1 /* Analysis Utilities for Loop Vectorization.
2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
3 Contributed by Dorit Nuzman <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "optabs-tree.h"
31 #include "insn-config.h"
32 #include "recog.h" /* FIXME: for insn_data */
33 #include "fold-const.h"
34 #include "stor-layout.h"
37 #include "gimple-iterator.h"
39 #include "tree-vectorizer.h"
42 #include "internal-fn.h"
43 #include "case-cfn-macros.h"
44 #include "fold-const-call.h"
47 #include "omp-simd-clone.h"
50 /* Return true if we have a useful VR_RANGE range for VAR, storing it
51 in *MIN_VALUE and *MAX_VALUE if so. Note the range in the dump files. */
54 vect_get_range_info (tree var
, wide_int
*min_value
, wide_int
*max_value
)
56 value_range_kind vr_type
= get_range_info (var
, min_value
, max_value
);
57 wide_int nonzero
= get_nonzero_bits (var
);
58 signop sgn
= TYPE_SIGN (TREE_TYPE (var
));
59 if (intersect_range_with_nonzero_bits (vr_type
, min_value
, max_value
,
60 nonzero
, sgn
) == VR_RANGE
)
62 if (dump_enabled_p ())
64 dump_generic_expr_loc (MSG_NOTE
, vect_location
, TDF_SLIM
, var
);
65 dump_printf (MSG_NOTE
, " has range [");
66 dump_hex (MSG_NOTE
, *min_value
);
67 dump_printf (MSG_NOTE
, ", ");
68 dump_hex (MSG_NOTE
, *max_value
);
69 dump_printf (MSG_NOTE
, "]\n");
75 if (dump_enabled_p ())
77 dump_generic_expr_loc (MSG_NOTE
, vect_location
, TDF_SLIM
, var
);
78 dump_printf (MSG_NOTE
, " has no range info\n");
84 /* Report that we've found an instance of pattern PATTERN in
88 vect_pattern_detected (const char *name
, gimple
*stmt
)
90 if (dump_enabled_p ())
91 dump_printf_loc (MSG_NOTE
, vect_location
, "%s: detected: %G", name
, stmt
);
94 /* Associate pattern statement PATTERN_STMT with ORIG_STMT_INFO and
95 return the pattern statement's stmt_vec_info. Set its vector type to
96 VECTYPE if it doesn't have one already. */
99 vect_init_pattern_stmt (gimple
*pattern_stmt
, stmt_vec_info orig_stmt_info
,
102 vec_info
*vinfo
= orig_stmt_info
->vinfo
;
103 stmt_vec_info pattern_stmt_info
= vinfo
->lookup_stmt (pattern_stmt
);
104 if (pattern_stmt_info
== NULL
)
105 pattern_stmt_info
= orig_stmt_info
->vinfo
->add_stmt (pattern_stmt
);
106 gimple_set_bb (pattern_stmt
, gimple_bb (orig_stmt_info
->stmt
));
108 pattern_stmt_info
->pattern_stmt_p
= true;
109 STMT_VINFO_RELATED_STMT (pattern_stmt_info
) = orig_stmt_info
;
110 STMT_VINFO_DEF_TYPE (pattern_stmt_info
)
111 = STMT_VINFO_DEF_TYPE (orig_stmt_info
);
112 if (!STMT_VINFO_VECTYPE (pattern_stmt_info
))
113 STMT_VINFO_VECTYPE (pattern_stmt_info
) = vectype
;
114 return pattern_stmt_info
;
117 /* Set the pattern statement of ORIG_STMT_INFO to PATTERN_STMT.
118 Also set the vector type of PATTERN_STMT to VECTYPE, if it doesn't
122 vect_set_pattern_stmt (gimple
*pattern_stmt
, stmt_vec_info orig_stmt_info
,
125 STMT_VINFO_IN_PATTERN_P (orig_stmt_info
) = true;
126 STMT_VINFO_RELATED_STMT (orig_stmt_info
)
127 = vect_init_pattern_stmt (pattern_stmt
, orig_stmt_info
, vectype
);
130 /* Add NEW_STMT to STMT_INFO's pattern definition statements. If VECTYPE
131 is nonnull, record that NEW_STMT's vector type is VECTYPE, which might
132 be different from the vector type of the final pattern statement. */
135 append_pattern_def_seq (stmt_vec_info stmt_info
, gimple
*new_stmt
,
136 tree vectype
= NULL_TREE
)
138 vec_info
*vinfo
= stmt_info
->vinfo
;
141 stmt_vec_info new_stmt_info
= vinfo
->add_stmt (new_stmt
);
142 STMT_VINFO_VECTYPE (new_stmt_info
) = vectype
;
144 gimple_seq_add_stmt_without_update (&STMT_VINFO_PATTERN_DEF_SEQ (stmt_info
),
148 /* The caller wants to perform new operations on vect_external variable
149 VAR, so that the result of the operations would also be vect_external.
150 Return the edge on which the operations can be performed, if one exists.
151 Return null if the operations should instead be treated as part of
152 the pattern that needs them. */
155 vect_get_external_def_edge (vec_info
*vinfo
, tree var
)
158 if (loop_vec_info loop_vinfo
= dyn_cast
<loop_vec_info
> (vinfo
))
160 e
= loop_preheader_edge (loop_vinfo
->loop
);
161 if (!SSA_NAME_IS_DEFAULT_DEF (var
))
163 basic_block bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
165 || !dominated_by_p (CDI_DOMINATORS
, e
->dest
, bb
))
172 /* Return true if the target supports a vector version of CODE,
173 where CODE is known to map to a direct optab. ITYPE specifies
174 the type of (some of) the scalar inputs and OTYPE specifies the
175 type of the scalar result.
177 If CODE allows the inputs and outputs to have different type
178 (such as for WIDEN_SUM_EXPR), it is the input mode rather
179 than the output mode that determines the appropriate target pattern.
180 Operand 0 of the target pattern then specifies the mode that the output
183 When returning true, set *VECOTYPE_OUT to the vector version of OTYPE.
184 Also set *VECITYPE_OUT to the vector version of ITYPE if VECITYPE_OUT
188 vect_supportable_direct_optab_p (tree otype
, tree_code code
,
189 tree itype
, tree
*vecotype_out
,
190 tree
*vecitype_out
= NULL
)
192 tree vecitype
= get_vectype_for_scalar_type (itype
);
196 tree vecotype
= get_vectype_for_scalar_type (otype
);
200 optab optab
= optab_for_tree_code (code
, vecitype
, optab_default
);
204 insn_code icode
= optab_handler (optab
, TYPE_MODE (vecitype
));
205 if (icode
== CODE_FOR_nothing
206 || insn_data
[icode
].operand
[0].mode
!= TYPE_MODE (vecotype
))
209 *vecotype_out
= vecotype
;
211 *vecitype_out
= vecitype
;
215 /* Round bit precision PRECISION up to a full element. */
218 vect_element_precision (unsigned int precision
)
220 precision
= 1 << ceil_log2 (precision
);
221 return MAX (precision
, BITS_PER_UNIT
);
224 /* If OP is defined by a statement that's being considered for vectorization,
225 return information about that statement, otherwise return NULL. */
228 vect_get_internal_def (vec_info
*vinfo
, tree op
)
230 stmt_vec_info def_stmt_info
= vinfo
->lookup_def (op
);
232 && STMT_VINFO_DEF_TYPE (def_stmt_info
) == vect_internal_def
)
233 return def_stmt_info
;
237 /* Check whether NAME, an ssa-name used in STMT_VINFO,
238 is a result of a type promotion, such that:
239 DEF_STMT: NAME = NOP (name0)
240 If CHECK_SIGN is TRUE, check that either both types are signed or both are
244 type_conversion_p (tree name
, stmt_vec_info stmt_vinfo
, bool check_sign
,
245 tree
*orig_type
, gimple
**def_stmt
, bool *promotion
)
247 tree type
= TREE_TYPE (name
);
249 enum vect_def_type dt
;
251 stmt_vec_info def_stmt_info
;
252 if (!vect_is_simple_use (name
, stmt_vinfo
->vinfo
, &dt
, &def_stmt_info
,
256 if (dt
!= vect_internal_def
257 && dt
!= vect_external_def
&& dt
!= vect_constant_def
)
263 if (!is_gimple_assign (*def_stmt
))
266 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (*def_stmt
)))
269 oprnd0
= gimple_assign_rhs1 (*def_stmt
);
271 *orig_type
= TREE_TYPE (oprnd0
);
272 if (!INTEGRAL_TYPE_P (type
) || !INTEGRAL_TYPE_P (*orig_type
)
273 || ((TYPE_UNSIGNED (type
) != TYPE_UNSIGNED (*orig_type
)) && check_sign
))
276 if (TYPE_PRECISION (type
) >= (TYPE_PRECISION (*orig_type
) * 2))
281 if (!vect_is_simple_use (oprnd0
, stmt_vinfo
->vinfo
, &dt
))
287 /* Holds information about an input operand after some sign changes
288 and type promotions have been peeled away. */
289 struct vect_unpromoted_value
{
290 vect_unpromoted_value ();
292 void set_op (tree
, vect_def_type
, stmt_vec_info
= NULL
);
294 /* The value obtained after peeling away zero or more casts. */
297 /* The type of OP. */
300 /* The definition type of OP. */
303 /* If OP is the result of peeling at least one cast, and if the cast
304 of OP itself is a vectorizable statement, CASTER identifies that
305 statement, otherwise it is null. */
306 stmt_vec_info caster
;
309 inline vect_unpromoted_value::vect_unpromoted_value ()
312 dt (vect_uninitialized_def
),
317 /* Set the operand to OP_IN, its definition type to DT_IN, and the
318 statement that casts it to CASTER_IN. */
321 vect_unpromoted_value::set_op (tree op_in
, vect_def_type dt_in
,
322 stmt_vec_info caster_in
)
325 type
= TREE_TYPE (op
);
330 /* If OP is a vectorizable SSA name, strip a sequence of integer conversions
331 to reach some vectorizable inner operand OP', continuing as long as it
332 is possible to convert OP' back to OP using a possible sign change
333 followed by a possible promotion P. Return this OP', or null if OP is
334 not a vectorizable SSA name. If there is a promotion P, describe its
335 input in UNPROM, otherwise describe OP' in UNPROM. If SINGLE_USE_P
336 is nonnull, set *SINGLE_USE_P to false if any of the SSA names involved
337 have more than one user.
339 A successful return means that it is possible to go from OP' to OP
340 via UNPROM. The cast from OP' to UNPROM is at most a sign change,
341 whereas the cast from UNPROM to OP might be a promotion, a sign
346 signed short *ptr = ...;
347 signed short C = *ptr;
348 unsigned short B = (unsigned short) C; // sign change
349 signed int A = (signed int) B; // unsigned promotion
350 ...possible other uses of A...
351 unsigned int OP = (unsigned int) A; // sign change
353 In this case it's possible to go directly from C to OP using:
355 OP = (unsigned int) (unsigned short) C;
356 +------------+ +--------------+
357 promotion sign change
359 so OP' would be C. The input to the promotion is B, so UNPROM
363 vect_look_through_possible_promotion (vec_info
*vinfo
, tree op
,
364 vect_unpromoted_value
*unprom
,
365 bool *single_use_p
= NULL
)
367 tree res
= NULL_TREE
;
368 tree op_type
= TREE_TYPE (op
);
369 unsigned int orig_precision
= TYPE_PRECISION (op_type
);
370 unsigned int min_precision
= orig_precision
;
371 stmt_vec_info caster
= NULL
;
372 while (TREE_CODE (op
) == SSA_NAME
&& INTEGRAL_TYPE_P (op_type
))
374 /* See whether OP is simple enough to vectorize. */
375 stmt_vec_info def_stmt_info
;
378 if (!vect_is_simple_use (op
, vinfo
, &dt
, &def_stmt_info
, &def_stmt
))
381 /* If OP is the input of a demotion, skip over it to see whether
382 OP is itself the result of a promotion. If so, the combined
383 effect of the promotion and the demotion might fit the required
384 pattern, otherwise neither operation fits.
386 This copes with cases such as the result of an arithmetic
387 operation being truncated before being stored, and where that
388 arithmetic operation has been recognized as an over-widened one. */
389 if (TYPE_PRECISION (op_type
) <= min_precision
)
391 /* Use OP as the UNPROM described above if we haven't yet
392 found a promotion, or if using the new input preserves the
393 sign of the previous promotion. */
395 || TYPE_PRECISION (unprom
->type
) == orig_precision
396 || TYPE_SIGN (unprom
->type
) == TYPE_SIGN (op_type
))
398 unprom
->set_op (op
, dt
, caster
);
399 min_precision
= TYPE_PRECISION (op_type
);
401 /* Stop if we've already seen a promotion and if this
402 conversion does more than change the sign. */
403 else if (TYPE_PRECISION (op_type
)
404 != TYPE_PRECISION (unprom
->type
))
407 /* The sequence now extends to OP. */
411 /* See whether OP is defined by a cast. Record it as CASTER if
412 the cast is potentially vectorizable. */
415 caster
= def_stmt_info
;
417 /* Ignore pattern statements, since we don't link uses for them. */
420 && !STMT_VINFO_RELATED_STMT (caster
)
421 && !has_single_use (res
))
422 *single_use_p
= false;
424 gassign
*assign
= dyn_cast
<gassign
*> (def_stmt
);
425 if (!assign
|| !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
428 /* Continue with the input to the cast. */
429 op
= gimple_assign_rhs1 (def_stmt
);
430 op_type
= TREE_TYPE (op
);
435 /* OP is an integer operand to an operation that returns TYPE, and we
436 want to treat the operation as a widening one. So far we can treat
437 it as widening from *COMMON_TYPE.
439 Return true if OP is suitable for such a widening operation,
440 either widening from *COMMON_TYPE or from some supertype of it.
441 Update *COMMON_TYPE to the supertype in the latter case.
443 SHIFT_P is true if OP is a shift amount. */
446 vect_joust_widened_integer (tree type
, bool shift_p
, tree op
,
449 /* Calculate the minimum precision required by OP, without changing
450 the sign of either operand. */
451 unsigned int precision
;
454 if (!wi::leu_p (wi::to_widest (op
), TYPE_PRECISION (type
) / 2))
456 precision
= TREE_INT_CST_LOW (op
);
460 precision
= wi::min_precision (wi::to_widest (op
),
461 TYPE_SIGN (*common_type
));
462 if (precision
* 2 > TYPE_PRECISION (type
))
466 /* If OP requires a wider type, switch to that type. The checks
467 above ensure that this is still narrower than the result. */
468 precision
= vect_element_precision (precision
);
469 if (TYPE_PRECISION (*common_type
) < precision
)
470 *common_type
= build_nonstandard_integer_type
471 (precision
, TYPE_UNSIGNED (*common_type
));
475 /* Return true if the common supertype of NEW_TYPE and *COMMON_TYPE
476 is narrower than type, storing the supertype in *COMMON_TYPE if so. */
479 vect_joust_widened_type (tree type
, tree new_type
, tree
*common_type
)
481 if (types_compatible_p (*common_type
, new_type
))
484 /* See if *COMMON_TYPE can hold all values of NEW_TYPE. */
485 if ((TYPE_PRECISION (new_type
) < TYPE_PRECISION (*common_type
))
486 && (TYPE_UNSIGNED (new_type
) || !TYPE_UNSIGNED (*common_type
)))
489 /* See if NEW_TYPE can hold all values of *COMMON_TYPE. */
490 if (TYPE_PRECISION (*common_type
) < TYPE_PRECISION (new_type
)
491 && (TYPE_UNSIGNED (*common_type
) || !TYPE_UNSIGNED (new_type
)))
493 *common_type
= new_type
;
497 /* We have mismatched signs, with the signed type being
498 no wider than the unsigned type. In this case we need
499 a wider signed type. */
500 unsigned int precision
= MAX (TYPE_PRECISION (*common_type
),
501 TYPE_PRECISION (new_type
));
503 if (precision
* 2 > TYPE_PRECISION (type
))
506 *common_type
= build_nonstandard_integer_type (precision
, false);
510 /* Check whether STMT_INFO can be viewed as a tree of integer operations
511 in which each node either performs CODE or WIDENED_CODE, and where
512 each leaf operand is narrower than the result of STMT_INFO. MAX_NOPS
513 specifies the maximum number of leaf operands. SHIFT_P says whether
514 CODE and WIDENED_CODE are some sort of shift.
516 If STMT_INFO is such a tree, return the number of leaf operands
517 and describe them in UNPROM[0] onwards. Also set *COMMON_TYPE
518 to a type that (a) is narrower than the result of STMT_INFO and
519 (b) can hold all leaf operand values.
521 Return 0 if STMT_INFO isn't such a tree, or if no such COMMON_TYPE
525 vect_widened_op_tree (stmt_vec_info stmt_info
, tree_code code
,
526 tree_code widened_code
, bool shift_p
,
527 unsigned int max_nops
,
528 vect_unpromoted_value
*unprom
, tree
*common_type
)
530 /* Check for an integer operation with the right code. */
531 vec_info
*vinfo
= stmt_info
->vinfo
;
532 gassign
*assign
= dyn_cast
<gassign
*> (stmt_info
->stmt
);
536 tree_code rhs_code
= gimple_assign_rhs_code (assign
);
537 if (rhs_code
!= code
&& rhs_code
!= widened_code
)
540 tree type
= gimple_expr_type (assign
);
541 if (!INTEGRAL_TYPE_P (type
))
544 /* Assume that both operands will be leaf operands. */
547 /* Check the operands. */
548 unsigned int next_op
= 0;
549 for (unsigned int i
= 0; i
< 2; ++i
)
551 vect_unpromoted_value
*this_unprom
= &unprom
[next_op
];
552 unsigned int nops
= 1;
553 tree op
= gimple_op (assign
, i
+ 1);
554 if (i
== 1 && TREE_CODE (op
) == INTEGER_CST
)
556 /* We already have a common type from earlier operands.
557 Update it to account for OP. */
558 this_unprom
->set_op (op
, vect_constant_def
);
559 if (!vect_joust_widened_integer (type
, shift_p
, op
, common_type
))
564 /* Only allow shifts by constants. */
565 if (shift_p
&& i
== 1)
568 if (!vect_look_through_possible_promotion (stmt_info
->vinfo
, op
,
572 if (TYPE_PRECISION (this_unprom
->type
) == TYPE_PRECISION (type
))
574 /* The operand isn't widened. If STMT_INFO has the code
575 for an unwidened operation, recursively check whether
576 this operand is a node of the tree. */
579 || this_unprom
->dt
!= vect_internal_def
)
582 /* Give back the leaf slot allocated above now that we're
583 not treating this as a leaf operand. */
586 /* Recursively process the definition of the operand. */
587 stmt_vec_info def_stmt_info
588 = vinfo
->lookup_def (this_unprom
->op
);
589 nops
= vect_widened_op_tree (def_stmt_info
, code
, widened_code
,
590 shift_p
, max_nops
, this_unprom
,
599 /* Make sure that the operand is narrower than the result. */
600 if (TYPE_PRECISION (this_unprom
->type
) * 2
601 > TYPE_PRECISION (type
))
604 /* Update COMMON_TYPE for the new operand. */
606 *common_type
= this_unprom
->type
;
607 else if (!vect_joust_widened_type (type
, this_unprom
->type
,
617 /* Helper to return a new temporary for pattern of TYPE for STMT. If STMT
618 is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */
621 vect_recog_temp_ssa_var (tree type
, gimple
*stmt
)
623 return make_temp_ssa_name (type
, stmt
, "patt");
626 /* STMT2_INFO describes a type conversion that could be split into STMT1
627 followed by a version of STMT2_INFO that takes NEW_RHS as its first
628 input. Try to do this using pattern statements, returning true on
632 vect_split_statement (stmt_vec_info stmt2_info
, tree new_rhs
,
633 gimple
*stmt1
, tree vectype
)
635 if (is_pattern_stmt_p (stmt2_info
))
637 /* STMT2_INFO is part of a pattern. Get the statement to which
638 the pattern is attached. */
639 stmt_vec_info orig_stmt2_info
= STMT_VINFO_RELATED_STMT (stmt2_info
);
640 vect_init_pattern_stmt (stmt1
, orig_stmt2_info
, vectype
);
642 if (dump_enabled_p ())
643 dump_printf_loc (MSG_NOTE
, vect_location
,
644 "Splitting pattern statement: %G", stmt2_info
->stmt
);
646 /* Since STMT2_INFO is a pattern statement, we can change it
647 in-situ without worrying about changing the code for the
649 gimple_assign_set_rhs1 (stmt2_info
->stmt
, new_rhs
);
651 if (dump_enabled_p ())
653 dump_printf_loc (MSG_NOTE
, vect_location
, "into: %G", stmt1
);
654 dump_printf_loc (MSG_NOTE
, vect_location
, "and: %G",
658 gimple_seq
*def_seq
= &STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt2_info
);
659 if (STMT_VINFO_RELATED_STMT (orig_stmt2_info
) == stmt2_info
)
660 /* STMT2_INFO is the actual pattern statement. Add STMT1
661 to the end of the definition sequence. */
662 gimple_seq_add_stmt_without_update (def_seq
, stmt1
);
665 /* STMT2_INFO belongs to the definition sequence. Insert STMT1
667 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt2_info
->stmt
, def_seq
);
668 gsi_insert_before_without_update (&gsi
, stmt1
, GSI_SAME_STMT
);
674 /* STMT2_INFO doesn't yet have a pattern. Try to create a
675 two-statement pattern now. */
676 gcc_assert (!STMT_VINFO_RELATED_STMT (stmt2_info
));
677 tree lhs_type
= TREE_TYPE (gimple_get_lhs (stmt2_info
->stmt
));
678 tree lhs_vectype
= get_vectype_for_scalar_type (lhs_type
);
682 if (dump_enabled_p ())
683 dump_printf_loc (MSG_NOTE
, vect_location
,
684 "Splitting statement: %G", stmt2_info
->stmt
);
686 /* Add STMT1 as a singleton pattern definition sequence. */
687 gimple_seq
*def_seq
= &STMT_VINFO_PATTERN_DEF_SEQ (stmt2_info
);
688 vect_init_pattern_stmt (stmt1
, stmt2_info
, vectype
);
689 gimple_seq_add_stmt_without_update (def_seq
, stmt1
);
691 /* Build the second of the two pattern statements. */
692 tree new_lhs
= vect_recog_temp_ssa_var (lhs_type
, NULL
);
693 gassign
*new_stmt2
= gimple_build_assign (new_lhs
, NOP_EXPR
, new_rhs
);
694 vect_set_pattern_stmt (new_stmt2
, stmt2_info
, lhs_vectype
);
696 if (dump_enabled_p ())
698 dump_printf_loc (MSG_NOTE
, vect_location
,
699 "into pattern statements: %G", stmt1
);
700 dump_printf_loc (MSG_NOTE
, vect_location
, "and: %G", new_stmt2
);
707 /* Convert UNPROM to TYPE and return the result, adding new statements
708 to STMT_INFO's pattern definition statements if no better way is
709 available. VECTYPE is the vector form of TYPE. */
712 vect_convert_input (stmt_vec_info stmt_info
, tree type
,
713 vect_unpromoted_value
*unprom
, tree vectype
)
715 /* Check for a no-op conversion. */
716 if (types_compatible_p (type
, TREE_TYPE (unprom
->op
)))
719 /* Allow the caller to create constant vect_unpromoted_values. */
720 if (TREE_CODE (unprom
->op
) == INTEGER_CST
)
721 return wide_int_to_tree (type
, wi::to_widest (unprom
->op
));
723 tree input
= unprom
->op
;
726 tree lhs
= gimple_get_lhs (unprom
->caster
->stmt
);
727 tree lhs_type
= TREE_TYPE (lhs
);
729 /* If the result of the existing cast is the right width, use it
730 instead of the source of the cast. */
731 if (TYPE_PRECISION (lhs_type
) == TYPE_PRECISION (type
))
733 /* If the precision we want is between the source and result
734 precisions of the existing cast, try splitting the cast into
735 two and tapping into a mid-way point. */
736 else if (TYPE_PRECISION (lhs_type
) > TYPE_PRECISION (type
)
737 && TYPE_PRECISION (type
) > TYPE_PRECISION (unprom
->type
))
739 /* In order to preserve the semantics of the original cast,
740 give the mid-way point the same signedness as the input value.
