2015-01-03 Sandra Loosemore <sandra@codesourcery.com>
[official-gcc.git] / gcc / df-core.c
blob8e7a92fbcb46adf4575cb0b7a320b7feef9b449e
1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
3 Originally contributed by Michael P. Hayes
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 OVERVIEW:
27 The files in this collection (df*.c,df.h) provide a general framework
28 for solving dataflow problems. The global dataflow is performed using
29 a good implementation of iterative dataflow analysis.
31 The file df-problems.c provides problem instance for the most common
32 dataflow problems: reaching defs, upward exposed uses, live variables,
33 uninitialized variables, def-use chains, and use-def chains. However,
34 the interface allows other dataflow problems to be defined as well.
36 Dataflow analysis is available in most of the rtl backend (the parts
37 between pass_df_initialize and pass_df_finish). It is quite likely
38 that these boundaries will be expanded in the future. The only
39 requirement is that there be a correct control flow graph.
41 There are three variations of the live variable problem that are
42 available whenever dataflow is available. The LR problem finds the
43 areas that can reach a use of a variable, the UR problems finds the
44 areas that can be reached from a definition of a variable. The LIVE
45 problem finds the intersection of these two areas.
47 There are several optional problems. These can be enabled when they
48 are needed and disabled when they are not needed.
50 Dataflow problems are generally solved in three layers. The bottom
51 layer is called scanning where a data structure is built for each rtl
52 insn that describes the set of defs and uses of that insn. Scanning
53 is generally kept up to date, i.e. as the insns changes, the scanned
54 version of that insn changes also. There are various mechanisms for
55 making this happen and are described in the INCREMENTAL SCANNING
56 section.
58 In the middle layer, basic blocks are scanned to produce transfer
59 functions which describe the effects of that block on the global
60 dataflow solution. The transfer functions are only rebuilt if the
61 some instruction within the block has changed.
63 The top layer is the dataflow solution itself. The dataflow solution
64 is computed by using an efficient iterative solver and the transfer
65 functions. The dataflow solution must be recomputed whenever the
66 control changes or if one of the transfer function changes.
69 USAGE:
71 Here is an example of using the dataflow routines.
73 df_[chain,live,note,rd]_add_problem (flags);
75 df_set_blocks (blocks);
77 df_analyze ();
79 df_dump (stderr);
81 df_finish_pass (false);
83 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 instance to struct df_problem, to the set of problems solved in this
85 instance of df. All calls to add a problem for a given instance of df
86 must occur before the first call to DF_ANALYZE.
88 Problems can be dependent on other problems. For instance, solving
89 def-use or use-def chains is dependent on solving reaching
90 definitions. As long as these dependencies are listed in the problem
91 definition, the order of adding the problems is not material.
92 Otherwise, the problems will be solved in the order of calls to
93 df_add_problem. Note that it is not necessary to have a problem. In
94 that case, df will just be used to do the scanning.
98 DF_SET_BLOCKS is an optional call used to define a region of the
99 function on which the analysis will be performed. The normal case is
100 to analyze the entire function and no call to df_set_blocks is made.
101 DF_SET_BLOCKS only effects the blocks that are effected when computing
102 the transfer functions and final solution. The insn level information
103 is always kept up to date.
105 When a subset is given, the analysis behaves as if the function only
106 contains those blocks and any edges that occur directly between the
107 blocks in the set. Care should be taken to call df_set_blocks right
108 before the call to analyze in order to eliminate the possibility that
109 optimizations that reorder blocks invalidate the bitvector.
111 DF_ANALYZE causes all of the defined problems to be (re)solved. When
112 DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 contain the computer information. The DF_*_BB_INFO macros can be used
114 to access these bitvectors. All deferred rescannings are down before
115 the transfer functions are recomputed.
117 DF_DUMP can then be called to dump the information produce to some
118 file. This calls DF_DUMP_START, to print the information that is not
119 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 for each block to print the basic specific information. These parts
121 can all be called separately as part of a larger dump function.
124 DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 optional problems. It also causes any insns whose scanning has been
126 deferred to be rescanned as well as clears all of the changeable flags.
127 Setting the pass manager TODO_df_finish flag causes this function to
128 be run. However, the pass manager will call df_finish_pass AFTER the
129 pass dumping has been done, so if you want to see the results of the
130 optional problems in the pass dumps, use the TODO flag rather than
131 calling the function yourself.
133 INCREMENTAL SCANNING
135 There are four ways of doing the incremental scanning:
137 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
146 upon even after changes have been made to the instructions. This
147 technique is contra indicated in several cases:
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
172 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
178 This is the technique of choice if either 1a, 1b, or 1c are issues
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
183 This mode is also used by a few passes that still rely on note_uses,
184 note_stores and rtx iterators instead of using the DF data. This
185 can be said to fall under case 1c.
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190 be rescanned.
192 3) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
199 4) Do it yourself - In this mechanism, the pass updates the insns
200 itself using the low level df primitives. Currently no pass does
201 this, but it has the advantage that it is quite efficient given
202 that the pass generally has exact knowledge of what it is changing.
204 DATA STRUCTURES
206 Scanning produces a `struct df_ref' data structure (ref) is allocated
207 for every register reference (def or use) and this records the insn
208 and bb the ref is found within. The refs are linked together in
209 chains of uses and defs for each insn and for each register. Each ref
210 also has a chain field that links all the use refs for a def or all
211 the def refs for a use. This is used to create use-def or def-use
212 chains.
214 Different optimizations have different needs. Ultimately, only
215 register allocation and schedulers should be using the bitmaps
216 produced for the live register and uninitialized register problems.
217 The rest of the backend should be upgraded to using and maintaining
218 the linked information such as def use or use def chains.
221 PHILOSOPHY:
223 While incremental bitmaps are not worthwhile to maintain, incremental
224 chains may be perfectly reasonable. The fastest way to build chains
225 from scratch or after significant modifications is to build reaching
226 definitions (RD) and build the chains from this.
228 However, general algorithms for maintaining use-def or def-use chains
229 are not practical. The amount of work to recompute the chain any
230 chain after an arbitrary change is large. However, with a modest
231 amount of work it is generally possible to have the application that
232 uses the chains keep them up to date. The high level knowledge of
233 what is really happening is essential to crafting efficient
234 incremental algorithms.
236 As for the bit vector problems, there is no interface to give a set of
237 blocks over with to resolve the iteration. In general, restarting a
238 dataflow iteration is difficult and expensive. Again, the best way to
239 keep the dataflow information up to data (if this is really what is
240 needed) it to formulate a problem specific solution.
242 There are fine grained calls for creating and deleting references from
243 instructions in df-scan.c. However, these are not currently connected
244 to the engine that resolves the dataflow equations.
247 DATA STRUCTURES:
249 The basic object is a DF_REF (reference) and this may either be a
250 DEF (definition) or a USE of a register.
252 These are linked into a variety of lists; namely reg-def, reg-use,
253 insn-def, insn-use, def-use, and use-def lists. For example, the
254 reg-def lists contain all the locations that define a given register
255 while the insn-use lists contain all the locations that use a
256 register.
258 Note that the reg-def and reg-use chains are generally short for
259 pseudos and long for the hard registers.
261 ACCESSING INSNS:
263 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
267 2) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
279 3) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
287 ACCESSING REFS:
289 There are 4 ways to obtain access to refs:
291 1) References are divided into two categories, REAL and ARTIFICIAL.
293 REAL refs are associated with instructions.
295 ARTIFICIAL refs are associated with basic blocks. The heads of
296 these lists can be accessed by calling df_get_artificial_defs or
297 df_get_artificial_uses for the particular basic block.
299 Artificial defs and uses occur both at the beginning and ends of blocks.
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
314 Artificial defs occur at the end of the entry block. These arise
315 from registers that are live at entry to the function.
317 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324 treated like uses. If it is not set they are ignored.
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
336 3) If def-use or use-def chains are built, these can be traversed to
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
341 4) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
349 df_analyze or df_reorganize_defs or df_reorganize_uses.
