re PR fortran/88376 (ICE in is_illegal_recursion, at fortran/resolve.c:1689)
[official-gcc.git] / gcc / sched-deps.c
bloba9e934d7fa054d5b00bb7a97911a51e5e93d134f
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "backend.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "df.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "memmodel.h"
34 #include "ira.h"
35 #include "ira-int.h"
36 #include "insn-attr.h"
37 #include "cfgbuild.h"
38 #include "sched-int.h"
39 #include "params.h"
40 #include "cselib.h"
42 #ifdef INSN_SCHEDULING
44 /* Holds current parameters for the dependency analyzer. */
45 struct sched_deps_info_def *sched_deps_info;
47 /* The data is specific to the Haifa scheduler. */
48 vec<haifa_deps_insn_data_def>
49 h_d_i_d = vNULL;
51 /* Return the major type present in the DS. */
52 enum reg_note
53 ds_to_dk (ds_t ds)
55 if (ds & DEP_TRUE)
56 return REG_DEP_TRUE;
58 if (ds & DEP_OUTPUT)
59 return REG_DEP_OUTPUT;
61 if (ds & DEP_CONTROL)
62 return REG_DEP_CONTROL;
64 gcc_assert (ds & DEP_ANTI);
66 return REG_DEP_ANTI;
69 /* Return equivalent dep_status. */
70 ds_t
71 dk_to_ds (enum reg_note dk)
73 switch (dk)
75 case REG_DEP_TRUE:
76 return DEP_TRUE;
78 case REG_DEP_OUTPUT:
79 return DEP_OUTPUT;
81 case REG_DEP_CONTROL:
82 return DEP_CONTROL;
84 default:
85 gcc_assert (dk == REG_DEP_ANTI);
86 return DEP_ANTI;
90 /* Functions to operate with dependence information container - dep_t. */
92 /* Init DEP with the arguments. */
93 void
94 init_dep_1 (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note type, ds_t ds)
96 DEP_PRO (dep) = pro;
97 DEP_CON (dep) = con;
98 DEP_TYPE (dep) = type;
99 DEP_STATUS (dep) = ds;
100 DEP_COST (dep) = UNKNOWN_DEP_COST;
101 DEP_NONREG (dep) = 0;
102 DEP_MULTIPLE (dep) = 0;
103 DEP_REPLACE (dep) = NULL;
106 /* Init DEP with the arguments.
107 While most of the scheduler (including targets) only need the major type
108 of the dependency, it is convenient to hide full dep_status from them. */
109 void
110 init_dep (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note kind)
112 ds_t ds;
114 if ((current_sched_info->flags & USE_DEPS_LIST))
115 ds = dk_to_ds (kind);
116 else
117 ds = 0;
119 init_dep_1 (dep, pro, con, kind, ds);
122 /* Make a copy of FROM in TO. */
123 static void
124 copy_dep (dep_t to, dep_t from)
126 memcpy (to, from, sizeof (*to));
129 static void dump_ds (FILE *, ds_t);
131 /* Define flags for dump_dep (). */
133 /* Dump producer of the dependence. */
134 #define DUMP_DEP_PRO (2)
136 /* Dump consumer of the dependence. */
137 #define DUMP_DEP_CON (4)
139 /* Dump type of the dependence. */
140 #define DUMP_DEP_TYPE (8)
142 /* Dump status of the dependence. */
143 #define DUMP_DEP_STATUS (16)
145 /* Dump all information about the dependence. */
146 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
147 |DUMP_DEP_STATUS)
149 /* Dump DEP to DUMP.
150 FLAGS is a bit mask specifying what information about DEP needs
151 to be printed.
152 If FLAGS has the very first bit set, then dump all information about DEP
153 and propagate this bit into the callee dump functions. */
154 static void
155 dump_dep (FILE *dump, dep_t dep, int flags)
157 if (flags & 1)
158 flags |= DUMP_DEP_ALL;
160 fprintf (dump, "<");
162 if (flags & DUMP_DEP_PRO)
163 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
165 if (flags & DUMP_DEP_CON)
166 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
168 if (flags & DUMP_DEP_TYPE)
170 char t;
171 enum reg_note type = DEP_TYPE (dep);
173 switch (type)
175 case REG_DEP_TRUE:
176 t = 't';
177 break;
179 case REG_DEP_OUTPUT:
180 t = 'o';
181 break;
183 case REG_DEP_CONTROL:
184 t = 'c';
185 break;
187 case REG_DEP_ANTI:
188 t = 'a';
189 break;
191 default:
192 gcc_unreachable ();
193 break;
196 fprintf (dump, "%c; ", t);
199 if (flags & DUMP_DEP_STATUS)
201 if (current_sched_info->flags & USE_DEPS_LIST)
202 dump_ds (dump, DEP_STATUS (dep));
205 fprintf (dump, ">");
208 /* Default flags for dump_dep (). */
209 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
211 /* Dump all fields of DEP to STDERR. */
212 void
213 sd_debug_dep (dep_t dep)
215 dump_dep (stderr, dep, 1);
216 fprintf (stderr, "\n");
219 /* Determine whether DEP is a dependency link of a non-debug insn on a
220 debug insn. */
222 static inline bool
223 depl_on_debug_p (dep_link_t dep)
225 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
226 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
229 /* Functions to operate with a single link from the dependencies lists -
230 dep_link_t. */
232 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
233 PREV_NEXT_P. */
234 static void
235 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
237 dep_link_t next = *prev_nextp;
239 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
240 && DEP_LINK_NEXT (l) == NULL);
242 /* Init node being inserted. */
243 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
244 DEP_LINK_NEXT (l) = next;
246 /* Fix next node. */
247 if (next != NULL)
249 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
251 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
254 /* Fix prev node. */
255 *prev_nextp = l;
258 /* Add dep_link LINK to deps_list L. */
259 static void
260 add_to_deps_list (dep_link_t link, deps_list_t l)
262 attach_dep_link (link, &DEPS_LIST_FIRST (l));
264 /* Don't count debug deps. */
265 if (!depl_on_debug_p (link))
266 ++DEPS_LIST_N_LINKS (l);
269 /* Detach dep_link L from the list. */
270 static void
271 detach_dep_link (dep_link_t l)
273 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
274 dep_link_t next = DEP_LINK_NEXT (l);
276 *prev_nextp = next;
278 if (next != NULL)
279 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
281 DEP_LINK_PREV_NEXTP (l) = NULL;
282 DEP_LINK_NEXT (l) = NULL;
285 /* Remove link LINK from list LIST. */
286 static void
287 remove_from_deps_list (dep_link_t link, deps_list_t list)
289 detach_dep_link (link);
291 /* Don't count debug deps. */
292 if (!depl_on_debug_p (link))
293 --DEPS_LIST_N_LINKS (list);
296 /* Move link LINK from list FROM to list TO. */
297 static void
298 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
300 remove_from_deps_list (link, from);
301 add_to_deps_list (link, to);
304 /* Return true of LINK is not attached to any list. */
305 static bool
306 dep_link_is_detached_p (dep_link_t link)
308 return DEP_LINK_PREV_NEXTP (link) == NULL;
311 /* Pool to hold all dependency nodes (dep_node_t). */
312 static object_allocator<_dep_node> *dn_pool;
314 /* Number of dep_nodes out there. */
315 static int dn_pool_diff = 0;
317 /* Create a dep_node. */
318 static dep_node_t
319 create_dep_node (void)
321 dep_node_t n = dn_pool->allocate ();
322 dep_link_t back = DEP_NODE_BACK (n);
323 dep_link_t forw = DEP_NODE_FORW (n);
325 DEP_LINK_NODE (back) = n;
326 DEP_LINK_NEXT (back) = NULL;
327 DEP_LINK_PREV_NEXTP (back) = NULL;
329 DEP_LINK_NODE (forw) = n;
330 DEP_LINK_NEXT (forw) = NULL;
331 DEP_LINK_PREV_NEXTP (forw) = NULL;
333 ++dn_pool_diff;
335 return n;
338 /* Delete dep_node N. N must not be connected to any deps_list. */
339 static void
340 delete_dep_node (dep_node_t n)
342 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
343 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
345 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
347 --dn_pool_diff;
349 dn_pool->remove (n);
352 /* Pool to hold dependencies lists (deps_list_t). */
353 static object_allocator<_deps_list> *dl_pool;
355 /* Number of deps_lists out there. */
356 static int dl_pool_diff = 0;
358 /* Functions to operate with dependences lists - deps_list_t. */
360 /* Return true if list L is empty. */
361 static bool
362 deps_list_empty_p (deps_list_t l)
364 return DEPS_LIST_N_LINKS (l) == 0;
367 /* Create a new deps_list. */
368 static deps_list_t
369 create_deps_list (void)
371 deps_list_t l = dl_pool->allocate ();
373 DEPS_LIST_FIRST (l) = NULL;
374 DEPS_LIST_N_LINKS (l) = 0;
376 ++dl_pool_diff;
377 return l;
380 /* Free deps_list L. */
381 static void
382 free_deps_list (deps_list_t l)
384 gcc_assert (deps_list_empty_p (l));
386 --dl_pool_diff;
388 dl_pool->remove (l);
391 /* Return true if there is no dep_nodes and deps_lists out there.
392 After the region is scheduled all the dependency nodes and lists
393 should [generally] be returned to pool. */
394 bool
395 deps_pools_are_empty_p (void)
397 return dn_pool_diff == 0 && dl_pool_diff == 0;
400 /* Remove all elements from L. */
401 static void
402 clear_deps_list (deps_list_t l)
406 dep_link_t link = DEPS_LIST_FIRST (l);
408 if (link == NULL)
409 break;
411 remove_from_deps_list (link, l);
413 while (1);
416 /* Decide whether a dependency should be treated as a hard or a speculative
417 dependency. */
418 static bool
419 dep_spec_p (dep_t dep)
421 if (current_sched_info->flags & DO_SPECULATION)
423 if (DEP_STATUS (dep) & SPECULATIVE)
424 return true;
426 if (current_sched_info->flags & DO_PREDICATION)
428 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
429 return true;
431 if (DEP_REPLACE (dep) != NULL)
432 return true;
433 return false;
436 static regset reg_pending_sets;
437 static regset reg_pending_clobbers;
438 static regset reg_pending_uses;
439 static regset reg_pending_control_uses;
440 static enum reg_pending_barrier_mode reg_pending_barrier;
442 /* Hard registers implicitly clobbered or used (or may be implicitly
443 clobbered or used) by the currently analyzed insn. For example,
444 insn in its constraint has one register class. Even if there is
445 currently no hard register in the insn, the particular hard
446 register will be in the insn after reload pass because the
447 constraint requires it. */
448 static HARD_REG_SET implicit_reg_pending_clobbers;
449 static HARD_REG_SET implicit_reg_pending_uses;
451 /* To speed up the test for duplicate dependency links we keep a
452 record of dependencies created by add_dependence when the average
453 number of instructions in a basic block is very large.
455 Studies have shown that there is typically around 5 instructions between
456 branches for typical C code. So we can make a guess that the average
457 basic block is approximately 5 instructions long; we will choose 100X
458 the average size as a very large basic block.
460 Each insn has associated bitmaps for its dependencies. Each bitmap
461 has enough entries to represent a dependency on any other insn in
462 the insn chain. All bitmap for true dependencies cache is
463 allocated then the rest two ones are also allocated. */
464 static bitmap true_dependency_cache = NULL;
465 static bitmap output_dependency_cache = NULL;
466 static bitmap anti_dependency_cache = NULL;
467 static bitmap control_dependency_cache = NULL;
468 static bitmap spec_dependency_cache = NULL;
469 static int cache_size;
471 /* True if we should mark added dependencies as a non-register deps. */
472 static bool mark_as_hard;
474 static int deps_may_trap_p (const_rtx);
475 static void add_dependence_1 (rtx_insn *, rtx_insn *, enum reg_note);
476 static void add_dependence_list (rtx_insn *, rtx_insn_list *, int,
477 enum reg_note, bool);
478 static void add_dependence_list_and_free (struct deps_desc *, rtx_insn *,
479 rtx_insn_list **, int, enum reg_note,
480 bool);
481 static void delete_all_dependences (rtx_insn *);
482 static void chain_to_prev_insn (rtx_insn *);
484 static void flush_pending_lists (struct deps_desc *, rtx_insn *, int, int);
485 static void sched_analyze_1 (struct deps_desc *, rtx, rtx_insn *);
486 static void sched_analyze_2 (struct deps_desc *, rtx, rtx_insn *);
487 static void sched_analyze_insn (struct deps_desc *, rtx, rtx_insn *);
489 static bool sched_has_condition_p (const rtx_insn *);
490 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
492 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
493 rtx, rtx);
494 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
496 static void check_dep (dep_t, bool);
499 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
501 static int
502 deps_may_trap_p (const_rtx mem)
504 const_rtx addr = XEXP (mem, 0);
506 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
508 const_rtx t = get_reg_known_value (REGNO (addr));
509 if (t)
510 addr = t;
512 return rtx_addr_can_trap_p (addr);
516 /* Find the condition under which INSN is executed. If REV is not NULL,
517 it is set to TRUE when the returned comparison should be reversed
518 to get the actual condition. */
519 static rtx
520 sched_get_condition_with_rev_uncached (const rtx_insn *insn, bool *rev)
522 rtx pat = PATTERN (insn);
523 rtx src;
525 if (rev)
526 *rev = false;
528 if (GET_CODE (pat) == COND_EXEC)
529 return COND_EXEC_TEST (pat);
531 if (!any_condjump_p (insn) || !onlyjump_p (insn))
532 return 0;
534 src = SET_SRC (pc_set (insn));
536 if (XEXP (src, 2) == pc_rtx)
537 return XEXP (src, 0);
538 else if (XEXP (src, 1) == pc_rtx)
540 rtx cond = XEXP (src, 0);
541 enum rtx_code revcode = reversed_comparison_code (cond, insn);
543 if (revcode == UNKNOWN)
544 return 0;
546 if (rev)
547 *rev = true;
548 return cond;
551 return 0;
554 /* Return the condition under which INSN does not execute (i.e. the
555 not-taken condition for a conditional branch), or NULL if we cannot
556 find such a condition. The caller should make a copy of the condition
557 before using it. */
559 sched_get_reverse_condition_uncached (const rtx_insn *insn)
561 bool rev;
562 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
563 if (cond == NULL_RTX)
564 return cond;
565 if (!rev)
567 enum rtx_code revcode = reversed_comparison_code (cond, insn);
568 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
569 XEXP (cond, 0),
570 XEXP (cond, 1));
572 return cond;
575 /* Caching variant of sched_get_condition_with_rev_uncached.
576 We only do actual work the first time we come here for an insn; the
577 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
578 static rtx
579 sched_get_condition_with_rev (const rtx_insn *insn, bool *rev)
581 bool tmp;
583 if (INSN_LUID (insn) == 0)
584 return sched_get_condition_with_rev_uncached (insn, rev);
586 if (INSN_CACHED_COND (insn) == const_true_rtx)
587 return NULL_RTX;
589 if (INSN_CACHED_COND (insn) != NULL_RTX)
591 if (rev)
592 *rev = INSN_REVERSE_COND (insn);
593 return INSN_CACHED_COND (insn);
596 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
597 INSN_REVERSE_COND (insn) = tmp;
599 if (INSN_CACHED_COND (insn) == NULL_RTX)
601 INSN_CACHED_COND (insn) = const_true_rtx;
602 return NULL_RTX;
605 if (rev)
606 *rev = INSN_REVERSE_COND (insn);
607 return INSN_CACHED_COND (insn);
610 /* True when we can find a condition under which INSN is executed. */
611 static bool
612 sched_has_condition_p (const rtx_insn *insn)
614 return !! sched_get_condition_with_rev (insn, NULL);
619 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
620 static int
621 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
623 if (COMPARISON_P (cond1)
624 && COMPARISON_P (cond2)
625 && GET_CODE (cond1) ==
626 (rev1==rev2
627 ? reversed_comparison_code (cond2, NULL)
628 : GET_CODE (cond2))
629 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
630 && XEXP (cond1, 1) == XEXP (cond2, 1))
631 return 1;
632 return 0;
635 /* Return true if insn1 and insn2 can never depend on one another because
636 the conditions under which they are executed are mutually exclusive. */
637 bool
638 sched_insns_conditions_mutex_p (const rtx_insn *insn1, const rtx_insn *insn2)
640 rtx cond1, cond2;
641 bool rev1 = false, rev2 = false;
643 /* df doesn't handle conditional lifetimes entirely correctly;
644 calls mess up the conditional lifetimes. */
645 if (!CALL_P (insn1) && !CALL_P (insn2))
647 cond1 = sched_get_condition_with_rev (insn1, &rev1);
648 cond2 = sched_get_condition_with_rev (insn2, &rev2);
649 if (cond1 && cond2
650 && conditions_mutex_p (cond1, cond2, rev1, rev2)
651 /* Make sure first instruction doesn't affect condition of second
652 instruction if switched. */
653 && !modified_in_p (cond1, insn2)
654 /* Make sure second instruction doesn't affect condition of first
655 instruction if switched. */
656 && !modified_in_p (cond2, insn1))
657 return true;
659 return false;
663 /* Return true if INSN can potentially be speculated with type DS. */
664 bool
665 sched_insn_is_legitimate_for_speculation_p (const rtx_insn *insn, ds_t ds)
667 if (HAS_INTERNAL_DEP (insn))
668 return false;
670 if (!NONJUMP_INSN_P (insn))
671 return false;
673 if (SCHED_GROUP_P (insn))
674 return false;
676 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX_INSN (insn)))
677 return false;
679 if (side_effects_p (PATTERN (insn)))
680 return false;
682 if (ds & BE_IN_SPEC)
683 /* The following instructions, which depend on a speculatively scheduled
684 instruction, cannot be speculatively scheduled along. */
686 if (may_trap_or_fault_p (PATTERN (insn)))
687 /* If instruction might fault, it cannot be speculatively scheduled.
