* c-ada-spec.c (dump_number): Add FLOAT_P parameter.
[official-gcc.git] / gcc / config / arc / arc.h
blob02a4b64c70f81544a7f6e4d04e4480d1346d349f
1 /* Definitions of target machine for GNU compiler, Synopsys DesignWare ARC cpu.
2 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_ARC_H
21 #define GCC_ARC_H
23 #include <stdbool.h>
25 /* Things to do:
27 - incscc, decscc?
31 #define SYMBOL_FLAG_SHORT_CALL (SYMBOL_FLAG_MACH_DEP << 0)
32 #define SYMBOL_FLAG_MEDIUM_CALL (SYMBOL_FLAG_MACH_DEP << 1)
33 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 2)
34 #define SYMBOL_FLAG_CMEM (SYMBOL_FLAG_MACH_DEP << 3)
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT PROCESSOR_arc700
38 #endif
40 /* Check if this symbol has a long_call attribute in its declaration */
41 #define SYMBOL_REF_LONG_CALL_P(X) \
42 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
44 /* Check if this symbol has a medium_call attribute in its declaration */
45 #define SYMBOL_REF_MEDIUM_CALL_P(X) \
46 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_MEDIUM_CALL) != 0)
48 /* Check if this symbol has a short_call attribute in its declaration */
49 #define SYMBOL_REF_SHORT_CALL_P(X) \
50 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SHORT_CALL) != 0)
52 /* Names to predefine in the preprocessor for this target machine. */
53 #define TARGET_CPU_CPP_BUILTINS() arc_cpu_cpp_builtins (pfile)
55 /* Macros enabled by specific command line option. FIXME: to be
56 deprecatd. */
57 #define CPP_SPEC "\
58 %{msimd:-D__Xsimd} %{mno-mpy:-D__Xno_mpy} %{mswap:-D__Xswap} \
59 %{mmin-max:-D__Xmin_max} %{mEA:-D__Xea} \
60 %{mspfp*:-D__Xspfp} %{mdpfp*:-D__Xdpfp} \
61 %{mmac-d16:-D__Xxmac_d16} %{mmac-24:-D__Xxmac_24} \
62 %{mdsp-packa:-D__Xdsp_packa} %{mcrc:-D__Xcrc} %{mdvbf:-D__Xdvbf} \
63 %{mtelephony:-D__Xtelephony} %{mxy:-D__Xxy} %{mmul64: -D__Xmult32} \
64 %{mlock:-D__Xlock} %{mswape:-D__Xswape} %{mrtsc:-D__Xrtsc} \
65 %(subtarget_cpp_spec)"
67 #undef CC1_SPEC
68 #define CC1_SPEC "%{EB:%{EL:%emay not use both -EB and -EL}} \
69 %{EB:-mbig-endian} %{EL:-mlittle-endian} \
70 %{G*} \
72 extern const char *arc_cpu_to_as (int argc, const char **argv);
74 #define EXTRA_SPEC_FUNCTIONS \
75 { "cpu_to_as", arc_cpu_to_as },
77 /* This macro defines names of additional specifications to put in the specs
78 that can be used in various specifications like CC1_SPEC. Its definition
79 is an initializer with a subgrouping for each command option.
81 Each subgrouping contains a string constant, that defines the
82 specification name, and a string constant that used by the GCC driver
83 program.
85 Do not define this macro if it does not need to do anything. */
86 #define EXTRA_SPECS \
87 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
88 SUBTARGET_EXTRA_SPECS
90 #ifndef SUBTARGET_EXTRA_SPECS
91 #define SUBTARGET_EXTRA_SPECS
92 #endif
94 #ifndef SUBTARGET_CPP_SPEC
95 #define SUBTARGET_CPP_SPEC ""
96 #endif
98 #undef ASM_SPEC
99 #define ASM_SPEC "%{mbig-endian|EB:-EB} %{EL} " \
100 "%:cpu_to_as(%{mcpu=*:%*}) %{mspfp*} %{mdpfp*} %{mfpu=fpuda*:-mfpuda}"
102 #define OPTION_DEFAULT_SPECS \
103 {"cpu", "%{!mcpu=*:%{!mARC*:%{!marc*:%{!mA7:%{!mA6:-mcpu=%(VALUE)}}}}}" }
105 #ifndef DRIVER_ENDIAN_SELF_SPECS
106 #define DRIVER_ENDIAN_SELF_SPECS ""
107 #endif
109 #define DRIVER_SELF_SPECS DRIVER_ENDIAN_SELF_SPECS \
110 "%{mARC600|mA6: -mcpu=arc600 %<mARC600 %<mA6 %<mARC600}" \
111 "%{mARC601: -mcpu=arc601 %<mARC601}" \
112 "%{mARC700|mA7: -mcpu=arc700 %<mARC700 %<mA7}" \
113 "%{mEA: -mea %<mEA}"
115 /* Run-time compilation parameters selecting different hardware subsets. */
117 #define TARGET_MIXED_CODE (TARGET_MIXED_CODE_SET)
119 #define TARGET_SPFP (TARGET_SPFP_FAST_SET || TARGET_SPFP_COMPACT_SET)
120 #define TARGET_DPFP (TARGET_DPFP_FAST_SET || TARGET_DPFP_COMPACT_SET \
121 || TARGET_FP_DP_AX)
123 #define SUBTARGET_SWITCHES
125 /* Instruction set characteristics.
