGenerator>
1210 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1211 _UniformRandomNumberGenerator& __urng,
1212 const param_type& __p);
1214 param_type _M_param;
1216 std::normal_distribution<result_type> _M_ndx;
1217 std::normal_distribution<result_type> _M_ndy;
1220 #if __cpp_impl_three_way_comparison < 201907L
1222 * @brief Return true if two Rice distributions are not equal.
1224 template<typename _RealType1>
1226 operator!=(const rice_distribution<_RealType1>& __d1,
1227 const rice_distribution<_RealType1>& __d2)
1228 { return !(__d1 == __d2); }
1232 * @brief A Nakagami continuous distribution for random numbers.
1234 * The formula for the Nakagami probability density function is
1236 * p(x|\mu,\omega) = \frac{2\mu^\mu}{\Gamma(\mu)\omega^\mu}
1237 * x^{2\mu-1}e^{-\mu x / \omega}
1239 * where @f$\Gamma(z)@f$ is the gamma function and @f$\mu >= 0.5@f$
1240 * and @f$\omega > 0@f$.
1242 template<typename _RealType = double>
1244 nakagami_distribution
1246 static_assert(std::is_floating_point<_RealType>::value,
1247 "template argument not a floating point type");
1250 /** The type of the range of the distribution. */
1251 typedef _RealType result_type;
1253 /** Parameter type. */
1256 typedef nakagami_distribution<result_type> distribution_type;
1258 param_type() : param_type(1) { }
1260 param_type(result_type __mu_val,
1261 result_type __omega_val = result_type(1))
1262 : _M_mu(__mu_val), _M_omega(__omega_val)
1264 __glibcxx_assert(_M_mu >= result_type(0.5L));
1265 __glibcxx_assert(_M_omega > result_type(0));
1274 { return _M_omega; }
1277 operator==(const param_type& __p1, const param_type& __p2)
1278 { return __p1._M_mu == __p2._M_mu && __p1._M_omega == __p2._M_omega; }
1280 #if __cpp_impl_three_way_comparison < 201907L
1282 operator!=(const param_type& __p1, const param_type& __p2)
1283 { return !(__p1 == __p2); }
1287 void _M_initialize();
1290 result_type _M_omega;
1294 * @brief Constructors.
1298 nakagami_distribution() : nakagami_distribution(1) { }
1301 nakagami_distribution(result_type __mu_val,
1302 result_type __omega_val = result_type(1))
1303 : _M_param(__mu_val, __omega_val),
1304 _M_gd(__mu_val, __omega_val / __mu_val)
1308 nakagami_distribution(const param_type& __p)
1310 _M_gd(__p.mu(), __p.omega() / __p.mu())
1316 * @brief Resets the distribution state.
1323 * @brief Return the parameters of the distribution.
1327 { return _M_param.mu(); }
1331 { return _M_param.omega(); }
1334 * @brief Returns the parameter set of the distribution.
1338 { return _M_param; }
1341 * @brief Sets the parameter set of the distribution.
1342 * @param __param The new parameter set of the distribution.
1345 param(const param_type& __param)
1346 { _M_param = __param; }
1349 * @brief Returns the greatest lower bound value of the distribution.
1353 { return result_type(0); }
1356 * @brief Returns the least upper bound value of the distribution.
1360 { return std::numeric_limits<result_type>::max(); }
1363 * @brief Generating functions.
1365 template<typename _UniformRandomNumberGenerator>
1367 operator()(_UniformRandomNumberGenerator& __urng)
1368 { return std::sqrt(this->_M_gd(__urng)); }
1370 template<typename _UniformRandomNumberGenerator>
1372 operator()(_UniformRandomNumberGenerator& __urng,
1373 const param_type& __p)
1375 typename std::gamma_distribution<result_type>::param_type
1376 __pg(__p.mu(), __p.omega() / __p.mu());
1377 return std::sqrt(this->_M_gd(__pg, __urng));
1380 template<typename _ForwardIterator,
1381 typename _UniformRandomNumberGenerator>
1383 __generate(_ForwardIterator __f, _ForwardIterator __t,
1384 _UniformRandomNumberGenerator& __urng)
1385 { this->__generate(__f, __t, __urng, _M_param); }
1387 template<typename _ForwardIterator,
1388 typename _UniformRandomNumberGenerator>
1390 __generate(_ForwardIterator __f, _ForwardIterator __t,
1391 _UniformRandomNumberGenerator& __urng,
1392 const param_type& __p)
1393 { this->__generate_impl(__f, __t, __urng, __p); }
1395 template<typename _UniformRandomNumberGenerator>
1397 __generate(result_type* __f, result_type* __t,
1398 _UniformRandomNumberGenerator& __urng,
1399 const param_type& __p)
1400 { this->__generate_impl(__f, __t, __urng, __p); }
1403 * @brief Return true if two Nakagami distributions have
1404 * the same parameters and the sequences that would
1405 * be generated are equal.
1408 operator==(const nakagami_distribution& __d1,
1409 const nakagami_distribution& __d2)
1410 { return (__d1._M_param == __d2._M_param
1411 && __d1._M_gd == __d2._M_gd); }
1414 * @brief Inserts a %nakagami_distribution random number distribution
1415 * @p __x into the output stream @p __os.
1417 * @param __os An output stream.
1418 * @param __x A %nakagami_distribution random number distribution.
1420 * @returns The output stream with the state of @p __x inserted or in
1423 template<typename _RealType1, typename _CharT, typename _Traits>
1424 friend std::basic_ostream<_CharT, _Traits>&
1425 operator<<(std::basic_ostream<_CharT, _Traits>&,
1426 const nakagami_distribution<_RealType1>&);
1429 * @brief Extracts a %nakagami_distribution random number distribution
1430 * @p __x from the input stream @p __is.
1432 * @param __is An input stream.
1433 * @param __x A %nakagami_distribution random number
1436 * @returns The input stream with @p __x extracted or in an error state.
1438 template<typename _RealType1, typename _CharT, typename _Traits>
1439 friend std::basic_istream<_CharT, _Traits>&
1440 operator>>(std::basic_istream<_CharT, _Traits>&,
1441 nakagami_distribution<_RealType1>&);
1444 template<typename _ForwardIterator,
1445 typename _UniformRandomNumberGenerator>
1447 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1448 _UniformRandomNumberGenerator& __urng,
1449 const param_type& __p);
1451 param_type _M_param;
1453 std::gamma_distribution<result_type> _M_gd;
1456 #if __cpp_impl_three_way_comparison < 201907L
1458 * @brief Return true if two Nakagami distributions are not equal.
1460 template<typename _RealType>
1462 operator!=(const nakagami_distribution<_RealType>& __d1,
1463 const nakagami_distribution<_RealType>& __d2)
1464 { return !(__d1 == __d2); }
1468 * @brief A Pareto continuous distribution for random numbers.
1470 * The formula for the Pareto cumulative probability function is
1472 * P(x|\alpha,\mu) = 1 - \left(\frac{\mu}{x}\right)^\alpha
1474 * The formula for the Pareto probability density function is
1476 * p(x|\alpha,\mu) = \frac{\alpha + 1}{\mu}
1477 * \left(\frac{\mu}{x}\right)^{\alpha + 1}
1479 * where @f$x >= \mu@f$ and @f$\mu > 0@f$, @f$\alpha > 0@f$.
1481 * <table border=1 cellpadding=10 cellspacing=0>
1482 * <caption align=top>Distribution Statistics</caption>
1483 * <tr><td>Mean</td><td>@f$\alpha \mu / (\alpha - 1)@f$
1484 * for @f$\alpha > 1@f$</td></tr>
1485 * <tr><td>Variance</td><td>@f$\alpha \mu^2 / [(\alpha - 1)^2(\alpha - 2)]@f$
1486 * for @f$\alpha > 2@f$</td></tr>
1487 * <tr><td>Range</td><td>@f$[\mu, \infty)@f$</td></tr>
1490 template<typename _RealType = double>
1494 static_assert(std::is_floating_point<_RealType>::value,
1495 "template argument not a floating point type");
1498 /** The type of the range of the distribution. */
1499 typedef _RealType result_type;
1501 /** Parameter type. */
1504 typedef pareto_distribution<result_type> distribution_type;
1506 param_type() : param_type(1) { }
1508 param_type(result_type __alpha_val,
1509 result_type __mu_val = result_type(1))
1510 : _M_alpha(__alpha_val), _M_mu(__mu_val)
1512 __glibcxx_assert(_M_alpha > result_type(0));
1513 __glibcxx_assert(_M_mu > result_type(0));
1518 { return _M_alpha; }
1525 operator==(const param_type& __p1, const param_type& __p2)
1526 { return __p1._M_alpha == __p2._M_alpha && __p1._M_mu == __p2._M_mu; }
1528 #if __cpp_impl_three_way_comparison < 201907L
1530 operator!=(const param_type& __p1, const param_type& __p2)
1531 { return !(__p1 == __p2); }
1535 void _M_initialize();
1537 result_type _M_alpha;
1542 * @brief Constructors.