688 For control speculation it's obvious why and for data speculation
689 it's because the insn might get wrong input if speculation
690 wasn't successful. */
691 return false;
693 if ((ds & BE_IN_DATA)
694 && sched_has_condition_p (insn))
695 /* If this is a predicated instruction, then it cannot be
696 speculatively scheduled. See PR35659. */
697 return false;
700 return true;
703 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
704 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
705 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
706 This function is used to switch sd_iterator to the next list.
707 !!! For internal use only. Might consider moving it to sched-int.h. */
708 void
709 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
710 deps_list_t *list_ptr, bool *resolved_p_ptr)
712 sd_list_types_def types = *types_ptr;
714 if (types & SD_LIST_HARD_BACK)
716 *list_ptr = INSN_HARD_BACK_DEPS (insn);
717 *resolved_p_ptr = false;
718 *types_ptr = types & ~SD_LIST_HARD_BACK;
720 else if (types & SD_LIST_SPEC_BACK)
722 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
723 *resolved_p_ptr = false;
724 *types_ptr = types & ~SD_LIST_SPEC_BACK;
726 else if (types & SD_LIST_FORW)
728 *list_ptr = INSN_FORW_DEPS (insn);
729 *resolved_p_ptr = false;
730 *types_ptr = types & ~SD_LIST_FORW;
732 else if (types & SD_LIST_RES_BACK)
734 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
735 *resolved_p_ptr = true;
736 *types_ptr = types & ~SD_LIST_RES_BACK;
738 else if (types & SD_LIST_RES_FORW)
740 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
741 *resolved_p_ptr = true;
742 *types_ptr = types & ~SD_LIST_RES_FORW;
744 else
746 *list_ptr = NULL;
747 *resolved_p_ptr = false;
748 *types_ptr = SD_LIST_NONE;
752 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
754 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
756 int size = 0;
758 while (list_types != SD_LIST_NONE)
760 deps_list_t list;
761 bool resolved_p;
763 sd_next_list (insn, &list_types, &list, &resolved_p);
764 if (list)
765 size += DEPS_LIST_N_LINKS (list);
768 return size;
771 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
773 bool
774 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
776 while (list_types != SD_LIST_NONE)
778 deps_list_t list;
779 bool resolved_p;
781 sd_next_list (insn, &list_types, &list, &resolved_p);
782 if (!deps_list_empty_p (list))
783 return false;
786 return true;
789 /* Initialize data for INSN. */
790 void
791 sd_init_insn (rtx_insn *insn)
793 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
794 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
795 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
796 INSN_FORW_DEPS (insn) = create_deps_list ();
797 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
799 /* ??? It would be nice to allocate dependency caches here. */
802 /* Free data for INSN. */
803 void
804 sd_finish_insn (rtx_insn *insn)
806 /* ??? It would be nice to deallocate dependency caches here. */
808 free_deps_list (INSN_HARD_BACK_DEPS (insn));
809 INSN_HARD_BACK_DEPS (insn) = NULL;
811 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
812 INSN_SPEC_BACK_DEPS (insn) = NULL;
814 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
815 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
817 free_deps_list (INSN_FORW_DEPS (insn));
818 INSN_FORW_DEPS (insn) = NULL;
820 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
821 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
824 /* Find a dependency between producer PRO and consumer CON.
825 Search through resolved dependency lists if RESOLVED_P is true.
826 If no such dependency is found return NULL,
827 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
828 with an iterator pointing to it. */
829 static dep_t
830 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
831 sd_iterator_def *sd_it_ptr)
833 sd_list_types_def pro_list_type;
834 sd_list_types_def con_list_type;
835 sd_iterator_def sd_it;
836 dep_t dep;
837 bool found_p = false;
839 if (resolved_p)
841 pro_list_type = SD_LIST_RES_FORW;
842 con_list_type = SD_LIST_RES_BACK;
844 else
846 pro_list_type = SD_LIST_FORW;
847 con_list_type = SD_LIST_BACK;
850 /* Walk through either back list of INSN or forw list of ELEM
851 depending on which one is shorter. */
852 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
854 /* Find the dep_link with producer PRO in consumer's back_deps. */
855 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
856 if (DEP_PRO (dep) == pro)
858 found_p = true;
859 break;
862 else
864 /* Find the dep_link with consumer CON in producer's forw_deps. */
865 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
866 if (DEP_CON (dep) == con)
868 found_p = true;
869 break;
873 if (found_p)
875 if (sd_it_ptr != NULL)
876 *sd_it_ptr = sd_it;
878 return dep;
881 return NULL;
884 /* Find a dependency between producer PRO and consumer CON.
885 Use dependency [if available] to check if dependency is present at all.
886 Search through resolved dependency lists if RESOLVED_P is true.
887 If the dependency or NULL if none found. */
888 dep_t
889 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
891 if (true_dependency_cache != NULL)
892 /* Avoiding the list walk below can cut compile times dramatically
893 for some code. */
895 int elem_luid = INSN_LUID (pro);
896 int insn_luid = INSN_LUID (con);
898 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
899 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
900 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
901 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
902 return NULL;
905 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
908 /* Add or update a dependence described by DEP.
909 MEM1 and MEM2, if non-null, correspond to memory locations in case of
910 data speculation.
912 The function returns a value indicating if an old entry has been changed
913 or a new entry has been added to insn's backward deps.
915 This function merely checks if producer and consumer is the same insn
916 and doesn't create a dep in this case. Actual manipulation of
917 dependence data structures is performed in add_or_update_dep_1. */
918 static enum DEPS_ADJUST_RESULT
919 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
921 rtx_insn *elem = DEP_PRO (dep);
922 rtx_insn *insn = DEP_CON (dep);
924 gcc_assert (INSN_P (insn) && INSN_P (elem));
926 /* Don't depend an insn on itself. */
927 if (insn == elem)
929 if (sched_deps_info->generate_spec_deps)
930 /* INSN has an internal dependence, which we can't overcome. */
931 HAS_INTERNAL_DEP (insn) = 1;
933 return DEP_NODEP;
936 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
939 /* Ask dependency caches what needs to be done for dependence DEP.
940 Return DEP_CREATED if new dependence should be created and there is no
941 need to try to find one searching the dependencies lists.
942 Return DEP_PRESENT if there already is a dependence described by DEP and
943 hence nothing is to be done.
944 Return DEP_CHANGED if there already is a dependence, but it should be
945 updated to incorporate additional information from DEP. */
946 static enum DEPS_ADJUST_RESULT
947 ask_dependency_caches (dep_t dep)
949 int elem_luid = INSN_LUID (DEP_PRO (dep));
950 int insn_luid = INSN_LUID (DEP_CON (dep));
952 gcc_assert (true_dependency_cache != NULL
953 && output_dependency_cache != NULL
954 && anti_dependency_cache != NULL
955 && control_dependency_cache != NULL);
957 if (!(current_sched_info->flags & USE_DEPS_LIST))
959 enum reg_note present_dep_type;
961 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
962 present_dep_type = REG_DEP_TRUE;
963 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
964 present_dep_type = REG_DEP_OUTPUT;
965 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
966 present_dep_type = REG_DEP_ANTI;
967 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
968 present_dep_type = REG_DEP_CONTROL;
969 else
970 /* There is no existing dep so it should be created. */
971 return DEP_CREATED;
973 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
974 /* DEP does not add anything to the existing dependence. */
975 return DEP_PRESENT;
977 else
979 ds_t present_dep_types = 0;
981 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
982 present_dep_types |= DEP_TRUE;
983 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
984 present_dep_types |= DEP_OUTPUT;
985 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
986 present_dep_types |= DEP_ANTI;
987 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
988 present_dep_types |= DEP_CONTROL;
990 if (present_dep_types == 0)
991 /* There is no existing dep so it should be created. */
992 return DEP_CREATED;
994 if (!(current_sched_info->flags & DO_SPECULATION)
995 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
997 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
998 == present_dep_types)
999 /* DEP does not add anything to the existing dependence. */
1000 return DEP_PRESENT;
1002 else
1004 /* Only true dependencies can be data speculative and
1005 only anti dependencies can be control speculative. */
1006 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1007 == present_dep_types);
1009 /* if (DEP is SPECULATIVE) then
1010 ..we should update DEP_STATUS
1011 else
1012 ..we should reset existing dep to non-speculative. */
1016 return DEP_CHANGED;
1019 /* Set dependency caches according to DEP. */
1020 static void
1021 set_dependency_caches (dep_t dep)
1023 int elem_luid = INSN_LUID (DEP_PRO (dep));
1024 int insn_luid = INSN_LUID (DEP_CON (dep));
1026 if (!(current_sched_info->flags & USE_DEPS_LIST))
1028 switch (DEP_TYPE (dep))
1030 case REG_DEP_TRUE:
1031 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1032 break;
1034 case REG_DEP_OUTPUT:
1035 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1036 break;
1038 case REG_DEP_ANTI:
1039 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1040 break;
1042 case REG_DEP_CONTROL:
1043 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1044 break;
1046 default:
1047 gcc_unreachable ();
1050 else
1052 ds_t ds = DEP_STATUS (dep);
1054 if (ds & DEP_TRUE)
1055 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1056 if (ds & DEP_OUTPUT)
1057 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1058 if (ds & DEP_ANTI)
1059 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1060 if (ds & DEP_CONTROL)
1061 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1063 if (ds & SPECULATIVE)
1065 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1066 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1071 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1072 caches accordingly. */
1073 static void
1074 update_dependency_caches (dep_t dep, enum reg_note old_type)
1076 int elem_luid = INSN_LUID (DEP_PRO (dep));
1077 int insn_luid = INSN_LUID (DEP_CON (dep));
1079 /* Clear corresponding cache entry because type of the link
1080 may have changed. Keep them if we use_deps_list. */
1081 if (!(current_sched_info->flags & USE_DEPS_LIST))
1083 switch (old_type)
1085 case REG_DEP_OUTPUT:
1086 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1087 break;
1089 case REG_DEP_ANTI:
1090 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1091 break;
1093 case REG_DEP_CONTROL:
1094 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1095 break;
1097 default:
1098 gcc_unreachable ();
1102 set_dependency_caches (dep);
1105 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1106 static void
1107 change_spec_dep_to_hard (sd_iterator_def sd_it)
1109 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1110 dep_link_t link = DEP_NODE_BACK (node);
1111 dep_t dep = DEP_NODE_DEP (node);
1112 rtx_insn *elem = DEP_PRO (dep);
1113 rtx_insn *insn = DEP_CON (dep);
1115 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1117 DEP_STATUS (dep) &= ~SPECULATIVE;
1119 if (true_dependency_cache != NULL)
1120 /* Clear the cache entry. */
1121 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1122 INSN_LUID (elem));
1125 /* Update DEP to incorporate information from NEW_DEP.
1126 SD_IT points to DEP in case it should be moved to another list.
1127 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1128 data-speculative dependence should be updated. */
1129 static enum DEPS_ADJUST_RESULT
1130 update_dep (dep_t dep, dep_t new_dep,
1131 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1132 rtx mem1 ATTRIBUTE_UNUSED,
1133 rtx mem2 ATTRIBUTE_UNUSED)
1135 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1136 enum reg_note old_type = DEP_TYPE (dep);
1137 bool was_spec = dep_spec_p (dep);
1139 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1140 DEP_MULTIPLE (dep) = 1;
1142 /* If this is a more restrictive type of dependence than the
1143 existing one, then change the existing dependence to this
1144 type. */
1145 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1147 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1148 res = DEP_CHANGED;
1151 if (current_sched_info->flags & USE_DEPS_LIST)
1152 /* Update DEP_STATUS. */
1154 ds_t dep_status = DEP_STATUS (dep);
1155 ds_t ds = DEP_STATUS (new_dep);
1156 ds_t new_status = ds | dep_status;
1158 if (new_status & SPECULATIVE)
1160 /* Either existing dep or a dep we're adding or both are
1161 speculative. */
1162 if (!(ds & SPECULATIVE)
1163 || !(dep_status & SPECULATIVE))
1164 /* The new dep can't be speculative. */
1165 new_status &= ~SPECULATIVE;
1166 else
1168 /* Both are speculative. Merge probabilities. */
1169 if (mem1 != NULL)
1171 dw_t dw;
1173 dw = estimate_dep_weak (mem1, mem2);
1174 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1177 new_status = ds_merge (dep_status, ds);
1181 ds = new_status;
1183 if (dep_status != ds)
1185 DEP_STATUS (dep) = ds;
1186 res = DEP_CHANGED;
1190 if (was_spec && !dep_spec_p (dep))
1191 /* The old dep was speculative, but now it isn't. */
1192 change_spec_dep_to_hard (sd_it);
1194 if (true_dependency_cache != NULL
1195 && res == DEP_CHANGED)
1196 update_dependency_caches (dep, old_type);
1198 return res;
1201 /* Add or update a dependence described by DEP.
1202 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1203 data speculation.
1205 The function returns a value indicating if an old entry has been changed
1206 or a new entry has been added to insn's backward deps or nothing has
1207 been updated at all. */
1208 static enum DEPS_ADJUST_RESULT
1209 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1210 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1212 bool maybe_present_p = true;
1213 bool present_p = false;
1215 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1216 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1218 if (flag_checking)
1219 check_dep (new_dep, mem1 != NULL);
1221 if (true_dependency_cache != NULL)
1223 switch (ask_dependency_caches (new_dep))
1225 case DEP_PRESENT:
1226 dep_t present_dep;
1227 sd_iterator_def sd_it;
1229 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1230 DEP_CON (new_dep),
1231 resolved_p, &sd_it);
1232 DEP_MULTIPLE (present_dep) = 1;
1233 return DEP_PRESENT;
1235 case DEP_CHANGED:
1236 maybe_present_p = true;
1237 present_p = true;
1238 break;
1240 case DEP_CREATED:
1241 maybe_present_p = false;
1242 present_p = false;
1243 break;
1245 default:
1246 gcc_unreachable ();
1247 break;
1251 /* Check that we don't already have this dependence. */
1252 if (maybe_present_p)
1254 dep_t present_dep;
1255 sd_iterator_def sd_it;
1257 gcc_assert (true_dependency_cache == NULL || present_p);
1259 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1260 DEP_CON (new_dep),
1261 resolved_p, &sd_it);
1263 if (present_dep != NULL)
1264 /* We found an existing dependency between ELEM and INSN. */
1265 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1266 else
1267 /* We didn't find a dep, it shouldn't present in the cache. */
1268 gcc_assert (!present_p);
1271 /* Might want to check one level of transitivity to save conses.
1272 This check should be done in maybe_add_or_update_dep_1.
1273 Since we made it to add_or_update_dep_1, we must create
1274 (or update) a link. */
1276 if (mem1 != NULL_RTX)
1278 gcc_assert (sched_deps_info->generate_spec_deps);
1279 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1280 estimate_dep_weak (mem1, mem2));
1283 sd_add_dep (new_dep, resolved_p);
1285 return DEP_CREATED;
1288 /* Initialize BACK_LIST_PTR with consumer's backward list and
1289 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1290 initialize with lists that hold resolved deps. */
1291 static void
1292 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1293 deps_list_t *back_list_ptr,
1294 deps_list_t *forw_list_ptr)
1296 rtx_insn *con = DEP_CON (dep);
1298 if (!resolved_p)
1300 if (dep_spec_p (dep))
1301 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1302 else
1303 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1305 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1307 else
1309 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1310 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1314 /* Add dependence described by DEP.
1315 If RESOLVED_P is true treat the dependence as a resolved one. */
1316 void
1317 sd_add_dep (dep_t dep, bool resolved_p)
1319 dep_node_t n = create_dep_node ();
1320 deps_list_t con_back_deps;
1321 deps_list_t pro_forw_deps;
1322 rtx_insn *elem = DEP_PRO (dep);
1323 rtx_insn *insn = DEP_CON (dep);
1325 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1327 if ((current_sched_info->flags & DO_SPECULATION) == 0
1328 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1329 DEP_STATUS (dep) &= ~SPECULATIVE;
1331 copy_dep (DEP_NODE_DEP (n), dep);
1333 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1335 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1337 if (flag_checking)
1338 check_dep (dep, false);
1340 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1342 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1343 in the bitmap caches of dependency information. */
1344 if (true_dependency_cache != NULL)
1345 set_dependency_caches (dep);
1348 /* Add or update backward dependence between INSN and ELEM
1349 with given type DEP_TYPE and dep_status DS.