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
355 NOTES:
357 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 both a use and a def. These are both marked read/write to show that they
359 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 will generate a use of reg 42 followed by a def of reg 42 (both marked
361 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 even though reg 41 is decremented before it is used for the memory
364 address in this second example.
366 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 for which the number of word_mode units covered by the outer mode is
368 smaller than that covered by the inner mode, invokes a read-modify-write
369 operation. We generate both a use and a def and again mark them
370 read/write.
372 Paradoxical subreg writes do not leave a trace of the old content, so they
373 are write-only operations.
377 #include "config.h"
378 #include "system.h"
379 #include "coretypes.h"
380 #include "tm.h"
381 #include "rtl.h"
382 #include "tm_p.h"
383 #include "insn-config.h"
384 #include "recog.h"
385 #include "hashtab.h"
386 #include "hash-set.h"
387 #include "vec.h"
388 #include "machmode.h"
389 #include "hard-reg-set.h"
390 #include "input.h"
391 #include "function.h"
392 #include "regs.h"
393 #include "alloc-pool.h"
394 #include "flags.h"
395 #include "predict.h"
396 #include "dominance.h"
397 #include "cfg.h"
398 #include "cfganal.h"
399 #include "basic-block.h"
400 #include "sbitmap.h"
401 #include "bitmap.h"
402 #include "df.h"
403 #include "tree-pass.h"
404 #include "params.h"
405 #include "cfgloop.h"
407 static void *df_get_bb_info (struct dataflow *, unsigned int);
408 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
409 static void df_clear_bb_info (struct dataflow *, unsigned int);
410 #ifdef DF_DEBUG_CFG
411 static void df_set_clean_cfg (void);
412 #endif
414 /* The obstack on which regsets are allocated. */
415 struct bitmap_obstack reg_obstack;
417 /* An obstack for bitmap not related to specific dataflow problems.
418 This obstack should e.g. be used for bitmaps with a short life time
419 such as temporary bitmaps. */
421 bitmap_obstack df_bitmap_obstack;
424 /*----------------------------------------------------------------------------
425 Functions to create, destroy and manipulate an instance of df.
426 ----------------------------------------------------------------------------*/
428 struct df_d *df;
430 /* Add PROBLEM (and any dependent problems) to the DF instance. */
432 void
433 df_add_problem (struct df_problem *problem)
435 struct dataflow *dflow;
436 int i;
438 /* First try to add the dependent problem. */
439 if (problem->dependent_problem)
440 df_add_problem (problem->dependent_problem);
442 /* Check to see if this problem has already been defined. If it
443 has, just return that instance, if not, add it to the end of the
444 vector. */
445 dflow = df->problems_by_index[problem->id];
446 if (dflow)
447 return;
449 /* Make a new one and add it to the end. */
450 dflow = XCNEW (struct dataflow);
451 dflow->problem = problem;
452 dflow->computed = false;
453 dflow->solutions_dirty = true;
454 df->problems_by_index[dflow->problem->id] = dflow;
456 /* Keep the defined problems ordered by index. This solves the
457 problem that RI will use the information from UREC if UREC has
458 been defined, or from LIVE if LIVE is defined and otherwise LR.
459 However for this to work, the computation of RI must be pushed
460 after which ever of those problems is defined, but we do not
461 require any of those except for LR to have actually been
462 defined. */
463 df->num_problems_defined++;
464 for (i = df->num_problems_defined - 2; i >= 0; i--)
466 if (problem->id < df->problems_in_order[i]->problem->id)
467 df->problems_in_order[i+1] = df->problems_in_order[i];
468 else
470 df->problems_in_order[i+1] = dflow;
471 return;
474 df->problems_in_order[0] = dflow;
478 /* Set the MASK flags in the DFLOW problem. The old flags are
479 returned. If a flag is not allowed to be changed this will fail if
480 checking is enabled. */
482 df_set_flags (int changeable_flags)
484 int old_flags = df->changeable_flags;
485 df->changeable_flags |= changeable_flags;
486 return old_flags;
490 /* Clear the MASK flags in the DFLOW problem. The old flags are
491 returned. If a flag is not allowed to be changed this will fail if
492 checking is enabled. */
494 df_clear_flags (int changeable_flags)
496 int old_flags = df->changeable_flags;
497 df->changeable_flags &= ~changeable_flags;
498 return old_flags;
502 /* Set the blocks that are to be considered for analysis. If this is
503 not called or is called with null, the entire function in
504 analyzed. */
506 void
507 df_set_blocks (bitmap blocks)
509 if (blocks)
511 if (dump_file)
512 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
513 if (df->blocks_to_analyze)
515 /* This block is called to change the focus from one subset
516 to another. */
517 int p;
518 bitmap_head diff;
519 bitmap_initialize (&diff, &df_bitmap_obstack);
520 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
521 for (p = 0; p < df->num_problems_defined; p++)
523 struct dataflow *dflow = df->problems_in_order[p];
524 if (dflow->optional_p && dflow->problem->reset_fun)
525 dflow->problem->reset_fun (df->blocks_to_analyze);
526 else if (dflow->problem->free_blocks_on_set_blocks)
528 bitmap_iterator bi;
529 unsigned int bb_index;
531 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
533 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
534 if (bb)
536 void *bb_info = df_get_bb_info (dflow, bb_index);
537 dflow->problem->free_bb_fun (bb, bb_info);
538 df_clear_bb_info (dflow, bb_index);
544 bitmap_clear (&diff);
546 else
548 /* This block of code is executed to change the focus from
549 the entire function to a subset. */
550 bitmap_head blocks_to_reset;
551 bool initialized = false;
552 int p;
553 for (p = 0; p < df->num_problems_defined; p++)
555 struct dataflow *dflow = df->problems_in_order[p];
556 if (dflow->optional_p && dflow->problem->reset_fun)
558 if (!initialized)
560 basic_block bb;
561 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
562 FOR_ALL_BB_FN (bb, cfun)
564 bitmap_set_bit (&blocks_to_reset, bb->index);
567 dflow->problem->reset_fun (&blocks_to_reset);
570 if (initialized)
571 bitmap_clear (&blocks_to_reset);
573 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
575 bitmap_copy (df->blocks_to_analyze, blocks);
576 df->analyze_subset = true;
578 else
580 /* This block is executed to reset the focus to the entire
581 function. */
582 if (dump_file)
583 fprintf (dump_file, "clearing blocks_to_analyze\n");
584 if (df->blocks_to_analyze)
586 BITMAP_FREE (df->blocks_to_analyze);
587 df->blocks_to_analyze = NULL;
589 df->analyze_subset = false;
592 /* Setting the blocks causes the refs to be unorganized since only
593 the refs in the blocks are seen. */
594 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
595 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
596 df_mark_solutions_dirty ();
600 /* Delete a DFLOW problem (and any problems that depend on this
601 problem). */
603 void
604 df_remove_problem (struct dataflow *dflow)
606 struct df_problem *problem;
607 int i;
609 if (!dflow)
610 return;
612 problem = dflow->problem;
613 gcc_assert (problem->remove_problem_fun);
615 /* Delete any problems that depended on this problem first. */
616 for (i = 0; i < df->num_problems_defined; i++)
617 if (df->problems_in_order[i]->problem->dependent_problem == problem)
618 df_remove_problem (df->problems_in_order[i]);
620 /* Now remove this problem. */
621 for (i = 0; i < df->num_problems_defined; i++)
622 if (df->problems_in_order[i] == dflow)
624 int j;
625 for (j = i + 1; j < df->num_problems_defined; j++)
626 df->problems_in_order[j-1] = df->problems_in_order[j];
627 df->problems_in_order[j-1] = NULL;
628 df->num_problems_defined--;
629 break;
632 (problem->remove_problem_fun) ();
633 df->problems_by_index[problem->id] = NULL;
637 /* Remove all of the problems that are not permanent. Scanning, LR
638 and (at -O2 or higher) LIVE are permanent, the rest are removable.
