re PR fortran/88376 (ICE in is_illegal_recursion, at fortran/resolve.c:1689)
[official-gcc.git] / gcc / function.c
blob4ba57becb733ccdec85534a7cf55a2bd89d422a5
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "regs.h"
50 #include "emit-rtl.h"
51 #include "recog.h"
52 #include "rtl-error.h"
53 #include "alias.h"
54 #include "fold-const.h"
55 #include "stor-layout.h"
56 #include "varasm.h"
57 #include "except.h"
58 #include "dojump.h"
59 #include "explow.h"
60 #include "calls.h"
61 #include "expr.h"
62 #include "optabs-tree.h"
63 #include "output.h"
64 #include "langhooks.h"
65 #include "common/common-target.h"
66 #include "gimplify.h"
67 #include "tree-pass.h"
68 #include "cfgrtl.h"
69 #include "cfganal.h"
70 #include "cfgbuild.h"
71 #include "cfgcleanup.h"
72 #include "cfgexpand.h"
73 #include "shrink-wrap.h"
74 #include "toplev.h"
75 #include "rtl-iter.h"
76 #include "tree-dfa.h"
77 #include "tree-ssa.h"
78 #include "stringpool.h"
79 #include "attribs.h"
80 #include "gimple.h"
81 #include "options.h"
83 /* So we can assign to cfun in this file. */
84 #undef cfun
86 #ifndef STACK_ALIGNMENT_NEEDED
87 #define STACK_ALIGNMENT_NEEDED 1
88 #endif
90 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
92 /* Round a value to the lowest integer less than it that is a multiple of
93 the required alignment. Avoid using division in case the value is
94 negative. Assume the alignment is a power of two. */
95 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
97 /* Similar, but round to the next highest integer that meets the
98 alignment. */
99 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
101 /* Nonzero once virtual register instantiation has been done.
102 assign_stack_local uses frame_pointer_rtx when this is nonzero.
103 calls.c:emit_library_call_value_1 uses it to set up
104 post-instantiation libcalls. */
105 int virtuals_instantiated;
107 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
108 static GTY(()) int funcdef_no;
110 /* These variables hold pointers to functions to create and destroy
111 target specific, per-function data structures. */
112 struct machine_function * (*init_machine_status) (void);
114 /* The currently compiled function. */
115 struct function *cfun = 0;
117 /* These hashes record the prologue and epilogue insns. */
119 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
121 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
122 static bool equal (rtx a, rtx b) { return a == b; }
125 static GTY((cache))
126 hash_table<insn_cache_hasher> *prologue_insn_hash;
127 static GTY((cache))
128 hash_table<insn_cache_hasher> *epilogue_insn_hash;
131 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
132 vec<tree, va_gc> *types_used_by_cur_var_decl;
134 /* Forward declarations. */
136 static struct temp_slot *find_temp_slot_from_address (rtx);
137 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
138 static void pad_below (struct args_size *, machine_mode, tree);
139 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
140 static int all_blocks (tree, tree *);
141 static tree *get_block_vector (tree, int *);
142 extern tree debug_find_var_in_block_tree (tree, tree);
143 /* We always define `record_insns' even if it's not used so that we
144 can always export `prologue_epilogue_contains'. */
145 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
146 ATTRIBUTE_UNUSED;
147 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
148 static void prepare_function_start (void);
149 static void do_clobber_return_reg (rtx, void *);
150 static void do_use_return_reg (rtx, void *);
153 /* Stack of nested functions. */
154 /* Keep track of the cfun stack. */
156 static vec<function *> function_context_stack;
158 /* Save the current context for compilation of a nested function.
159 This is called from language-specific code. */
161 void
162 push_function_context (void)
164 if (cfun == 0)
165 allocate_struct_function (NULL, false);
167 function_context_stack.safe_push (cfun);
168 set_cfun (NULL);
171 /* Restore the last saved context, at the end of a nested function.
172 This function is called from language-specific code. */
174 void
175 pop_function_context (void)
177 struct function *p = function_context_stack.pop ();
178 set_cfun (p);
179 current_function_decl = p->decl;
181 /* Reset variables that have known state during rtx generation. */
182 virtuals_instantiated = 0;
183 generating_concat_p = 1;
186 /* Clear out all parts of the state in F that can safely be discarded
187 after the function has been parsed, but not compiled, to let
188 garbage collection reclaim the memory. */
190 void
191 free_after_parsing (struct function *f)
193 f->language = 0;
196 /* Clear out all parts of the state in F that can safely be discarded
197 after the function has been compiled, to let garbage collection
198 reclaim the memory. */
200 void
201 free_after_compilation (struct function *f)
203 prologue_insn_hash = NULL;
204 epilogue_insn_hash = NULL;
206 free (crtl->emit.regno_pointer_align);
208 memset (crtl, 0, sizeof (struct rtl_data));
209 f->eh = NULL;
210 f->machine = NULL;
211 f->cfg = NULL;
212 f->curr_properties &= ~PROP_cfg;
214 regno_reg_rtx = NULL;
217 /* Return size needed for stack frame based on slots so far allocated.
218 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
219 the caller may have to do that. */
221 poly_int64
222 get_frame_size (void)
224 if (FRAME_GROWS_DOWNWARD)
225 return -frame_offset;
226 else
227 return frame_offset;
230 /* Issue an error message and return TRUE if frame OFFSET overflows in
231 the signed target pointer arithmetics for function FUNC. Otherwise
232 return FALSE. */
234 bool
235 frame_offset_overflow (poly_int64 offset, tree func)
237 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
238 unsigned HOST_WIDE_INT limit
239 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
240 /* Leave room for the fixed part of the frame. */
241 - 64 * UNITS_PER_WORD);
243 if (!coeffs_in_range_p (size, 0U, limit))
245 unsigned HOST_WIDE_INT hwisize;
246 if (size.is_constant (&hwisize))
247 error_at (DECL_SOURCE_LOCATION (func),
248 "total size of local objects %wu exceeds maximum %wu",
249 hwisize, limit);
250 else
251 error_at (DECL_SOURCE_LOCATION (func),
252 "total size of local objects exceeds maximum %wu",
253 limit);
254 return true;
257 return false;
260 /* Return the minimum spill slot alignment for a register of mode MODE. */
262 unsigned int
263 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
265 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
268 /* Return stack slot alignment in bits for TYPE and MODE. */
270 static unsigned int
271 get_stack_local_alignment (tree type, machine_mode mode)
273 unsigned int alignment;
275 if (mode == BLKmode)
276 alignment = BIGGEST_ALIGNMENT;
277 else
278 alignment = GET_MODE_ALIGNMENT (mode);
280 /* Allow the frond-end to (possibly) increase the alignment of this
281 stack slot. */
282 if (! type)
283 type = lang_hooks.types.type_for_mode (mode, 0);
285 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
288 /* Determine whether it is possible to fit a stack slot of size SIZE and
289 alignment ALIGNMENT into an area in the stack frame that starts at
290 frame offset START and has a length of LENGTH. If so, store the frame
291 offset to be used for the stack slot in *POFFSET and return true;
292 return false otherwise. This function will extend the frame size when
293 given a start/length pair that lies at the end of the frame. */
295 static bool
296 try_fit_stack_local (poly_int64 start, poly_int64 length,
297 poly_int64 size, unsigned int alignment,
298 poly_int64_pod *poffset)
300 poly_int64 this_frame_offset;
301 int frame_off, frame_alignment, frame_phase;
303 /* Calculate how many bytes the start of local variables is off from
304 stack alignment. */
305 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
306 frame_off = targetm.starting_frame_offset () % frame_alignment;
307 frame_phase = frame_off ? frame_alignment - frame_off : 0;
309 /* Round the frame offset to the specified alignment. */
311 if (FRAME_GROWS_DOWNWARD)
312 this_frame_offset
313 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
314 + frame_phase);
315 else
316 this_frame_offset
317 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
319 /* See if it fits. If this space is at the edge of the frame,
320 consider extending the frame to make it fit. Our caller relies on
321 this when allocating a new slot. */
322 if (maybe_lt (this_frame_offset, start))
324 if (known_eq (frame_offset, start))
325 frame_offset = this_frame_offset;
326 else
327 return false;
329 else if (maybe_gt (this_frame_offset + size, start + length))
331 if (known_eq (frame_offset, start + length))
332 frame_offset = this_frame_offset + size;
333 else
334 return false;
337 *poffset = this_frame_offset;
338 return true;
341 /* Create a new frame_space structure describing free space in the stack
342 frame beginning at START and ending at END, and chain it into the
343 function's frame_space_list. */
345 static void
346 add_frame_space (poly_int64 start, poly_int64 end)
348 struct frame_space *space = ggc_alloc<frame_space> ();
349 space->next = crtl->frame_space_list;
350 crtl->frame_space_list = space;
351 space->start = start;
352 space->length = end - start;
355 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
356 with machine mode MODE.
358 ALIGN controls the amount of alignment for the address of the slot:
359 0 means according to MODE,
360 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
361 -2 means use BITS_PER_UNIT,
362 positive specifies alignment boundary in bits.
364 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
365 alignment and ASLK_RECORD_PAD bit set if we should remember
366 extra space we allocated for alignment purposes. When we are
367 called from assign_stack_temp_for_type, it is not set so we don't
368 track the same stack slot in two independent lists.
370 We do not round to stack_boundary here. */
373 assign_stack_local_1 (machine_mode mode, poly_int64 size,
374 int align, int kind)
376 rtx x, addr;
377 poly_int64 bigend_correction = 0;
378 poly_int64 slot_offset = 0, old_frame_offset;
379 unsigned int alignment, alignment_in_bits;
380 bool dynamic_align_addr = false;
382 if (align == 0)
384 alignment = get_stack_local_alignment (NULL, mode);
385 alignment /= BITS_PER_UNIT;
387 else if (align == -1)
389 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
390 size = aligned_upper_bound (size, alignment);
392 else if (align == -2)
393 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
394 else
395 alignment = align / BITS_PER_UNIT;
397 alignment_in_bits = alignment * BITS_PER_UNIT;
399 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
401 /* If the required alignment exceeds MAX_SUPPORTED_STACK_ALIGNMENT and
402 it is not OK to reduce it. Align the slot dynamically. */
403 if (mode == BLKmode
404 && (kind & ASLK_REDUCE_ALIGN) == 0
405 && currently_expanding_to_rtl)
406 dynamic_align_addr = true;
407 else
409 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
410 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
414 if (SUPPORTS_STACK_ALIGNMENT && !dynamic_align_addr)
416 if (crtl->stack_alignment_estimated < alignment_in_bits)
418 if (!crtl->stack_realign_processed)
419 crtl->stack_alignment_estimated = alignment_in_bits;
420 else
422 /* If stack is realigned and stack alignment value
423 hasn't been finalized, it is OK not to increase
424 stack_alignment_estimated. The bigger alignment
425 requirement is recorded in stack_alignment_needed
426 below. */
427 gcc_assert (!crtl->stack_realign_finalized);
428 if (!crtl->stack_realign_needed)
430 /* It is OK to reduce the alignment as long as the
431 requested size is 0 or the estimated stack
432 alignment >= mode alignment. */
433 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
434 || known_eq (size, 0)
435 || (crtl->stack_alignment_estimated
436 >= GET_MODE_ALIGNMENT (mode)));
437 alignment_in_bits = crtl->stack_alignment_estimated;
438 alignment = alignment_in_bits / BITS_PER_UNIT;
444 /* Handle overalignment here for parameter copy on the stack.
445 Reserved enough space for it and dynamically align the address.
446 No free frame_space is added here. */
447 if (dynamic_align_addr)
449 rtx allocsize = gen_int_mode (size, Pmode);
450 get_dynamic_stack_size (&allocsize, 0, alignment_in_bits, NULL);
452 /* This is the size of space needed to accommodate required size of data
453 with given alignment. */
454 poly_int64 len = rtx_to_poly_int64 (allocsize);
455 old_frame_offset = frame_offset;
457 if (FRAME_GROWS_DOWNWARD)
459 frame_offset -= len;
460 try_fit_stack_local (frame_offset, len, len,
461 PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT,
462 &slot_offset);
464 else
466 frame_offset += len;
467 try_fit_stack_local (old_frame_offset, len, len,
468 PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT,
469 &slot_offset);
471 goto found_space;
473 else
475 if (crtl->stack_alignment_needed < alignment_in_bits)
476 crtl->stack_alignment_needed = alignment_in_bits;
477 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
478 crtl->max_used_stack_slot_alignment = alignment_in_bits;
481 if (mode != BLKmode || maybe_ne (size, 0))
483 if (kind & ASLK_RECORD_PAD)
485 struct frame_space **psp;
487 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
489 struct frame_space *space = *psp;
490 if (!try_fit_stack_local (space->start, space->length, size,
491 alignment, &slot_offset))
492 continue;
493 *psp = space->next;
494 if (known_gt (slot_offset, space->start))
495 add_frame_space (space->start, slot_offset);
496 if (known_lt (slot_offset + size, space->start + space->length))
497 add_frame_space (slot_offset + size,
498 space->start + space->length);
499 goto found_space;
503 else if (!STACK_ALIGNMENT_NEEDED)
505 slot_offset = frame_offset;
506 goto found_space;
509 old_frame_offset = frame_offset;
511 if (FRAME_GROWS_DOWNWARD)
513 frame_offset -= size;
514 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
516 if (kind & ASLK_RECORD_PAD)
518 if (known_gt (slot_offset, frame_offset))
519 add_frame_space (frame_offset, slot_offset);
520 if (known_lt (slot_offset + size, old_frame_offset))
521 add_frame_space (slot_offset + size, old_frame_offset);
524 else
526 frame_offset += size;
527 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
529 if (kind & ASLK_RECORD_PAD)
531 if (known_gt (slot_offset, old_frame_offset))
532 add_frame_space (old_frame_offset, slot_offset);
533 if (known_lt (slot_offset + size, frame_offset))
534 add_frame_space (slot_offset + size, frame_offset);
538 found_space:
539 /* On a big-endian machine, if we are allocating more space than we will use,
540 use the least significant bytes of those that are allocated. */
541 if (mode != BLKmode)
543 /* The slot size can sometimes be smaller than the mode size;
544 e.g. the rs6000 port allocates slots with a vector mode
545 that have the size of only one element. However, the slot
546 size must always be ordered wrt to the mode size, in the
547 same way as for a subreg. */
548 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
549 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
550 bigend_correction = size - GET_MODE_SIZE (mode);
553 /* If we have already instantiated virtual registers, return the actual
554 address relative to the frame pointer. */
555 if (virtuals_instantiated)
556 addr = plus_constant (Pmode, frame_pointer_rtx,
557 trunc_int_for_mode
558 (slot_offset + bigend_correction
559 + targetm.starting_frame_offset (), Pmode));
560 else
561 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
562 trunc_int_for_mode
563 (slot_offset + bigend_correction,
564 Pmode));
566 if (dynamic_align_addr)
568 addr = align_dynamic_address (addr, alignment_in_bits);
569 mark_reg_pointer (addr, alignment_in_bits);
572 x = gen_rtx_MEM (mode, addr);
573 set_mem_align (x, alignment_in_bits);
574 MEM_NOTRAP_P (x) = 1;
576 vec_safe_push (stack_slot_list, x);
578 if (frame_offset_overflow (frame_offset, current_function_decl))
579 frame_offset = 0;
581 return x;
584 /* Wrap up assign_stack_local_1 with last parameter as false. */
587 assign_stack_local (machine_mode mode, poly_int64 size, int align)
589 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
592 /* In order to evaluate some expressions, such as function calls returning
593 structures in memory, we need to temporarily allocate stack locations.
594 We record each allocated temporary in the following structure.
596 Associated with each temporary slot is a nesting level. When we pop up
597 one level, all temporaries associated with the previous level are freed.
598 Normally, all temporaries are freed after the execution of the statement
599 in which they were created. However, if we are inside a ({...}) grouping,
600 the result may be in a temporary and hence must be preserved. If the
601 result could be in a temporary, we preserve it if we can determine which
602 one it is in. If we cannot determine which temporary may contain the
603 result, all temporaries are preserved. A temporary is preserved by
604 pretending it was allocated at the previous nesting level. */
606 struct GTY(()) temp_slot {
607 /* Points to next temporary slot. */
608 struct temp_slot *next;
609 /* Points to previous temporary slot. */
610 struct temp_slot *prev;
611 /* The rtx to used to reference the slot. */
612 rtx slot;
613 /* The size, in units, of the slot. */
614 poly_int64 size;
615 /* The type of the object in the slot, or zero if it doesn't correspond
616 to a type. We use this to determine whether a slot can be reused.
617 It can be reused if objects of the type of the new slot will always
618 conflict with objects of the type of the old slot. */
619 tree type;
620 /* The alignment (in bits) of the slot. */
621 unsigned int align;
622 /* Nonzero if this temporary is currently in use. */
623 char in_use;
624 /* Nesting level at which this slot is being used. */
625 int level;
626 /* The offset of the slot from the frame_pointer, including extra space
627 for alignment. This info is for combine_temp_slots. */
628 poly_int64 base_offset;
629 /* The size of the slot, including extra space for alignment. This
630 info is for combine_temp_slots. */
631 poly_int64 full_size;
634 /* Entry for the below hash table. */
635 struct GTY((for_user)) temp_slot_address_entry {
636 hashval_t hash;
637 rtx address;
638 struct temp_slot *temp_slot;
641 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
643 static hashval_t hash (temp_slot_address_entry *);
644 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
647 /* A table of addresses that represent a stack slot. The table is a mapping
648 from address RTXen to a temp slot. */
649 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
650 static size_t n_temp_slots_in_use;
652 /* Removes temporary slot TEMP from LIST. */
654 static void
655 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
657 if (temp->next)
658 temp->next->prev = temp->prev;
659 if (temp->prev)
660 temp->prev->next = temp->next;
661 else
662 *list = temp->next;
664 temp->prev = temp->next = NULL;
667 /* Inserts temporary slot TEMP to LIST. */
669 static void
670 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
672 temp->next = *list;
673 if (*list)
674 (*list)->prev = temp;
675 temp->prev = NULL;
676 *list = temp;
679 /* Returns the list of used temp slots at LEVEL. */
681 static struct temp_slot **
682 temp_slots_at_level (int level)
684 if (level >= (int) vec_safe_length (used_temp_slots))
685 vec_safe_grow_cleared (used_temp_slots, level + 1);
687 return &(*used_temp_slots)[level];
690 /* Returns the maximal temporary slot level. */
692 static int
693 max_slot_level (void)
695 if (!used_temp_slots)
696 return -1;
698 return used_temp_slots->length () - 1;
701 /* Moves temporary slot TEMP to LEVEL. */
703 static void
704 move_slot_to_level (struct temp_slot *temp, int level)
706 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
707 insert_slot_to_list (temp, temp_slots_at_level (level));
708 temp->level = level;
711 /* Make temporary slot TEMP available. */
713 static void
714 make_slot_available (struct temp_slot *temp)
716 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
717 insert_slot_to_list (temp, &avail_temp_slots);
718 temp->in_use = 0;
719 temp->level = -1;
720 n_temp_slots_in_use--;
723 /* Compute the hash value for an address -> temp slot mapping.
724 The value is cached on the mapping entry. */
725 static hashval_t
726 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
728 int do_not_record = 0;
729 return hash_rtx (t->address, GET_MODE (t->address),
730 &do_not_record, NULL, false);
733 /* Return the hash value for an address -> temp slot mapping. */
734 hashval_t
735 temp_address_hasher::hash (temp_slot_address_entry *t)
737 return t->hash;
740 /* Compare two address -> temp slot mapping entries. */
741 bool
742 temp_address_hasher::equal (temp_slot_address_entry *t1,
743 temp_slot_address_entry *t2)
745 return exp_equiv_p (t1->address, t2->address, 0, true);
748 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
749 static void
750 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
752 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
753 t->address = address;
754 t->temp_slot = temp_slot;
755 t->hash = temp_slot_address_compute_hash (t);
756 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
759 /* Remove an address -> temp slot mapping entry if the temp slot is
760 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
762 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
764 const struct temp_slot_address_entry *t = *slot;
765 if (! t->temp_slot->in_use)
766 temp_slot_address_table->clear_slot (slot);
767 return 1;
770 /* Remove all mappings of addresses to unused temp slots. */
771 static void
772 remove_unused_temp_slot_addresses (void)
774 /* Use quicker clearing if there aren't any active temp slots. */
775 if (n_temp_slots_in_use)
776 temp_slot_address_table->traverse
777 <void *, remove_unused_temp_slot_addresses_1> (NULL);
778 else
779 temp_slot_address_table->empty ();
782 /* Find the temp slot corresponding to the object at address X. */
784 static struct temp_slot *
785 find_temp_slot_from_address (rtx x)
787 struct temp_slot *p;
788 struct temp_slot_address_entry tmp, *t;
790 /* First try the easy way:
791 See if X exists in the address -> temp slot mapping. */
792 tmp.address = x;
793 tmp.temp_slot = NULL;
794 tmp.hash = temp_slot_address_compute_hash (&tmp);
795 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
796 if (t)
797 return t->temp_slot;
799 /* If we have a sum involving a register, see if it points to a temp
800 slot. */
801 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
802 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
803 return p;
804 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
805 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
806 return p;
808 /* Last resort: Address is a virtual stack var address. */
809 poly_int64 offset;
810 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
812 int i;
813 for (i = max_slot_level (); i >= 0; i--)
814 for (p = *temp_slots_at_level (i); p; p = p->next)
815 if (known_in_range_p (offset, p->base_offset, p->full_size))
816 return p;
819 return NULL;
822 /* Allocate a temporary stack slot and record it for possible later
823 reuse.
825 MODE is the machine mode to be given to the returned rtx.
827 SIZE is the size in units of the space required. We do no rounding here
828 since assign_stack_local will do any required rounding.
830 TYPE is the type that will be used for the stack slot. */
833 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
835 unsigned int align;
836 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
837 rtx slot;
839 gcc_assert (known_size_p (size));
841 align = get_stack_local_alignment (type, mode);
843 /* Try to find an available, already-allocated temporary of the proper
844 mode which meets the size and alignment requirements. Choose the
845 smallest one with the closest alignment.