742 It would be possible to use a signed type here instead if
743 TYPE is signed and UNPROM->TYPE is unsigned, but that would
744 make the sign of the midtype sensitive to the order in
745 which we process the statements, since the signedness of
746 TYPE is the signedness required by just one of possibly
747 many users. Also, unsigned promotions are usually as cheap
748 as or cheaper than signed ones, so it's better to keep an
749 unsigned promotion. */
750 tree midtype
= build_nonstandard_integer_type
751 (TYPE_PRECISION (type
), TYPE_UNSIGNED (unprom
->type
));
752 tree vec_midtype
= get_vectype_for_scalar_type (midtype
);
755 input
= vect_recog_temp_ssa_var (midtype
, NULL
);
756 gassign
*new_stmt
= gimple_build_assign (input
, NOP_EXPR
,
758 if (!vect_split_statement (unprom
->caster
, input
, new_stmt
,
760 append_pattern_def_seq (stmt_info
, new_stmt
, vec_midtype
);
764 /* See if we can reuse an existing result. */
765 if (types_compatible_p (type
, TREE_TYPE (input
)))
769 /* We need a new conversion statement. */
770 tree new_op
= vect_recog_temp_ssa_var (type
, NULL
);
771 gassign
*new_stmt
= gimple_build_assign (new_op
, NOP_EXPR
, input
);
773 /* If OP is an external value, see if we can insert the new statement
774 on an incoming edge. */
775 if (input
== unprom
->op
&& unprom
->dt
== vect_external_def
)
776 if (edge e
= vect_get_external_def_edge (stmt_info
->vinfo
, input
))
778 basic_block new_bb
= gsi_insert_on_edge_immediate (e
, new_stmt
);
779 gcc_assert (!new_bb
);
783 /* As a (common) last resort, add the statement to the pattern itself. */
784 append_pattern_def_seq (stmt_info
, new_stmt
, vectype
);
788 /* Invoke vect_convert_input for N elements of UNPROM and store the
789 result in the corresponding elements of RESULT. */
792 vect_convert_inputs (stmt_vec_info stmt_info
, unsigned int n
,
793 tree
*result
, tree type
, vect_unpromoted_value
*unprom
,
796 for (unsigned int i
= 0; i
< n
; ++i
)
799 for (j
= 0; j
< i
; ++j
)
800 if (unprom
[j
].op
== unprom
[i
].op
)
803 result
[i
] = result
[j
];
805 result
[i
] = vect_convert_input (stmt_info
, type
, &unprom
[i
], vectype
);
809 /* The caller has created a (possibly empty) sequence of pattern definition
810 statements followed by a single statement PATTERN_STMT. Cast the result
811 of this final statement to TYPE. If a new statement is needed, add
812 PATTERN_STMT to the end of STMT_INFO's pattern definition statements
813 and return the new statement, otherwise return PATTERN_STMT as-is.
814 VECITYPE is the vector form of PATTERN_STMT's result type. */
817 vect_convert_output (stmt_vec_info stmt_info
, tree type
, gimple
*pattern_stmt
,
820 tree lhs
= gimple_get_lhs (pattern_stmt
);
821 if (!types_compatible_p (type
, TREE_TYPE (lhs
)))
823 append_pattern_def_seq (stmt_info
, pattern_stmt
, vecitype
);
824 tree cast_var
= vect_recog_temp_ssa_var (type
, NULL
);
825 pattern_stmt
= gimple_build_assign (cast_var
, NOP_EXPR
, lhs
);
830 /* Return true if STMT_VINFO describes a reduction for which reassociation
831 is allowed. If STMT_INFO is part of a group, assume that it's part of
832 a reduction chain and optimistically assume that all statements
833 except the last allow reassociation. */
836 vect_reassociating_reduction_p (stmt_vec_info stmt_vinfo
)
838 return (STMT_VINFO_DEF_TYPE (stmt_vinfo
) == vect_reduction_def
839 ? STMT_VINFO_REDUC_TYPE (stmt_vinfo
) != FOLD_LEFT_REDUCTION
840 : REDUC_GROUP_FIRST_ELEMENT (stmt_vinfo
) != NULL
);
843 /* As above, but also require it to have code CODE and to be a reduction
844 in the outermost loop. When returning true, store the operands in
845 *OP0_OUT and *OP1_OUT. */
848 vect_reassociating_reduction_p (stmt_vec_info stmt_info
, tree_code code
,
849 tree
*op0_out
, tree
*op1_out
)
851 loop_vec_info loop_info
= STMT_VINFO_LOOP_VINFO (stmt_info
);
855 gassign
*assign
= dyn_cast
<gassign
*> (stmt_info
->stmt
);
856 if (!assign
|| gimple_assign_rhs_code (assign
) != code
)
859 /* We don't allow changing the order of the computation in the inner-loop
860 when doing outer-loop vectorization. */
861 struct loop
*loop
= LOOP_VINFO_LOOP (loop_info
);
862 if (loop
&& nested_in_vect_loop_p (loop
, stmt_info
))
865 if (!vect_reassociating_reduction_p (stmt_info
))
868 *op0_out
= gimple_assign_rhs1 (assign
);
869 *op1_out
= gimple_assign_rhs2 (assign
);
873 /* Function vect_recog_dot_prod_pattern
875 Try to find the following pattern:
881 sum_0 = phi <init, sum_1>
884 S3 x_T = (TYPE1) x_t;
885 S4 y_T = (TYPE1) y_t;
887 [S6 prod = (TYPE2) prod; #optional]
888 S7 sum_1 = prod + sum_0;
890 where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
891 same size of 'TYPE1' or bigger. This is a special case of a reduction
896 * STMT_VINFO: The stmt from which the pattern search begins. In the
897 example, when this function is called with S7, the pattern {S3,S4,S5,S6,S7}
902 * TYPE_OUT: The type of the output of this pattern.
904 * Return value: A new stmt that will be used to replace the sequence of
905 stmts that constitute the pattern. In this case it will be:
906 WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
908 Note: The dot-prod idiom is a widening reduction pattern that is
909 vectorized without preserving all the intermediate results. It
910 produces only N/2 (widened) results (by summing up pairs of
911 intermediate results) rather than all N results. Therefore, we
912 cannot allow this pattern when we want to get all the results and in
913 the correct order (as is the case when this computation is in an
914 inner-loop nested in an outer-loop that us being vectorized). */
917 vect_recog_dot_prod_pattern (stmt_vec_info stmt_vinfo
, tree
*type_out
)
920 gimple
*last_stmt
= stmt_vinfo
->stmt
;
921 vec_info
*vinfo
= stmt_vinfo
->vinfo
;
922 tree type
, half_type
;
923 gimple
*pattern_stmt
;
926 /* Look for the following pattern
930 DDPROD = (TYPE2) DPROD;
931 sum_1 = DDPROD + sum_0;
933 - DX is double the size of X
934 - DY is double the size of Y
935 - DX, DY, DPROD all have the same type
936 - sum is the same size of DPROD or bigger
937 - sum has been recognized as a reduction variable.
939 This is equivalent to:
940 DPROD = X w* Y; #widen mult
941 sum_1 = DPROD w+ sum_0; #widen summation
943 DPROD = X w* Y; #widen mult
944 sum_1 = DPROD + sum_0; #summation
947 /* Starting from LAST_STMT, follow the defs of its uses in search
948 of the above pattern. */
950 if (!vect_reassociating_reduction_p (stmt_vinfo
, PLUS_EXPR
,
954 type
= gimple_expr_type (last_stmt
);
956 vect_unpromoted_value unprom_mult
;
957 oprnd0
= vect_look_through_possible_promotion (vinfo
, oprnd0
, &unprom_mult
);
959 /* So far so good. Since last_stmt was detected as a (summation) reduction,
960 we know that oprnd1 is the reduction variable (defined by a loop-header
961 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
962 Left to check that oprnd0 is defined by a (widen_)mult_expr */
966 stmt_vec_info mult_vinfo
= vect_get_internal_def (vinfo
, oprnd0
);
970 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
971 inside the loop (in case we are analyzing an outer-loop). */
972 vect_unpromoted_value unprom0
[2];
973 if (!vect_widened_op_tree (mult_vinfo
, MULT_EXPR
, WIDEN_MULT_EXPR
,
974 false, 2, unprom0
, &half_type
))
977 /* If there are two widening operations, make sure they agree on
978 the sign of the extension. */
979 if (TYPE_PRECISION (unprom_mult
.type
) != TYPE_PRECISION (type
)
980 && TYPE_SIGN (unprom_mult
.type
) != TYPE_SIGN (half_type
))
983 vect_pattern_detected ("vect_recog_dot_prod_pattern", last_stmt
);
986 if (!vect_supportable_direct_optab_p (type
, DOT_PROD_EXPR
, half_type
,
987 type_out
, &half_vectype
))
990 /* Get the inputs in the appropriate types. */
992 vect_convert_inputs (stmt_vinfo
, 2, mult_oprnd
, half_type
,
993 unprom0
, half_vectype
);
995 var
= vect_recog_temp_ssa_var (type
, NULL
);
996 pattern_stmt
= gimple_build_assign (var
, DOT_PROD_EXPR
,
997 mult_oprnd
[0], mult_oprnd
[1], oprnd1
);
1003 /* Function vect_recog_sad_pattern
1005 Try to find the following Sum of Absolute Difference (SAD) pattern:
1008 signed TYPE1 diff, abs_diff;
1011 sum_0 = phi <init, sum_1>
1014 S3 x_T = (TYPE1) x_t;
1015 S4 y_T = (TYPE1) y_t;
1016 S5 diff = x_T - y_T;
1017 S6 abs_diff = ABS_EXPR <diff>;
1018 [S7 abs_diff = (TYPE2) abs_diff; #optional]
1019 S8 sum_1 = abs_diff + sum_0;
1021 where 'TYPE1' is at least double the size of type 'type', and 'TYPE2' is the
1022 same size of 'TYPE1' or bigger. This is a special case of a reduction
1027 * STMT_VINFO: The stmt from which the pattern search begins. In the
1028 example, when this function is called with S8, the pattern
1029 {S3,S4,S5,S6,S7,S8} will be detected.
1033 * TYPE_OUT: The type of the output of this pattern.
1035 * Return value: A new stmt that will be used to replace the sequence of
1036 stmts that constitute the pattern. In this case it will be:
1037 SAD_EXPR <x_t, y_t, sum_0>
1041 vect_recog_sad_pattern (stmt_vec_info stmt_vinfo
, tree
*type_out
)
1043 gimple
*last_stmt
= stmt_vinfo
->stmt
;
1044 vec_info
*vinfo
= stmt_vinfo
->vinfo
;
1047 /* Look for the following pattern
1051 DAD = ABS_EXPR <DDIFF>;
1052 DDPROD = (TYPE2) DPROD;
1053 sum_1 = DAD + sum_0;
1055 - DX is at least double the size of X
1056 - DY is at least double the size of Y
1057 - DX, DY, DDIFF, DAD all have the same type
1058 - sum is the same size of DAD or bigger
1059 - sum has been recognized as a reduction variable.
1061 This is equivalent to:
1062 DDIFF = X w- Y; #widen sub
1063 DAD = ABS_EXPR <DDIFF>;
1064 sum_1 = DAD w+ sum_0; #widen summation
1066 DDIFF = X w- Y; #widen sub
1067 DAD = ABS_EXPR <DDIFF>;
1068 sum_1 = DAD + sum_0; #summation
1071 /* Starting from LAST_STMT, follow the defs of its uses in search
1072 of the above pattern. */
1074 tree plus_oprnd0
, plus_oprnd1
;
1075 if (!vect_reassociating_reduction_p (stmt_vinfo
, PLUS_EXPR
,
1076 &plus_oprnd0
, &plus_oprnd1
))
1079 tree sum_type
= gimple_expr_type (last_stmt
);
1081 /* Any non-truncating sequence of conversions is OK here, since
1082 with a successful match, the result of the ABS(U) is known to fit
1083 within the nonnegative range of the result type. (It cannot be the
1084 negative of the minimum signed value due to the range of the widening
1086 vect_unpromoted_value unprom_abs
;
1087 plus_oprnd0
= vect_look_through_possible_promotion (vinfo
, plus_oprnd0
,
1090 /* So far so good. Since last_stmt was detected as a (summation) reduction,
1091 we know that plus_oprnd1 is the reduction variable (defined by a loop-header
1092 phi), and plus_oprnd0 is an ssa-name defined by a stmt in the loop body.
1093 Then check that plus_oprnd0 is defined by an abs_expr. */
1098 stmt_vec_info abs_stmt_vinfo
= vect_get_internal_def (vinfo
, plus_oprnd0
);
1099 if (!abs_stmt_vinfo
)
1102 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
1103 inside the loop (in case we are analyzing an outer-loop). */
1104 gassign
*abs_stmt
= dyn_cast
<gassign
*> (abs_stmt_vinfo
->stmt
);
1106 || (gimple_assign_rhs_code (abs_stmt
) != ABS_EXPR
1107 && gimple_assign_rhs_code (abs_stmt
) != ABSU_EXPR
))
1110 tree abs_oprnd
= gimple_assign_rhs1 (abs_stmt
);
1111 tree abs_type
= TREE_TYPE (abs_oprnd
);
1112 if (TYPE_UNSIGNED (abs_type
))
1115 /* Peel off conversions from the ABS input. This can involve sign
1116 changes (e.g. from an unsigned subtraction to a signed ABS input)
1117 or signed promotion, but it can't include unsigned promotion.
1118 (Note that ABS of an unsigned promotion should have been folded
1119 away before now anyway.) */
1120 vect_unpromoted_value unprom_diff
;
1121 abs_oprnd
= vect_look_through_possible_promotion (vinfo
, abs_oprnd
,
1125 if (TYPE_PRECISION (unprom_diff
.type
) != TYPE_PRECISION (abs_type
)
1126 && TYPE_UNSIGNED (unprom_diff
.type
))
1129 /* We then detect if the operand of abs_expr is defined by a minus_expr. */
1130 stmt_vec_info diff_stmt_vinfo
= vect_get_internal_def (vinfo
, abs_oprnd
);
1131 if (!diff_stmt_vinfo
)
1134 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
1135 inside the loop (in case we are analyzing an outer-loop). */
1136 vect_unpromoted_value unprom
[2];
1137 if (!vect_widened_op_tree (diff_stmt_vinfo
, MINUS_EXPR
, MINUS_EXPR
,
1138 false, 2, unprom
, &half_type
))
1141 vect_pattern_detected ("vect_recog_sad_pattern", last_stmt
);
1144 if (!vect_supportable_direct_optab_p (sum_type
, SAD_EXPR
, half_type
,
1145 type_out
, &half_vectype
))
1148 /* Get the inputs to the SAD_EXPR in the appropriate types. */
1150 vect_convert_inputs (stmt_vinfo
, 2, sad_oprnd
, half_type
,
1151 unprom
, half_vectype
);
1153 tree var
= vect_recog_temp_ssa_var (sum_type
, NULL
);
1154 gimple
*pattern_stmt
= gimple_build_assign (var
, SAD_EXPR
, sad_oprnd
[0],
1155 sad_oprnd
[1], plus_oprnd1
);
1157 return pattern_stmt
;
1160 /* Recognize an operation that performs ORIG_CODE on widened inputs,
1161 so that it can be treated as though it had the form:
1165 HALF_TYPE a_cast = (HALF_TYPE) a; // possible no-op
1166 HALF_TYPE b_cast = (HALF_TYPE) b; // possible no-op
1167 | RES_TYPE a_extend = (RES_TYPE) a_cast; // promotion from HALF_TYPE
1168 | RES_TYPE b_extend = (RES_TYPE) b_cast; // promotion from HALF_TYPE
1169 | RES_TYPE res = a_extend ORIG_CODE b_extend;
1171 Try to replace the pattern with:
1175 HALF_TYPE a_cast = (HALF_TYPE) a; // possible no-op
1176 HALF_TYPE b_cast = (HALF_TYPE) b; // possible no-op
1177 | EXT_TYPE ext = a_cast WIDE_CODE b_cast;
1178 | RES_TYPE res = (EXT_TYPE) ext; // possible no-op
1180 where EXT_TYPE is wider than HALF_TYPE but has the same signedness.
1182 SHIFT_P is true if ORIG_CODE and WIDE_CODE are shifts. NAME is the
1183 name of the pattern being matched, for dump purposes. */
1186 vect_recog_widen_op_pattern (stmt_vec_info last_stmt_info
, tree
*type_out
,
1187 tree_code orig_code
, tree_code wide_code
,
1188 bool shift_p
, const char *name
)
1190 gimple
*last_stmt
= last_stmt_info
->stmt
;
1192 vect_unpromoted_value unprom
[2];
1194 if (!vect_widened_op_tree (last_stmt_info
, orig_code
, orig_code
,
1195 shift_p
, 2, unprom
, &half_type
))
1198 /* Pattern detected. */
1199 vect_pattern_detected (name
, last_stmt
);
1201 tree type
= gimple_expr_type (last_stmt
);
1203 if (TYPE_PRECISION (type
) != TYPE_PRECISION (half_type
) * 2
1204 || TYPE_UNSIGNED (type
) != TYPE_UNSIGNED (half_type
))
1205 itype
= build_nonstandard_integer_type (TYPE_PRECISION (half_type
) * 2,
1206 TYPE_UNSIGNED (half_type
));
1208 /* Check target support */
1209 tree vectype
= get_vectype_for_scalar_type (half_type
);
1210 tree vecitype
= get_vectype_for_scalar_type (itype
);
1211 enum tree_code dummy_code
;
1213 auto_vec
<tree
> dummy_vec
;
1216 || !supportable_widening_operation (wide_code
, last_stmt_info
,
1218 &dummy_code
, &dummy_code
,
1219 &dummy_int
, &dummy_vec
))
1222 *type_out
= get_vectype_for_scalar_type (type
);
1227 vect_convert_inputs (last_stmt_info
, 2, oprnd
, half_type
, unprom
, vectype
);
1229 tree var
= vect_recog_temp_ssa_var (itype
, NULL
);
1230 gimple
*pattern_stmt
= gimple_build_assign (var
, wide_code
,
1231 oprnd
[0], oprnd
[1]);
1233 return vect_convert_output (last_stmt_info
, type
, pattern_stmt
, vecitype
);
1236 /* Try to detect multiplication on widened inputs, converting MULT_EXPR
1237 to WIDEN_MULT_EXPR. See vect_recog_widen_op_pattern for details. */
1240 vect_recog_widen_mult_pattern (stmt_vec_info last_stmt_info
, tree
*type_out
)
1242 return vect_recog_widen_op_pattern (last_stmt_info
, type_out
, MULT_EXPR
,
1243 WIDEN_MULT_EXPR
, false,
1244 "vect_recog_widen_mult_pattern");
1247 /* Function vect_recog_pow_pattern
1249 Try to find the following pattern:
1253 with POW being one of pow, powf, powi, powif and N being
1258 * STMT_VINFO: The stmt from which the pattern search begins.
1262 * TYPE_OUT: The type of the output of this pattern.