126 These are internal macros, set by the appropriate -m option. */
128 /* Non-zero means the cpu supports norm instruction. This flag is set by
129 default for A7, and only for pre A7 cores when -mnorm is given. */
130 #define TARGET_NORM (TARGET_ARC700 || TARGET_NORM_SET || TARGET_HS)
131 /* Indicate if an optimized floating point emulation library is available. */
132 #define TARGET_OPTFPE (TARGET_ARC700 || TARGET_FPX_QUARK)
134 /* Non-zero means the cpu supports swap instruction. This flag is set by
135 default for A7, and only for pre A7 cores when -mswap is given. */
136 #define TARGET_SWAP (TARGET_ARC700 || TARGET_SWAP_SET)
138 /* Provide some macros for size / scheduling features of the ARC700, so
139 that we can pick & choose features if we get a new cpu family member. */
141 /* Should we try to unalign likely taken branches without a delay slot. */
142 #define TARGET_UNALIGN_BRANCH (TARGET_ARC700 && !optimize_size)
144 /* Should we upsize short delayed branches with a short delay insn? */
145 #define TARGET_UPSIZE_DBR (TARGET_ARC700 && !optimize_size)
147 /* Should we add padding before a return insn to avoid mispredict? */
148 #define TARGET_PAD_RETURN (TARGET_ARC700 && !optimize_size)
150 /* For an anulled-true delay slot insn for a delayed branch, should we only
151 use conditional execution? */
152 #define TARGET_AT_DBR_CONDEXEC (!TARGET_ARC700 && !TARGET_V2)
154 #define TARGET_ARC600 ((arc_selected_cpu->arch_info->arch_id \
155 == BASE_ARCH_6xx) \
156 && (TARGET_BARREL_SHIFTER))
157 #define TARGET_ARC601 ((arc_selected_cpu->arch_info->arch_id \
158 == BASE_ARCH_6xx) \
159 && (!TARGET_BARREL_SHIFTER))
160 #define TARGET_ARC700 (arc_selected_cpu->arch_info->arch_id \
161 == BASE_ARCH_700)
162 /* An NPS400 is a specialisation of ARC700, so it is correct for NPS400
163 TARGET_ARC700 is true, and TARGET_NPS400 is true. */
164 #define TARGET_NPS400 ((arc_selected_cpu->arch_info->arch_id \
165 == BASE_ARCH_700) \
166 && (arc_selected_cpu->processor \
167 == PROCESSOR_nps400))
168 #define TARGET_EM (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_em)
169 #define TARGET_HS (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_hs)
170 #define TARGET_V2 (TARGET_EM || TARGET_HS)
172 #ifndef UNALIGNED_ACCESS_DEFAULT
173 #define UNALIGNED_ACCESS_DEFAULT 0
174 #endif
176 #ifndef TARGET_NPS_BITOPS_DEFAULT
177 #define TARGET_NPS_BITOPS_DEFAULT 0
178 #endif
180 #ifndef TARGET_NPS_CMEM_DEFAULT
181 #define TARGET_NPS_CMEM_DEFAULT 0
182 #endif
184 /* Enable the RRQ instruction alternatives. */
186 #define TARGET_RRQ_CLASS TARGET_NPS_BITOPS
188 /* Target machine storage layout. */
190 /* We want zero_extract to mean the same
191 no matter what the byte endianness is. */
192 #define BITS_BIG_ENDIAN 0
194 /* Define this if most significant byte of a word is the lowest numbered. */
195 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
197 /* Define this if most significant word of a multiword number is the lowest
198 numbered. */
199 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
201 /* Width in bits of a "word", which is the contents of a machine register.
202 Note that this is not necessarily the width of data type `int';
203 if using 16-bit ints on a 68000, this would still be 32.
204 But on a machine with 16-bit registers, this would be 16. */
205 #define BITS_PER_WORD 32
207 /* Width of a word, in units (bytes). */
208 #define UNITS_PER_WORD 4
210 /* Define this macro if it is advisable to hold scalars in registers
211 in a wider mode than that declared by the program. In such cases,
212 the value is constrained to be within the bounds of the declared
213 type, but kept valid in the wider mode. The signedness of the
214 extension may differ from that of the type. */
215 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
216 if (GET_MODE_CLASS (MODE) == MODE_INT \
217 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
219 (MODE) = SImode; \
222 /* Width in bits of a pointer.
223 See also the macro `Pmode' defined below. */
224 #define POINTER_SIZE 32
226 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
227 #define PARM_BOUNDARY 32
229 /* Boundary (in *bits*) on which stack pointer should be aligned. */
230 /* TOCHECK: Changed from 64 to 32 */
231 #define STACK_BOUNDARY 32
233 /* ALIGN FRAMES on word boundaries. */
234 #define ARC_STACK_ALIGN(LOC) \
235 (((LOC) + STACK_BOUNDARY / BITS_PER_UNIT - 1) & -STACK_BOUNDARY/BITS_PER_UNIT)
237 /* Allocation boundary (in *bits*) for the code of a function. */
238 #define FUNCTION_BOUNDARY 32
240 /* Alignment of field after `int : 0' in a structure. */
241 #define EMPTY_FIELD_BOUNDARY 32
243 /* Every structure's size must be a multiple of this. */
244 #define STRUCTURE_SIZE_BOUNDARY 8
246 /* A bitfield declared as `int' forces `int' alignment for the struct. */
247 #define PCC_BITFIELD_TYPE_MATTERS 1
249 /* An expression for the alignment of a structure field FIELD if the
250 alignment computed in the usual way (including applying of
251 `BIGGEST_ALIGNMENT' and `BIGGEST_FIELD_ALIGNMENT' to the
252 alignment) is COMPUTED. It overrides alignment only if the field
253 alignment has not been set by the `__attribute__ ((aligned (N)))'
254 construct.
257 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
258 (TYPE_MODE (strip_array_types (TYPE)) == DFmode \
259 ? MIN ((COMPUTED), 32) : (COMPUTED))
263 /* No data type wants to be aligned rounder than this. */
264 /* This is bigger than currently necessary for the ARC. If 8 byte floats are
265 ever added it's not clear whether they'll need such alignment or not. For
266 now we assume they will. We can always relax it if necessary but the
267 reverse isn't true. */
268 /* TOCHECK: Changed from 64 to 32 */
269 #define BIGGEST_ALIGNMENT 32
271 /* The best alignment to use in cases where we have a choice. */
272 #define FASTEST_ALIGNMENT 32
274 /* Make arrays of chars word-aligned for the same reasons. */
275 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
276 (TREE_CODE (TYPE) == ARRAY_TYPE \
277 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
278 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
280 #define DATA_ALIGNMENT(TYPE, ALIGN) \
281 (TREE_CODE (TYPE) == ARRAY_TYPE \
282 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
283 && arc_size_opt_level < 3 \
284 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
286 /* Set this nonzero if move instructions will actually fail to work
287 when given unaligned data. */
288 /* On the ARC the lower address bits are masked to 0 as necessary. The chip
289 won't croak when given an unaligned address, but the insn will still fail
290 to produce the correct result. */
291 #define STRICT_ALIGNMENT (!unaligned_access && !TARGET_HS)
293 /* Layout of source language data types. */
295 #define SHORT_TYPE_SIZE 16
296 #define INT_TYPE_SIZE 32
297 #define LONG_TYPE_SIZE 32
298 #define LONG_LONG_TYPE_SIZE 64
299 #define FLOAT_TYPE_SIZE 32
300 #define DOUBLE_TYPE_SIZE 64
301 #define LONG_DOUBLE_TYPE_SIZE 64
303 /* Define this as 1 if `char' should by default be signed; else as 0. */
304 #define DEFAULT_SIGNED_CHAR 0
306 #undef SIZE_TYPE
307 #define SIZE_TYPE "unsigned int"
309 #undef PTRDIFF_TYPE
310 #define PTRDIFF_TYPE "int"
312 #undef WCHAR_TYPE
313 #define WCHAR_TYPE "int"
315 #undef WCHAR_TYPE_SIZE
316 #define WCHAR_TYPE_SIZE 32
318 #define PROGRAM_COUNTER_REGNO 63
320 /* Standard register usage. */
322 /* Number of actual hardware registers.