847 If assign_stack_temp is called outside of the tree->rtl expansion,
848 we cannot reuse the stack slots (that may still refer to
849 VIRTUAL_STACK_VARS_REGNUM). */
850 if (!virtuals_instantiated)
852 for (p = avail_temp_slots; p; p = p->next)
854 if (p->align >= align
855 && known_ge (p->size, size)
856 && GET_MODE (p->slot) == mode
857 && objects_must_conflict_p (p->type, type)
858 && (best_p == 0
859 || (known_eq (best_p->size, p->size)
860 ? best_p->align > p->align
861 : known_ge (best_p->size, p->size))))
863 if (p->align == align && known_eq (p->size, size))
865 selected = p;
866 cut_slot_from_list (selected, &avail_temp_slots);
867 best_p = 0;
868 break;
870 best_p = p;
875 /* Make our best, if any, the one to use. */
876 if (best_p)
878 selected = best_p;
879 cut_slot_from_list (selected, &avail_temp_slots);
881 /* If there are enough aligned bytes left over, make them into a new
882 temp_slot so that the extra bytes don't get wasted. Do this only
883 for BLKmode slots, so that we can be sure of the alignment. */
884 if (GET_MODE (best_p->slot) == BLKmode)
886 int alignment = best_p->align / BITS_PER_UNIT;
887 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
889 if (known_ge (best_p->size - rounded_size, alignment))
891 p = ggc_alloc<temp_slot> ();
892 p->in_use = 0;
893 p->size = best_p->size - rounded_size;
894 p->base_offset = best_p->base_offset + rounded_size;
895 p->full_size = best_p->full_size - rounded_size;
896 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
897 p->align = best_p->align;
898 p->type = best_p->type;
899 insert_slot_to_list (p, &avail_temp_slots);
901 vec_safe_push (stack_slot_list, p->slot);
903 best_p->size = rounded_size;
904 best_p->full_size = rounded_size;
909 /* If we still didn't find one, make a new temporary. */
910 if (selected == 0)
912 poly_int64 frame_offset_old = frame_offset;
914 p = ggc_alloc<temp_slot> ();
916 /* We are passing an explicit alignment request to assign_stack_local.
917 One side effect of that is assign_stack_local will not round SIZE
918 to ensure the frame offset remains suitably aligned.
920 So for requests which depended on the rounding of SIZE, we go ahead
921 and round it now. We also make sure ALIGNMENT is at least
922 BIGGEST_ALIGNMENT. */
923 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
924 p->slot = assign_stack_local_1 (mode,
925 (mode == BLKmode
926 ? aligned_upper_bound (size,
927 (int) align
928 / BITS_PER_UNIT)
929 : size),
930 align, 0);
932 p->align = align;
934 /* The following slot size computation is necessary because we don't
935 know the actual size of the temporary slot until assign_stack_local
936 has performed all the frame alignment and size rounding for the
937 requested temporary. Note that extra space added for alignment
938 can be either above or below this stack slot depending on which
939 way the frame grows. We include the extra space if and only if it
940 is above this slot. */
941 if (FRAME_GROWS_DOWNWARD)
942 p->size = frame_offset_old - frame_offset;
943 else
944 p->size = size;
946 /* Now define the fields used by combine_temp_slots. */
947 if (FRAME_GROWS_DOWNWARD)
949 p->base_offset = frame_offset;
950 p->full_size = frame_offset_old - frame_offset;
952 else
954 p->base_offset = frame_offset_old;
955 p->full_size = frame_offset - frame_offset_old;
958 selected = p;
961 p = selected;
962 p->in_use = 1;
963 p->type = type;
964 p->level = temp_slot_level;
965 n_temp_slots_in_use++;
967 pp = temp_slots_at_level (p->level);
968 insert_slot_to_list (p, pp);
969 insert_temp_slot_address (XEXP (p->slot, 0), p);
971 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
972 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
973 vec_safe_push (stack_slot_list, slot);
975 /* If we know the alias set for the memory that will be used, use
976 it. If there's no TYPE, then we don't know anything about the
977 alias set for the memory. */
978 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
979 set_mem_align (slot, align);
981 /* If a type is specified, set the relevant flags. */
982 if (type != 0)
983 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
984 MEM_NOTRAP_P (slot) = 1;
986 return slot;
989 /* Allocate a temporary stack slot and record it for possible later
990 reuse. First two arguments are same as in preceding function. */
993 assign_stack_temp (machine_mode mode, poly_int64 size)
995 return assign_stack_temp_for_type (mode, size, NULL_TREE);
998 /* Assign a temporary.
999 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
1000 and so that should be used in error messages. In either case, we
1001 allocate of the given type.
1002 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
1003 it is 0 if a register is OK.
1004 DONT_PROMOTE is 1 if we should not promote values in register
1005 to wider modes. */
1008 assign_temp (tree type_or_decl, int memory_required,
1009 int dont_promote ATTRIBUTE_UNUSED)
1011 tree type, decl;
1012 machine_mode mode;
1013 #ifdef PROMOTE_MODE
1014 int unsignedp;
1015 #endif
1017 if (DECL_P (type_or_decl))
1018 decl = type_or_decl, type = TREE_TYPE (decl);
1019 else
1020 decl = NULL, type = type_or_decl;
1022 mode = TYPE_MODE (type);
1023 #ifdef PROMOTE_MODE
1024 unsignedp = TYPE_UNSIGNED (type);
1025 #endif
1027 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
1028 end. See also create_tmp_var for the gimplification-time check. */
1029 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
1031 if (mode == BLKmode || memory_required)
1033 poly_int64 size;
1034 rtx tmp;
1036 /* Unfortunately, we don't yet know how to allocate variable-sized
1037 temporaries. However, sometimes we can find a fixed upper limit on
1038 the size, so try that instead. */
1039 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
1040 size = max_int_size_in_bytes (type);
1042 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
1043 problems with allocating the stack space. */
1044 if (known_eq (size, 0))
1045 size = 1;
1047 /* The size of the temporary may be too large to fit into an integer. */
1048 /* ??? Not sure this should happen except for user silliness, so limit
1049 this to things that aren't compiler-generated temporaries. The
1050 rest of the time we'll die in assign_stack_temp_for_type. */
1051 if (decl
1052 && !known_size_p (size)
1053 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1055 error ("size of variable %q+D is too large", decl);
1056 size = 1;
1059 tmp = assign_stack_temp_for_type (mode, size, type);
1060 return tmp;
1063 #ifdef PROMOTE_MODE
1064 if (! dont_promote)
1065 mode = promote_mode (type, mode, &unsignedp);
1066 #endif
1068 return gen_reg_rtx (mode);
1071 /* Combine temporary stack slots which are adjacent on the stack.
1073 This allows for better use of already allocated stack space. This is only
1074 done for BLKmode slots because we can be sure that we won't have alignment
1075 problems in this case. */
1077 static void
1078 combine_temp_slots (void)
1080 struct temp_slot *p, *q, *next, *next_q;
1081 int num_slots;
1083 /* We can't combine slots, because the information about which slot
1084 is in which alias set will be lost. */
1085 if (flag_strict_aliasing)
1086 return;
1088 /* If there are a lot of temp slots, don't do anything unless
1089 high levels of optimization. */
1090 if (! flag_expensive_optimizations)
1091 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1092 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1093 return;
1095 for (p = avail_temp_slots; p; p = next)
1097 int delete_p = 0;
1099 next = p->next;
1101 if (GET_MODE (p->slot) != BLKmode)
1102 continue;
1104 for (q = p->next; q; q = next_q)
1106 int delete_q = 0;
1108 next_q = q->next;
1110 if (GET_MODE (q->slot) != BLKmode)
1111 continue;
1113 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1115 /* Q comes after P; combine Q into P. */
1116 p->size += q->size;
1117 p->full_size += q->full_size;
1118 delete_q = 1;
1120 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1122 /* P comes after Q; combine P into Q. */
1123 q->size += p->size;
1124 q->full_size += p->full_size;
1125 delete_p = 1;
1126 break;
1128 if (delete_q)
1129 cut_slot_from_list (q, &avail_temp_slots);
1132 /* Either delete P or advance past it. */
1133 if (delete_p)
1134 cut_slot_from_list (p, &avail_temp_slots);
1138 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1139 slot that previously was known by OLD_RTX. */
1141 void
1142 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1144 struct temp_slot *p;
1146 if (rtx_equal_p (old_rtx, new_rtx))
1147 return;
1149 p = find_temp_slot_from_address (old_rtx);
1151 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1152 NEW_RTX is a register, see if one operand of the PLUS is a
1153 temporary location. If so, NEW_RTX points into it. Otherwise,
1154 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1155 in common between them. If so, try a recursive call on those
1156 values. */
1157 if (p == 0)
1159 if (GET_CODE (old_rtx) != PLUS)
1160 return;
1162 if (REG_P (new_rtx))
1164 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1165 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1166 return;
1168 else if (GET_CODE (new_rtx) != PLUS)
1169 return;
1171 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1172 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1173 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1174 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1175 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1176 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1177 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1178 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1180 return;
1183 /* Otherwise add an alias for the temp's address. */
1184 insert_temp_slot_address (new_rtx, p);
1187 /* If X could be a reference to a temporary slot, mark that slot as
1188 belonging to the to one level higher than the current level. If X
1189 matched one of our slots, just mark that one. Otherwise, we can't
1190 easily predict which it is, so upgrade all of them.
1192 This is called when an ({...}) construct occurs and a statement
1193 returns a value in memory. */
1195 void
1196 preserve_temp_slots (rtx x)
1198 struct temp_slot *p = 0, *next;
1200 if (x == 0)
1201 return;
1203 /* If X is a register that is being used as a pointer, see if we have
1204 a temporary slot we know it points to. */
1205 if (REG_P (x) && REG_POINTER (x))
1206 p = find_temp_slot_from_address (x);
1208 /* If X is not in memory or is at a constant address, it cannot be in
1209 a temporary slot. */
1210 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1211 return;
1213 /* First see if we can find a match. */
1214 if (p == 0)
1215 p = find_temp_slot_from_address (XEXP (x, 0));
1217 if (p != 0)
1219 if (p->level == temp_slot_level)
1220 move_slot_to_level (p, temp_slot_level - 1);
1221 return;
1224 /* Otherwise, preserve all non-kept slots at this level. */
1225 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1227 next = p->next;
1228 move_slot_to_level (p, temp_slot_level - 1);
1232 /* Free all temporaries used so far. This is normally called at the
1233 end of generating code for a statement. */
1235 void
1236 free_temp_slots (void)
1238 struct temp_slot *p, *next;
1239 bool some_available = false;
1241 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1243 next = p->next;
1244 make_slot_available (p);
1245 some_available = true;
1248 if (some_available)
1250 remove_unused_temp_slot_addresses ();
1251 combine_temp_slots ();
1255 /* Push deeper into the nesting level for stack temporaries. */
1257 void
1258 push_temp_slots (void)
1260 temp_slot_level++;
1263 /* Pop a temporary nesting level. All slots in use in the current level
1264 are freed. */
1266 void
1267 pop_temp_slots (void)
1269 free_temp_slots ();
1270 temp_slot_level--;
1273 /* Initialize temporary slots. */
1275 void
1276 init_temp_slots (void)
1278 /* We have not allocated any temporaries yet. */
1279 avail_temp_slots = 0;
1280 vec_alloc (used_temp_slots, 0);
1281 temp_slot_level = 0;
1282 n_temp_slots_in_use = 0;
1284 /* Set up the table to map addresses to temp slots. */
1285 if (! temp_slot_address_table)
1286 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1287 else
1288 temp_slot_address_table->empty ();
1291 /* Functions and data structures to keep track of the values hard regs
1292 had at the start of the function. */
1294 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1295 and has_hard_reg_initial_val.. */
1296 struct GTY(()) initial_value_pair {
1297 rtx hard_reg;
1298 rtx pseudo;
1300 /* ??? This could be a VEC but there is currently no way to define an
1301 opaque VEC type. This could be worked around by defining struct
1302 initial_value_pair in function.h. */
1303 struct GTY(()) initial_value_struct {
1304 int num_entries;
1305 int max_entries;
1306 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1309 /* If a pseudo represents an initial hard reg (or expression), return
1310 it, else return NULL_RTX. */
1313 get_hard_reg_initial_reg (rtx reg)
1315 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1316 int i;
1318 if (ivs == 0)
1319 return NULL_RTX;
1321 for (i = 0; i < ivs->num_entries; i++)
1322 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1323 return ivs->entries[i].hard_reg;
1325 return NULL_RTX;
1328 /* Make sure that there's a pseudo register of mode MODE that stores the
1329 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1332 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1334 struct initial_value_struct *ivs;
1335 rtx rv;
1337 rv = has_hard_reg_initial_val (mode, regno);
1338 if (rv)
1339 return rv;
1341 ivs = crtl->hard_reg_initial_vals;
1342 if (ivs == 0)
1344 ivs = ggc_alloc<initial_value_struct> ();
1345 ivs->num_entries = 0;
1346 ivs->max_entries = 5;
1347 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1348 crtl->hard_reg_initial_vals = ivs;
1351 if (ivs->num_entries >= ivs->max_entries)
1353 ivs->max_entries += 5;
1354 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1355 ivs->max_entries);
1358 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1359 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1361 return ivs->entries[ivs->num_entries++].pseudo;
1364 /* See if get_hard_reg_initial_val has been used to create a pseudo
1365 for the initial value of hard register REGNO in mode MODE. Return
1366 the associated pseudo if so, otherwise return NULL. */
1369 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1371 struct initial_value_struct *ivs;
1372 int i;
1374 ivs = crtl->hard_reg_initial_vals;
1375 if (ivs != 0)
1376 for (i = 0; i < ivs->num_entries; i++)
1377 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1378 && REGNO (ivs->entries[i].hard_reg) == regno)
1379 return ivs->entries[i].pseudo;
1381 return NULL_RTX;
1384 unsigned int
1385 emit_initial_value_sets (void)
1387 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1388 int i;
1389 rtx_insn *seq;
1391 if (ivs == 0)
1392 return 0;
1394 start_sequence ();
1395 for (i = 0; i < ivs->num_entries; i++)
1396 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1397 seq = get_insns ();
1398 end_sequence ();
1400 emit_insn_at_entry (seq);
1401 return 0;
1404 /* Return the hardreg-pseudoreg initial values pair entry I and
1405 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1406 bool
1407 initial_value_entry (int i, rtx *hreg, rtx *preg)
1409 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1410 if (!ivs || i >= ivs->num_entries)
1411 return false;
1413 *hreg = ivs->entries[i].hard_reg;
1414 *preg = ivs->entries[i].pseudo;
1415 return true;
1418 /* These routines are responsible for converting virtual register references
1419 to the actual hard register references once RTL generation is complete.
1421 The following four variables are used for communication between the
1422 routines. They contain the offsets of the virtual registers from their
1423 respective hard registers. */
1425 static poly_int64 in_arg_offset;
1426 static poly_int64 var_offset;
1427 static poly_int64 dynamic_offset;
1428 static poly_int64 out_arg_offset;
1429 static poly_int64 cfa_offset;
1431 /* In most machines, the stack pointer register is equivalent to the bottom
1432 of the stack. */
1434 #ifndef STACK_POINTER_OFFSET
1435 #define STACK_POINTER_OFFSET 0
1436 #endif
1438 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1439 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1440 #endif
1442 /* If not defined, pick an appropriate default for the offset of dynamically
1443 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1444 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1446 #ifndef STACK_DYNAMIC_OFFSET
1448 /* The bottom of the stack points to the actual arguments. If
1449 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1450 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1451 stack space for register parameters is not pushed by the caller, but
1452 rather part of the fixed stack areas and hence not included in
1453 `crtl->outgoing_args_size'. Nevertheless, we must allow
1454 for it when allocating stack dynamic objects. */
1456 #ifdef INCOMING_REG_PARM_STACK_SPACE
1457 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1458 ((ACCUMULATE_OUTGOING_ARGS \
1459 ? (crtl->outgoing_args_size \
1460 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1461 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1462 : 0) + (STACK_POINTER_OFFSET))
1463 #else
1464 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1465 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1466 + (STACK_POINTER_OFFSET))
1467 #endif
1468 #endif
1471 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1472 is a virtual register, return the equivalent hard register and set the
1473 offset indirectly through the pointer. Otherwise, return 0. */
1475 static rtx
1476 instantiate_new_reg (rtx x, poly_int64_pod *poffset)
1478 rtx new_rtx;
1479 poly_int64 offset;
1481 if (x == virtual_incoming_args_rtx)
1483 if (stack_realign_drap)
1485 /* Replace virtual_incoming_args_rtx with internal arg
1486 pointer if DRAP is used to realign stack. */
1487 new_rtx = crtl->args.internal_arg_pointer;
1488 offset = 0;
1490 else
1491 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1493 else if (x == virtual_stack_vars_rtx)
1494 new_rtx = frame_pointer_rtx, offset = var_offset;
1495 else if (x == virtual_stack_dynamic_rtx)
1496 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1497 else if (x == virtual_outgoing_args_rtx)
1498 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1499 else if (x == virtual_cfa_rtx)
1501 #ifdef FRAME_POINTER_CFA_OFFSET
1502 new_rtx = frame_pointer_rtx;
1503 #else
1504 new_rtx = arg_pointer_rtx;
1505 #endif
1506 offset = cfa_offset;
1508 else if (x == virtual_preferred_stack_boundary_rtx)
1510 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1511 offset = 0;
1513 else
1514 return NULL_RTX;
1516 *poffset = offset;
1517 return new_rtx;
1520 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1521 registers present inside of *LOC. The expression is simplified,
1522 as much as possible, but is not to be considered "valid" in any sense
1523 implied by the target. Return true if any change is made. */
1525 static bool
1526 instantiate_virtual_regs_in_rtx (rtx *loc)
1528 if (!*loc)
1529 return false;
1530 bool changed = false;
1531 subrtx_ptr_iterator::array_type array;
1532 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1534 rtx *loc = *iter;
1535 if (rtx x = *loc)
1537 rtx new_rtx;
1538 poly_int64 offset;
1539 switch (GET_CODE (x))
1541 case REG:
1542 new_rtx = instantiate_new_reg (x, &offset);
1543 if (new_rtx)
1545 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1546 changed = true;
1548 iter.skip_subrtxes ();
1549 break;
1551 case PLUS:
1552 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1553 if (new_rtx)
1555 XEXP (x, 0) = new_rtx;
1556 *loc = plus_constant (GET_MODE (x), x, offset, true);
1557 changed = true;
1558 iter.skip_subrtxes ();
1559 break;
1562 /* FIXME -- from old code */
1563 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1564 we can commute the PLUS and SUBREG because pointers into the
1565 frame are well-behaved. */
1566 break;
1568 default:
1569 break;
1573 return changed;
1576 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1577 matches the predicate for insn CODE operand OPERAND. */
1579 static int
1580 safe_insn_predicate (int code, int operand, rtx x)
1582 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1585 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1586 registers present inside of insn. The result will be a valid insn. */
1588 static void
1589 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1591 poly_int64 offset;
1592 int insn_code, i;
1593 bool any_change = false;
1594 rtx set, new_rtx, x;
1595 rtx_insn *seq;
1597 /* There are some special cases to be handled first. */
1598 set = single_set (insn);
1599 if (set)
1601 /* We're allowed to assign to a virtual register. This is interpreted
1602 to mean that the underlying register gets assigned the inverse
1603 transformation. This is used, for example, in the handling of
1604 non-local gotos. */
1605 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1606 if (new_rtx)
1608 start_sequence ();
1610 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1611 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1612 gen_int_mode (-offset, GET_MODE (new_rtx)));
1613 x = force_operand (x, new_rtx);
1614 if (x != new_rtx)
1615 emit_move_insn (new_rtx, x);
1617 seq = get_insns ();
1618 end_sequence ();
1620 emit_insn_before (seq, insn);
1621 delete_insn (insn);
1622 return;
1625 /* Handle a straight copy from a virtual register by generating a
1626 new add insn. The difference between this and falling through
1627 to the generic case is avoiding a new pseudo and eliminating a
1628 move insn in the initial rtl stream. */
1629 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1630 if (new_rtx
1631 && maybe_ne (offset, 0)
1632 && REG_P (SET_DEST (set))
1633 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1635 start_sequence ();
1637 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1638 gen_int_mode (offset,
1639 GET_MODE (SET_DEST (set))),
1640 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1641 if (x != SET_DEST (set))
1642 emit_move_insn (SET_DEST (set), x);
1644 seq = get_insns ();
1645 end_sequence ();
1647 emit_insn_before (seq, insn);
1648 delete_insn (insn);
1649 return;
1652 extract_insn (insn);
1653 insn_code = INSN_CODE (insn);
1655 /* Handle a plus involving a virtual register by determining if the
1656 operands remain valid if they're modified in place. */
1657 poly_int64 delta;
1658 if (GET_CODE (SET_SRC (set)) == PLUS
1659 && recog_data.n_operands >= 3
1660 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1661 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1662 && poly_int_rtx_p (recog_data.operand[2], &delta)
1663 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1665 offset += delta;
1667 /* If the sum is zero, then replace with a plain move. */
1668 if (known_eq (offset, 0)
1669 && REG_P (SET_DEST (set))
1670 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1672 start_sequence ();
1673 emit_move_insn (SET_DEST (set), new_rtx);
1674 seq = get_insns ();
1675 end_sequence ();
1677 emit_insn_before (seq, insn);
1678 delete_insn (insn);
1679 return;
1682 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1684 /* Using validate_change and apply_change_group here leaves
1685 recog_data in an invalid state. Since we know exactly what
1686 we want to check, do those two by hand. */
1687 if (safe_insn_predicate (insn_code, 1, new_rtx)
1688 && safe_insn_predicate (insn_code, 2, x))
1690 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1691 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1692 any_change = true;
1694 /* Fall through into the regular operand fixup loop in
1695 order to take care of operands other than 1 and 2. */
1699 else
1701 extract_insn (insn);
1702 insn_code = INSN_CODE (insn);
1705 /* In the general case, we expect virtual registers to appear only in
1706 operands, and then only as either bare registers or inside memories. */
1707 for (i = 0; i < recog_data.n_operands; ++i)
1709 x = recog_data.operand[i];
1710 switch (GET_CODE (x))
1712 case MEM:
1714 rtx addr = XEXP (x, 0);
1716 if (!instantiate_virtual_regs_in_rtx (&addr))
1717 continue;
1719 start_sequence ();
1720 x = replace_equiv_address (x, addr, true);
1721 /* It may happen that the address with the virtual reg
1722 was valid (e.g. based on the virtual stack reg, which might
1723 be acceptable to the predicates with all offsets), whereas
1724 the address now isn't anymore, for instance when the address
1725 is still offsetted, but the base reg isn't virtual-stack-reg
1726 anymore. Below we would do a force_reg on the whole operand,
1727 but this insn might actually only accept memory. Hence,
1728 before doing that last resort, try to reload the address into
1729 a register, so this operand stays a MEM. */
1730 if (!safe_insn_predicate (insn_code, i, x))
1732 addr = force_reg (GET_MODE (addr), addr);
1733 x = replace_equiv_address (x, addr, true);
1735 seq = get_insns ();
1736 end_sequence ();
1737 if (seq)
1738 emit_insn_before (seq, insn);
1740 break;
1742 case REG:
1743 new_rtx = instantiate_new_reg (x, &offset);
1744 if (new_rtx == NULL)
1745 continue;
1746 if (known_eq (offset, 0))
1747 x = new_rtx;
1748 else
1750 start_sequence ();
1752 /* Careful, special mode predicates may have stuff in
1753 insn_data[insn_code].operand[i].mode that isn't useful
1754 to us for computing a new value. */
1755 /* ??? Recognize address_operand and/or "p" constraints
1756 to see if (plus new offset) is a valid before we put
1757 this through expand_simple_binop. */
1758 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1759 gen_int_mode (offset, GET_MODE (x)),
1760 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1761 seq = get_insns ();
1762 end_sequence ();
1763 emit_insn_before (seq, insn);
1765 break;
1767 case SUBREG:
1768 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1769 if (new_rtx == NULL)
1770 continue;
1771 if (maybe_ne (offset, 0))
1773 start_sequence ();
1774 new_rtx = expand_simple_binop
1775 (GET_MODE (new_rtx), PLUS, new_rtx,
1776 gen_int_mode (offset, GET_MODE (new_rtx)),
1777 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1778 seq = get_insns ();
1779 end_sequence ();
1780 emit_insn_before (seq, insn);
1782 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1783 GET_MODE (new_rtx), SUBREG_BYTE (x));
1784 gcc_assert (x);
1785 break;
1787 default:
1788 continue;
1791 /* At this point, X contains the new value for the operand.