639 Also clear all of the changeable_flags. */
641 void
642 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
644 int i;
645 int removed = 0;
647 #ifdef ENABLE_DF_CHECKING
648 int saved_flags;
649 #endif
651 if (!df)
652 return;
654 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
655 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
657 #ifdef ENABLE_DF_CHECKING
658 saved_flags = df->changeable_flags;
659 #endif
661 for (i = 0; i < df->num_problems_defined; i++)
663 struct dataflow *dflow = df->problems_in_order[i];
664 struct df_problem *problem = dflow->problem;
666 if (dflow->optional_p)
668 gcc_assert (problem->remove_problem_fun);
669 (problem->remove_problem_fun) ();
670 df->problems_in_order[i] = NULL;
671 df->problems_by_index[problem->id] = NULL;
672 removed++;
675 df->num_problems_defined -= removed;
677 /* Clear all of the flags. */
678 df->changeable_flags = 0;
679 df_process_deferred_rescans ();
681 /* Set the focus back to the whole function. */
682 if (df->blocks_to_analyze)
684 BITMAP_FREE (df->blocks_to_analyze);
685 df->blocks_to_analyze = NULL;
686 df_mark_solutions_dirty ();
687 df->analyze_subset = false;
690 #ifdef ENABLE_DF_CHECKING
691 /* Verification will fail in DF_NO_INSN_RESCAN. */
692 if (!(saved_flags & DF_NO_INSN_RESCAN))
694 df_lr_verify_transfer_functions ();
695 if (df_live)
696 df_live_verify_transfer_functions ();
699 #ifdef DF_DEBUG_CFG
700 df_set_clean_cfg ();
701 #endif
702 #endif
704 #ifdef ENABLE_CHECKING
705 if (verify)
706 df->changeable_flags |= DF_VERIFY_SCHEDULED;
707 #endif
711 /* Set up the dataflow instance for the entire back end. */
713 static unsigned int
714 rest_of_handle_df_initialize (void)
716 gcc_assert (!df);
717 df = XCNEW (struct df_d);
718 df->changeable_flags = 0;
720 bitmap_obstack_initialize (&df_bitmap_obstack);
722 /* Set this to a conservative value. Stack_ptr_mod will compute it
723 correctly later. */
724 crtl->sp_is_unchanging = 0;
726 df_scan_add_problem ();
727 df_scan_alloc (NULL);
729 /* These three problems are permanent. */
730 df_lr_add_problem ();
731 if (optimize > 1)
732 df_live_add_problem ();
734 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
735 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
736 df->n_blocks = post_order_compute (df->postorder, true, true);
737 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
738 gcc_assert (df->n_blocks == df->n_blocks_inverted);
740 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
742 df_hard_reg_init ();
743 /* After reload, some ports add certain bits to regs_ever_live so
744 this cannot be reset. */
745 df_compute_regs_ever_live (true);
746 df_scan_blocks ();
747 df_compute_regs_ever_live (false);
748 return 0;
752 namespace {
754 const pass_data pass_data_df_initialize_opt =
756 RTL_PASS, /* type */
757 "dfinit", /* name */
758 OPTGROUP_NONE, /* optinfo_flags */
759 TV_DF_SCAN, /* tv_id */
760 0, /* properties_required */
761 0, /* properties_provided */
762 0, /* properties_destroyed */
763 0, /* todo_flags_start */
764 0, /* todo_flags_finish */
767 class pass_df_initialize_opt : public rtl_opt_pass
769 public:
770 pass_df_initialize_opt (gcc::context *ctxt)
771 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
774 /* opt_pass methods: */
775 virtual bool gate (function *) { return optimize > 0; }
776 virtual unsigned int execute (function *)
778 return rest_of_handle_df_initialize ();
781 }; // class pass_df_initialize_opt
783 } // anon namespace
785 rtl_opt_pass *
786 make_pass_df_initialize_opt (gcc::context *ctxt)
788 return new pass_df_initialize_opt (ctxt);
792 namespace {
794 const pass_data pass_data_df_initialize_no_opt =
796 RTL_PASS, /* type */
797 "no-opt dfinit", /* name */
798 OPTGROUP_NONE, /* optinfo_flags */
799 TV_DF_SCAN, /* tv_id */
800 0, /* properties_required */
801 0, /* properties_provided */
802 0, /* properties_destroyed */
803 0, /* todo_flags_start */
804 0, /* todo_flags_finish */
807 class pass_df_initialize_no_opt : public rtl_opt_pass
809 public:
810 pass_df_initialize_no_opt (gcc::context *ctxt)
811 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
814 /* opt_pass methods: */
815 virtual bool gate (function *) { return optimize == 0; }
816 virtual unsigned int execute (function *)
818 return rest_of_handle_df_initialize ();
821 }; // class pass_df_initialize_no_opt
823 } // anon namespace
825 rtl_opt_pass *
826 make_pass_df_initialize_no_opt (gcc::context *ctxt)
828 return new pass_df_initialize_no_opt (ctxt);
832 /* Free all the dataflow info and the DF structure. This should be
833 called from the df_finish macro which also NULLs the parm. */
835 static unsigned int
836 rest_of_handle_df_finish (void)
838 int i;
840 gcc_assert (df);
842 for (i = 0; i < df->num_problems_defined; i++)
844 struct dataflow *dflow = df->problems_in_order[i];
845 dflow->problem->free_fun ();
848 free (df->postorder);
849 free (df->postorder_inverted);
850 free (df->hard_regs_live_count);
851 free (df);
852 df = NULL;
854 bitmap_obstack_release (&df_bitmap_obstack);
855 return 0;
859 namespace {
861 const pass_data pass_data_df_finish =
863 RTL_PASS, /* type */
864 "dfinish", /* name */
865 OPTGROUP_NONE, /* optinfo_flags */
866 TV_NONE, /* tv_id */
867 0, /* properties_required */
868 0, /* properties_provided */
869 0, /* properties_destroyed */
870 0, /* todo_flags_start */
871 0, /* todo_flags_finish */
874 class pass_df_finish : public rtl_opt_pass
876 public:
877 pass_df_finish (gcc::context *ctxt)
878 : rtl_opt_pass (pass_data_df_finish, ctxt)
881 /* opt_pass methods: */
882 virtual unsigned int execute (function *)
884 return rest_of_handle_df_finish ();
887 }; // class pass_df_finish
889 } // anon namespace
891 rtl_opt_pass *
892 make_pass_df_finish (gcc::context *ctxt)
894 return new pass_df_finish (ctxt);
901 /*----------------------------------------------------------------------------
902 The general data flow analysis engine.
903 ----------------------------------------------------------------------------*/
905 /* Return time BB when it was visited for last time. */
906 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
908 /* Helper function for df_worklist_dataflow.
909 Propagate the dataflow forward.
910 Given a BB_INDEX, do the dataflow propagation
911 and set bits on for successors in PENDING
912 if the out set of the dataflow has changed.
914 AGE specify time when BB was visited last time.
915 AGE of 0 means we are visiting for first time and need to
916 compute transfer function to initialize datastructures.
917 Otherwise we re-do transfer function only if something change
918 while computing confluence functions.
919 We need to compute confluence only of basic block that are younger
920 then last visit of the BB.
922 Return true if BB info has changed. This is always the case
923 in the first visit. */
925 static bool
926 df_worklist_propagate_forward (struct dataflow *dataflow,
927 unsigned bb_index,
928 unsigned *bbindex_to_postorder,
929 bitmap pending,
930 sbitmap considered,
931 ptrdiff_t age)
933 edge e;
934 edge_iterator ei;
935 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
936 bool changed = !age;
938 /* Calculate <conf_op> of incoming edges. */
939 if (EDGE_COUNT (bb->preds) > 0)
940 FOR_EACH_EDGE (e, ei, bb->preds)
942 if (age <= BB_LAST_CHANGE_AGE (e->src)
943 && bitmap_bit_p (considered, e->src->index))
944 changed |= dataflow->problem->con_fun_n (e);
946 else if (dataflow->problem->con_fun_0)
947 dataflow->problem->con_fun_0 (bb);
949 if (changed
950 && dataflow->problem->trans_fun (bb_index))
952 /* The out set of this block has changed.