323 The hardware registers are assigned numbers for the compiler
324 from 0 to just below FIRST_PSEUDO_REGISTER.
325 All registers that the compiler knows about must be given numbers,
326 even those that are not normally considered general registers.
328 Registers 61, 62, and 63 are not really registers and we needn't treat
329 them as such. We still need a register for the condition code and
330 argument pointer. */
332 /* r63 is pc, r64-r127 = simd vregs, r128-r143 = simd dma config regs
333 r144, r145 = lp_start, lp_end
334 and therefore the pseudo registers start from r146. */
335 #define FIRST_PSEUDO_REGISTER 146
337 /* 1 for registers that have pervasive standard uses
338 and are not available for the register allocator.
340 0-28 - general purpose registers
341 29 - ilink1 (interrupt link register)
342 30 - ilink2 (interrupt link register)
343 31 - blink (branch link register)
344 32-59 - reserved for extensions
345 60 - LP_COUNT
346 61 - condition code
347 62 - argument pointer
348 63 - program counter
350 FWIW, this is how the 61-63 encodings are used by the hardware:
351 61 - reserved
352 62 - long immediate data indicator
353 63 - PCL (program counter aligned to 32 bit, read-only)
355 The general purpose registers are further broken down into:
357 0-7 - arguments/results
358 8-12 - call used (r11 - static chain pointer)
359 13-25 - call saved
360 26 - global pointer
361 27 - frame pointer
362 28 - stack pointer
363 29 - ilink1
364 30 - ilink2
365 31 - return address register
367 By default, the extension registers are not available. */
368 /* Present implementations only have VR0-VR23 only. */
369 /* ??? FIXME: r27 and r31 should not be fixed registers. */
370 #define FIXED_REGISTERS \
371 { 0, 0, 0, 0, 0, 0, 0, 0, \
372 0, 0, 0, 0, 0, 0, 0, 0, \
373 0, 0, 0, 0, 0, 0, 0, 0, \
374 0, 0, 1, 1, 1, 1, 1, 1, \
376 1, 1, 1, 1, 1, 1, 1, 1, \
377 0, 0, 0, 0, 1, 1, 1, 1, \
378 1, 1, 1, 1, 1, 1, 1, 1, \
379 1, 1, 1, 1, 0, 1, 1, 1, \
381 0, 0, 0, 0, 0, 0, 0, 0, \
382 0, 0, 0, 0, 0, 0, 0, 0, \
383 0, 0, 0, 0, 0, 0, 0, 0, \
384 1, 1, 1, 1, 1, 1, 1, 1, \
386 1, 1, 1, 1, 1, 1, 1, 1, \
387 1, 1, 1, 1, 1, 1, 1, 1, \
388 1, 1, 1, 1, 1, 1, 1, 1, \
389 1, 1, 1, 1, 1, 1, 1, 1, \
391 0, 0, 0, 0, 0, 0, 0, 0, \
392 0, 0, 0, 0, 0, 0, 0, 0, \
393 1, 1}
395 /* 1 for registers not available across function calls.
396 These must include the FIXED_REGISTERS and also any
397 registers that can be used without being saved.
398 The latter must include the registers where values are returned
399 and the register where structure-value addresses are passed.
400 Aside from that, you can include as many other registers as you like. */
401 #define CALL_USED_REGISTERS \
403 1, 1, 1, 1, 1, 1, 1, 1, \
404 1, 1, 1, 1, 1, 0, 0, 0, \
405 0, 0, 0, 0, 0, 0, 0, 0, \
406 0, 0, 1, 1, 1, 1, 1, 1, \
408 1, 1, 1, 1, 1, 1, 1, 1, \
409 1, 1, 1, 1, 1, 1, 1, 1, \
410 1, 1, 1, 1, 1, 1, 1, 1, \
411 1, 1, 1, 1, 1, 1, 1, 1, \
413 0, 0, 0, 0, 0, 0, 0, 0, \
414 0, 0, 0, 0, 0, 0, 0, 0, \
415 0, 0, 0, 0, 0, 0, 0, 0, \
416 1, 1, 1, 1, 1, 1, 1, 1, \
418 1, 1, 1, 1, 1, 1, 1, 1, \
419 1, 1, 1, 1, 1, 1, 1, 1, \
420 1, 1, 1, 1, 1, 1, 1, 1, \
421 1, 1, 1, 1, 1, 1, 1, 1, \
423 0, 0, 0, 0, 0, 0, 0, 0, \
424 0, 0, 0, 0, 0, 0, 0, 0, \
425 1, 1}
427 /* If defined, an initializer for a vector of integers, containing the
428 numbers of hard registers in the order in which GCC should
429 prefer to use them (from most preferred to least). */
430 #define REG_ALLOC_ORDER \
431 { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, \
432 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, \
433 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
434 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
435 27, 28, 29, 30, 31, 63}
437 /* Internal macros to classify a register number as to whether it's a
438 general purpose register for compact insns (r0-r3,r12-r15), or
439 stack pointer (r28). */
441 #define COMPACT_GP_REG_P(REGNO) \
442 (((signed)(REGNO) >= 0 && (REGNO) <= 3) || ((REGNO) >= 12 && (REGNO) <= 15))
443 #define SP_REG_P(REGNO) ((REGNO) == 28)
447 /* Register classes and constants. */
449 /* Define the classes of registers for register constraints in the
450 machine description. Also define ranges of constants.
452 One of the classes must always be named ALL_REGS and include all hard regs.
453 If there is more than one class, another class must be named NO_REGS
454 and contain no registers.
456 The name GENERAL_REGS must be the name of a class (or an alias for
457 another name such as ALL_REGS). This is the class of registers
458 that is allowed by "g" or "r" in a register constraint.
459 Also, registers outside this class are allocated only when
460 instructions express preferences for them.
462 The classes must be numbered in nondecreasing order; that is,
463 a larger-numbered class must never be contained completely
464 in a smaller-numbered class.
466 For any two classes, it is very desirable that there be another
467 class that represents their union.