1264 * Return value: A new stmt that will be used to replace the sequence of
1265 stmts that constitute the pattern. In this case it will be:
1272 vect_recog_pow_pattern (stmt_vec_info stmt_vinfo
, tree
*type_out
)
1274 gimple
*last_stmt
= stmt_vinfo
->stmt
;
1279 if (!is_gimple_call (last_stmt
) || gimple_call_lhs (last_stmt
) == NULL
)
1282 switch (gimple_call_combined_fn (last_stmt
))
1292 base
= gimple_call_arg (last_stmt
, 0);
1293 exp
= gimple_call_arg (last_stmt
, 1);
1294 if (TREE_CODE (exp
) != REAL_CST
1295 && TREE_CODE (exp
) != INTEGER_CST
)
1297 if (flag_unsafe_math_optimizations
1298 && TREE_CODE (base
) == REAL_CST
1299 && !gimple_call_internal_p (last_stmt
))
1301 combined_fn log_cfn
;
1302 built_in_function exp_bfn
;
1303 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (last_stmt
)))
1306 log_cfn
= CFN_BUILT_IN_LOG
;
1307 exp_bfn
= BUILT_IN_EXP
;
1310 log_cfn
= CFN_BUILT_IN_LOGF
;
1311 exp_bfn
= BUILT_IN_EXPF
;
1314 log_cfn
= CFN_BUILT_IN_LOGL
;
1315 exp_bfn
= BUILT_IN_EXPL
;
1320 tree logc
= fold_const_call (log_cfn
, TREE_TYPE (base
), base
);
1321 tree exp_decl
= builtin_decl_implicit (exp_bfn
);
1322 /* Optimize pow (C, x) as exp (log (C) * x). Normally match.pd
1323 does that, but if C is a power of 2, we want to use
1324 exp2 (log2 (C) * x) in the non-vectorized version, but for
1325 vectorization we don't have vectorized exp2. */
1327 && TREE_CODE (logc
) == REAL_CST
1329 && lookup_attribute ("omp declare simd",
1330 DECL_ATTRIBUTES (exp_decl
)))
1332 cgraph_node
*node
= cgraph_node::get_create (exp_decl
);
1333 if (node
->simd_clones
== NULL
)
1335 if (targetm
.simd_clone
.compute_vecsize_and_simdlen
== NULL
1336 || node
->definition
)
1338 expand_simd_clones (node
);
1339 if (node
->simd_clones
== NULL
)
1342 *type_out
= get_vectype_for_scalar_type (TREE_TYPE (base
));
1345 tree def
= vect_recog_temp_ssa_var (TREE_TYPE (base
), NULL
);
1346 gimple
*g
= gimple_build_assign (def
, MULT_EXPR
, exp
, logc
);
1347 append_pattern_def_seq (stmt_vinfo
, g
);
1348 tree res
= vect_recog_temp_ssa_var (TREE_TYPE (base
), NULL
);
1349 g
= gimple_build_call (exp_decl
, 1, def
);
1350 gimple_call_set_lhs (g
, res
);
1358 /* We now have a pow or powi builtin function call with a constant
1361 /* Catch squaring. */
1362 if ((tree_fits_shwi_p (exp
)
1363 && tree_to_shwi (exp
) == 2)
1364 || (TREE_CODE (exp
) == REAL_CST
1365 && real_equal (&TREE_REAL_CST (exp
), &dconst2
)))
1367 if (!vect_supportable_direct_optab_p (TREE_TYPE (base
), MULT_EXPR
,
1368 TREE_TYPE (base
), type_out
))
1371 var
= vect_recog_temp_ssa_var (TREE_TYPE (base
), NULL
);
1372 stmt
= gimple_build_assign (var
, MULT_EXPR
, base
, base
);
1376 /* Catch square root. */
1377 if (TREE_CODE (exp
) == REAL_CST
1378 && real_equal (&TREE_REAL_CST (exp
), &dconsthalf
))
1380 *type_out
= get_vectype_for_scalar_type (TREE_TYPE (base
));
1382 && direct_internal_fn_supported_p (IFN_SQRT
, *type_out
,
1383 OPTIMIZE_FOR_SPEED
))
1385 gcall
*stmt
= gimple_build_call_internal (IFN_SQRT
, 1, base
);
1386 var
= vect_recog_temp_ssa_var (TREE_TYPE (base
), stmt
);
1387 gimple_call_set_lhs (stmt
, var
);
1388 gimple_call_set_nothrow (stmt
, true);
1397 /* Function vect_recog_widen_sum_pattern
1399 Try to find the following pattern:
1402 TYPE x_T, sum = init;
1404 sum_0 = phi <init, sum_1>
1406 S2 x_T = (TYPE) x_t;
1407 S3 sum_1 = x_T + sum_0;
1409 where type 'TYPE' is at least double the size of type 'type', i.e - we're
1410 summing elements of type 'type' into an accumulator of type 'TYPE'. This is
1411 a special case of a reduction computation.
1415 * STMT_VINFO: The stmt from which the pattern search begins. In the example,
1416 when this function is called with S3, the pattern {S2,S3} will be detected.
1420 * TYPE_OUT: The type of the output of this pattern.
1422 * Return value: A new stmt that will be used to replace the sequence of
1423 stmts that constitute the pattern. In this case it will be:
1424 WIDEN_SUM <x_t, sum_0>
1426 Note: The widening-sum idiom is a widening reduction pattern that is
1427 vectorized without preserving all the intermediate results. It
1428 produces only N/2 (widened) results (by summing up pairs of
1429 intermediate results) rather than all N results. Therefore, we
1430 cannot allow this pattern when we want to get all the results and in
1431 the correct order (as is the case when this computation is in an
1432 inner-loop nested in an outer-loop that us being vectorized). */
1435 vect_recog_widen_sum_pattern (stmt_vec_info stmt_vinfo
, tree
*type_out
)
1437 gimple
*last_stmt
= stmt_vinfo
->stmt
;
1438 tree oprnd0
, oprnd1
;
1439 vec_info
*vinfo
= stmt_vinfo
->vinfo
;
1441 gimple
*pattern_stmt
;
1444 /* Look for the following pattern
1447 In which DX is at least double the size of X, and sum_1 has been
1448 recognized as a reduction variable.
1451 /* Starting from LAST_STMT, follow the defs of its uses in search
1452 of the above pattern. */
1454 if (!vect_reassociating_reduction_p (stmt_vinfo
, PLUS_EXPR
,
1458 type
= gimple_expr_type (last_stmt
);
1460 /* So far so good. Since last_stmt was detected as a (summation) reduction,
1461 we know that oprnd1 is the reduction variable (defined by a loop-header
1462 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
1463 Left to check that oprnd0 is defined by a cast from type 'type' to type
1466 vect_unpromoted_value unprom0
;
1467 if (!vect_look_through_possible_promotion (vinfo
, oprnd0
, &unprom0
)
1468 || TYPE_PRECISION (unprom0
.type
) * 2 > TYPE_PRECISION (type
))
1471 vect_pattern_detected ("vect_recog_widen_sum_pattern", last_stmt
);
1473 if (!vect_supportable_direct_optab_p (type
, WIDEN_SUM_EXPR
, unprom0
.type
,
1477 var
= vect_recog_temp_ssa_var (type
, NULL
);
1478 pattern_stmt
= gimple_build_assign (var
, WIDEN_SUM_EXPR
, unprom0
.op
, oprnd1
);
1480 return pattern_stmt
;
1483 /* Recognize cases in which an operation is performed in one type WTYPE
1484 but could be done more efficiently in a narrower type NTYPE. For example,
1487 ATYPE a; // narrower than NTYPE
1488 BTYPE b; // narrower than NTYPE
1489 WTYPE aw = (WTYPE) a;
1490 WTYPE bw = (WTYPE) b;
1491 WTYPE res = aw + bw; // only uses of aw and bw
1493 then it would be more efficient to do:
1495 NTYPE an = (NTYPE) a;
1496 NTYPE bn = (NTYPE) b;
1497 NTYPE resn = an + bn;
1498 WTYPE res = (WTYPE) resn;
1500 Other situations include things like:
1502 ATYPE a; // NTYPE or narrower
1503 WTYPE aw = (WTYPE) a;
1506 when only "(NTYPE) res" is significant. In that case it's more efficient
1507 to truncate "b" and do the operation on NTYPE instead:
1509 NTYPE an = (NTYPE) a;
1510 NTYPE bn = (NTYPE) b; // truncation
1511 NTYPE resn = an + bn;
1512 WTYPE res = (WTYPE) resn;
1514 All users of "res" should then use "resn" instead, making the final
1515 statement dead (not marked as relevant). The final statement is still
1516 needed to maintain the type correctness of the IR.
1518 vect_determine_precisions has already determined the minimum
1519 precison of the operation and the minimum precision required
1520 by users of the result. */
1523 vect_recog_over_widening_pattern (stmt_vec_info last_stmt_info
, tree
*type_out
)
1525 gassign
*last_stmt
= dyn_cast
<gassign
*> (last_stmt_info
->stmt
);
1529 /* See whether we have found that this operation can be done on a
1530 narrower type without changing its semantics. */
1531 unsigned int new_precision
= last_stmt_info
->operation_precision
;
1535 vec_info
*vinfo
= last_stmt_info
->vinfo
;
1536 tree lhs
= gimple_assign_lhs (last_stmt
);
1537 tree type
= TREE_TYPE (lhs
);
1538 tree_code code
= gimple_assign_rhs_code (last_stmt
);
1540 /* Keep the first operand of a COND_EXPR as-is: only the other two
1541 operands are interesting. */
1542 unsigned int first_op
= (code
== COND_EXPR
? 2 : 1);
1544 /* Check the operands. */
1545 unsigned int nops
= gimple_num_ops (last_stmt
) - first_op
;
1546 auto_vec
<vect_unpromoted_value
, 3> unprom (nops
);
1547 unprom
.quick_grow (nops
);
1548 unsigned int min_precision
= 0;
1549 bool single_use_p
= false;
1550 for (unsigned int i
= 0; i
< nops
; ++i
)
1552 tree op
= gimple_op (last_stmt
, first_op
+ i
);
1553 if (TREE_CODE (op
) == INTEGER_CST
)
1554 unprom
[i
].set_op (op
, vect_constant_def
);
1555 else if (TREE_CODE (op
) == SSA_NAME
)
1557 bool op_single_use_p
= true;
1558 if (!vect_look_through_possible_promotion (vinfo
, op
, &unprom
[i
],
1563 (1) N bits of the result are needed;
1564 (2) all inputs are widened from M<N bits; and
1565 (3) one operand OP is a single-use SSA name
1567 we can shift the M->N widening from OP to the output
1568 without changing the number or type of extensions involved.
1569 This then reduces the number of copies of STMT_INFO.
1571 If instead of (3) more than one operand is a single-use SSA name,
1572 shifting the extension to the output is even more of a win.
1576 (1) N bits of the result are needed;
1577 (2) one operand OP2 is widened from M2<N bits;
1578 (3) another operand OP1 is widened from M1<M2 bits; and
1579 (4) both OP1 and OP2 are single-use
1581 the choice is between:
1583 (a) truncating OP2 to M1, doing the operation on M1,
1584 and then widening the result to N
1586 (b) widening OP1 to M2, doing the operation on M2, and then
1587 widening the result to N
1589 Both shift the M2->N widening of the inputs to the output.
1590 (a) additionally shifts the M1->M2 widening to the output;
1591 it requires fewer copies of STMT_INFO but requires an extra
1594 Which is better will depend on the complexity and cost of
1595 STMT_INFO, which is hard to predict at this stage. However,
1596 a clear tie-breaker in favor of (b) is the fact that the
1597 truncation in (a) increases the length of the operation chain.
1599 If instead of (4) only one of OP1 or OP2 is single-use,
1600 (b) is still a win over doing the operation in N bits:
1601 it still shifts the M2->N widening on the single-use operand
1602 to the output and reduces the number of STMT_INFO copies.
1604 If neither operand is single-use then operating on fewer than
1605 N bits might lead to more extensions overall. Whether it does
1606 or not depends on global information about the vectorization
1607 region, and whether that's a good trade-off would again
1608 depend on the complexity and cost of the statements involved,
1609 as well as things like register pressure that are not normally
1610 modelled at this stage. We therefore ignore these cases
1611 and just optimize the clear single-use wins above.
1613 Thus we take the maximum precision of the unpromoted operands
1614 and record whether any operand is single-use. */
1615 if (unprom
[i
].dt
== vect_internal_def
)
1617 min_precision
= MAX (min_precision
,
1618 TYPE_PRECISION (unprom
[i
].type
));
1619 single_use_p
|= op_single_use_p
;
1624 /* Although the operation could be done in operation_precision, we have
1625 to balance that against introducing extra truncations or extensions.
1626 Calculate the minimum precision that can be handled efficiently.
1628 The loop above determined that the operation could be handled
1629 efficiently in MIN_PRECISION if SINGLE_USE_P; this would shift an
1630 extension from the inputs to the output without introducing more
1631 instructions, and would reduce the number of instructions required
1632 for STMT_INFO itself.
1634 vect_determine_precisions has also determined that the result only
1635 needs min_output_precision bits. Truncating by a factor of N times
1636 requires a tree of N - 1 instructions, so if TYPE is N times wider
1637 than min_output_precision, doing the operation in TYPE and truncating
1638 the result requires N + (N - 1) = 2N - 1 instructions per output vector.
1641 - truncating the input to a unary operation and doing the operation
1642 in the new type requires at most N - 1 + 1 = N instructions per
1645 - doing the same for a binary operation requires at most
1646 (N - 1) * 2 + 1 = 2N - 1 instructions per output vector
1648 Both unary and binary operations require fewer instructions than
1649 this if the operands were extended from a suitable truncated form.
1650 Thus there is usually nothing to lose by doing operations in
1651 min_output_precision bits, but there can be something to gain. */
1653 min_precision
= last_stmt_info
->min_output_precision
;
1655 min_precision
= MIN (min_precision
, last_stmt_info
->min_output_precision
);
1657 /* Apply the minimum efficient precision we just calculated. */
1658 if (new_precision
< min_precision
)
1659 new_precision
= min_precision
;
1660 if (new_precision
>= TYPE_PRECISION (type
))
1663 vect_pattern_detected ("vect_recog_over_widening_pattern", last_stmt
);
1665 *type_out
= get_vectype_for_scalar_type (type
);
1669 /* We've found a viable pattern. Get the new type of the operation. */
1670 bool unsigned_p
= (last_stmt_info
->operation_sign
== UNSIGNED
);
1671 tree new_type
= build_nonstandard_integer_type (new_precision
, unsigned_p
);
1673 /* If we're truncating an operation, we need to make sure that we
1674 don't introduce new undefined overflow. The codes tested here are
1675 a subset of those accepted by vect_truncatable_operation_p. */
1676 tree op_type
= new_type
;
1677 if (TYPE_OVERFLOW_UNDEFINED (new_type
)
1678 && (code
== PLUS_EXPR
|| code
== MINUS_EXPR
|| code
== MULT_EXPR
))
1679 op_type
= build_nonstandard_integer_type (new_precision
, true);
1681 /* We specifically don't check here whether the target supports the
1682 new operation, since it might be something that a later pattern
1683 wants to rewrite anyway. If targets have a minimum element size
1684 for some optabs, we should pattern-match smaller ops to larger ops
1685 where beneficial. */
1686 tree new_vectype
= get_vectype_for_scalar_type (new_type
);
1687 tree op_vectype
= get_vectype_for_scalar_type (op_type
);
1688 if (!new_vectype
|| !op_vectype
)
1691 if (dump_enabled_p ())
1692 dump_printf_loc (MSG_NOTE
, vect_location
, "demoting %T to %T\n",
1695 /* Calculate the rhs operands for an operation on OP_TYPE. */
1697 for (unsigned int i
= 1; i
< first_op
; ++i
)
1698 ops
[i
- 1] = gimple_op (last_stmt
, i
);
1699 vect_convert_inputs (last_stmt_info
, nops
, &ops
[first_op
- 1],
1700 op_type
, &unprom
[0], op_vectype
);
1702 /* Use the operation to produce a result of type OP_TYPE. */
1703 tree new_var
= vect_recog_temp_ssa_var (op_type
, NULL
);
1704 gimple
*pattern_stmt
= gimple_build_assign (new_var
, code
,
1705 ops
[0], ops
[1], ops
[2]);
1706 gimple_set_location (pattern_stmt
, gimple_location (last_stmt
));
1708 if (dump_enabled_p ())
1709 dump_printf_loc (MSG_NOTE
, vect_location
,
1710 "created pattern stmt: %G", pattern_stmt
);
1712 /* Convert back to the original signedness, if OP_TYPE is different
1714 if (op_type
!= new_type
)
1715 pattern_stmt
= vect_convert_output (last_stmt_info
, new_type
,
1716 pattern_stmt
, op_vectype
);
1718 /* Promote the result to the original type. */
1719 pattern_stmt
= vect_convert_output (last_stmt_info
, type
,
1720 pattern_stmt
, new_vectype
);
1722 return pattern_stmt
;
1725 /* Recognize the patterns:
1727 ATYPE a; // narrower than TYPE
1728 BTYPE b; // narrower than TYPE
1729 (1) TYPE avg = ((TYPE) a + (TYPE) b) >> 1;
1730 or (2) TYPE avg = ((TYPE) a + (TYPE) b + 1) >> 1;
1732 where only the bottom half of avg is used. Try to transform them into:
1734 (1) NTYPE avg' = .AVG_FLOOR ((NTYPE) a, (NTYPE) b);
1735 or (2) NTYPE avg' = .AVG_CEIL ((NTYPE) a, (NTYPE) b);
1739 TYPE avg = (TYPE) avg';
1741 where NTYPE is no wider than half of TYPE. Since only the bottom half
1742 of avg is used, all or part of the cast of avg' should become redundant. */
1745 vect_recog_average_pattern (stmt_vec_info last_stmt_info
, tree
*type_out
)
1747 /* Check for a shift right by one bit. */
1748 gassign
*last_stmt
= dyn_cast
<gassign
*> (last_stmt_info
->stmt
);
1749 vec_info
*vinfo
= last_stmt_info
->vinfo
;
1751 || gimple_assign_rhs_code (last_stmt
) != RSHIFT_EXPR
1752 || !integer_onep (gimple_assign_rhs2 (last_stmt
)))
1755 /* Check that the shift result is wider than the users of the
1756 result need (i.e. that narrowing would be a natural choice). */
1757 tree lhs
= gimple_assign_lhs (last_stmt
);
1758 tree type
= TREE_TYPE (lhs
);
1759 unsigned int target_precision
1760 = vect_element_precision (last_stmt_info
->min_output_precision
);
1761 if (!INTEGRAL_TYPE_P (type
) || target_precision
>= TYPE_PRECISION (type
))
1764 /* Look through any change in sign on the shift input. */
1765 tree rshift_rhs
= gimple_assign_rhs1 (last_stmt
);
1766 vect_unpromoted_value unprom_plus
;
1767 rshift_rhs
= vect_look_through_possible_promotion (vinfo
, rshift_rhs
,
1770 || TYPE_PRECISION (TREE_TYPE (rshift_rhs
)) != TYPE_PRECISION (type
))
1773 /* Get the definition of the shift input. */
1774 stmt_vec_info plus_stmt_info
= vect_get_internal_def (vinfo
, rshift_rhs
);
1775 if (!plus_stmt_info
)
1778 /* Check whether the shift input can be seen as a tree of additions on
1779 2 or 3 widened inputs.
1781 Note that the pattern should be a win even if the result of one or
1782 more additions is reused elsewhere: if the pattern matches, we'd be
1783 replacing 2N RSHIFT_EXPRs and N VEC_PACK_*s with N IFN_AVG_*s. */
1784 internal_fn ifn
= IFN_AVG_FLOOR
;
1785 vect_unpromoted_value unprom
[3];
1787 unsigned int nops
= vect_widened_op_tree (plus_stmt_info
, PLUS_EXPR
,
1788 PLUS_EXPR
, false, 3,
1794 /* Check that one operand is 1. */
1796 for (i
= 0; i
< 3; ++i
)
1797 if (integer_onep (unprom
[i
].op
))
1801 /* Throw away the 1 operand and keep the other two. */
1803 unprom
[i
] = unprom
[2];
1807 vect_pattern_detected ("vect_recog_average_pattern", last_stmt
);
1811 (a) the operation can be viewed as:
1813 TYPE widened0 = (TYPE) UNPROM[0];
1814 TYPE widened1 = (TYPE) UNPROM[1];
1815 TYPE tmp1 = widened0 + widened1 {+ 1};
1816 TYPE tmp2 = tmp1 >> 1; // LAST_STMT_INFO
1818 (b) the first two statements are equivalent to:
1820 TYPE widened0 = (TYPE) (NEW_TYPE) UNPROM[0];
1821 TYPE widened1 = (TYPE) (NEW_TYPE) UNPROM[1];
1823 (c) vect_recog_over_widening_pattern has already tried to narrow TYPE
1826 (d) all the operations can be performed correctly at twice the width of
1827 NEW_TYPE, due to the nature of the average operation; and
1829 (e) users of the result of the right shift need only TARGET_PRECISION
1830 bits, where TARGET_PRECISION is no more than half of TYPE's
1833 Under these circumstances, the only situation in which NEW_TYPE
1834 could be narrower than TARGET_PRECISION is if widened0, widened1
1835 and an addition result are all used more than once. Thus we can
1836 treat any widening of UNPROM[0] and UNPROM[1] to TARGET_PRECISION
1837 as "free", whereas widening the result of the average instruction
1838 from NEW_TYPE to TARGET_PRECISION would be a new operation. It's
1839 therefore better not to go narrower than TARGET_PRECISION. */
1840 if (TYPE_PRECISION (new_type
) < target_precision
)
1841 new_type
= build_nonstandard_integer_type (target_precision
,
1842 TYPE_UNSIGNED (new_type
));
1844 /* Check for target support. */
1845 tree new_vectype
= get_vectype_for_scalar_type (new_type
);
1847 || !direct_internal_fn_supported_p (ifn
, new_vectype
,
1848 OPTIMIZE_FOR_SPEED
))
1851 /* The IR requires a valid vector type for the cast result, even though
1852 it's likely to be discarded. */
1853 *type_out
= get_vectype_for_scalar_type (type
);
1857 /* Generate the IFN_AVG* call. */
1858 tree new_var
= vect_recog_temp_ssa_var (new_type
, NULL
);
1860 vect_convert_inputs (last_stmt_info
, 2, new_ops
, new_type
,
1861 unprom
, new_vectype
);
1862 gcall
*average_stmt
= gimple_build_call_internal (ifn
, 2, new_ops
[0],
1864 gimple_call_set_lhs (average_stmt
, new_var
);
1865 gimple_set_location (average_stmt
, gimple_location (last_stmt
));
1867 if (dump_enabled_p ())
1868 dump_printf_loc (MSG_NOTE
, vect_location
,
1869 "created pattern stmt: %G", average_stmt
);
1871 return vect_convert_output (last_stmt_info
, type
, average_stmt
, new_vectype
);
1874 /* Recognize cases in which the input to a cast is wider than its
1875 output, and the input is fed by a widening operation. Fold this
1876 by removing the unnecessary intermediate widening. E.g.:
1879 unsigned int b = (unsigned int) a;
1880 unsigned short c = (unsigned short) b;
1884 unsigned short c = (unsigned short) a;
1886 Although this is rare in input IR, it is an expected side-effect
1887 of the over-widening pattern above.