953 Propagate to the outgoing blocks. */
954 FOR_EACH_EDGE (e, ei, bb->succs)
956 unsigned ob_index = e->dest->index;
958 if (bitmap_bit_p (considered, ob_index))
959 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
961 return true;
963 return false;
967 /* Helper function for df_worklist_dataflow.
968 Propagate the dataflow backward. */
970 static bool
971 df_worklist_propagate_backward (struct dataflow *dataflow,
972 unsigned bb_index,
973 unsigned *bbindex_to_postorder,
974 bitmap pending,
975 sbitmap considered,
976 ptrdiff_t age)
978 edge e;
979 edge_iterator ei;
980 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
981 bool changed = !age;
983 /* Calculate <conf_op> of incoming edges. */
984 if (EDGE_COUNT (bb->succs) > 0)
985 FOR_EACH_EDGE (e, ei, bb->succs)
987 if (age <= BB_LAST_CHANGE_AGE (e->dest)
988 && bitmap_bit_p (considered, e->dest->index))
989 changed |= dataflow->problem->con_fun_n (e);
991 else if (dataflow->problem->con_fun_0)
992 dataflow->problem->con_fun_0 (bb);
994 if (changed
995 && dataflow->problem->trans_fun (bb_index))
997 /* The out set of this block has changed.
998 Propagate to the outgoing blocks. */
999 FOR_EACH_EDGE (e, ei, bb->preds)
1001 unsigned ob_index = e->src->index;
1003 if (bitmap_bit_p (considered, ob_index))
1004 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
1006 return true;
1008 return false;
1011 /* Main dataflow solver loop.
1013 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
1014 need to visit.
1015 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
1016 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
1017 PENDING will be freed.
1019 The worklists are bitmaps indexed by postorder positions.
1021 The function implements standard algorithm for dataflow solving with two
1022 worklists (we are processing WORKLIST and storing new BBs to visit in
1023 PENDING).
1025 As an optimization we maintain ages when BB was changed (stored in bb->aux)
1026 and when it was last visited (stored in last_visit_age). This avoids need
1027 to re-do confluence function for edges to basic blocks whose source
1028 did not change since destination was visited last time. */
1030 static void
1031 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1032 bitmap pending,
1033 sbitmap considered,
1034 int *blocks_in_postorder,
1035 unsigned *bbindex_to_postorder,
1036 int n_blocks)
1038 enum df_flow_dir dir = dataflow->problem->dir;
1039 int dcount = 0;
1040 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
1041 int age = 0;
1042 bool changed;
1043 vec<int> last_visit_age = vNULL;
1044 int prev_age;
1045 basic_block bb;
1046 int i;
1048 last_visit_age.safe_grow_cleared (n_blocks);
1050 /* Double-queueing. Worklist is for the current iteration,
1051 and pending is for the next. */
1052 while (!bitmap_empty_p (pending))
1054 bitmap_iterator bi;
1055 unsigned int index;
1057 /* Swap pending and worklist. */
1058 bitmap temp = worklist;
1059 worklist = pending;
1060 pending = temp;
1062 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1064 unsigned bb_index;
1065 dcount++;
1067 bitmap_clear_bit (pending, index);
1068 bb_index = blocks_in_postorder[index];
1069 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1070 prev_age = last_visit_age[index];
1071 if (dir == DF_FORWARD)
1072 changed = df_worklist_propagate_forward (dataflow, bb_index,
1073 bbindex_to_postorder,
1074 pending, considered,
1075 prev_age);
1076 else
1077 changed = df_worklist_propagate_backward (dataflow, bb_index,
1078 bbindex_to_postorder,
1079 pending, considered,
1080 prev_age);
1081 last_visit_age[index] = ++age;
1082 if (changed)
1083 bb->aux = (void *)(ptrdiff_t)age;
1085 bitmap_clear (worklist);
1087 for (i = 0; i < n_blocks; i++)
1088 BASIC_BLOCK_FOR_FN (cfun, blocks_in_postorder[i])->aux = NULL;
1090 BITMAP_FREE (worklist);
1091 BITMAP_FREE (pending);
1092 last_visit_age.release ();
1094 /* Dump statistics. */
1095 if (dump_file)
1096 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1097 "n_basic_blocks %d n_edges %d"
1098 " count %d (%5.2g)\n",
1099 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
1100 dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
1103 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1104 with "n"-th bit representing the n-th block in the reverse-postorder order.
1105 The solver is a double-queue algorithm similar to the "double stack" solver
1106 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1107 The only significant difference is that the worklist in this implementation
1108 is always sorted in RPO of the CFG visiting direction. */
1110 void
1111 df_worklist_dataflow (struct dataflow *dataflow,
1112 bitmap blocks_to_consider,
1113 int *blocks_in_postorder,
1114 int n_blocks)
1116 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1117 sbitmap considered = sbitmap_alloc (last_basic_block_for_fn (cfun));
1118 bitmap_iterator bi;
1119 unsigned int *bbindex_to_postorder;
1120 int i;
1121 unsigned int index;
1122 enum df_flow_dir dir = dataflow->problem->dir;
1124 gcc_assert (dir != DF_NONE);
1126 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1127 bbindex_to_postorder = XNEWVEC (unsigned int,
1128 last_basic_block_for_fn (cfun));
1130 /* Initialize the array to an out-of-bound value. */
1131 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1132 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
1134 /* Initialize the considered map. */
1135 bitmap_clear (considered);
1136 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1138 bitmap_set_bit (considered, index);
1141 /* Initialize the mapping of block index to postorder. */
1142 for (i = 0; i < n_blocks; i++)
1144 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1145 /* Add all blocks to the worklist. */
1146 bitmap_set_bit (pending, i);
1149 /* Initialize the problem. */
1150 if (dataflow->problem->init_fun)
1151 dataflow->problem->init_fun (blocks_to_consider);
1153 /* Solve it. */
1154 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1155 blocks_in_postorder,
1156 bbindex_to_postorder,
1157 n_blocks);
1158 sbitmap_free (considered);
1159 free (bbindex_to_postorder);
1163 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1164 the order of the remaining entries. Returns the length of the resulting
1165 list. */
1167 static unsigned
1168 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1170 unsigned act, last;
1172 for (act = 0, last = 0; act < len; act++)
1173 if (bitmap_bit_p (blocks, list[act]))
1174 list[last++] = list[act];
1176 return last;
1180 /* Execute dataflow analysis on a single dataflow problem.
1182 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1183 examined or will be computed. For calls from DF_ANALYZE, this is
1184 the set of blocks that has been passed to DF_SET_BLOCKS.