1546 pareto_distribution() : pareto_distribution(1) { }
1549 pareto_distribution(result_type __alpha_val,
1550 result_type __mu_val = result_type(1))
1551 : _M_param(__alpha_val, __mu_val),
1556 pareto_distribution(const param_type& __p)
1564 * @brief Resets the distribution state.
1573 * @brief Return the parameters of the distribution.
1577 { return _M_param.alpha(); }
1581 { return _M_param.mu(); }
1584 * @brief Returns the parameter set of the distribution.
1588 { return _M_param; }
1591 * @brief Sets the parameter set of the distribution.
1592 * @param __param The new parameter set of the distribution.
1595 param(const param_type& __param)
1596 { _M_param = __param; }
1599 * @brief Returns the greatest lower bound value of the distribution.
1603 { return this->mu(); }
1606 * @brief Returns the least upper bound value of the distribution.
1610 { return std::numeric_limits<result_type>::max(); }
1613 * @brief Generating functions.
1615 template<typename _UniformRandomNumberGenerator>
1617 operator()(_UniformRandomNumberGenerator& __urng)
1619 return this->mu() * std::pow(this->_M_ud(__urng),
1620 -result_type(1) / this->alpha());
1623 template<typename _UniformRandomNumberGenerator>
1625 operator()(_UniformRandomNumberGenerator& __urng,
1626 const param_type& __p)
1628 return __p.mu() * std::pow(this->_M_ud(__urng),
1629 -result_type(1) / __p.alpha());
1632 template<typename _ForwardIterator,
1633 typename _UniformRandomNumberGenerator>
1635 __generate(_ForwardIterator __f, _ForwardIterator __t,
1636 _UniformRandomNumberGenerator& __urng)
1637 { this->__generate(__f, __t, __urng, _M_param); }
1639 template<typename _ForwardIterator,
1640 typename _UniformRandomNumberGenerator>
1642 __generate(_ForwardIterator __f, _ForwardIterator __t,
1643 _UniformRandomNumberGenerator& __urng,
1644 const param_type& __p)
1645 { this->__generate_impl(__f, __t, __urng, __p); }
1647 template<typename _UniformRandomNumberGenerator>
1649 __generate(result_type* __f, result_type* __t,
1650 _UniformRandomNumberGenerator& __urng,
1651 const param_type& __p)
1652 { this->__generate_impl(__f, __t, __urng, __p); }
1655 * @brief Return true if two Pareto distributions have
1656 * the same parameters and the sequences that would
1657 * be generated are equal.
1660 operator==(const pareto_distribution& __d1,
1661 const pareto_distribution& __d2)
1662 { return (__d1._M_param == __d2._M_param
1663 && __d1._M_ud == __d2._M_ud); }
1666 * @brief Inserts a %pareto_distribution random number distribution
1667 * @p __x into the output stream @p __os.
1669 * @param __os An output stream.
1670 * @param __x A %pareto_distribution random number distribution.
1672 * @returns The output stream with the state of @p __x inserted or in
1675 template<typename _RealType1, typename _CharT, typename _Traits>
1676 friend std::basic_ostream<_CharT, _Traits>&
1677 operator<<(std::basic_ostream<_CharT, _Traits>&,
1678 const pareto_distribution<_RealType1>&);
1681 * @brief Extracts a %pareto_distribution random number distribution
1682 * @p __x from the input stream @p __is.
1684 * @param __is An input stream.
1685 * @param __x A %pareto_distribution random number
1688 * @returns The input stream with @p __x extracted or in an error state.
1690 template<typename _RealType1, typename _CharT, typename _Traits>
1691 friend std::basic_istream<_CharT, _Traits>&
1692 operator>>(std::basic_istream<_CharT, _Traits>&,
1693 pareto_distribution<_RealType1>&);
1696 template<typename _ForwardIterator,
1697 typename _UniformRandomNumberGenerator>
1699 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1700 _UniformRandomNumberGenerator& __urng,
1701 const param_type& __p);
1703 param_type _M_param;
1705 std::uniform_real_distribution<result_type> _M_ud;
1708 #if __cpp_impl_three_way_comparison < 201907L
1710 * @brief Return true if two Pareto distributions are not equal.
1712 template<typename _RealType>
1714 operator!=(const pareto_distribution<_RealType>& __d1,
1715 const pareto_distribution<_RealType>& __d2)
1716 { return !(__d1 == __d2); }
1720 * @brief A K continuous distribution for random numbers.
1722 * The formula for the K probability density function is
1724 * p(x|\lambda, \mu, \nu) = \frac{2}{x}
1725 * \left(\frac{\lambda\nu x}{\mu}\right)^{\frac{\lambda + \nu}{2}}
1726 * \frac{1}{\Gamma(\lambda)\Gamma(\nu)}
1727 * K_{\nu - \lambda}\left(2\sqrt{\frac{\lambda\nu x}{\mu}}\right)
1729 * where @f$I_0(z)@f$ is the modified Bessel function of the second kind
1730 * of order @f$\nu - \lambda@f$ and @f$\lambda > 0@f$, @f$\mu > 0@f$
1731 * and @f$\nu > 0@f$.
1733 * <table border=1 cellpadding=10 cellspacing=0>
1734 * <caption align=top>Distribution Statistics</caption>
1735 * <tr><td>Mean</td><td>@f$\mu@f$</td></tr>
1736 * <tr><td>Variance</td><td>@f$\mu^2\frac{\lambda + \nu + 1}{\lambda\nu}@f$</td></tr>
1737 * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr>
1740 template<typename _RealType = double>
1744 static_assert(std::is_floating_point<_RealType>::value,
1745 "template argument not a floating point type");
1748 /** The type of the range of the distribution. */
1749 typedef _RealType result_type;
1751 /** Parameter type. */
1754 typedef k_distribution<result_type> distribution_type;
1756 param_type() : param_type(1) { }
1758 param_type(result_type __lambda_val,
1759 result_type __mu_val = result_type(1),
1760 result_type __nu_val = result_type(1))
1761 : _M_lambda(__lambda_val), _M_mu(__mu_val), _M_nu(__nu_val)
1763 __glibcxx_assert(_M_lambda > result_type(0));
1764 __glibcxx_assert(_M_mu > result_type(0));
1765 __glibcxx_assert(_M_nu > result_type(0));
1770 { return _M_lambda; }
1781 operator==(const param_type& __p1, const param_type& __p2)
1783 return __p1._M_lambda == __p2._M_lambda
1784 && __p1._M_mu == __p2._M_mu
1785 && __p1._M_nu == __p2._M_nu;
1788 #if __cpp_impl_three_way_comparison < 201907L
1790 operator!=(const param_type& __p1, const param_type& __p2)
1791 { return !(__p1 == __p2); }
1795 void _M_initialize();
1797 result_type _M_lambda;
1803 * @brief Constructors.
1807 k_distribution() : k_distribution(1) { }
1810 k_distribution(result_type __lambda_val,
1811 result_type __mu_val = result_type(1),
1812 result_type __nu_val = result_type(1))
1813 : _M_param(__lambda_val, __mu_val, __nu_val),
1814 _M_gd1(__lambda_val, result_type(1) / __lambda_val),
1815 _M_gd2(__nu_val, __mu_val / __nu_val)
1819 k_distribution(const param_type& __p)
1821 _M_gd1(__p.lambda(), result_type(1) / __p.lambda()),
1822 _M_gd2(__p.nu(), __p.mu() / __p.nu())
1828 * @brief Resets the distribution state.
1838 * @brief Return the parameters of the distribution.
1842 { return _M_param.lambda(); }
1846 { return _M_param.mu(); }
1850 { return _M_param.nu(); }
1853 * @brief Returns the parameter set of the distribution.
1857 { return _M_param; }
1860 * @brief Sets the parameter set of the distribution.
1861 * @param __param The new parameter set of the distribution.
1864 param(const param_type& __param)
1865 { _M_param = __param; }
1868 * @brief Returns the greatest lower bound value of the distribution.
1872 { return result_type(0); }
1875 * @brief Returns the least upper bound value of the distribution.
1879 { return std::numeric_limits<result_type>::max(); }
1882 * @brief Generating functions.