1889 This is beneficial also for integer-to-float conversions, if the
1890 widened integer has more bits than the float, and if the unwidened
1894 vect_recog_cast_forwprop_pattern (stmt_vec_info last_stmt_info
, tree
*type_out
)
1896 /* Check for a cast, including an integer-to-float conversion. */
1897 gassign
*last_stmt
= dyn_cast
<gassign
*> (last_stmt_info
->stmt
);
1900 tree_code code
= gimple_assign_rhs_code (last_stmt
);
1901 if (!CONVERT_EXPR_CODE_P (code
) && code
!= FLOAT_EXPR
)
1904 /* Make sure that the rhs is a scalar with a natural bitsize. */
1905 tree lhs
= gimple_assign_lhs (last_stmt
);
1908 tree lhs_type
= TREE_TYPE (lhs
);
1909 scalar_mode lhs_mode
;
1910 if (VECT_SCALAR_BOOLEAN_TYPE_P (lhs_type
)
1911 || !is_a
<scalar_mode
> (TYPE_MODE (lhs_type
), &lhs_mode
))
1914 /* Check for a narrowing operation (from a vector point of view). */
1915 tree rhs
= gimple_assign_rhs1 (last_stmt
);
1916 tree rhs_type
= TREE_TYPE (rhs
);
1917 if (!INTEGRAL_TYPE_P (rhs_type
)
1918 || VECT_SCALAR_BOOLEAN_TYPE_P (rhs_type
)
1919 || TYPE_PRECISION (rhs_type
) <= GET_MODE_BITSIZE (lhs_mode
))
1922 /* Try to find an unpromoted input. */
1923 vec_info
*vinfo
= last_stmt_info
->vinfo
;
1924 vect_unpromoted_value unprom
;
1925 if (!vect_look_through_possible_promotion (vinfo
, rhs
, &unprom
)
1926 || TYPE_PRECISION (unprom
.type
) >= TYPE_PRECISION (rhs_type
))
1929 /* If the bits above RHS_TYPE matter, make sure that they're the
1930 same when extending from UNPROM as they are when extending from RHS. */
1931 if (!INTEGRAL_TYPE_P (lhs_type
)
1932 && TYPE_SIGN (rhs_type
) != TYPE_SIGN (unprom
.type
))
1935 /* We can get the same result by casting UNPROM directly, to avoid
1936 the unnecessary widening and narrowing. */
1937 vect_pattern_detected ("vect_recog_cast_forwprop_pattern", last_stmt
);
1939 *type_out
= get_vectype_for_scalar_type (lhs_type
);
1943 tree new_var
= vect_recog_temp_ssa_var (lhs_type
, NULL
);
1944 gimple
*pattern_stmt
= gimple_build_assign (new_var
, code
, unprom
.op
);
1945 gimple_set_location (pattern_stmt
, gimple_location (last_stmt
));
1947 return pattern_stmt
;
1950 /* Try to detect a shift left of a widened input, converting LSHIFT_EXPR
1951 to WIDEN_LSHIFT_EXPR. See vect_recog_widen_op_pattern for details. */
1954 vect_recog_widen_shift_pattern (stmt_vec_info last_stmt_info
, tree
*type_out
)
1956 return vect_recog_widen_op_pattern (last_stmt_info
, type_out
, LSHIFT_EXPR
,
1957 WIDEN_LSHIFT_EXPR
, true,
1958 "vect_recog_widen_shift_pattern");
1961 /* Detect a rotate pattern wouldn't be otherwise vectorized:
1965 S0 a_t = b_t r<< c_t;
1969 * STMT_VINFO: The stmt from which the pattern search begins,
1970 i.e. the shift/rotate stmt. The original stmt (S0) is replaced
1974 S2 e_t = d_t & (B - 1);
1975 S3 f_t = b_t << c_t;
1976 S4 g_t = b_t >> e_t;
1979 where B is element bitsize of type.
1983 * TYPE_OUT: The type of the output of this pattern.
1985 * Return value: A new stmt that will be used to replace the rotate
1989 vect_recog_rotate_pattern (stmt_vec_info stmt_vinfo
, tree
*type_out
)
1991 gimple
*last_stmt
= stmt_vinfo
->stmt
;
1992 tree oprnd0
, oprnd1
, lhs
, var
, var1
, var2
, vectype
, type
, stype
, def
, def2
;
1993 gimple
*pattern_stmt
, *def_stmt
;
1994 enum tree_code rhs_code
;
1995 vec_info
*vinfo
= stmt_vinfo
->vinfo
;
1996 enum vect_def_type dt
;
1997 optab optab1
, optab2
;
1998 edge ext_def
= NULL
;
2000 if (!is_gimple_assign (last_stmt
))
2003 rhs_code
= gimple_assign_rhs_code (last_stmt
);
2013 lhs
= gimple_assign_lhs (last_stmt
);
2014 oprnd0
= gimple_assign_rhs1 (last_stmt
);
2015 type
= TREE_TYPE (oprnd0
);
2016 oprnd1
= gimple_assign_rhs2 (last_stmt
);
2017 if (TREE_CODE (oprnd0
) != SSA_NAME
2018 || TYPE_PRECISION (TREE_TYPE (lhs
)) != TYPE_PRECISION (type
)
2019 || !INTEGRAL_TYPE_P (type
)
2020 || !TYPE_UNSIGNED (type
))
2023 stmt_vec_info def_stmt_info
;
2024 if (!vect_is_simple_use (oprnd1
, vinfo
, &dt
, &def_stmt_info
, &def_stmt
))
2027 if (dt
!= vect_internal_def
2028 && dt
!= vect_constant_def
2029 && dt
!= vect_external_def
)
2032 vectype
= get_vectype_for_scalar_type (type
);
2033 if (vectype
== NULL_TREE
)
2036 /* If vector/vector or vector/scalar rotate is supported by the target,
2037 don't do anything here. */
2038 optab1
= optab_for_tree_code (rhs_code
, vectype
, optab_vector
);
2040 && optab_handler (optab1
, TYPE_MODE (vectype
)) != CODE_FOR_nothing
)
2043 if (is_a
<bb_vec_info
> (vinfo
) || dt
!= vect_internal_def
)
2045 optab2
= optab_for_tree_code (rhs_code
, vectype
, optab_scalar
);
2047 && optab_handler (optab2
, TYPE_MODE (vectype
)) != CODE_FOR_nothing
)
2051 /* If vector/vector or vector/scalar shifts aren't supported by the target,
2052 don't do anything here either. */
2053 optab1
= optab_for_tree_code (LSHIFT_EXPR
, vectype
, optab_vector
);
2054 optab2
= optab_for_tree_code (RSHIFT_EXPR
, vectype
, optab_vector
);
2056 || optab_handler (optab1
, TYPE_MODE (vectype
)) == CODE_FOR_nothing
2058 || optab_handler (optab2
, TYPE_MODE (vectype
)) == CODE_FOR_nothing
)
2060 if (! is_a
<bb_vec_info
> (vinfo
) && dt
== vect_internal_def
)
2062 optab1
= optab_for_tree_code (LSHIFT_EXPR
, vectype
, optab_scalar
);
2063 optab2
= optab_for_tree_code (RSHIFT_EXPR
, vectype
, optab_scalar
);
2065 || optab_handler (optab1
, TYPE_MODE (vectype
)) == CODE_FOR_nothing
2067 || optab_handler (optab2
, TYPE_MODE (vectype
)) == CODE_FOR_nothing
)
2071 *type_out
= vectype
;
2073 if (dt
== vect_external_def
2074 && TREE_CODE (oprnd1
) == SSA_NAME
)
2075 ext_def
= vect_get_external_def_edge (vinfo
, oprnd1
);
2078 scalar_int_mode mode
= SCALAR_INT_TYPE_MODE (type
);
2079 if (TREE_CODE (oprnd1
) == INTEGER_CST
2080 || TYPE_MODE (TREE_TYPE (oprnd1
)) == mode
)
2082 else if (def_stmt
&& gimple_assign_cast_p (def_stmt
))
2084 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
2085 if (TYPE_MODE (TREE_TYPE (rhs1
)) == mode
2086 && TYPE_PRECISION (TREE_TYPE (rhs1
))
2087 == TYPE_PRECISION (type
))
2091 if (def
== NULL_TREE
)
2093 def
= vect_recog_temp_ssa_var (type
, NULL
);
2094 def_stmt
= gimple_build_assign (def
, NOP_EXPR
, oprnd1
);
2098 = gsi_insert_on_edge_immediate (ext_def
, def_stmt
);
2099 gcc_assert (!new_bb
);
2102 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2104 stype
= TREE_TYPE (def
);
2105 scalar_int_mode smode
= SCALAR_INT_TYPE_MODE (stype
);
2107 if (TREE_CODE (def
) == INTEGER_CST
)
2109 if (!tree_fits_uhwi_p (def
)
2110 || tree_to_uhwi (def
) >= GET_MODE_PRECISION (mode
)
2111 || integer_zerop (def
))
2113 def2
= build_int_cst (stype
,
2114 GET_MODE_PRECISION (mode
) - tree_to_uhwi (def
));
2118 tree vecstype
= get_vectype_for_scalar_type (stype
);
2120 if (vecstype
== NULL_TREE
)
2122 def2
= vect_recog_temp_ssa_var (stype
, NULL
);
2123 def_stmt
= gimple_build_assign (def2
, NEGATE_EXPR
, def
);
2127 = gsi_insert_on_edge_immediate (ext_def
, def_stmt
);
2128 gcc_assert (!new_bb
);
2131 append_pattern_def_seq (stmt_vinfo
, def_stmt
, vecstype
);
2133 def2
= vect_recog_temp_ssa_var (stype
, NULL
);
2134 tree mask
= build_int_cst (stype
, GET_MODE_PRECISION (smode
) - 1);
2135 def_stmt
= gimple_build_assign (def2
, BIT_AND_EXPR
,
2136 gimple_assign_lhs (def_stmt
), mask
);
2140 = gsi_insert_on_edge_immediate (ext_def
, def_stmt
);
2141 gcc_assert (!new_bb
);
2144 append_pattern_def_seq (stmt_vinfo
, def_stmt
, vecstype
);
2147 var1
= vect_recog_temp_ssa_var (type
, NULL
);
2148 def_stmt
= gimple_build_assign (var1
, rhs_code
== LROTATE_EXPR
2149 ? LSHIFT_EXPR
: RSHIFT_EXPR
,
2151 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2153 var2
= vect_recog_temp_ssa_var (type
, NULL
);
2154 def_stmt
= gimple_build_assign (var2
, rhs_code
== LROTATE_EXPR
2155 ? RSHIFT_EXPR
: LSHIFT_EXPR
,
2157 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2159 /* Pattern detected. */
2160 vect_pattern_detected ("vect_recog_rotate_pattern", last_stmt
);
2162 /* Pattern supported. Create a stmt to be used to replace the pattern. */
2163 var
= vect_recog_temp_ssa_var (type
, NULL
);
2164 pattern_stmt
= gimple_build_assign (var
, BIT_IOR_EXPR
, var1
, var2
);
2166 return pattern_stmt
;
2169 /* Detect a vector by vector shift pattern that wouldn't be otherwise
2177 S3 res_T = b_T op a_t;
2179 where type 'TYPE' is a type with different size than 'type',
2180 and op is <<, >> or rotate.
2185 TYPE b_T, c_T, res_T;
2188 S1 a_t = (type) c_T;
2190 S3 res_T = b_T op a_t;
2194 * STMT_VINFO: The stmt from which the pattern search begins,
2195 i.e. the shift/rotate stmt. The original stmt (S3) is replaced
2196 with a shift/rotate which has same type on both operands, in the
2197 second case just b_T op c_T, in the first case with added cast
2198 from a_t to c_T in STMT_VINFO_PATTERN_DEF_SEQ.
2202 * TYPE_OUT: The type of the output of this pattern.
2204 * Return value: A new stmt that will be used to replace the shift/rotate
2208 vect_recog_vector_vector_shift_pattern (stmt_vec_info stmt_vinfo
,
2211 gimple
*last_stmt
= stmt_vinfo
->stmt
;
2212 tree oprnd0
, oprnd1
, lhs
, var
;
2213 gimple
*pattern_stmt
;
2214 enum tree_code rhs_code
;
2215 vec_info
*vinfo
= stmt_vinfo
->vinfo
;
2217 if (!is_gimple_assign (last_stmt
))
2220 rhs_code
= gimple_assign_rhs_code (last_stmt
);
2232 lhs
= gimple_assign_lhs (last_stmt
);
2233 oprnd0
= gimple_assign_rhs1 (last_stmt
);
2234 oprnd1
= gimple_assign_rhs2 (last_stmt
);
2235 if (TREE_CODE (oprnd0
) != SSA_NAME
2236 || TREE_CODE (oprnd1
) != SSA_NAME
2237 || TYPE_MODE (TREE_TYPE (oprnd0
)) == TYPE_MODE (TREE_TYPE (oprnd1
))
2238 || !type_has_mode_precision_p (TREE_TYPE (oprnd1
))
2239 || TYPE_PRECISION (TREE_TYPE (lhs
))
2240 != TYPE_PRECISION (TREE_TYPE (oprnd0
)))
2243 stmt_vec_info def_vinfo
= vect_get_internal_def (vinfo
, oprnd1
);
2247 *type_out
= get_vectype_for_scalar_type (TREE_TYPE (oprnd0
));
2248 if (*type_out
== NULL_TREE
)
2251 tree def
= NULL_TREE
;
2252 gassign
*def_stmt
= dyn_cast
<gassign
*> (def_vinfo
->stmt
);
2253 if (def_stmt
&& gimple_assign_cast_p (def_stmt
))
2255 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
2256 if (TYPE_MODE (TREE_TYPE (rhs1
)) == TYPE_MODE (TREE_TYPE (oprnd0
))
2257 && TYPE_PRECISION (TREE_TYPE (rhs1
))
2258 == TYPE_PRECISION (TREE_TYPE (oprnd0
)))
2260 if (TYPE_PRECISION (TREE_TYPE (oprnd1
))
2261 >= TYPE_PRECISION (TREE_TYPE (rhs1
)))
2266 = build_low_bits_mask (TREE_TYPE (rhs1
),
2267 TYPE_PRECISION (TREE_TYPE (oprnd1
)));
2268 def
= vect_recog_temp_ssa_var (TREE_TYPE (rhs1
), NULL
);
2269 def_stmt
= gimple_build_assign (def
, BIT_AND_EXPR
, rhs1
, mask
);
2270 tree vecstype
= get_vectype_for_scalar_type (TREE_TYPE (rhs1
));
2271 append_pattern_def_seq (stmt_vinfo
, def_stmt
, vecstype
);
2276 if (def
== NULL_TREE
)
2278 def
= vect_recog_temp_ssa_var (TREE_TYPE (oprnd0
), NULL
);
2279 def_stmt
= gimple_build_assign (def
, NOP_EXPR
, oprnd1
);
2280 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2283 /* Pattern detected. */
2284 vect_pattern_detected ("vect_recog_vector_vector_shift_pattern", last_stmt
);
2286 /* Pattern supported. Create a stmt to be used to replace the pattern. */
2287 var
= vect_recog_temp_ssa_var (TREE_TYPE (oprnd0
), NULL
);
2288 pattern_stmt
= gimple_build_assign (var
, rhs_code
, oprnd0
, def
);
2290 return pattern_stmt
;
2293 /* Return true iff the target has a vector optab implementing the operation
2294 CODE on type VECTYPE. */
2297 target_has_vecop_for_code (tree_code code
, tree vectype
)
2299 optab voptab
= optab_for_tree_code (code
, vectype
, optab_vector
);
2301 && optab_handler (voptab
, TYPE_MODE (vectype
)) != CODE_FOR_nothing
;
2304 /* Verify that the target has optabs of VECTYPE to perform all the steps
2305 needed by the multiplication-by-immediate synthesis algorithm described by
2306 ALG and VAR. If SYNTH_SHIFT_P is true ensure that vector addition is
2307 present. Return true iff the target supports all the steps. */
2310 target_supports_mult_synth_alg (struct algorithm
*alg
, mult_variant var
,
2311 tree vectype
, bool synth_shift_p
)
2313 if (alg
->op
[0] != alg_zero
&& alg
->op
[0] != alg_m
)
2316 bool supports_vminus
= target_has_vecop_for_code (MINUS_EXPR
, vectype
);
2317 bool supports_vplus
= target_has_vecop_for_code (PLUS_EXPR
, vectype
);
2319 if (var
== negate_variant
2320 && !target_has_vecop_for_code (NEGATE_EXPR
, vectype
))
2323 /* If we must synthesize shifts with additions make sure that vector
2324 addition is available. */
2325 if ((var
== add_variant
|| synth_shift_p
) && !supports_vplus
)
2328 for (int i
= 1; i
< alg
->ops
; i
++)
2336 case alg_add_factor
:
2337 if (!supports_vplus
)
2342 case alg_sub_factor
:
2343 if (!supports_vminus
)
2349 case alg_impossible
:
2359 /* Synthesize a left shift of OP by AMNT bits using a series of additions and
2360 putting the final result in DEST. Append all statements but the last into
2361 VINFO. Return the last statement. */
2364 synth_lshift_by_additions (tree dest
, tree op
, HOST_WIDE_INT amnt
,
2365 stmt_vec_info vinfo
)
2368 tree itype
= TREE_TYPE (op
);
2370 gcc_assert (amnt
>= 0);
2371 for (i
= 0; i
< amnt
; i
++)
2373 tree tmp_var
= (i
< amnt
- 1) ? vect_recog_temp_ssa_var (itype
, NULL
)
2376 = gimple_build_assign (tmp_var
, PLUS_EXPR
, prev_res
, prev_res
);
2379 append_pattern_def_seq (vinfo
, stmt
);
2387 /* Helper for vect_synth_mult_by_constant. Apply a binary operation
2388 CODE to operands OP1 and OP2, creating a new temporary SSA var in
2389 the process if necessary. Append the resulting assignment statements
2390 to the sequence in STMT_VINFO. Return the SSA variable that holds the
2391 result of the binary operation. If SYNTH_SHIFT_P is true synthesize
2392 left shifts using additions. */
2395 apply_binop_and_append_stmt (tree_code code
, tree op1
, tree op2
,
2396 stmt_vec_info stmt_vinfo
, bool synth_shift_p
)
2398 if (integer_zerop (op2
)
2399 && (code
== LSHIFT_EXPR
2400 || code
== PLUS_EXPR
))
2402 gcc_assert (TREE_CODE (op1
) == SSA_NAME
);
2407 tree itype
= TREE_TYPE (op1
);
2408 tree tmp_var
= vect_recog_temp_ssa_var (itype
, NULL
);
2410 if (code
== LSHIFT_EXPR
2413 stmt
= synth_lshift_by_additions (tmp_var
, op1
, TREE_INT_CST_LOW (op2
),
2415 append_pattern_def_seq (stmt_vinfo
, stmt
);
2419 stmt
= gimple_build_assign (tmp_var
, code
, op1
, op2
);
2420 append_pattern_def_seq (stmt_vinfo
, stmt
);
2424 /* Synthesize a multiplication of OP by an INTEGER_CST VAL using shifts
2425 and simple arithmetic operations to be vectorized. Record the statements
2426 produced in STMT_VINFO and return the last statement in the sequence or
2427 NULL if it's not possible to synthesize such a multiplication.
2428 This function mirrors the behavior of expand_mult_const in expmed.c but
2429 works on tree-ssa form. */
2432 vect_synth_mult_by_constant (tree op
, tree val
,
2433 stmt_vec_info stmt_vinfo
)
2435 tree itype
= TREE_TYPE (op
);
2436 machine_mode mode
= TYPE_MODE (itype
);
2437 struct algorithm alg
;
2438 mult_variant variant
;
2439 if (!tree_fits_shwi_p (val
))
2442 /* Multiplication synthesis by shifts, adds and subs can introduce
2443 signed overflow where the original operation didn't. Perform the
2444 operations on an unsigned type and cast back to avoid this.
2445 In the future we may want to relax this for synthesis algorithms
2446 that we can prove do not cause unexpected overflow. */
2447 bool cast_to_unsigned_p
= !TYPE_OVERFLOW_WRAPS (itype
);
2449 tree multtype
= cast_to_unsigned_p
? unsigned_type_for (itype
) : itype
;
2451 /* Targets that don't support vector shifts but support vector additions
2452 can synthesize shifts that way. */
2453 bool synth_shift_p
= !vect_supportable_shift (LSHIFT_EXPR
, multtype
);
2455 HOST_WIDE_INT hwval
= tree_to_shwi (val
);
2456 /* Use MAX_COST here as we don't want to limit the sequence on rtx costs.