1187 void
1188 df_analyze_problem (struct dataflow *dflow,
1189 bitmap blocks_to_consider,
1190 int *postorder, int n_blocks)
1192 timevar_push (dflow->problem->tv_id);
1194 /* (Re)Allocate the datastructures necessary to solve the problem. */
1195 if (dflow->problem->alloc_fun)
1196 dflow->problem->alloc_fun (blocks_to_consider);
1198 #ifdef ENABLE_DF_CHECKING
1199 if (dflow->problem->verify_start_fun)
1200 dflow->problem->verify_start_fun ();
1201 #endif
1203 /* Set up the problem and compute the local information. */
1204 if (dflow->problem->local_compute_fun)
1205 dflow->problem->local_compute_fun (blocks_to_consider);
1207 /* Solve the equations. */
1208 if (dflow->problem->dataflow_fun)
1209 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1210 postorder, n_blocks);
1212 /* Massage the solution. */
1213 if (dflow->problem->finalize_fun)
1214 dflow->problem->finalize_fun (blocks_to_consider);
1216 #ifdef ENABLE_DF_CHECKING
1217 if (dflow->problem->verify_end_fun)
1218 dflow->problem->verify_end_fun ();
1219 #endif
1221 timevar_pop (dflow->problem->tv_id);
1223 dflow->computed = true;
1227 /* Analyze dataflow info. */
1229 static void
1230 df_analyze_1 (void)
1232 int i;
1234 /* These should be the same. */
1235 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1237 /* We need to do this before the df_verify_all because this is
1238 not kept incrementally up to date. */
1239 df_compute_regs_ever_live (false);
1240 df_process_deferred_rescans ();
1242 if (dump_file)
1243 fprintf (dump_file, "df_analyze called\n");
1245 #ifndef ENABLE_DF_CHECKING
1246 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1247 #endif
1248 df_verify ();
1250 /* Skip over the DF_SCAN problem. */
1251 for (i = 1; i < df->num_problems_defined; i++)
1253 struct dataflow *dflow = df->problems_in_order[i];
1254 if (dflow->solutions_dirty)
1256 if (dflow->problem->dir == DF_FORWARD)
1257 df_analyze_problem (dflow,
1258 df->blocks_to_analyze,
1259 df->postorder_inverted,
1260 df->n_blocks_inverted);
1261 else
1262 df_analyze_problem (dflow,
1263 df->blocks_to_analyze,
1264 df->postorder,
1265 df->n_blocks);
1269 if (!df->analyze_subset)
1271 BITMAP_FREE (df->blocks_to_analyze);
1272 df->blocks_to_analyze = NULL;
1275 #ifdef DF_DEBUG_CFG
1276 df_set_clean_cfg ();
1277 #endif
1280 /* Analyze dataflow info. */
1282 void
1283 df_analyze (void)
1285 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1286 int i;
1288 free (df->postorder);
1289 free (df->postorder_inverted);
1290 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
1291 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
1292 df->n_blocks = post_order_compute (df->postorder, true, true);
1293 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1295 for (i = 0; i < df->n_blocks; i++)
1296 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1298 #ifdef ENABLE_CHECKING
1299 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1300 the ENTRY block. */
1301 for (i = 0; i < df->n_blocks_inverted; i++)
1302 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1303 #endif
1305 /* Make sure that we have pruned any unreachable blocks from these
1306 sets. */
1307 if (df->analyze_subset)
1309 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1310 df->n_blocks = df_prune_to_subcfg (df->postorder,
1311 df->n_blocks, df->blocks_to_analyze);
1312 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1313 df->n_blocks_inverted,
1314 df->blocks_to_analyze);
1315 BITMAP_FREE (current_all_blocks);
1317 else
1319 df->blocks_to_analyze = current_all_blocks;
1320 current_all_blocks = NULL;
1323 df_analyze_1 ();
1326 /* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1327 Returns the number of blocks which is always loop->num_nodes. */
1329 static int
1330 loop_post_order_compute (int *post_order, struct loop *loop)
1332 edge_iterator *stack;
1333 int sp;
1334 int post_order_num = 0;
1335 bitmap visited;
1337 /* Allocate stack for back-tracking up CFG. */
1338 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1339 sp = 0;
1341 /* Allocate bitmap to track nodes that have been visited. */
1342 visited = BITMAP_ALLOC (NULL);
1344 /* Push the first edge on to the stack. */
1345 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1347 while (sp)
1349 edge_iterator ei;
1350 basic_block src;
1351 basic_block dest;
1353 /* Look at the edge on the top of the stack. */
1354 ei = stack[sp - 1];
1355 src = ei_edge (ei)->src;
1356 dest = ei_edge (ei)->dest;
1358 /* Check if the edge destination has been visited yet and mark it
1359 if not so. */
1360 if (flow_bb_inside_loop_p (loop, dest)
1361 && bitmap_set_bit (visited, dest->index))
1363 if (EDGE_COUNT (dest->succs) > 0)
1364 /* Since the DEST node has been visited for the first
1365 time, check its successors. */
1366 stack[sp++] = ei_start (dest->succs);
1367 else
1368 post_order[post_order_num++] = dest->index;
1370 else
1372 if (ei_one_before_end_p (ei)
1373 && src != loop_preheader_edge (loop)->src)
1374 post_order[post_order_num++] = src->index;
1376 if (!ei_one_before_end_p (ei))
1377 ei_next (&stack[sp - 1]);
1378 else
1379 sp--;
1383 free (stack);
1384 BITMAP_FREE (visited);
1386 return post_order_num;
1389 /* Compute the reverse top sort order of the inverted sub-CFG specified
1390 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1392 static int
1393 loop_inverted_post_order_compute (int *post_order, struct loop *loop)
1395 basic_block bb;
1396 edge_iterator *stack;
1397 int sp;
1398 int post_order_num = 0;
1399 bitmap visited;
1401 /* Allocate stack for back-tracking up CFG. */
1402 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1403 sp = 0;
1405 /* Allocate bitmap to track nodes that have been visited. */
1406 visited = BITMAP_ALLOC (NULL);
1408 /* Put all latches into the initial work list. In theory we'd want
1409 to start from loop exits but then we'd have the special case of
1410 endless loops. It doesn't really matter for DF iteration order and
1411 handling latches last is probably even better. */
1412 stack[sp++] = ei_start (loop->header->preds);
1413 bitmap_set_bit (visited, loop->header->index);
1415 /* The inverted traversal loop. */
1416 while (sp)
1418 edge_iterator ei;
1419 basic_block pred;
1421 /* Look at the edge on the top of the stack. */
1422 ei = stack[sp - 1];
1423 bb = ei_edge (ei)->dest;
1424 pred = ei_edge (ei)->src;
1426 /* Check if the predecessor has been visited yet and mark it
1427 if not so. */
1428 if (flow_bb_inside_loop_p (loop, pred)
1429 && bitmap_set_bit (visited, pred->index))
1431 if (EDGE_COUNT (pred->preds) > 0)
1432 /* Since the predecessor node has been visited for the first
1433 time, check its predecessors. */
1434 stack[sp++] = ei_start (pred->preds);
1435 else
1436 post_order[post_order_num++] = pred->index;
1438 else
1440 if (flow_bb_inside_loop_p (loop, bb)
1441 && ei_one_before_end_p (ei))
1442 post_order[post_order_num++] = bb->index;
1444 if (!ei_one_before_end_p (ei))
1445 ei_next (&stack[sp - 1]);
1446 else
1447 sp--;
1451 free (stack);
1452 BITMAP_FREE (visited);
1453 return post_order_num;
1457 /* Analyze dataflow info for the basic blocks contained in LOOP. */
1459 void
1460 df_analyze_loop (struct loop *loop)
1462 free (df->postorder);
1463 free (df->postorder_inverted);
1465 df->postorder = XNEWVEC (int, loop->num_nodes);
1466 df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
1467 df->n_blocks = loop_post_order_compute (df->postorder, loop);
1468 df->n_blocks_inverted
1469 = loop_inverted_post_order_compute (df->postorder_inverted, loop);
1470 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1471 gcc_assert ((unsigned) df->n_blocks_inverted == loop->num_nodes);
1473 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1474 for (int i = 0; i < df->n_blocks; ++i)
1475 bitmap_set_bit (blocks, df->postorder[i]);
1476 df_set_blocks (blocks);
1477 BITMAP_FREE (blocks);
1479 df_analyze_1 ();
1483 /* Return the number of basic blocks from the last call to df_analyze. */
1486 df_get_n_blocks (enum df_flow_dir dir)
1488 gcc_assert (dir != DF_NONE);
1490 if (dir == DF_FORWARD)
1492 gcc_assert (df->postorder_inverted);
1493 return df->n_blocks_inverted;
1496 gcc_assert (df->postorder);
1497 return df->n_blocks;
1501 /* Return a pointer to the array of basic blocks in the reverse postorder.