1884 template<typename _UniformRandomNumberGenerator>
1886 operator()(_UniformRandomNumberGenerator&);
1888 template<typename _UniformRandomNumberGenerator>
1890 operator()(_UniformRandomNumberGenerator&, const param_type&);
1892 template<typename _ForwardIterator,
1893 typename _UniformRandomNumberGenerator>
1895 __generate(_ForwardIterator __f, _ForwardIterator __t,
1896 _UniformRandomNumberGenerator& __urng)
1897 { this->__generate(__f, __t, __urng, _M_param); }
1899 template<typename _ForwardIterator,
1900 typename _UniformRandomNumberGenerator>
1902 __generate(_ForwardIterator __f, _ForwardIterator __t,
1903 _UniformRandomNumberGenerator& __urng,
1904 const param_type& __p)
1905 { this->__generate_impl(__f, __t, __urng, __p); }
1907 template<typename _UniformRandomNumberGenerator>
1909 __generate(result_type* __f, result_type* __t,
1910 _UniformRandomNumberGenerator& __urng,
1911 const param_type& __p)
1912 { this->__generate_impl(__f, __t, __urng, __p); }
1915 * @brief Return true if two K distributions have
1916 * the same parameters and the sequences that would
1917 * be generated are equal.
1920 operator==(const k_distribution& __d1,
1921 const k_distribution& __d2)
1922 { return (__d1._M_param == __d2._M_param
1923 && __d1._M_gd1 == __d2._M_gd1
1924 && __d1._M_gd2 == __d2._M_gd2); }
1927 * @brief Inserts a %k_distribution random number distribution
1928 * @p __x into the output stream @p __os.
1930 * @param __os An output stream.
1931 * @param __x A %k_distribution random number distribution.
1933 * @returns The output stream with the state of @p __x inserted or in
1936 template<typename _RealType1, typename _CharT, typename _Traits>
1937 friend std::basic_ostream<_CharT, _Traits>&
1938 operator<<(std::basic_ostream<_CharT, _Traits>&,
1939 const k_distribution<_RealType1>&);
1942 * @brief Extracts a %k_distribution random number distribution
1943 * @p __x from the input stream @p __is.
1945 * @param __is An input stream.
1946 * @param __x A %k_distribution random number
1949 * @returns The input stream with @p __x extracted or in an error state.
1951 template<typename _RealType1, typename _CharT, typename _Traits>
1952 friend std::basic_istream<_CharT, _Traits>&
1953 operator>>(std::basic_istream<_CharT, _Traits>&,
1954 k_distribution<_RealType1>&);
1957 template<typename _ForwardIterator,
1958 typename _UniformRandomNumberGenerator>
1960 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1961 _UniformRandomNumberGenerator& __urng,
1962 const param_type& __p);
1964 param_type _M_param;
1966 std::gamma_distribution<result_type> _M_gd1;
1967 std::gamma_distribution<result_type> _M_gd2;
1970 #if __cpp_impl_three_way_comparison < 201907L
1972 * @brief Return true if two K distributions are not equal.
1974 template<typename _RealType>
1976 operator!=(const k_distribution<_RealType>& __d1,
1977 const k_distribution<_RealType>& __d2)
1978 { return !(__d1 == __d2); }
1982 * @brief An arcsine continuous distribution for random numbers.
1984 * The formula for the arcsine probability density function is
1986 * p(x|a,b) = \frac{1}{\pi \sqrt{(x - a)(b - x)}}
1988 * where @f$x >= a@f$ and @f$x <= b@f$.
1990 * <table border=1 cellpadding=10 cellspacing=0>
1991 * <caption align=top>Distribution Statistics</caption>
1992 * <tr><td>Mean</td><td>@f$ (a + b) / 2 @f$</td></tr>
1993 * <tr><td>Variance</td><td>@f$ (b - a)^2 / 8 @f$</td></tr>
1994 * <tr><td>Range</td><td>@f$[a, b]@f$</td></tr>
1997 template<typename _RealType = double>
1999 arcsine_distribution
2001 static_assert(std::is_floating_point<_RealType>::value,
2002 "template argument not a floating point type");
2005 /** The type of the range of the distribution. */
2006 typedef _RealType result_type;
2008 /** Parameter type. */
2011 typedef arcsine_distribution<result_type> distribution_type;
2013 param_type() : param_type(0) { }
2015 param_type(result_type __a, result_type __b = result_type(1))
2016 : _M_a(__a), _M_b(__b)
2018 __glibcxx_assert(_M_a <= _M_b);
2030 operator==(const param_type& __p1, const param_type& __p2)
2031 { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
2033 #if __cpp_impl_three_way_comparison < 201907L
2035 operator!=(const param_type& __p1, const param_type& __p2)
2036 { return !(__p1 == __p2); }
2040 void _M_initialize();
2047 * @brief Constructors.
2051 arcsine_distribution() : arcsine_distribution(0) { }
2054 arcsine_distribution(result_type __a, result_type __b = result_type(1))
2055 : _M_param(__a, __b),
2056 _M_ud(-1.5707963267948966192313216916397514L,
2057 +1.5707963267948966192313216916397514L)
2061 arcsine_distribution(const param_type& __p)
2063 _M_ud(-1.5707963267948966192313216916397514L,
2064 +1.5707963267948966192313216916397514L)
2070 * @brief Resets the distribution state.
2077 * @brief Return the parameters of the distribution.
2081 { return _M_param.a(); }
2085 { return _M_param.b(); }
2088 * @brief Returns the parameter set of the distribution.
2092 { return _M_param; }
2095 * @brief Sets the parameter set of the distribution.
2096 * @param __param The new parameter set of the distribution.
2099 param(const param_type& __param)
2100 { _M_param = __param; }
2103 * @brief Returns the greatest lower bound value of the distribution.
2107 { return this->a(); }
2110 * @brief Returns the least upper bound value of the distribution.
2114 { return this->b(); }
2117 * @brief Generating functions.
2119 template<typename _UniformRandomNumberGenerator>
2121 operator()(_UniformRandomNumberGenerator& __urng)
2123 result_type __x = std::sin(this->_M_ud(__urng));
2124 return (__x * (this->b() - this->a())
2125 + this->a() + this->b()) / result_type(2);
2128 template<typename _UniformRandomNumberGenerator>
2130 operator()(_UniformRandomNumberGenerator& __urng,
2131 const param_type& __p)
2133 result_type __x = std::sin(this->_M_ud(__urng));
2134 return (__x * (__p.b() - __p.a())
2135 + __p.a() + __p.b()) / result_type(2);
2138 template<typename _ForwardIterator,
2139 typename _UniformRandomNumberGenerator>
2141 __generate(_ForwardIterator __f, _ForwardIterator __t,
2142 _UniformRandomNumberGenerator& __urng)
2143 { this->__generate(__f, __t, __urng, _M_param); }
2145 template<typename _ForwardIterator,
2146 typename _UniformRandomNumberGenerator>
2148 __generate(_ForwardIterator __f, _ForwardIterator __t,
2149 _UniformRandomNumberGenerator& __urng,
2150 const param_type& __p)
2151 { this->__generate_impl(__f, __t, __urng, __p); }
2153 template<typename _UniformRandomNumberGenerator>
2155 __generate(result_type* __f, result_type* __t,
2156 _UniformRandomNumberGenerator& __urng,
2157 const param_type& __p)
2158 { this->__generate_impl(__f, __t, __urng, __p); }
2161 * @brief Return true if two arcsine distributions have
2162 * the same parameters and the sequences that would
2163 * be generated are equal.
2166 operator==(const arcsine_distribution& __d1,
2167 const arcsine_distribution& __d2)
2168 { return (__d1._M_param == __d2._M_param
2169 && __d1._M_ud == __d2._M_ud); }
2172 * @brief Inserts a %arcsine_distribution random number distribution
2173 * @p __x into the output stream @p __os.
2175 * @param __os An output stream.
2176 * @param __x A %arcsine_distribution random number distribution.
2178 * @returns The output stream with the state of @p __x inserted or in
2181 template<typename _RealType1, typename _CharT, typename _Traits>
2182 friend std::basic_ostream<_CharT, _Traits>&
2183 operator<<(std::basic_ostream<_CharT, _Traits>&,
2184 const arcsine_distribution<_RealType1>&);
2187 * @brief Extracts a %arcsine_distribution random number distribution
2188 * @p __x from the input stream @p __is.
2190 * @param __is An input stream.
2191 * @param __x A %arcsine_distribution random number
2194 * @returns The input stream with @p __x extracted or in an error state.
2196 template<typename _RealType1, typename _CharT, typename _Traits>
2197 friend std::basic_istream<_CharT, _Traits>&
2198 operator>>(std::basic_istream<_CharT, _Traits>&,
2199 arcsine_distribution<_RealType1>&);
2202 template<typename _ForwardIterator,
2203 typename _UniformRandomNumberGenerator>
2205 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2206 _UniformRandomNumberGenerator& __urng,
2207 const param_type& __p);
2209 param_type _M_param;
2211 std::uniform_real_distribution<result_type> _M_ud;
2214 #if __cpp_impl_three_way_comparison < 201907L
2216 * @brief Return true if two arcsine distributions are not equal.
2218 template<typename _RealType>
2220 operator!=(const arcsine_distribution<_RealType>& __d1,
2221 const arcsine_distribution<_RealType>& __d2)
2222 { return !(__d1 == __d2); }
2226 * @brief A Hoyt continuous distribution for random numbers.