2457 The vectorizer's benefit analysis will decide whether it's beneficial
2459 bool possible
= choose_mult_variant (mode
, hwval
, &alg
,
2460 &variant
, MAX_COST
);
2464 tree vectype
= get_vectype_for_scalar_type (multtype
);
2467 || !target_supports_mult_synth_alg (&alg
, variant
,
2468 vectype
, synth_shift_p
))
2473 /* Clear out the sequence of statements so we can populate it below. */
2474 gimple
*stmt
= NULL
;
2476 if (cast_to_unsigned_p
)
2478 tree tmp_op
= vect_recog_temp_ssa_var (multtype
, NULL
);
2479 stmt
= gimple_build_assign (tmp_op
, CONVERT_EXPR
, op
);
2480 append_pattern_def_seq (stmt_vinfo
, stmt
);
2484 if (alg
.op
[0] == alg_zero
)
2485 accumulator
= build_int_cst (multtype
, 0);
2489 bool needs_fixup
= (variant
== negate_variant
)
2490 || (variant
== add_variant
);
2492 for (int i
= 1; i
< alg
.ops
; i
++)
2494 tree shft_log
= build_int_cst (multtype
, alg
.log
[i
]);
2495 tree accum_tmp
= vect_recog_temp_ssa_var (multtype
, NULL
);
2496 tree tmp_var
= NULL_TREE
;
2503 = synth_lshift_by_additions (accum_tmp
, accumulator
, alg
.log
[i
],
2506 stmt
= gimple_build_assign (accum_tmp
, LSHIFT_EXPR
, accumulator
,
2511 = apply_binop_and_append_stmt (LSHIFT_EXPR
, op
, shft_log
,
2512 stmt_vinfo
, synth_shift_p
);
2513 stmt
= gimple_build_assign (accum_tmp
, PLUS_EXPR
, accumulator
,
2517 tmp_var
= apply_binop_and_append_stmt (LSHIFT_EXPR
, op
,
2518 shft_log
, stmt_vinfo
,
2520 /* In some algorithms the first step involves zeroing the
2521 accumulator. If subtracting from such an accumulator
2522 just emit the negation directly. */
2523 if (integer_zerop (accumulator
))
2524 stmt
= gimple_build_assign (accum_tmp
, NEGATE_EXPR
, tmp_var
);
2526 stmt
= gimple_build_assign (accum_tmp
, MINUS_EXPR
, accumulator
,
2531 = apply_binop_and_append_stmt (LSHIFT_EXPR
, accumulator
, shft_log
,
2532 stmt_vinfo
, synth_shift_p
);
2533 stmt
= gimple_build_assign (accum_tmp
, PLUS_EXPR
, tmp_var
, op
);
2537 = apply_binop_and_append_stmt (LSHIFT_EXPR
, accumulator
, shft_log
,
2538 stmt_vinfo
, synth_shift_p
);
2539 stmt
= gimple_build_assign (accum_tmp
, MINUS_EXPR
, tmp_var
, op
);
2541 case alg_add_factor
:
2543 = apply_binop_and_append_stmt (LSHIFT_EXPR
, accumulator
, shft_log
,
2544 stmt_vinfo
, synth_shift_p
);
2545 stmt
= gimple_build_assign (accum_tmp
, PLUS_EXPR
, accumulator
,
2548 case alg_sub_factor
:
2550 = apply_binop_and_append_stmt (LSHIFT_EXPR
, accumulator
, shft_log
,
2551 stmt_vinfo
, synth_shift_p
);
2552 stmt
= gimple_build_assign (accum_tmp
, MINUS_EXPR
, tmp_var
,
2558 /* We don't want to append the last stmt in the sequence to stmt_vinfo
2559 but rather return it directly. */
2561 if ((i
< alg
.ops
- 1) || needs_fixup
|| cast_to_unsigned_p
)
2562 append_pattern_def_seq (stmt_vinfo
, stmt
);
2563 accumulator
= accum_tmp
;
2565 if (variant
== negate_variant
)
2567 tree accum_tmp
= vect_recog_temp_ssa_var (multtype
, NULL
);
2568 stmt
= gimple_build_assign (accum_tmp
, NEGATE_EXPR
, accumulator
);
2569 accumulator
= accum_tmp
;
2570 if (cast_to_unsigned_p
)
2571 append_pattern_def_seq (stmt_vinfo
, stmt
);
2573 else if (variant
== add_variant
)
2575 tree accum_tmp
= vect_recog_temp_ssa_var (multtype
, NULL
);
2576 stmt
= gimple_build_assign (accum_tmp
, PLUS_EXPR
, accumulator
, op
);
2577 accumulator
= accum_tmp
;
2578 if (cast_to_unsigned_p
)
2579 append_pattern_def_seq (stmt_vinfo
, stmt
);
2581 /* Move back to a signed if needed. */
2582 if (cast_to_unsigned_p
)
2584 tree accum_tmp
= vect_recog_temp_ssa_var (itype
, NULL
);
2585 stmt
= gimple_build_assign (accum_tmp
, CONVERT_EXPR
, accumulator
);
2591 /* Detect multiplication by constant and convert it into a sequence of
2592 shifts and additions, subtractions, negations. We reuse the
2593 choose_mult_variant algorithms from expmed.c
2597 STMT_VINFO: The stmt from which the pattern search begins,
2602 * TYPE_OUT: The type of the output of this pattern.
2604 * Return value: A new stmt that will be used to replace
2605 the multiplication. */
2608 vect_recog_mult_pattern (stmt_vec_info stmt_vinfo
, tree
*type_out
)
2610 gimple
*last_stmt
= stmt_vinfo
->stmt
;
2611 tree oprnd0
, oprnd1
, vectype
, itype
;
2612 gimple
*pattern_stmt
;
2614 if (!is_gimple_assign (last_stmt
))
2617 if (gimple_assign_rhs_code (last_stmt
) != MULT_EXPR
)
2620 oprnd0
= gimple_assign_rhs1 (last_stmt
);
2621 oprnd1
= gimple_assign_rhs2 (last_stmt
);
2622 itype
= TREE_TYPE (oprnd0
);
2624 if (TREE_CODE (oprnd0
) != SSA_NAME
2625 || TREE_CODE (oprnd1
) != INTEGER_CST
2626 || !INTEGRAL_TYPE_P (itype
)
2627 || !type_has_mode_precision_p (itype
))
2630 vectype
= get_vectype_for_scalar_type (itype
);
2631 if (vectype
== NULL_TREE
)
2634 /* If the target can handle vectorized multiplication natively,
2635 don't attempt to optimize this. */
2636 optab mul_optab
= optab_for_tree_code (MULT_EXPR
, vectype
, optab_default
);
2637 if (mul_optab
!= unknown_optab
)
2639 machine_mode vec_mode
= TYPE_MODE (vectype
);
2640 int icode
= (int) optab_handler (mul_optab
, vec_mode
);
2641 if (icode
!= CODE_FOR_nothing
)
2645 pattern_stmt
= vect_synth_mult_by_constant (oprnd0
, oprnd1
, stmt_vinfo
);
2649 /* Pattern detected. */
2650 vect_pattern_detected ("vect_recog_mult_pattern", last_stmt
);
2652 *type_out
= vectype
;
2654 return pattern_stmt
;
2657 /* Detect a signed division by a constant that wouldn't be
2658 otherwise vectorized:
2664 where type 'type' is an integral type and N is a constant.
2666 Similarly handle modulo by a constant:
2672 * STMT_VINFO: The stmt from which the pattern search begins,
2673 i.e. the division stmt. S1 is replaced by if N is a power
2674 of two constant and type is signed:
2675 S3 y_t = b_t < 0 ? N - 1 : 0;
2677 S1' a_t = x_t >> log2 (N);
2679 S4 is replaced if N is a power of two constant and
2680 type is signed by (where *_T temporaries have unsigned type):
2681 S9 y_T = b_t < 0 ? -1U : 0U;
2682 S8 z_T = y_T >> (sizeof (type_t) * CHAR_BIT - log2 (N));
2683 S7 z_t = (type) z_T;
2685 S5 x_t = w_t & (N - 1);
2686 S4' a_t = x_t - z_t;
2690 * TYPE_OUT: The type of the output of this pattern.
2692 * Return value: A new stmt that will be used to replace the division
2693 S1 or modulo S4 stmt. */
2696 vect_recog_divmod_pattern (stmt_vec_info stmt_vinfo
, tree
*type_out
)
2698 gimple
*last_stmt
= stmt_vinfo
->stmt
;
2699 tree oprnd0
, oprnd1
, vectype
, itype
, cond
;
2700 gimple
*pattern_stmt
, *def_stmt
;
2701 enum tree_code rhs_code
;
2704 int dummy_int
, prec
;
2706 if (!is_gimple_assign (last_stmt
))
2709 rhs_code
= gimple_assign_rhs_code (last_stmt
);
2712 case TRUNC_DIV_EXPR
:
2713 case EXACT_DIV_EXPR
:
2714 case TRUNC_MOD_EXPR
:
2720 oprnd0
= gimple_assign_rhs1 (last_stmt
);
2721 oprnd1
= gimple_assign_rhs2 (last_stmt
);
2722 itype
= TREE_TYPE (oprnd0
);
2723 if (TREE_CODE (oprnd0
) != SSA_NAME
2724 || TREE_CODE (oprnd1
) != INTEGER_CST
2725 || TREE_CODE (itype
) != INTEGER_TYPE
2726 || !type_has_mode_precision_p (itype
))
2729 scalar_int_mode itype_mode
= SCALAR_INT_TYPE_MODE (itype
);
2730 vectype
= get_vectype_for_scalar_type (itype
);
2731 if (vectype
== NULL_TREE
)
2734 if (optimize_bb_for_size_p (gimple_bb (last_stmt
)))
2736 /* If the target can handle vectorized division or modulo natively,
2737 don't attempt to optimize this, since native division is likely
2738 to give smaller code. */
2739 optab
= optab_for_tree_code (rhs_code
, vectype
, optab_default
);
2740 if (optab
!= unknown_optab
)
2742 machine_mode vec_mode
= TYPE_MODE (vectype
);
2743 int icode
= (int) optab_handler (optab
, vec_mode
);
2744 if (icode
!= CODE_FOR_nothing
)
2749 prec
= TYPE_PRECISION (itype
);
2750 if (integer_pow2p (oprnd1
))
2752 if (TYPE_UNSIGNED (itype
) || tree_int_cst_sgn (oprnd1
) != 1)
2755 /* Pattern detected. */
2756 vect_pattern_detected ("vect_recog_divmod_pattern", last_stmt
);
2758 cond
= build2 (LT_EXPR
, boolean_type_node
, oprnd0
,
2759 build_int_cst (itype
, 0));
2760 if (rhs_code
== TRUNC_DIV_EXPR
2761 || rhs_code
== EXACT_DIV_EXPR
)
2763 tree var
= vect_recog_temp_ssa_var (itype
, NULL
);
2766 = gimple_build_assign (var
, COND_EXPR
, cond
,
2767 fold_build2 (MINUS_EXPR
, itype
, oprnd1
,
2768 build_int_cst (itype
, 1)),
2769 build_int_cst (itype
, 0));
2770 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2771 var
= vect_recog_temp_ssa_var (itype
, NULL
);
2773 = gimple_build_assign (var
, PLUS_EXPR
, oprnd0
,
2774 gimple_assign_lhs (def_stmt
));
2775 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2777 shift
= build_int_cst (itype
, tree_log2 (oprnd1
));
2779 = gimple_build_assign (vect_recog_temp_ssa_var (itype
, NULL
),
2780 RSHIFT_EXPR
, var
, shift
);
2785 if (compare_tree_int (oprnd1
, 2) == 0)
2787 signmask
= vect_recog_temp_ssa_var (itype
, NULL
);
2788 def_stmt
= gimple_build_assign (signmask
, COND_EXPR
, cond
,
2789 build_int_cst (itype
, 1),
2790 build_int_cst (itype
, 0));
2791 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2796 = build_nonstandard_integer_type (prec
, 1);
2797 tree vecutype
= get_vectype_for_scalar_type (utype
);
2799 = build_int_cst (utype
, GET_MODE_BITSIZE (itype_mode
)
2800 - tree_log2 (oprnd1
));
2801 tree var
= vect_recog_temp_ssa_var (utype
, NULL
);
2803 def_stmt
= gimple_build_assign (var
, COND_EXPR
, cond
,
2804 build_int_cst (utype
, -1),
2805 build_int_cst (utype
, 0));
2806 append_pattern_def_seq (stmt_vinfo
, def_stmt
, vecutype
);
2807 var
= vect_recog_temp_ssa_var (utype
, NULL
);
2808 def_stmt
= gimple_build_assign (var
, RSHIFT_EXPR
,
2809 gimple_assign_lhs (def_stmt
),
2811 append_pattern_def_seq (stmt_vinfo
, def_stmt
, vecutype
);
2812 signmask
= vect_recog_temp_ssa_var (itype
, NULL
);
2814 = gimple_build_assign (signmask
, NOP_EXPR
, var
);
2815 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2818 = gimple_build_assign (vect_recog_temp_ssa_var (itype
, NULL
),
2819 PLUS_EXPR
, oprnd0
, signmask
);
2820 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2822 = gimple_build_assign (vect_recog_temp_ssa_var (itype
, NULL
),
2823 BIT_AND_EXPR
, gimple_assign_lhs (def_stmt
),
2824 fold_build2 (MINUS_EXPR
, itype
, oprnd1
,
2825 build_int_cst (itype
, 1)));
2826 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2829 = gimple_build_assign (vect_recog_temp_ssa_var (itype
, NULL
),
2830 MINUS_EXPR
, gimple_assign_lhs (def_stmt
),
2834 *type_out
= vectype
;
2835 return pattern_stmt
;
2838 if (prec
> HOST_BITS_PER_WIDE_INT
2839 || integer_zerop (oprnd1
))
2842 if (!can_mult_highpart_p (TYPE_MODE (vectype
), TYPE_UNSIGNED (itype
)))
2845 if (TYPE_UNSIGNED (itype
))
2847 unsigned HOST_WIDE_INT mh
, ml
;
2848 int pre_shift
, post_shift
;
2849 unsigned HOST_WIDE_INT d
= (TREE_INT_CST_LOW (oprnd1
)
2850 & GET_MODE_MASK (itype_mode
));
2851 tree t1
, t2
, t3
, t4
;
2853 if (d
>= (HOST_WIDE_INT_1U
<< (prec
- 1)))
2854 /* FIXME: Can transform this into oprnd0 >= oprnd1 ? 1 : 0. */
2857 /* Find a suitable multiplier and right shift count
2858 instead of multiplying with D. */
2859 mh
= choose_multiplier (d
, prec
, prec
, &ml
, &post_shift
, &dummy_int
);
2861 /* If the suggested multiplier is more than SIZE bits, we can do better
2862 for even divisors, using an initial right shift. */
2863 if (mh
!= 0 && (d
& 1) == 0)
2865 pre_shift
= ctz_or_zero (d
);
2866 mh
= choose_multiplier (d
>> pre_shift
, prec
, prec
- pre_shift
,
2867 &ml
, &post_shift
, &dummy_int
);
2875 if (post_shift
- 1 >= prec
)
2878 /* t1 = oprnd0 h* ml;
2882 q = t4 >> (post_shift - 1); */
2883 t1
= vect_recog_temp_ssa_var (itype
, NULL
);
2884 def_stmt
= gimple_build_assign (t1
, MULT_HIGHPART_EXPR
, oprnd0
,
2885 build_int_cst (itype
, ml
));
2886 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2888 t2
= vect_recog_temp_ssa_var (itype
, NULL
);
2890 = gimple_build_assign (t2
, MINUS_EXPR
, oprnd0
, t1
);
2891 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2893 t3
= vect_recog_temp_ssa_var (itype
, NULL
);
2895 = gimple_build_assign (t3
, RSHIFT_EXPR
, t2
, integer_one_node
);
2896 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2898 t4
= vect_recog_temp_ssa_var (itype
, NULL
);
2900 = gimple_build_assign (t4
, PLUS_EXPR
, t1
, t3
);
2902 if (post_shift
!= 1)
2904 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2906 q
= vect_recog_temp_ssa_var (itype
, NULL
);
2908 = gimple_build_assign (q
, RSHIFT_EXPR
, t4
,
2909 build_int_cst (itype
, post_shift
- 1));
2914 pattern_stmt
= def_stmt
;
2919 if (pre_shift
>= prec
|| post_shift
>= prec
)
2922 /* t1 = oprnd0 >> pre_shift;
2924 q = t2 >> post_shift; */
2927 t1
= vect_recog_temp_ssa_var (itype
, NULL
);
2929 = gimple_build_assign (t1
, RSHIFT_EXPR
, oprnd0
,
2930 build_int_cst (NULL
, pre_shift
));
2931 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2936 t2
= vect_recog_temp_ssa_var (itype
, NULL
);
2937 def_stmt
= gimple_build_assign (t2
, MULT_HIGHPART_EXPR
, t1
,
2938 build_int_cst (itype
, ml
));
2942 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
2944 q
= vect_recog_temp_ssa_var (itype
, NULL
);
2946 = gimple_build_assign (q
, RSHIFT_EXPR
, t2
,
2947 build_int_cst (itype
, post_shift
));
2952 pattern_stmt
= def_stmt
;
2957 unsigned HOST_WIDE_INT ml
;
2959 HOST_WIDE_INT d
= TREE_INT_CST_LOW (oprnd1
);
2960 unsigned HOST_WIDE_INT abs_d
;
2962 tree t1
, t2
, t3
, t4
;
2964 /* Give up for -1. */
2968 /* Since d might be INT_MIN, we have to cast to
2969 unsigned HOST_WIDE_INT before negating to avoid
2970 undefined signed overflow. */
2972 ? (unsigned HOST_WIDE_INT
) d
2973 : - (unsigned HOST_WIDE_INT
) d
);
2975 /* n rem d = n rem -d */
2976 if (rhs_code
== TRUNC_MOD_EXPR
&& d
< 0)
2979 oprnd1
= build_int_cst (itype
, abs_d
);
2981 else if (HOST_BITS_PER_WIDE_INT
>= prec
2982 && abs_d
== HOST_WIDE_INT_1U
<< (prec
- 1))
2983 /* This case is not handled correctly below. */
2986 choose_multiplier (abs_d
, prec
, prec
- 1, &ml
, &post_shift
, &dummy_int
);
2987 if (ml
>= HOST_WIDE_INT_1U
<< (prec
- 1))
2990 ml
|= HOST_WIDE_INT_M1U
<< (prec
- 1);
2992 if (post_shift
>= prec
)
2995 /* t1 = oprnd0 h* ml; */
2996 t1
= vect_recog_temp_ssa_var (itype
, NULL
);
2997 def_stmt
= gimple_build_assign (t1
, MULT_HIGHPART_EXPR
, oprnd0
,
2998 build_int_cst (itype
, ml
));
3002 /* t2 = t1 + oprnd0; */
3003 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
3004 t2
= vect_recog_temp_ssa_var (itype
, NULL
);
3005 def_stmt
= gimple_build_assign (t2
, PLUS_EXPR
, t1
, oprnd0
);
3012 /* t3 = t2 >> post_shift; */
3013 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
3014 t3
= vect_recog_temp_ssa_var (itype
, NULL
);
3015 def_stmt
= gimple_build_assign (t3
, RSHIFT_EXPR
, t2
,
3016 build_int_cst (itype
, post_shift
));
3021 wide_int oprnd0_min
, oprnd0_max
;
3023 if (get_range_info (oprnd0
, &oprnd0_min
, &oprnd0_max
) == VR_RANGE
)
3025 if (!wi::neg_p (oprnd0_min
, TYPE_SIGN (itype
)))
3027 else if (wi::neg_p (oprnd0_max
, TYPE_SIGN (itype
)))
3031 if (msb
== 0 && d
>= 0)
3035 pattern_stmt
= def_stmt
;
3039 /* t4 = oprnd0 >> (prec - 1);
3040 or if we know from VRP that oprnd0 >= 0
3042 or if we know from VRP that oprnd0 < 0
3044 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
3045 t4
= vect_recog_temp_ssa_var (itype
, NULL
);
3047 def_stmt
= gimple_build_assign (t4
, INTEGER_CST
,
3048 build_int_cst (itype
, msb
));
3050 def_stmt
= gimple_build_assign (t4
, RSHIFT_EXPR
, oprnd0
,
3051 build_int_cst (itype
, prec
- 1));
3052 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
3054 /* q = t3 - t4; or q = t4 - t3; */
3055 q
= vect_recog_temp_ssa_var (itype
, NULL
);
3056 pattern_stmt
= gimple_build_assign (q
, MINUS_EXPR
, d
< 0 ? t4
: t3
,
3061 if (rhs_code
== TRUNC_MOD_EXPR
)
3065 /* We divided. Now finish by:
3068 append_pattern_def_seq (stmt_vinfo
, pattern_stmt
);
3070 t1
= vect_recog_temp_ssa_var (itype
, NULL
);
3071 def_stmt
= gimple_build_assign (t1
, MULT_EXPR
, q
, oprnd1
);
3072 append_pattern_def_seq (stmt_vinfo
, def_stmt
);
3074 r
= vect_recog_temp_ssa_var (itype
, NULL
);
3075 pattern_stmt
= gimple_build_assign (r
, MINUS_EXPR
, oprnd0
, t1
);
3078 /* Pattern detected. */
3079 vect_pattern_detected ("vect_recog_divmod_pattern", last_stmt
);
3081 *type_out
= vectype
;
3082 return pattern_stmt
;
3085 /* Function vect_recog_mixed_size_cond_pattern
3087 Try to find the following pattern:
3092 S1 a_T = x_t CMP y_t ? b_T : c_T;
3094 where type 'TYPE' is an integral type which has different size
3095 from 'type'. b_T and c_T are either constants (and if 'TYPE' is wider
3096 than 'type', the constants need to fit into an integer type
3097 with the same width as 'type') or results of conversion from 'type'.
3101 * STMT_VINFO: The stmt from which the pattern search begins.
3105 * TYPE_OUT: The type of the output of this pattern.
3107 * Return value: A new stmt that will be used to replace the pattern.