469 It is important that any condition codes have class NO_REGS.
470 See `register_operand'. */
472 enum reg_class
474 NO_REGS,
475 R0_REGS, /* 'x' */
476 GP_REG, /* 'Rgp' */
477 FP_REG, /* 'f' */
478 SP_REGS, /* 'b' */
479 LPCOUNT_REG, /* 'l' */
480 LINK_REGS, /* 'k' */
481 DOUBLE_REGS, /* D0, D1 */
482 SIMD_VR_REGS, /* VR00-VR63 */
483 SIMD_DMA_CONFIG_REGS, /* DI0-DI7,DO0-DO7 */
484 ARCOMPACT16_REGS, /* 'q' */
485 AC16_BASE_REGS, /* 'e' */
486 SIBCALL_REGS, /* "Rsc" */
487 GENERAL_REGS, /* 'r' */
488 MPY_WRITABLE_CORE_REGS, /* 'W' */
489 WRITABLE_CORE_REGS, /* 'w' */
490 CHEAP_CORE_REGS, /* 'c' */
491 ALL_CORE_REGS, /* 'Rac' */
492 R0R3_CD_REGS, /* 'Rcd' */
493 R0R1_CD_REGS, /* 'Rsd' */
494 AC16_H_REGS, /* 'h' */
495 ALL_REGS,
496 LIM_REG_CLASSES
499 #define N_REG_CLASSES (int) LIM_REG_CLASSES
501 /* Give names of register classes as strings for dump file. */
502 #define REG_CLASS_NAMES \
504 "NO_REGS", \
505 "R0_REGS", \
506 "GP_REG", \
507 "FP_REG", \
508 "SP_REGS", \
509 "LPCOUNT_REG", \
510 "LINK_REGS", \
511 "DOUBLE_REGS", \
512 "SIMD_VR_REGS", \
513 "SIMD_DMA_CONFIG_REGS", \
514 "ARCOMPACT16_REGS", \
515 "AC16_BASE_REGS", \
516 "SIBCALL_REGS", \
517 "GENERAL_REGS", \
518 "MPY_WRITABLE_CORE_REGS", \
519 "WRITABLE_CORE_REGS", \
520 "CHEAP_CORE_REGS", \
521 "R0R3_CD_REGS", \
522 "R0R1_CD_REGS", \
523 "AC16_H_REGS", \
524 "ALL_CORE_REGS", \
525 "ALL_REGS" \
528 /* Define which registers fit in which classes.
529 This is an initializer for a vector of HARD_REG_SET
530 of length N_REG_CLASSES. */
532 #define REG_CLASS_CONTENTS \
534 {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* No Registers */ \
535 {0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'x', r0 register , r0 */ \
536 {0x04000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rgp', Global Pointer, r26 */ \
537 {0x08000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'f', Frame Pointer, r27 */ \
538 {0x10000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'b', Stack Pointer, r28 */ \
539 {0x00000000, 0x10000000, 0x00000000, 0x00000000, 0x00000000}, /* 'l', LPCOUNT Register, r60 */ \
540 {0xe0000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'k', LINK Registers, r29-r31 */ \
541 {0x00000000, 0x00000f00, 0x00000000, 0x00000000, 0x00000000}, /* 'D', D1, D2 Registers */ \
542 {0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000}, /* 'V', VR00-VR63 Registers */ \
543 {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000ffff}, /* 'V', DI0-7,DO0-7 Registers */ \
544 {0x0000f00f, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'q', r0-r3, r12-r15 */ \
545 {0x1000f00f, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'e', r0-r3, r12-r15, sp */ \
546 {0x1c001fff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* "Rsc", r0-r12 */ \
547 {0x9fffffff, 0x80000000, 0x00000000, 0x00000000, 0x00000000}, /* 'r', r0-r28, blink, ap and pcl */ \
548 {0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'W', r0-r31 */ \
549 /* Include ap / pcl in WRITABLE_CORE_REGS for sake of symmetry. As these \
550 registers are fixed, it does not affect the literal meaning of the \
551 constraints, but it makes it a superset of GENERAL_REGS, thus \
552 enabling some operations that would otherwise not be possible. */ \
553 {0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'w', r0-r31, r60 */ \
554 {0xffffffff, 0x9fffffff, 0x00000000, 0x00000000, 0x00000000}, /* 'c', r0-r60, ap, pcl */ \
555 {0xffffffff, 0x9fffffff, 0x00000000, 0x00000000, 0x00000000}, /* 'Rac', r0-r60, ap, pcl */ \
556 {0x0000000f, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rcd', r0-r3 */ \
557 {0x00000003, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rsd', r0-r1 */ \
558 {0x9fffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'h', r0-28, r30 */ \
559 {0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff} /* All Registers */ \
562 /* Local macros to mark the first and last regs of different classes. */
563 #define ARC_FIRST_SIMD_VR_REG 64
564 #define ARC_LAST_SIMD_VR_REG 127
566 #define ARC_FIRST_SIMD_DMA_CONFIG_REG 128
567 #define ARC_FIRST_SIMD_DMA_CONFIG_IN_REG 128
568 #define ARC_FIRST_SIMD_DMA_CONFIG_OUT_REG 136
569 #define ARC_LAST_SIMD_DMA_CONFIG_REG 143
571 /* ARCv2 double-register accumulator. */
572 #define ACC_REG_FIRST 58
573 #define ACC_REG_LAST 59
574 #define ACCL_REGNO (TARGET_BIG_ENDIAN ? ACC_REG_FIRST + 1 : ACC_REG_FIRST)
575 #define ACCH_REGNO (TARGET_BIG_ENDIAN ? ACC_REG_FIRST : ACC_REG_FIRST + 1)
577 /* The same information, inverted:
578 Return the class number of the smallest class containing
579 reg number REGNO. This could be a conditional expression
580 or could index an array. */
582 extern enum reg_class arc_regno_reg_class[];
584 #define REGNO_REG_CLASS(REGNO) (arc_regno_reg_class[REGNO])
586 /* The class value for valid index registers. An index register is
587 one used in an address where its value is either multiplied by
588 a scale factor or added to another register (as well as added to a
589 displacement). */
591 #define INDEX_REG_CLASS (TARGET_MIXED_CODE ? ARCOMPACT16_REGS : GENERAL_REGS)
593 /* The class value for valid base registers. A base register is one used in
594 an address which is the register value plus a displacement. */
596 #define BASE_REG_CLASS (TARGET_MIXED_CODE ? AC16_BASE_REGS : GENERAL_REGS)
598 /* These assume that REGNO is a hard or pseudo reg number.
599 They give nonzero only if REGNO is a hard reg of the suitable class
600 or a pseudo reg currently allocated to a suitable hard reg.
601 Since they use reg_renumber, they are safe only once reg_renumber
602 has been allocated, which happens in local-alloc.c. */
603 #define REGNO_OK_FOR_BASE_P(REGNO) \
604 ((REGNO) < 29 || ((REGNO) == ARG_POINTER_REGNUM) || ((REGNO) == 63) \
605 || ((unsigned) reg_renumber[REGNO] < 29) \
606 || ((unsigned) (REGNO) == (unsigned) arc_tp_regno) \
607 || (fixed_regs[REGNO] == 0 && IN_RANGE (REGNO, 32, 59)) \
608 || ((REGNO) == 30 && fixed_regs[REGNO] == 0))
610 #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
612 /* Given an rtx X being reloaded into a reg required to be
613 in class CLASS, return the class of reg to actually use.