1350 This function is a convenience wrapper. */
1351 enum DEPS_ADJUST_RESULT
1352 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1354 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1357 /* Resolved dependence pointed to by SD_IT.
1358 SD_IT will advance to the next element. */
1359 void
1360 sd_resolve_dep (sd_iterator_def sd_it)
1362 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1363 dep_t dep = DEP_NODE_DEP (node);
1364 rtx_insn *pro = DEP_PRO (dep);
1365 rtx_insn *con = DEP_CON (dep);
1367 if (dep_spec_p (dep))
1368 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1369 INSN_RESOLVED_BACK_DEPS (con));
1370 else
1371 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1372 INSN_RESOLVED_BACK_DEPS (con));
1374 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1375 INSN_RESOLVED_FORW_DEPS (pro));
1378 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1379 pointed to by SD_IT to unresolved state. */
1380 void
1381 sd_unresolve_dep (sd_iterator_def sd_it)
1383 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1384 dep_t dep = DEP_NODE_DEP (node);
1385 rtx_insn *pro = DEP_PRO (dep);
1386 rtx_insn *con = DEP_CON (dep);
1388 if (dep_spec_p (dep))
1389 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1390 INSN_SPEC_BACK_DEPS (con));
1391 else
1392 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1393 INSN_HARD_BACK_DEPS (con));
1395 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1396 INSN_FORW_DEPS (pro));
1399 /* Make TO depend on all the FROM's producers.
1400 If RESOLVED_P is true add dependencies to the resolved lists. */
1401 void
1402 sd_copy_back_deps (rtx_insn *to, rtx_insn *from, bool resolved_p)
1404 sd_list_types_def list_type;
1405 sd_iterator_def sd_it;
1406 dep_t dep;
1408 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1410 FOR_EACH_DEP (from, list_type, sd_it, dep)
1412 dep_def _new_dep, *new_dep = &_new_dep;
1414 copy_dep (new_dep, dep);
1415 DEP_CON (new_dep) = to;
1416 sd_add_dep (new_dep, resolved_p);
1420 /* Remove a dependency referred to by SD_IT.
1421 SD_IT will point to the next dependence after removal. */
1422 void
1423 sd_delete_dep (sd_iterator_def sd_it)
1425 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1426 dep_t dep = DEP_NODE_DEP (n);
1427 rtx_insn *pro = DEP_PRO (dep);
1428 rtx_insn *con = DEP_CON (dep);
1429 deps_list_t con_back_deps;
1430 deps_list_t pro_forw_deps;
1432 if (true_dependency_cache != NULL)
1434 int elem_luid = INSN_LUID (pro);
1435 int insn_luid = INSN_LUID (con);
1437 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1438 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1439 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1440 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1442 if (current_sched_info->flags & DO_SPECULATION)
1443 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1446 get_back_and_forw_lists (dep, sd_it.resolved_p,
1447 &con_back_deps, &pro_forw_deps);
1449 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1450 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1452 delete_dep_node (n);
1455 /* Dump size of the lists. */
1456 #define DUMP_LISTS_SIZE (2)
1458 /* Dump dependencies of the lists. */
1459 #define DUMP_LISTS_DEPS (4)
1461 /* Dump all information about the lists. */
1462 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1464 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1465 FLAGS is a bit mask specifying what information about the lists needs
1466 to be printed.
1467 If FLAGS has the very first bit set, then dump all information about
1468 the lists and propagate this bit into the callee dump functions. */
1469 static void
1470 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1472 sd_iterator_def sd_it;
1473 dep_t dep;
1474 int all;
1476 all = (flags & 1);
1478 if (all)
1479 flags |= DUMP_LISTS_ALL;
1481 fprintf (dump, "[");
1483 if (flags & DUMP_LISTS_SIZE)
1484 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1486 if (flags & DUMP_LISTS_DEPS)
1488 FOR_EACH_DEP (insn, types, sd_it, dep)
1490 dump_dep (dump, dep, dump_dep_flags | all);
1491 fprintf (dump, " ");
1496 /* Dump all information about deps_lists of INSN specified by TYPES
1497 to STDERR. */
1498 void
1499 sd_debug_lists (rtx insn, sd_list_types_def types)
1501 dump_lists (stderr, insn, types, 1);
1502 fprintf (stderr, "\n");
1505 /* A wrapper around add_dependence_1, to add a dependence of CON on
1506 PRO, with type DEP_TYPE. This function implements special handling
1507 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1508 the type to REG_DEP_ANTI if we can determine that predication is
1509 impossible; otherwise we add additional true dependencies on the
1510 INSN_COND_DEPS list of the jump (which PRO must be). */
1511 void
1512 add_dependence (rtx_insn *con, rtx_insn *pro, enum reg_note dep_type)
1514 if (dep_type == REG_DEP_CONTROL
1515 && !(current_sched_info->flags & DO_PREDICATION))
1516 dep_type = REG_DEP_ANTI;
1518 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1519 so we must also make the insn dependent on the setter of the
1520 condition. */
1521 if (dep_type == REG_DEP_CONTROL)
1523 rtx_insn *real_pro = pro;
1524 rtx_insn *other = real_insn_for_shadow (real_pro);
1525 rtx cond;
1527 if (other != NULL_RTX)
1528 real_pro = other;
1529 cond = sched_get_reverse_condition_uncached (real_pro);
1530 /* Verify that the insn does not use a different value in
1531 the condition register than the one that was present at
1532 the jump. */
1533 if (cond == NULL_RTX)
1534 dep_type = REG_DEP_ANTI;
1535 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1537 HARD_REG_SET uses;
1538 CLEAR_HARD_REG_SET (uses);
1539 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1540 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1541 dep_type = REG_DEP_ANTI;
1543 if (dep_type == REG_DEP_CONTROL)
1545 if (sched_verbose >= 5)
1546 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1547 INSN_UID (real_pro));
1548 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1549 REG_DEP_TRUE, false);
1553 add_dependence_1 (con, pro, dep_type);
1556 /* A convenience wrapper to operate on an entire list. HARD should be
1557 true if DEP_NONREG should be set on newly created dependencies. */
1559 static void
1560 add_dependence_list (rtx_insn *insn, rtx_insn_list *list, int uncond,
1561 enum reg_note dep_type, bool hard)
1563 mark_as_hard = hard;
1564 for (; list; list = list->next ())
1566 if (uncond || ! sched_insns_conditions_mutex_p (insn, list->insn ()))
1567 add_dependence (insn, list->insn (), dep_type);
1569 mark_as_hard = false;
1572 /* Similar, but free *LISTP at the same time, when the context
1573 is not readonly. HARD should be true if DEP_NONREG should be set on
1574 newly created dependencies. */
1576 static void
1577 add_dependence_list_and_free (struct deps_desc *deps, rtx_insn *insn,
1578 rtx_insn_list **listp,
1579 int uncond, enum reg_note dep_type, bool hard)
1581 add_dependence_list (insn, *listp, uncond, dep_type, hard);
1583 /* We don't want to short-circuit dependencies involving debug
1584 insns, because they may cause actual dependencies to be
1585 disregarded. */
1586 if (deps->readonly || DEBUG_INSN_P (insn))
1587 return;
1589 free_INSN_LIST_list (listp);
1592 /* Remove all occurrences of INSN from LIST. Return the number of
1593 occurrences removed. */
1595 static int
1596 remove_from_dependence_list (rtx_insn *insn, rtx_insn_list **listp)
1598 int removed = 0;
1600 while (*listp)
1602 if ((*listp)->insn () == insn)
1604 remove_free_INSN_LIST_node (listp);
1605 removed++;
1606 continue;
1609 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1612 return removed;
1615 /* Same as above, but process two lists at once. */
1616 static int
1617 remove_from_both_dependence_lists (rtx_insn *insn,
1618 rtx_insn_list **listp,
1619 rtx_expr_list **exprp)
1621 int removed = 0;
1623 while (*listp)
1625 if (XEXP (*listp, 0) == insn)
1627 remove_free_INSN_LIST_node (listp);
1628 remove_free_EXPR_LIST_node (exprp);
1629 removed++;
1630 continue;
1633 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1634 exprp = (rtx_expr_list **)&XEXP (*exprp, 1);
1637 return removed;
1640 /* Clear all dependencies for an insn. */
1641 static void
1642 delete_all_dependences (rtx_insn *insn)
1644 sd_iterator_def sd_it;
1645 dep_t dep;
1647 /* The below cycle can be optimized to clear the caches and back_deps
1648 in one call but that would provoke duplication of code from
1649 delete_dep (). */
1651 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1652 sd_iterator_cond (&sd_it, &dep);)
1653 sd_delete_dep (sd_it);
1656 /* All insns in a scheduling group except the first should only have
1657 dependencies on the previous insn in the group. So we find the
1658 first instruction in the scheduling group by walking the dependence
1659 chains backwards. Then we add the dependencies for the group to
1660 the previous nonnote insn. */
1662 static void
1663 chain_to_prev_insn (rtx_insn *insn)
1665 sd_iterator_def sd_it;
1666 dep_t dep;
1667 rtx_insn *prev_nonnote;
1669 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1671 rtx_insn *i = insn;
1672 rtx_insn *pro = DEP_PRO (dep);
1676 i = prev_nonnote_insn (i);
1678 if (pro == i)
1679 goto next_link;
1680 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1682 if (! sched_insns_conditions_mutex_p (i, pro))
1683 add_dependence (i, pro, DEP_TYPE (dep));
1684 next_link:;
1687 delete_all_dependences (insn);
1689 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1690 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1691 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1692 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1695 /* Process an insn's memory dependencies. There are four kinds of
1696 dependencies:
1698 (0) read dependence: read follows read
1699 (1) true dependence: read follows write
1700 (2) output dependence: write follows write
1701 (3) anti dependence: write follows read
1703 We are careful to build only dependencies which actually exist, and
1704 use transitivity to avoid building too many links. */
1706 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1707 The MEM is a memory reference contained within INSN, which we are saving
1708 so that we can do memory aliasing on it. */
1710 static void
1711 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1712 rtx_insn *insn, rtx mem)
1714 rtx_insn_list **insn_list;
1715 rtx_insn_list *insn_node;
1716 rtx_expr_list **mem_list;
1717 rtx_expr_list *mem_node;
1719 gcc_assert (!deps->readonly);
1720 if (read_p)
1722 insn_list = &deps->pending_read_insns;
1723 mem_list = &deps->pending_read_mems;
1724 if (!DEBUG_INSN_P (insn))
1725 deps->pending_read_list_length++;
1727 else
1729 insn_list = &deps->pending_write_insns;
1730 mem_list = &deps->pending_write_mems;
1731 deps->pending_write_list_length++;
1734 insn_node = alloc_INSN_LIST (insn, *insn_list);
1735 *insn_list = insn_node;
1737 if (sched_deps_info->use_cselib)
1739 mem = shallow_copy_rtx (mem);
1740 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1741 GET_MODE (mem), insn);
1743 mem_node = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1744 *mem_list = mem_node;
1747 /* Make a dependency between every memory reference on the pending lists
1748 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1749 dependencies for a read operation, similarly with FOR_WRITE. */
1751 static void
1752 flush_pending_lists (struct deps_desc *deps, rtx_insn *insn, int for_read,
1753 int for_write)
1755 if (for_write)
1757 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1758 1, REG_DEP_ANTI, true);
1759 if (!deps->readonly)
1761 free_EXPR_LIST_list (&deps->pending_read_mems);
1762 deps->pending_read_list_length = 0;
1766 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1767 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1768 true);
1770 add_dependence_list_and_free (deps, insn,
1771 &deps->last_pending_memory_flush, 1,
1772 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1773 true);
1775 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1776 REG_DEP_ANTI, true);
1778 if (DEBUG_INSN_P (insn))
1780 if (for_write)
1781 free_INSN_LIST_list (&deps->pending_read_insns);
1782 free_INSN_LIST_list (&deps->pending_write_insns);
1783 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1784 free_INSN_LIST_list (&deps->pending_jump_insns);
1787 if (!deps->readonly)
1789 free_EXPR_LIST_list (&deps->pending_write_mems);
1790 deps->pending_write_list_length = 0;
1792 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1793 deps->pending_flush_length = 1;
1795 mark_as_hard = false;
1798 /* Instruction which dependencies we are analyzing. */
1799 static rtx_insn *cur_insn = NULL;
1801 /* Implement hooks for haifa scheduler. */
1803 static void
1804 haifa_start_insn (rtx_insn *insn)
1806 gcc_assert (insn && !cur_insn);
1808 cur_insn = insn;
1811 static void
1812 haifa_finish_insn (void)
1814 cur_insn = NULL;
1817 void
1818 haifa_note_reg_set (int regno)
1820 SET_REGNO_REG_SET (reg_pending_sets, regno);
1823 void
1824 haifa_note_reg_clobber (int regno)
1826 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1829 void
1830 haifa_note_reg_use (int regno)
1832 SET_REGNO_REG_SET (reg_pending_uses, regno);
1835 static void
1836 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx_insn *pending_insn, ds_t ds)
1838 if (!(ds & SPECULATIVE))
1840 mem = NULL_RTX;
1841 pending_mem = NULL_RTX;
1843 else
1844 gcc_assert (ds & BEGIN_DATA);
1847 dep_def _dep, *dep = &_dep;
1849 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1850 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1851 DEP_NONREG (dep) = 1;
1852 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1857 static void
1858 haifa_note_dep (rtx_insn *elem, ds_t ds)
1860 dep_def _dep;
1861 dep_t dep = &_dep;
1863 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1864 if (mark_as_hard)
1865 DEP_NONREG (dep) = 1;
1866 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1869 static void
1870 note_reg_use (int r)
1872 if (sched_deps_info->note_reg_use)
1873 sched_deps_info->note_reg_use (r);
1876 static void
1877 note_reg_set (int r)
1879 if (sched_deps_info->note_reg_set)
1880 sched_deps_info->note_reg_set (r);
1883 static void
1884 note_reg_clobber (int r)
1886 if (sched_deps_info->note_reg_clobber)
1887 sched_deps_info->note_reg_clobber (r);
1890 static void
1891 note_mem_dep (rtx m1, rtx m2, rtx_insn *e, ds_t ds)
1893 if (sched_deps_info->note_mem_dep)
1894 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1897 static void
1898 note_dep (rtx_insn *e, ds_t ds)
1900 if (sched_deps_info->note_dep)
1901 sched_deps_info->note_dep (e, ds);
1904 /* Return corresponding to DS reg_note. */
1905 enum reg_note
1906 ds_to_dt (ds_t ds)
1908 if (ds & DEP_TRUE)
1909 return REG_DEP_TRUE;
1910 else if (ds & DEP_OUTPUT)
1911 return REG_DEP_OUTPUT;
1912 else if (ds & DEP_ANTI)
1913 return REG_DEP_ANTI;
1914 else
1916 gcc_assert (ds & DEP_CONTROL);
1917 return REG_DEP_CONTROL;
1923 /* Functions for computation of info needed for register pressure
1924 sensitive insn scheduling. */
1927 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1928 static struct reg_use_data *
1929 create_insn_reg_use (int regno, rtx_insn *insn)
1931 struct reg_use_data *use;
1933 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1934 use->regno = regno;
1935 use->insn = insn;
1936 use->next_insn_use = INSN_REG_USE_LIST (insn);
1937 INSN_REG_USE_LIST (insn) = use;
1938 return use;
1941 /* Allocate reg_set_data structure for REGNO and INSN. */
1942 static void
1943 create_insn_reg_set (int regno, rtx insn)
1945 struct reg_set_data *set;
1947 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1948 set->regno = regno;
1949 set->insn = insn;
1950 set->next_insn_set = INSN_REG_SET_LIST (insn);
1951 INSN_REG_SET_LIST (insn) = set;
1954 /* Set up insn register uses for INSN and dependency context DEPS. */
1955 static void
1956 setup_insn_reg_uses (struct deps_desc *deps, rtx_insn *insn)
1958 unsigned i;
1959 reg_set_iterator rsi;
1960 struct reg_use_data *use, *use2, *next;
1961 struct deps_reg *reg_last;
1963 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1965 if (i < FIRST_PSEUDO_REGISTER
1966 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1967 continue;
1969 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1970 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1971 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1972 /* Ignore use which is not dying. */
1973 continue;
1975 use = create_insn_reg_use (i, insn);
1976 use->next_regno_use = use;
1977 reg_last = &deps->reg_last[i];
1979 /* Create the cycle list of uses. */
1980 for (rtx_insn_list *list = reg_last->uses; list; list = list->next ())
1982 use2 = create_insn_reg_use (i, list->insn ());
1983 next = use->next_regno_use;
1984 use->next_regno_use = use2;
1985 use2->next_regno_use = next;
1990 /* Register pressure info for the currently processed insn. */
1991 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1993 /* Return TRUE if INSN has the use structure for REGNO. */
1994 static bool
1995 insn_use_p (rtx insn, int regno)
1997 struct reg_use_data *use;
1999 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2000 if (use->regno == regno)
2001 return true;
2002 return false;
2005 /* Update the register pressure info after birth of pseudo register REGNO
2006 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2007 the register is in clobber or unused after the insn. */
2008 static void
2009 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2011 int incr, new_incr;
2012 enum reg_class cl;
2014 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2015 cl = sched_regno_pressure_class[regno];
2016 if (cl != NO_REGS)
2018 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2019 if (clobber_p)
2021 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2022 reg_pressure_info[cl].clobber_increase = new_incr;
2024 else if (unused_p)
2026 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2027 reg_pressure_info[cl].unused_set_increase = new_incr;
2029 else
2031 new_incr = reg_pressure_info[cl].set_increase + incr;
2032 reg_pressure_info[cl].set_increase = new_incr;
2033 if (! insn_use_p (insn, regno))