1792 Validate the new value vs the insn predicate. Note that
1793 asm insns will have insn_code -1 here. */
1794 if (!safe_insn_predicate (insn_code, i, x))
1796 start_sequence ();
1797 if (REG_P (x))
1799 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1800 x = copy_to_reg (x);
1802 else
1803 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1804 seq = get_insns ();
1805 end_sequence ();
1806 if (seq)
1807 emit_insn_before (seq, insn);
1810 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1811 any_change = true;
1814 if (any_change)
1816 /* Propagate operand changes into the duplicates. */
1817 for (i = 0; i < recog_data.n_dups; ++i)
1818 *recog_data.dup_loc[i]
1819 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1821 /* Force re-recognition of the instruction for validation. */
1822 INSN_CODE (insn) = -1;
1825 if (asm_noperands (PATTERN (insn)) >= 0)
1827 if (!check_asm_operands (PATTERN (insn)))
1829 error_for_asm (insn, "impossible constraint in %<asm%>");
1830 /* For asm goto, instead of fixing up all the edges
1831 just clear the template and clear input operands
1832 (asm goto doesn't have any output operands). */
1833 if (JUMP_P (insn))
1835 rtx asm_op = extract_asm_operands (PATTERN (insn));
1836 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1837 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1838 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1840 else
1841 delete_insn (insn);
1844 else
1846 if (recog_memoized (insn) < 0)
1847 fatal_insn_not_found (insn);
1851 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1852 do any instantiation required. */
1854 void
1855 instantiate_decl_rtl (rtx x)
1857 rtx addr;
1859 if (x == 0)
1860 return;
1862 /* If this is a CONCAT, recurse for the pieces. */
1863 if (GET_CODE (x) == CONCAT)
1865 instantiate_decl_rtl (XEXP (x, 0));
1866 instantiate_decl_rtl (XEXP (x, 1));
1867 return;
1870 /* If this is not a MEM, no need to do anything. Similarly if the
1871 address is a constant or a register that is not a virtual register. */
1872 if (!MEM_P (x))
1873 return;
1875 addr = XEXP (x, 0);
1876 if (CONSTANT_P (addr)
1877 || (REG_P (addr)
1878 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1879 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1880 return;
1882 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1885 /* Helper for instantiate_decls called via walk_tree: Process all decls
1886 in the given DECL_VALUE_EXPR. */
1888 static tree
1889 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1891 tree t = *tp;
1892 if (! EXPR_P (t))
1894 *walk_subtrees = 0;
1895 if (DECL_P (t))
1897 if (DECL_RTL_SET_P (t))
1898 instantiate_decl_rtl (DECL_RTL (t));
1899 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1900 && DECL_INCOMING_RTL (t))
1901 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1902 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1903 && DECL_HAS_VALUE_EXPR_P (t))
1905 tree v = DECL_VALUE_EXPR (t);
1906 walk_tree (&v, instantiate_expr, NULL, NULL);
1910 return NULL;
1913 /* Subroutine of instantiate_decls: Process all decls in the given
1914 BLOCK node and all its subblocks. */
1916 static void
1917 instantiate_decls_1 (tree let)
1919 tree t;
1921 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1923 if (DECL_RTL_SET_P (t))
1924 instantiate_decl_rtl (DECL_RTL (t));
1925 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1927 tree v = DECL_VALUE_EXPR (t);
1928 walk_tree (&v, instantiate_expr, NULL, NULL);
1932 /* Process all subblocks. */
1933 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1934 instantiate_decls_1 (t);
1937 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1938 all virtual registers in their DECL_RTL's. */
1940 static void
1941 instantiate_decls (tree fndecl)
1943 tree decl;
1944 unsigned ix;
1946 /* Process all parameters of the function. */
1947 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1949 instantiate_decl_rtl (DECL_RTL (decl));
1950 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1951 if (DECL_HAS_VALUE_EXPR_P (decl))
1953 tree v = DECL_VALUE_EXPR (decl);
1954 walk_tree (&v, instantiate_expr, NULL, NULL);
1958 if ((decl = DECL_RESULT (fndecl))
1959 && TREE_CODE (decl) == RESULT_DECL)
1961 if (DECL_RTL_SET_P (decl))
1962 instantiate_decl_rtl (DECL_RTL (decl));
1963 if (DECL_HAS_VALUE_EXPR_P (decl))
1965 tree v = DECL_VALUE_EXPR (decl);
1966 walk_tree (&v, instantiate_expr, NULL, NULL);
1970 /* Process the saved static chain if it exists. */
1971 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1972 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1973 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1975 /* Now process all variables defined in the function or its subblocks. */
1976 if (DECL_INITIAL (fndecl))
1977 instantiate_decls_1 (DECL_INITIAL (fndecl));
1979 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1980 if (DECL_RTL_SET_P (decl))
1981 instantiate_decl_rtl (DECL_RTL (decl));
1982 vec_free (cfun->local_decls);
1985 /* Pass through the INSNS of function FNDECL and convert virtual register
1986 references to hard register references. */
1988 static unsigned int
1989 instantiate_virtual_regs (void)
1991 rtx_insn *insn;
1993 /* Compute the offsets to use for this function. */
1994 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1995 var_offset = targetm.starting_frame_offset ();
1996 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1997 out_arg_offset = STACK_POINTER_OFFSET;
1998 #ifdef FRAME_POINTER_CFA_OFFSET
1999 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
2000 #else
2001 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
2002 #endif
2004 /* Initialize recognition, indicating that volatile is OK. */
2005 init_recog ();
2007 /* Scan through all the insns, instantiating every virtual register still
2008 present. */
2009 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2010 if (INSN_P (insn))
2012 /* These patterns in the instruction stream can never be recognized.
2013 Fortunately, they shouldn't contain virtual registers either. */
2014 if (GET_CODE (PATTERN (insn)) == USE
2015 || GET_CODE (PATTERN (insn)) == CLOBBER
2016 || GET_CODE (PATTERN (insn)) == ASM_INPUT
2017 || DEBUG_MARKER_INSN_P (insn))
2018 continue;
2019 else if (DEBUG_BIND_INSN_P (insn))
2020 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
2021 else
2022 instantiate_virtual_regs_in_insn (insn);
2024 if (insn->deleted ())
2025 continue;
2027 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
2029 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
2030 if (CALL_P (insn))
2031 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
2034 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
2035 instantiate_decls (current_function_decl);
2037 targetm.instantiate_decls ();
2039 /* Indicate that, from now on, assign_stack_local should use
2040 frame_pointer_rtx. */
2041 virtuals_instantiated = 1;
2043 return 0;
2046 namespace {
2048 const pass_data pass_data_instantiate_virtual_regs =
2050 RTL_PASS, /* type */
2051 "vregs", /* name */
2052 OPTGROUP_NONE, /* optinfo_flags */
2053 TV_NONE, /* tv_id */
2054 0, /* properties_required */
2055 0, /* properties_provided */
2056 0, /* properties_destroyed */
2057 0, /* todo_flags_start */
2058 0, /* todo_flags_finish */
2061 class pass_instantiate_virtual_regs : public rtl_opt_pass
2063 public:
2064 pass_instantiate_virtual_regs (gcc::context *ctxt)
2065 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2068 /* opt_pass methods: */
2069 virtual unsigned int execute (function *)
2071 return instantiate_virtual_regs ();
2074 }; // class pass_instantiate_virtual_regs
2076 } // anon namespace
2078 rtl_opt_pass *
2079 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2081 return new pass_instantiate_virtual_regs (ctxt);
2085 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2086 This means a type for which function calls must pass an address to the
2087 function or get an address back from the function.
2088 EXP may be a type node or an expression (whose type is tested). */
2091 aggregate_value_p (const_tree exp, const_tree fntype)
2093 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2094 int i, regno, nregs;
2095 rtx reg;
2097 if (fntype)
2098 switch (TREE_CODE (fntype))
2100 case CALL_EXPR:
2102 tree fndecl = get_callee_fndecl (fntype);
2103 if (fndecl)
2104 fntype = TREE_TYPE (fndecl);
2105 else if (CALL_EXPR_FN (fntype))
2106 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2107 else
2108 /* For internal functions, assume nothing needs to be
2109 returned in memory. */
2110 return 0;
2112 break;
2113 case FUNCTION_DECL:
2114 fntype = TREE_TYPE (fntype);
2115 break;
2116 case FUNCTION_TYPE:
2117 case METHOD_TYPE:
2118 break;
2119 case IDENTIFIER_NODE:
2120 fntype = NULL_TREE;
2121 break;
2122 default:
2123 /* We don't expect other tree types here. */
2124 gcc_unreachable ();
2127 if (VOID_TYPE_P (type))
2128 return 0;
2130 /* If a record should be passed the same as its first (and only) member
2131 don't pass it as an aggregate. */
2132 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2133 return aggregate_value_p (first_field (type), fntype);
2135 /* If the front end has decided that this needs to be passed by
2136 reference, do so. */
2137 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2138 && DECL_BY_REFERENCE (exp))
2139 return 1;
2141 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2142 if (fntype && TREE_ADDRESSABLE (fntype))
2143 return 1;
2145 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2146 and thus can't be returned in registers. */
2147 if (TREE_ADDRESSABLE (type))
2148 return 1;
2150 if (TYPE_EMPTY_P (type))
2151 return 0;
2153 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2154 return 1;
2156 if (targetm.calls.return_in_memory (type, fntype))
2157 return 1;
2159 /* Make sure we have suitable call-clobbered regs to return
2160 the value in; if not, we must return it in memory. */
2161 reg = hard_function_value (type, 0, fntype, 0);
2163 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2164 it is OK. */
2165 if (!REG_P (reg))
2166 return 0;
2168 regno = REGNO (reg);
2169 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2170 for (i = 0; i < nregs; i++)
2171 if (! call_used_regs[regno + i])
2172 return 1;
2174 return 0;
2177 /* Return true if we should assign DECL a pseudo register; false if it
2178 should live on the local stack. */
2180 bool
2181 use_register_for_decl (const_tree decl)
2183 if (TREE_CODE (decl) == SSA_NAME)
2185 /* We often try to use the SSA_NAME, instead of its underlying
2186 decl, to get type information and guide decisions, to avoid
2187 differences of behavior between anonymous and named
2188 variables, but in this one case we have to go for the actual
2189 variable if there is one. The main reason is that, at least
2190 at -O0, we want to place user variables on the stack, but we
2191 don't mind using pseudos for anonymous or ignored temps.
2192 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2193 should go in pseudos, whereas their corresponding variables
2194 might have to go on the stack. So, disregarding the decl
2195 here would negatively impact debug info at -O0, enable
2196 coalescing between SSA_NAMEs that ought to get different
2197 stack/pseudo assignments, and get the incoming argument
2198 processing thoroughly confused by PARM_DECLs expected to live
2199 in stack slots but assigned to pseudos. */
2200 if (!SSA_NAME_VAR (decl))
2201 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2202 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2204 decl = SSA_NAME_VAR (decl);
2207 /* Honor volatile. */
2208 if (TREE_SIDE_EFFECTS (decl))
2209 return false;
2211 /* Honor addressability. */
2212 if (TREE_ADDRESSABLE (decl))
2213 return false;
2215 /* RESULT_DECLs are a bit special in that they're assigned without
2216 regard to use_register_for_decl, but we generally only store in
2217 them. If we coalesce their SSA NAMEs, we'd better return a
2218 result that matches the assignment in expand_function_start. */
2219 if (TREE_CODE (decl) == RESULT_DECL)
2221 /* If it's not an aggregate, we're going to use a REG or a
2222 PARALLEL containing a REG. */
2223 if (!aggregate_value_p (decl, current_function_decl))
2224 return true;
2226 /* If expand_function_start determines the return value, we'll
2227 use MEM if it's not by reference. */
2228 if (cfun->returns_pcc_struct
2229 || (targetm.calls.struct_value_rtx
2230 (TREE_TYPE (current_function_decl), 1)))
2231 return DECL_BY_REFERENCE (decl);
2233 /* Otherwise, we're taking an extra all.function_result_decl
2234 argument. It's set up in assign_parms_augmented_arg_list,
2235 under the (negated) conditions above, and then it's used to
2236 set up the RESULT_DECL rtl in assign_params, after looping
2237 over all parameters. Now, if the RESULT_DECL is not by
2238 reference, we'll use a MEM either way. */
2239 if (!DECL_BY_REFERENCE (decl))
2240 return false;
2242 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2243 the function_result_decl's assignment. Since it's a pointer,
2244 we can short-circuit a number of the tests below, and we must
2245 duplicat e them because we don't have the
2246 function_result_decl to test. */
2247 if (!targetm.calls.allocate_stack_slots_for_args ())
2248 return true;
2249 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2250 if (optimize)
2251 return true;
2252 /* We don't set DECL_REGISTER for the function_result_decl. */
2253 return false;
2256 /* Only register-like things go in registers. */
2257 if (DECL_MODE (decl) == BLKmode)
2258 return false;
2260 /* If -ffloat-store specified, don't put explicit float variables
2261 into registers. */
2262 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2263 propagates values across these stores, and it probably shouldn't. */
2264 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2265 return false;
2267 if (!targetm.calls.allocate_stack_slots_for_args ())
2268 return true;
2270 /* If we're not interested in tracking debugging information for
2271 this decl, then we can certainly put it in a register. */
2272 if (DECL_IGNORED_P (decl))
2273 return true;
2275 if (optimize)
2276 return true;
2278 if (!DECL_REGISTER (decl))
2279 return false;
2281 /* When not optimizing, disregard register keyword for types that
2282 could have methods, otherwise the methods won't be callable from
2283 the debugger. */
2284 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2285 return false;
2287 return true;
2290 /* Structures to communicate between the subroutines of assign_parms.
2291 The first holds data persistent across all parameters, the second
2292 is cleared out for each parameter. */
2294 struct assign_parm_data_all
2296 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2297 should become a job of the target or otherwise encapsulated. */
2298 CUMULATIVE_ARGS args_so_far_v;
2299 cumulative_args_t args_so_far;
2300 struct args_size stack_args_size;
2301 tree function_result_decl;
2302 tree orig_fnargs;
2303 rtx_insn *first_conversion_insn;
2304 rtx_insn *last_conversion_insn;
2305 HOST_WIDE_INT pretend_args_size;
2306 HOST_WIDE_INT extra_pretend_bytes;
2307 int reg_parm_stack_space;
2310 struct assign_parm_data_one
2312 tree nominal_type;
2313 tree passed_type;
2314 rtx entry_parm;
2315 rtx stack_parm;
2316 machine_mode nominal_mode;
2317 machine_mode passed_mode;
2318 machine_mode promoted_mode;
2319 struct locate_and_pad_arg_data locate;
2320 int partial;
2321 BOOL_BITFIELD named_arg : 1;
2322 BOOL_BITFIELD passed_pointer : 1;
2323 BOOL_BITFIELD on_stack : 1;
2324 BOOL_BITFIELD loaded_in_reg : 1;
2327 /* A subroutine of assign_parms. Initialize ALL. */
2329 static void
2330 assign_parms_initialize_all (struct assign_parm_data_all *all)
2332 tree fntype ATTRIBUTE_UNUSED;
2334 memset (all, 0, sizeof (*all));
2336 fntype = TREE_TYPE (current_function_decl);
2338 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2339 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2340 #else
2341 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2342 current_function_decl, -1);
2343 #endif
2344 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2346 #ifdef INCOMING_REG_PARM_STACK_SPACE
2347 all->reg_parm_stack_space
2348 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2349 #endif
2352 /* If ARGS contains entries with complex types, split the entry into two
2353 entries of the component type. Return a new list of substitutions are
2354 needed, else the old list. */
2356 static void
2357 split_complex_args (vec<tree> *args)
2359 unsigned i;
2360 tree p;
2362 FOR_EACH_VEC_ELT (*args, i, p)
2364 tree type = TREE_TYPE (p);
2365 if (TREE_CODE (type) == COMPLEX_TYPE
2366 && targetm.calls.split_complex_arg (type))
2368 tree decl;
2369 tree subtype = TREE_TYPE (type);
2370 bool addressable = TREE_ADDRESSABLE (p);
2372 /* Rewrite the PARM_DECL's type with its component. */
2373 p = copy_node (p);
2374 TREE_TYPE (p) = subtype;
2375 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2376 SET_DECL_MODE (p, VOIDmode);
2377 DECL_SIZE (p) = NULL;
2378 DECL_SIZE_UNIT (p) = NULL;
2379 /* If this arg must go in memory, put it in a pseudo here.
2380 We can't allow it to go in memory as per normal parms,
2381 because the usual place might not have the imag part
2382 adjacent to the real part. */
2383 DECL_ARTIFICIAL (p) = addressable;
2384 DECL_IGNORED_P (p) = addressable;
2385 TREE_ADDRESSABLE (p) = 0;
2386 layout_decl (p, 0);
2387 (*args)[i] = p;
2389 /* Build a second synthetic decl. */
2390 decl = build_decl (EXPR_LOCATION (p),
2391 PARM_DECL, NULL_TREE, subtype);
2392 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2393 DECL_ARTIFICIAL (decl) = addressable;
2394 DECL_IGNORED_P (decl) = addressable;
2395 layout_decl (decl, 0);
2396 args->safe_insert (++i, decl);
2401 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2402 the hidden struct return argument, and (abi willing) complex args.
2403 Return the new parameter list. */
2405 static vec<tree>
2406 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2408 tree fndecl = current_function_decl;
2409 tree fntype = TREE_TYPE (fndecl);
2410 vec<tree> fnargs = vNULL;
2411 tree arg;
2413 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2414 fnargs.safe_push (arg);
2416 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2418 /* If struct value address is treated as the first argument, make it so. */
2419 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2420 && ! cfun->returns_pcc_struct
2421 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2423 tree type = build_pointer_type (TREE_TYPE (fntype));
2424 tree decl;
2426 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2427 PARM_DECL, get_identifier (".result_ptr"), type);
2428 DECL_ARG_TYPE (decl) = type;
2429 DECL_ARTIFICIAL (decl) = 1;
2430 DECL_NAMELESS (decl) = 1;
2431 TREE_CONSTANT (decl) = 1;
2432 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2433 changes, the end of the RESULT_DECL handling block in
2434 use_register_for_decl must be adjusted to match. */
2436 DECL_CHAIN (decl) = all->orig_fnargs;
2437 all->orig_fnargs = decl;
2438 fnargs.safe_insert (0, decl);
2440 all->function_result_decl = decl;
2443 /* If the target wants to split complex arguments into scalars, do so. */
2444 if (targetm.calls.split_complex_arg)
2445 split_complex_args (&fnargs);
2447 return fnargs;
2450 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2451 data for the parameter. Incorporate ABI specifics such as pass-by-
2452 reference and type promotion. */
2454 static void
2455 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2456 struct assign_parm_data_one *data)
2458 tree nominal_type, passed_type;
2459 machine_mode nominal_mode, passed_mode, promoted_mode;
2460 int unsignedp;
2462 memset (data, 0, sizeof (*data));
2464 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2465 if (!cfun->stdarg)
2466 data->named_arg = 1; /* No variadic parms. */
2467 else if (DECL_CHAIN (parm))
2468 data->named_arg = 1; /* Not the last non-variadic parm. */
2469 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2470 data->named_arg = 1; /* Only variadic ones are unnamed. */
2471 else
2472 data->named_arg = 0; /* Treat as variadic. */
2474 nominal_type = TREE_TYPE (parm);
2475 passed_type = DECL_ARG_TYPE (parm);
2477 /* Look out for errors propagating this far. Also, if the parameter's
2478 type is void then its value doesn't matter. */
2479 if (TREE_TYPE (parm) == error_mark_node
2480 /* This can happen after weird syntax errors
2481 or if an enum type is defined among the parms. */
2482 || TREE_CODE (parm) != PARM_DECL
2483 || passed_type == NULL
2484 || VOID_TYPE_P (nominal_type))
2486 nominal_type = passed_type = void_type_node;
2487 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2488 goto egress;
2491 /* Find mode of arg as it is passed, and mode of arg as it should be
2492 during execution of this function. */
2493 passed_mode = TYPE_MODE (passed_type);
2494 nominal_mode = TYPE_MODE (nominal_type);
2496 /* If the parm is to be passed as a transparent union or record, use the
2497 type of the first field for the tests below. We have already verified
2498 that the modes are the same. */
2499 if ((TREE_CODE (passed_type) == UNION_TYPE
2500 || TREE_CODE (passed_type) == RECORD_TYPE)
2501 && TYPE_TRANSPARENT_AGGR (passed_type))
2502 passed_type = TREE_TYPE (first_field (passed_type));
2504 /* See if this arg was passed by invisible reference. */
2505 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2506 passed_type, data->named_arg))
2508 passed_type = nominal_type = build_pointer_type (passed_type);
2509 data->passed_pointer = true;
2510 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2513 /* Find mode as it is passed by the ABI. */
2514 unsignedp = TYPE_UNSIGNED (passed_type);
2515 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2516 TREE_TYPE (current_function_decl), 0);
2518 egress:
2519 data->nominal_type = nominal_type;
2520 data->passed_type = passed_type;
2521 data->nominal_mode = nominal_mode;
2522 data->passed_mode = passed_mode;
2523 data->promoted_mode = promoted_mode;
2526 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2528 static void
2529 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2530 struct assign_parm_data_one *data, bool no_rtl)
2532 int varargs_pretend_bytes = 0;
2534 targetm.calls.setup_incoming_varargs (all->args_so_far,
2535 data->promoted_mode,
2536 data->passed_type,
2537 &varargs_pretend_bytes, no_rtl);
2539 /* If the back-end has requested extra stack space, record how much is
2540 needed. Do not change pretend_args_size otherwise since it may be
2541 nonzero from an earlier partial argument. */
2542 if (varargs_pretend_bytes > 0)
2543 all->pretend_args_size = varargs_pretend_bytes;
2546 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2547 the incoming location of the current parameter. */
2549 static void
2550 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2551 struct assign_parm_data_one *data)
2553 HOST_WIDE_INT pretend_bytes = 0;
2554 rtx entry_parm;
2555 bool in_regs;
2557 if (data->promoted_mode == VOIDmode)
2559 data->entry_parm = data->stack_parm = const0_rtx;
2560 return;
2563 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2564 data->passed_type);
2566 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2567 data->promoted_mode,
2568 data->passed_type,
2569 data->named_arg);
2571 if (entry_parm == 0)
2572 data->promoted_mode = data->passed_mode;
2574 /* Determine parm's home in the stack, in case it arrives in the stack
2575 or we should pretend it did. Compute the stack position and rtx where
2576 the argument arrives and its size.