1502 Depending on the direction of the dataflow problem,
1503 it returns either the usual reverse postorder array
1504 or the reverse postorder of inverted traversal. */
1505 int *
1506 df_get_postorder (enum df_flow_dir dir)
1508 gcc_assert (dir != DF_NONE);
1510 if (dir == DF_FORWARD)
1512 gcc_assert (df->postorder_inverted);
1513 return df->postorder_inverted;
1515 gcc_assert (df->postorder);
1516 return df->postorder;
1519 static struct df_problem user_problem;
1520 static struct dataflow user_dflow;
1522 /* Interface for calling iterative dataflow with user defined
1523 confluence and transfer functions. All that is necessary is to
1524 supply DIR, a direction, CONF_FUN_0, a confluence function for
1525 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1526 confluence function, TRANS_FUN, the basic block transfer function,
1527 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1528 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1530 void
1531 df_simple_dataflow (enum df_flow_dir dir,
1532 df_init_function init_fun,
1533 df_confluence_function_0 con_fun_0,
1534 df_confluence_function_n con_fun_n,
1535 df_transfer_function trans_fun,
1536 bitmap blocks, int * postorder, int n_blocks)
1538 memset (&user_problem, 0, sizeof (struct df_problem));
1539 user_problem.dir = dir;
1540 user_problem.init_fun = init_fun;
1541 user_problem.con_fun_0 = con_fun_0;
1542 user_problem.con_fun_n = con_fun_n;
1543 user_problem.trans_fun = trans_fun;
1544 user_dflow.problem = &user_problem;
1545 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1550 /*----------------------------------------------------------------------------
1551 Functions to support limited incremental change.
1552 ----------------------------------------------------------------------------*/
1555 /* Get basic block info. */
1557 static void *
1558 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1560 if (dflow->block_info == NULL)
1561 return NULL;
1562 if (index >= dflow->block_info_size)
1563 return NULL;
1564 return (void *)((char *)dflow->block_info
1565 + index * dflow->problem->block_info_elt_size);
1569 /* Set basic block info. */
1571 static void
1572 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1573 void *bb_info)
1575 gcc_assert (dflow->block_info);
1576 memcpy ((char *)dflow->block_info
1577 + index * dflow->problem->block_info_elt_size,
1578 bb_info, dflow->problem->block_info_elt_size);
1582 /* Clear basic block info. */
1584 static void
1585 df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1587 gcc_assert (dflow->block_info);
1588 gcc_assert (dflow->block_info_size > index);
1589 memset ((char *)dflow->block_info
1590 + index * dflow->problem->block_info_elt_size,
1591 0, dflow->problem->block_info_elt_size);
1595 /* Mark the solutions as being out of date. */
1597 void
1598 df_mark_solutions_dirty (void)
1600 if (df)
1602 int p;
1603 for (p = 1; p < df->num_problems_defined; p++)
1604 df->problems_in_order[p]->solutions_dirty = true;
1609 /* Return true if BB needs it's transfer functions recomputed. */
1611 bool
1612 df_get_bb_dirty (basic_block bb)
1614 return bitmap_bit_p ((df_live
1615 ? df_live : df_lr)->out_of_date_transfer_functions,
1616 bb->index);
1620 /* Mark BB as needing it's transfer functions as being out of
1621 date. */
1623 void
1624 df_set_bb_dirty (basic_block bb)
1626 bb->flags |= BB_MODIFIED;
1627 if (df)
1629 int p;
1630 for (p = 1; p < df->num_problems_defined; p++)
1632 struct dataflow *dflow = df->problems_in_order[p];
1633 if (dflow->out_of_date_transfer_functions)
1634 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1636 df_mark_solutions_dirty ();
1641 /* Grow the bb_info array. */
1643 void
1644 df_grow_bb_info (struct dataflow *dflow)
1646 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
1647 if (dflow->block_info_size < new_size)
1649 new_size += new_size / 4;
1650 dflow->block_info
1651 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1652 new_size
1653 * dflow->problem->block_info_elt_size);
1654 memset ((char *)dflow->block_info
1655 + dflow->block_info_size
1656 * dflow->problem->block_info_elt_size,
1658 (new_size - dflow->block_info_size)
1659 * dflow->problem->block_info_elt_size);
1660 dflow->block_info_size = new_size;
1665 /* Clear the dirty bits. This is called from places that delete
1666 blocks. */
1667 static void
1668 df_clear_bb_dirty (basic_block bb)
1670 int p;
1671 for (p = 1; p < df->num_problems_defined; p++)
1673 struct dataflow *dflow = df->problems_in_order[p];
1674 if (dflow->out_of_date_transfer_functions)
1675 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1679 /* Called from the rtl_compact_blocks to reorganize the problems basic
1680 block info. */
1682 void
1683 df_compact_blocks (void)
1685 int i, p;
1686 basic_block bb;
1687 void *problem_temps;
1688 bitmap_head tmp;
1690 bitmap_initialize (&tmp, &df_bitmap_obstack);
1691 for (p = 0; p < df->num_problems_defined; p++)
1693 struct dataflow *dflow = df->problems_in_order[p];
1695 /* Need to reorganize the out_of_date_transfer_functions for the
1696 dflow problem. */
1697 if (dflow->out_of_date_transfer_functions)
1699 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
1700 bitmap_clear (dflow->out_of_date_transfer_functions);
1701 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1702 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1703 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1704 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1706 i = NUM_FIXED_BLOCKS;
1707 FOR_EACH_BB_FN (bb, cfun)
1709 if (bitmap_bit_p (&tmp, bb->index))
1710 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1711 i++;
1715 /* Now shuffle the block info for the problem. */
1716 if (dflow->problem->free_bb_fun)
1718 int size = (last_basic_block_for_fn (cfun)
1719 * dflow->problem->block_info_elt_size);
1720 problem_temps = XNEWVAR (char, size);
1721 df_grow_bb_info (dflow);
1722 memcpy (problem_temps, dflow->block_info, size);
1724 /* Copy the bb info from the problem tmps to the proper
1725 place in the block_info vector. Null out the copied
1726 item. The entry and exit blocks never move. */
1727 i = NUM_FIXED_BLOCKS;
1728 FOR_EACH_BB_FN (bb, cfun)
1730 df_set_bb_info (dflow, i,
1731 (char *)problem_temps
1732 + bb->index * dflow->problem->block_info_elt_size);
1733 i++;
1735 memset ((char *)dflow->block_info
1736 + i * dflow->problem->block_info_elt_size, 0,
1737 (last_basic_block_for_fn (cfun) - i)
1738 * dflow->problem->block_info_elt_size);
1739 free (problem_temps);
1743 /* Shuffle the bits in the basic_block indexed arrays. */
1745 if (df->blocks_to_analyze)
1747 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1748 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1749 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1750 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1751 bitmap_copy (&tmp, df->blocks_to_analyze);
1752 bitmap_clear (df->blocks_to_analyze);
1753 i = NUM_FIXED_BLOCKS;
1754 FOR_EACH_BB_FN (bb, cfun)
1756 if (bitmap_bit_p (&tmp, bb->index))
1757 bitmap_set_bit (df->blocks_to_analyze, i);
1758 i++;
1762 bitmap_clear (&tmp);
1764 i = NUM_FIXED_BLOCKS;
1765 FOR_EACH_BB_FN (bb, cfun)
1767 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
1768 bb->index = i;
1769 i++;
1772 gcc_assert (i == n_basic_blocks_for_fn (cfun));
1774 for (; i < last_basic_block_for_fn (cfun); i++)
1775 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
1777 #ifdef DF_DEBUG_CFG
1778 if (!df_lr->solutions_dirty)
1779 df_set_clean_cfg ();
1780 #endif
1784 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1785 block. There is no excuse for people to do this kind of thing. */
1787 void
1788 df_bb_replace (int old_index, basic_block new_block)
1790 int new_block_index = new_block->index;
1791 int p;
1793 if (dump_file)
1794 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1796 gcc_assert (df);
1797 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
1799 for (p = 0; p < df->num_problems_defined; p++)
1801 struct dataflow *dflow = df->problems_in_order[p];
1802 if (dflow->block_info)
1804 df_grow_bb_info (dflow);
1805 df_set_bb_info (dflow, old_index,
1806 df_get_bb_info (dflow, new_block_index));
1810 df_clear_bb_dirty (new_block);
1811 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
1812 new_block->index = old_index;
1813 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
1814 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
1818 /* Free all of the per basic block dataflow from all of the problems.