2034 reg_pressure_info[cl].change += incr;
2035 create_insn_reg_set (regno, insn);
2037 gcc_assert (new_incr < (1 << INCREASE_BITS));
2041 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2042 hard registers involved in the birth. */
2043 static void
2044 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2045 bool clobber_p, bool unused_p)
2047 enum reg_class cl;
2048 int new_incr, last = regno + nregs;
2050 while (regno < last)
2052 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2053 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2055 cl = sched_regno_pressure_class[regno];
2056 if (cl != NO_REGS)
2058 if (clobber_p)
2060 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2061 reg_pressure_info[cl].clobber_increase = new_incr;
2063 else if (unused_p)
2065 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2066 reg_pressure_info[cl].unused_set_increase = new_incr;
2068 else
2070 new_incr = reg_pressure_info[cl].set_increase + 1;
2071 reg_pressure_info[cl].set_increase = new_incr;
2072 if (! insn_use_p (insn, regno))
2073 reg_pressure_info[cl].change += 1;
2074 create_insn_reg_set (regno, insn);
2076 gcc_assert (new_incr < (1 << INCREASE_BITS));
2079 regno++;
2083 /* Update the register pressure info after birth of pseudo or hard
2084 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2085 correspondingly that the register is in clobber or unused after the
2086 insn. */
2087 static void
2088 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2090 int regno;
2092 if (GET_CODE (reg) == SUBREG)
2093 reg = SUBREG_REG (reg);
2095 if (! REG_P (reg))
2096 return;
2098 regno = REGNO (reg);
2099 if (regno < FIRST_PSEUDO_REGISTER)
2100 mark_insn_hard_regno_birth (insn, regno, REG_NREGS (reg),
2101 clobber_p, unused_p);
2102 else
2103 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2106 /* Update the register pressure info after death of pseudo register
2107 REGNO. */
2108 static void
2109 mark_pseudo_death (int regno)
2111 int incr;
2112 enum reg_class cl;
2114 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2115 cl = sched_regno_pressure_class[regno];
2116 if (cl != NO_REGS)
2118 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2119 reg_pressure_info[cl].change -= incr;
2123 /* Like mark_pseudo_death except that NREGS saying how many hard
2124 registers involved in the death. */
2125 static void
2126 mark_hard_regno_death (int regno, int nregs)
2128 enum reg_class cl;
2129 int last = regno + nregs;
2131 while (regno < last)
2133 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2134 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2136 cl = sched_regno_pressure_class[regno];
2137 if (cl != NO_REGS)
2138 reg_pressure_info[cl].change -= 1;
2140 regno++;
2144 /* Update the register pressure info after death of pseudo or hard
2145 register REG. */
2146 static void
2147 mark_reg_death (rtx reg)
2149 int regno;
2151 if (GET_CODE (reg) == SUBREG)
2152 reg = SUBREG_REG (reg);
2154 if (! REG_P (reg))
2155 return;
2157 regno = REGNO (reg);
2158 if (regno < FIRST_PSEUDO_REGISTER)
2159 mark_hard_regno_death (regno, REG_NREGS (reg));
2160 else
2161 mark_pseudo_death (regno);
2164 /* Process SETTER of REG. DATA is an insn containing the setter. */
2165 static void
2166 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2168 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2169 return;
2170 mark_insn_reg_birth
2171 ((rtx) data, reg, false,
2172 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2175 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2176 static void
2177 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2179 if (GET_CODE (setter) == CLOBBER)
2180 mark_insn_reg_birth ((rtx) data, reg, true, false);
2183 /* Set up reg pressure info related to INSN. */
2184 void
2185 init_insn_reg_pressure_info (rtx_insn *insn)
2187 int i, len;
2188 enum reg_class cl;
2189 static struct reg_pressure_data *pressure_info;
2190 rtx link;
2192 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2194 if (! INSN_P (insn))
2195 return;
2197 for (i = 0; i < ira_pressure_classes_num; i++)
2199 cl = ira_pressure_classes[i];
2200 reg_pressure_info[cl].clobber_increase = 0;
2201 reg_pressure_info[cl].set_increase = 0;
2202 reg_pressure_info[cl].unused_set_increase = 0;
2203 reg_pressure_info[cl].change = 0;
2206 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2208 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2210 if (AUTO_INC_DEC)
2211 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2212 if (REG_NOTE_KIND (link) == REG_INC)
2213 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2215 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2216 if (REG_NOTE_KIND (link) == REG_DEAD)
2217 mark_reg_death (XEXP (link, 0));
2219 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2220 pressure_info
2221 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2222 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2223 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2224 * sizeof (int), 1);
2225 for (i = 0; i < ira_pressure_classes_num; i++)
2227 cl = ira_pressure_classes[i];
2228 pressure_info[i].clobber_increase
2229 = reg_pressure_info[cl].clobber_increase;
2230 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2231 pressure_info[i].unused_set_increase
2232 = reg_pressure_info[cl].unused_set_increase;
2233 pressure_info[i].change = reg_pressure_info[cl].change;
2240 /* Internal variable for sched_analyze_[12] () functions.
2241 If it is nonzero, this means that sched_analyze_[12] looks
2242 at the most toplevel SET. */
2243 static bool can_start_lhs_rhs_p;
2245 /* Extend reg info for the deps context DEPS given that
2246 we have just generated a register numbered REGNO. */
2247 static void
2248 extend_deps_reg_info (struct deps_desc *deps, int regno)
2250 int max_regno = regno + 1;
2252 gcc_assert (!reload_completed);
2254 /* In a readonly context, it would not hurt to extend info,
2255 but it should not be needed. */
2256 if (reload_completed && deps->readonly)
2258 deps->max_reg = max_regno;
2259 return;
2262 if (max_regno > deps->max_reg)
2264 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2265 max_regno);
2266 memset (&deps->reg_last[deps->max_reg],
2267 0, (max_regno - deps->max_reg)
2268 * sizeof (struct deps_reg));
2269 deps->max_reg = max_regno;
2273 /* Extends REG_INFO_P if needed. */
2274 void
2275 maybe_extend_reg_info_p (void)
2277 /* Extend REG_INFO_P, if needed. */
2278 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2280 size_t new_reg_info_p_size = max_regno + 128;
2282 gcc_assert (!reload_completed && sel_sched_p ());
2284 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2285 new_reg_info_p_size,
2286 reg_info_p_size,
2287 sizeof (*reg_info_p));
2288 reg_info_p_size = new_reg_info_p_size;
2292 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2293 The type of the reference is specified by REF and can be SET,
2294 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2296 static void
2297 sched_analyze_reg (struct deps_desc *deps, int regno, machine_mode mode,
2298 enum rtx_code ref, rtx_insn *insn)
2300 /* We could emit new pseudos in renaming. Extend the reg structures. */
2301 if (!reload_completed && sel_sched_p ()
2302 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2303 extend_deps_reg_info (deps, regno);
2305 maybe_extend_reg_info_p ();
2307 /* A hard reg in a wide mode may really be multiple registers.
2308 If so, mark all of them just like the first. */
2309 if (regno < FIRST_PSEUDO_REGISTER)
2311 int i = hard_regno_nregs (regno, mode);
2312 if (ref == SET)
2314 while (--i >= 0)
2315 note_reg_set (regno + i);
2317 else if (ref == USE)
2319 while (--i >= 0)
2320 note_reg_use (regno + i);
2322 else if (ref == CLOBBER_HIGH)
2324 gcc_assert (i == 1);
2325 /* We don't know the current state of the register, so have to treat
2326 the clobber high as a full clobber. */
2327 note_reg_clobber (regno);
2329 else
2331 while (--i >= 0)
2332 note_reg_clobber (regno + i);
2336 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2337 it does not reload. Ignore these as they have served their
2338 purpose already. */
2339 else if (regno >= deps->max_reg)
2341 enum rtx_code code = GET_CODE (PATTERN (insn));
2342 gcc_assert (code == USE || code == CLOBBER);
2345 else
2347 if (ref == SET)
2348 note_reg_set (regno);
2349 else if (ref == USE)
2350 note_reg_use (regno);
2351 else
2352 /* For CLOBBER_HIGH, we don't know the current state of the register,
2353 so have to treat it as a full clobber. */
2354 note_reg_clobber (regno);
2356 /* Pseudos that are REG_EQUIV to something may be replaced
2357 by that during reloading. We need only add dependencies for
2358 the address in the REG_EQUIV note. */
2359 if (!reload_completed && get_reg_known_equiv_p (regno))
2361 rtx t = get_reg_known_value (regno);
2362 if (MEM_P (t))
2363 sched_analyze_2 (deps, XEXP (t, 0), insn);
2366 /* Don't let it cross a call after scheduling if it doesn't
2367 already cross one. */
2368 if (REG_N_CALLS_CROSSED (regno) == 0)
2370 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2371 deps->sched_before_next_call
2372 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2373 else
2374 add_dependence_list (insn, deps->last_function_call, 1,
2375 REG_DEP_ANTI, false);
2380 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2381 rtx, X, creating all dependencies generated by the write to the
2382 destination of X, and reads of everything mentioned. */
2384 static void
2385 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2387 rtx dest = XEXP (x, 0);
2388 enum rtx_code code = GET_CODE (x);
2389 bool cslr_p = can_start_lhs_rhs_p;
2391 can_start_lhs_rhs_p = false;
2393 gcc_assert (dest);
2394 if (dest == 0)
2395 return;
2397 if (cslr_p && sched_deps_info->start_lhs)
2398 sched_deps_info->start_lhs (dest);
2400 if (GET_CODE (dest) == PARALLEL)
2402 int i;
2404 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2405 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2406 sched_analyze_1 (deps,
2407 gen_rtx_CLOBBER (VOIDmode,
2408 XEXP (XVECEXP (dest, 0, i), 0)),
2409 insn);
2411 if (cslr_p && sched_deps_info->finish_lhs)
2412 sched_deps_info->finish_lhs ();
2414 if (code == SET)
2416 can_start_lhs_rhs_p = cslr_p;
2418 sched_analyze_2 (deps, SET_SRC (x), insn);
2420 can_start_lhs_rhs_p = false;
2423 return;
2426 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2427 || GET_CODE (dest) == ZERO_EXTRACT)
2429 if (GET_CODE (dest) == STRICT_LOW_PART
2430 || GET_CODE (dest) == ZERO_EXTRACT
2431 || read_modify_subreg_p (dest))
2433 /* These both read and modify the result. We must handle
2434 them as writes to get proper dependencies for following
2435 instructions. We must handle them as reads to get proper
2436 dependencies from this to previous instructions.
2437 Thus we need to call sched_analyze_2. */
2439 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2441 if (GET_CODE (dest) == ZERO_EXTRACT)
2443 /* The second and third arguments are values read by this insn. */
2444 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2445 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2447 dest = XEXP (dest, 0);
2450 if (REG_P (dest))
2452 int regno = REGNO (dest);
2453 machine_mode mode = GET_MODE (dest);
2455 sched_analyze_reg (deps, regno, mode, code, insn);
2457 #ifdef STACK_REGS
2458 /* Treat all writes to a stack register as modifying the TOS. */
2459 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2461 /* Avoid analyzing the same register twice. */
2462 if (regno != FIRST_STACK_REG)
2463 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2465 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2466 FIRST_STACK_REG);
2468 #endif
2470 else if (MEM_P (dest))
2472 /* Writing memory. */
2473 rtx t = dest;
2475 if (sched_deps_info->use_cselib)
2477 machine_mode address_mode = get_address_mode (dest);
2479 t = shallow_copy_rtx (dest);
2480 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2481 GET_MODE (t), insn);
2482 XEXP (t, 0)
2483 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2484 insn);
2486 t = canon_rtx (t);
2488 /* Pending lists can't get larger with a readonly context. */
2489 if (!deps->readonly
2490 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2491 >= MAX_PENDING_LIST_LENGTH))
2493 /* Flush all pending reads and writes to prevent the pending lists
2494 from getting any larger. Insn scheduling runs too slowly when
2495 these lists get long. When compiling GCC with itself,
2496 this flush occurs 8 times for sparc, and 10 times for m88k using
2497 the default value of 32. */
2498 flush_pending_lists (deps, insn, false, true);
2500 else
2502 rtx_insn_list *pending;
2503 rtx_expr_list *pending_mem;
2505 pending = deps->pending_read_insns;
2506 pending_mem = deps->pending_read_mems;
2507 while (pending)
2509 if (anti_dependence (pending_mem->element (), t)
2510 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2511 note_mem_dep (t, pending_mem->element (), pending->insn (),
2512 DEP_ANTI);
2514 pending = pending->next ();
2515 pending_mem = pending_mem->next ();
2518 pending = deps->pending_write_insns;
2519 pending_mem = deps->pending_write_mems;
2520 while (pending)
2522 if (output_dependence (pending_mem->element (), t)
2523 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2524 note_mem_dep (t, pending_mem->element (),
2525 pending->insn (),
2526 DEP_OUTPUT);
2528 pending = pending->next ();
2529 pending_mem = pending_mem-> next ();
2532 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2533 REG_DEP_ANTI, true);
2534 add_dependence_list (insn, deps->pending_jump_insns, 1,
2535 REG_DEP_CONTROL, true);
2537 if (!deps->readonly)
2538 add_insn_mem_dependence (deps, false, insn, dest);
2540 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2543 if (cslr_p && sched_deps_info->finish_lhs)
2544 sched_deps_info->finish_lhs ();
2546 /* Analyze reads. */
2547 if (GET_CODE (x) == SET)
2549 can_start_lhs_rhs_p = cslr_p;
2551 sched_analyze_2 (deps, SET_SRC (x), insn);
2553 can_start_lhs_rhs_p = false;
2557 /* Analyze the uses of memory and registers in rtx X in INSN. */
2558 static void
2559 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2561 int i;
2562 int j;
2563 enum rtx_code code;
2564 const char *fmt;
2565 bool cslr_p = can_start_lhs_rhs_p;
2567 can_start_lhs_rhs_p = false;
2569 gcc_assert (x);
2570 if (x == 0)
2571 return;
2573 if (cslr_p && sched_deps_info->start_rhs)
2574 sched_deps_info->start_rhs (x);
2576 code = GET_CODE (x);
2578 switch (code)
2580 CASE_CONST_ANY:
2581 case SYMBOL_REF:
2582 case CONST:
2583 case LABEL_REF:
2584 /* Ignore constants. */
2585 if (cslr_p && sched_deps_info->finish_rhs)
2586 sched_deps_info->finish_rhs ();
2588 return;
2590 case CC0:
2591 if (!HAVE_cc0)
2592 gcc_unreachable ();
2594 /* User of CC0 depends on immediately preceding insn. */
2595 SCHED_GROUP_P (insn) = 1;
2596 /* Don't move CC0 setter to another block (it can set up the
2597 same flag for previous CC0 users which is safe). */
2598 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2600 if (cslr_p && sched_deps_info->finish_rhs)
2601 sched_deps_info->finish_rhs ();
2603 return;
2605 case REG:
2607 int regno = REGNO (x);
2608 machine_mode mode = GET_MODE (x);
2610 sched_analyze_reg (deps, regno, mode, USE, insn);
2612 #ifdef STACK_REGS
2613 /* Treat all reads of a stack register as modifying the TOS. */
2614 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2616 /* Avoid analyzing the same register twice. */
2617 if (regno != FIRST_STACK_REG)
2618 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2619 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2621 #endif
2623 if (cslr_p && sched_deps_info->finish_rhs)
2624 sched_deps_info->finish_rhs ();
2626 return;
2629 case MEM:
2631 /* Reading memory. */
2632 rtx_insn_list *u;
2633 rtx_insn_list *pending;
2634 rtx_expr_list *pending_mem;
2635 rtx t = x;
2637 if (sched_deps_info->use_cselib)
2639 machine_mode address_mode = get_address_mode (t);
2641 t = shallow_copy_rtx (t);
2642 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2643 GET_MODE (t), insn);
2644 XEXP (t, 0)
2645 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2646 insn);
2649 if (!DEBUG_INSN_P (insn))
2651 t = canon_rtx (t);
2652 pending = deps->pending_read_insns;
2653 pending_mem = deps->pending_read_mems;
2654 while (pending)
2656 if (read_dependence (pending_mem->element (), t)
2657 && ! sched_insns_conditions_mutex_p (insn,
2658 pending->insn ()))
2659 note_mem_dep (t, pending_mem->element (),
2660 pending->insn (),
2661 DEP_ANTI);
2663 pending = pending->next ();
2664 pending_mem = pending_mem->next ();
2667 pending = deps->pending_write_insns;
2668 pending_mem = deps->pending_write_mems;
2669 while (pending)
2671 if (true_dependence (pending_mem->element (), VOIDmode, t)
2672 && ! sched_insns_conditions_mutex_p (insn,
2673 pending->insn ()))
2674 note_mem_dep (t, pending_mem->element (),
2675 pending->insn (),
2676 sched_deps_info->generate_spec_deps
2677 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2679 pending = pending->next ();
2680 pending_mem = pending_mem->next ();
2683 for (u = deps->last_pending_memory_flush; u; u = u->next ())
2684 add_dependence (insn, u->insn (), REG_DEP_ANTI);
2686 for (u = deps->pending_jump_insns; u; u = u->next ())
2687 if (deps_may_trap_p (x))
2689 if ((sched_deps_info->generate_spec_deps)
2690 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2692 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2693 MAX_DEP_WEAK);
2695 note_dep (u->insn (), ds);
2697 else
2698 add_dependence (insn, u->insn (), REG_DEP_CONTROL);
2702 /* Always add these dependencies to pending_reads, since
2703 this insn may be followed by a write. */
2704 if (!deps->readonly)
2706 if ((deps->pending_read_list_length
2707 + deps->pending_write_list_length)
2708 >= MAX_PENDING_LIST_LENGTH
2709 && !DEBUG_INSN_P (insn))
2710 flush_pending_lists (deps, insn, true, true);
2711 add_insn_mem_dependence (deps, true, insn, x);
2714 sched_analyze_2 (deps, XEXP (x, 0), insn);
2716 if (cslr_p && sched_deps_info->finish_rhs)
2717 sched_deps_info->finish_rhs ();
2719 return;
2722 /* Force pending stores to memory in case a trap handler needs them.