2578 There is one complexity here: If this was a parameter that would
2579 have been passed in registers, but wasn't only because it is
2580 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2581 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2582 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2583 as it was the previous time. */
2584 in_regs = (entry_parm != 0);
2585 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2586 in_regs = true;
2587 #endif
2588 if (!in_regs && !data->named_arg)
2590 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2592 rtx tem;
2593 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2594 data->promoted_mode,
2595 data->passed_type, true);
2596 in_regs = tem != NULL;
2600 /* If this parameter was passed both in registers and in the stack, use
2601 the copy on the stack. */
2602 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2603 data->passed_type))
2604 entry_parm = 0;
2606 if (entry_parm)
2608 int partial;
2610 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2611 data->promoted_mode,
2612 data->passed_type,
2613 data->named_arg);
2614 data->partial = partial;
2616 /* The caller might already have allocated stack space for the
2617 register parameters. */
2618 if (partial != 0 && all->reg_parm_stack_space == 0)
2620 /* Part of this argument is passed in registers and part
2621 is passed on the stack. Ask the prologue code to extend
2622 the stack part so that we can recreate the full value.
2624 PRETEND_BYTES is the size of the registers we need to store.
2625 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2626 stack space that the prologue should allocate.
2628 Internally, gcc assumes that the argument pointer is aligned
2629 to STACK_BOUNDARY bits. This is used both for alignment
2630 optimizations (see init_emit) and to locate arguments that are
2631 aligned to more than PARM_BOUNDARY bits. We must preserve this
2632 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2633 a stack boundary. */
2635 /* We assume at most one partial arg, and it must be the first
2636 argument on the stack. */
2637 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2639 pretend_bytes = partial;
2640 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2642 /* We want to align relative to the actual stack pointer, so
2643 don't include this in the stack size until later. */
2644 all->extra_pretend_bytes = all->pretend_args_size;
2648 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2649 all->reg_parm_stack_space,
2650 entry_parm ? data->partial : 0, current_function_decl,
2651 &all->stack_args_size, &data->locate);
2653 /* Update parm_stack_boundary if this parameter is passed in the
2654 stack. */
2655 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2656 crtl->parm_stack_boundary = data->locate.boundary;
2658 /* Adjust offsets to include the pretend args. */
2659 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2660 data->locate.slot_offset.constant += pretend_bytes;
2661 data->locate.offset.constant += pretend_bytes;
2663 data->entry_parm = entry_parm;
2666 /* A subroutine of assign_parms. If there is actually space on the stack
2667 for this parm, count it in stack_args_size and return true. */
2669 static bool
2670 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2671 struct assign_parm_data_one *data)
2673 /* Trivially true if we've no incoming register. */
2674 if (data->entry_parm == NULL)
2676 /* Also true if we're partially in registers and partially not,
2677 since we've arranged to drop the entire argument on the stack. */
2678 else if (data->partial != 0)
2680 /* Also true if the target says that it's passed in both registers
2681 and on the stack. */
2682 else if (GET_CODE (data->entry_parm) == PARALLEL
2683 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2685 /* Also true if the target says that there's stack allocated for
2686 all register parameters. */
2687 else if (all->reg_parm_stack_space > 0)
2689 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2690 else
2691 return false;
2693 all->stack_args_size.constant += data->locate.size.constant;
2694 if (data->locate.size.var)
2695 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2697 return true;
2700 /* A subroutine of assign_parms. Given that this parameter is allocated
2701 stack space by the ABI, find it. */
2703 static void
2704 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2706 rtx offset_rtx, stack_parm;
2707 unsigned int align, boundary;
2709 /* If we're passing this arg using a reg, make its stack home the
2710 aligned stack slot. */
2711 if (data->entry_parm)
2712 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2713 else
2714 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2716 stack_parm = crtl->args.internal_arg_pointer;
2717 if (offset_rtx != const0_rtx)
2718 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2719 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2721 if (!data->passed_pointer)
2723 set_mem_attributes (stack_parm, parm, 1);
2724 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2725 while promoted mode's size is needed. */
2726 if (data->promoted_mode != BLKmode
2727 && data->promoted_mode != DECL_MODE (parm))
2729 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2730 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2732 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2733 data->promoted_mode);
2734 if (maybe_ne (offset, 0))
2735 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2740 boundary = data->locate.boundary;
2741 align = BITS_PER_UNIT;
2743 /* If we're padding upward, we know that the alignment of the slot
2744 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2745 intentionally forcing upward padding. Otherwise we have to come
2746 up with a guess at the alignment based on OFFSET_RTX. */
2747 poly_int64 offset;
2748 if (data->locate.where_pad != PAD_DOWNWARD || data->entry_parm)
2749 align = boundary;
2750 else if (poly_int_rtx_p (offset_rtx, &offset))
2752 align = least_bit_hwi (boundary);
2753 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2754 if (offset_align != 0)
2755 align = MIN (align, offset_align);
2757 set_mem_align (stack_parm, align);
2759 if (data->entry_parm)
2760 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2762 data->stack_parm = stack_parm;
2765 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2766 always valid and contiguous. */
2768 static void
2769 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2771 rtx entry_parm = data->entry_parm;
2772 rtx stack_parm = data->stack_parm;
2774 /* If this parm was passed part in regs and part in memory, pretend it
2775 arrived entirely in memory by pushing the register-part onto the stack.
2776 In the special case of a DImode or DFmode that is split, we could put
2777 it together in a pseudoreg directly, but for now that's not worth
2778 bothering with. */
2779 if (data->partial != 0)
2781 /* Handle calls that pass values in multiple non-contiguous
2782 locations. The Irix 6 ABI has examples of this. */
2783 if (GET_CODE (entry_parm) == PARALLEL)
2784 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2785 data->passed_type,
2786 int_size_in_bytes (data->passed_type));
2787 else
2789 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2790 move_block_from_reg (REGNO (entry_parm),
2791 validize_mem (copy_rtx (stack_parm)),
2792 data->partial / UNITS_PER_WORD);
2795 entry_parm = stack_parm;
2798 /* If we didn't decide this parm came in a register, by default it came
2799 on the stack. */
2800 else if (entry_parm == NULL)
2801 entry_parm = stack_parm;
2803 /* When an argument is passed in multiple locations, we can't make use
2804 of this information, but we can save some copying if the whole argument
2805 is passed in a single register. */
2806 else if (GET_CODE (entry_parm) == PARALLEL
2807 && data->nominal_mode != BLKmode
2808 && data->passed_mode != BLKmode)
2810 size_t i, len = XVECLEN (entry_parm, 0);
2812 for (i = 0; i < len; i++)
2813 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2814 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2815 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2816 == data->passed_mode)
2817 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2819 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2820 break;
2824 data->entry_parm = entry_parm;
2827 /* A subroutine of assign_parms. Reconstitute any values which were
2828 passed in multiple registers and would fit in a single register. */
2830 static void
2831 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2833 rtx entry_parm = data->entry_parm;
2835 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2836 This can be done with register operations rather than on the
2837 stack, even if we will store the reconstituted parameter on the
2838 stack later. */
2839 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2841 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2842 emit_group_store (parmreg, entry_parm, data->passed_type,
2843 GET_MODE_SIZE (GET_MODE (entry_parm)));
2844 entry_parm = parmreg;
2847 data->entry_parm = entry_parm;
2850 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2851 always valid and properly aligned. */
2853 static void
2854 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2856 rtx stack_parm = data->stack_parm;
2858 /* If we can't trust the parm stack slot to be aligned enough for its
2859 ultimate type, don't use that slot after entry. We'll make another
2860 stack slot, if we need one. */
2861 if (stack_parm
2862 && ((STRICT_ALIGNMENT
2863 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2864 || (data->nominal_type
2865 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2866 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2867 stack_parm = NULL;
2869 /* If parm was passed in memory, and we need to convert it on entry,
2870 don't store it back in that same slot. */
2871 else if (data->entry_parm == stack_parm
2872 && data->nominal_mode != BLKmode
2873 && data->nominal_mode != data->passed_mode)
2874 stack_parm = NULL;
2876 /* If stack protection is in effect for this function, don't leave any
2877 pointers in their passed stack slots. */
2878 else if (crtl->stack_protect_guard
2879 && (flag_stack_protect == 2
2880 || data->passed_pointer
2881 || POINTER_TYPE_P (data->nominal_type)))
2882 stack_parm = NULL;
2884 data->stack_parm = stack_parm;
2887 /* A subroutine of assign_parms. Return true if the current parameter
2888 should be stored as a BLKmode in the current frame. */
2890 static bool
2891 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2893 if (data->nominal_mode == BLKmode)
2894 return true;
2895 if (GET_MODE (data->entry_parm) == BLKmode)
2896 return true;
2898 #ifdef BLOCK_REG_PADDING
2899 /* Only assign_parm_setup_block knows how to deal with register arguments
2900 that are padded at the least significant end. */
2901 if (REG_P (data->entry_parm)
2902 && known_lt (GET_MODE_SIZE (data->promoted_mode), UNITS_PER_WORD)
2903 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2904 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2905 return true;
2906 #endif
2908 return false;
2911 /* A subroutine of assign_parms. Arrange for the parameter to be
2912 present and valid in DATA->STACK_RTL. */
2914 static void
2915 assign_parm_setup_block (struct assign_parm_data_all *all,
2916 tree parm, struct assign_parm_data_one *data)
2918 rtx entry_parm = data->entry_parm;
2919 rtx stack_parm = data->stack_parm;
2920 rtx target_reg = NULL_RTX;
2921 bool in_conversion_seq = false;
2922 HOST_WIDE_INT size;
2923 HOST_WIDE_INT size_stored;
2925 if (GET_CODE (entry_parm) == PARALLEL)
2926 entry_parm = emit_group_move_into_temps (entry_parm);
2928 /* If we want the parameter in a pseudo, don't use a stack slot. */
2929 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2931 tree def = ssa_default_def (cfun, parm);
2932 gcc_assert (def);
2933 machine_mode mode = promote_ssa_mode (def, NULL);
2934 rtx reg = gen_reg_rtx (mode);
2935 if (GET_CODE (reg) != CONCAT)
2936 stack_parm = reg;
2937 else
2939 target_reg = reg;
2940 /* Avoid allocating a stack slot, if there isn't one
2941 preallocated by the ABI. It might seem like we should
2942 always prefer a pseudo, but converting between
2943 floating-point and integer modes goes through the stack
2944 on various machines, so it's better to use the reserved
2945 stack slot than to risk wasting it and allocating more
2946 for the conversion. */
2947 if (stack_parm == NULL_RTX)
2949 int save = generating_concat_p;
2950 generating_concat_p = 0;
2951 stack_parm = gen_reg_rtx (mode);
2952 generating_concat_p = save;
2955 data->stack_parm = NULL;
2958 size = int_size_in_bytes (data->passed_type);
2959 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2960 if (stack_parm == 0)
2962 SET_DECL_ALIGN (parm, MAX (DECL_ALIGN (parm), BITS_PER_WORD));
2963 stack_parm = assign_stack_local (BLKmode, size_stored,
2964 DECL_ALIGN (parm));
2965 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2966 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2967 set_mem_attributes (stack_parm, parm, 1);
2970 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2971 calls that pass values in multiple non-contiguous locations. */
2972 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2974 rtx mem;
2976 /* Note that we will be storing an integral number of words.
2977 So we have to be careful to ensure that we allocate an
2978 integral number of words. We do this above when we call
2979 assign_stack_local if space was not allocated in the argument
2980 list. If it was, this will not work if PARM_BOUNDARY is not
2981 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2982 if it becomes a problem. Exception is when BLKmode arrives
2983 with arguments not conforming to word_mode. */
2985 if (data->stack_parm == 0)
2987 else if (GET_CODE (entry_parm) == PARALLEL)
2989 else
2990 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2992 mem = validize_mem (copy_rtx (stack_parm));
2994 /* Handle values in multiple non-contiguous locations. */
2995 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2996 emit_group_store (mem, entry_parm, data->passed_type, size);
2997 else if (GET_CODE (entry_parm) == PARALLEL)
2999 push_to_sequence2 (all->first_conversion_insn,
3000 all->last_conversion_insn);
3001 emit_group_store (mem, entry_parm, data->passed_type, size);
3002 all->first_conversion_insn = get_insns ();
3003 all->last_conversion_insn = get_last_insn ();
3004 end_sequence ();
3005 in_conversion_seq = true;
3008 else if (size == 0)
3011 /* If SIZE is that of a mode no bigger than a word, just use
3012 that mode's store operation. */
3013 else if (size <= UNITS_PER_WORD)
3015 unsigned int bits = size * BITS_PER_UNIT;
3016 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
3018 if (mode != BLKmode
3019 #ifdef BLOCK_REG_PADDING
3020 && (size == UNITS_PER_WORD
3021 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
3022 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
3023 #endif
3026 rtx reg;
3028 /* We are really truncating a word_mode value containing
3029 SIZE bytes into a value of mode MODE. If such an
3030 operation requires no actual instructions, we can refer
3031 to the value directly in mode MODE, otherwise we must
3032 start with the register in word_mode and explicitly
3033 convert it. */
3034 if (targetm.truly_noop_truncation (size * BITS_PER_UNIT,
3035 BITS_PER_WORD))
3036 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3037 else
3039 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3040 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3042 emit_move_insn (change_address (mem, mode, 0), reg);
3045 #ifdef BLOCK_REG_PADDING
3046 /* Storing the register in memory as a full word, as
3047 move_block_from_reg below would do, and then using the
3048 MEM in a smaller mode, has the effect of shifting right
3049 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3050 shifting must be explicit. */
3051 else if (!MEM_P (mem))
3053 rtx x;
3055 /* If the assert below fails, we should have taken the
3056 mode != BLKmode path above, unless we have downward
3057 padding of smaller-than-word arguments on a machine
3058 with little-endian bytes, which would likely require
3059 additional changes to work correctly. */
3060 gcc_checking_assert (BYTES_BIG_ENDIAN
3061 && (BLOCK_REG_PADDING (mode,
3062 data->passed_type, 1)
3063 == PAD_UPWARD));
3065 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3067 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3068 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3069 NULL_RTX, 1);
3070 x = force_reg (word_mode, x);
3071 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3073 emit_move_insn (mem, x);
3075 #endif
3077 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3078 machine must be aligned to the left before storing
3079 to memory. Note that the previous test doesn't
3080 handle all cases (e.g. SIZE == 3). */
3081 else if (size != UNITS_PER_WORD
3082 #ifdef BLOCK_REG_PADDING
3083 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
3084 == PAD_DOWNWARD)
3085 #else
3086 && BYTES_BIG_ENDIAN
3087 #endif
3090 rtx tem, x;
3091 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3092 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3094 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3095 tem = change_address (mem, word_mode, 0);
3096 emit_move_insn (tem, x);
3098 else
3099 move_block_from_reg (REGNO (entry_parm), mem,
3100 size_stored / UNITS_PER_WORD);
3102 else if (!MEM_P (mem))
3104 gcc_checking_assert (size > UNITS_PER_WORD);
3105 #ifdef BLOCK_REG_PADDING
3106 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3107 data->passed_type, 0)
3108 == PAD_UPWARD);
3109 #endif
3110 emit_move_insn (mem, entry_parm);
3112 else
3113 move_block_from_reg (REGNO (entry_parm), mem,
3114 size_stored / UNITS_PER_WORD);
3116 else if (data->stack_parm == 0)
3118 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3119 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3120 BLOCK_OP_NORMAL);
3121 all->first_conversion_insn = get_insns ();
3122 all->last_conversion_insn = get_last_insn ();
3123 end_sequence ();
3124 in_conversion_seq = true;
3127 if (target_reg)
3129 if (!in_conversion_seq)
3130 emit_move_insn (target_reg, stack_parm);
3131 else
3133 push_to_sequence2 (all->first_conversion_insn,
3134 all->last_conversion_insn);
3135 emit_move_insn (target_reg, stack_parm);
3136 all->first_conversion_insn = get_insns ();
3137 all->last_conversion_insn = get_last_insn ();
3138 end_sequence ();
3140 stack_parm = target_reg;
3143 data->stack_parm = stack_parm;
3144 set_parm_rtl (parm, stack_parm);
3147 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3148 parameter. Get it there. Perform all ABI specified conversions. */
3150 static void
3151 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3152 struct assign_parm_data_one *data)
3154 rtx parmreg, validated_mem;
3155 rtx equiv_stack_parm;
3156 machine_mode promoted_nominal_mode;
3157 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3158 bool did_conversion = false;
3159 bool need_conversion, moved;
3160 rtx rtl;
3162 /* Store the parm in a pseudoregister during the function, but we may
3163 need to do it in a wider mode. Using 2 here makes the result
3164 consistent with promote_decl_mode and thus expand_expr_real_1. */
3165 promoted_nominal_mode
3166 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3167 TREE_TYPE (current_function_decl), 2);
3169 parmreg = gen_reg_rtx (promoted_nominal_mode);
3170 if (!DECL_ARTIFICIAL (parm))
3171 mark_user_reg (parmreg);
3173 /* If this was an item that we received a pointer to,
3174 set rtl appropriately. */
3175 if (data->passed_pointer)
3177 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3178 set_mem_attributes (rtl, parm, 1);
3180 else
3181 rtl = parmreg;
3183 assign_parm_remove_parallels (data);
3185 /* Copy the value into the register, thus bridging between
3186 assign_parm_find_data_types and expand_expr_real_1. */
3188 equiv_stack_parm = data->stack_parm;
3189 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3191 need_conversion = (data->nominal_mode != data->passed_mode
3192 || promoted_nominal_mode != data->promoted_mode);
3193 moved = false;
3195 if (need_conversion
3196 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3197 && data->nominal_mode == data->passed_mode
3198 && data->nominal_mode == GET_MODE (data->entry_parm))
3200 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3201 mode, by the caller. We now have to convert it to
3202 NOMINAL_MODE, if different. However, PARMREG may be in
3203 a different mode than NOMINAL_MODE if it is being stored
3204 promoted.
3206 If ENTRY_PARM is a hard register, it might be in a register
3207 not valid for operating in its mode (e.g., an odd-numbered
3208 register for a DFmode). In that case, moves are the only
3209 thing valid, so we can't do a convert from there. This
3210 occurs when the calling sequence allow such misaligned
3211 usages.
3213 In addition, the conversion may involve a call, which could
3214 clobber parameters which haven't been copied to pseudo
3215 registers yet.