3108 Additionally a def_stmt is added.
3110 a_it = x_t CMP y_t ? b_it : c_it;
3111 a_T = (TYPE) a_it; */
3114 vect_recog_mixed_size_cond_pattern (stmt_vec_info stmt_vinfo
, tree
*type_out
)
3116 gimple
*last_stmt
= stmt_vinfo
->stmt
;
3117 tree cond_expr
, then_clause
, else_clause
;
3118 tree type
, vectype
, comp_vectype
, itype
= NULL_TREE
, vecitype
;
3119 gimple
*pattern_stmt
, *def_stmt
;
3120 tree orig_type0
= NULL_TREE
, orig_type1
= NULL_TREE
;
3121 gimple
*def_stmt0
= NULL
, *def_stmt1
= NULL
;
3123 tree comp_scalar_type
;
3125 if (!is_gimple_assign (last_stmt
)
3126 || gimple_assign_rhs_code (last_stmt
) != COND_EXPR
3127 || STMT_VINFO_DEF_TYPE (stmt_vinfo
) != vect_internal_def
)
3130 cond_expr
= gimple_assign_rhs1 (last_stmt
);
3131 then_clause
= gimple_assign_rhs2 (last_stmt
);
3132 else_clause
= gimple_assign_rhs3 (last_stmt
);
3134 if (!COMPARISON_CLASS_P (cond_expr
))
3137 comp_scalar_type
= TREE_TYPE (TREE_OPERAND (cond_expr
, 0));
3138 comp_vectype
= get_vectype_for_scalar_type (comp_scalar_type
);
3139 if (comp_vectype
== NULL_TREE
)
3142 type
= gimple_expr_type (last_stmt
);
3143 if (types_compatible_p (type
, comp_scalar_type
)
3144 || ((TREE_CODE (then_clause
) != INTEGER_CST
3145 || TREE_CODE (else_clause
) != INTEGER_CST
)
3146 && !INTEGRAL_TYPE_P (comp_scalar_type
))
3147 || !INTEGRAL_TYPE_P (type
))
3150 if ((TREE_CODE (then_clause
) != INTEGER_CST
3151 && !type_conversion_p (then_clause
, stmt_vinfo
, false, &orig_type0
,
3152 &def_stmt0
, &promotion
))
3153 || (TREE_CODE (else_clause
) != INTEGER_CST
3154 && !type_conversion_p (else_clause
, stmt_vinfo
, false, &orig_type1
,
3155 &def_stmt1
, &promotion
)))
3158 if (orig_type0
&& orig_type1
3159 && !types_compatible_p (orig_type0
, orig_type1
))
3164 if (!types_compatible_p (orig_type0
, comp_scalar_type
))
3166 then_clause
= gimple_assign_rhs1 (def_stmt0
);
3172 if (!types_compatible_p (orig_type1
, comp_scalar_type
))
3174 else_clause
= gimple_assign_rhs1 (def_stmt1
);
3179 HOST_WIDE_INT cmp_mode_size
3180 = GET_MODE_UNIT_BITSIZE (TYPE_MODE (comp_vectype
));
3182 scalar_int_mode type_mode
= SCALAR_INT_TYPE_MODE (type
);
3183 if (GET_MODE_BITSIZE (type_mode
) == cmp_mode_size
)
3186 vectype
= get_vectype_for_scalar_type (type
);
3187 if (vectype
== NULL_TREE
)
3190 if (expand_vec_cond_expr_p (vectype
, comp_vectype
, TREE_CODE (cond_expr
)))
3193 if (itype
== NULL_TREE
)
3194 itype
= build_nonstandard_integer_type (cmp_mode_size
,
3195 TYPE_UNSIGNED (type
));
3197 if (itype
== NULL_TREE
3198 || GET_MODE_BITSIZE (SCALAR_TYPE_MODE (itype
)) != cmp_mode_size
)
3201 vecitype
= get_vectype_for_scalar_type (itype
);
3202 if (vecitype
== NULL_TREE
)
3205 if (!expand_vec_cond_expr_p (vecitype
, comp_vectype
, TREE_CODE (cond_expr
)))
3208 if (GET_MODE_BITSIZE (type_mode
) > cmp_mode_size
)
3210 if ((TREE_CODE (then_clause
) == INTEGER_CST
3211 && !int_fits_type_p (then_clause
, itype
))
3212 || (TREE_CODE (else_clause
) == INTEGER_CST
3213 && !int_fits_type_p (else_clause
, itype
)))
3217 def_stmt
= gimple_build_assign (vect_recog_temp_ssa_var (itype
, NULL
),
3218 COND_EXPR
, unshare_expr (cond_expr
),
3219 fold_convert (itype
, then_clause
),
3220 fold_convert (itype
, else_clause
));
3221 pattern_stmt
= gimple_build_assign (vect_recog_temp_ssa_var (type
, NULL
),
3222 NOP_EXPR
, gimple_assign_lhs (def_stmt
));
3224 append_pattern_def_seq (stmt_vinfo
, def_stmt
, vecitype
);
3225 *type_out
= vectype
;
3227 vect_pattern_detected ("vect_recog_mixed_size_cond_pattern", last_stmt
);
3229 return pattern_stmt
;
3233 /* Helper function of vect_recog_bool_pattern. Called recursively, return
3234 true if bool VAR can and should be optimized that way. Assume it shouldn't
3235 in case it's a result of a comparison which can be directly vectorized into
3236 a vector comparison. Fills in STMTS with all stmts visited during the
3240 check_bool_pattern (tree var
, vec_info
*vinfo
, hash_set
<gimple
*> &stmts
)
3243 enum tree_code rhs_code
;
3245 stmt_vec_info def_stmt_info
= vect_get_internal_def (vinfo
, var
);
3249 gassign
*def_stmt
= dyn_cast
<gassign
*> (def_stmt_info
->stmt
);
3253 if (stmts
.contains (def_stmt
))
3256 rhs1
= gimple_assign_rhs1 (def_stmt
);
3257 rhs_code
= gimple_assign_rhs_code (def_stmt
);
3261 if (! check_bool_pattern (rhs1
, vinfo
, stmts
))
3266 if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (rhs1
)))
3268 if (! check_bool_pattern (rhs1
, vinfo
, stmts
))
3273 if (! check_bool_pattern (rhs1
, vinfo
, stmts
))
3280 if (! check_bool_pattern (rhs1
, vinfo
, stmts
)
3281 || ! check_bool_pattern (gimple_assign_rhs2 (def_stmt
), vinfo
, stmts
))
3286 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
3288 tree vecitype
, comp_vectype
;
3290 /* If the comparison can throw, then is_gimple_condexpr will be
3291 false and we can't make a COND_EXPR/VEC_COND_EXPR out of it. */
3292 if (stmt_could_throw_p (cfun
, def_stmt
))
3295 comp_vectype
= get_vectype_for_scalar_type (TREE_TYPE (rhs1
));
3296 if (comp_vectype
== NULL_TREE
)
3299 tree mask_type
= get_mask_type_for_scalar_type (TREE_TYPE (rhs1
));
3301 && expand_vec_cmp_expr_p (comp_vectype
, mask_type
, rhs_code
))
3304 if (TREE_CODE (TREE_TYPE (rhs1
)) != INTEGER_TYPE
)
3306 scalar_mode mode
= SCALAR_TYPE_MODE (TREE_TYPE (rhs1
));
3308 = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode
), 1);
3309 vecitype
= get_vectype_for_scalar_type (itype
);
3310 if (vecitype
== NULL_TREE
)
3314 vecitype
= comp_vectype
;
3315 if (! expand_vec_cond_expr_p (vecitype
, comp_vectype
, rhs_code
))
3323 bool res
= stmts
.add (def_stmt
);
3324 /* We can't end up recursing when just visiting SSA defs but not PHIs. */
3331 /* Helper function of adjust_bool_pattern. Add a cast to TYPE to a previous
3332 stmt (SSA_NAME_DEF_STMT of VAR) adding a cast to STMT_INFOs
3333 pattern sequence. */
3336 adjust_bool_pattern_cast (tree type
, tree var
, stmt_vec_info stmt_info
)
3338 gimple
*cast_stmt
= gimple_build_assign (vect_recog_temp_ssa_var (type
, NULL
),
3340 append_pattern_def_seq (stmt_info
, cast_stmt
,
3341 get_vectype_for_scalar_type (type
));
3342 return gimple_assign_lhs (cast_stmt
);
3345 /* Helper function of vect_recog_bool_pattern. Do the actual transformations.
3346 VAR is an SSA_NAME that should be transformed from bool to a wider integer
3347 type, OUT_TYPE is the desired final integer type of the whole pattern.
3348 STMT_INFO is the info of the pattern root and is where pattern stmts should
3349 be associated with. DEFS is a map of pattern defs. */
3352 adjust_bool_pattern (tree var
, tree out_type
,
3353 stmt_vec_info stmt_info
, hash_map
<tree
, tree
> &defs
)
3355 gimple
*stmt
= SSA_NAME_DEF_STMT (var
);
3356 enum tree_code rhs_code
, def_rhs_code
;
3357 tree itype
, cond_expr
, rhs1
, rhs2
, irhs1
, irhs2
;
3359 gimple
*pattern_stmt
, *def_stmt
;
3360 tree trueval
= NULL_TREE
;
3362 rhs1
= gimple_assign_rhs1 (stmt
);
3363 rhs2
= gimple_assign_rhs2 (stmt
);
3364 rhs_code
= gimple_assign_rhs_code (stmt
);
3365 loc
= gimple_location (stmt
);
3370 irhs1
= *defs
.get (rhs1
);
3371 itype
= TREE_TYPE (irhs1
);
3373 = gimple_build_assign (vect_recog_temp_ssa_var (itype
, NULL
),
3378 irhs1
= *defs
.get (rhs1
);
3379 itype
= TREE_TYPE (irhs1
);
3381 = gimple_build_assign (vect_recog_temp_ssa_var (itype
, NULL
),
3382 BIT_XOR_EXPR
, irhs1
, build_int_cst (itype
, 1));
3386 /* Try to optimize x = y & (a < b ? 1 : 0); into
3387 x = (a < b ? y : 0);
3393 S1 a_b = x1 CMP1 y1;
3394 S2 b_b = x2 CMP2 y2;
3396 S4 d_T = (TYPE) c_b;
3398 we would normally emit:
3400 S1' a_T = x1 CMP1 y1 ? 1 : 0;
3401 S2' b_T = x2 CMP2 y2 ? 1 : 0;
3402 S3' c_T = a_T & b_T;
3405 but we can save one stmt by using the
3406 result of one of the COND_EXPRs in the other COND_EXPR and leave
3407 BIT_AND_EXPR stmt out:
3409 S1' a_T = x1 CMP1 y1 ? 1 : 0;
3410 S3' c_T = x2 CMP2 y2 ? a_T : 0;
3413 At least when VEC_COND_EXPR is implemented using masks
3414 cond ? 1 : 0 is as expensive as cond ? var : 0, in both cases it
3415 computes the comparison masks and ands it, in one case with
3416 all ones vector, in the other case with a vector register.
3417 Don't do this for BIT_IOR_EXPR, because cond ? 1 : var; is
3418 often more expensive. */
3419 def_stmt
= SSA_NAME_DEF_STMT (rhs2
);
3420 def_rhs_code
= gimple_assign_rhs_code (def_stmt
);
3421 if (TREE_CODE_CLASS (def_rhs_code
) == tcc_comparison
)
3423 irhs1
= *defs
.get (rhs1
);
3424 tree def_rhs1
= gimple_assign_rhs1 (def_stmt
);
3425 if (TYPE_PRECISION (TREE_TYPE (irhs1
))
3426 == GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (def_rhs1
))))
3428 rhs_code
= def_rhs_code
;
3430 rhs2
= gimple_assign_rhs2 (def_stmt
);
3435 irhs2
= *defs
.get (rhs2
);
3438 def_stmt
= SSA_NAME_DEF_STMT (rhs1
);
3439 def_rhs_code
= gimple_assign_rhs_code (def_stmt
);
3440 if (TREE_CODE_CLASS (def_rhs_code
) == tcc_comparison
)
3442 irhs2
= *defs
.get (rhs2
);
3443 tree def_rhs1
= gimple_assign_rhs1 (def_stmt
);
3444 if (TYPE_PRECISION (TREE_TYPE (irhs2
))
3445 == GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (def_rhs1
))))
3447 rhs_code
= def_rhs_code
;
3449 rhs2
= gimple_assign_rhs2 (def_stmt
);
3454 irhs1
= *defs
.get (rhs1
);
3460 irhs1
= *defs
.get (rhs1
);
3461 irhs2
= *defs
.get (rhs2
);
3463 if (TYPE_PRECISION (TREE_TYPE (irhs1
))
3464 != TYPE_PRECISION (TREE_TYPE (irhs2
)))
3466 int prec1
= TYPE_PRECISION (TREE_TYPE (irhs1
));
3467 int prec2
= TYPE_PRECISION (TREE_TYPE (irhs2
));
3468 int out_prec
= TYPE_PRECISION (out_type
);
3469 if (absu_hwi (out_prec
- prec1
) < absu_hwi (out_prec
- prec2
))
3470 irhs2
= adjust_bool_pattern_cast (TREE_TYPE (irhs1
), irhs2
,
3472 else if (absu_hwi (out_prec
- prec1
) > absu_hwi (out_prec
- prec2
))
3473 irhs1
= adjust_bool_pattern_cast (TREE_TYPE (irhs2
), irhs1
,
3477 irhs1
= adjust_bool_pattern_cast (out_type
, irhs1
, stmt_info
);
3478 irhs2
= adjust_bool_pattern_cast (out_type
, irhs2
, stmt_info
);
3481 itype
= TREE_TYPE (irhs1
);
3483 = gimple_build_assign (vect_recog_temp_ssa_var (itype
, NULL
),
3484 rhs_code
, irhs1
, irhs2
);
3489 gcc_assert (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
);
3490 if (TREE_CODE (TREE_TYPE (rhs1
)) != INTEGER_TYPE
3491 || !TYPE_UNSIGNED (TREE_TYPE (rhs1
))
3492 || maybe_ne (TYPE_PRECISION (TREE_TYPE (rhs1
)),
3493 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1
)))))
3495 scalar_mode mode
= SCALAR_TYPE_MODE (TREE_TYPE (rhs1
));
3497 = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode
), 1);
3500 itype
= TREE_TYPE (rhs1
);
3501 cond_expr
= build2_loc (loc
, rhs_code
, itype
, rhs1
, rhs2
);
3502 if (trueval
== NULL_TREE
)
3503 trueval
= build_int_cst (itype
, 1);
3505 gcc_checking_assert (useless_type_conversion_p (itype
,
3506 TREE_TYPE (trueval
)));
3508 = gimple_build_assign (vect_recog_temp_ssa_var (itype
, NULL
),
3509 COND_EXPR
, cond_expr
, trueval
,
3510 build_int_cst (itype
, 0));
3514 gimple_set_location (pattern_stmt
, loc
);
3515 append_pattern_def_seq (stmt_info
, pattern_stmt
,
3516 get_vectype_for_scalar_type (itype
));
3517 defs
.put (var
, gimple_assign_lhs (pattern_stmt
));
3520 /* Comparison function to qsort a vector of gimple stmts after UID. */
3523 sort_after_uid (const void *p1
, const void *p2
)
3525 const gimple
*stmt1
= *(const gimple
* const *)p1
;
3526 const gimple
*stmt2
= *(const gimple
* const *)p2
;
3527 return gimple_uid (stmt1
) - gimple_uid (stmt2
);
3530 /* Create pattern stmts for all stmts participating in the bool pattern
3531 specified by BOOL_STMT_SET and its root STMT_INFO with the desired type
3532 OUT_TYPE. Return the def of the pattern root. */
3535 adjust_bool_stmts (hash_set
<gimple
*> &bool_stmt_set
,
3536 tree out_type
, stmt_vec_info stmt_info
)
3538 /* Gather original stmts in the bool pattern in their order of appearance
3540 auto_vec
<gimple
*> bool_stmts (bool_stmt_set
.elements ());
3541 for (hash_set
<gimple
*>::iterator i
= bool_stmt_set
.begin ();
3542 i
!= bool_stmt_set
.end (); ++i
)
3543 bool_stmts
.quick_push (*i
);
3544 bool_stmts
.qsort (sort_after_uid
);
3546 /* Now process them in that order, producing pattern stmts. */
3547 hash_map
<tree
, tree
> defs
;
3548 for (unsigned i
= 0; i
< bool_stmts
.length (); ++i
)
3549 adjust_bool_pattern (gimple_assign_lhs (bool_stmts
[i
]),
3550 out_type
, stmt_info
, defs
);
3552 /* Pop the last pattern seq stmt and install it as pattern root for STMT. */
3553 gimple
*pattern_stmt
3554 = gimple_seq_last_stmt (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info
));
3555 return gimple_assign_lhs (pattern_stmt
);
3558 /* Helper for search_type_for_mask. */
3561 search_type_for_mask_1 (tree var
, vec_info
*vinfo
,
3562 hash_map
<gimple
*, tree
> &cache
)
3565 enum tree_code rhs_code
;
3566 tree res
= NULL_TREE
, res2
;
3568 if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (var
)))
3571 stmt_vec_info def_stmt_info
= vect_get_internal_def (vinfo
, var
);
3575 gassign
*def_stmt
= dyn_cast
<gassign
*> (def_stmt_info
->stmt
);
3579 tree
*c
= cache
.get (def_stmt
);
3583 rhs_code
= gimple_assign_rhs_code (def_stmt
);
3584 rhs1
= gimple_assign_rhs1 (def_stmt
);
3591 res
= search_type_for_mask_1 (rhs1
, vinfo
, cache
);
3597 res
= search_type_for_mask_1 (rhs1
, vinfo
, cache
);
3598 res2
= search_type_for_mask_1 (gimple_assign_rhs2 (def_stmt
), vinfo
,
3600 if (!res
|| (res2
&& TYPE_PRECISION (res
) > TYPE_PRECISION (res2
)))
3605 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
3607 tree comp_vectype
, mask_type
;
3609 if (VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (rhs1
)))
3611 res
= search_type_for_mask_1 (rhs1
, vinfo
, cache
);
3612 res2
= search_type_for_mask_1 (gimple_assign_rhs2 (def_stmt
),
3614 if (!res
|| (res2
&& TYPE_PRECISION (res
) > TYPE_PRECISION (res2
)))
3619 comp_vectype
= get_vectype_for_scalar_type (TREE_TYPE (rhs1
));
3620 if (comp_vectype
== NULL_TREE
)
3626 mask_type
= get_mask_type_for_scalar_type (TREE_TYPE (rhs1
));
3628 || !expand_vec_cmp_expr_p (comp_vectype
, mask_type
, rhs_code
))
3634 if (TREE_CODE (TREE_TYPE (rhs1
)) != INTEGER_TYPE
3635 || !TYPE_UNSIGNED (TREE_TYPE (rhs1
)))
3637 scalar_mode mode
= SCALAR_TYPE_MODE (TREE_TYPE (rhs1
));
3638 res
= build_nonstandard_integer_type (GET_MODE_BITSIZE (mode
), 1);
3641 res
= TREE_TYPE (rhs1
);
3645 cache
.put (def_stmt
, res
);
3649 /* Return the proper type for converting bool VAR into
3650 an integer value or NULL_TREE if no such type exists.
3651 The type is chosen so that converted value has the
3652 same number of elements as VAR's vector type. */
3655 search_type_for_mask (tree var
, vec_info
*vinfo
)
3657 hash_map
<gimple
*, tree
> cache
;
3658 return search_type_for_mask_1 (var
, vinfo
, cache
);
3661 /* Function vect_recog_bool_pattern
3663 Try to find pattern like following:
3665 bool a_b, b_b, c_b, d_b, e_b;
3668 S1 a_b = x1 CMP1 y1;
3669 S2 b_b = x2 CMP2 y2;
3671 S4 d_b = x3 CMP3 y3;
3673 S6 f_T = (TYPE) e_b;
3675 where type 'TYPE' is an integral type. Or a similar pattern
3678 S6 f_Y = e_b ? r_Y : s_Y;
3680 as results from if-conversion of a complex condition.
3684 * STMT_VINFO: The stmt at the end from which the pattern
3685 search begins, i.e. cast of a bool to
3690 * TYPE_OUT: The type of the output of this pattern.
3692 * Return value: A new stmt that will be used to replace the pattern.
3694 Assuming size of TYPE is the same as size of all comparisons
3695 (otherwise some casts would be added where needed), the above
3696 sequence we create related pattern stmts:
3697 S1' a_T = x1 CMP1 y1 ? 1 : 0;
3698 S3' c_T = x2 CMP2 y2 ? a_T : 0;
3699 S4' d_T = x3 CMP3 y3 ? 1 : 0;
3700 S5' e_T = c_T | d_T;
3703 Instead of the above S3' we could emit:
3704 S2' b_T = x2 CMP2 y2 ? 1 : 0;
3705 S3' c_T = a_T | b_T;
3706 but the above is more efficient. */
3709 vect_recog_bool_pattern (stmt_vec_info stmt_vinfo
, tree
*type_out
)
3711 gimple
*last_stmt
= stmt_vinfo
->stmt
;
3712 enum tree_code rhs_code
;
3713 tree var
, lhs
, rhs
, vectype
;
3714 vec_info
*vinfo
= stmt_vinfo
->vinfo
;
3715 gimple
*pattern_stmt
;
3717 if (!is_gimple_assign (last_stmt
))
3720 var
= gimple_assign_rhs1 (last_stmt
);
3721 lhs
= gimple_assign_lhs (last_stmt
);
3723 if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (var
)))
3726 hash_set
<gimple
*> bool_stmts
;
3728 rhs_code
= gimple_assign_rhs_code (last_stmt
);
3729 if (CONVERT_EXPR_CODE_P (rhs_code
))
3731 if (! INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3732 || TYPE_PRECISION (TREE_TYPE (lhs
)) == 1)
3734 vectype
= get_vectype_for_scalar_type (TREE_TYPE (lhs
));
3735 if (vectype
== NULL_TREE
)
3738 if (check_bool_pattern (var
, vinfo
, bool_stmts
))
3740 rhs
= adjust_bool_stmts (bool_stmts
, TREE_TYPE (lhs
), stmt_vinfo
);
3741 lhs
= vect_recog_temp_ssa_var (TREE_TYPE (lhs
), NULL
);
3742 if (useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
3743 pattern_stmt
= gimple_build_assign (lhs
, SSA_NAME
, rhs
);
3746 = gimple_build_assign (lhs
, NOP_EXPR
, rhs
);
3750 tree type
= search_type_for_mask (var
, vinfo
);
3751 tree cst0
, cst1
, tmp
;
3756 /* We may directly use cond with narrowed type to avoid
3757 multiple cond exprs with following result packing and
3758 perform single cond with packed mask instead. In case
3759 of widening we better make cond first and then extract
3761 if (TYPE_MODE (type
) == TYPE_MODE (TREE_TYPE (lhs
)))
3762 type
= TREE_TYPE (lhs
);
3764 cst0
= build_int_cst (type
, 0);
3765 cst1
= build_int_cst (type
, 1);
3766 tmp
= vect_recog_temp_ssa_var (type
, NULL
);
3767 pattern_stmt
= gimple_build_assign (tmp
, COND_EXPR
, var
, cst1
, cst0
);
3769 if (!useless_type_conversion_p (type
, TREE_TYPE (lhs
)))
3771 tree new_vectype
= get_vectype_for_scalar_type (type
);
3772 append_pattern_def_seq (stmt_vinfo
, pattern_stmt
, new_vectype
);
3774 lhs
= vect_recog_temp_ssa_var (TREE_TYPE (lhs
), NULL
);
3775 pattern_stmt
= gimple_build_assign (lhs
, CONVERT_EXPR
, tmp
);
3779 *type_out
= vectype
;
3780 vect_pattern_detected ("vect_recog_bool_pattern", last_stmt
);
3782 return pattern_stmt
;
3784 else if (rhs_code
== COND_EXPR
3785 && TREE_CODE (var
) == SSA_NAME
)
3787 vectype
= get_vectype_for_scalar_type (TREE_TYPE (lhs
));
3788 if (vectype
== NULL_TREE
)
3791 /* Build a scalar type for the boolean result that when
3792 vectorized matches the vector type of the result in
3793 size and number of elements. */
3795 = vector_element_size (tree_to_poly_uint64 (TYPE_SIZE (vectype
)),
3796 TYPE_VECTOR_SUBPARTS (vectype
));
3799 = build_nonstandard_integer_type (prec
,
3800 TYPE_UNSIGNED (TREE_TYPE (var
)));
3801 if (get_vectype_for_scalar_type (type
) == NULL_TREE
)
3804 if (!check_bool_pattern (var
, vinfo
, bool_stmts
))
3807 rhs
= adjust_bool_stmts (bool_stmts
, type
, stmt_vinfo
);
3809 lhs
= vect_recog_temp_ssa_var (TREE_TYPE (lhs
), NULL
);
3811 = gimple_build_assign (lhs
, COND_EXPR
,
3812 build2 (NE_EXPR
, boolean_type_node
,
3813 rhs
, build_int_cst (type
, 0)),
3814 gimple_assign_rhs2 (last_stmt
),
3815 gimple_assign_rhs3 (last_stmt
));
3816 *type_out
= vectype
;
3817 vect_pattern_detected ("vect_recog_bool_pattern", last_stmt
);
3819 return pattern_stmt
;
3821 else if (rhs_code
== SSA_NAME
3822 && STMT_VINFO_DATA_REF (stmt_vinfo
))
3824 stmt_vec_info pattern_stmt_info
;
3825 vectype
= STMT_VINFO_VECTYPE (stmt_vinfo
);
3826 gcc_assert (vectype
!= NULL_TREE
);
3827 if (!VECTOR_MODE_P (TYPE_MODE (vectype
)))
3830 if (check_bool_pattern (var
, vinfo
, bool_stmts
))
3831 rhs
= adjust_bool_stmts (bool_stmts
, TREE_TYPE (vectype
), stmt_vinfo
);
3834 tree type
= search_type_for_mask (var
, vinfo
);
3835 tree cst0
, cst1
, new_vectype
;
3840 if (TYPE_MODE (type
) == TYPE_MODE (TREE_TYPE (vectype
)))
3841 type
= TREE_TYPE (vectype
);
3843 cst0
= build_int_cst (type
, 0);
3844 cst1
= build_int_cst (type
, 1);
3845 new_vectype
= get_vectype_for_scalar_type (type
);
3847 rhs
= vect_recog_temp_ssa_var (type
, NULL
);
3848 pattern_stmt
= gimple_build_assign (rhs
, COND_EXPR
, var
, cst1
, cst0
);
3849 append_pattern_def_seq (stmt_vinfo
, pattern_stmt
, new_vectype
);
3852 lhs
= build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (vectype
), lhs
);
3853 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
3855 tree rhs2
= vect_recog_temp_ssa_var (TREE_TYPE (lhs
), NULL
);
3856 gimple
*cast_stmt
= gimple_build_assign (rhs2
, NOP_EXPR
, rhs
);
3857 append_pattern_def_seq (stmt_vinfo
, cast_stmt
);
3860 pattern_stmt
= gimple_build_assign (lhs
, SSA_NAME
, rhs
);
3861 pattern_stmt_info
= vinfo
->add_stmt (pattern_stmt
);
3862 vinfo
->move_dr (pattern_stmt_info
, stmt_vinfo
);
3863 *type_out
= vectype
;
3864 vect_pattern_detected ("vect_recog_bool_pattern", last_stmt
);
3866 return pattern_stmt
;
3873 /* A helper for vect_recog_mask_conversion_pattern. Build
3874 conversion of MASK to a type suitable for masking VECTYPE.