2723 Also force pending loads from memory; loads and stores can segfault
2724 and the signal handler won't be triggered if the trap insn was moved
2725 above load or store insn. */
2726 case TRAP_IF:
2727 flush_pending_lists (deps, insn, true, true);
2728 break;
2730 case PREFETCH:
2731 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2732 reg_pending_barrier = TRUE_BARRIER;
2733 /* Prefetch insn contains addresses only. So if the prefetch
2734 address has no registers, there will be no dependencies on
2735 the prefetch insn. This is wrong with result code
2736 correctness point of view as such prefetch can be moved below
2737 a jump insn which usually generates MOVE_BARRIER preventing
2738 to move insns containing registers or memories through the
2739 barrier. It is also wrong with generated code performance
2740 point of view as prefetch withouth dependecies will have a
2741 tendency to be issued later instead of earlier. It is hard
2742 to generate accurate dependencies for prefetch insns as
2743 prefetch has only the start address but it is better to have
2744 something than nothing. */
2745 if (!deps->readonly)
2747 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2748 if (sched_deps_info->use_cselib)
2749 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2750 add_insn_mem_dependence (deps, true, insn, x);
2752 break;
2754 case UNSPEC_VOLATILE:
2755 flush_pending_lists (deps, insn, true, true);
2756 /* FALLTHRU */
2758 case ASM_OPERANDS:
2759 case ASM_INPUT:
2761 /* Traditional and volatile asm instructions must be considered to use
2762 and clobber all hard registers, all pseudo-registers and all of
2763 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2765 Consider for instance a volatile asm that changes the fpu rounding
2766 mode. An insn should not be moved across this even if it only uses
2767 pseudo-regs because it might give an incorrectly rounded result. */
2768 if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2769 && !DEBUG_INSN_P (insn))
2770 reg_pending_barrier = TRUE_BARRIER;
2772 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2773 We cannot just fall through here since then we would be confused
2774 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2775 traditional asms unlike their normal usage. */
2777 if (code == ASM_OPERANDS)
2779 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2780 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2782 if (cslr_p && sched_deps_info->finish_rhs)
2783 sched_deps_info->finish_rhs ();
2785 return;
2787 break;
2790 case PRE_DEC:
2791 case POST_DEC:
2792 case PRE_INC:
2793 case POST_INC:
2794 /* These both read and modify the result. We must handle them as writes
2795 to get proper dependencies for following instructions. We must handle
2796 them as reads to get proper dependencies from this to previous
2797 instructions. Thus we need to pass them to both sched_analyze_1
2798 and sched_analyze_2. We must call sched_analyze_2 first in order
2799 to get the proper antecedent for the read. */
2800 sched_analyze_2 (deps, XEXP (x, 0), insn);
2801 sched_analyze_1 (deps, x, insn);
2803 if (cslr_p && sched_deps_info->finish_rhs)
2804 sched_deps_info->finish_rhs ();
2806 return;
2808 case POST_MODIFY:
2809 case PRE_MODIFY:
2810 /* op0 = op0 + op1 */
2811 sched_analyze_2 (deps, XEXP (x, 0), insn);
2812 sched_analyze_2 (deps, XEXP (x, 1), insn);
2813 sched_analyze_1 (deps, x, insn);
2815 if (cslr_p && sched_deps_info->finish_rhs)
2816 sched_deps_info->finish_rhs ();
2818 return;
2820 default:
2821 break;
2824 /* Other cases: walk the insn. */
2825 fmt = GET_RTX_FORMAT (code);
2826 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2828 if (fmt[i] == 'e')
2829 sched_analyze_2 (deps, XEXP (x, i), insn);
2830 else if (fmt[i] == 'E')
2831 for (j = 0; j < XVECLEN (x, i); j++)
2832 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2835 if (cslr_p && sched_deps_info->finish_rhs)
2836 sched_deps_info->finish_rhs ();
2839 /* Try to group two fusible insns together to prevent scheduler
2840 from scheduling them apart. */
2842 static void
2843 sched_macro_fuse_insns (rtx_insn *insn)
2845 rtx_insn *prev;
2846 /* No target hook would return true for debug insn as any of the
2847 hook operand, and with very large sequences of only debug insns
2848 where on each we call sched_macro_fuse_insns it has quadratic
2849 compile time complexity. */
2850 if (DEBUG_INSN_P (insn))
2851 return;
2852 prev = prev_nonnote_nondebug_insn (insn);
2853 if (!prev)
2854 return;
2856 if (any_condjump_p (insn))
2858 unsigned int condreg1, condreg2;
2859 rtx cc_reg_1;
2860 targetm.fixed_condition_code_regs (&condreg1, &condreg2);
2861 cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2862 if (reg_referenced_p (cc_reg_1, PATTERN (insn))
2863 && modified_in_p (cc_reg_1, prev))
2865 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2866 SCHED_GROUP_P (insn) = 1;
2867 return;
2871 if (single_set (insn) && single_set (prev))
2873 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2874 SCHED_GROUP_P (insn) = 1;
2878 /* Get the implicit reg pending clobbers for INSN and save them in TEMP. */
2879 void
2880 get_implicit_reg_pending_clobbers (HARD_REG_SET *temp, rtx_insn *insn)
2882 extract_insn (insn);
2883 preprocess_constraints (insn);
2884 alternative_mask preferred = get_preferred_alternatives (insn);
2885 ira_implicitly_set_insn_hard_regs (temp, preferred);
2886 AND_COMPL_HARD_REG_SET (*temp, ira_no_alloc_regs);
2889 /* Analyze an INSN with pattern X to find all dependencies. */
2890 static void
2891 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx_insn *insn)
2893 RTX_CODE code = GET_CODE (x);
2894 rtx link;
2895 unsigned i;
2896 reg_set_iterator rsi;
2898 if (! reload_completed)
2900 HARD_REG_SET temp;
2901 get_implicit_reg_pending_clobbers (&temp, insn);
2902 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2905 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2906 && code == SET);
2908 /* Group compare and branch insns for macro-fusion. */
2909 if (!deps->readonly
2910 && targetm.sched.macro_fusion_p
2911 && targetm.sched.macro_fusion_p ())
2912 sched_macro_fuse_insns (insn);
2914 if (may_trap_p (x))
2915 /* Avoid moving trapping instructions across function calls that might
2916 not always return. */
2917 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2918 1, REG_DEP_ANTI, true);
2920 /* We must avoid creating a situation in which two successors of the
2921 current block have different unwind info after scheduling. If at any
2922 point the two paths re-join this leads to incorrect unwind info. */
2923 /* ??? There are certain situations involving a forced frame pointer in
2924 which, with extra effort, we could fix up the unwind info at a later
2925 CFG join. However, it seems better to notice these cases earlier
2926 during prologue generation and avoid marking the frame pointer setup
2927 as frame-related at all. */
2928 if (RTX_FRAME_RELATED_P (insn))
2930 /* Make sure prologue insn is scheduled before next jump. */
2931 deps->sched_before_next_jump
2932 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2934 /* Make sure epilogue insn is scheduled after preceding jumps. */
2935 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2936 REG_DEP_ANTI, true);
2937 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2938 true);
2941 if (code == COND_EXEC)
2943 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2945 /* ??? Should be recording conditions so we reduce the number of
2946 false dependencies. */
2947 x = COND_EXEC_CODE (x);
2948 code = GET_CODE (x);
2950 if (code == SET || code == CLOBBER)
2952 sched_analyze_1 (deps, x, insn);
2954 /* Bare clobber insns are used for letting life analysis, reg-stack
2955 and others know that a value is dead. Depend on the last call
2956 instruction so that reg-stack won't get confused. */
2957 if (code == CLOBBER)
2958 add_dependence_list (insn, deps->last_function_call, 1,
2959 REG_DEP_OUTPUT, true);
2961 else if (code == PARALLEL)
2963 for (i = XVECLEN (x, 0); i--;)
2965 rtx sub = XVECEXP (x, 0, i);
2966 code = GET_CODE (sub);
2968 if (code == COND_EXEC)
2970 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2971 sub = COND_EXEC_CODE (sub);
2972 code = GET_CODE (sub);
2974 else if (code == SET || code == CLOBBER || code == CLOBBER_HIGH)
2975 sched_analyze_1 (deps, sub, insn);
2976 else
2977 sched_analyze_2 (deps, sub, insn);
2980 else
2981 sched_analyze_2 (deps, x, insn);
2983 /* Mark registers CLOBBERED or used by called function. */
2984 if (CALL_P (insn))
2986 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2988 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2989 sched_analyze_1 (deps, XEXP (link, 0), insn);
2990 else if (GET_CODE (XEXP (link, 0)) == CLOBBER_HIGH)
2991 /* We could support CLOBBER_HIGH and treat it in the same way as
2992 HARD_REGNO_CALL_PART_CLOBBERED, but no port needs that yet. */
2993 gcc_unreachable ();
2994 else if (GET_CODE (XEXP (link, 0)) != SET)
2995 sched_analyze_2 (deps, XEXP (link, 0), insn);
2997 /* Don't schedule anything after a tail call, tail call needs
2998 to use at least all call-saved registers. */
2999 if (SIBLING_CALL_P (insn))
3000 reg_pending_barrier = TRUE_BARRIER;
3001 else if (find_reg_note (insn, REG_SETJMP, NULL))
3002 reg_pending_barrier = MOVE_BARRIER;
3005 if (JUMP_P (insn))
3007 rtx_insn *next = next_nonnote_nondebug_insn (insn);
3008 if (next && BARRIER_P (next))
3009 reg_pending_barrier = MOVE_BARRIER;
3010 else
3012 rtx_insn_list *pending;
3013 rtx_expr_list *pending_mem;
3015 if (sched_deps_info->compute_jump_reg_dependencies)
3017 (*sched_deps_info->compute_jump_reg_dependencies)
3018 (insn, reg_pending_control_uses);
3020 /* Make latency of jump equal to 0 by using anti-dependence. */
3021 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3023 struct deps_reg *reg_last = &deps->reg_last[i];
3024 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
3025 false);
3026 add_dependence_list (insn, reg_last->implicit_sets,
3027 0, REG_DEP_ANTI, false);
3028 add_dependence_list (insn, reg_last->clobbers, 0,
3029 REG_DEP_ANTI, false);
3033 /* All memory writes and volatile reads must happen before the
3034 jump. Non-volatile reads must happen before the jump iff
3035 the result is needed by the above register used mask. */
3037 pending = deps->pending_write_insns;
3038 pending_mem = deps->pending_write_mems;
3039 while (pending)
3041 if (! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3042 add_dependence (insn, pending->insn (),
3043 REG_DEP_OUTPUT);
3044 pending = pending->next ();
3045 pending_mem = pending_mem->next ();
3048 pending = deps->pending_read_insns;
3049 pending_mem = deps->pending_read_mems;
3050 while (pending)
3052 if (MEM_VOLATILE_P (pending_mem->element ())
3053 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3054 add_dependence (insn, pending->insn (),
3055 REG_DEP_OUTPUT);
3056 pending = pending->next ();
3057 pending_mem = pending_mem->next ();
3060 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
3061 REG_DEP_ANTI, true);
3062 add_dependence_list (insn, deps->pending_jump_insns, 1,
3063 REG_DEP_ANTI, true);
3067 /* If this instruction can throw an exception, then moving it changes
3068 where block boundaries fall. This is mighty confusing elsewhere.
3069 Therefore, prevent such an instruction from being moved. Same for
3070 non-jump instructions that define block boundaries.