3217 First, we try to emit an insn which performs the necessary
3218 conversion. We verify that this insn does not clobber any
3219 hard registers. */
3221 enum insn_code icode;
3222 rtx op0, op1;
3224 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3225 unsignedp);
3227 op0 = parmreg;
3228 op1 = validated_mem;
3229 if (icode != CODE_FOR_nothing
3230 && insn_operand_matches (icode, 0, op0)
3231 && insn_operand_matches (icode, 1, op1))
3233 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3234 rtx_insn *insn, *insns;
3235 rtx t = op1;
3236 HARD_REG_SET hardregs;
3238 start_sequence ();
3239 /* If op1 is a hard register that is likely spilled, first
3240 force it into a pseudo, otherwise combiner might extend
3241 its lifetime too much. */
3242 if (GET_CODE (t) == SUBREG)
3243 t = SUBREG_REG (t);
3244 if (REG_P (t)
3245 && HARD_REGISTER_P (t)
3246 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3247 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3249 t = gen_reg_rtx (GET_MODE (op1));
3250 emit_move_insn (t, op1);
3252 else
3253 t = op1;
3254 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3255 data->passed_mode, unsignedp);
3256 emit_insn (pat);
3257 insns = get_insns ();
3259 moved = true;
3260 CLEAR_HARD_REG_SET (hardregs);
3261 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3263 if (INSN_P (insn))
3264 note_stores (PATTERN (insn), record_hard_reg_sets,
3265 &hardregs);
3266 if (!hard_reg_set_empty_p (hardregs))
3267 moved = false;
3270 end_sequence ();
3272 if (moved)
3274 emit_insn (insns);
3275 if (equiv_stack_parm != NULL_RTX)
3276 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3277 equiv_stack_parm);
3282 if (moved)
3283 /* Nothing to do. */
3285 else if (need_conversion)
3287 /* We did not have an insn to convert directly, or the sequence
3288 generated appeared unsafe. We must first copy the parm to a
3289 pseudo reg, and save the conversion until after all
3290 parameters have been moved. */
3292 int save_tree_used;
3293 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3295 emit_move_insn (tempreg, validated_mem);
3297 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3298 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3300 if (partial_subreg_p (tempreg)
3301 && GET_MODE (tempreg) == data->nominal_mode
3302 && REG_P (SUBREG_REG (tempreg))
3303 && data->nominal_mode == data->passed_mode
3304 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3306 /* The argument is already sign/zero extended, so note it
3307 into the subreg. */
3308 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3309 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3312 /* TREE_USED gets set erroneously during expand_assignment. */
3313 save_tree_used = TREE_USED (parm);
3314 SET_DECL_RTL (parm, rtl);
3315 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3316 SET_DECL_RTL (parm, NULL_RTX);
3317 TREE_USED (parm) = save_tree_used;
3318 all->first_conversion_insn = get_insns ();
3319 all->last_conversion_insn = get_last_insn ();
3320 end_sequence ();
3322 did_conversion = true;
3324 else
3325 emit_move_insn (parmreg, validated_mem);
3327 /* If we were passed a pointer but the actual value can safely live
3328 in a register, retrieve it and use it directly. */
3329 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3331 /* We can't use nominal_mode, because it will have been set to
3332 Pmode above. We must use the actual mode of the parm. */
3333 if (use_register_for_decl (parm))
3335 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3336 mark_user_reg (parmreg);
3338 else
3340 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3341 TYPE_MODE (TREE_TYPE (parm)),
3342 TYPE_ALIGN (TREE_TYPE (parm)));
3343 parmreg
3344 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3345 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3346 align);
3347 set_mem_attributes (parmreg, parm, 1);
3350 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3351 the debug info in case it is not legitimate. */
3352 if (GET_MODE (parmreg) != GET_MODE (rtl))
3354 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3355 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3357 push_to_sequence2 (all->first_conversion_insn,
3358 all->last_conversion_insn);
3359 emit_move_insn (tempreg, rtl);
3360 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3361 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3362 tempreg);
3363 all->first_conversion_insn = get_insns ();
3364 all->last_conversion_insn = get_last_insn ();
3365 end_sequence ();
3367 did_conversion = true;
3369 else
3370 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3372 rtl = parmreg;
3374 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3375 now the parm. */
3376 data->stack_parm = NULL;
3379 set_parm_rtl (parm, rtl);
3381 /* Mark the register as eliminable if we did no conversion and it was
3382 copied from memory at a fixed offset, and the arg pointer was not
3383 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3384 offset formed an invalid address, such memory-equivalences as we
3385 make here would screw up life analysis for it. */
3386 if (data->nominal_mode == data->passed_mode
3387 && !did_conversion
3388 && data->stack_parm != 0
3389 && MEM_P (data->stack_parm)
3390 && data->locate.offset.var == 0
3391 && reg_mentioned_p (virtual_incoming_args_rtx,
3392 XEXP (data->stack_parm, 0)))
3394 rtx_insn *linsn = get_last_insn ();
3395 rtx_insn *sinsn;
3396 rtx set;
3398 /* Mark complex types separately. */
3399 if (GET_CODE (parmreg) == CONCAT)
3401 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3402 int regnor = REGNO (XEXP (parmreg, 0));
3403 int regnoi = REGNO (XEXP (parmreg, 1));
3404 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3405 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3406 GET_MODE_SIZE (submode));
3408 /* Scan backwards for the set of the real and
3409 imaginary parts. */
3410 for (sinsn = linsn; sinsn != 0;
3411 sinsn = prev_nonnote_insn (sinsn))
3413 set = single_set (sinsn);
3414 if (set == 0)
3415 continue;
3417 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3418 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3419 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3420 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3423 else
3424 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3427 /* For pointer data type, suggest pointer register. */
3428 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3429 mark_reg_pointer (parmreg,
3430 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3433 /* A subroutine of assign_parms. Allocate stack space to hold the current
3434 parameter. Get it there. Perform all ABI specified conversions. */
3436 static void
3437 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3438 struct assign_parm_data_one *data)
3440 /* Value must be stored in the stack slot STACK_PARM during function
3441 execution. */
3442 bool to_conversion = false;
3444 assign_parm_remove_parallels (data);
3446 if (data->promoted_mode != data->nominal_mode)
3448 /* Conversion is required. */
3449 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3451 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3453 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3454 to_conversion = true;
3456 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3457 TYPE_UNSIGNED (TREE_TYPE (parm)));
3459 if (data->stack_parm)
3461 poly_int64 offset
3462 = subreg_lowpart_offset (data->nominal_mode,
3463 GET_MODE (data->stack_parm));
3464 /* ??? This may need a big-endian conversion on sparc64. */
3465 data->stack_parm
3466 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3467 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3468 set_mem_offset (data->stack_parm,
3469 MEM_OFFSET (data->stack_parm) + offset);
3473 if (data->entry_parm != data->stack_parm)
3475 rtx src, dest;
3477 if (data->stack_parm == 0)
3479 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3480 GET_MODE (data->entry_parm),
3481 TYPE_ALIGN (data->passed_type));
3482 data->stack_parm
3483 = assign_stack_local (GET_MODE (data->entry_parm),
3484 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3485 align);
3486 set_mem_attributes (data->stack_parm, parm, 1);
3489 dest = validize_mem (copy_rtx (data->stack_parm));
3490 src = validize_mem (copy_rtx (data->entry_parm));
3492 if (MEM_P (src))
3494 /* Use a block move to handle potentially misaligned entry_parm. */
3495 if (!to_conversion)
3496 push_to_sequence2 (all->first_conversion_insn,
3497 all->last_conversion_insn);
3498 to_conversion = true;
3500 emit_block_move (dest, src,
3501 GEN_INT (int_size_in_bytes (data->passed_type)),
3502 BLOCK_OP_NORMAL);
3504 else
3506 if (!REG_P (src))
3507 src = force_reg (GET_MODE (src), src);
3508 emit_move_insn (dest, src);
3512 if (to_conversion)
3514 all->first_conversion_insn = get_insns ();
3515 all->last_conversion_insn = get_last_insn ();
3516 end_sequence ();
3519 set_parm_rtl (parm, data->stack_parm);
3522 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3523 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3525 static void
3526 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3527 vec<tree> fnargs)
3529 tree parm;
3530 tree orig_fnargs = all->orig_fnargs;
3531 unsigned i = 0;
3533 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3535 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3536 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3538 rtx tmp, real, imag;
3539 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3541 real = DECL_RTL (fnargs[i]);
3542 imag = DECL_RTL (fnargs[i + 1]);
3543 if (inner != GET_MODE (real))
3545 real = gen_lowpart_SUBREG (inner, real);
3546 imag = gen_lowpart_SUBREG (inner, imag);
3549 if (TREE_ADDRESSABLE (parm))
3551 rtx rmem, imem;
3552 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3553 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3554 DECL_MODE (parm),
3555 TYPE_ALIGN (TREE_TYPE (parm)));
3557 /* split_complex_arg put the real and imag parts in
3558 pseudos. Move them to memory. */
3559 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3560 set_mem_attributes (tmp, parm, 1);
3561 rmem = adjust_address_nv (tmp, inner, 0);
3562 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3563 push_to_sequence2 (all->first_conversion_insn,
3564 all->last_conversion_insn);
3565 emit_move_insn (rmem, real);
3566 emit_move_insn (imem, imag);
3567 all->first_conversion_insn = get_insns ();
3568 all->last_conversion_insn = get_last_insn ();
3569 end_sequence ();
3571 else
3572 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3573 set_parm_rtl (parm, tmp);
3575 real = DECL_INCOMING_RTL (fnargs[i]);
3576 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3577 if (inner != GET_MODE (real))
3579 real = gen_lowpart_SUBREG (inner, real);
3580 imag = gen_lowpart_SUBREG (inner, imag);
3582 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3583 set_decl_incoming_rtl (parm, tmp, false);
3584 i++;
3589 /* Assign RTL expressions to the function's parameters. This may involve
3590 copying them into registers and using those registers as the DECL_RTL. */
3592 static void
3593 assign_parms (tree fndecl)
3595 struct assign_parm_data_all all;
3596 tree parm;
3597 vec<tree> fnargs;
3598 unsigned i;
3600 crtl->args.internal_arg_pointer
3601 = targetm.calls.internal_arg_pointer ();
3603 assign_parms_initialize_all (&all);
3604 fnargs = assign_parms_augmented_arg_list (&all);
3606 FOR_EACH_VEC_ELT (fnargs, i, parm)
3608 struct assign_parm_data_one data;
3610 /* Extract the type of PARM; adjust it according to ABI. */
3611 assign_parm_find_data_types (&all, parm, &data);
3613 /* Early out for errors and void parameters. */
3614 if (data.passed_mode == VOIDmode)
3616 SET_DECL_RTL (parm, const0_rtx);
3617 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3618 continue;
3621 /* Estimate stack alignment from parameter alignment. */
3622 if (SUPPORTS_STACK_ALIGNMENT)
3624 unsigned int align
3625 = targetm.calls.function_arg_boundary (data.promoted_mode,
3626 data.passed_type);
3627 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3628 align);
3629 if (TYPE_ALIGN (data.nominal_type) > align)
3630 align = MINIMUM_ALIGNMENT (data.nominal_type,
3631 TYPE_MODE (data.nominal_type),
3632 TYPE_ALIGN (data.nominal_type));
3633 if (crtl->stack_alignment_estimated < align)
3635 gcc_assert (!crtl->stack_realign_processed);
3636 crtl->stack_alignment_estimated = align;
3640 /* Find out where the parameter arrives in this function. */
3641 assign_parm_find_entry_rtl (&all, &data);
3643 /* Find out where stack space for this parameter might be. */
3644 if (assign_parm_is_stack_parm (&all, &data))
3646 assign_parm_find_stack_rtl (parm, &data);
3647 assign_parm_adjust_entry_rtl (&data);
3649 /* Record permanently how this parm was passed. */
3650 if (data.passed_pointer)
3652 rtx incoming_rtl
3653 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3654 data.entry_parm);
3655 set_decl_incoming_rtl (parm, incoming_rtl, true);
3657 else
3658 set_decl_incoming_rtl (parm, data.entry_parm, false);
3660 assign_parm_adjust_stack_rtl (&data);
3662 if (assign_parm_setup_block_p (&data))
3663 assign_parm_setup_block (&all, parm, &data);
3664 else if (data.passed_pointer || use_register_for_decl (parm))
3665 assign_parm_setup_reg (&all, parm, &data);
3666 else
3667 assign_parm_setup_stack (&all, parm, &data);
3669 if (cfun->stdarg && !DECL_CHAIN (parm))
3670 assign_parms_setup_varargs (&all, &data, false);
3672 /* Update info on where next arg arrives in registers. */
3673 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3674 data.passed_type, data.named_arg);
3677 if (targetm.calls.split_complex_arg)
3678 assign_parms_unsplit_complex (&all, fnargs);
3680 fnargs.release ();
3682 /* Output all parameter conversion instructions (possibly including calls)
3683 now that all parameters have been copied out of hard registers. */
3684 emit_insn (all.first_conversion_insn);
3686 /* Estimate reload stack alignment from scalar return mode. */
3687 if (SUPPORTS_STACK_ALIGNMENT)
3689 if (DECL_RESULT (fndecl))
3691 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3692 machine_mode mode = TYPE_MODE (type);
3694 if (mode != BLKmode
3695 && mode != VOIDmode
3696 && !AGGREGATE_TYPE_P (type))
3698 unsigned int align = GET_MODE_ALIGNMENT (mode);
3699 if (crtl->stack_alignment_estimated < align)
3701 gcc_assert (!crtl->stack_realign_processed);
3702 crtl->stack_alignment_estimated = align;
3708 /* If we are receiving a struct value address as the first argument, set up
3709 the RTL for the function result. As this might require code to convert
3710 the transmitted address to Pmode, we do this here to ensure that possible
3711 preliminary conversions of the address have been emitted already. */
3712 if (all.function_result_decl)
3714 tree result = DECL_RESULT (current_function_decl);
3715 rtx addr = DECL_RTL (all.function_result_decl);
3716 rtx x;
3718 if (DECL_BY_REFERENCE (result))
3720 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3721 x = addr;
3723 else
3725 SET_DECL_VALUE_EXPR (result,
3726 build1 (INDIRECT_REF, TREE_TYPE (result),
3727 all.function_result_decl));
3728 addr = convert_memory_address (Pmode, addr);
3729 x = gen_rtx_MEM (DECL_MODE (result), addr);
3730 set_mem_attributes (x, result, 1);
3733 DECL_HAS_VALUE_EXPR_P (result) = 1;
3735 set_parm_rtl (result, x);
3738 /* We have aligned all the args, so add space for the pretend args. */
3739 crtl->args.pretend_args_size = all.pretend_args_size;
3740 all.stack_args_size.constant += all.extra_pretend_bytes;
3741 crtl->args.size = all.stack_args_size.constant;
3743 /* Adjust function incoming argument size for alignment and
3744 minimum length. */
3746 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3747 crtl->args.size = aligned_upper_bound (crtl->args.size,
3748 PARM_BOUNDARY / BITS_PER_UNIT);
3750 if (ARGS_GROW_DOWNWARD)
3752 crtl->args.arg_offset_rtx
3753 = (all.stack_args_size.var == 0
3754 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3755 : expand_expr (size_diffop (all.stack_args_size.var,
3756 size_int (-all.stack_args_size.constant)),
3757 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3759 else
3760 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3762 /* See how many bytes, if any, of its args a function should try to pop
3763 on return. */
3765 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3766 TREE_TYPE (fndecl),
3767 crtl->args.size);
3769 /* For stdarg.h function, save info about
3770 regs and stack space used by the named args. */
3772 crtl->args.info = all.args_so_far_v;
3774 /* Set the rtx used for the function return value. Put this in its
3775 own variable so any optimizers that need this information don't have
3776 to include tree.h. Do this here so it gets done when an inlined
3777 function gets output. */
3779 crtl->return_rtx
3780 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3781 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3783 /* If scalar return value was computed in a pseudo-reg, or was a named
3784 return value that got dumped to the stack, copy that to the hard
3785 return register. */
3786 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3788 tree decl_result = DECL_RESULT (fndecl);
3789 rtx decl_rtl = DECL_RTL (decl_result);
3791 if (REG_P (decl_rtl)
3792 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3793 : DECL_REGISTER (decl_result))
3795 rtx real_decl_rtl;
3797 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3798 fndecl, true);
3799 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3800 /* The delay slot scheduler assumes that crtl->return_rtx
3801 holds the hard register containing the return value, not a
3802 temporary pseudo. */
3803 crtl->return_rtx = real_decl_rtl;
3808 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3809 For all seen types, gimplify their sizes. */
3811 static tree
3812 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3814 tree t = *tp;
3816 *walk_subtrees = 0;
3817 if (TYPE_P (t))
3819 if (POINTER_TYPE_P (t))
3820 *walk_subtrees = 1;
3821 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3822 && !TYPE_SIZES_GIMPLIFIED (t))
3824 gimplify_type_sizes (t, (gimple_seq *) data);
3825 *walk_subtrees = 1;
3829 return NULL;
3832 /* Gimplify the parameter list for current_function_decl. This involves
3833 evaluating SAVE_EXPRs of variable sized parameters and generating code
3834 to implement callee-copies reference parameters. Returns a sequence of
3835 statements to add to the beginning of the function. */
3837 gimple_seq
3838 gimplify_parameters (gimple_seq *cleanup)
3840 struct assign_parm_data_all all;
3841 tree parm;
3842 gimple_seq stmts = NULL;
3843 vec<tree> fnargs;
3844 unsigned i;
3846 assign_parms_initialize_all (&all);
3847 fnargs = assign_parms_augmented_arg_list (&all);
3849 FOR_EACH_VEC_ELT (fnargs, i, parm)
3851 struct assign_parm_data_one data;
3853 /* Extract the type of PARM; adjust it according to ABI. */
3854 assign_parm_find_data_types (&all, parm, &data);
3856 /* Early out for errors and void parameters. */
3857 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3858 continue;
3860 /* Update info on where next arg arrives in registers. */
3861 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3862 data.passed_type, data.named_arg);
3864 /* ??? Once upon a time variable_size stuffed parameter list
3865 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3866 turned out to be less than manageable in the gimple world.
3867 Now we have to hunt them down ourselves. */
3868 walk_tree_without_duplicates (&data.passed_type,
3869 gimplify_parm_type, &stmts);
3871 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3873 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3874 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3877 if (data.passed_pointer)
3879 tree type = TREE_TYPE (data.passed_type);
3880 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3881 type, data.named_arg))
3883 tree local, t;
3885 /* For constant-sized objects, this is trivial; for
3886 variable-sized objects, we have to play games. */
3887 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3888 && !(flag_stack_check == GENERIC_STACK_CHECK
3889 && compare_tree_int (DECL_SIZE_UNIT (parm),
3890 STACK_CHECK_MAX_VAR_SIZE) > 0))
3892 local = create_tmp_var (type, get_name (parm));
3893 DECL_IGNORED_P (local) = 0;
3894 /* If PARM was addressable, move that flag over
3895 to the local copy, as its address will be taken,
3896 not the PARMs. Keep the parms address taken
3897 as we'll query that flag during gimplification. */
3898 if (TREE_ADDRESSABLE (parm))
3899 TREE_ADDRESSABLE (local) = 1;
3900 else if (TREE_CODE (type) == COMPLEX_TYPE
3901 || TREE_CODE (type) == VECTOR_TYPE)
3902 DECL_GIMPLE_REG_P (local) = 1;
3904 if (!is_gimple_reg (local)
3905 && flag_stack_reuse != SR_NONE)
3907 tree clobber = build_constructor (type, NULL);
3908 gimple *clobber_stmt;
3909 TREE_THIS_VOLATILE (clobber) = 1;
3910 clobber_stmt = gimple_build_assign (local, clobber);
3911 gimple_seq_add_stmt (cleanup, clobber_stmt);
3914 else
3916 tree ptr_type, addr;
3918 ptr_type = build_pointer_type (type);
3919 addr = create_tmp_reg (ptr_type, get_name (parm));
3920 DECL_IGNORED_P (addr) = 0;
3921 local = build_fold_indirect_ref (addr);
3923 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3924 DECL_ALIGN (parm),
3925 max_int_size_in_bytes (type));
3926 /* The call has been built for a variable-sized object. */
3927 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3928 t = fold_convert (ptr_type, t);
3929 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3930 gimplify_and_add (t, &stmts);
3933 gimplify_assign (local, parm, &stmts);
3935 SET_DECL_VALUE_EXPR (parm, local);
3936 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3941 fnargs.release ();
3943 return stmts;
3946 /* Compute the size and offset from the start of the stacked arguments for a
3947 parm passed in mode PASSED_MODE and with type TYPE.
3949 INITIAL_OFFSET_PTR points to the current offset into the stacked
3950 arguments.
3952 The starting offset and size for this parm are returned in
3953 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3954 nonzero, the offset is that of stack slot, which is returned in
3955 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3956 padding required from the initial offset ptr to the stack slot.
3958 IN_REGS is nonzero if the argument will be passed in registers. It will
3959 never be set if REG_PARM_STACK_SPACE is not defined.
3961 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3962 for arguments which are passed in registers.
3964 FNDECL is the function in which the argument was defined.
3966 There are two types of rounding that are done. The first, controlled by
3967 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3968 argument list to be aligned to the specific boundary (in bits). This
3969 rounding affects the initial and starting offsets, but not the argument
3970 size.