2228 * The formula for the Hoyt probability density function is
2230 * p(x|q,\omega) = \frac{(1 + q^2)x}{q\omega}
2231 * \exp\left(-\frac{(1 + q^2)^2 x^2}{4 q^2 \omega}\right)
2232 * I_0\left(\frac{(1 - q^4) x^2}{4 q^2 \omega}\right)
2234 * where @f$I_0(z)@f$ is the modified Bessel function of the first kind
2235 * of order 0 and @f$0 < q < 1@f$.
2237 * <table border=1 cellpadding=10 cellspacing=0>
2238 * <caption align=top>Distribution Statistics</caption>
2239 * <tr><td>Mean</td><td>@f$ \sqrt{\frac{2}{\pi}} \sqrt{\frac{\omega}{1 + q^2}}
2240 * E(1 - q^2) @f$</td></tr>
2241 * <tr><td>Variance</td><td>@f$ \omega \left(1 - \frac{2E^2(1 - q^2)}
2242 * {\pi (1 + q^2)}\right) @f$</td></tr>
2243 * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr>
2245 * where @f$E(x)@f$ is the elliptic function of the second kind.
2247 template<typename _RealType = double>
2251 static_assert(std::is_floating_point<_RealType>::value,
2252 "template argument not a floating point type");
2255 /** The type of the range of the distribution. */
2256 typedef _RealType result_type;
2258 /** Parameter type. */
2261 typedef hoyt_distribution<result_type> distribution_type;
2263 param_type() : param_type(0.5) { }
2265 param_type(result_type __q, result_type __omega = result_type(1))
2266 : _M_q(__q), _M_omega(__omega)
2268 __glibcxx_assert(_M_q > result_type(0));
2269 __glibcxx_assert(_M_q < result_type(1));
2278 { return _M_omega; }
2281 operator==(const param_type& __p1, const param_type& __p2)
2282 { return __p1._M_q == __p2._M_q && __p1._M_omega == __p2._M_omega; }
2284 #if __cpp_impl_three_way_comparison < 201907L
2286 operator!=(const param_type& __p1, const param_type& __p2)
2287 { return !(__p1 == __p2); }
2291 void _M_initialize();
2294 result_type _M_omega;
2298 * @brief Constructors.
2302 hoyt_distribution() : hoyt_distribution(0.5) { }
2305 hoyt_distribution(result_type __q, result_type __omega = result_type(1))
2306 : _M_param(__q, __omega),
2307 _M_ad(result_type(0.5L) * (result_type(1) + __q * __q),
2308 result_type(0.5L) * (result_type(1) + __q * __q)
2310 _M_ed(result_type(1))
2314 hoyt_distribution(const param_type& __p)
2316 _M_ad(result_type(0.5L) * (result_type(1) + __p.q() * __p.q()),
2317 result_type(0.5L) * (result_type(1) + __p.q() * __p.q())
2318 / (__p.q() * __p.q())),
2319 _M_ed(result_type(1))
2323 * @brief Resets the distribution state.
2333 * @brief Return the parameters of the distribution.
2337 { return _M_param.q(); }
2341 { return _M_param.omega(); }
2344 * @brief Returns the parameter set of the distribution.
2348 { return _M_param; }
2351 * @brief Sets the parameter set of the distribution.
2352 * @param __param The new parameter set of the distribution.
2355 param(const param_type& __param)
2356 { _M_param = __param; }
2359 * @brief Returns the greatest lower bound value of the distribution.
2363 { return result_type(0); }
2366 * @brief Returns the least upper bound value of the distribution.
2370 { return std::numeric_limits<result_type>::max(); }
2373 * @brief Generating functions.
2375 template<typename _UniformRandomNumberGenerator>
2377 operator()(_UniformRandomNumberGenerator& __urng);
2379 template<typename _UniformRandomNumberGenerator>
2381 operator()(_UniformRandomNumberGenerator& __urng,
2382 const param_type& __p);
2384 template<typename _ForwardIterator,
2385 typename _UniformRandomNumberGenerator>
2387 __generate(_ForwardIterator __f, _ForwardIterator __t,
2388 _UniformRandomNumberGenerator& __urng)
2389 { this->__generate(__f, __t, __urng, _M_param); }
2391 template<typename _ForwardIterator,
2392 typename _UniformRandomNumberGenerator>
2394 __generate(_ForwardIterator __f, _ForwardIterator __t,
2395 _UniformRandomNumberGenerator& __urng,
2396 const param_type& __p)
2397 { this->__generate_impl(__f, __t, __urng, __p); }
2399 template<typename _UniformRandomNumberGenerator>
2401 __generate(result_type* __f, result_type* __t,
2402 _UniformRandomNumberGenerator& __urng,
2403 const param_type& __p)
2404 { this->__generate_impl(__f, __t, __urng, __p); }
2407 * @brief Return true if two Hoyt distributions have
2408 * the same parameters and the sequences that would
2409 * be generated are equal.
2412 operator==(const hoyt_distribution& __d1,
2413 const hoyt_distribution& __d2)
2414 { return (__d1._M_param == __d2._M_param
2415 && __d1._M_ad == __d2._M_ad
2416 && __d1._M_ed == __d2._M_ed); }
2419 * @brief Inserts a %hoyt_distribution random number distribution
2420 * @p __x into the output stream @p __os.
2422 * @param __os An output stream.
2423 * @param __x A %hoyt_distribution random number distribution.
2425 * @returns The output stream with the state of @p __x inserted or in
2428 template<typename _RealType1, typename _CharT, typename _Traits>
2429 friend std::basic_ostream<_CharT, _Traits>&
2430 operator<<(std::basic_ostream<_CharT, _Traits>&,
2431 const hoyt_distribution<_RealType1>&);
2434 * @brief Extracts a %hoyt_distribution random number distribution
2435 * @p __x from the input stream @p __is.
2437 * @param __is An input stream.
2438 * @param __x A %hoyt_distribution random number
2441 * @returns The input stream with @p __x extracted or in an error state.
2443 template<typename _RealType1, typename _CharT, typename _Traits>
2444 friend std::basic_istream<_CharT, _Traits>&
2445 operator>>(std::basic_istream<_CharT, _Traits>&,
2446 hoyt_distribution<_RealType1>&);
2449 template<typename _ForwardIterator,
2450 typename _UniformRandomNumberGenerator>
2452 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2453 _UniformRandomNumberGenerator& __urng,
2454 const param_type& __p);
2456 param_type _M_param;
2458 __gnu_cxx::arcsine_distribution<result_type> _M_ad;
2459 std::exponential_distribution<result_type> _M_ed;
2462 #if __cpp_impl_three_way_comparison < 201907L
2464 * @brief Return true if two Hoyt distributions are not equal.
2466 template<typename _RealType>
2468 operator!=(const hoyt_distribution<_RealType>& __d1,
2469 const hoyt_distribution<_RealType>& __d2)
2470 { return !(__d1 == __d2); }
2474 * @brief A triangular distribution for random numbers.
2476 * The formula for the triangular probability density function is
2479 * p(x|a,b,c) = | \frac{2(x-a)}{(c-a)(b-a)} for a <= x <= b
2480 * | \frac{2(c-x)}{(c-a)(c-b)} for b < x <= c
2484 * <table border=1 cellpadding=10 cellspacing=0>
2485 * <caption align=top>Distribution Statistics</caption>
2486 * <tr><td>Mean</td><td>@f$ \frac{a+b+c}{2} @f$</td></tr>
2487 * <tr><td>Variance</td><td>@f$ \frac{a^2+b^2+c^2-ab-ac-bc}
2489 * <tr><td>Range</td><td>@f$[a, c]@f$</td></tr>
2492 template<typename _RealType = double>
2493 class triangular_distribution
2495 static_assert(std::is_floating_point<_RealType>::value,
2496 "template argument not a floating point type");
2499 /** The type of the range of the distribution. */
2500 typedef _RealType result_type;
2502 /** Parameter type. */
2505 friend class triangular_distribution<_RealType>;
2507 param_type() : param_type(0) { }
2510 param_type(_RealType __a,
2511 _RealType __b = _RealType(0.5),
2512 _RealType __c = _RealType(1))
2513 : _M_a(__a), _M_b(__b), _M_c(__c)
2515 __glibcxx_assert(_M_a <= _M_b);
2516 __glibcxx_assert(_M_b <= _M_c);
2517 __glibcxx_assert(_M_a < _M_c);
2519 _M_r_ab = (_M_b - _M_a) / (_M_c - _M_a);
2520 _M_f_ab_ac = (_M_b - _M_a) * (_M_c - _M_a);
2521 _M_f_bc_ac = (_M_c - _M_b) * (_M_c - _M_a);
2537 operator==(const param_type& __p1, const param_type& __p2)
2539 return (__p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b
2540 && __p1._M_c == __p2._M_c);
2543 #if __cpp_impl_three_way_comparison < 201907L
2545 operator!=(const param_type& __p1, const param_type& __p2)
2546 { return !(__p1 == __p2); }
2555 _RealType _M_f_ab_ac;
2556 _RealType _M_f_bc_ac;
2559 triangular_distribution() : triangular_distribution(0.0) { }
2562 * @brief Constructs a triangle distribution with parameters
2563 * @f$ a @f$, @f$ b @f$ and @f$ c @f$.