614 In general this is just CLASS; but on some machines
615 in some cases it is preferable to use a more restrictive class. */
617 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
618 arc_preferred_reload_class((X), (CLASS))
620 extern enum reg_class arc_preferred_reload_class (rtx, enum reg_class);
622 /* Return the maximum number of consecutive registers
623 needed to represent mode MODE in a register of class CLASS. */
625 #define CLASS_MAX_NREGS(CLASS, MODE) \
626 (( GET_MODE_SIZE (MODE) == 16 && CLASS == SIMD_VR_REGS) ? 1: \
627 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
629 #define SMALL_INT(X) ((unsigned) ((X) + 0x100) < 0x200)
630 #define SMALL_INT_RANGE(X, OFFSET, SHIFT) \
631 ((unsigned) (((X) >> (SHIFT)) + 0x100) \
632 < 0x200 - ((unsigned) (OFFSET) >> (SHIFT)))
633 #define SIGNED_INT12(X) ((unsigned) ((X) + 0x800) < 0x1000)
634 #define SIGNED_INT16(X) ((unsigned) ((X) + 0x8000) < 0x10000)
635 #define LARGE_INT(X) \
636 (((X) < 0) \
637 ? (X) >= (-(HOST_WIDE_INT) 0x7fffffff - 1) \
638 : (unsigned HOST_WIDE_INT) (X) <= (unsigned HOST_WIDE_INT) 0xffffffff)
639 #define UNSIGNED_INT3(X) ((unsigned) (X) < 0x8)
640 #define UNSIGNED_INT5(X) ((unsigned) (X) < 0x20)
641 #define UNSIGNED_INT6(X) ((unsigned) (X) < 0x40)
642 #define UNSIGNED_INT7(X) ((unsigned) (X) < 0x80)
643 #define UNSIGNED_INT8(X) ((unsigned) (X) < 0x100)
644 #define UNSIGNED_INT12(X) ((unsigned) (X) < 0x800)
645 #define UNSIGNED_INT16(X) ((unsigned) (X) < 0x10000)
646 #define IS_ONE(X) ((X) == 1)
647 #define IS_ZERO(X) ((X) == 0)
649 /* Stack layout and stack pointer usage. */
651 /* Define this macro if pushing a word onto the stack moves the stack
652 pointer to a smaller address. */
653 #define STACK_GROWS_DOWNWARD 1
655 /* Define this if the nominal address of the stack frame
656 is at the high-address end of the local variables;
657 that is, each additional local variable allocated
658 goes at a more negative offset in the frame. */
659 #define FRAME_GROWS_DOWNWARD 1
661 /* Offset from the stack pointer register to the first location at which
662 outgoing arguments are placed. */
663 #define STACK_POINTER_OFFSET (0)
665 /* Offset of first parameter from the argument pointer register value. */
666 #define FIRST_PARM_OFFSET(FNDECL) (0)
668 /* A C expression whose value is RTL representing the address in a
669 stack frame where the pointer to the caller's frame is stored.
670 Assume that FRAMEADDR is an RTL expression for the address of the
671 stack frame itself.
673 If you don't define this macro, the default is to return the value
674 of FRAMEADDR--that is, the stack frame address is also the address
675 of the stack word that points to the previous frame. */
676 /* ??? unfinished */
677 /*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/
679 /* A C expression whose value is RTL representing the value of the
680 return address for the frame COUNT steps up from the current frame.
681 FRAMEADDR is the frame pointer of the COUNT frame, or the frame
682 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME'
683 is defined. */
684 /* The current return address is in r31. The return address of anything
685 farther back is at [%fp,4]. */
687 #define RETURN_ADDR_RTX(COUNT, FRAME) \
688 arc_return_addr_rtx(COUNT,FRAME)
690 /* Register to use for pushing function arguments. */
691 #define STACK_POINTER_REGNUM 28
693 /* Base register for access to local variables of the function. */
694 #define FRAME_POINTER_REGNUM 27
696 /* Base register for access to arguments of the function. This register
697 will be eliminated into either fp or sp. */
698 #define ARG_POINTER_REGNUM 62
700 #define RETURN_ADDR_REGNUM 31
702 /* TODO - check usage of STATIC_CHAIN_REGNUM with a testcase */
703 /* Register in which static-chain is passed to a function. This must
704 not be a register used by the prologue. */
705 #define STATIC_CHAIN_REGNUM 11
707 /* Function argument passing. */
709 /* If defined, the maximum amount of space required for outgoing
710 arguments will be computed and placed into the variable
711 `crtl->outgoing_args_size'. No space will be pushed
712 onto the stack for each call; instead, the function prologue should
713 increase the stack frame size by this amount. */
714 #define ACCUMULATE_OUTGOING_ARGS 1
716 /* Define a data type for recording info about an argument list
717 during the scan of that argument list. This data type should
718 hold all necessary information about the function itself
719 and about the args processed so far, enough to enable macros
720 such as FUNCTION_ARG to determine where the next arg should go. */
721 #define CUMULATIVE_ARGS int
723 /* Initialize a variable CUM of type CUMULATIVE_ARGS
724 for a call to a function whose data type is FNTYPE.
725 For a library call, FNTYPE is 0. */
726 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT,N_NAMED_ARGS) \
727 ((CUM) = 0)
729 /* The number of registers used for parameter passing. Local to this file. */
730 #define MAX_ARC_PARM_REGS 8
732 /* 1 if N is a possible register number for function argument passing. */
733 #define FUNCTION_ARG_REGNO_P(N) \
734 ((unsigned) (N) < MAX_ARC_PARM_REGS)
736 /* The ROUND_ADVANCE* macros are local to this file. */
737 /* Round SIZE up to a word boundary. */
738 #define ROUND_ADVANCE(SIZE) \
739 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
741 /* Round arg MODE/TYPE up to the next word boundary. */
742 #define ROUND_ADVANCE_ARG(MODE, TYPE) \
743 ((MODE) == BLKmode \
744 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
745 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
747 #define ARC_FUNCTION_ARG_BOUNDARY(MODE,TYPE) PARM_BOUNDARY
748 /* Round CUM up to the necessary point for argument MODE/TYPE. */
749 /* N.B. Vectors have alignment exceeding BIGGEST_ALIGNMENT.