3972 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3973 optionally rounds the size of the parm to PARM_BOUNDARY. The
3974 initial offset is not affected by this rounding, while the size always
3975 is and the starting offset may be. */
3977 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3978 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3979 callers pass in the total size of args so far as
3980 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3982 void
3983 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
3984 int reg_parm_stack_space, int partial,
3985 tree fndecl ATTRIBUTE_UNUSED,
3986 struct args_size *initial_offset_ptr,
3987 struct locate_and_pad_arg_data *locate)
3989 tree sizetree;
3990 pad_direction where_pad;
3991 unsigned int boundary, round_boundary;
3992 int part_size_in_regs;
3994 /* If we have found a stack parm before we reach the end of the
3995 area reserved for registers, skip that area. */
3996 if (! in_regs)
3998 if (reg_parm_stack_space > 0)
4000 if (initial_offset_ptr->var
4001 || !ordered_p (initial_offset_ptr->constant,
4002 reg_parm_stack_space))
4004 initial_offset_ptr->var
4005 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4006 ssize_int (reg_parm_stack_space));
4007 initial_offset_ptr->constant = 0;
4009 else
4010 initial_offset_ptr->constant
4011 = ordered_max (initial_offset_ptr->constant,
4012 reg_parm_stack_space);
4016 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4018 sizetree = (type
4019 ? arg_size_in_bytes (type)
4020 : size_int (GET_MODE_SIZE (passed_mode)));
4021 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4022 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4023 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4024 type);
4025 locate->where_pad = where_pad;
4027 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4028 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4029 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4031 locate->boundary = boundary;
4033 if (SUPPORTS_STACK_ALIGNMENT)
4035 /* stack_alignment_estimated can't change after stack has been
4036 realigned. */
4037 if (crtl->stack_alignment_estimated < boundary)
4039 if (!crtl->stack_realign_processed)
4040 crtl->stack_alignment_estimated = boundary;
4041 else
4043 /* If stack is realigned and stack alignment value
4044 hasn't been finalized, it is OK not to increase
4045 stack_alignment_estimated. The bigger alignment
4046 requirement is recorded in stack_alignment_needed
4047 below. */
4048 gcc_assert (!crtl->stack_realign_finalized
4049 && crtl->stack_realign_needed);
4054 /* Remember if the outgoing parameter requires extra alignment on the
4055 calling function side. */
4056 if (crtl->stack_alignment_needed < boundary)
4057 crtl->stack_alignment_needed = boundary;
4058 if (crtl->preferred_stack_boundary < boundary)
4059 crtl->preferred_stack_boundary = boundary;
4061 if (ARGS_GROW_DOWNWARD)
4063 locate->slot_offset.constant = -initial_offset_ptr->constant;
4064 if (initial_offset_ptr->var)
4065 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4066 initial_offset_ptr->var);
4069 tree s2 = sizetree;
4070 if (where_pad != PAD_NONE
4071 && (!tree_fits_uhwi_p (sizetree)
4072 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4073 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4074 SUB_PARM_SIZE (locate->slot_offset, s2);
4077 locate->slot_offset.constant += part_size_in_regs;
4079 if (!in_regs || reg_parm_stack_space > 0)
4080 pad_to_arg_alignment (&locate->slot_offset, boundary,
4081 &locate->alignment_pad);
4083 locate->size.constant = (-initial_offset_ptr->constant
4084 - locate->slot_offset.constant);
4085 if (initial_offset_ptr->var)
4086 locate->size.var = size_binop (MINUS_EXPR,
4087 size_binop (MINUS_EXPR,
4088 ssize_int (0),
4089 initial_offset_ptr->var),
4090 locate->slot_offset.var);
4092 /* Pad_below needs the pre-rounded size to know how much to pad
4093 below. */
4094 locate->offset = locate->slot_offset;
4095 if (where_pad == PAD_DOWNWARD)
4096 pad_below (&locate->offset, passed_mode, sizetree);
4099 else
4101 if (!in_regs || reg_parm_stack_space > 0)
4102 pad_to_arg_alignment (initial_offset_ptr, boundary,
4103 &locate->alignment_pad);
4104 locate->slot_offset = *initial_offset_ptr;
4106 #ifdef PUSH_ROUNDING
4107 if (passed_mode != BLKmode)
4108 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4109 #endif
4111 /* Pad_below needs the pre-rounded size to know how much to pad below
4112 so this must be done before rounding up. */
4113 locate->offset = locate->slot_offset;
4114 if (where_pad == PAD_DOWNWARD)
4115 pad_below (&locate->offset, passed_mode, sizetree);
4117 if (where_pad != PAD_NONE
4118 && (!tree_fits_uhwi_p (sizetree)
4119 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4120 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4122 ADD_PARM_SIZE (locate->size, sizetree);
4124 locate->size.constant -= part_size_in_regs;
4127 locate->offset.constant
4128 += targetm.calls.function_arg_offset (passed_mode, type);
4131 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4132 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4134 static void
4135 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4136 struct args_size *alignment_pad)
4138 tree save_var = NULL_TREE;
4139 poly_int64 save_constant = 0;
4140 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4141 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4143 #ifdef SPARC_STACK_BOUNDARY_HACK
4144 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4145 the real alignment of %sp. However, when it does this, the
4146 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4147 if (SPARC_STACK_BOUNDARY_HACK)
4148 sp_offset = 0;
4149 #endif
4151 if (boundary > PARM_BOUNDARY)
4153 save_var = offset_ptr->var;
4154 save_constant = offset_ptr->constant;
4157 alignment_pad->var = NULL_TREE;
4158 alignment_pad->constant = 0;
4160 if (boundary > BITS_PER_UNIT)
4162 int misalign;
4163 if (offset_ptr->var
4164 || !known_misalignment (offset_ptr->constant + sp_offset,
4165 boundary_in_bytes, &misalign))
4167 tree sp_offset_tree = ssize_int (sp_offset);
4168 tree offset = size_binop (PLUS_EXPR,
4169 ARGS_SIZE_TREE (*offset_ptr),
4170 sp_offset_tree);
4171 tree rounded;
4172 if (ARGS_GROW_DOWNWARD)
4173 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4174 else
4175 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4177 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4178 /* ARGS_SIZE_TREE includes constant term. */
4179 offset_ptr->constant = 0;
4180 if (boundary > PARM_BOUNDARY)
4181 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4182 save_var);
4184 else
4186 if (ARGS_GROW_DOWNWARD)
4187 offset_ptr->constant -= misalign;
4188 else
4189 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4191 if (boundary > PARM_BOUNDARY)
4192 alignment_pad->constant = offset_ptr->constant - save_constant;
4197 static void
4198 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4200 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4201 int misalign;
4202 if (passed_mode != BLKmode
4203 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4204 offset_ptr->constant += -misalign & (align - 1);
4205 else
4207 if (TREE_CODE (sizetree) != INTEGER_CST
4208 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4210 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4211 tree s2 = round_up (sizetree, align);
4212 /* Add it in. */
4213 ADD_PARM_SIZE (*offset_ptr, s2);
4214 SUB_PARM_SIZE (*offset_ptr, sizetree);
4220 /* True if register REGNO was alive at a place where `setjmp' was
4221 called and was set more than once or is an argument. Such regs may
4222 be clobbered by `longjmp'. */
4224 static bool
4225 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4227 /* There appear to be cases where some local vars never reach the
4228 backend but have bogus regnos. */
4229 if (regno >= max_reg_num ())
4230 return false;
4232 return ((REG_N_SETS (regno) > 1
4233 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4234 regno))
4235 && REGNO_REG_SET_P (setjmp_crosses, regno));
4238 /* Walk the tree of blocks describing the binding levels within a
4239 function and warn about variables the might be killed by setjmp or
4240 vfork. This is done after calling flow_analysis before register
4241 allocation since that will clobber the pseudo-regs to hard
4242 regs. */
4244 static void
4245 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4247 tree decl, sub;
4249 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4251 if (VAR_P (decl)
4252 && DECL_RTL_SET_P (decl)
4253 && REG_P (DECL_RTL (decl))
4254 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4255 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4256 " %<longjmp%> or %<vfork%>", decl);
4259 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4260 setjmp_vars_warning (setjmp_crosses, sub);
4263 /* Do the appropriate part of setjmp_vars_warning
4264 but for arguments instead of local variables. */
4266 static void
4267 setjmp_args_warning (bitmap setjmp_crosses)
4269 tree decl;
4270 for (decl = DECL_ARGUMENTS (current_function_decl);
4271 decl; decl = DECL_CHAIN (decl))
4272 if (DECL_RTL (decl) != 0
4273 && REG_P (DECL_RTL (decl))
4274 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4275 warning (OPT_Wclobbered,
4276 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4277 decl);
4280 /* Generate warning messages for variables live across setjmp. */
4282 void
4283 generate_setjmp_warnings (void)
4285 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4287 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4288 || bitmap_empty_p (setjmp_crosses))
4289 return;
4291 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4292 setjmp_args_warning (setjmp_crosses);
4296 /* Reverse the order of elements in the fragment chain T of blocks,
4297 and return the new head of the chain (old last element).
4298 In addition to that clear BLOCK_SAME_RANGE flags when needed
4299 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4300 its super fragment origin. */
4302 static tree
4303 block_fragments_nreverse (tree t)
4305 tree prev = 0, block, next, prev_super = 0;
4306 tree super = BLOCK_SUPERCONTEXT (t);
4307 if (BLOCK_FRAGMENT_ORIGIN (super))
4308 super = BLOCK_FRAGMENT_ORIGIN (super);
4309 for (block = t; block; block = next)
4311 next = BLOCK_FRAGMENT_CHAIN (block);
4312 BLOCK_FRAGMENT_CHAIN (block) = prev;
4313 if ((prev && !BLOCK_SAME_RANGE (prev))
4314 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4315 != prev_super))
4316 BLOCK_SAME_RANGE (block) = 0;
4317 prev_super = BLOCK_SUPERCONTEXT (block);
4318 BLOCK_SUPERCONTEXT (block) = super;
4319 prev = block;
4321 t = BLOCK_FRAGMENT_ORIGIN (t);
4322 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4323 != prev_super)
4324 BLOCK_SAME_RANGE (t) = 0;
4325 BLOCK_SUPERCONTEXT (t) = super;
4326 return prev;
4329 /* Reverse the order of elements in the chain T of blocks,
4330 and return the new head of the chain (old last element).
4331 Also do the same on subblocks and reverse the order of elements
4332 in BLOCK_FRAGMENT_CHAIN as well. */
4334 static tree
4335 blocks_nreverse_all (tree t)
4337 tree prev = 0, block, next;
4338 for (block = t; block; block = next)
4340 next = BLOCK_CHAIN (block);
4341 BLOCK_CHAIN (block) = prev;
4342 if (BLOCK_FRAGMENT_CHAIN (block)
4343 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4345 BLOCK_FRAGMENT_CHAIN (block)
4346 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4347 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4348 BLOCK_SAME_RANGE (block) = 0;
4350 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4351 prev = block;
4353 return prev;
4357 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4358 and create duplicate blocks. */
4359 /* ??? Need an option to either create block fragments or to create
4360 abstract origin duplicates of a source block. It really depends
4361 on what optimization has been performed. */
4363 void
4364 reorder_blocks (void)
4366 tree block = DECL_INITIAL (current_function_decl);
4368 if (block == NULL_TREE)
4369 return;
4371 auto_vec<tree, 10> block_stack;
4373 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4374 clear_block_marks (block);
4376 /* Prune the old trees away, so that they don't get in the way. */
4377 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4378 BLOCK_CHAIN (block) = NULL_TREE;
4380 /* Recreate the block tree from the note nesting. */
4381 reorder_blocks_1 (get_insns (), block, &block_stack);
4382 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4385 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4387 void
4388 clear_block_marks (tree block)
4390 while (block)
4392 TREE_ASM_WRITTEN (block) = 0;
4393 clear_block_marks (BLOCK_SUBBLOCKS (block));
4394 block = BLOCK_CHAIN (block);
4398 static void
4399 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4400 vec<tree> *p_block_stack)
4402 rtx_insn *insn;
4403 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4405 for (insn = insns; insn; insn = NEXT_INSN (insn))
4407 if (NOTE_P (insn))
4409 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4411 tree block = NOTE_BLOCK (insn);
4412 tree origin;
4414 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4415 origin = block;
4417 if (prev_end)
4418 BLOCK_SAME_RANGE (prev_end) = 0;
4419 prev_end = NULL_TREE;
4421 /* If we have seen this block before, that means it now
4422 spans multiple address regions. Create a new fragment. */
4423 if (TREE_ASM_WRITTEN (block))
4425 tree new_block = copy_node (block);
4427 BLOCK_SAME_RANGE (new_block) = 0;
4428 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4429 BLOCK_FRAGMENT_CHAIN (new_block)
4430 = BLOCK_FRAGMENT_CHAIN (origin);
4431 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4433 NOTE_BLOCK (insn) = new_block;
4434 block = new_block;
4437 if (prev_beg == current_block && prev_beg)
4438 BLOCK_SAME_RANGE (block) = 1;
4440 prev_beg = origin;
4442 BLOCK_SUBBLOCKS (block) = 0;
4443 TREE_ASM_WRITTEN (block) = 1;
4444 /* When there's only one block for the entire function,
4445 current_block == block and we mustn't do this, it
4446 will cause infinite recursion. */
4447 if (block != current_block)
4449 tree super;
4450 if (block != origin)
4451 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4452 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4453 (origin))
4454 == current_block);
4455 if (p_block_stack->is_empty ())
4456 super = current_block;
4457 else
4459 super = p_block_stack->last ();
4460 gcc_assert (super == current_block
4461 || BLOCK_FRAGMENT_ORIGIN (super)
4462 == current_block);
4464 BLOCK_SUPERCONTEXT (block) = super;
4465 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4466 BLOCK_SUBBLOCKS (current_block) = block;
4467 current_block = origin;
4469 p_block_stack->safe_push (block);
4471 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4473 NOTE_BLOCK (insn) = p_block_stack->pop ();
4474 current_block = BLOCK_SUPERCONTEXT (current_block);
4475 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4476 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4477 prev_beg = NULL_TREE;
4478 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4479 ? NOTE_BLOCK (insn) : NULL_TREE;
4482 else
4484 prev_beg = NULL_TREE;
4485 if (prev_end)
4486 BLOCK_SAME_RANGE (prev_end) = 0;
4487 prev_end = NULL_TREE;
4492 /* Reverse the order of elements in the chain T of blocks,
4493 and return the new head of the chain (old last element). */
4495 tree
4496 blocks_nreverse (tree t)
4498 tree prev = 0, block, next;
4499 for (block = t; block; block = next)
4501 next = BLOCK_CHAIN (block);
4502 BLOCK_CHAIN (block) = prev;
4503 prev = block;
4505 return prev;
4508 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4509 by modifying the last node in chain 1 to point to chain 2. */
4511 tree
4512 block_chainon (tree op1, tree op2)
4514 tree t1;
4516 if (!op1)
4517 return op2;
4518 if (!op2)
4519 return op1;
4521 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4522 continue;
4523 BLOCK_CHAIN (t1) = op2;
4525 #ifdef ENABLE_TREE_CHECKING
4527 tree t2;
4528 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4529 gcc_assert (t2 != t1);
4531 #endif
4533 return op1;
4536 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4537 non-NULL, list them all into VECTOR, in a depth-first preorder
4538 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4539 blocks. */
4541 static int
4542 all_blocks (tree block, tree *vector)
4544 int n_blocks = 0;
4546 while (block)
4548 TREE_ASM_WRITTEN (block) = 0;
4550 /* Record this block. */
4551 if (vector)
4552 vector[n_blocks] = block;
4554 ++n_blocks;
4556 /* Record the subblocks, and their subblocks... */
4557 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4558 vector ? vector + n_blocks : 0);
4559 block = BLOCK_CHAIN (block);
4562 return n_blocks;
4565 /* Return a vector containing all the blocks rooted at BLOCK. The
4566 number of elements in the vector is stored in N_BLOCKS_P. The
4567 vector is dynamically allocated; it is the caller's responsibility
4568 to call `free' on the pointer returned. */
4570 static tree *
4571 get_block_vector (tree block, int *n_blocks_p)
4573 tree *block_vector;
4575 *n_blocks_p = all_blocks (block, NULL);
4576 block_vector = XNEWVEC (tree, *n_blocks_p);
4577 all_blocks (block, block_vector);
4579 return block_vector;
4582 static GTY(()) int next_block_index = 2;
4584 /* Set BLOCK_NUMBER for all the blocks in FN. */
4586 void
4587 number_blocks (tree fn)
4589 int i;
4590 int n_blocks;
4591 tree *block_vector;
4593 /* For XCOFF debugging output, we start numbering the blocks
4594 from 1 within each function, rather than keeping a running
4595 count. */
4596 #if defined (XCOFF_DEBUGGING_INFO)
4597 if (write_symbols == XCOFF_DEBUG)
4598 next_block_index = 1;
4599 #endif
4601 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4603 /* The top-level BLOCK isn't numbered at all. */
4604 for (i = 1; i < n_blocks; ++i)
4605 /* We number the blocks from two. */
4606 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4608 free (block_vector);
4610 return;
4613 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4615 DEBUG_FUNCTION tree
4616 debug_find_var_in_block_tree (tree var, tree block)
4618 tree t;
4620 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4621 if (t == var)
4622 return block;
4624 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4626 tree ret = debug_find_var_in_block_tree (var, t);
4627 if (ret)
4628 return ret;
4631 return NULL_TREE;
4634 /* Keep track of whether we're in a dummy function context. If we are,
4635 we don't want to invoke the set_current_function hook, because we'll
4636 get into trouble if the hook calls target_reinit () recursively or
4637 when the initial initialization is not yet complete. */
4639 static bool in_dummy_function;
4641 /* Invoke the target hook when setting cfun. Update the optimization options
4642 if the function uses different options than the default. */
4644 static void
4645 invoke_set_current_function_hook (tree fndecl)
4647 if (!in_dummy_function)
4649 tree opts = ((fndecl)
4650 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4651 : optimization_default_node);
4653 if (!opts)
4654 opts = optimization_default_node;
4656 /* Change optimization options if needed. */
4657 if (optimization_current_node != opts)
4659 optimization_current_node = opts;
4660 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4663 targetm.set_current_function (fndecl);
4664 this_fn_optabs = this_target_optabs;
4666 /* Initialize global alignment variables after op. */
4667 parse_alignment_opts ();
4669 if (opts != optimization_default_node)
4671 init_tree_optimization_optabs (opts);
4672 if (TREE_OPTIMIZATION_OPTABS (opts))
4673 this_fn_optabs = (struct target_optabs *)
4674 TREE_OPTIMIZATION_OPTABS (opts);
4679 /* cfun should never be set directly; use this function. */
4681 void
4682 set_cfun (struct function *new_cfun, bool force)
4684 if (cfun != new_cfun || force)
4686 cfun = new_cfun;
4687 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4688 redirect_edge_var_map_empty ();
4692 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4694 static vec<function *> cfun_stack;
4696 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4697 current_function_decl accordingly. */
4699 void
4700 push_cfun (struct function *new_cfun)
4702 gcc_assert ((!cfun && !current_function_decl)
4703 || (cfun && current_function_decl == cfun->decl));
4704 cfun_stack.safe_push (cfun);
4705 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4706 set_cfun (new_cfun);
4709 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4711 void
4712 pop_cfun (void)
4714 struct function *new_cfun = cfun_stack.pop ();
4715 /* When in_dummy_function, we do have a cfun but current_function_decl is
4716 NULL. We also allow pushing NULL cfun and subsequently changing
4717 current_function_decl to something else and have both restored by
4718 pop_cfun. */
4719 gcc_checking_assert (in_dummy_function
4720 || !cfun
4721 || current_function_decl == cfun->decl);
4722 set_cfun (new_cfun);
4723 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4726 /* Return value of funcdef and increase it. */
4728 get_next_funcdef_no (void)
4730 return funcdef_no++;
4733 /* Return value of funcdef. */
4735 get_last_funcdef_no (void)
4737 return funcdef_no;
4740 /* Allocate a function structure for FNDECL and set its contents
4741 to the defaults. Set cfun to the newly-allocated object.
4742 Some of the helper functions invoked during initialization assume
4743 that cfun has already been set. Therefore, assign the new object
4744 directly into cfun and invoke the back end hook explicitly at the
4745 very end, rather than initializing a temporary and calling set_cfun
4746 on it.
4748 ABSTRACT_P is true if this is a function that will never be seen by
4749 the middle-end. Such functions are front-end concepts (like C++
4750 function templates) that do not correspond directly to functions
4751 placed in object files. */
4753 void
4754 allocate_struct_function (tree fndecl, bool abstract_p)
4756 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4758 cfun = ggc_cleared_alloc<function> ();
4760 init_eh_for_function ();
4762 if (init_machine_status)
4763 cfun->machine = (*init_machine_status) ();
4765 #ifdef OVERRIDE_ABI_FORMAT
4766 OVERRIDE_ABI_FORMAT (fndecl);
4767 #endif
4769 if (fndecl != NULL_TREE)
4771 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4772 cfun->decl = fndecl;
4773 current_function_funcdef_no = get_next_funcdef_no ();
4776 invoke_set_current_function_hook (fndecl);
4778 if (fndecl != NULL_TREE)
4780 tree result = DECL_RESULT (fndecl);
4782 if (!abstract_p)
4784 /* Now that we have activated any function-specific attributes
4785 that might affect layout, particularly vector modes, relayout
4786 each of the parameters and the result. */
4787 relayout_decl (result);
4788 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4789 parm = DECL_CHAIN (parm))
4790 relayout_decl (parm);
4792 /* Similarly relayout the function decl. */
4793 targetm.target_option.relayout_function (fndecl);
4796 if (!abstract_p && aggregate_value_p (result, fndecl))
4798 #ifdef PCC_STATIC_STRUCT_RETURN
4799 cfun->returns_pcc_struct = 1;
4800 #endif
4801 cfun->returns_struct = 1;
4804 cfun->stdarg = stdarg_p (fntype);
4806 /* Assume all registers in stdarg functions need to be saved. */
4807 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4808 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4810 /* ??? This could be set on a per-function basis by the front-end
4811 but is this worth the hassle? */
4812 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4813 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4815 if (!profile_flag && !flag_instrument_function_entry_exit)
4816 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4819 /* Don't enable begin stmt markers if var-tracking at assignments is
4820 disabled. The markers make little sense without the variable
4821 binding annotations among them. */
4822 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4823 && MAY_HAVE_DEBUG_MARKER_STMTS;
4826 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4827 instead of just setting it. */
4829 void
4830 push_struct_function (tree fndecl)
4832 /* When in_dummy_function we might be in the middle of a pop_cfun and
4833 current_function_decl and cfun may not match. */
4834 gcc_assert (in_dummy_function
4835 || (!cfun && !current_function_decl)
4836 || (cfun && current_function_decl == cfun->decl));
4837 cfun_stack.safe_push (cfun);
4838 current_function_decl = fndecl;
4839 allocate_struct_function (fndecl, false);
4842 /* Reset crtl and other non-struct-function variables to defaults as
4843 appropriate for emitting rtl at the start of a function. */
4845 static void
4846 prepare_function_start (void)
4848 gcc_assert (!get_last_insn ());
4849 init_temp_slots ();
4850 init_emit ();
4851 init_varasm_status ();
4852 init_expr ();
4853 default_rtl_profile ();
4855 if (flag_stack_usage_info)
4857 cfun->su = ggc_cleared_alloc<stack_usage> ();
4858 cfun->su->static_stack_size = -1;
4861 cse_not_expected = ! optimize;
4863 /* Caller save not needed yet. */
4864 caller_save_needed = 0;
4866 /* We haven't done register allocation yet. */
4867 reg_renumber = 0;
4869 /* Indicate that we have not instantiated virtual registers yet. */
4870 virtuals_instantiated = 0;
4872 /* Indicate that we want CONCATs now. */
4873 generating_concat_p = 1;
4875 /* Indicate we have no need of a frame pointer yet. */
4876 frame_pointer_needed = 0;
4879 void
4880 push_dummy_function (bool with_decl)
4882 tree fn_decl, fn_type, fn_result_decl;
4884 gcc_assert (!in_dummy_function);
4885 in_dummy_function = true;
4887 if (with_decl)
4889 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4890 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4891 fn_type);
4892 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4893 NULL_TREE, void_type_node);
4894 DECL_RESULT (fn_decl) = fn_result_decl;
4896 else
4897 fn_decl = NULL_TREE;
4899 push_struct_function (fn_decl);
4902 /* Initialize the rtl expansion mechanism so that we can do simple things
4903 like generate sequences. This is used to provide a context during global
4904 initialization of some passes. You must call expand_dummy_function_end
4905 to exit this context. */
4907 void
4908 init_dummy_function_start (void)
4910 push_dummy_function (false);
4911 prepare_function_start ();
4914 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4915 and initialize static variables for generating RTL for the statements
4916 of the function. */
4918 void
4919 init_function_start (tree subr)
4921 /* Initialize backend, if needed. */
4922 initialize_rtl ();
4924 prepare_function_start ();
4925 decide_function_section (subr);
4927 /* Warn if this value is an aggregate type,
4928 regardless of which calling convention we are using for it. */
4929 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4930 warning (OPT_Waggregate_return, "function returns an aggregate");
4933 /* Expand code to verify the stack_protect_guard. This is invoked at
4934 the end of a function to be protected. */
4936 void
4937 stack_protect_epilogue (void)
4939 tree guard_decl = targetm.stack_protect_guard ();
4940 rtx_code_label *label = gen_label_rtx ();
4941 rtx x, y;
4942 rtx_insn *seq = NULL;
4944 x = expand_normal (crtl->stack_protect_guard);
4946 if (targetm.have_stack_protect_combined_test () && guard_decl)
4948 gcc_assert (DECL_P (guard_decl));
4949 y = DECL_RTL (guard_decl);
4950 /* Allow the target to compute address of Y and compare it with X without
4951 leaking Y into a register. This combined address + compare pattern
4952 allows the target to prevent spilling of any intermediate results by
4953 splitting it after register allocator. */
4954 seq = targetm.gen_stack_protect_combined_test (x, y, label);
4956 else
4958 if (guard_decl)
4959 y = expand_normal (guard_decl);
4960 else
4961 y = const0_rtx;
4963 /* Allow the target to compare Y with X without leaking either into
4964 a register. */
4965 if (targetm.have_stack_protect_test ())
4966 seq = targetm.gen_stack_protect_test (x, y, label);
4969 if (seq)
4970 emit_insn (seq);
4971 else
4972 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4974 /* The noreturn predictor has been moved to the tree level. The rtl-level
4975 predictors estimate this branch about 20%, which isn't enough to get
4976 things moved out of line. Since this is the only extant case of adding
4977 a noreturn function at the rtl level, it doesn't seem worth doing ought
4978 except adding the prediction by hand. */
4979 rtx_insn *tmp = get_last_insn ();
4980 if (JUMP_P (tmp))
4981 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4983 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4984 free_temp_slots ();
4985 emit_label (label);
4988 /* Start the RTL for a new function, and set variables used for
4989 emitting RTL.