2566 triangular_distribution(result_type __a,
2567 result_type __b = result_type(0.5),
2568 result_type __c = result_type(1))
2569 : _M_param(__a, __b, __c)
2573 triangular_distribution(const param_type& __p)
2578 * @brief Resets the distribution state.
2585 * @brief Returns the @f$ a @f$ of the distribution.
2589 { return _M_param.a(); }
2592 * @brief Returns the @f$ b @f$ of the distribution.
2596 { return _M_param.b(); }
2599 * @brief Returns the @f$ c @f$ of the distribution.
2603 { return _M_param.c(); }
2606 * @brief Returns the parameter set of the distribution.
2610 { return _M_param; }
2613 * @brief Sets the parameter set of the distribution.
2614 * @param __param The new parameter set of the distribution.
2617 param(const param_type& __param)
2618 { _M_param = __param; }
2621 * @brief Returns the greatest lower bound value of the distribution.
2625 { return _M_param._M_a; }
2628 * @brief Returns the least upper bound value of the distribution.
2632 { return _M_param._M_c; }
2635 * @brief Generating functions.
2637 template<typename _UniformRandomNumberGenerator>
2639 operator()(_UniformRandomNumberGenerator& __urng)
2640 { return this->operator()(__urng, _M_param); }
2642 template<typename _UniformRandomNumberGenerator>
2644 operator()(_UniformRandomNumberGenerator& __urng,
2645 const param_type& __p)
2647 std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2649 result_type __rnd = __aurng();
2650 if (__rnd <= __p._M_r_ab)
2651 return __p.a() + std::sqrt(__rnd * __p._M_f_ab_ac);
2653 return __p.c() - std::sqrt((result_type(1) - __rnd)
2657 template<typename _ForwardIterator,
2658 typename _UniformRandomNumberGenerator>
2660 __generate(_ForwardIterator __f, _ForwardIterator __t,
2661 _UniformRandomNumberGenerator& __urng)
2662 { this->__generate(__f, __t, __urng, _M_param); }
2664 template<typename _ForwardIterator,
2665 typename _UniformRandomNumberGenerator>
2667 __generate(_ForwardIterator __f, _ForwardIterator __t,
2668 _UniformRandomNumberGenerator& __urng,
2669 const param_type& __p)
2670 { this->__generate_impl(__f, __t, __urng, __p); }
2672 template<typename _UniformRandomNumberGenerator>
2674 __generate(result_type* __f, result_type* __t,
2675 _UniformRandomNumberGenerator& __urng,
2676 const param_type& __p)
2677 { this->__generate_impl(__f, __t, __urng, __p); }
2680 * @brief Return true if two triangle distributions have the same
2681 * parameters and the sequences that would be generated
2685 operator==(const triangular_distribution& __d1,
2686 const triangular_distribution& __d2)
2687 { return __d1._M_param == __d2._M_param; }
2690 * @brief Inserts a %triangular_distribution random number distribution
2691 * @p __x into the output stream @p __os.
2693 * @param __os An output stream.
2694 * @param __x A %triangular_distribution random number distribution.
2696 * @returns The output stream with the state of @p __x inserted or in
2699 template<typename _RealType1, typename _CharT, typename _Traits>
2700 friend std::basic_ostream<_CharT, _Traits>&
2701 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2702 const __gnu_cxx::triangular_distribution<_RealType1>& __x);
2705 * @brief Extracts a %triangular_distribution random number distribution
2706 * @p __x from the input stream @p __is.
2708 * @param __is An input stream.
2709 * @param __x A %triangular_distribution random number generator engine.
2711 * @returns The input stream with @p __x extracted or in an error state.
2713 template<typename _RealType1, typename _CharT, typename _Traits>
2714 friend std::basic_istream<_CharT, _Traits>&
2715 operator>>(std::basic_istream<_CharT, _Traits>& __is,
2716 __gnu_cxx::triangular_distribution<_RealType1>& __x);
2719 template<typename _ForwardIterator,
2720 typename _UniformRandomNumberGenerator>
2722 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2723 _UniformRandomNumberGenerator& __urng,
2724 const param_type& __p);
2726 param_type _M_param;
2729 #if __cpp_impl_three_way_comparison < 201907L
2731 * @brief Return true if two triangle distributions are different.
2733 template<typename _RealType>
2735 operator!=(const __gnu_cxx::triangular_distribution<_RealType>& __d1,
2736 const __gnu_cxx::triangular_distribution<_RealType>& __d2)
2737 { return !(__d1 == __d2); }
2741 * @brief A von Mises distribution for random numbers.
2743 * The formula for the von Mises probability density function is
2745 * p(x|\mu,\kappa) = \frac{e^{\kappa \cos(x-\mu)}}
2746 * {2\pi I_0(\kappa)}
2749 * The generating functions use the method according to:
2751 * D. J. Best and N. I. Fisher, 1979. "Efficient Simulation of the
2752 * von Mises Distribution", Journal of the Royal Statistical Society.
2753 * Series C (Applied Statistics), Vol. 28, No. 2, pp. 152-157.
2755 * <table border=1 cellpadding=10 cellspacing=0>
2756 * <caption align=top>Distribution Statistics</caption>
2757 * <tr><td>Mean</td><td>@f$ \mu @f$</td></tr>
2758 * <tr><td>Variance</td><td>@f$ 1-I_1(\kappa)/I_0(\kappa) @f$</td></tr>
2759 * <tr><td>Range</td><td>@f$[-\pi, \pi]@f$</td></tr>
2762 template<typename _RealType = double>
2763 class von_mises_distribution
2765 static_assert(std::is_floating_point<_RealType>::value,
2766 "template argument not a floating point type");
2769 /** The type of the range of the distribution. */
2770 typedef _RealType result_type;
2772 /** Parameter type. */
2775 friend class von_mises_distribution<_RealType>;
2777 param_type() : param_type(0) { }
2780 param_type(_RealType __mu, _RealType __kappa = _RealType(1))
2781 : _M_mu(__mu), _M_kappa(__kappa)
2783 const _RealType __pi = __gnu_cxx::__math_constants<_RealType>::__pi;
2784 __glibcxx_assert(_M_mu >= -__pi && _M_mu <= __pi);
2785 __glibcxx_assert(_M_kappa >= _RealType(0));
2787 auto __tau = std::sqrt(_RealType(4) * _M_kappa * _M_kappa
2788 + _RealType(1)) + _RealType(1);
2789 auto __rho = ((__tau - std::sqrt(_RealType(2) * __tau))
2790 / (_RealType(2) * _M_kappa));
2791 _M_r = (_RealType(1) + __rho * __rho) / (_RealType(2) * __rho);
2800 { return _M_kappa; }
2803 operator==(const param_type& __p1, const param_type& __p2)
2804 { return __p1._M_mu == __p2._M_mu && __p1._M_kappa == __p2._M_kappa; }
2806 #if __cpp_impl_three_way_comparison < 201907L
2808 operator!=(const param_type& __p1, const param_type& __p2)
2809 { return !(__p1 == __p2); }
2818 von_mises_distribution() : von_mises_distribution(0.0) { }
2821 * @brief Constructs a von Mises distribution with parameters
2822 * @f$\mu@f$ and @f$\kappa@f$.
2825 von_mises_distribution(result_type __mu,
2826 result_type __kappa = result_type(1))
2827 : _M_param(__mu, __kappa)
2831 von_mises_distribution(const param_type& __p)
2836 * @brief Resets the distribution state.
2843 * @brief Returns the @f$ \mu @f$ of the distribution.
2847 { return _M_param.mu(); }
2850 * @brief Returns the @f$ \kappa @f$ of the distribution.
2854 { return _M_param.kappa(); }
2857 * @brief Returns the parameter set of the distribution.
2861 { return _M_param; }
2864 * @brief Sets the parameter set of the distribution.
2865 * @param __param The new parameter set of the distribution.
2868 param(const param_type& __param)
2869 { _M_param = __param; }
2872 * @brief Returns the greatest lower bound value of the distribution.
2877 return -__gnu_cxx::__math_constants<result_type>::__pi;
2881 * @brief Returns the least upper bound value of the distribution.
2886 return __gnu_cxx::__math_constants<result_type>::__pi;
2890 * @brief Generating functions.