750 ARC_FUNCTION_ARG_BOUNDARY reduces this to no more than 32 bit. */
751 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
752 ((((CUM) - 1) | (ARC_FUNCTION_ARG_BOUNDARY ((MODE), (TYPE)) - 1)/BITS_PER_WORD)\
753 + 1)
755 /* Return boolean indicating arg of type TYPE and mode MODE will be passed in
756 a reg. This includes arguments that have to be passed by reference as the
757 pointer to them is passed in a reg if one is available (and that is what
758 we're given).
759 When passing arguments NAMED is always 1. When receiving arguments NAMED
760 is 1 for each argument except the last in a stdarg/varargs function. In
761 a stdarg function we want to treat the last named arg as named. In a
762 varargs function we want to treat the last named arg (which is
763 `__builtin_va_alist') as unnamed.
764 This macro is only used in this file. */
765 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
766 ((CUM) < MAX_ARC_PARM_REGS)
769 /* Function results. */
771 /* Define how to find the value returned by a library function
772 assuming the value has mode MODE. */
773 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
775 /* 1 if N is a possible register number for a function value
776 as seen by the caller. */
777 /* ??? What about r1 in DI/DF values. */
778 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
780 /* Tell GCC to use RETURN_IN_MEMORY. */
781 #define DEFAULT_PCC_STRUCT_RETURN 0
783 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
784 the stack pointer does not matter. The value is tested only in
785 functions that have frame pointers.
786 No definition is equivalent to always zero. */
787 #define EXIT_IGNORE_STACK 0
789 #define EPILOGUE_USES(REGNO) arc_epilogue_uses ((REGNO))
791 #define EH_USES(REGNO) arc_eh_uses((REGNO))
793 /* Definitions for register eliminations.
795 This is an array of structures. Each structure initializes one pair
796 of eliminable registers. The "from" register number is given first,
797 followed by "to". Eliminations of the same "from" register are listed
798 in order of preference.
800 We have two registers that can be eliminated on the ARC. First, the
801 argument pointer register can always be eliminated in favor of the stack
802 pointer register or frame pointer register. Secondly, the frame pointer
803 register can often be eliminated in favor of the stack pointer register.
806 #define ELIMINABLE_REGS \
807 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
808 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
809 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
811 /* Define the offset between two registers, one to be eliminated, and the other
812 its replacement, at the start of a routine. */
813 extern int arc_initial_elimination_offset(int from, int to);
814 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
815 (OFFSET) = arc_initial_elimination_offset ((FROM), (TO))
817 /* Output assembler code to FILE to increment profiler label # LABELNO
818 for profiling a function entry. */
819 #define FUNCTION_PROFILER(FILE, LABELNO) \
820 do { \
821 if (flag_pic) \
822 fprintf (FILE, "\tbl\t__mcount@plt\n"); \
823 else \
824 fprintf (FILE, "\tbl\t__mcount\n"); \
825 } while (0)
827 #define NO_PROFILE_COUNTERS 1
829 /* Trampolines. */
831 /* Length in units of the trampoline for entering a nested function. */
832 #define TRAMPOLINE_SIZE 16
834 /* Alignment required for a trampoline in bits . */
835 /* For actual data alignment we just need 32, no more than the stack;
836 however, to reduce cache coherency issues, we want to make sure that
837 trampoline instructions always appear the same in any given cache line. */
838 #define TRAMPOLINE_ALIGNMENT 256
840 /* Library calls. */
842 /* Addressing modes, and classification of registers for them. */
844 /* Maximum number of registers that can appear in a valid memory address. */
845 /* The `ld' insn allows 2, but the `st' insn only allows 1. */
846 #define MAX_REGS_PER_ADDRESS 1
848 /* We have pre inc/dec (load/store with update). */
849 #define HAVE_PRE_INCREMENT 1
850 #define HAVE_PRE_DECREMENT 1
851 #define HAVE_POST_INCREMENT 1
852 #define HAVE_POST_DECREMENT 1
853 #define HAVE_PRE_MODIFY_DISP 1
854 #define HAVE_POST_MODIFY_DISP 1
855 #define HAVE_PRE_MODIFY_REG 1
856 #define HAVE_POST_MODIFY_REG 1
857 /* ??? should also do PRE_MODIFY_REG / POST_MODIFY_REG, but that requires
858 a special predicate for the memory operand of stores, like for the SH. */
860 /* Recognize any constant value that is a valid address. */
861 #define CONSTANT_ADDRESS_P(X) \
862 (flag_pic ? (arc_legitimate_pic_addr_p (X) || LABEL_P (X)): \
863 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
864 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST))
866 /* Is the argument a const_int rtx, containing an exact power of 2 */
867 #define IS_POWEROF2_P(X) (! ( (X) & ((X) - 1)) && (X))
868 #define IS_POWEROF2_OR_0_P(X) (! ( (X) & ((X) - 1)))
870 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
871 and check its validity for a certain class.
872 We have two alternate definitions for each of them.
873 The *_NONSTRICT definition accepts all pseudo regs; the other rejects
874 them unless they have been allocated suitable hard regs.
876 Most source files want to accept pseudo regs in the hope that
877 they will get allocated to the class that the insn wants them to be in.
878 Source files for reload pass need to be strict.
879 After reload, it makes no difference, since pseudo regs have
880 been eliminated by then. */
882 /* Nonzero if X is a hard reg that can be used as an index
883 or if it is a pseudo reg. */
884 #define REG_OK_FOR_INDEX_P_NONSTRICT(X) \
885 ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER \
886 || REGNO_OK_FOR_BASE_P (REGNO (X)))
888 /* Nonzero if X is a hard reg that can be used as a base reg
889 or if it is a pseudo reg. */
890 #define REG_OK_FOR_BASE_P_NONSTRICT(X) \
891 ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER \
892 || REGNO_OK_FOR_BASE_P (REGNO (X)))
894 /* Nonzero if X is a hard reg that can be used as an index. */
895 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
896 /* Nonzero if X is a hard reg that can be used as a base reg. */
897 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
899 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
900 that is a valid memory address for an instruction.
901 The MODE argument is the machine mode for the MEM expression
902 that wants to use this address. */
903 /* The `ld' insn allows [reg],[reg+shimm],[reg+limm],[reg+reg],[limm]
904 but the `st' insn only allows [reg],[reg+shimm],[limm].
905 The only thing we can do is only allow the most strict case `st' and hope
906 other parts optimize out the restrictions for `ld'. */
908 #define RTX_OK_FOR_BASE_P(X, STRICT) \
909 (REG_P (X) \
910 && ((STRICT) ? REG_OK_FOR_BASE_P_STRICT (X) : REG_OK_FOR_BASE_P_NONSTRICT (X)))
912 #define RTX_OK_FOR_INDEX_P(X, STRICT) \
913 (REG_P (X) \
914 && ((STRICT) ? REG_OK_FOR_INDEX_P_STRICT (X) : REG_OK_FOR_INDEX_P_NONSTRICT (X)))
916 /* A C compound statement that attempts to replace X, which is an address
917 that needs reloading, with a valid memory address for an operand of
918 mode MODE. WIN is a C statement label elsewhere in the code.