4990 SUBR is the FUNCTION_DECL node.
4991 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4992 the function's parameters, which must be run at any return statement. */
4994 void
4995 expand_function_start (tree subr)
4997 /* Make sure volatile mem refs aren't considered
4998 valid operands of arithmetic insns. */
4999 init_recog_no_volatile ();
5001 crtl->profile
5002 = (profile_flag
5003 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5005 crtl->limit_stack
5006 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5008 /* Make the label for return statements to jump to. Do not special
5009 case machines with special return instructions -- they will be
5010 handled later during jump, ifcvt, or epilogue creation. */
5011 return_label = gen_label_rtx ();
5013 /* Initialize rtx used to return the value. */
5014 /* Do this before assign_parms so that we copy the struct value address
5015 before any library calls that assign parms might generate. */
5017 /* Decide whether to return the value in memory or in a register. */
5018 tree res = DECL_RESULT (subr);
5019 if (aggregate_value_p (res, subr))
5021 /* Returning something that won't go in a register. */
5022 rtx value_address = 0;
5024 #ifdef PCC_STATIC_STRUCT_RETURN
5025 if (cfun->returns_pcc_struct)
5027 int size = int_size_in_bytes (TREE_TYPE (res));
5028 value_address = assemble_static_space (size);
5030 else
5031 #endif
5033 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5034 /* Expect to be passed the address of a place to store the value.
5035 If it is passed as an argument, assign_parms will take care of
5036 it. */
5037 if (sv)
5039 value_address = gen_reg_rtx (Pmode);
5040 emit_move_insn (value_address, sv);
5043 if (value_address)
5045 rtx x = value_address;
5046 if (!DECL_BY_REFERENCE (res))
5048 x = gen_rtx_MEM (DECL_MODE (res), x);
5049 set_mem_attributes (x, res, 1);
5051 set_parm_rtl (res, x);
5054 else if (DECL_MODE (res) == VOIDmode)
5055 /* If return mode is void, this decl rtl should not be used. */
5056 set_parm_rtl (res, NULL_RTX);
5057 else
5059 /* Compute the return values into a pseudo reg, which we will copy
5060 into the true return register after the cleanups are done. */
5061 tree return_type = TREE_TYPE (res);
5063 /* If we may coalesce this result, make sure it has the expected mode
5064 in case it was promoted. But we need not bother about BLKmode. */
5065 machine_mode promoted_mode
5066 = flag_tree_coalesce_vars && is_gimple_reg (res)
5067 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5068 : BLKmode;
5070 if (promoted_mode != BLKmode)
5071 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5072 else if (TYPE_MODE (return_type) != BLKmode
5073 && targetm.calls.return_in_msb (return_type))
5074 /* expand_function_end will insert the appropriate padding in
5075 this case. Use the return value's natural (unpadded) mode
5076 within the function proper. */
5077 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5078 else
5080 /* In order to figure out what mode to use for the pseudo, we
5081 figure out what the mode of the eventual return register will
5082 actually be, and use that. */
5083 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5085 /* Structures that are returned in registers are not
5086 aggregate_value_p, so we may see a PARALLEL or a REG. */
5087 if (REG_P (hard_reg))
5088 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5089 else
5091 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5092 set_parm_rtl (res, gen_group_rtx (hard_reg));
5096 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5097 result to the real return register(s). */
5098 DECL_REGISTER (res) = 1;
5101 /* Initialize rtx for parameters and local variables.
5102 In some cases this requires emitting insns. */
5103 assign_parms (subr);
5105 /* If function gets a static chain arg, store it. */
5106 if (cfun->static_chain_decl)
5108 tree parm = cfun->static_chain_decl;
5109 rtx local, chain;
5110 rtx_insn *insn;
5111 int unsignedp;
5113 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5114 chain = targetm.calls.static_chain (current_function_decl, true);
5116 set_decl_incoming_rtl (parm, chain, false);
5117 set_parm_rtl (parm, local);
5118 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5120 if (GET_MODE (local) != GET_MODE (chain))
5122 convert_move (local, chain, unsignedp);
5123 insn = get_last_insn ();
5125 else
5126 insn = emit_move_insn (local, chain);
5128 /* Mark the register as eliminable, similar to parameters. */
5129 if (MEM_P (chain)
5130 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5131 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5133 /* If we aren't optimizing, save the static chain onto the stack. */
5134 if (!optimize)
5136 tree saved_static_chain_decl
5137 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5138 DECL_NAME (parm), TREE_TYPE (parm));
5139 rtx saved_static_chain_rtx
5140 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5141 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5142 emit_move_insn (saved_static_chain_rtx, chain);
5143 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5144 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5148 /* The following was moved from init_function_start.
5149 The move was supposed to make sdb output more accurate. */
5150 /* Indicate the beginning of the function body,
5151 as opposed to parm setup. */
5152 emit_note (NOTE_INSN_FUNCTION_BEG);
5154 gcc_assert (NOTE_P (get_last_insn ()));
5156 parm_birth_insn = get_last_insn ();
5158 /* If the function receives a non-local goto, then store the
5159 bits we need to restore the frame pointer. */
5160 if (cfun->nonlocal_goto_save_area)
5162 tree t_save;
5163 rtx r_save;
5165 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5166 gcc_assert (DECL_RTL_SET_P (var));
5168 t_save = build4 (ARRAY_REF,
5169 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5170 cfun->nonlocal_goto_save_area,
5171 integer_zero_node, NULL_TREE, NULL_TREE);
5172 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5173 gcc_assert (GET_MODE (r_save) == Pmode);
5175 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5176 update_nonlocal_goto_save_area ();
5179 if (crtl->profile)
5181 #ifdef PROFILE_HOOK
5182 PROFILE_HOOK (current_function_funcdef_no);
5183 #endif
5186 /* If we are doing generic stack checking, the probe should go here. */
5187 if (flag_stack_check == GENERIC_STACK_CHECK)
5188 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5191 void
5192 pop_dummy_function (void)
5194 pop_cfun ();
5195 in_dummy_function = false;
5198 /* Undo the effects of init_dummy_function_start. */
5199 void
5200 expand_dummy_function_end (void)
5202 gcc_assert (in_dummy_function);
5204 /* End any sequences that failed to be closed due to syntax errors. */
5205 while (in_sequence_p ())
5206 end_sequence ();
5208 /* Outside function body, can't compute type's actual size
5209 until next function's body starts. */
5211 free_after_parsing (cfun);
5212 free_after_compilation (cfun);
5213 pop_dummy_function ();
5216 /* Helper for diddle_return_value. */
5218 void
5219 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5221 if (! outgoing)
5222 return;
5224 if (REG_P (outgoing))
5225 (*doit) (outgoing, arg);
5226 else if (GET_CODE (outgoing) == PARALLEL)
5228 int i;
5230 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5232 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5234 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5235 (*doit) (x, arg);
5240 /* Call DOIT for each hard register used as a return value from
5241 the current function. */
5243 void
5244 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5246 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5249 static void
5250 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5252 emit_clobber (reg);
5255 void
5256 clobber_return_register (void)
5258 diddle_return_value (do_clobber_return_reg, NULL);
5260 /* In case we do use pseudo to return value, clobber it too. */
5261 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5263 tree decl_result = DECL_RESULT (current_function_decl);
5264 rtx decl_rtl = DECL_RTL (decl_result);
5265 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5267 do_clobber_return_reg (decl_rtl, NULL);
5272 static void
5273 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5275 emit_use (reg);
5278 static void
5279 use_return_register (void)
5281 diddle_return_value (do_use_return_reg, NULL);
5284 /* Set the location of the insn chain starting at INSN to LOC. */
5286 static void
5287 set_insn_locations (rtx_insn *insn, int loc)
5289 while (insn != NULL)
5291 if (INSN_P (insn))
5292 INSN_LOCATION (insn) = loc;
5293 insn = NEXT_INSN (insn);
5297 /* Generate RTL for the end of the current function. */
5299 void
5300 expand_function_end (void)
5302 /* If arg_pointer_save_area was referenced only from a nested
5303 function, we will not have initialized it yet. Do that now. */
5304 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5305 get_arg_pointer_save_area ();
5307 /* If we are doing generic stack checking and this function makes calls,
5308 do a stack probe at the start of the function to ensure we have enough
5309 space for another stack frame. */
5310 if (flag_stack_check == GENERIC_STACK_CHECK)
5312 rtx_insn *insn, *seq;
5314 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5315 if (CALL_P (insn))
5317 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5318 start_sequence ();
5319 if (STACK_CHECK_MOVING_SP)
5320 anti_adjust_stack_and_probe (max_frame_size, true);
5321 else
5322 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5323 seq = get_insns ();
5324 end_sequence ();
5325 set_insn_locations (seq, prologue_location);
5326 emit_insn_before (seq, stack_check_probe_note);
5327 break;
5331 /* End any sequences that failed to be closed due to syntax errors. */
5332 while (in_sequence_p ())
5333 end_sequence ();
5335 clear_pending_stack_adjust ();
5336 do_pending_stack_adjust ();
5338 /* Output a linenumber for the end of the function.
5339 SDB depended on this. */
5340 set_curr_insn_location (input_location);
5342 /* Before the return label (if any), clobber the return
5343 registers so that they are not propagated live to the rest of
5344 the function. This can only happen with functions that drop
5345 through; if there had been a return statement, there would
5346 have either been a return rtx, or a jump to the return label.
5348 We delay actual code generation after the current_function_value_rtx
5349 is computed. */
5350 rtx_insn *clobber_after = get_last_insn ();
5352 /* Output the label for the actual return from the function. */
5353 emit_label (return_label);
5355 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5357 /* Let except.c know where it should emit the call to unregister
5358 the function context for sjlj exceptions. */
5359 if (flag_exceptions)
5360 sjlj_emit_function_exit_after (get_last_insn ());
5363 /* If this is an implementation of throw, do what's necessary to
5364 communicate between __builtin_eh_return and the epilogue. */
5365 expand_eh_return ();
5367 /* If scalar return value was computed in a pseudo-reg, or was a named
5368 return value that got dumped to the stack, copy that to the hard
5369 return register. */
5370 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5372 tree decl_result = DECL_RESULT (current_function_decl);
5373 rtx decl_rtl = DECL_RTL (decl_result);
5375 if (REG_P (decl_rtl)
5376 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5377 : DECL_REGISTER (decl_result))
5379 rtx real_decl_rtl = crtl->return_rtx;
5380 complex_mode cmode;
5382 /* This should be set in assign_parms. */
5383 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5385 /* If this is a BLKmode structure being returned in registers,
5386 then use the mode computed in expand_return. Note that if
5387 decl_rtl is memory, then its mode may have been changed,
5388 but that crtl->return_rtx has not. */
5389 if (GET_MODE (real_decl_rtl) == BLKmode)
5390 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5392 /* If a non-BLKmode return value should be padded at the least
5393 significant end of the register, shift it left by the appropriate
5394 amount. BLKmode results are handled using the group load/store
5395 machinery. */
5396 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5397 && REG_P (real_decl_rtl)
5398 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5400 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5401 REGNO (real_decl_rtl)),
5402 decl_rtl);
5403 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5405 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5407 /* If expand_function_start has created a PARALLEL for decl_rtl,
5408 move the result to the real return registers. Otherwise, do
5409 a group load from decl_rtl for a named return. */
5410 if (GET_CODE (decl_rtl) == PARALLEL)
5411 emit_group_move (real_decl_rtl, decl_rtl);
5412 else
5413 emit_group_load (real_decl_rtl, decl_rtl,
5414 TREE_TYPE (decl_result),
5415 int_size_in_bytes (TREE_TYPE (decl_result)));
5417 /* In the case of complex integer modes smaller than a word, we'll
5418 need to generate some non-trivial bitfield insertions. Do that
5419 on a pseudo and not the hard register. */
5420 else if (GET_CODE (decl_rtl) == CONCAT
5421 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5422 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5424 int old_generating_concat_p;
5425 rtx tmp;
5427 old_generating_concat_p = generating_concat_p;
5428 generating_concat_p = 0;
5429 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5430 generating_concat_p = old_generating_concat_p;
5432 emit_move_insn (tmp, decl_rtl);
5433 emit_move_insn (real_decl_rtl, tmp);
5435 /* If a named return value dumped decl_return to memory, then
5436 we may need to re-do the PROMOTE_MODE signed/unsigned
5437 extension. */
5438 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5440 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5441 promote_function_mode (TREE_TYPE (decl_result),
5442 GET_MODE (decl_rtl), &unsignedp,
5443 TREE_TYPE (current_function_decl), 1);
5445 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5447 else
5448 emit_move_insn (real_decl_rtl, decl_rtl);
5452 /* If returning a structure, arrange to return the address of the value
5453 in a place where debuggers expect to find it.
5455 If returning a structure PCC style,
5456 the caller also depends on this value.
5457 And cfun->returns_pcc_struct is not necessarily set. */
5458 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5459 && !targetm.calls.omit_struct_return_reg)
5461 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5462 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5463 rtx outgoing;
5465 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5466 type = TREE_TYPE (type);
5467 else
5468 value_address = XEXP (value_address, 0);
5470 outgoing = targetm.calls.function_value (build_pointer_type (type),
5471 current_function_decl, true);
5473 /* Mark this as a function return value so integrate will delete the
5474 assignment and USE below when inlining this function. */
5475 REG_FUNCTION_VALUE_P (outgoing) = 1;
5477 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5478 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5479 value_address = convert_memory_address (mode, value_address);
5481 emit_move_insn (outgoing, value_address);
5483 /* Show return register used to hold result (in this case the address
5484 of the result. */
5485 crtl->return_rtx = outgoing;
5488 /* Emit the actual code to clobber return register. Don't emit
5489 it if clobber_after is a barrier, then the previous basic block
5490 certainly doesn't fall thru into the exit block. */
5491 if (!BARRIER_P (clobber_after))
5493 start_sequence ();
5494 clobber_return_register ();
5495 rtx_insn *seq = get_insns ();
5496 end_sequence ();
5498 emit_insn_after (seq, clobber_after);
5501 /* Output the label for the naked return from the function. */
5502 if (naked_return_label)
5503 emit_label (naked_return_label);
5505 /* @@@ This is a kludge. We want to ensure that instructions that
5506 may trap are not moved into the epilogue by scheduling, because
5507 we don't always emit unwind information for the epilogue. */
5508 if (cfun->can_throw_non_call_exceptions
5509 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5510 emit_insn (gen_blockage ());
5512 /* If stack protection is enabled for this function, check the guard. */
5513 if (crtl->stack_protect_guard && targetm.stack_protect_runtime_enabled_p ())
5514 stack_protect_epilogue ();
5516 /* If we had calls to alloca, and this machine needs
5517 an accurate stack pointer to exit the function,
5518 insert some code to save and restore the stack pointer. */
5519 if (! EXIT_IGNORE_STACK
5520 && cfun->calls_alloca)
5522 rtx tem = 0;
5524 start_sequence ();
5525 emit_stack_save (SAVE_FUNCTION, &tem);
5526 rtx_insn *seq = get_insns ();
5527 end_sequence ();
5528 emit_insn_before (seq, parm_birth_insn);
5530 emit_stack_restore (SAVE_FUNCTION, tem);
5533 /* ??? This should no longer be necessary since stupid is no longer with
5534 us, but there are some parts of the compiler (eg reload_combine, and
5535 sh mach_dep_reorg) that still try and compute their own lifetime info
5536 instead of using the general framework. */
5537 use_return_register ();
5541 get_arg_pointer_save_area (void)
5543 rtx ret = arg_pointer_save_area;
5545 if (! ret)
5547 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5548 arg_pointer_save_area = ret;
5551 if (! crtl->arg_pointer_save_area_init)
5553 /* Save the arg pointer at the beginning of the function. The
5554 generated stack slot may not be a valid memory address, so we
5555 have to check it and fix it if necessary. */
5556 start_sequence ();
5557 emit_move_insn (validize_mem (copy_rtx (ret)),
5558 crtl->args.internal_arg_pointer);
5559 rtx_insn *seq = get_insns ();
5560 end_sequence ();
5562 push_topmost_sequence ();
5563 emit_insn_after (seq, entry_of_function ());
5564 pop_topmost_sequence ();
5566 crtl->arg_pointer_save_area_init = true;
5569 return ret;
5573 /* If debugging dumps are requested, dump information about how the
5574 target handled -fstack-check=clash for the prologue.
5576 PROBES describes what if any probes were emitted.
5578 RESIDUALS indicates if the prologue had any residual allocation
5579 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5581 void
5582 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5584 if (!dump_file)
5585 return;
5587 switch (probes)
5589 case NO_PROBE_NO_FRAME:
5590 fprintf (dump_file,
5591 "Stack clash no probe no stack adjustment in prologue.\n");
5592 break;
5593 case NO_PROBE_SMALL_FRAME:
5594 fprintf (dump_file,
5595 "Stack clash no probe small stack adjustment in prologue.\n");
5596 break;
5597 case PROBE_INLINE:
5598 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5599 break;
5600 case PROBE_LOOP:
5601 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5602 break;
5605 if (residuals)
5606 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5607 else
5608 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5610 if (frame_pointer_needed)
5611 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5612 else
5613 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5615 if (TREE_THIS_VOLATILE (cfun->decl))
5616 fprintf (dump_file,
5617 "Stack clash noreturn prologue, assuming no implicit"
5618 " probes in caller.\n");
5619 else
5620 fprintf (dump_file,
5621 "Stack clash not noreturn prologue.\n");
5624 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5625 for the first time. */
5627 static void
5628 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5630 rtx_insn *tmp;
5631 hash_table<insn_cache_hasher> *hash = *hashp;
5633 if (hash == NULL)
5634 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5636 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5638 rtx *slot = hash->find_slot (tmp, INSERT);
5639 gcc_assert (*slot == NULL);
5640 *slot = tmp;
5644 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5645 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5646 insn, then record COPY as well. */
5648 void
5649 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5651 hash_table<insn_cache_hasher> *hash;
5652 rtx *slot;
5654 hash = epilogue_insn_hash;
5655 if (!hash || !hash->find (insn))
5657 hash = prologue_insn_hash;
5658 if (!hash || !hash->find (insn))
5659 return;
5662 slot = hash->find_slot (copy, INSERT);
5663 gcc_assert (*slot == NULL);
5664 *slot = copy;
5667 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5668 we can be running after reorg, SEQUENCE rtl is possible. */
5670 static bool
5671 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5673 if (hash == NULL)
5674 return false;
5676 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5678 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5679 int i;
5680 for (i = seq->len () - 1; i >= 0; i--)
5681 if (hash->find (seq->element (i)))
5682 return true;
5683 return false;
5686 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5690 prologue_contains (const rtx_insn *insn)
5692 return contains (insn, prologue_insn_hash);
5696 epilogue_contains (const rtx_insn *insn)
5698 return contains (insn, epilogue_insn_hash);
5702 prologue_epilogue_contains (const rtx_insn *insn)
5704 if (contains (insn, prologue_insn_hash))
5705 return 1;
5706 if (contains (insn, epilogue_insn_hash))
5707 return 1;
5708 return 0;
5711 void
5712 record_prologue_seq (rtx_insn *seq)
5714 record_insns (seq, NULL, &prologue_insn_hash);
5717 void
5718 record_epilogue_seq (rtx_insn *seq)
5720 record_insns (seq, NULL, &epilogue_insn_hash);
5723 /* Set JUMP_LABEL for a return insn. */
5725 void
5726 set_return_jump_label (rtx_insn *returnjump)
5728 rtx pat = PATTERN (returnjump);
5729 if (GET_CODE (pat) == PARALLEL)
5730 pat = XVECEXP (pat, 0, 0);
5731 if (ANY_RETURN_P (pat))
5732 JUMP_LABEL (returnjump) = pat;
5733 else
5734 JUMP_LABEL (returnjump) = ret_rtx;
5737 /* Return a sequence to be used as the split prologue for the current
5738 function, or NULL. */
5740 static rtx_insn *
5741 make_split_prologue_seq (void)
5743 if (!flag_split_stack
5744 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5745 return NULL;
5747 start_sequence ();
5748 emit_insn (targetm.gen_split_stack_prologue ());
5749 rtx_insn *seq = get_insns ();
5750 end_sequence ();
5752 record_insns (seq, NULL, &prologue_insn_hash);
5753 set_insn_locations (seq, prologue_location);
5755 return seq;
5758 /* Return a sequence to be used as the prologue for the current function,
5759 or NULL. */
5761 static rtx_insn *
5762 make_prologue_seq (void)
5764 if (!targetm.have_prologue ())
5765 return NULL;
5767 start_sequence ();
5768 rtx_insn *seq = targetm.gen_prologue ();
5769 emit_insn (seq);
5771 /* Insert an explicit USE for the frame pointer
5772 if the profiling is on and the frame pointer is required. */
5773 if (crtl->profile && frame_pointer_needed)
5774 emit_use (hard_frame_pointer_rtx);
5776 /* Retain a map of the prologue insns. */
5777 record_insns (seq, NULL, &prologue_insn_hash);
5778 emit_note (NOTE_INSN_PROLOGUE_END);
5780 /* Ensure that instructions are not moved into the prologue when
5781 profiling is on. The call to the profiling routine can be
5782 emitted within the live range of a call-clobbered register. */
5783 if (!targetm.profile_before_prologue () && crtl->profile)
5784 emit_insn (gen_blockage ());
5786 seq = get_insns ();
5787 end_sequence ();
5788 set_insn_locations (seq, prologue_location);
5790 return seq;
5793 /* Return a sequence to be used as the epilogue for the current function,
5794 or NULL. */
5796 static rtx_insn *
5797 make_epilogue_seq (void)
5799 if (!targetm.have_epilogue ())
5800 return NULL;
5802 start_sequence ();
5803 emit_note (NOTE_INSN_EPILOGUE_BEG);
5804 rtx_insn *seq = targetm.gen_epilogue ();
5805 if (seq)
5806 emit_jump_insn (seq);
5808 /* Retain a map of the epilogue insns. */
5809 record_insns (seq, NULL, &epilogue_insn_hash);
5810 set_insn_locations (seq, epilogue_location);
5812 seq = get_insns ();
5813 rtx_insn *returnjump = get_last_insn ();
5814 end_sequence ();
5816 if (JUMP_P (returnjump))
5817 set_return_jump_label (returnjump);
5819 return seq;
5823 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5824 this into place with notes indicating where the prologue ends and where
5825 the epilogue begins. Update the basic block information when possible.
5827 Notes on epilogue placement:
5828 There are several kinds of edges to the exit block:
5829 * a single fallthru edge from LAST_BB
5830 * possibly, edges from blocks containing sibcalls
5831 * possibly, fake edges from infinite loops
5833 The epilogue is always emitted on the fallthru edge from the last basic
5834 block in the function, LAST_BB, into the exit block.