2892 template<typename _UniformRandomNumberGenerator>
2894 operator()(_UniformRandomNumberGenerator& __urng)
2895 { return this->operator()(__urng, _M_param); }
2897 template<typename _UniformRandomNumberGenerator>
2899 operator()(_UniformRandomNumberGenerator& __urng,
2900 const param_type& __p);
2902 template<typename _ForwardIterator,
2903 typename _UniformRandomNumberGenerator>
2905 __generate(_ForwardIterator __f, _ForwardIterator __t,
2906 _UniformRandomNumberGenerator& __urng)
2907 { this->__generate(__f, __t, __urng, _M_param); }
2909 template<typename _ForwardIterator,
2910 typename _UniformRandomNumberGenerator>
2912 __generate(_ForwardIterator __f, _ForwardIterator __t,
2913 _UniformRandomNumberGenerator& __urng,
2914 const param_type& __p)
2915 { this->__generate_impl(__f, __t, __urng, __p); }
2917 template<typename _UniformRandomNumberGenerator>
2919 __generate(result_type* __f, result_type* __t,
2920 _UniformRandomNumberGenerator& __urng,
2921 const param_type& __p)
2922 { this->__generate_impl(__f, __t, __urng, __p); }
2925 * @brief Return true if two von Mises distributions have the same
2926 * parameters and the sequences that would be generated
2930 operator==(const von_mises_distribution& __d1,
2931 const von_mises_distribution& __d2)
2932 { return __d1._M_param == __d2._M_param; }
2935 * @brief Inserts a %von_mises_distribution random number distribution
2936 * @p __x into the output stream @p __os.
2938 * @param __os An output stream.
2939 * @param __x A %von_mises_distribution random number distribution.
2941 * @returns The output stream with the state of @p __x inserted or in
2944 template<typename _RealType1, typename _CharT, typename _Traits>
2945 friend std::basic_ostream<_CharT, _Traits>&
2946 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2947 const __gnu_cxx::von_mises_distribution<_RealType1>& __x);
2950 * @brief Extracts a %von_mises_distribution random number distribution
2951 * @p __x from the input stream @p __is.
2953 * @param __is An input stream.
2954 * @param __x A %von_mises_distribution random number generator engine.
2956 * @returns The input stream with @p __x extracted or in an error state.
2958 template<typename _RealType1, typename _CharT, typename _Traits>
2959 friend std::basic_istream<_CharT, _Traits>&
2960 operator>>(std::basic_istream<_CharT, _Traits>& __is,
2961 __gnu_cxx::von_mises_distribution<_RealType1>& __x);
2964 template<typename _ForwardIterator,
2965 typename _UniformRandomNumberGenerator>
2967 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2968 _UniformRandomNumberGenerator& __urng,
2969 const param_type& __p);
2971 param_type _M_param;
2974 #if __cpp_impl_three_way_comparison < 201907L
2976 * @brief Return true if two von Mises distributions are different.
2978 template<typename _RealType>
2980 operator!=(const __gnu_cxx::von_mises_distribution<_RealType>& __d1,
2981 const __gnu_cxx::von_mises_distribution<_RealType>& __d2)
2982 { return !(__d1 == __d2); }
2986 * @brief A discrete hypergeometric random number distribution.
2988 * The hypergeometric distribution is a discrete probability distribution
2989 * that describes the probability of @p k successes in @p n draws @a without
2990 * replacement from a finite population of size @p N containing exactly @p K
2993 * The formula for the hypergeometric probability density function is
2995 * p(k|N,K,n) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}
2997 * where @f$N@f$ is the total population of the distribution,
2998 * @f$K@f$ is the total population of the distribution.
3000 * <table border=1 cellpadding=10 cellspacing=0>
3001 * <caption align=top>Distribution Statistics</caption>
3002 * <tr><td>Mean</td><td>@f$ n\frac{K}{N} @f$</td></tr>
3003 * <tr><td>Variance</td><td>@f$ n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}
3005 * <tr><td>Range</td><td>@f$[max(0, n+K-N), min(K, n)]@f$</td></tr>
3008 template<typename _UIntType = unsigned int>
3009 class hypergeometric_distribution
3011 static_assert(std::is_unsigned<_UIntType>::value, "template argument "
3012 "substituting _UIntType not an unsigned integral type");
3015 /** The type of the range of the distribution. */
3016 typedef _UIntType result_type;
3018 /** Parameter type. */
3021 typedef hypergeometric_distribution<_UIntType> distribution_type;
3022 friend class hypergeometric_distribution<_UIntType>;
3024 param_type() : param_type(10) { }
3027 param_type(result_type __N, result_type __K = 5,
3028 result_type __n = 1)
3029 : _M_N{__N}, _M_K{__K}, _M_n{__n}
3031 __glibcxx_assert(_M_N >= _M_K);
3032 __glibcxx_assert(_M_N >= _M_n);
3040 successful_size() const
3044 unsuccessful_size() const
3045 { return _M_N - _M_K; }
3052 operator==(const param_type& __p1, const param_type& __p2)
3053 { return (__p1._M_N == __p2._M_N)
3054 && (__p1._M_K == __p2._M_K)
3055 && (__p1._M_n == __p2._M_n); }
3057 #if __cpp_impl_three_way_comparison < 201907L
3059 operator!=(const param_type& __p1, const param_type& __p2)
3060 { return !(__p1 == __p2); }
3070 // constructors and member functions
3072 hypergeometric_distribution() : hypergeometric_distribution(10) { }
3075 hypergeometric_distribution(result_type __N, result_type __K = 5,
3076 result_type __n = 1)
3077 : _M_param{__N, __K, __n}
3081 hypergeometric_distribution(const param_type& __p)
3086 * @brief Resets the distribution state.
3093 * @brief Returns the distribution parameter @p N,
3094 * the total number of items.
3098 { return this->_M_param.total_size(); }
3101 * @brief Returns the distribution parameter @p K,
3102 * the total number of successful items.
3105 successful_size() const
3106 { return this->_M_param.successful_size(); }
3109 * @brief Returns the total number of unsuccessful items @f$ N - K @f$.
3112 unsuccessful_size() const
3113 { return this->_M_param.unsuccessful_size(); }
3116 * @brief Returns the distribution parameter @p n,
3117 * the total number of draws.
3121 { return this->_M_param.total_draws(); }
3124 * @brief Returns the parameter set of the distribution.
3128 { return this->_M_param; }
3131 * @brief Sets the parameter set of the distribution.
3132 * @param __param The new parameter set of the distribution.
3135 param(const param_type& __param)
3136 { this->_M_param = __param; }
3139 * @brief Returns the greatest lower bound value of the distribution.
3144 using _IntType = typename std::make_signed<result_type>::type;
3145 return static_cast<result_type>(std::max(static_cast<_IntType>(0),
3146 static_cast<_IntType>(this->total_draws()
3147 - this->unsuccessful_size())));
3151 * @brief Returns the least upper bound value of the distribution.
3155 { return std::min(this->successful_size(), this->total_draws()); }
3158 * @brief Generating functions.
3160 template<typename _UniformRandomNumberGenerator>
3162 operator()(_UniformRandomNumberGenerator& __urng)
3163 { return this->operator()(__urng, this->_M_param); }
3165 template<typename _UniformRandomNumberGenerator>
3167 operator()(_UniformRandomNumberGenerator& __urng,
3168 const param_type& __p);
3170 template<typename _ForwardIterator,
3171 typename _UniformRandomNumberGenerator>
3173 __generate(_ForwardIterator __f, _ForwardIterator __t,
3174 _UniformRandomNumberGenerator& __urng)
3175 { this->__generate(__f, __t, __urng, this->_M_param); }
3177 template<typename _ForwardIterator,
3178 typename _UniformRandomNumberGenerator>
3180 __generate(_ForwardIterator __f, _ForwardIterator __t,
3181 _UniformRandomNumberGenerator& __urng,
3182 const param_type& __p)
3183 { this->__generate_impl(__f, __t, __urng, __p); }
3185 template<typename _UniformRandomNumberGenerator>
3187 __generate(result_type* __f, result_type* __t,
3188 _UniformRandomNumberGenerator& __urng,
3189 const param_type& __p)
3190 { this->__generate_impl(__f, __t, __urng, __p); }
3193 * @brief Return true if two hypergeometric distributions have the same
3194 * parameters and the sequences that would be generated
3198 operator==(const hypergeometric_distribution& __d1,
3199 const hypergeometric_distribution& __d2)
3200 { return __d1._M_param == __d2._M_param; }
3203 * @brief Inserts a %hypergeometric_distribution random number
3204 * distribution @p __x into the output stream @p __os.
3206 * @param __os An output stream.
3207 * @param __x A %hypergeometric_distribution random number
3210 * @returns The output stream with the state of @p __x inserted or in
3213 template<typename _UIntType1, typename _CharT, typename _Traits>
3214 friend std::basic_ostream<_CharT, _Traits>&
3215 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
3216 const __gnu_cxx::hypergeometric_distribution<_UIntType1>&
3220 * @brief Extracts a %hypergeometric_distribution random number
3221 * distribution @p __x from the input stream @p __is.