920 We try to get a normal form
921 of the address. That will allow inheritance of the address reloads. */
923 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
924 do { \
925 if (arc_legitimize_reload_address (&(X), (MODE), (OPNUM), (TYPE))) \
926 goto WIN; \
927 } while (0)
929 /* Reading lp_count for anything but the lp instruction is very slow on the
930 ARC700. */
931 #define DONT_REALLOC(REGNO,MODE) \
932 (TARGET_ARC700 && (REGNO) == 60)
935 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
936 return the mode to be used for the comparison. */
937 /*extern machine_mode arc_select_cc_mode ();*/
938 #define SELECT_CC_MODE(OP, X, Y) \
939 arc_select_cc_mode (OP, X, Y)
941 /* Return non-zero if SELECT_CC_MODE will never return MODE for a
942 floating point inequality comparison. */
943 #define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
945 /* Costs. */
947 /* Compute extra cost of moving data between one register class
948 and another. */
949 #define REGISTER_MOVE_COST(MODE, CLASS, TO_CLASS) \
950 arc_register_move_cost ((MODE), (CLASS), (TO_CLASS))
952 /* Compute the cost of moving data between registers and memory. */
953 /* Memory is 3 times as expensive as registers.
954 ??? Is that the right way to look at it? */
955 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
956 (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD ? 6 : 12)
958 /* The cost of a branch insn. */
959 /* ??? What's the right value here? Branches are certainly more
960 expensive than reg->reg moves. */
961 #define BRANCH_COST(speed_p, predictable_p) 2
963 /* Scc sets the destination to 1 and then conditionally zeroes it.
964 Best case, ORed SCCs can be made into clear - condset - condset.
965 But it could also end up as five insns. So say it costs four on
966 average.
967 These extra instructions - and the second comparison - will also be
968 an extra cost if the first comparison would have been decisive.
969 So get an average saving, with a probability of the first branch
970 beging decisive of p0, we want:
971 p0 * (branch_cost - 4) > (1 - p0) * 5
972 ??? We don't get to see that probability to evaluate, so we can
973 only wildly guess that it might be 50%.
974 ??? The compiler also lacks the notion of branch predictability. */
975 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
976 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
977 false) > 9)
979 /* Nonzero if access to memory by bytes is slow and undesirable.
980 For RISC chips, it means that access to memory by bytes is no
981 better than access by words when possible, so grab a whole word
982 and maybe make use of that. */
983 #define SLOW_BYTE_ACCESS 0
985 /* Define this macro if it is as good or better to call a constant
986 function address than to call an address kept in a register. */
987 /* On the ARC, calling through registers is slow. */
988 #define NO_FUNCTION_CSE 1
990 /* Section selection. */
991 /* WARNING: These section names also appear in dwarfout.c. */
993 #define TEXT_SECTION_ASM_OP "\t.section\t.text"
994 #define DATA_SECTION_ASM_OP "\t.section\t.data"
996 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
997 #define SDATA_SECTION_ASM_OP "\t.section\t.sdata"
998 #define SBSS_SECTION_ASM_OP "\t.section\t.sbss"
1000 /* Expression whose value is a string, including spacing, containing the
1001 assembler operation to identify the following data as initialization/termination
1002 code. If not defined, GCC will assume such a section does not exist. */
1003 #define INIT_SECTION_ASM_OP "\t.section\t.init"
1004 #define FINI_SECTION_ASM_OP "\t.section\t.fini"
1006 /* Define this macro if jump tables (for tablejump insns) should be
1007 output in the text section, along with the assembler instructions.
1008 Otherwise, the readonly data section is used.
1009 This macro is irrelevant if there is no separate readonly data section. */
1010 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic || CASE_VECTOR_PC_RELATIVE)
1012 /* For DWARF. Marginally different than default so output is "prettier"
1013 (and consistent with above). */
1014 #define PUSHSECTION_FORMAT "\t%s %s\n"
1016 /* Tell crtstuff.c we're using ELF. */
1017 #define OBJECT_FORMAT_ELF
1019 /* PIC */
1021 /* The register number of the register used to address a table of static
1022 data addresses in memory. In some cases this register is defined by a
1023 processor's ``application binary interface'' (ABI). When this macro
1024 is defined, RTL is generated for this register once, as with the stack
1025 pointer and frame pointer registers. If this macro is not defined, it
1026 is up to the machine-dependent files to allocate such a register (if
1027 necessary). */
1028 #define PIC_OFFSET_TABLE_REGNUM 26
1030 /* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
1031 clobbered by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM
1032 is not defined. */
1033 /* This register is call-saved on the ARC. */
1034 /*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/
1036 /* A C expression that is nonzero if X is a legitimate immediate
1037 operand on the target machine when generating position independent code.
1038 You can assume that X satisfies CONSTANT_P, so you need not
1039 check this. You can also assume `flag_pic' is true, so you need not
1040 check it either. You need not define this macro if all constants
1041 (including SYMBOL_REF) can be immediate operands when generating
1042 position independent code. */
1043 #define LEGITIMATE_PIC_OPERAND_P(X) \
1044 (!arc_raw_symbolic_reference_mentioned_p ((X), true))
1046 /* PIC and small data don't mix on ARC because they use the same register. */
1047 #define SDATA_BASE_REGNUM 26
1049 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1050 (flag_pic \
1051 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
1052 : DW_EH_PE_absptr)
1054 /* Control the assembler format that we output. */
1056 /* A C string constant describing how to begin a comment in the target
1057 assembler language. The compiler assumes that the comment will
1058 end at the end of the line. */
1059 /* Gas needs this to be "#" in order to recognize line directives. */
1060 #define ASM_COMMENT_START "#"
1062 /* Output to assembler file text saying following lines
1063 may contain character constants, extra white space, comments, etc. */
1064 #undef ASM_APP_ON
1065 #define ASM_APP_ON ""
1067 /* Output to assembler file text saying following lines
1068 no longer contain unusual constructs. */
1069 #undef ASM_APP_OFF
1070 #define ASM_APP_OFF ""
1072 /* Globalizing directive for a label. */
1073 #define GLOBAL_ASM_OP "\t.global\t"
1075 /* This is how to output an assembler line defining a `char' constant. */
1076 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1077 ( fprintf (FILE, "\t.byte\t"), \
1078 output_addr_const (FILE, (VALUE)), \
1079 fprintf (FILE, "\n"))
1081 /* This is how to output an assembler line defining a `short' constant. */
1082 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1083 ( fprintf (FILE, "\t.hword\t"), \
1084 output_addr_const (FILE, (VALUE)), \
1085 fprintf (FILE, "\n"))
1087 /* This is how to output an assembler line defining an `int' constant.