3071 ??? Unclear whether this is still necessary in EBB mode. If not,
3072 add_branch_dependences should be adjusted for RGN mode instead. */
3073 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3074 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3075 reg_pending_barrier = MOVE_BARRIER;
3077 if (sched_pressure != SCHED_PRESSURE_NONE)
3079 setup_insn_reg_uses (deps, insn);
3080 init_insn_reg_pressure_info (insn);
3083 /* Add register dependencies for insn. */
3084 if (DEBUG_INSN_P (insn))
3086 rtx_insn *prev = deps->last_debug_insn;
3087 rtx_insn_list *u;
3089 if (!deps->readonly)
3090 deps->last_debug_insn = insn;
3092 if (prev)
3093 add_dependence (insn, prev, REG_DEP_ANTI);
3095 add_dependence_list (insn, deps->last_function_call, 1,
3096 REG_DEP_ANTI, false);
3098 if (!sel_sched_p ())
3099 for (u = deps->last_pending_memory_flush; u; u = u->next ())
3100 add_dependence (insn, u->insn (), REG_DEP_ANTI);
3102 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3104 struct deps_reg *reg_last = &deps->reg_last[i];
3105 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3106 /* There's no point in making REG_DEP_CONTROL dependencies for
3107 debug insns. */
3108 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3109 false);
3111 if (!deps->readonly)
3112 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3114 CLEAR_REG_SET (reg_pending_uses);
3116 /* Quite often, a debug insn will refer to stuff in the
3117 previous instruction, but the reason we want this
3118 dependency here is to make sure the scheduler doesn't
3119 gratuitously move a debug insn ahead. This could dirty
3120 DF flags and cause additional analysis that wouldn't have
3121 occurred in compilation without debug insns, and such
3122 additional analysis can modify the generated code. */
3123 prev = PREV_INSN (insn);
3125 if (prev && NONDEBUG_INSN_P (prev))
3126 add_dependence (insn, prev, REG_DEP_ANTI);
3128 else
3130 regset_head set_or_clobbered;
3132 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3134 struct deps_reg *reg_last = &deps->reg_last[i];
3135 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3136 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3137 false);
3138 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3139 false);
3141 if (!deps->readonly)
3143 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3144 reg_last->uses_length++;
3148 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3149 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3151 struct deps_reg *reg_last = &deps->reg_last[i];
3152 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3153 add_dependence_list (insn, reg_last->implicit_sets, 0,
3154 REG_DEP_ANTI, false);
3155 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3156 false);
3158 if (!deps->readonly)
3160 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3161 reg_last->uses_length++;
3165 if (targetm.sched.exposed_pipeline)
3167 INIT_REG_SET (&set_or_clobbered);
3168 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3169 reg_pending_sets);
3170 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3172 struct deps_reg *reg_last = &deps->reg_last[i];
3173 rtx list;
3174 for (list = reg_last->uses; list; list = XEXP (list, 1))
3176 rtx other = XEXP (list, 0);
3177 if (INSN_CACHED_COND (other) != const_true_rtx
3178 && refers_to_regno_p (i, INSN_CACHED_COND (other)))
3179 INSN_CACHED_COND (other) = const_true_rtx;
3184 /* If the current insn is conditional, we can't free any
3185 of the lists. */
3186 if (sched_has_condition_p (insn))
3188 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3190 struct deps_reg *reg_last = &deps->reg_last[i];
3191 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3192 false);
3193 add_dependence_list (insn, reg_last->implicit_sets, 0,
3194 REG_DEP_ANTI, false);
3195 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3196 false);
3197 add_dependence_list (insn, reg_last->control_uses, 0,
3198 REG_DEP_CONTROL, false);
3200 if (!deps->readonly)
3202 reg_last->clobbers
3203 = alloc_INSN_LIST (insn, reg_last->clobbers);
3204 reg_last->clobbers_length++;
3207 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3209 struct deps_reg *reg_last = &deps->reg_last[i];
3210 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3211 false);
3212 add_dependence_list (insn, reg_last->implicit_sets, 0,
3213 REG_DEP_ANTI, false);
3214 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3215 false);
3216 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3217 false);
3218 add_dependence_list (insn, reg_last->control_uses, 0,
3219 REG_DEP_CONTROL, false);
3221 if (!deps->readonly)
3222 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3225 else
3227 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3229 struct deps_reg *reg_last = &deps->reg_last[i];
3230 if (reg_last->uses_length >= MAX_PENDING_LIST_LENGTH
3231 || reg_last->clobbers_length >= MAX_PENDING_LIST_LENGTH)
3233 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3234 REG_DEP_OUTPUT, false);
3235 add_dependence_list_and_free (deps, insn,
3236 &reg_last->implicit_sets, 0,
3237 REG_DEP_ANTI, false);
3238 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3239 REG_DEP_ANTI, false);
3240 add_dependence_list_and_free (deps, insn,
3241 &reg_last->control_uses, 0,
3242 REG_DEP_ANTI, false);
3243 add_dependence_list_and_free (deps, insn,
3244 &reg_last->clobbers, 0,
3245 REG_DEP_OUTPUT, false);
3247 if (!deps->readonly)
3249 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3250 reg_last->clobbers_length = 0;
3251 reg_last->uses_length = 0;
3254 else
3256 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3257 false);
3258 add_dependence_list (insn, reg_last->implicit_sets, 0,
3259 REG_DEP_ANTI, false);
3260 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3261 false);
3262 add_dependence_list (insn, reg_last->control_uses, 0,
3263 REG_DEP_CONTROL, false);
3266 if (!deps->readonly)
3268 reg_last->clobbers_length++;
3269 reg_last->clobbers
3270 = alloc_INSN_LIST (insn, reg_last->clobbers);
3273 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3275 struct deps_reg *reg_last = &deps->reg_last[i];
3277 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3278 REG_DEP_OUTPUT, false);
3279 add_dependence_list_and_free (deps, insn,
3280 &reg_last->implicit_sets,
3281 0, REG_DEP_ANTI, false);
3282 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3283 REG_DEP_OUTPUT, false);
3284 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3285 REG_DEP_ANTI, false);
3286 add_dependence_list (insn, reg_last->control_uses, 0,
3287 REG_DEP_CONTROL, false);
3289 if (!deps->readonly)
3291 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3292 reg_last->uses_length = 0;
3293 reg_last->clobbers_length = 0;
3297 if (!deps->readonly)
3299 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3301 struct deps_reg *reg_last = &deps->reg_last[i];
3302 reg_last->control_uses
3303 = alloc_INSN_LIST (insn, reg_last->control_uses);
3308 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3309 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3311 struct deps_reg *reg_last = &deps->reg_last[i];
3312 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3313 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3314 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3315 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3316 false);
3318 if (!deps->readonly)
3319 reg_last->implicit_sets
3320 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3323 if (!deps->readonly)
3325 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3326 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3327 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3328 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3329 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3330 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3331 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3333 /* Set up the pending barrier found. */
3334 deps->last_reg_pending_barrier = reg_pending_barrier;
3337 CLEAR_REG_SET (reg_pending_uses);
3338 CLEAR_REG_SET (reg_pending_clobbers);
3339 CLEAR_REG_SET (reg_pending_sets);
3340 CLEAR_REG_SET (reg_pending_control_uses);
3341 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3342 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3344 /* Add dependencies if a scheduling barrier was found. */
3345 if (reg_pending_barrier)
3347 /* In the case of barrier the most added dependencies are not
3348 real, so we use anti-dependence here. */
3349 if (sched_has_condition_p (insn))
3351 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3353 struct deps_reg *reg_last = &deps->reg_last[i];
3354 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3355 true);
3356 add_dependence_list (insn, reg_last->sets, 0,
3357 reg_pending_barrier == TRUE_BARRIER
3358 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3359 add_dependence_list (insn, reg_last->implicit_sets, 0,
3360 REG_DEP_ANTI, true);
3361 add_dependence_list (insn, reg_last->clobbers, 0,
3362 reg_pending_barrier == TRUE_BARRIER
3363 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3366 else
3368 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3370 struct deps_reg *reg_last = &deps->reg_last[i];
3371 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3372 REG_DEP_ANTI, true);
3373 add_dependence_list_and_free (deps, insn,
3374 &reg_last->control_uses, 0,
3375 REG_DEP_CONTROL, true);
3376 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3377 reg_pending_barrier == TRUE_BARRIER
3378 ? REG_DEP_TRUE : REG_DEP_ANTI,
3379 true);
3380 add_dependence_list_and_free (deps, insn,
3381 &reg_last->implicit_sets, 0,
3382 REG_DEP_ANTI, true);
3383 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3384 reg_pending_barrier == TRUE_BARRIER
3385 ? REG_DEP_TRUE : REG_DEP_ANTI,
3386 true);
3388 if (!deps->readonly)
3390 reg_last->uses_length = 0;
3391 reg_last->clobbers_length = 0;
3396 if (!deps->readonly)
3397 for (i = 0; i < (unsigned)deps->max_reg; i++)
3399 struct deps_reg *reg_last = &deps->reg_last[i];
3400 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3401 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3404 /* Don't flush pending lists on speculative checks for
3405 selective scheduling. */
3406 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3407 flush_pending_lists (deps, insn, true, true);
3409 reg_pending_barrier = NOT_A_BARRIER;
3412 /* If a post-call group is still open, see if it should remain so.
3413 This insn must be a simple move of a hard reg to a pseudo or
3414 vice-versa.
3416 We must avoid moving these insns for correctness on targets
3417 with small register classes, and for special registers like
3418 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3419 hard regs for all targets. */
3421 if (deps->in_post_call_group_p)
3423 rtx tmp, set = single_set (insn);
3424 int src_regno, dest_regno;
3426 if (set == NULL)
3428 if (DEBUG_INSN_P (insn))
3429 /* We don't want to mark debug insns as part of the same
3430 sched group. We know they really aren't, but if we use
3431 debug insns to tell that a call group is over, we'll
3432 get different code if debug insns are not there and
3433 instructions that follow seem like they should be part
3434 of the call group.
3436 Also, if we did, chain_to_prev_insn would move the
3437 deps of the debug insn to the call insn, modifying
3438 non-debug post-dependency counts of the debug insn
3439 dependencies and otherwise messing with the scheduling
3440 order.
3442 Instead, let such debug insns be scheduled freely, but
3443 keep the call group open in case there are insns that
3444 should be part of it afterwards. Since we grant debug
3445 insns higher priority than even sched group insns, it
3446 will all turn out all right. */
3447 goto debug_dont_end_call_group;
3448 else
3449 goto end_call_group;
3452 tmp = SET_DEST (set);
3453 if (GET_CODE (tmp) == SUBREG)
3454 tmp = SUBREG_REG (tmp);
3455 if (REG_P (tmp))
3456 dest_regno = REGNO (tmp);
3457 else
3458 goto end_call_group;
3460 tmp = SET_SRC (set);
3461 if (GET_CODE (tmp) == SUBREG)
3462 tmp = SUBREG_REG (tmp);
3463 if ((GET_CODE (tmp) == PLUS
3464 || GET_CODE (tmp) == MINUS)
3465 && REG_P (XEXP (tmp, 0))
3466 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3467 && dest_regno == STACK_POINTER_REGNUM)
3468 src_regno = STACK_POINTER_REGNUM;
3469 else if (REG_P (tmp))
3470 src_regno = REGNO (tmp);
3471 else
3472 goto end_call_group;
3474 if (src_regno < FIRST_PSEUDO_REGISTER
3475 || dest_regno < FIRST_PSEUDO_REGISTER)
3477 if (!deps->readonly
3478 && deps->in_post_call_group_p == post_call_initial)
3479 deps->in_post_call_group_p = post_call;
3481 if (!sel_sched_p () || sched_emulate_haifa_p)
3483 SCHED_GROUP_P (insn) = 1;
3484 CANT_MOVE (insn) = 1;
3487 else
3489 end_call_group:
3490 if (!deps->readonly)
3491 deps->in_post_call_group_p = not_post_call;
3495 debug_dont_end_call_group:
3496 if ((current_sched_info->flags & DO_SPECULATION)
3497 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3498 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3499 be speculated. */
3501 if (sel_sched_p ())
3502 sel_mark_hard_insn (insn);
3503 else
3505 sd_iterator_def sd_it;
3506 dep_t dep;
3508 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3509 sd_iterator_cond (&sd_it, &dep);)
3510 change_spec_dep_to_hard (sd_it);
3514 /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3515 honor their original ordering. */
3516 if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
3518 if (deps->last_args_size)
3519 add_dependence (insn, deps->last_args_size, REG_DEP_OUTPUT);
3520 if (!deps->readonly)
3521 deps->last_args_size = insn;
3524 /* We must not mix prologue and epilogue insns. See PR78029. */
3525 if (prologue_contains (insn))
3527 add_dependence_list (insn, deps->last_epilogue, true, REG_DEP_ANTI, true);
3528 if (!deps->readonly)
3530 if (deps->last_logue_was_epilogue)
3531 free_INSN_LIST_list (&deps->last_prologue);
3532 deps->last_prologue = alloc_INSN_LIST (insn, deps->last_prologue);
3533 deps->last_logue_was_epilogue = false;
3537 if (epilogue_contains (insn))
3539 add_dependence_list (insn, deps->last_prologue, true, REG_DEP_ANTI, true);
3540 if (!deps->readonly)
3542 if (!deps->last_logue_was_epilogue)
3543 free_INSN_LIST_list (&deps->last_epilogue);
3544 deps->last_epilogue = alloc_INSN_LIST (insn, deps->last_epilogue);
3545 deps->last_logue_was_epilogue = true;
3550 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3551 longjmp, loop forever, ...). */
3552 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3553 test for ECF_NORETURN? */
3554 static bool
3555 call_may_noreturn_p (rtx_insn *insn)
3557 rtx call;
3559 /* const or pure calls that aren't looping will always return. */
3560 if (RTL_CONST_OR_PURE_CALL_P (insn)
3561 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3562 return false;
3564 call = get_call_rtx_from (insn);
3565 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3567 rtx symbol = XEXP (XEXP (call, 0), 0);
3568 if (SYMBOL_REF_DECL (symbol)
3569 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3571 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3572 == BUILT_IN_NORMAL)
3573 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3575 case BUILT_IN_BCMP:
3576 case BUILT_IN_BCOPY:
3577 case BUILT_IN_BZERO:
3578 case BUILT_IN_INDEX:
3579 case BUILT_IN_MEMCHR:
3580 case BUILT_IN_MEMCMP:
3581 case BUILT_IN_MEMCPY:
3582 case BUILT_IN_MEMMOVE:
3583 case BUILT_IN_MEMPCPY:
3584 case BUILT_IN_MEMSET:
3585 case BUILT_IN_RINDEX:
3586 case BUILT_IN_STPCPY:
3587 case BUILT_IN_STPNCPY:
3588 case BUILT_IN_STRCAT:
3589 case BUILT_IN_STRCHR:
3590 case BUILT_IN_STRCMP:
3591 case BUILT_IN_STRCPY:
3592 case BUILT_IN_STRCSPN:
3593 case BUILT_IN_STRLEN:
3594 case BUILT_IN_STRNCAT:
3595 case BUILT_IN_STRNCMP:
3596 case BUILT_IN_STRNCPY:
3597 case BUILT_IN_STRPBRK:
3598 case BUILT_IN_STRRCHR:
3599 case BUILT_IN_STRSPN:
3600 case BUILT_IN_STRSTR:
3601 /* Assume certain string/memory builtins always return. */
3602 return false;
3603 default:
3604 break;
3609 /* For all other calls assume that they might not always return. */
3610 return true;
3613 /* Return true if INSN should be made dependent on the previous instruction
3614 group, and if all INSN's dependencies should be moved to the first
3615 instruction of that group. */
3617 static bool
3618 chain_to_prev_insn_p (rtx_insn *insn)
3620 /* INSN forms a group with the previous instruction. */
3621 if (SCHED_GROUP_P (insn))
3622 return true;
3624 /* If the previous instruction clobbers a register R and this one sets
3625 part of R, the clobber was added specifically to help us track the
3626 liveness of R. There's no point scheduling the clobber and leaving
3627 INSN behind, especially if we move the clobber to another block. */
3628 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
3629 if (prev
3630 && INSN_P (prev)
3631 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3632 && GET_CODE (PATTERN (prev)) == CLOBBER)
3634 rtx x = XEXP (PATTERN (prev), 0);
3635 if (set_of (x, insn))
3636 return true;
3639 return false;
3642 /* Analyze INSN with DEPS as a context. */
3643 void
3644 deps_analyze_insn (struct deps_desc *deps, rtx_insn *insn)
3646 if (sched_deps_info->start_insn)
3647 sched_deps_info->start_insn (insn);
3649 /* Record the condition for this insn. */
3650 if (NONDEBUG_INSN_P (insn))
3652 rtx t;
3653 sched_get_condition_with_rev (insn, NULL);
3654 t = INSN_CACHED_COND (insn);
3655 INSN_COND_DEPS (insn) = NULL;
3656 if (reload_completed
3657 && (current_sched_info->flags & DO_PREDICATION)
3658 && COMPARISON_P (t)
3659 && REG_P (XEXP (t, 0))
3660 && CONSTANT_P (XEXP (t, 1)))
3662 unsigned int regno;
3663 int nregs;
3664 rtx_insn_list *cond_deps = NULL;
3665 t = XEXP (t, 0);
3666 regno = REGNO (t);
3667 nregs = REG_NREGS (t);
3668 while (nregs-- > 0)
3670 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3671 cond_deps = concat_INSN_LIST (reg_last->sets, cond_deps);
3672 cond_deps = concat_INSN_LIST (reg_last->clobbers, cond_deps);
3673 cond_deps = concat_INSN_LIST (reg_last->implicit_sets, cond_deps);
3675 INSN_COND_DEPS (insn) = cond_deps;
3679 if (JUMP_P (insn))
3681 /* Make each JUMP_INSN (but not a speculative check)
3682 a scheduling barrier for memory references. */
3683 if (!deps->readonly
3684 && !(sel_sched_p ()
3685 && sel_insn_is_speculation_check (insn)))
3687 /* Keep the list a reasonable size. */
3688 if (deps->pending_flush_length++ >= MAX_PENDING_LIST_LENGTH)
3689 flush_pending_lists (deps, insn, true, true);
3690 else
3691 deps->pending_jump_insns
3692 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3695 /* For each insn which shouldn't cross a jump, add a dependence. */
3696 add_dependence_list_and_free (deps, insn,
3697 &deps->sched_before_next_jump, 1,
3698 REG_DEP_ANTI, true);
3700 sched_analyze_insn (deps, PATTERN (insn), insn);
3702 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3704 sched_analyze_insn (deps, PATTERN (insn), insn);
3706 else if (CALL_P (insn))
3708 int i;
3710 CANT_MOVE (insn) = 1;
3712 if (find_reg_note (insn, REG_SETJMP, NULL))
3714 /* This is setjmp. Assume that all registers, not just
3715 hard registers, may be clobbered by this call. */
3716 reg_pending_barrier = MOVE_BARRIER;
3718 else
3720 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3721 /* A call may read and modify global register variables. */
3722 if (global_regs[i])
3724 SET_REGNO_REG_SET (reg_pending_sets, i);
3725 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3727 /* Other call-clobbered hard regs may be clobbered.
3728 Since we only have a choice between 'might be clobbered'
3729 and 'definitely not clobbered', we must include all
3730 partly call-clobbered registers here. */
3731 else if (targetm.hard_regno_call_part_clobbered (i,
3732 reg_raw_mode[i])
3733 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3734 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3735 /* We don't know what set of fixed registers might be used
3736 by the function, but it is certain that the stack pointer
3737 is among them, but be conservative. */
3738 else if (fixed_regs[i])
3739 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3740 /* The frame pointer is normally not used by the function
3741 itself, but by the debugger. */
3742 /* ??? MIPS o32 is an exception. It uses the frame pointer
3743 in the macro expansion of jal but does not represent this
3744 fact in the call_insn rtl. */
3745 else if (i == FRAME_POINTER_REGNUM
3746 || (i == HARD_FRAME_POINTER_REGNUM
3747 && (! reload_completed || frame_pointer_needed)))
3748 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3751 /* For each insn which shouldn't cross a call, add a dependence
3752 between that insn and this call insn. */
3753 add_dependence_list_and_free (deps, insn,
3754 &deps->sched_before_next_call, 1,
3755 REG_DEP_ANTI, true);
3757 sched_analyze_insn (deps, PATTERN (insn), insn);
3759 /* If CALL would be in a sched group, then this will violate
3760 convention that sched group insns have dependencies only on the
3761 previous instruction.