5836 If LAST_BB is empty except for a label, it is the target of every
5837 other basic block in the function that ends in a return. If a
5838 target has a return or simple_return pattern (possibly with
5839 conditional variants), these basic blocks can be changed so that a
5840 return insn is emitted into them, and their target is adjusted to
5841 the real exit block.
5843 Notes on shrink wrapping: We implement a fairly conservative
5844 version of shrink-wrapping rather than the textbook one. We only
5845 generate a single prologue and a single epilogue. This is
5846 sufficient to catch a number of interesting cases involving early
5847 exits.
5849 First, we identify the blocks that require the prologue to occur before
5850 them. These are the ones that modify a call-saved register, or reference
5851 any of the stack or frame pointer registers. To simplify things, we then
5852 mark everything reachable from these blocks as also requiring a prologue.
5853 This takes care of loops automatically, and avoids the need to examine
5854 whether MEMs reference the frame, since it is sufficient to check for
5855 occurrences of the stack or frame pointer.
5857 We then compute the set of blocks for which the need for a prologue
5858 is anticipatable (borrowing terminology from the shrink-wrapping
5859 description in Muchnick's book). These are the blocks which either
5860 require a prologue themselves, or those that have only successors
5861 where the prologue is anticipatable. The prologue needs to be
5862 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5863 is not. For the moment, we ensure that only one such edge exists.
5865 The epilogue is placed as described above, but we make a
5866 distinction between inserting return and simple_return patterns
5867 when modifying other blocks that end in a return. Blocks that end
5868 in a sibcall omit the sibcall_epilogue if the block is not in
5869 ANTIC. */
5871 void
5872 thread_prologue_and_epilogue_insns (void)
5874 df_analyze ();
5876 /* Can't deal with multiple successors of the entry block at the
5877 moment. Function should always have at least one entry
5878 point. */
5879 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5881 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5882 edge orig_entry_edge = entry_edge;
5884 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
5885 rtx_insn *prologue_seq = make_prologue_seq ();
5886 rtx_insn *epilogue_seq = make_epilogue_seq ();
5888 /* Try to perform a kind of shrink-wrapping, making sure the
5889 prologue/epilogue is emitted only around those parts of the
5890 function that require it. */
5891 try_shrink_wrapping (&entry_edge, prologue_seq);
5893 /* If the target can handle splitting the prologue/epilogue into separate
5894 components, try to shrink-wrap these components separately. */
5895 try_shrink_wrapping_separate (entry_edge->dest);
5897 /* If that did anything for any component we now need the generate the
5898 "main" prologue again. Because some targets require some of these
5899 to be called in a specific order (i386 requires the split prologue
5900 to be first, for example), we create all three sequences again here.
5901 If this does not work for some target, that target should not enable
5902 separate shrink-wrapping. */
5903 if (crtl->shrink_wrapped_separate)
5905 split_prologue_seq = make_split_prologue_seq ();
5906 prologue_seq = make_prologue_seq ();
5907 epilogue_seq = make_epilogue_seq ();
5910 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5912 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5913 this marker for the splits of EH_RETURN patterns, and nothing else
5914 uses the flag in the meantime. */
5915 epilogue_completed = 1;
5917 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5918 some targets, these get split to a special version of the epilogue
5919 code. In order to be able to properly annotate these with unwind
5920 info, try to split them now. If we get a valid split, drop an
5921 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5922 edge e;
5923 edge_iterator ei;
5924 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5926 rtx_insn *prev, *last, *trial;
5928 if (e->flags & EDGE_FALLTHRU)
5929 continue;
5930 last = BB_END (e->src);
5931 if (!eh_returnjump_p (last))
5932 continue;
5934 prev = PREV_INSN (last);
5935 trial = try_split (PATTERN (last), last, 1);
5936 if (trial == last)
5937 continue;
5939 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5940 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5943 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5945 if (exit_fallthru_edge)
5947 if (epilogue_seq)
5949 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
5950 commit_edge_insertions ();
5952 /* The epilogue insns we inserted may cause the exit edge to no longer
5953 be fallthru. */
5954 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5956 if (((e->flags & EDGE_FALLTHRU) != 0)
5957 && returnjump_p (BB_END (e->src)))
5958 e->flags &= ~EDGE_FALLTHRU;
5961 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
5963 /* We have a fall-through edge to the exit block, the source is not
5964 at the end of the function, and there will be an assembler epilogue
5965 at the end of the function.
5966 We can't use force_nonfallthru here, because that would try to
5967 use return. Inserting a jump 'by hand' is extremely messy, so
5968 we take advantage of cfg_layout_finalize using
5969 fixup_fallthru_exit_predecessor. */
5970 cfg_layout_initialize (0);
5971 basic_block cur_bb;
5972 FOR_EACH_BB_FN (cur_bb, cfun)
5973 if (cur_bb->index >= NUM_FIXED_BLOCKS
5974 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5975 cur_bb->aux = cur_bb->next_bb;
5976 cfg_layout_finalize ();
5980 /* Insert the prologue. */
5982 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5984 if (split_prologue_seq || prologue_seq)
5986 rtx_insn *split_prologue_insn = split_prologue_seq;
5987 if (split_prologue_seq)
5989 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
5990 split_prologue_insn = NEXT_INSN (split_prologue_insn);
5991 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5994 rtx_insn *prologue_insn = prologue_seq;
5995 if (prologue_seq)
5997 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
5998 prologue_insn = NEXT_INSN (prologue_insn);
5999 insert_insn_on_edge (prologue_seq, entry_edge);
6002 commit_edge_insertions ();
6004 /* Look for basic blocks within the prologue insns. */
6005 if (split_prologue_insn
6006 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
6007 split_prologue_insn = NULL;
6008 if (prologue_insn
6009 && BLOCK_FOR_INSN (prologue_insn) == NULL)
6010 prologue_insn = NULL;
6011 if (split_prologue_insn || prologue_insn)
6013 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6014 bitmap_clear (blocks);
6015 if (split_prologue_insn)
6016 bitmap_set_bit (blocks,
6017 BLOCK_FOR_INSN (split_prologue_insn)->index);
6018 if (prologue_insn)
6019 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
6020 find_many_sub_basic_blocks (blocks);
6024 default_rtl_profile ();
6026 /* Emit sibling epilogues before any sibling call sites. */
6027 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6028 (e = ei_safe_edge (ei));
6029 ei_next (&ei))
6031 /* Skip those already handled, the ones that run without prologue. */
6032 if (e->flags & EDGE_IGNORE)
6034 e->flags &= ~EDGE_IGNORE;
6035 continue;
6038 rtx_insn *insn = BB_END (e->src);
6040 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6041 continue;
6043 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6045 start_sequence ();
6046 emit_note (NOTE_INSN_EPILOGUE_BEG);
6047 emit_insn (ep_seq);
6048 rtx_insn *seq = get_insns ();
6049 end_sequence ();
6051 /* Retain a map of the epilogue insns. Used in life analysis to
6052 avoid getting rid of sibcall epilogue insns. Do this before we
6053 actually emit the sequence. */
6054 record_insns (seq, NULL, &epilogue_insn_hash);
6055 set_insn_locations (seq, epilogue_location);
6057 emit_insn_before (seq, insn);
6061 if (epilogue_seq)
6063 rtx_insn *insn, *next;
6065 /* Similarly, move any line notes that appear after the epilogue.
6066 There is no need, however, to be quite so anal about the existence
6067 of such a note. Also possibly move
6068 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6069 info generation. */
6070 for (insn = epilogue_seq; insn; insn = next)
6072 next = NEXT_INSN (insn);
6073 if (NOTE_P (insn)
6074 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6075 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6079 /* Threading the prologue and epilogue changes the artificial refs
6080 in the entry and exit blocks. */
6081 epilogue_completed = 1;
6082 df_update_entry_exit_and_calls ();
6085 /* Reposition the prologue-end and epilogue-begin notes after
6086 instruction scheduling. */
6088 void
6089 reposition_prologue_and_epilogue_notes (void)
6091 if (!targetm.have_prologue ()
6092 && !targetm.have_epilogue ()
6093 && !targetm.have_sibcall_epilogue ())
6094 return;
6096 /* Since the hash table is created on demand, the fact that it is
6097 non-null is a signal that it is non-empty. */
6098 if (prologue_insn_hash != NULL)
6100 size_t len = prologue_insn_hash->elements ();
6101 rtx_insn *insn, *last = NULL, *note = NULL;
6103 /* Scan from the beginning until we reach the last prologue insn. */
6104 /* ??? While we do have the CFG intact, there are two problems:
6105 (1) The prologue can contain loops (typically probing the stack),
6106 which means that the end of the prologue isn't in the first bb.
6107 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6108 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6110 if (NOTE_P (insn))
6112 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6113 note = insn;
6115 else if (contains (insn, prologue_insn_hash))
6117 last = insn;
6118 if (--len == 0)
6119 break;
6123 if (last)
6125 if (note == NULL)
6127 /* Scan forward looking for the PROLOGUE_END note. It should
6128 be right at the beginning of the block, possibly with other
6129 insn notes that got moved there. */
6130 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6132 if (NOTE_P (note)
6133 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6134 break;
6138 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6139 if (LABEL_P (last))
6140 last = NEXT_INSN (last);
6141 reorder_insns (note, note, last);
6145 if (epilogue_insn_hash != NULL)
6147 edge_iterator ei;
6148 edge e;
6150 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6152 rtx_insn *insn, *first = NULL, *note = NULL;
6153 basic_block bb = e->src;
6155 /* Scan from the beginning until we reach the first epilogue insn. */
6156 FOR_BB_INSNS (bb, insn)
6158 if (NOTE_P (insn))
6160 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6162 note = insn;
6163 if (first != NULL)
6164 break;
6167 else if (first == NULL && contains (insn, epilogue_insn_hash))
6169 first = insn;
6170 if (note != NULL)
6171 break;
6175 if (note)
6177 /* If the function has a single basic block, and no real
6178 epilogue insns (e.g. sibcall with no cleanup), the
6179 epilogue note can get scheduled before the prologue
6180 note. If we have frame related prologue insns, having
6181 them scanned during the epilogue will result in a crash.
6182 In this case re-order the epilogue note to just before
6183 the last insn in the block. */
6184 if (first == NULL)
6185 first = BB_END (bb);
6187 if (PREV_INSN (first) != note)
6188 reorder_insns (note, note, PREV_INSN (first));
6194 /* Returns the name of function declared by FNDECL. */
6195 const char *
6196 fndecl_name (tree fndecl)
6198 if (fndecl == NULL)
6199 return "(nofn)";
6200 return lang_hooks.decl_printable_name (fndecl, 1);
6203 /* Returns the name of function FN. */
6204 const char *
6205 function_name (struct function *fn)
6207 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6208 return fndecl_name (fndecl);
6211 /* Returns the name of the current function. */
6212 const char *
6213 current_function_name (void)
6215 return function_name (cfun);
6219 static unsigned int
6220 rest_of_handle_check_leaf_regs (void)
6222 #ifdef LEAF_REGISTERS
6223 crtl->uses_only_leaf_regs
6224 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6225 #endif
6226 return 0;
6229 /* Insert a TYPE into the used types hash table of CFUN. */
6231 static void
6232 used_types_insert_helper (tree type, struct function *func)
6234 if (type != NULL && func != NULL)
6236 if (func->used_types_hash == NULL)
6237 func->used_types_hash = hash_set<tree>::create_ggc (37);
6239 func->used_types_hash->add (type);
6243 /* Given a type, insert it into the used hash table in cfun. */
6244 void
6245 used_types_insert (tree t)
6247 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6248 if (TYPE_NAME (t))
6249 break;
6250 else
6251 t = TREE_TYPE (t);
6252 if (TREE_CODE (t) == ERROR_MARK)
6253 return;
6254 if (TYPE_NAME (t) == NULL_TREE
6255 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6256 t = TYPE_MAIN_VARIANT (t);
6257 if (debug_info_level > DINFO_LEVEL_NONE)
6259 if (cfun)
6260 used_types_insert_helper (t, cfun);
6261 else
6263 /* So this might be a type referenced by a global variable.
6264 Record that type so that we can later decide to emit its
6265 debug information. */
6266 vec_safe_push (types_used_by_cur_var_decl, t);
6271 /* Helper to Hash a struct types_used_by_vars_entry. */
6273 static hashval_t
6274 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6276 gcc_assert (entry && entry->var_decl && entry->type);
6278 return iterative_hash_object (entry->type,
6279 iterative_hash_object (entry->var_decl, 0));
6282 /* Hash function of the types_used_by_vars_entry hash table. */
6284 hashval_t
6285 used_type_hasher::hash (types_used_by_vars_entry *entry)
6287 return hash_types_used_by_vars_entry (entry);
6290 /*Equality function of the types_used_by_vars_entry hash table. */
6292 bool
6293 used_type_hasher::equal (types_used_by_vars_entry *e1,
6294 types_used_by_vars_entry *e2)
6296 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6299 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6301 void
6302 types_used_by_var_decl_insert (tree type, tree var_decl)
6304 if (type != NULL && var_decl != NULL)
6306 types_used_by_vars_entry **slot;
6307 struct types_used_by_vars_entry e;
6308 e.var_decl = var_decl;
6309 e.type = type;
6310 if (types_used_by_vars_hash == NULL)
6311 types_used_by_vars_hash
6312 = hash_table<used_type_hasher>::create_ggc (37);
6314 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6315 if (*slot == NULL)
6317 struct types_used_by_vars_entry *entry;
6318 entry = ggc_alloc<types_used_by_vars_entry> ();
6319 entry->type = type;
6320 entry->var_decl = var_decl;
6321 *slot = entry;
6326 namespace {
6328 const pass_data pass_data_leaf_regs =
6330 RTL_PASS, /* type */
6331 "*leaf_regs", /* name */
6332 OPTGROUP_NONE, /* optinfo_flags */
6333 TV_NONE, /* tv_id */
6334 0, /* properties_required */
6335 0, /* properties_provided */
6336 0, /* properties_destroyed */
6337 0, /* todo_flags_start */
6338 0, /* todo_flags_finish */
6341 class pass_leaf_regs : public rtl_opt_pass
6343 public:
6344 pass_leaf_regs (gcc::context *ctxt)
6345 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6348 /* opt_pass methods: */
6349 virtual unsigned int execute (function *)
6351 return rest_of_handle_check_leaf_regs ();
6354 }; // class pass_leaf_regs
6356 } // anon namespace
6358 rtl_opt_pass *
6359 make_pass_leaf_regs (gcc::context *ctxt)
6361 return new pass_leaf_regs (ctxt);
6364 static unsigned int
6365 rest_of_handle_thread_prologue_and_epilogue (void)
6367 /* prepare_shrink_wrap is sensitive to the block structure of the control
6368 flow graph, so clean it up first. */
6369 if (optimize)
6370 cleanup_cfg (0);
6372 /* On some machines, the prologue and epilogue code, or parts thereof,
6373 can be represented as RTL. Doing so lets us schedule insns between
6374 it and the rest of the code and also allows delayed branch
6375 scheduling to operate in the epilogue. */
6376 thread_prologue_and_epilogue_insns ();
6378 /* Some non-cold blocks may now be only reachable from cold blocks.
6379 Fix that up. */
6380 fixup_partitions ();
6382 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6383 see PR57320. */
6384 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6386 /* The stack usage info is finalized during prologue expansion. */
6387 if (flag_stack_usage_info)
6388 output_stack_usage ();
6390 return 0;
6393 namespace {
6395 const pass_data pass_data_thread_prologue_and_epilogue =
6397 RTL_PASS, /* type */
6398 "pro_and_epilogue", /* name */
6399 OPTGROUP_NONE, /* optinfo_flags */
6400 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6401 0, /* properties_required */
6402 0, /* properties_provided */
6403 0, /* properties_destroyed */
6404 0, /* todo_flags_start */
6405 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6408 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6410 public:
6411 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6412 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6415 /* opt_pass methods: */
6416 virtual unsigned int execute (function *)
6418 return rest_of_handle_thread_prologue_and_epilogue ();
6421 }; // class pass_thread_prologue_and_epilogue
6423 } // anon namespace
6425 rtl_opt_pass *
6426 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6428 return new pass_thread_prologue_and_epilogue (ctxt);
6432 /* This mini-pass fixes fall-out from SSA in asm statements that have
6433 in-out constraints. Say you start with
6435 orig = inout;
6436 asm ("": "+mr" (inout));
6437 use (orig);
6439 which is transformed very early to use explicit output and match operands:
6441 orig = inout;
6442 asm ("": "=mr" (inout) : "0" (inout));
6443 use (orig);
6445 Or, after SSA and copyprop,
6447 asm ("": "=mr" (inout_2) : "0" (inout_1));
6448 use (inout_1);
6450 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6451 they represent two separate values, so they will get different pseudo
6452 registers during expansion. Then, since the two operands need to match
6453 per the constraints, but use different pseudo registers, reload can
6454 only register a reload for these operands. But reloads can only be
6455 satisfied by hardregs, not by memory, so we need a register for this
6456 reload, just because we are presented with non-matching operands.
6457 So, even though we allow memory for this operand, no memory can be
6458 used for it, just because the two operands don't match. This can
6459 cause reload failures on register-starved targets.
6461 So it's a symptom of reload not being able to use memory for reloads
6462 or, alternatively it's also a symptom of both operands not coming into
6463 reload as matching (in which case the pseudo could go to memory just
6464 fine, as the alternative allows it, and no reload would be necessary).
6465 We fix the latter problem here, by transforming
6467 asm ("": "=mr" (inout_2) : "0" (inout_1));
6469 back to
6471 inout_2 = inout_1;
6472 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6474 static void
6475 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6477 int i;
6478 bool changed = false;
6479 rtx op = SET_SRC (p_sets[0]);
6480 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6481 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6482 bool *output_matched = XALLOCAVEC (bool, noutputs);
6484 memset (output_matched, 0, noutputs * sizeof (bool));
6485 for (i = 0; i < ninputs; i++)
6487 rtx input, output;
6488 rtx_insn *insns;
6489 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6490 char *end;
6491 int match, j;
6493 if (*constraint == '%')
6494 constraint++;
6496 match = strtoul (constraint, &end, 10);
6497 if (end == constraint)
6498 continue;
6500 gcc_assert (match < noutputs);
6501 output = SET_DEST (p_sets[match]);
6502 input = RTVEC_ELT (inputs, i);
6503 /* Only do the transformation for pseudos. */
6504 if (! REG_P (output)
6505 || rtx_equal_p (output, input)
6506 || !(REG_P (input) || SUBREG_P (input)
6507 || MEM_P (input) || CONSTANT_P (input))
6508 || !general_operand (input, GET_MODE (output)))
6509 continue;
6511 /* We can't do anything if the output is also used as input,
6512 as we're going to overwrite it. */
6513 for (j = 0; j < ninputs; j++)
6514 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6515 break;
6516 if (j != ninputs)
6517 continue;
6519 /* Avoid changing the same input several times. For
6520 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6521 only change in once (to out1), rather than changing it
6522 first to out1 and afterwards to out2. */
6523 if (i > 0)
6525 for (j = 0; j < noutputs; j++)
6526 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6527 break;
6528 if (j != noutputs)
6529 continue;
6531 output_matched[match] = true;
6533 start_sequence ();
6534 emit_move_insn (output, copy_rtx (input));
6535 insns = get_insns ();
6536 end_sequence ();
6537 emit_insn_before (insns, insn);
6539 /* Now replace all mentions of the input with output. We can't
6540 just replace the occurrence in inputs[i], as the register might
6541 also be used in some other input (or even in an address of an
6542 output), which would mean possibly increasing the number of
6543 inputs by one (namely 'output' in addition), which might pose
6544 a too complicated problem for reload to solve. E.g. this situation:
6546 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6548 Here 'input' is used in two occurrences as input (once for the
6549 input operand, once for the address in the second output operand).
6550 If we would replace only the occurrence of the input operand (to
6551 make the matching) we would be left with this:
6553 output = input
6554 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6556 Now we suddenly have two different input values (containing the same
6557 value, but different pseudos) where we formerly had only one.
6558 With more complicated asms this might lead to reload failures
6559 which wouldn't have happen without this pass. So, iterate over
6560 all operands and replace all occurrences of the register used. */
6561 for (j = 0; j < noutputs; j++)
6562 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6563 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6564 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6565 input, output);
6566 for (j = 0; j < ninputs; j++)
6567 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6568 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6569 input, output);
6571 changed = true;
6574 if (changed)
6575 df_insn_rescan (insn);
6578 /* Add the decl D to the local_decls list of FUN. */
6580 void
6581 add_local_decl (struct function *fun, tree d)
6583 gcc_assert (VAR_P (d));
6584 vec_safe_push (fun->local_decls, d);
6587 namespace {
6589 const pass_data pass_data_match_asm_constraints =
6591 RTL_PASS, /* type */
6592 "asmcons", /* name */
6593 OPTGROUP_NONE, /* optinfo_flags */
6594 TV_NONE, /* tv_id */
6595 0, /* properties_required */
6596 0, /* properties_provided */
6597 0, /* properties_destroyed */
6598 0, /* todo_flags_start */
6599 0, /* todo_flags_finish */
6602 class pass_match_asm_constraints : public rtl_opt_pass
6604 public:
6605 pass_match_asm_constraints (gcc::context *ctxt)
6606 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6609 /* opt_pass methods: */
6610 virtual unsigned int execute (function *);
6612 }; // class pass_match_asm_constraints
6614 unsigned
6615 pass_match_asm_constraints::execute (function *fun)
6617 basic_block bb;
6618 rtx_insn *insn;
6619 rtx pat, *p_sets;
6620 int noutputs;
6622 if (!crtl->has_asm_statement)
6623 return 0;
6625 df_set_flags (DF_DEFER_INSN_RESCAN);
6626 FOR_EACH_BB_FN (bb, fun)
6628 FOR_BB_INSNS (bb, insn)
6630 if (!INSN_P (insn))
6631 continue;
6633 pat = PATTERN (insn);
6634 if (GET_CODE (pat) == PARALLEL)
6635 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6636 else if (GET_CODE (pat) == SET)
6637 p_sets = &PATTERN (insn), noutputs = 1;
6638 else
6639 continue;
6641 if (GET_CODE (*p_sets) == SET
6642 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6643 match_asm_constraints_1 (insn, p_sets, noutputs);
6647 return TODO_df_finish;
6650 } // anon namespace
6652 rtl_opt_pass *
6653 make_pass_match_asm_constraints (gcc::context *ctxt)
6655 return new pass_match_asm_constraints (ctxt);
6659 #include "gt-function.h"