3223 * @param __is An input stream.
3224 * @param __x A %hypergeometric_distribution random number generator
3227 * @returns The input stream with @p __x extracted or in an error
3230 template<typename _UIntType1, typename _CharT, typename _Traits>
3231 friend std::basic_istream<_CharT, _Traits>&
3232 operator>>(std::basic_istream<_CharT, _Traits>& __is,
3233 __gnu_cxx::hypergeometric_distribution<_UIntType1>& __x);
3237 template<typename _ForwardIterator,
3238 typename _UniformRandomNumberGenerator>
3240 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
3241 _UniformRandomNumberGenerator& __urng,
3242 const param_type& __p);
3244 param_type _M_param;
3247 #if __cpp_impl_three_way_comparison < 201907L
3249 * @brief Return true if two hypergeometric distributions are different.
3251 template<typename _UIntType>
3253 operator!=(const __gnu_cxx::hypergeometric_distribution<_UIntType>& __d1,
3254 const __gnu_cxx::hypergeometric_distribution<_UIntType>& __d2)
3255 { return !(__d1 == __d2); }
3259 * @brief A logistic continuous distribution for random numbers.
3261 * The formula for the logistic probability density function is
3263 * p(x|\a,\b) = \frac{e^{(x - a)/b}}{b[1 + e^{(x - a)/b}]^2}
3265 * where @f$b > 0@f$.
3267 * The formula for the logistic probability function is
3269 * cdf(x|\a,\b) = \frac{e^{(x - a)/b}}{1 + e^{(x - a)/b}}
3271 * where @f$b > 0@f$.
3273 * <table border=1 cellpadding=10 cellspacing=0>
3274 * <caption align=top>Distribution Statistics</caption>
3275 * <tr><td>Mean</td><td>@f$a@f$</td></tr>
3276 * <tr><td>Variance</td><td>@f$b^2\pi^2/3@f$</td></tr>
3277 * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr>
3280 template<typename _RealType = double>
3282 logistic_distribution
3284 static_assert(std::is_floating_point<_RealType>::value,
3285 "template argument not a floating point type");
3288 /** The type of the range of the distribution. */
3289 typedef _RealType result_type;
3291 /** Parameter type. */
3294 typedef logistic_distribution<result_type> distribution_type;
3296 param_type() : param_type(0) { }
3299 param_type(result_type __a, result_type __b = result_type(1))
3300 : _M_a(__a), _M_b(__b)
3302 __glibcxx_assert(_M_b > result_type(0));
3314 operator==(const param_type& __p1, const param_type& __p2)
3315 { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
3317 #if __cpp_impl_three_way_comparison < 201907L
3319 operator!=(const param_type& __p1, const param_type& __p2)
3320 { return !(__p1 == __p2); }
3324 void _M_initialize();
3331 * @brief Constructors.
3334 logistic_distribution() : logistic_distribution(0.0) { }
3337 logistic_distribution(result_type __a, result_type __b = result_type(1))
3338 : _M_param(__a, __b)
3342 logistic_distribution(const param_type& __p)
3349 * @brief Resets the distribution state.
3356 * @brief Return the parameters of the distribution.
3360 { return _M_param.a(); }
3364 { return _M_param.b(); }
3367 * @brief Returns the parameter set of the distribution.
3371 { return _M_param; }
3374 * @brief Sets the parameter set of the distribution.
3375 * @param __param The new parameter set of the distribution.
3378 param(const param_type& __param)
3379 { _M_param = __param; }
3382 * @brief Returns the greatest lower bound value of the distribution.
3386 { return -std::numeric_limits<result_type>::max(); }
3389 * @brief Returns the least upper bound value of the distribution.
3393 { return std::numeric_limits<result_type>::max(); }
3396 * @brief Generating functions.
3398 template<typename _UniformRandomNumberGenerator>
3400 operator()(_UniformRandomNumberGenerator& __urng)
3401 { return this->operator()(__urng, this->_M_param); }
3403 template<typename _UniformRandomNumberGenerator>
3405 operator()(_UniformRandomNumberGenerator&,
3408 template<typename _ForwardIterator,
3409 typename _UniformRandomNumberGenerator>
3411 __generate(_ForwardIterator __f, _ForwardIterator __t,
3412 _UniformRandomNumberGenerator& __urng)
3413 { this->__generate(__f, __t, __urng, this->param()); }
3415 template<typename _ForwardIterator,
3416 typename _UniformRandomNumberGenerator>
3418 __generate(_ForwardIterator __f, _ForwardIterator __t,
3419 _UniformRandomNumberGenerator& __urng,
3420 const param_type& __p)
3421 { this->__generate_impl(__f, __t, __urng, __p); }
3423 template<typename _UniformRandomNumberGenerator>
3425 __generate(result_type* __f, result_type* __t,
3426 _UniformRandomNumberGenerator& __urng,
3427 const param_type& __p)
3428 { this->__generate_impl(__f, __t, __urng, __p); }
3431 * @brief Return true if two logistic distributions have
3432 * the same parameters and the sequences that would
3433 * be generated are equal.
3435 template<typename _RealType1>
3437 operator==(const logistic_distribution<_RealType1>& __d1,
3438 const logistic_distribution<_RealType1>& __d2)
3439 { return __d1.param() == __d2.param(); }
3442 * @brief Inserts a %logistic_distribution random number distribution
3443 * @p __x into the output stream @p __os.
3445 * @param __os An output stream.
3446 * @param __x A %logistic_distribution random number distribution.
3448 * @returns The output stream with the state of @p __x inserted or in
3451 template<typename _RealType1, typename _CharT, typename _Traits>
3452 friend std::basic_ostream<_CharT, _Traits>&
3453 operator<<(std::basic_ostream<_CharT, _Traits>&,
3454 const logistic_distribution<_RealType1>&);
3457 * @brief Extracts a %logistic_distribution random number distribution
3458 * @p __x from the input stream @p __is.
3460 * @param __is An input stream.
3461 * @param __x A %logistic_distribution random number
3464 * @returns The input stream with @p __x extracted or in an error state.
3466 template<typename _RealType1, typename _CharT, typename _Traits>
3467 friend std::basic_istream<_CharT, _Traits>&
3468 operator>>(std::basic_istream<_CharT, _Traits>&,
3469 logistic_distribution<_RealType1>&);
3472 template<typename _ForwardIterator,
3473 typename _UniformRandomNumberGenerator>
3475 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
3476 _UniformRandomNumberGenerator& __urng,
3477 const param_type& __p);
3479 param_type _M_param;
3482 #if __cpp_impl_three_way_comparison < 201907L
3484 * @brief Return true if two logistic distributions are not equal.
3486 template<typename _RealType1>
3488 operator!=(const logistic_distribution<_RealType1>& __d1,
3489 const logistic_distribution<_RealType1>& __d2)
3490 { return !(__d1 == __d2); }
3494 * @brief A distribution for random coordinates on a unit sphere.
3496 * The method used in the generation function is attributed by Donald Knuth
3497 * to G. W. Brown, Modern Mathematics for the Engineer (1956).
3499 template<std::size_t _Dimen, typename _RealType = double>
3500 class uniform_on_sphere_distribution
3502 static_assert(std::is_floating_point<_RealType>::value,
3503 "template argument not a floating point type");
3504 static_assert(_Dimen != 0, "dimension is zero");
3507 /** The type of the range of the distribution. */
3508 typedef std::array<_RealType, _Dimen> result_type;
3510 /** Parameter type. */
3516 operator==(const param_type&, const param_type&)
3519 #if __cpp_impl_three_way_comparison < 201907L
3521 operator!=(const param_type&, const param_type&)
3527 * @brief Constructs a uniform on sphere distribution.
3529 uniform_on_sphere_distribution()
3530 : _M_param(), _M_nd()
3534 uniform_on_sphere_distribution(const param_type& __p)
3535 : _M_param(__p), _M_nd()
3539 * @brief Resets the distribution state.
3546 * @brief Returns the parameter set of the distribution.
3550 { return _M_param; }
3553 * @brief Sets the parameter set of the distribution.
3554 * @param __param The new parameter set of the distribution.
3557 param(const param_type& __param)
3558 { _M_param = __param; }
3561 * @brief Returns the greatest lower bound value of the distribution.
3562 * This function makes no sense for this distribution.
3573 * @brief Returns the least upper bound value of the distribution.
3574 * This function makes no sense for this distribution.
3585 * @brief Generating functions.