3763 Of course one can say: "Hey! What about head of the sched group?"
3764 And I will answer: "Basic principles (one dep per insn) are always
3765 the same." */
3766 gcc_assert (!SCHED_GROUP_P (insn));
3768 /* In the absence of interprocedural alias analysis, we must flush
3769 all pending reads and writes, and start new dependencies starting
3770 from here. But only flush writes for constant calls (which may
3771 be passed a pointer to something we haven't written yet). */
3772 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3774 if (!deps->readonly)
3776 /* Remember the last function call for limiting lifetimes. */
3777 free_INSN_LIST_list (&deps->last_function_call);
3778 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3780 if (call_may_noreturn_p (insn))
3782 /* Remember the last function call that might not always return
3783 normally for limiting moves of trapping insns. */
3784 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3785 deps->last_function_call_may_noreturn
3786 = alloc_INSN_LIST (insn, NULL_RTX);
3789 /* Before reload, begin a post-call group, so as to keep the
3790 lifetimes of hard registers correct. */
3791 if (! reload_completed)
3792 deps->in_post_call_group_p = post_call;
3796 if (sched_deps_info->use_cselib)
3797 cselib_process_insn (insn);
3799 if (sched_deps_info->finish_insn)
3800 sched_deps_info->finish_insn ();
3802 /* Fixup the dependencies in the sched group. */
3803 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3804 && chain_to_prev_insn_p (insn)
3805 && !sel_sched_p ())
3806 chain_to_prev_insn (insn);
3809 /* Initialize DEPS for the new block beginning with HEAD. */
3810 void
3811 deps_start_bb (struct deps_desc *deps, rtx_insn *head)
3813 gcc_assert (!deps->readonly);
3815 /* Before reload, if the previous block ended in a call, show that
3816 we are inside a post-call group, so as to keep the lifetimes of
3817 hard registers correct. */
3818 if (! reload_completed && !LABEL_P (head))
3820 rtx_insn *insn = prev_nonnote_nondebug_insn (head);
3822 if (insn && CALL_P (insn))
3823 deps->in_post_call_group_p = post_call_initial;
3827 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3828 dependencies for each insn. */
3829 void
3830 sched_analyze (struct deps_desc *deps, rtx_insn *head, rtx_insn *tail)
3832 rtx_insn *insn;
3834 if (sched_deps_info->use_cselib)
3835 cselib_init (CSELIB_RECORD_MEMORY);
3837 deps_start_bb (deps, head);
3839 for (insn = head;; insn = NEXT_INSN (insn))
3842 if (INSN_P (insn))
3844 /* And initialize deps_lists. */
3845 sd_init_insn (insn);
3846 /* Clean up SCHED_GROUP_P which may be set by last
3847 scheduler pass. */
3848 if (SCHED_GROUP_P (insn))
3849 SCHED_GROUP_P (insn) = 0;
3852 deps_analyze_insn (deps, insn);
3854 if (insn == tail)
3856 if (sched_deps_info->use_cselib)
3857 cselib_finish ();
3858 return;
3861 gcc_unreachable ();
3864 /* Helper for sched_free_deps ().
3865 Delete INSN's (RESOLVED_P) backward dependencies. */
3866 static void
3867 delete_dep_nodes_in_back_deps (rtx_insn *insn, bool resolved_p)
3869 sd_iterator_def sd_it;
3870 dep_t dep;
3871 sd_list_types_def types;
3873 if (resolved_p)
3874 types = SD_LIST_RES_BACK;
3875 else
3876 types = SD_LIST_BACK;
3878 for (sd_it = sd_iterator_start (insn, types);
3879 sd_iterator_cond (&sd_it, &dep);)
3881 dep_link_t link = *sd_it.linkp;
3882 dep_node_t node = DEP_LINK_NODE (link);
3883 deps_list_t back_list;
3884 deps_list_t forw_list;
3886 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3887 remove_from_deps_list (link, back_list);
3888 delete_dep_node (node);
3892 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3893 deps_lists. */
3894 void
3895 sched_free_deps (rtx_insn *head, rtx_insn *tail, bool resolved_p)
3897 rtx_insn *insn;
3898 rtx_insn *next_tail = NEXT_INSN (tail);
3900 /* We make two passes since some insns may be scheduled before their
3901 dependencies are resolved. */
3902 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3903 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3905 /* Clear forward deps and leave the dep_nodes to the
3906 corresponding back_deps list. */
3907 if (resolved_p)
3908 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3909 else
3910 clear_deps_list (INSN_FORW_DEPS (insn));
3912 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3913 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3915 /* Clear resolved back deps together with its dep_nodes. */
3916 delete_dep_nodes_in_back_deps (insn, resolved_p);
3918 sd_finish_insn (insn);
3922 /* Initialize variables for region data dependence analysis.
3923 When LAZY_REG_LAST is true, do not allocate reg_last array
3924 of struct deps_desc immediately. */
3926 void
3927 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3929 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3931 deps->max_reg = max_reg;
3932 if (lazy_reg_last)
3933 deps->reg_last = NULL;
3934 else
3935 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3936 INIT_REG_SET (&deps->reg_last_in_use);
3938 deps->pending_read_insns = 0;
3939 deps->pending_read_mems = 0;
3940 deps->pending_write_insns = 0;
3941 deps->pending_write_mems = 0;
3942 deps->pending_jump_insns = 0;
3943 deps->pending_read_list_length = 0;
3944 deps->pending_write_list_length = 0;
3945 deps->pending_flush_length = 0;
3946 deps->last_pending_memory_flush = 0;
3947 deps->last_function_call = 0;
3948 deps->last_function_call_may_noreturn = 0;
3949 deps->sched_before_next_call = 0;
3950 deps->sched_before_next_jump = 0;
3951 deps->in_post_call_group_p = not_post_call;
3952 deps->last_debug_insn = 0;
3953 deps->last_args_size = 0;
3954 deps->last_prologue = 0;
3955 deps->last_epilogue = 0;
3956 deps->last_logue_was_epilogue = false;
3957 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3958 deps->readonly = 0;
3961 /* Init only reg_last field of DEPS, which was not allocated before as
3962 we inited DEPS lazily. */
3963 void
3964 init_deps_reg_last (struct deps_desc *deps)
3966 gcc_assert (deps && deps->max_reg > 0);
3967 gcc_assert (deps->reg_last == NULL);
3969 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3973 /* Free insn lists found in DEPS. */
3975 void
3976 free_deps (struct deps_desc *deps)
3978 unsigned i;
3979 reg_set_iterator rsi;
3981 /* We set max_reg to 0 when this context was already freed. */
3982 if (deps->max_reg == 0)
3984 gcc_assert (deps->reg_last == NULL);
3985 return;
3987 deps->max_reg = 0;
3989 free_INSN_LIST_list (&deps->pending_read_insns);
3990 free_EXPR_LIST_list (&deps->pending_read_mems);
3991 free_INSN_LIST_list (&deps->pending_write_insns);
3992 free_EXPR_LIST_list (&deps->pending_write_mems);
3993 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3995 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3996 times. For a testcase with 42000 regs and 8000 small basic blocks,
3997 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3998 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4000 struct deps_reg *reg_last = &deps->reg_last[i];
4001 if (reg_last->uses)
4002 free_INSN_LIST_list (&reg_last->uses);
4003 if (reg_last->sets)
4004 free_INSN_LIST_list (&reg_last->sets);
4005 if (reg_last->implicit_sets)
4006 free_INSN_LIST_list (&reg_last->implicit_sets);
4007 if (reg_last->control_uses)
4008 free_INSN_LIST_list (&reg_last->control_uses);
4009 if (reg_last->clobbers)
4010 free_INSN_LIST_list (&reg_last->clobbers);
4012 CLEAR_REG_SET (&deps->reg_last_in_use);
4014 /* As we initialize reg_last lazily, it is possible that we didn't allocate
4015 it at all. */
4016 free (deps->reg_last);
4017 deps->reg_last = NULL;
4019 deps = NULL;
4022 /* Remove INSN from dependence contexts DEPS. */
4023 void
4024 remove_from_deps (struct deps_desc *deps, rtx_insn *insn)
4026 int removed;
4027 unsigned i;
4028 reg_set_iterator rsi;
4030 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
4031 &deps->pending_read_mems);
4032 if (!DEBUG_INSN_P (insn))
4033 deps->pending_read_list_length -= removed;
4034 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
4035 &deps->pending_write_mems);
4036 deps->pending_write_list_length -= removed;
4038 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
4039 deps->pending_flush_length -= removed;
4040 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
4041 deps->pending_flush_length -= removed;
4043 unsigned to_clear = -1U;
4044 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4046 if (to_clear != -1U)
4048 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4049 to_clear = -1U;
4051 struct deps_reg *reg_last = &deps->reg_last[i];
4052 if (reg_last->uses)
4053 remove_from_dependence_list (insn, &reg_last->uses);
4054 if (reg_last->sets)
4055 remove_from_dependence_list (insn, &reg_last->sets);
4056 if (reg_last->implicit_sets)
4057 remove_from_dependence_list (insn, &reg_last->implicit_sets);
4058 if (reg_last->clobbers)
4059 remove_from_dependence_list (insn, &reg_last->clobbers);
4060 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
4061 && !reg_last->clobbers)
4062 to_clear = i;
4064 if (to_clear != -1U)
4065 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4067 if (CALL_P (insn))
4069 remove_from_dependence_list (insn, &deps->last_function_call);
4070 remove_from_dependence_list (insn,
4071 &deps->last_function_call_may_noreturn);
4073 remove_from_dependence_list (insn, &deps->sched_before_next_call);
4076 /* Init deps data vector. */
4077 static void
4078 init_deps_data_vector (void)
4080 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
4081 if (reserve > 0 && ! h_d_i_d.space (reserve))
4082 h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
4085 /* If it is profitable to use them, initialize or extend (depending on
4086 GLOBAL_P) dependency data. */
4087 void
4088 sched_deps_init (bool global_p)
4090 /* Average number of insns in the basic block.
4091 '+ 1' is used to make it nonzero. */
4092 int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4094 init_deps_data_vector ();
4096 /* We use another caching mechanism for selective scheduling, so
4097 we don't use this one. */
4098 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4100 /* ?!? We could save some memory by computing a per-region luid mapping
4101 which could reduce both the number of vectors in the cache and the
4102 size of each vector. Instead we just avoid the cache entirely unless
4103 the average number of instructions in a basic block is very high. See
4104 the comment before the declaration of true_dependency_cache for
4105 what we consider "very high". */
4106 cache_size = 0;
4107 extend_dependency_caches (sched_max_luid, true);
4110 if (global_p)
4112 dl_pool = new object_allocator<_deps_list> ("deps_list");
4113 /* Allocate lists for one block at a time. */
4114 dn_pool = new object_allocator<_dep_node> ("dep_node");
4115 /* Allocate nodes for one block at a time. */
4120 /* Create or extend (depending on CREATE_P) dependency caches to
4121 size N. */
4122 void
4123 extend_dependency_caches (int n, bool create_p)
4125 if (create_p || true_dependency_cache)
4127 int i, luid = cache_size + n;
4129 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4130 luid);
4131 output_dependency_cache = XRESIZEVEC (bitmap_head,
4132 output_dependency_cache, luid);
4133 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4134 luid);
4135 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4136 luid);
4138 if (current_sched_info->flags & DO_SPECULATION)
4139 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4140 luid);
4142 for (i = cache_size; i < luid; i++)
4144 bitmap_initialize (&true_dependency_cache[i], 0);
4145 bitmap_initialize (&output_dependency_cache[i], 0);
4146 bitmap_initialize (&anti_dependency_cache[i], 0);
4147 bitmap_initialize (&control_dependency_cache[i], 0);
4149 if (current_sched_info->flags & DO_SPECULATION)
4150 bitmap_initialize (&spec_dependency_cache[i], 0);
4152 cache_size = luid;
4156 /* Finalize dependency information for the whole function. */
4157 void
4158 sched_deps_finish (void)
4160 gcc_assert (deps_pools_are_empty_p ());
4161 delete dn_pool;
4162 delete dl_pool;
4163 dn_pool = NULL;
4164 dl_pool = NULL;
4166 h_d_i_d.release ();
4167 cache_size = 0;
4169 if (true_dependency_cache)
4171 int i;
4173 for (i = 0; i < cache_size; i++)
4175 bitmap_clear (&true_dependency_cache[i]);
4176 bitmap_clear (&output_dependency_cache[i]);
4177 bitmap_clear (&anti_dependency_cache[i]);
4178 bitmap_clear (&control_dependency_cache[i]);
4180 if (sched_deps_info->generate_spec_deps)
4181 bitmap_clear (&spec_dependency_cache[i]);
4183 free (true_dependency_cache);
4184 true_dependency_cache = NULL;
4185 free (output_dependency_cache);
4186 output_dependency_cache = NULL;
4187 free (anti_dependency_cache);
4188 anti_dependency_cache = NULL;
4189 free (control_dependency_cache);
4190 control_dependency_cache = NULL;
4192 if (sched_deps_info->generate_spec_deps)
4194 free (spec_dependency_cache);
4195 spec_dependency_cache = NULL;
4201 /* Initialize some global variables needed by the dependency analysis
4202 code. */
4204 void
4205 init_deps_global (void)
4207 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4208 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4209 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4210 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4211 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4212 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4213 reg_pending_barrier = NOT_A_BARRIER;
4215 if (!sel_sched_p () || sched_emulate_haifa_p)
4217 sched_deps_info->start_insn = haifa_start_insn;
4218 sched_deps_info->finish_insn = haifa_finish_insn;
4220 sched_deps_info->note_reg_set = haifa_note_reg_set;
4221 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4222 sched_deps_info->note_reg_use = haifa_note_reg_use;
4224 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4225 sched_deps_info->note_dep = haifa_note_dep;
4229 /* Free everything used by the dependency analysis code. */
4231 void
4232 finish_deps_global (void)
4234 FREE_REG_SET (reg_pending_sets);
4235 FREE_REG_SET (reg_pending_clobbers);
4236 FREE_REG_SET (reg_pending_uses);
4237 FREE_REG_SET (reg_pending_control_uses);
4240 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4241 dw_t
4242 estimate_dep_weak (rtx mem1, rtx mem2)
4244 if (mem1 == mem2)
4245 /* MEMs are the same - don't speculate. */
4246 return MIN_DEP_WEAK;
4248 rtx r1 = XEXP (mem1, 0);
4249 rtx r2 = XEXP (mem2, 0);
4251 if (sched_deps_info->use_cselib)
4253 /* We cannot call rtx_equal_for_cselib_p because the VALUEs might be
4254 dangling at this point, since we never preserve them. Instead we
4255 canonicalize manually to get stable VALUEs out of hashing. */
4256 if (GET_CODE (r1) == VALUE && CSELIB_VAL_PTR (r1))
4257 r1 = canonical_cselib_val (CSELIB_VAL_PTR (r1))->val_rtx;
4258 if (GET_CODE (r2) == VALUE && CSELIB_VAL_PTR (r2))
4259 r2 = canonical_cselib_val (CSELIB_VAL_PTR (r2))->val_rtx;
4262 if (r1 == r2
4263 || (REG_P (r1) && REG_P (r2) && REGNO (r1) == REGNO (r2)))
4264 /* Again, MEMs are the same. */
4265 return MIN_DEP_WEAK;
4266 else if ((REG_P (r1) && !REG_P (r2)) || (!REG_P (r1) && REG_P (r2)))
4267 /* Different addressing modes - reason to be more speculative,
4268 than usual. */
4269 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4270 else
4271 /* We can't say anything about the dependence. */
4272 return UNCERTAIN_DEP_WEAK;
4275 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4276 This function can handle same INSN and ELEM (INSN == ELEM).
4277 It is a convenience wrapper. */
4278 static void
4279 add_dependence_1 (rtx_insn *insn, rtx_insn *elem, enum reg_note dep_type)
4281 ds_t ds;
4282 bool internal;
4284 if (dep_type == REG_DEP_TRUE)
4285 ds = DEP_TRUE;
4286 else if (dep_type == REG_DEP_OUTPUT)
4287 ds = DEP_OUTPUT;
4288 else if (dep_type == REG_DEP_CONTROL)
4289 ds = DEP_CONTROL;
4290 else
4292 gcc_assert (dep_type == REG_DEP_ANTI);
4293 ds = DEP_ANTI;
4296 /* When add_dependence is called from inside sched-deps.c, we expect
4297 cur_insn to be non-null. */
4298 internal = cur_insn != NULL;
4299 if (internal)
4300 gcc_assert (insn == cur_insn);
4301 else
4302 cur_insn = insn;
4304 note_dep (elem, ds);
4305 if (!internal)
4306 cur_insn = NULL;
4309 /* Return weakness of speculative type TYPE in the dep_status DS,
4310 without checking to prevent ICEs on malformed input. */
4311 static dw_t
4312 get_dep_weak_1 (ds_t ds, ds_t type)
4314 ds = ds & type;
4316 switch (type)
4318 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4319 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4320 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4321 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4322 default: gcc_unreachable ();
4325 return (dw_t) ds;
4328 /* Return weakness of speculative type TYPE in the dep_status DS. */
4329 dw_t
4330 get_dep_weak (ds_t ds, ds_t type)
4332 dw_t dw = get_dep_weak_1 (ds, type);
4334 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4335 return dw;
4338 /* Return the dep_status, which has the same parameters as DS, except for
4339 speculative type TYPE, that will have weakness DW. */
4340 ds_t
4341 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4343 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4345 ds &= ~type;
4346 switch (type)
4348 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4349 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4350 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4351 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4352 default: gcc_unreachable ();
4354 return ds;
4357 /* Return the join of two dep_statuses DS1 and DS2.