3875 Built statement gets required vectype and is appended to
3876 a pattern sequence of STMT_VINFO.
3878 Return converted mask. */
3881 build_mask_conversion (tree mask
, tree vectype
, stmt_vec_info stmt_vinfo
)
3886 masktype
= build_same_sized_truth_vector_type (vectype
);
3887 tmp
= vect_recog_temp_ssa_var (TREE_TYPE (masktype
), NULL
);
3888 stmt
= gimple_build_assign (tmp
, CONVERT_EXPR
, mask
);
3889 append_pattern_def_seq (stmt_vinfo
, stmt
, masktype
);
3895 /* Function vect_recog_mask_conversion_pattern
3897 Try to find statements which require boolean type
3898 converison. Additional conversion statements are
3899 added to handle such cases. For example:
3909 S4 c_1 = m_3 ? c_2 : c_3;
3911 Will be transformed into:
3915 S3'' m_2' = (_Bool[bitsize=32])m_2
3916 S3' m_3' = m_1 & m_2';
3917 S4'' m_3'' = (_Bool[bitsize=8])m_3'
3918 S4' c_1' = m_3'' ? c_2 : c_3; */
3921 vect_recog_mask_conversion_pattern (stmt_vec_info stmt_vinfo
, tree
*type_out
)
3923 gimple
*last_stmt
= stmt_vinfo
->stmt
;
3924 enum tree_code rhs_code
;
3925 tree lhs
= NULL_TREE
, rhs1
, rhs2
, tmp
, rhs1_type
, rhs2_type
;
3926 tree vectype1
, vectype2
;
3927 stmt_vec_info pattern_stmt_info
;
3928 vec_info
*vinfo
= stmt_vinfo
->vinfo
;
3930 /* Check for MASK_LOAD ans MASK_STORE calls requiring mask conversion. */
3931 if (is_gimple_call (last_stmt
)
3932 && gimple_call_internal_p (last_stmt
))
3934 gcall
*pattern_stmt
;
3936 internal_fn ifn
= gimple_call_internal_fn (last_stmt
);
3937 int mask_argno
= internal_fn_mask_index (ifn
);
3941 bool store_p
= internal_store_fn_p (ifn
);
3944 int rhs_index
= internal_fn_stored_value_index (ifn
);
3945 tree rhs
= gimple_call_arg (last_stmt
, rhs_index
);
3946 vectype1
= get_vectype_for_scalar_type (TREE_TYPE (rhs
));
3950 lhs
= gimple_call_lhs (last_stmt
);
3951 vectype1
= get_vectype_for_scalar_type (TREE_TYPE (lhs
));
3954 tree mask_arg
= gimple_call_arg (last_stmt
, mask_argno
);
3955 tree mask_arg_type
= search_type_for_mask (mask_arg
, vinfo
);
3958 vectype2
= get_mask_type_for_scalar_type (mask_arg_type
);
3960 if (!vectype1
|| !vectype2
3961 || known_eq (TYPE_VECTOR_SUBPARTS (vectype1
),
3962 TYPE_VECTOR_SUBPARTS (vectype2
)))
3965 tmp
= build_mask_conversion (mask_arg
, vectype1
, stmt_vinfo
);
3967 auto_vec
<tree
, 8> args
;
3968 unsigned int nargs
= gimple_call_num_args (last_stmt
);
3969 args
.safe_grow (nargs
);
3970 for (unsigned int i
= 0; i
< nargs
; ++i
)
3971 args
[i
] = ((int) i
== mask_argno
3973 : gimple_call_arg (last_stmt
, i
));
3974 pattern_stmt
= gimple_build_call_internal_vec (ifn
, args
);
3978 lhs
= vect_recog_temp_ssa_var (TREE_TYPE (lhs
), NULL
);
3979 gimple_call_set_lhs (pattern_stmt
, lhs
);
3981 gimple_call_set_nothrow (pattern_stmt
, true);
3983 pattern_stmt_info
= vinfo
->add_stmt (pattern_stmt
);
3984 if (STMT_VINFO_DATA_REF (stmt_vinfo
))
3985 vinfo
->move_dr (pattern_stmt_info
, stmt_vinfo
);
3987 *type_out
= vectype1
;
3988 vect_pattern_detected ("vect_recog_mask_conversion_pattern", last_stmt
);
3990 return pattern_stmt
;
3993 if (!is_gimple_assign (last_stmt
))
3996 gimple
*pattern_stmt
;
3997 lhs
= gimple_assign_lhs (last_stmt
);
3998 rhs1
= gimple_assign_rhs1 (last_stmt
);
3999 rhs_code
= gimple_assign_rhs_code (last_stmt
);
4001 /* Check for cond expression requiring mask conversion. */
4002 if (rhs_code
== COND_EXPR
)
4004 vectype1
= get_vectype_for_scalar_type (TREE_TYPE (lhs
));
4006 if (TREE_CODE (rhs1
) == SSA_NAME
)
4008 rhs1_type
= search_type_for_mask (rhs1
, vinfo
);
4012 else if (COMPARISON_CLASS_P (rhs1
))
4014 /* Check whether we're comparing scalar booleans and (if so)
4015 whether a better mask type exists than the mask associated
4016 with boolean-sized elements. This avoids unnecessary packs
4017 and unpacks if the booleans are set from comparisons of
4018 wider types. E.g. in:
4020 int x1, x2, x3, x4, y1, y1;
4022 bool b1 = (x1 == x2);
4023 bool b2 = (x3 == x4);
4024 ... = b1 == b2 ? y1 : y2;
4026 it is better for b1 and b2 to use the mask type associated
4027 with int elements rather bool (byte) elements. */
4028 rhs1_type
= search_type_for_mask (TREE_OPERAND (rhs1
, 0), vinfo
);
4030 rhs1_type
= TREE_TYPE (TREE_OPERAND (rhs1
, 0));
4035 vectype2
= get_mask_type_for_scalar_type (rhs1_type
);
4037 if (!vectype1
|| !vectype2
)
4040 /* Continue if a conversion is needed. Also continue if we have
4041 a comparison whose vector type would normally be different from
4042 VECTYPE2 when considered in isolation. In that case we'll
4043 replace the comparison with an SSA name (so that we can record
4044 its vector type) and behave as though the comparison was an SSA
4045 name from the outset. */
4046 if (known_eq (TYPE_VECTOR_SUBPARTS (vectype1
),
4047 TYPE_VECTOR_SUBPARTS (vectype2
))
4048 && (TREE_CODE (rhs1
) == SSA_NAME
4049 || rhs1_type
== TREE_TYPE (TREE_OPERAND (rhs1
, 0))))
4052 /* If rhs1 is invariant and we can promote it leave the COND_EXPR
4053 in place, we can handle it in vectorizable_condition. This avoids
4054 unnecessary promotion stmts and increased vectorization factor. */
4055 if (COMPARISON_CLASS_P (rhs1
)
4056 && INTEGRAL_TYPE_P (rhs1_type
)
4057 && known_le (TYPE_VECTOR_SUBPARTS (vectype1
),
4058 TYPE_VECTOR_SUBPARTS (vectype2
)))
4060 enum vect_def_type dt
;
4061 if (vect_is_simple_use (TREE_OPERAND (rhs1
, 0), vinfo
, &dt
)
4062 && dt
== vect_external_def
4063 && vect_is_simple_use (TREE_OPERAND (rhs1
, 1), vinfo
, &dt
)
4064 && (dt
== vect_external_def
4065 || dt
== vect_constant_def
))
4067 tree wide_scalar_type
= build_nonstandard_integer_type
4068 (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (vectype1
))),
4069 TYPE_UNSIGNED (rhs1_type
));
4070 tree vectype3
= get_vectype_for_scalar_type (wide_scalar_type
);
4071 if (expand_vec_cond_expr_p (vectype1
, vectype3
, TREE_CODE (rhs1
)))
4076 /* If rhs1 is a comparison we need to move it into a
4077 separate statement. */
4078 if (TREE_CODE (rhs1
) != SSA_NAME
)
4080 tmp
= vect_recog_temp_ssa_var (TREE_TYPE (rhs1
), NULL
);
4081 pattern_stmt
= gimple_build_assign (tmp
, rhs1
);
4083 append_pattern_def_seq (stmt_vinfo
, pattern_stmt
, vectype2
);
4086 if (maybe_ne (TYPE_VECTOR_SUBPARTS (vectype1
),
4087 TYPE_VECTOR_SUBPARTS (vectype2
)))
4088 tmp
= build_mask_conversion (rhs1
, vectype1
, stmt_vinfo
);
4092 lhs
= vect_recog_temp_ssa_var (TREE_TYPE (lhs
), NULL
);
4093 pattern_stmt
= gimple_build_assign (lhs
, COND_EXPR
, tmp
,
4094 gimple_assign_rhs2 (last_stmt
),
4095 gimple_assign_rhs3 (last_stmt
));
4097 *type_out
= vectype1
;
4098 vect_pattern_detected ("vect_recog_mask_conversion_pattern", last_stmt
);
4100 return pattern_stmt
;
4103 /* Now check for binary boolean operations requiring conversion for
4105 if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (lhs
)))
4108 if (rhs_code
!= BIT_IOR_EXPR
4109 && rhs_code
!= BIT_XOR_EXPR
4110 && rhs_code
!= BIT_AND_EXPR
4111 && TREE_CODE_CLASS (rhs_code
) != tcc_comparison
)
4114 rhs2
= gimple_assign_rhs2 (last_stmt
);
4116 rhs1_type
= search_type_for_mask (rhs1
, vinfo
);
4117 rhs2_type
= search_type_for_mask (rhs2
, vinfo
);
4119 if (!rhs1_type
|| !rhs2_type
4120 || TYPE_PRECISION (rhs1_type
) == TYPE_PRECISION (rhs2_type
))
4123 if (TYPE_PRECISION (rhs1_type
) < TYPE_PRECISION (rhs2_type
))
4125 vectype1
= get_mask_type_for_scalar_type (rhs1_type
);
4128 rhs2
= build_mask_conversion (rhs2
, vectype1
, stmt_vinfo
);
4132 vectype1
= get_mask_type_for_scalar_type (rhs2_type
);
4135 rhs1
= build_mask_conversion (rhs1
, vectype1
, stmt_vinfo
);
4138 lhs
= vect_recog_temp_ssa_var (TREE_TYPE (lhs
), NULL
);
4139 pattern_stmt
= gimple_build_assign (lhs
, rhs_code
, rhs1
, rhs2
);
4141 *type_out
= vectype1
;
4142 vect_pattern_detected ("vect_recog_mask_conversion_pattern", last_stmt
);
4144 return pattern_stmt
;
4147 /* STMT_INFO is a load or store. If the load or store is conditional, return
4148 the boolean condition under which it occurs, otherwise return null. */
4151 vect_get_load_store_mask (stmt_vec_info stmt_info
)
4153 if (gassign
*def_assign
= dyn_cast
<gassign
*> (stmt_info
->stmt
))
4155 gcc_assert (gimple_assign_single_p (def_assign
));
4159 if (gcall
*def_call
= dyn_cast
<gcall
*> (stmt_info
->stmt
))
4161 internal_fn ifn
= gimple_call_internal_fn (def_call
);
4162 int mask_index
= internal_fn_mask_index (ifn
);
4163 return gimple_call_arg (def_call
, mask_index
);
4169 /* Return the scalar offset type that an internal gather/scatter function
4170 should use. GS_INFO describes the gather/scatter operation. */
4173 vect_get_gather_scatter_offset_type (gather_scatter_info
*gs_info
)
4175 tree offset_type
= TREE_TYPE (gs_info
->offset
);
4176 unsigned int element_bits
= tree_to_uhwi (TYPE_SIZE (gs_info
->element_type
));
4178 /* Enforced by vect_check_gather_scatter. */
4179 unsigned int offset_bits
= TYPE_PRECISION (offset_type
);
4180 gcc_assert (element_bits
>= offset_bits
);
4182 /* If the offset is narrower than the elements, extend it according
4184 if (element_bits
> offset_bits
)
4185 return build_nonstandard_integer_type (element_bits
,
4186 TYPE_UNSIGNED (offset_type
));
4191 /* Return MASK if MASK is suitable for masking an operation on vectors
4192 of type VECTYPE, otherwise convert it into such a form and return
4193 the result. Associate any conversion statements with STMT_INFO's
4197 vect_convert_mask_for_vectype (tree mask
, tree vectype
,
4198 stmt_vec_info stmt_info
, vec_info
*vinfo
)
4200 tree mask_type
= search_type_for_mask (mask
, vinfo
);
4203 tree mask_vectype
= get_mask_type_for_scalar_type (mask_type
);
4205 && maybe_ne (TYPE_VECTOR_SUBPARTS (vectype
),
4206 TYPE_VECTOR_SUBPARTS (mask_vectype
)))
4207 mask
= build_mask_conversion (mask
, vectype
, stmt_info
);
4212 /* Return the equivalent of:
4214 fold_convert (TYPE, VALUE)
4216 with the expectation that the operation will be vectorized.
4217 If new statements are needed, add them as pattern statements
4221 vect_add_conversion_to_pattern (tree type
, tree value
, stmt_vec_info stmt_info
)
4223 if (useless_type_conversion_p (type
, TREE_TYPE (value
)))
4226 tree new_value
= vect_recog_temp_ssa_var (type
, NULL
);
4227 gassign
*conversion
= gimple_build_assign (new_value
, CONVERT_EXPR
, value
);
4228 append_pattern_def_seq (stmt_info
, conversion
,
4229 get_vectype_for_scalar_type (type
));
4233 /* Try to convert STMT_INFO into a call to a gather load or scatter store
4234 internal function. Return the final statement on success and set
4235 *TYPE_OUT to the vector type being loaded or stored.
4237 This function only handles gathers and scatters that were recognized
4238 as such from the outset (indicated by STMT_VINFO_GATHER_SCATTER_P). */
4241 vect_recog_gather_scatter_pattern (stmt_vec_info stmt_info
, tree
*type_out
)
4243 /* Currently we only support this for loop vectorization. */
4244 loop_vec_info loop_vinfo
= dyn_cast
<loop_vec_info
> (stmt_info
->vinfo
);
4248 /* Make sure that we're looking at a gather load or scatter store. */
4249 data_reference
*dr
= STMT_VINFO_DATA_REF (stmt_info
);
4250 if (!dr
|| !STMT_VINFO_GATHER_SCATTER_P (stmt_info
))
4253 /* Get the boolean that controls whether the load or store happens.
4254 This is null if the operation is unconditional. */
4255 tree mask
= vect_get_load_store_mask (stmt_info
);
4257 /* Make sure that the target supports an appropriate internal
4258 function for the gather/scatter operation. */
4259 gather_scatter_info gs_info
;
4260 if (!vect_check_gather_scatter (stmt_info
, loop_vinfo
, &gs_info
)
4264 /* Convert the mask to the right form. */
4265 tree gs_vectype
= get_vectype_for_scalar_type (gs_info
.element_type
);
4267 mask
= vect_convert_mask_for_vectype (mask
, gs_vectype
, stmt_info
,
4270 /* Get the invariant base and non-invariant offset, converting the
4271 latter to the same width as the vector elements. */
4272 tree base
= gs_info
.base
;
4273 tree offset_type
= vect_get_gather_scatter_offset_type (&gs_info
);
4274 tree offset
= vect_add_conversion_to_pattern (offset_type
, gs_info
.offset
,
4277 /* Build the new pattern statement. */
4278 tree scale
= size_int (gs_info
.scale
);
4279 gcall
*pattern_stmt
;
4280 if (DR_IS_READ (dr
))
4283 pattern_stmt
= gimple_build_call_internal (gs_info
.ifn
, 4, base
,
4284 offset
, scale
, mask
);
4286 pattern_stmt
= gimple_build_call_internal (gs_info
.ifn
, 3, base
,
4288 tree load_lhs
= vect_recog_temp_ssa_var (gs_info
.element_type
, NULL
);
4289 gimple_call_set_lhs (pattern_stmt
, load_lhs
);
4293 tree rhs
= vect_get_store_rhs (stmt_info
);
4295 pattern_stmt
= gimple_build_call_internal (IFN_MASK_SCATTER_STORE
, 5,
4296 base
, offset
, scale
, rhs
,
4299 pattern_stmt
= gimple_build_call_internal (IFN_SCATTER_STORE
, 4,
4300 base
, offset
, scale
, rhs
);
4302 gimple_call_set_nothrow (pattern_stmt
, true);
4304 /* Copy across relevant vectorization info and associate DR with the
4305 new pattern statement instead of the original statement. */
4306 stmt_vec_info pattern_stmt_info
= loop_vinfo
->add_stmt (pattern_stmt
);
4307 loop_vinfo
->move_dr (pattern_stmt_info
, stmt_info
);
4309 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
4310 *type_out
= vectype
;
4311 vect_pattern_detected ("gather/scatter pattern", stmt_info
->stmt
);
4313 return pattern_stmt
;
4316 /* Return true if TYPE is a non-boolean integer type. These are the types
4317 that we want to consider for narrowing. */
4320 vect_narrowable_type_p (tree type
)
4322 return INTEGRAL_TYPE_P (type
) && !VECT_SCALAR_BOOLEAN_TYPE_P (type
);
4325 /* Return true if the operation given by CODE can be truncated to N bits
4326 when only N bits of the output are needed. This is only true if bit N+1
4327 of the inputs has no effect on the low N bits of the result. */
4330 vect_truncatable_operation_p (tree_code code
)
4348 /* Record that STMT_INFO could be changed from operating on TYPE to
4349 operating on a type with the precision and sign given by PRECISION
4350 and SIGN respectively. PRECISION is an arbitrary bit precision;
4351 it might not be a whole number of bytes. */
4354 vect_set_operation_type (stmt_vec_info stmt_info
, tree type
,
4355 unsigned int precision
, signop sign
)
4357 /* Round the precision up to a whole number of bytes. */
4358 precision
= vect_element_precision (precision
);
4359 if (precision
< TYPE_PRECISION (type
)
4360 && (!stmt_info
->operation_precision
4361 || stmt_info
->operation_precision
> precision
))
4363 stmt_info
->operation_precision
= precision
;
4364 stmt_info
->operation_sign
= sign
;
4368 /* Record that STMT_INFO only requires MIN_INPUT_PRECISION from its
4369 non-boolean inputs, all of which have type TYPE. MIN_INPUT_PRECISION
4370 is an arbitrary bit precision; it might not be a whole number of bytes. */
4373 vect_set_min_input_precision (stmt_vec_info stmt_info
, tree type
,
4374 unsigned int min_input_precision
)
4376 /* This operation in isolation only requires the inputs to have
4377 MIN_INPUT_PRECISION of precision, However, that doesn't mean
4378 that MIN_INPUT_PRECISION is a natural precision for the chain
4379 as a whole. E.g. consider something like:
4381 unsigned short *x, *y;
4382 *y = ((*x & 0xf0) >> 4) | (*y << 4);
4384 The right shift can be done on unsigned chars, and only requires the
4385 result of "*x & 0xf0" to be done on unsigned chars. But taking that
4386 approach would mean turning a natural chain of single-vector unsigned
4387 short operations into one that truncates "*x" and then extends
4388 "(*x & 0xf0) >> 4", with two vectors for each unsigned short
4389 operation and one vector for each unsigned char operation.