1819 This is typically called before a basic block is deleted and the
1820 problem will be reanalyzed. */
1822 void
1823 df_bb_delete (int bb_index)
1825 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1826 int i;
1828 if (!df)
1829 return;
1831 for (i = 0; i < df->num_problems_defined; i++)
1833 struct dataflow *dflow = df->problems_in_order[i];
1834 if (dflow->problem->free_bb_fun)
1836 void *bb_info = df_get_bb_info (dflow, bb_index);
1837 if (bb_info)
1839 dflow->problem->free_bb_fun (bb, bb_info);
1840 df_clear_bb_info (dflow, bb_index);
1844 df_clear_bb_dirty (bb);
1845 df_mark_solutions_dirty ();
1849 /* Verify that there is a place for everything and everything is in
1850 its place. This is too expensive to run after every pass in the
1851 mainline. However this is an excellent debugging tool if the
1852 dataflow information is not being updated properly. You can just
1853 sprinkle calls in until you find the place that is changing an
1854 underlying structure without calling the proper updating
1855 routine. */
1857 void
1858 df_verify (void)
1860 df_scan_verify ();
1861 #ifdef ENABLE_DF_CHECKING
1862 df_lr_verify_transfer_functions ();
1863 if (df_live)
1864 df_live_verify_transfer_functions ();
1865 #endif
1868 #ifdef DF_DEBUG_CFG
1870 /* Compute an array of ints that describes the cfg. This can be used
1871 to discover places where the cfg is modified by the appropriate
1872 calls have not been made to the keep df informed. The internals of
1873 this are unexciting, the key is that two instances of this can be
1874 compared to see if any changes have been made to the cfg. */
1876 static int *
1877 df_compute_cfg_image (void)
1879 basic_block bb;
1880 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
1881 int i;
1882 int * map;
1884 FOR_ALL_BB_FN (bb, cfun)
1886 size += EDGE_COUNT (bb->succs);
1889 map = XNEWVEC (int, size);
1890 map[0] = size;
1891 i = 1;
1892 FOR_ALL_BB_FN (bb, cfun)
1894 edge_iterator ei;
1895 edge e;
1897 map[i++] = bb->index;
1898 FOR_EACH_EDGE (e, ei, bb->succs)
1899 map[i++] = e->dest->index;
1900 map[i++] = -1;
1902 map[i] = -1;
1903 return map;
1906 static int *saved_cfg = NULL;
1909 /* This function compares the saved version of the cfg with the
1910 current cfg and aborts if the two are identical. The function
1911 silently returns if the cfg has been marked as dirty or the two are
1912 the same. */
1914 void
1915 df_check_cfg_clean (void)
1917 int *new_map;
1919 if (!df)
1920 return;
1922 if (df_lr->solutions_dirty)
1923 return;
1925 if (saved_cfg == NULL)
1926 return;
1928 new_map = df_compute_cfg_image ();
1929 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1930 free (new_map);
1934 /* This function builds a cfg fingerprint and squirrels it away in
1935 saved_cfg. */
1937 static void
1938 df_set_clean_cfg (void)
1940 free (saved_cfg);
1941 saved_cfg = df_compute_cfg_image ();
1944 #endif /* DF_DEBUG_CFG */
1945 /*----------------------------------------------------------------------------
1946 PUBLIC INTERFACES TO QUERY INFORMATION.
1947 ----------------------------------------------------------------------------*/
1950 /* Return first def of REGNO within BB. */
1952 df_ref
1953 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1955 rtx_insn *insn;
1956 df_ref def;
1958 FOR_BB_INSNS (bb, insn)
1960 if (!INSN_P (insn))
1961 continue;
1963 FOR_EACH_INSN_DEF (def, insn)
1964 if (DF_REF_REGNO (def) == regno)
1965 return def;
1967 return NULL;
1971 /* Return last def of REGNO within BB. */
1973 df_ref
1974 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1976 rtx_insn *insn;
1977 df_ref def;
1979 FOR_BB_INSNS_REVERSE (bb, insn)
1981 if (!INSN_P (insn))
1982 continue;
1984 FOR_EACH_INSN_DEF (def, insn)
1985 if (DF_REF_REGNO (def) == regno)
1986 return def;
1989 return NULL;
1992 /* Finds the reference corresponding to the definition of REG in INSN.
1993 DF is the dataflow object. */
1995 df_ref
1996 df_find_def (rtx_insn *insn, rtx reg)
1998 df_ref def;
2000 if (GET_CODE (reg) == SUBREG)
2001 reg = SUBREG_REG (reg);
2002 gcc_assert (REG_P (reg));
2004 FOR_EACH_INSN_DEF (def, insn)
2005 if (DF_REF_REGNO (def) == REGNO (reg))
2006 return def;
2008 return NULL;
2012 /* Return true if REG is defined in INSN, zero otherwise. */
2014 bool
2015 df_reg_defined (rtx_insn *insn, rtx reg)
2017 return df_find_def (insn, reg) != NULL;
2021 /* Finds the reference corresponding to the use of REG in INSN.
2022 DF is the dataflow object. */
2024 df_ref
2025 df_find_use (rtx_insn *insn, rtx reg)
2027 df_ref use;
2029 if (GET_CODE (reg) == SUBREG)
2030 reg = SUBREG_REG (reg);
2031 gcc_assert (REG_P (reg));
2033 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2034 FOR_EACH_INSN_INFO_USE (use, insn_info)
2035 if (DF_REF_REGNO (use) == REGNO (reg))
2036 return use;
2037 if (df->changeable_flags & DF_EQ_NOTES)
2038 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
2039 if (DF_REF_REGNO (use) == REGNO (reg))
2040 return use;
2041 return NULL;
2045 /* Return true if REG is referenced in INSN, zero otherwise. */
2047 bool
2048 df_reg_used (rtx_insn *insn, rtx reg)
2050 return df_find_use (insn, reg) != NULL;
2054 /*----------------------------------------------------------------------------
2055 Debugging and printing functions.
2056 ----------------------------------------------------------------------------*/
2058 /* Write information about registers and basic blocks into FILE.
2059 This is part of making a debugging dump. */
2061 void
2062 dump_regset (regset r, FILE *outf)
2064 unsigned i;
2065 reg_set_iterator rsi;
2067 if (r == NULL)
2069 fputs (" (nil)", outf);
2070 return;
2073 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2075 fprintf (outf, " %d", i);
2076 if (i < FIRST_PSEUDO_REGISTER)
2077 fprintf (outf, " [%s]",
2078 reg_names[i]);
2082 /* Print a human-readable representation of R on the standard error
2083 stream. This function is designed to be used from within the
2084 debugger. */
2085 extern void debug_regset (regset);
2086 DEBUG_FUNCTION void
2087 debug_regset (regset r)
2089 dump_regset (r, stderr);
2090 putc ('\n', stderr);
2093 /* Write information about registers and basic blocks into FILE.