4358 If MAX_P is true then choose the greater probability,
4359 otherwise multiply probabilities.
4360 This function assumes that both DS1 and DS2 contain speculative bits. */
4361 static ds_t
4362 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4364 ds_t ds, t;
4366 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4368 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4370 t = FIRST_SPEC_TYPE;
4373 if ((ds1 & t) && !(ds2 & t))
4374 ds |= ds1 & t;
4375 else if (!(ds1 & t) && (ds2 & t))
4376 ds |= ds2 & t;
4377 else if ((ds1 & t) && (ds2 & t))
4379 dw_t dw1 = get_dep_weak (ds1, t);
4380 dw_t dw2 = get_dep_weak (ds2, t);
4381 ds_t dw;
4383 if (!max_p)
4385 dw = ((ds_t) dw1) * ((ds_t) dw2);
4386 dw /= MAX_DEP_WEAK;
4387 if (dw < MIN_DEP_WEAK)
4388 dw = MIN_DEP_WEAK;
4390 else
4392 if (dw1 >= dw2)
4393 dw = dw1;
4394 else
4395 dw = dw2;
4398 ds = set_dep_weak (ds, t, (dw_t) dw);
4401 if (t == LAST_SPEC_TYPE)
4402 break;
4403 t <<= SPEC_TYPE_SHIFT;
4405 while (1);
4407 return ds;
4410 /* Return the join of two dep_statuses DS1 and DS2.
4411 This function assumes that both DS1 and DS2 contain speculative bits. */
4412 ds_t
4413 ds_merge (ds_t ds1, ds_t ds2)
4415 return ds_merge_1 (ds1, ds2, false);
4418 /* Return the join of two dep_statuses DS1 and DS2. */
4419 ds_t
4420 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4422 ds_t new_status = ds | ds2;
4424 if (new_status & SPECULATIVE)
4426 if ((ds && !(ds & SPECULATIVE))
4427 || (ds2 && !(ds2 & SPECULATIVE)))
4428 /* Then this dep can't be speculative. */
4429 new_status &= ~SPECULATIVE;
4430 else
4432 /* Both are speculative. Merging probabilities. */
4433 if (mem1)
4435 dw_t dw;
4437 dw = estimate_dep_weak (mem1, mem2);
4438 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4441 if (!ds)
4442 new_status = ds2;
4443 else if (!ds2)
4444 new_status = ds;
4445 else
4446 new_status = ds_merge (ds2, ds);
4450 return new_status;
4453 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4454 probabilities. */
4455 ds_t
4456 ds_max_merge (ds_t ds1, ds_t ds2)
4458 if (ds1 == 0 && ds2 == 0)
4459 return 0;
4461 if (ds1 == 0 && ds2 != 0)
4462 return ds2;
4464 if (ds1 != 0 && ds2 == 0)
4465 return ds1;
4467 return ds_merge_1 (ds1, ds2, true);
4470 /* Return the probability of speculation success for the speculation
4471 status DS. */
4472 dw_t
4473 ds_weak (ds_t ds)
4475 ds_t res = 1, dt;
4476 int n = 0;
4478 dt = FIRST_SPEC_TYPE;
4481 if (ds & dt)
4483 res *= (ds_t) get_dep_weak (ds, dt);
4484 n++;
4487 if (dt == LAST_SPEC_TYPE)
4488 break;
4489 dt <<= SPEC_TYPE_SHIFT;
4491 while (1);
4493 gcc_assert (n);
4494 while (--n)
4495 res /= MAX_DEP_WEAK;
4497 if (res < MIN_DEP_WEAK)
4498 res = MIN_DEP_WEAK;
4500 gcc_assert (res <= MAX_DEP_WEAK);
4502 return (dw_t) res;
4505 /* Return a dep status that contains all speculation types of DS. */
4506 ds_t
4507 ds_get_speculation_types (ds_t ds)
4509 if (ds & BEGIN_DATA)
4510 ds |= BEGIN_DATA;
4511 if (ds & BE_IN_DATA)
4512 ds |= BE_IN_DATA;
4513 if (ds & BEGIN_CONTROL)
4514 ds |= BEGIN_CONTROL;
4515 if (ds & BE_IN_CONTROL)
4516 ds |= BE_IN_CONTROL;
4518 return ds & SPECULATIVE;
4521 /* Return a dep status that contains maximal weakness for each speculation
4522 type present in DS. */
4523 ds_t
4524 ds_get_max_dep_weak (ds_t ds)
4526 if (ds & BEGIN_DATA)
4527 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4528 if (ds & BE_IN_DATA)
4529 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4530 if (ds & BEGIN_CONTROL)
4531 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4532 if (ds & BE_IN_CONTROL)
4533 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4535 return ds;
4538 /* Dump information about the dependence status S. */
4539 static void
4540 dump_ds (FILE *f, ds_t s)
4542 fprintf (f, "{");
4544 if (s & BEGIN_DATA)
4545 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4546 if (s & BE_IN_DATA)
4547 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4548 if (s & BEGIN_CONTROL)
4549 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4550 if (s & BE_IN_CONTROL)
4551 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4553 if (s & HARD_DEP)
4554 fprintf (f, "HARD_DEP; ");
4556 if (s & DEP_TRUE)
4557 fprintf (f, "DEP_TRUE; ");
4558 if (s & DEP_OUTPUT)
4559 fprintf (f, "DEP_OUTPUT; ");
4560 if (s & DEP_ANTI)
4561 fprintf (f, "DEP_ANTI; ");
4562 if (s & DEP_CONTROL)
4563 fprintf (f, "DEP_CONTROL; ");
4565 fprintf (f, "}");
4568 DEBUG_FUNCTION void
4569 debug_ds (ds_t s)
4571 dump_ds (stderr, s);
4572 fprintf (stderr, "\n");
4575 /* Verify that dependence type and status are consistent.
4576 If RELAXED_P is true, then skip dep_weakness checks. */
4577 static void
4578 check_dep (dep_t dep, bool relaxed_p)
4580 enum reg_note dt = DEP_TYPE (dep);
4581 ds_t ds = DEP_STATUS (dep);
4583 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4585 if (!(current_sched_info->flags & USE_DEPS_LIST))
4587 gcc_assert (ds == 0);
4588 return;
4591 /* Check that dependence type contains the same bits as the status. */
4592 if (dt == REG_DEP_TRUE)
4593 gcc_assert (ds & DEP_TRUE);
4594 else if (dt == REG_DEP_OUTPUT)
4595 gcc_assert ((ds & DEP_OUTPUT)
4596 && !(ds & DEP_TRUE));
4597 else if (dt == REG_DEP_ANTI)
4598 gcc_assert ((ds & DEP_ANTI)
4599 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4600 else
4601 gcc_assert (dt == REG_DEP_CONTROL
4602 && (ds & DEP_CONTROL)
4603 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4605 /* HARD_DEP cannot appear in dep_status of a link. */
4606 gcc_assert (!(ds & HARD_DEP));
4608 /* Check that dependence status is set correctly when speculation is not
4609 supported. */
4610 if (!sched_deps_info->generate_spec_deps)
4611 gcc_assert (!(ds & SPECULATIVE));
4612 else if (ds & SPECULATIVE)
4614 if (!relaxed_p)
4616 ds_t type = FIRST_SPEC_TYPE;
4618 /* Check that dependence weakness is in proper range. */
4621 if (ds & type)
4622 get_dep_weak (ds, type);
4624 if (type == LAST_SPEC_TYPE)
4625 break;
4626 type <<= SPEC_TYPE_SHIFT;
4628 while (1);
4631 if (ds & BEGIN_SPEC)
4633 /* Only true dependence can be data speculative. */
4634 if (ds & BEGIN_DATA)
4635 gcc_assert (ds & DEP_TRUE);
4637 /* Control dependencies in the insn scheduler are represented by
4638 anti-dependencies, therefore only anti dependence can be
4639 control speculative. */
4640 if (ds & BEGIN_CONTROL)
4641 gcc_assert (ds & DEP_ANTI);
4643 else
4645 /* Subsequent speculations should resolve true dependencies. */
4646 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4649 /* Check that true and anti dependencies can't have other speculative
4650 statuses. */
4651 if (ds & DEP_TRUE)
4652 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4653 /* An output dependence can't be speculative at all. */
4654 gcc_assert (!(ds & DEP_OUTPUT));
4655 if (ds & DEP_ANTI)
4656 gcc_assert (ds & BEGIN_CONTROL);
4660 /* The following code discovers opportunities to switch a memory reference
4661 and an increment by modifying the address. We ensure that this is done
4662 only for dependencies that are only used to show a single register
4663 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4664 instruction involved is subject to only one dep that can cause a pattern
4665 change.
4667 When we discover a suitable dependency, we fill in the dep_replacement
4668 structure to show how to modify the memory reference. */
4670 /* Holds information about a pair of memory reference and register increment
4671 insns which depend on each other, but could possibly be interchanged. */
4672 struct mem_inc_info
4674 rtx_insn *inc_insn;
4675 rtx_insn *mem_insn;
4677 rtx *mem_loc;
4678 /* A register occurring in the memory address for which we wish to break
4679 the dependence. This must be identical to the destination register of
4680 the increment. */
4681 rtx mem_reg0;
4682 /* Any kind of index that is added to that register. */
4683 rtx mem_index;
4684 /* The constant offset used in the memory address. */
4685 HOST_WIDE_INT mem_constant;
4686 /* The constant added in the increment insn. Negated if the increment is
4687 after the memory address. */
4688 HOST_WIDE_INT inc_constant;
4689 /* The source register used in the increment. May be different from mem_reg0
4690 if the increment occurs before the memory address. */
4691 rtx inc_input;
4694 /* Verify that the memory location described in MII can be replaced with
4695 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4696 insn remains unchanged by this function. */
4698 static rtx
4699 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4701 rtx mem = *mii->mem_loc;
4702 rtx new_mem;
4704 /* Jump through a lot of hoops to keep the attributes up to date. We
4705 do not want to call one of the change address variants that take
4706 an offset even though we know the offset in many cases. These
4707 assume you are changing where the address is pointing by the
4708 offset. */
4709 new_mem = replace_equiv_address_nv (mem, new_addr);
4710 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4712 if (sched_verbose >= 5)
4713 fprintf (sched_dump, "validation failure\n");
4714 return NULL_RTX;
4717 /* Put back the old one. */
4718 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4720 return new_mem;
4723 /* Return true if INSN is of a form "a = b op c" where a and b are
4724 regs. op is + if c is a reg and +|- if c is a const. Fill in
4725 informantion in MII about what is found.
4726 BEFORE_MEM indicates whether the increment is found before or after
4727 a corresponding memory reference. */
4729 static bool
4730 parse_add_or_inc (struct mem_inc_info *mii, rtx_insn *insn, bool before_mem)
4732 rtx pat = single_set (insn);
4733 rtx src, cst;
4734 bool regs_equal;
4736 if (RTX_FRAME_RELATED_P (insn) || !pat)
4737 return false;
4739 /* Do not allow breaking data dependencies for insns that are marked
4740 with REG_STACK_CHECK. */
4741 if (find_reg_note (insn, REG_STACK_CHECK, NULL))
4742 return false;
4744 /* Result must be single reg. */
4745 if (!REG_P (SET_DEST (pat)))
4746 return false;
4748 if (GET_CODE (SET_SRC (pat)) != PLUS)
4749 return false;
4751 mii->inc_insn = insn;
4752 src = SET_SRC (pat);
4753 mii->inc_input = XEXP (src, 0);
4755 if (!REG_P (XEXP (src, 0)))
4756 return false;
4758 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4759 return false;
4761 cst = XEXP (src, 1);
4762 if (!CONST_INT_P (cst))
4763 return false;
4764 mii->inc_constant = INTVAL (cst);
4766 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4768 if (!before_mem)
4770 mii->inc_constant = -mii->inc_constant;
4771 if (!regs_equal)
4772 return false;
4775 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4777 /* Note that the sign has already been reversed for !before_mem. */
4778 if (STACK_GROWS_DOWNWARD)
4779 return mii->inc_constant > 0;
4780 else
4781 return mii->inc_constant < 0;
4783 return true;
4786 /* Once a suitable mem reference has been found and the corresponding data
4787 in MII has been filled in, this function is called to find a suitable
4788 add or inc insn involving the register we found in the memory
4789 reference. */
4791 static bool
4792 find_inc (struct mem_inc_info *mii, bool backwards)
4794 sd_iterator_def sd_it;
4795 dep_t dep;
4797 sd_it = sd_iterator_start (mii->mem_insn,
4798 backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4799 while (sd_iterator_cond (&sd_it, &dep))
4801 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4802 rtx_insn *pro = DEP_PRO (dep);
4803 rtx_insn *con = DEP_CON (dep);
4804 rtx_insn *inc_cand = backwards ? pro : con;
4805 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4806 goto next;
4807 if (parse_add_or_inc (mii, inc_cand, backwards))
4809 struct dep_replacement *desc;
4810 df_ref def;
4811 rtx newaddr, newmem;
4813 if (sched_verbose >= 5)
4814 fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4815 INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4817 /* Need to assure that none of the operands of the inc
4818 instruction are assigned to by the mem insn. */
4819 FOR_EACH_INSN_DEF (def, mii->mem_insn)
4820 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4821 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4823 if (sched_verbose >= 5)
4824 fprintf (sched_dump,
4825 "inc conflicts with store failure.\n");
4826 goto next;
4829 newaddr = mii->inc_input;
4830 if (mii->mem_index != NULL_RTX)
4831 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4832 mii->mem_index);
4833 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4834 mii->mem_constant + mii->inc_constant);
4835 newmem = attempt_change (mii, newaddr);
4836 if (newmem == NULL_RTX)
4837 goto next;
4838 if (sched_verbose >= 5)
4839 fprintf (sched_dump, "successful address replacement\n");
4840 desc = XCNEW (struct dep_replacement);
4841 DEP_REPLACE (dep) = desc;
4842 desc->loc = mii->mem_loc;
4843 desc->newval = newmem;
4844 desc->orig = *desc->loc;
4845 desc->insn = mii->mem_insn;
4846 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4847 INSN_SPEC_BACK_DEPS (con));
4848 if (backwards)
4850 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4851 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4852 REG_DEP_TRUE);
4854 else
4856 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4857 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4858 REG_DEP_ANTI);
4860 return true;
4862 next:
4863 sd_iterator_next (&sd_it);
4865 return false;
4868 /* A recursive function that walks ADDRESS_OF_X to find memory references
4869 which could be modified during scheduling. We call find_inc for each
4870 one we find that has a recognizable form. MII holds information about
4871 the pair of memory/increment instructions.
4872 We ensure that every instruction with a memory reference (which will be
4873 the location of the replacement) is assigned at most one breakable
4874 dependency. */
4876 static bool
4877 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4879 rtx x = *address_of_x;
4880 enum rtx_code code = GET_CODE (x);
4881 const char *const fmt = GET_RTX_FORMAT (code);
4882 int i;
4884 if (code == MEM)
4886 rtx reg0 = XEXP (x, 0);
4888 mii->mem_loc = address_of_x;
4889 mii->mem_index = NULL_RTX;
4890 mii->mem_constant = 0;
4891 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4893 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4894 reg0 = XEXP (reg0, 0);
4896 if (GET_CODE (reg0) == PLUS)
4898 mii->mem_index = XEXP (reg0, 1);
4899 reg0 = XEXP (reg0, 0);
4901 if (REG_P (reg0))
4903 df_ref use;
4904 int occurrences = 0;
4906 /* Make sure this reg appears only once in this insn. Can't use
4907 count_occurrences since that only works for pseudos. */
4908 FOR_EACH_INSN_USE (use, mii->mem_insn)
4909 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
4910 if (++occurrences > 1)
4912 if (sched_verbose >= 5)
4913 fprintf (sched_dump, "mem count failure\n");
4914 return false;
4917 mii->mem_reg0 = reg0;
4918 return find_inc (mii, true) || find_inc (mii, false);
4920 return false;
4923 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4925 /* If REG occurs inside a MEM used in a bit-field reference,
4926 that is unacceptable. */
4927 return false;
4930 /* Time for some deep diving. */
4931 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4933 if (fmt[i] == 'e')
4935 if (find_mem (mii, &XEXP (x, i)))
4936 return true;
4938 else if (fmt[i] == 'E')
4940 int j;
4941 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4942 if (find_mem (mii, &XVECEXP (x, i, j)))
4943 return true;
4946 return false;
4950 /* Examine the instructions between HEAD and TAIL and try to find
4951 dependencies that can be broken by modifying one of the patterns. */
4953 void
4954 find_modifiable_mems (rtx_insn *head, rtx_insn *tail)
4956 rtx_insn *insn, *next_tail = NEXT_INSN (tail);
4957 int success_in_block = 0;
4959 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4961 struct mem_inc_info mii;
4963 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4964 continue;
4966 mii.mem_insn = insn;
4967 if (find_mem (&mii, &PATTERN (insn)))
4968 success_in_block++;
4970 if (success_in_block && sched_verbose >= 5)
4971 fprintf (sched_dump, "%d candidates for address modification found.\n",
4972 success_in_block);
4975 #endif /* INSN_SCHEDULING */