4390 This would be a significant pessimization.
4392 Instead only propagate the maximum of this precision and the precision
4393 required by the users of the result. This means that we don't pessimize
4394 the case above but continue to optimize things like:
4398 *y = ((*x & 0xf0) >> 4) | (*y << 4);
4400 Here we would truncate two vectors of *x to a single vector of
4401 unsigned chars and use single-vector unsigned char operations for
4402 everything else, rather than doing two unsigned short copies of
4403 "(*x & 0xf0) >> 4" and then truncating the result. */
4404 min_input_precision
= MAX (min_input_precision
,
4405 stmt_info
->min_output_precision
);
4407 if (min_input_precision
< TYPE_PRECISION (type
)
4408 && (!stmt_info
->min_input_precision
4409 || stmt_info
->min_input_precision
> min_input_precision
))
4410 stmt_info
->min_input_precision
= min_input_precision
;
4413 /* Subroutine of vect_determine_min_output_precision. Return true if
4414 we can calculate a reduced number of output bits for STMT_INFO,
4415 whose result is LHS. */
4418 vect_determine_min_output_precision_1 (stmt_vec_info stmt_info
, tree lhs
)
4420 /* Take the maximum precision required by users of the result. */
4421 vec_info
*vinfo
= stmt_info
->vinfo
;
4422 unsigned int precision
= 0;
4423 imm_use_iterator iter
;
4425 FOR_EACH_IMM_USE_FAST (use
, iter
, lhs
)
4427 gimple
*use_stmt
= USE_STMT (use
);
4428 if (is_gimple_debug (use_stmt
))
4430 stmt_vec_info use_stmt_info
= vinfo
->lookup_stmt (use_stmt
);
4431 if (!use_stmt_info
|| !use_stmt_info
->min_input_precision
)
4433 /* The input precision recorded for COND_EXPRs applies only to the
4434 "then" and "else" values. */
4435 gassign
*assign
= dyn_cast
<gassign
*> (stmt_info
->stmt
);
4437 && gimple_assign_rhs_code (assign
) == COND_EXPR
4438 && use
->use
!= gimple_assign_rhs2_ptr (assign
)
4439 && use
->use
!= gimple_assign_rhs3_ptr (assign
))
4441 precision
= MAX (precision
, use_stmt_info
->min_input_precision
);
4444 if (dump_enabled_p ())
4445 dump_printf_loc (MSG_NOTE
, vect_location
,
4446 "only the low %d bits of %T are significant\n",
4448 stmt_info
->min_output_precision
= precision
;
4452 /* Calculate min_output_precision for STMT_INFO. */
4455 vect_determine_min_output_precision (stmt_vec_info stmt_info
)
4457 /* We're only interested in statements with a narrowable result. */
4458 tree lhs
= gimple_get_lhs (stmt_info
->stmt
);
4460 || TREE_CODE (lhs
) != SSA_NAME
4461 || !vect_narrowable_type_p (TREE_TYPE (lhs
)))
4464 if (!vect_determine_min_output_precision_1 (stmt_info
, lhs
))
4465 stmt_info
->min_output_precision
= TYPE_PRECISION (TREE_TYPE (lhs
));
4468 /* Use range information to decide whether STMT (described by STMT_INFO)
4469 could be done in a narrower type. This is effectively a forward
4470 propagation, since it uses context-independent information that applies
4471 to all users of an SSA name. */
4474 vect_determine_precisions_from_range (stmt_vec_info stmt_info
, gassign
*stmt
)
4476 tree lhs
= gimple_assign_lhs (stmt
);
4477 if (!lhs
|| TREE_CODE (lhs
) != SSA_NAME
)
4480 tree type
= TREE_TYPE (lhs
);
4481 if (!vect_narrowable_type_p (type
))
4484 /* First see whether we have any useful range information for the result. */
4485 unsigned int precision
= TYPE_PRECISION (type
);
4486 signop sign
= TYPE_SIGN (type
);
4487 wide_int min_value
, max_value
;
4488 if (!vect_get_range_info (lhs
, &min_value
, &max_value
))
4491 tree_code code
= gimple_assign_rhs_code (stmt
);
4492 unsigned int nops
= gimple_num_ops (stmt
);
4494 if (!vect_truncatable_operation_p (code
))
4495 /* Check that all relevant input operands are compatible, and update
4496 [MIN_VALUE, MAX_VALUE] to include their ranges. */
4497 for (unsigned int i
= 1; i
< nops
; ++i
)
4499 tree op
= gimple_op (stmt
, i
);
4500 if (TREE_CODE (op
) == INTEGER_CST
)
4502 /* Don't require the integer to have RHS_TYPE (which it might
4503 not for things like shift amounts, etc.), but do require it
4505 if (!int_fits_type_p (op
, type
))
4508 min_value
= wi::min (min_value
, wi::to_wide (op
, precision
), sign
);
4509 max_value
= wi::max (max_value
, wi::to_wide (op
, precision
), sign
);
4511 else if (TREE_CODE (op
) == SSA_NAME
)
4513 /* Ignore codes that don't take uniform arguments. */
4514 if (!types_compatible_p (TREE_TYPE (op
), type
))
4517 wide_int op_min_value
, op_max_value
;
4518 if (!vect_get_range_info (op
, &op_min_value
, &op_max_value
))
4521 min_value
= wi::min (min_value
, op_min_value
, sign
);
4522 max_value
= wi::max (max_value
, op_max_value
, sign
);
4528 /* Try to switch signed types for unsigned types if we can.
4529 This is better for two reasons. First, unsigned ops tend
4530 to be cheaper than signed ops. Second, it means that we can
4534 int res = (int) c & 0xff00; // range [0x0000, 0xff00]
4539 unsigned short res_1 = (unsigned short) c & 0xff00;
4540 int res = (int) res_1;
4542 where the intermediate result res_1 has unsigned rather than
4544 if (sign
== SIGNED
&& !wi::neg_p (min_value
))
4547 /* See what precision is required for MIN_VALUE and MAX_VALUE. */
4548 unsigned int precision1
= wi::min_precision (min_value
, sign
);
4549 unsigned int precision2
= wi::min_precision (max_value
, sign
);
4550 unsigned int value_precision
= MAX (precision1
, precision2
);
4551 if (value_precision
>= precision
)
4554 if (dump_enabled_p ())
4555 dump_printf_loc (MSG_NOTE
, vect_location
, "can narrow to %s:%d"
4556 " without loss of precision: %G",
4557 sign
== SIGNED
? "signed" : "unsigned",
4558 value_precision
, stmt
);
4560 vect_set_operation_type (stmt_info
, type
, value_precision
, sign
);
4561 vect_set_min_input_precision (stmt_info
, type
, value_precision
);
4564 /* Use information about the users of STMT's result to decide whether
4565 STMT (described by STMT_INFO) could be done in a narrower type.
4566 This is effectively a backward propagation. */
4569 vect_determine_precisions_from_users (stmt_vec_info stmt_info
, gassign
*stmt
)
4571 tree_code code
= gimple_assign_rhs_code (stmt
);
4572 unsigned int opno
= (code
== COND_EXPR
? 2 : 1);
4573 tree type
= TREE_TYPE (gimple_op (stmt
, opno
));
4574 if (!vect_narrowable_type_p (type
))
4577 unsigned int precision
= TYPE_PRECISION (type
);
4578 unsigned int operation_precision
, min_input_precision
;
4582 /* Only the bits that contribute to the output matter. Don't change
4583 the precision of the operation itself. */
4584 operation_precision
= precision
;
4585 min_input_precision
= stmt_info
->min_output_precision
;
4591 tree shift
= gimple_assign_rhs2 (stmt
);
4592 if (TREE_CODE (shift
) != INTEGER_CST
4593 || !wi::ltu_p (wi::to_widest (shift
), precision
))
4595 unsigned int const_shift
= TREE_INT_CST_LOW (shift
);
4596 if (code
== LSHIFT_EXPR
)
4598 /* We need CONST_SHIFT fewer bits of the input. */
4599 operation_precision
= stmt_info
->min_output_precision
;
4600 min_input_precision
= (MAX (operation_precision
, const_shift
)
4605 /* We need CONST_SHIFT extra bits to do the operation. */
4606 operation_precision
= (stmt_info
->min_output_precision
4608 min_input_precision
= operation_precision
;
4614 if (vect_truncatable_operation_p (code
))
4616 /* Input bit N has no effect on output bits N-1 and lower. */
4617 operation_precision
= stmt_info
->min_output_precision
;
4618 min_input_precision
= operation_precision
;
4624 if (operation_precision
< precision
)
4626 if (dump_enabled_p ())
4627 dump_printf_loc (MSG_NOTE
, vect_location
, "can narrow to %s:%d"
4628 " without affecting users: %G",
4629 TYPE_UNSIGNED (type
) ? "unsigned" : "signed",
4630 operation_precision
, stmt
);
4631 vect_set_operation_type (stmt_info
, type
, operation_precision
,
4634 vect_set_min_input_precision (stmt_info
, type
, min_input_precision
);
4637 /* Handle vect_determine_precisions for STMT_INFO, given that we
4638 have already done so for the users of its result. */
4641 vect_determine_stmt_precisions (stmt_vec_info stmt_info
)
4643 vect_determine_min_output_precision (stmt_info
);
4644 if (gassign
*stmt
= dyn_cast
<gassign
*> (stmt_info
->stmt
))
4646 vect_determine_precisions_from_range (stmt_info
, stmt
);
4647 vect_determine_precisions_from_users (stmt_info
, stmt
);
4651 /* Walk backwards through the vectorizable region to determine the
4652 values of these fields:
4654 - min_output_precision
4655 - min_input_precision
4656 - operation_precision
4657 - operation_sign. */
4660 vect_determine_precisions (vec_info
*vinfo
)
4662 DUMP_VECT_SCOPE ("vect_determine_precisions");
4664 if (loop_vec_info loop_vinfo
= dyn_cast
<loop_vec_info
> (vinfo
))
4666 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
4667 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
4668 unsigned int nbbs
= loop
->num_nodes
;
4670 for (unsigned int i
= 0; i
< nbbs
; i
++)
4672 basic_block bb
= bbs
[nbbs
- i
- 1];
4673 for (gimple_stmt_iterator si
= gsi_last_bb (bb
);
4674 !gsi_end_p (si
); gsi_prev (&si
))
4675 vect_determine_stmt_precisions
4676 (vinfo
->lookup_stmt (gsi_stmt (si
)));
4681 bb_vec_info bb_vinfo
= as_a
<bb_vec_info
> (vinfo
);
4682 gimple_stmt_iterator si
= bb_vinfo
->region_end
;
4687 si
= gsi_last_bb (bb_vinfo
->bb
);
4690 stmt
= gsi_stmt (si
);
4691 stmt_vec_info stmt_info
= vinfo
->lookup_stmt (stmt
);
4692 if (stmt_info
&& STMT_VINFO_VECTORIZABLE (stmt_info
))
4693 vect_determine_stmt_precisions (stmt_info
);
4695 while (stmt
!= gsi_stmt (bb_vinfo
->region_begin
));
4699 typedef gimple
*(*vect_recog_func_ptr
) (stmt_vec_info
, tree
*);
4701 struct vect_recog_func
4703 vect_recog_func_ptr fn
;
4707 /* Note that ordering matters - the first pattern matching on a stmt is
4708 taken which means usually the more complex one needs to preceed the
4709 less comples onex (widen_sum only after dot_prod or sad for example). */
4710 static vect_recog_func vect_vect_recog_func_ptrs
[] = {
4711 { vect_recog_over_widening_pattern
, "over_widening" },
4712 /* Must come after over_widening, which narrows the shift as much as
4713 possible beforehand. */
4714 { vect_recog_average_pattern
, "average" },
4715 { vect_recog_cast_forwprop_pattern
, "cast_forwprop" },
4716 { vect_recog_widen_mult_pattern
, "widen_mult" },
4717 { vect_recog_dot_prod_pattern
, "dot_prod" },
4718 { vect_recog_sad_pattern
, "sad" },
4719 { vect_recog_widen_sum_pattern
, "widen_sum" },
4720 { vect_recog_pow_pattern
, "pow" },
4721 { vect_recog_widen_shift_pattern
, "widen_shift" },
4722 { vect_recog_rotate_pattern
, "rotate" },
4723 { vect_recog_vector_vector_shift_pattern
, "vector_vector_shift" },
4724 { vect_recog_divmod_pattern
, "divmod" },
4725 { vect_recog_mult_pattern
, "mult" },
4726 { vect_recog_mixed_size_cond_pattern
, "mixed_size_cond" },
4727 { vect_recog_bool_pattern
, "bool" },
4728 /* This must come before mask conversion, and includes the parts
4729 of mask conversion that are needed for gather and scatter
4730 internal functions. */
4731 { vect_recog_gather_scatter_pattern
, "gather_scatter" },
4732 { vect_recog_mask_conversion_pattern
, "mask_conversion" }
4735 const unsigned int NUM_PATTERNS
= ARRAY_SIZE (vect_vect_recog_func_ptrs
);
4737 /* Mark statements that are involved in a pattern. */
4740 vect_mark_pattern_stmts (stmt_vec_info orig_stmt_info
, gimple
*pattern_stmt
,
4741 tree pattern_vectype
)
4743 gimple
*def_seq
= STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt_info
);
4745 gimple
*orig_pattern_stmt
= NULL
;
4746 if (is_pattern_stmt_p (orig_stmt_info
))
4748 /* We're replacing a statement in an existing pattern definition
4750 orig_pattern_stmt
= orig_stmt_info
->stmt
;
4751 if (dump_enabled_p ())
4752 dump_printf_loc (MSG_NOTE
, vect_location
,
4753 "replacing earlier pattern %G", orig_pattern_stmt
);
4755 /* To keep the book-keeping simple, just swap the lhs of the
4756 old and new statements, so that the old one has a valid but
4758 tree old_lhs
= gimple_get_lhs (orig_pattern_stmt
);
4759 gimple_set_lhs (orig_pattern_stmt
, gimple_get_lhs (pattern_stmt
));
4760 gimple_set_lhs (pattern_stmt
, old_lhs
);
4762 if (dump_enabled_p ())
4763 dump_printf_loc (MSG_NOTE
, vect_location
, "with %G", pattern_stmt
);
4765 /* Switch to the statement that ORIG replaces. */
4766 orig_stmt_info
= STMT_VINFO_RELATED_STMT (orig_stmt_info
);
4768 /* We shouldn't be replacing the main pattern statement. */
4769 gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info
)->stmt
4770 != orig_pattern_stmt
);
4774 for (gimple_stmt_iterator si
= gsi_start (def_seq
);
4775 !gsi_end_p (si
); gsi_next (&si
))
4777 stmt_vec_info pattern_stmt_info
4778 = vect_init_pattern_stmt (gsi_stmt (si
),
4779 orig_stmt_info
, pattern_vectype
);
4780 /* Stmts in the def sequence are not vectorizable cycle or
4781 induction defs, instead they should all be vect_internal_def
4782 feeding the main pattern stmt which retains this def type. */
4783 STMT_VINFO_DEF_TYPE (pattern_stmt_info
) = vect_internal_def
;
4786 if (orig_pattern_stmt
)
4788 vect_init_pattern_stmt (pattern_stmt
, orig_stmt_info
, pattern_vectype
);
4790 /* Insert all the new pattern statements before the original one. */
4791 gimple_seq
*orig_def_seq
= &STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt_info
);
4792 gimple_stmt_iterator gsi
= gsi_for_stmt (orig_pattern_stmt
,
4794 gsi_insert_seq_before_without_update (&gsi
, def_seq
, GSI_SAME_STMT
);
4795 gsi_insert_before_without_update (&gsi
, pattern_stmt
, GSI_SAME_STMT
);
4797 /* Remove the pattern statement that this new pattern replaces. */
4798 gsi_remove (&gsi
, false);
4801 vect_set_pattern_stmt (pattern_stmt
, orig_stmt_info
, pattern_vectype
);
4804 /* Function vect_pattern_recog_1
4807 PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
4808 computation pattern.
4809 STMT_INFO: A stmt from which the pattern search should start.
4811 If PATTERN_RECOG_FUNC successfully detected the pattern, it creates
4812 a sequence of statements that has the same functionality and can be
4813 used to replace STMT_INFO. It returns the last statement in the sequence
4814 and adds any earlier statements to STMT_INFO's STMT_VINFO_PATTERN_DEF_SEQ.
4815 PATTERN_RECOG_FUNC also sets *TYPE_OUT to the vector type of the final
4816 statement, having first checked that the target supports the new operation
4819 This function also does some bookkeeping, as explained in the documentation
4820 for vect_recog_pattern. */
4823 vect_pattern_recog_1 (vect_recog_func
*recog_func
, stmt_vec_info stmt_info
)
4825 vec_info
*vinfo
= stmt_info
->vinfo
;
4826 gimple
*pattern_stmt
;
4827 loop_vec_info loop_vinfo
;
4828 tree pattern_vectype
;
4830 /* If this statement has already been replaced with pattern statements,
4831 leave the original statement alone, since the first match wins.
4832 Instead try to match against the definition statements that feed
4833 the main pattern statement. */
4834 if (STMT_VINFO_IN_PATTERN_P (stmt_info
))
4836 gimple_stmt_iterator gsi
;
4837 for (gsi
= gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info
));
4838 !gsi_end_p (gsi
); gsi_next (&gsi
))
4839 vect_pattern_recog_1 (recog_func
, vinfo
->lookup_stmt (gsi_stmt (gsi
)));
4843 gcc_assert (!STMT_VINFO_PATTERN_DEF_SEQ (stmt_info
));
4844 pattern_stmt
= recog_func
->fn (stmt_info
, &pattern_vectype
);
4847 /* Clear any half-formed pattern definition sequence. */
4848 STMT_VINFO_PATTERN_DEF_SEQ (stmt_info
) = NULL
;
4852 loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
4853 gcc_assert (pattern_vectype
);
4855 /* Found a vectorizable pattern. */
4856 if (dump_enabled_p ())
4857 dump_printf_loc (MSG_NOTE
, vect_location
,
4858 "%s pattern recognized: %G",
4859 recog_func
->name
, pattern_stmt
);
4861 /* Mark the stmts that are involved in the pattern. */
4862 vect_mark_pattern_stmts (stmt_info
, pattern_stmt
, pattern_vectype
);
4864 /* Patterns cannot be vectorized using SLP, because they change the order of
4869 stmt_vec_info
*elem_ptr
;
4870 VEC_ORDERED_REMOVE_IF (LOOP_VINFO_REDUCTIONS (loop_vinfo
), ix
, ix2
,
4871 elem_ptr
, *elem_ptr
== stmt_info
);
4876 /* Function vect_pattern_recog
4879 LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
4882 Output - for each computation idiom that is detected we create a new stmt
4883 that provides the same functionality and that can be vectorized. We
4884 also record some information in the struct_stmt_info of the relevant
4885 stmts, as explained below:
4887 At the entry to this function we have the following stmts, with the
4888 following initial value in the STMT_VINFO fields:
4890 stmt in_pattern_p related_stmt vec_stmt
4891 S1: a_i = .... - - -
4892 S2: a_2 = ..use(a_i).. - - -
4893 S3: a_1 = ..use(a_2).. - - -
4894 S4: a_0 = ..use(a_1).. - - -
4895 S5: ... = ..use(a_0).. - - -
4897 Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
4898 represented by a single stmt. We then:
4899 - create a new stmt S6 equivalent to the pattern (the stmt is not
4900 inserted into the code)
4901 - fill in the STMT_VINFO fields as follows:
4903 in_pattern_p related_stmt vec_stmt
4904 S1: a_i = .... - - -
4905 S2: a_2 = ..use(a_i).. - - -
4906 S3: a_1 = ..use(a_2).. - - -
4907 S4: a_0 = ..use(a_1).. true S6 -
4908 '---> S6: a_new = .... - S4 -
4909 S5: ... = ..use(a_0).. - - -
4911 (the last stmt in the pattern (S4) and the new pattern stmt (S6) point
4912 to each other through the RELATED_STMT field).
4914 S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
4915 of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
4916 remain irrelevant unless used by stmts other than S4.
4918 If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
4919 (because they are marked as irrelevant). It will vectorize S6, and record
4920 a pointer to the new vector stmt VS6 from S6 (as usual).
4921 S4 will be skipped, and S5 will be vectorized as usual:
4923 in_pattern_p related_stmt vec_stmt
4924 S1: a_i = .... - - -
4925 S2: a_2 = ..use(a_i).. - - -
4926 S3: a_1 = ..use(a_2).. - - -
4927 > VS6: va_new = .... - - -
4928 S4: a_0 = ..use(a_1).. true S6 VS6
4929 '---> S6: a_new = .... - S4 VS6
4930 > VS5: ... = ..vuse(va_new).. - - -
4931 S5: ... = ..use(a_0).. - - -
4933 DCE could then get rid of {S1,S2,S3,S4,S5} (if their defs are not used
4934 elsewhere), and we'll end up with:
4937 VS5: ... = ..vuse(va_new)..
4939 In case of more than one pattern statements, e.g., widen-mult with
4943 S2 a_T = (TYPE) a_t;
4944 '--> S3: a_it = (interm_type) a_t;
4945 S4 prod_T = a_T * CONST;
4946 '--> S5: prod_T' = a_it w* CONST;
4948 there may be other users of a_T outside the pattern. In that case S2 will
4949 be marked as relevant (as well as S3), and both S2 and S3 will be analyzed
4950 and vectorized. The vector stmt VS2 will be recorded in S2, and VS3 will
4951 be recorded in S3. */
4954 vect_pattern_recog (vec_info
*vinfo
)
4959 gimple_stmt_iterator si
;
4962 vect_determine_precisions (vinfo
);
4964 DUMP_VECT_SCOPE ("vect_pattern_recog");
4966 if (loop_vec_info loop_vinfo
= dyn_cast
<loop_vec_info
> (vinfo
))
4968 loop
= LOOP_VINFO_LOOP (loop_vinfo
);
4969 bbs
= LOOP_VINFO_BBS (loop_vinfo
);
4970 nbbs
= loop
->num_nodes
;
4972 /* Scan through the loop stmts, applying the pattern recognition
4973 functions starting at each stmt visited: */
4974 for (i
= 0; i
< nbbs
; i
++)
4976 basic_block bb
= bbs
[i
];
4977 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
4979 stmt_vec_info stmt_info
= vinfo
->lookup_stmt (gsi_stmt (si
));
4980 /* Scan over all generic vect_recog_xxx_pattern functions. */
4981 for (j
= 0; j
< NUM_PATTERNS
; j
++)
4982 vect_pattern_recog_1 (&vect_vect_recog_func_ptrs
[j
],
4989 bb_vec_info bb_vinfo
= as_a
<bb_vec_info
> (vinfo
);
4990 for (si
= bb_vinfo
->region_begin
;
4991 gsi_stmt (si
) != gsi_stmt (bb_vinfo
->region_end
); gsi_next (&si
))
4993 gimple
*stmt
= gsi_stmt (si
);
4994 stmt_vec_info stmt_info
= bb_vinfo
->lookup_stmt (stmt
);
4995 if (stmt_info
&& !STMT_VINFO_VECTORIZABLE (stmt_info
))
4998 /* Scan over all generic vect_recog_xxx_pattern functions. */
4999 for (j
= 0; j
< NUM_PATTERNS
; j
++)
5000 vect_pattern_recog_1 (&vect_vect_recog_func_ptrs
[j
], stmt_info
);