3587 template<typename _UniformRandomNumberGenerator>
3589 operator()(_UniformRandomNumberGenerator& __urng)
3590 { return this->operator()(__urng, _M_param); }
3592 template<typename _UniformRandomNumberGenerator>
3594 operator()(_UniformRandomNumberGenerator& __urng,
3595 const param_type& __p);
3597 template<typename _ForwardIterator,
3598 typename _UniformRandomNumberGenerator>
3600 __generate(_ForwardIterator __f, _ForwardIterator __t,
3601 _UniformRandomNumberGenerator& __urng)
3602 { this->__generate(__f, __t, __urng, this->param()); }
3604 template<typename _ForwardIterator,
3605 typename _UniformRandomNumberGenerator>
3607 __generate(_ForwardIterator __f, _ForwardIterator __t,
3608 _UniformRandomNumberGenerator& __urng,
3609 const param_type& __p)
3610 { this->__generate_impl(__f, __t, __urng, __p); }
3612 template<typename _UniformRandomNumberGenerator>
3614 __generate(result_type* __f, result_type* __t,
3615 _UniformRandomNumberGenerator& __urng,
3616 const param_type& __p)
3617 { this->__generate_impl(__f, __t, __urng, __p); }
3620 * @brief Return true if two uniform on sphere distributions have
3621 * the same parameters and the sequences that would be
3622 * generated are equal.
3625 operator==(const uniform_on_sphere_distribution& __d1,
3626 const uniform_on_sphere_distribution& __d2)
3627 { return __d1._M_nd == __d2._M_nd; }
3630 * @brief Inserts a %uniform_on_sphere_distribution random number
3631 * distribution @p __x into the output stream @p __os.
3633 * @param __os An output stream.
3634 * @param __x A %uniform_on_sphere_distribution random number
3637 * @returns The output stream with the state of @p __x inserted or in
3640 template<size_t _Dimen1, typename _RealType1, typename _CharT,
3642 friend std::basic_ostream<_CharT, _Traits>&
3643 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
3644 const __gnu_cxx::uniform_on_sphere_distribution<_Dimen1,
3649 * @brief Extracts a %uniform_on_sphere_distribution random number
3651 * @p __x from the input stream @p __is.
3653 * @param __is An input stream.
3654 * @param __x A %uniform_on_sphere_distribution random number
3657 * @returns The input stream with @p __x extracted or in an error state.
3659 template<std::size_t _Dimen1, typename _RealType1, typename _CharT,
3661 friend std::basic_istream<_CharT, _Traits>&
3662 operator>>(std::basic_istream<_CharT, _Traits>& __is,
3663 __gnu_cxx::uniform_on_sphere_distribution<_Dimen1,
3667 template<typename _ForwardIterator,
3668 typename _UniformRandomNumberGenerator>
3670 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
3671 _UniformRandomNumberGenerator& __urng,
3672 const param_type& __p);
3674 param_type _M_param;
3675 std::normal_distribution<_RealType> _M_nd;
3678 #if __cpp_impl_three_way_comparison < 201907L
3680 * @brief Return true if two uniform on sphere distributions are different.
3682 template<std::size_t _Dimen, typename _RealType>
3684 operator!=(const __gnu_cxx::uniform_on_sphere_distribution<_Dimen,
3686 const __gnu_cxx::uniform_on_sphere_distribution<_Dimen,
3688 { return !(__d1 == __d2); }
3692 * @brief A distribution for random coordinates inside a unit sphere.
3694 template<std::size_t _Dimen, typename _RealType = double>
3695 class uniform_inside_sphere_distribution
3697 static_assert(std::is_floating_point<_RealType>::value,
3698 "template argument not a floating point type");
3699 static_assert(_Dimen != 0, "dimension is zero");
3702 /** The type of the range of the distribution. */
3703 using result_type = std::array<_RealType, _Dimen>;
3705 /** Parameter type. */
3708 using distribution_type
3709 = uniform_inside_sphere_distribution<_Dimen, _RealType>;
3710 friend class uniform_inside_sphere_distribution<_Dimen, _RealType>;
3712 param_type() : param_type(1.0) { }
3715 param_type(_RealType __radius)
3716 : _M_radius(__radius)
3718 __glibcxx_assert(_M_radius > _RealType(0));
3723 { return _M_radius; }
3726 operator==(const param_type& __p1, const param_type& __p2)
3727 { return __p1._M_radius == __p2._M_radius; }
3729 #if __cpp_impl_three_way_comparison < 201907L
3731 operator!=(const param_type& __p1, const param_type& __p2)
3732 { return !(__p1 == __p2); }
3736 _RealType _M_radius;
3740 * @brief Constructors.
3744 uniform_inside_sphere_distribution()
3745 : uniform_inside_sphere_distribution(1.0)
3749 uniform_inside_sphere_distribution(_RealType __radius)
3750 : _M_param(__radius), _M_uosd()
3754 uniform_inside_sphere_distribution(const param_type& __p)
3755 : _M_param(__p), _M_uosd()
3761 * @brief Resets the distribution state.
3765 { _M_uosd.reset(); }
3768 * @brief Returns the @f$radius@f$ of the distribution.
3772 { return _M_param.radius(); }
3775 * @brief Returns the parameter set of the distribution.
3779 { return _M_param; }
3782 * @brief Sets the parameter set of the distribution.
3783 * @param __param The new parameter set of the distribution.
3786 param(const param_type& __param)
3787 { _M_param = __param; }
3790 * @brief Returns the greatest lower bound value of the distribution.
3791 * This function makes no sense for this distribution.
3802 * @brief Returns the least upper bound value of the distribution.
3803 * This function makes no sense for this distribution.
3814 * @brief Generating functions.
3816 template<typename _UniformRandomNumberGenerator>
3818 operator()(_UniformRandomNumberGenerator& __urng)
3819 { return this->operator()(__urng, _M_param); }
3821 template<typename _UniformRandomNumberGenerator>
3823 operator()(_UniformRandomNumberGenerator& __urng,
3824 const param_type& __p);
3826 template<typename _ForwardIterator,
3827 typename _UniformRandomNumberGenerator>
3829 __generate(_ForwardIterator __f, _ForwardIterator __t,
3830 _UniformRandomNumberGenerator& __urng)
3831 { this->__generate(__f, __t, __urng, this->param()); }
3833 template<typename _ForwardIterator,
3834 typename _UniformRandomNumberGenerator>
3836 __generate(_ForwardIterator __f, _ForwardIterator __t,
3837 _UniformRandomNumberGenerator& __urng,
3838 const param_type& __p)
3839 { this->__generate_impl(__f, __t, __urng, __p); }
3841 template<typename _UniformRandomNumberGenerator>
3843 __generate(result_type* __f, result_type* __t,
3844 _UniformRandomNumberGenerator& __urng,
3845 const param_type& __p)
3846 { this->__generate_impl(__f, __t, __urng, __p); }
3849 * @brief Return true if two uniform on sphere distributions have
3850 * the same parameters and the sequences that would be
3851 * generated are equal.
3854 operator==(const uniform_inside_sphere_distribution& __d1,
3855 const uniform_inside_sphere_distribution& __d2)
3856 { return __d1._M_param == __d2._M_param && __d1._M_uosd == __d2._M_uosd; }
3859 * @brief Inserts a %uniform_inside_sphere_distribution random number
3860 * distribution @p __x into the output stream @p __os.
3862 * @param __os An output stream.
3863 * @param __x A %uniform_inside_sphere_distribution random number
3866 * @returns The output stream with the state of @p __x inserted or in
3869 template<size_t _Dimen1, typename _RealType1, typename _CharT,
3871 friend std::basic_ostream<_CharT, _Traits>&
3872 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
3873 const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen1,
3878 * @brief Extracts a %uniform_inside_sphere_distribution random number
3880 * @p __x from the input stream @p __is.
3882 * @param __is An input stream.
3883 * @param __x A %uniform_inside_sphere_distribution random number
3886 * @returns The input stream with @p __x extracted or in an error state.
3888 template<std::size_t _Dimen1, typename _RealType1, typename _CharT,
3890 friend std::basic_istream<_CharT, _Traits>&
3891 operator>>(std::basic_istream<_CharT, _Traits>& __is,
3892 __gnu_cxx::uniform_inside_sphere_distribution<_Dimen1,
3896 template<typename _ForwardIterator,
3897 typename _UniformRandomNumberGenerator>
3899 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
3900 _UniformRandomNumberGenerator& __urng,
3901 const param_type& __p);
3903 param_type _M_param;
3904 uniform_on_sphere_distribution<_Dimen, _RealType> _M_uosd;
3907 #if __cpp_impl_three_way_comparison < 201907L
3909 * @brief Return true if two uniform on sphere distributions are different.
3911 template<std::size_t _Dimen, typename _RealType>
3913 operator!=(const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen,
3915 const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen,
3917 { return !(__d1 == __d2); }
3920 _GLIBCXX_END_NAMESPACE_VERSION
3921 } // namespace __gnu_cxx
3923 #include <ext/opt_random.h>
3924 #include <ext/random.tcc>
3930 #endif // _EXT_RANDOM