2094 This is part of making a debugging dump. */
2096 void
2097 df_print_regset (FILE *file, bitmap r)
2099 unsigned int i;
2100 bitmap_iterator bi;
2102 if (r == NULL)
2103 fputs (" (nil)", file);
2104 else
2106 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2108 fprintf (file, " %d", i);
2109 if (i < FIRST_PSEUDO_REGISTER)
2110 fprintf (file, " [%s]", reg_names[i]);
2113 fprintf (file, "\n");
2117 /* Write information about registers and basic blocks into FILE. The
2118 bitmap is in the form used by df_byte_lr. This is part of making a
2119 debugging dump. */
2121 void
2122 df_print_word_regset (FILE *file, bitmap r)
2124 unsigned int max_reg = max_reg_num ();
2126 if (r == NULL)
2127 fputs (" (nil)", file);
2128 else
2130 unsigned int i;
2131 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
2133 bool found = (bitmap_bit_p (r, 2 * i)
2134 || bitmap_bit_p (r, 2 * i + 1));
2135 if (found)
2137 int word;
2138 const char * sep = "";
2139 fprintf (file, " %d", i);
2140 fprintf (file, "(");
2141 for (word = 0; word < 2; word++)
2142 if (bitmap_bit_p (r, 2 * i + word))
2144 fprintf (file, "%s%d", sep, word);
2145 sep = ", ";
2147 fprintf (file, ")");
2151 fprintf (file, "\n");
2155 /* Dump dataflow info. */
2157 void
2158 df_dump (FILE *file)
2160 basic_block bb;
2161 df_dump_start (file);
2163 FOR_ALL_BB_FN (bb, cfun)
2165 df_print_bb_index (bb, file);
2166 df_dump_top (bb, file);
2167 df_dump_bottom (bb, file);
2170 fprintf (file, "\n");
2174 /* Dump dataflow info for df->blocks_to_analyze. */
2176 void
2177 df_dump_region (FILE *file)
2179 if (df->blocks_to_analyze)
2181 bitmap_iterator bi;
2182 unsigned int bb_index;
2184 fprintf (file, "\n\nstarting region dump\n");
2185 df_dump_start (file);
2187 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
2189 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
2190 dump_bb (file, bb, 0, TDF_DETAILS);
2192 fprintf (file, "\n");
2194 else
2195 df_dump (file);
2199 /* Dump the introductory information for each problem defined. */
2201 void
2202 df_dump_start (FILE *file)
2204 int i;
2206 if (!df || !file)
2207 return;
2209 fprintf (file, "\n\n%s\n", current_function_name ());
2210 fprintf (file, "\nDataflow summary:\n");
2211 if (df->blocks_to_analyze)
2212 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2213 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2215 for (i = 0; i < df->num_problems_defined; i++)
2217 struct dataflow *dflow = df->problems_in_order[i];
2218 if (dflow->computed)
2220 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2221 if (fun)
2222 fun (file);
2228 /* Dump the top or bottom of the block information for BB. */
2229 static void
2230 df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2232 int i;
2234 if (!df || !file)
2235 return;
2237 for (i = 0; i < df->num_problems_defined; i++)
2239 struct dataflow *dflow = df->problems_in_order[i];
2240 if (dflow->computed)
2242 df_dump_bb_problem_function bbfun;
2244 if (top)
2245 bbfun = dflow->problem->dump_top_fun;
2246 else
2247 bbfun = dflow->problem->dump_bottom_fun;
2249 if (bbfun)
2250 bbfun (bb, file);
2255 /* Dump the top of the block information for BB. */
2257 void
2258 df_dump_top (basic_block bb, FILE *file)
2260 df_dump_bb_problem_data (bb, file, /*top=*/true);
2263 /* Dump the bottom of the block information for BB. */
2265 void
2266 df_dump_bottom (basic_block bb, FILE *file)
2268 df_dump_bb_problem_data (bb, file, /*top=*/false);
2272 /* Dump information about INSN just before or after dumping INSN itself. */
2273 static void
2274 df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
2276 int i;
2278 if (!df || !file)
2279 return;
2281 for (i = 0; i < df->num_problems_defined; i++)
2283 struct dataflow *dflow = df->problems_in_order[i];
2284 if (dflow->computed)
2286 df_dump_insn_problem_function insnfun;
2288 if (top)
2289 insnfun = dflow->problem->dump_insn_top_fun;
2290 else
2291 insnfun = dflow->problem->dump_insn_bottom_fun;
2293 if (insnfun)
2294 insnfun (insn, file);
2299 /* Dump information about INSN before dumping INSN itself. */
2301 void
2302 df_dump_insn_top (const rtx_insn *insn, FILE *file)
2304 df_dump_insn_problem_data (insn, file, /*top=*/true);
2307 /* Dump information about INSN after dumping INSN itself. */
2309 void
2310 df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
2312 df_dump_insn_problem_data (insn, file, /*top=*/false);
2316 static void
2317 df_ref_dump (df_ref ref, FILE *file)
2319 fprintf (file, "%c%d(%d)",
2320 DF_REF_REG_DEF_P (ref)
2321 ? 'd'
2322 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2323 DF_REF_ID (ref),
2324 DF_REF_REGNO (ref));
2327 void
2328 df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
2330 fprintf (file, "{ ");
2331 for (; ref; ref = DF_REF_NEXT_LOC (ref))
2333 df_ref_dump (ref, file);
2334 if (follow_chain)
2335 df_chain_dump (DF_REF_CHAIN (ref), file);
2337 fprintf (file, "}");
2341 /* Dump either a ref-def or reg-use chain. */
2343 void
2344 df_regs_chain_dump (df_ref ref, FILE *file)
2346 fprintf (file, "{ ");
2347 while (ref)
2349 df_ref_dump (ref, file);
2350 ref = DF_REF_NEXT_REG (ref);
2352 fprintf (file, "}");
2356 static void
2357 df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
2359 for (; mws; mws = DF_MWS_NEXT (mws))
2360 fprintf (file, "mw %c r[%d..%d]\n",
2361 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2362 mws->start_regno, mws->end_regno);
2366 static void
2367 df_insn_uid_debug (unsigned int uid,
2368 bool follow_chain, FILE *file)
2370 fprintf (file, "insn %d luid %d",
2371 uid, DF_INSN_UID_LUID (uid));
2373 if (DF_INSN_UID_DEFS (uid))
2375 fprintf (file, " defs ");
2376 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2379 if (DF_INSN_UID_USES (uid))
2381 fprintf (file, " uses ");
2382 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2385 if (DF_INSN_UID_EQ_USES (uid))
2387 fprintf (file, " eq uses ");
2388 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2391 if (DF_INSN_UID_MWS (uid))
2393 fprintf (file, " mws ");
2394 df_mws_dump (DF_INSN_UID_MWS (uid), file);
2396 fprintf (file, "\n");
2400 DEBUG_FUNCTION void
2401 df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
2403 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2406 DEBUG_FUNCTION void
2407 df_insn_debug_regno (rtx_insn *insn, FILE *file)
2409 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2411 fprintf (file, "insn %d bb %d luid %d defs ",
2412 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2413 DF_INSN_INFO_LUID (insn_info));
2414 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2416 fprintf (file, " uses ");
2417 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2419 fprintf (file, " eq_uses ");
2420 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2421 fprintf (file, "\n");
2424 DEBUG_FUNCTION void
2425 df_regno_debug (unsigned int regno, FILE *file)
2427 fprintf (file, "reg %d defs ", regno);
2428 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2429 fprintf (file, " uses ");
2430 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2431 fprintf (file, " eq_uses ");
2432 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2433 fprintf (file, "\n");
2437 DEBUG_FUNCTION void
2438 df_ref_debug (df_ref ref, FILE *file)
2440 fprintf (file, "%c%d ",
2441 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2442 DF_REF_ID (ref));
2443 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2444 DF_REF_REGNO (ref),
2445 DF_REF_BBNO (ref),
2446 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2447 DF_REF_FLAGS (ref),
2448 DF_REF_TYPE (ref));
2449 if (DF_REF_LOC (ref))
2451 if (flag_dump_noaddr)
2452 fprintf (file, "loc #(#) chain ");
2453 else
2454 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2455 (void *)*DF_REF_LOC (ref));
2457 else
2458 fprintf (file, "chain ");
2459 df_chain_dump (DF_REF_CHAIN (ref), file);
2460 fprintf (file, "\n");
2463 /* Functions for debugging from GDB. */
2465 DEBUG_FUNCTION void
2466 debug_df_insn (rtx_insn *insn)
2468 df_insn_debug (insn, true, stderr);
2469 debug_rtx (insn);
2473 DEBUG_FUNCTION void
2474 debug_df_reg (rtx reg)
2476 df_regno_debug (REGNO (reg), stderr);
2480 DEBUG_FUNCTION void
2481 debug_df_regno (unsigned int regno)
2483 df_regno_debug (regno, stderr);
2487 DEBUG_FUNCTION void
2488 debug_df_ref (df_ref ref)
2490 df_ref_debug (ref, stderr);
2494 DEBUG_FUNCTION void
2495 debug_df_defno (unsigned int defno)
2497 df_ref_debug (DF_DEFS_GET (defno), stderr);
2501 DEBUG_FUNCTION void
2502 debug_df_useno (unsigned int defno)
2504 df_ref_debug (DF_USES_GET (defno), stderr);
2508 DEBUG_FUNCTION void
2509 debug_df_chain (struct df_link *link)
2511 df_chain_dump (link, stderr);
2512 fputc ('\n', stderr);