1088 We also handle symbol output here. Code addresses must be right shifted
1089 by 2 because that's how the jump instruction wants them. */
1090 #define ASM_OUTPUT_INT(FILE, VALUE) \
1091 do { \
1092 fprintf (FILE, "\t.word\t"); \
1093 if (GET_CODE (VALUE) == LABEL_REF) \
1095 fprintf (FILE, "%%st(@"); \
1096 output_addr_const (FILE, (VALUE)); \
1097 fprintf (FILE, ")"); \
1099 else \
1100 output_addr_const (FILE, (VALUE)); \
1101 fprintf (FILE, "\n"); \
1102 } while (0)
1104 /* This is how to output an assembler line defining a `float' constant. */
1105 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1107 long t; \
1108 char str[30]; \
1109 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1110 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1111 fprintf (FILE, "\t.word\t0x%lx %s %s\n", \
1112 t, ASM_COMMENT_START, str); \
1115 /* This is how to output an assembler line defining a `double' constant. */
1116 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1118 long t[2]; \
1119 char str[30]; \
1120 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1121 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1122 fprintf (FILE, "\t.word\t0x%lx %s %s\n\t.word\t0x%lx\n", \
1123 t[0], ASM_COMMENT_START, str, t[1]); \
1126 /* This is how to output the definition of a user-level label named NAME,
1127 such as the label on a static function or variable NAME. */
1128 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1129 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1131 #define ASM_NAME_P(NAME) ( NAME[0]=='*')
1133 /* This is how to output a reference to a user-level label named NAME.
1134 `assemble_name' uses this. */
1135 /* We work around a dwarfout.c deficiency by watching for labels from it and
1136 not adding the '_' prefix. There is a comment in
1137 dwarfout.c that says it should be using ASM_OUTPUT_INTERNAL_LABEL. */
1138 #define ASM_OUTPUT_LABELREF(FILE, NAME1) \
1139 do { \
1140 const char *NAME; \
1141 NAME = (*targetm.strip_name_encoding)(NAME1); \
1142 if ((NAME)[0] == '.' && (NAME)[1] == 'L') \
1143 fprintf (FILE, "%s", NAME); \
1144 else \
1146 if (!ASM_NAME_P (NAME1)) \
1147 fprintf (FILE, "%s", user_label_prefix); \
1148 fprintf (FILE, "%s", NAME); \
1150 } while (0)
1152 /* This is how to output a reference to a symbol_ref / label_ref as
1153 (part of) an operand. To disambiguate from register names like
1154 a1 / a2 / status etc, symbols are preceded by '@'. */
1155 #define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
1156 ASM_OUTPUT_LABEL_REF ((FILE), XSTR ((SYM), 0))
1157 #define ASM_OUTPUT_LABEL_REF(FILE,STR) \
1158 do \
1160 fputc ('@', file); \
1161 assemble_name ((FILE), (STR)); \
1163 while (0)
1165 /* Store in OUTPUT a string (made with alloca) containing
1166 an assembler-name for a local static variable named NAME.
1167 LABELNO is an integer which is different for each call. */
1168 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1169 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1170 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1172 /* The following macro defines the format used to output the second
1173 operand of the .type assembler directive. Different svr4 assemblers
1174 expect various different forms for this operand. The one given here
1175 is just a default. You may need to override it in your machine-
1176 specific tm.h file (depending upon the particulars of your assembler). */
1178 #undef TYPE_OPERAND_FMT
1179 #define TYPE_OPERAND_FMT "@%s"
1181 /* A C string containing the appropriate assembler directive to
1182 specify the size of a symbol, without any arguments. On systems
1183 that use ELF, the default (in `config/elfos.h') is `"\t.size\t"';
1184 on other systems, the default is not to define this macro. */
1185 #undef SIZE_ASM_OP
1186 #define SIZE_ASM_OP "\t.size\t"
1188 /* Assembler pseudo-op to equate one value with another. */
1189 /* ??? This is needed because dwarfout.c provides a default definition too
1190 late for defaults.h (which contains the default definition of ASM_OTPUT_DEF
1191 that we use). */
1192 #ifdef SET_ASM_OP
1193 #undef SET_ASM_OP
1194 #endif
1195 #define SET_ASM_OP "\t.set\t"
1197 extern char rname29[], rname30[];
1198 extern char rname56[], rname57[], rname58[], rname59[];
1199 /* How to refer to registers in assembler output.
1200 This sequence is indexed by compiler's hard-register-number (see above). */
1201 #define REGISTER_NAMES \
1202 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1203 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1204 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
1205 "r24", "r25", "gp", "fp", "sp", rname29, rname30, "blink", \
1206 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
1207 "d1", "d1", "d2", "d2", "r44", "r45", "r46", "r47", \
1208 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
1209 rname56,rname57,rname58,rname59,"lp_count", "cc", "ap", "pcl", \
1210 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7", \
1211 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15", \
1212 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23", \
1213 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31", \
1214 "vr32", "vr33", "vr34", "vr35", "vr36", "vr37", "vr38", "vr39", \
1215 "vr40", "vr41", "vr42", "vr43", "vr44", "vr45", "vr46", "vr47", \
1216 "vr48", "vr49", "vr50", "vr51", "vr52", "vr53", "vr54", "vr55", \
1217 "vr56", "vr57", "vr58", "vr59", "vr60", "vr61", "vr62", "vr63", \
1218 "dr0", "dr1", "dr2", "dr3", "dr4", "dr5", "dr6", "dr7", \
1219 "dr0", "dr1", "dr2", "dr3", "dr4", "dr5", "dr6", "dr7", \
1220 "lp_start", "lp_end" \
1223 #define ADDITIONAL_REGISTER_NAMES \
1225 {"ilink", 29}, \
1226 {"r29", 29}, \
1227 {"r30", 30} \
1230 /* Entry to the insn conditionalizer. */
1231 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1232 arc_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1234 /* A C expression which evaluates to true if CODE is a valid
1235 punctuation character for use in the `PRINT_OPERAND' macro. */
1236 extern char arc_punct_chars[];
1237 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1238 arc_punct_chars[(unsigned char) (CHAR)]
1240 /* Print operand X (an rtx) in assembler syntax to file FILE.
1241 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1242 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1243 #define PRINT_OPERAND(FILE, X, CODE) \
1244 arc_print_operand (FILE, X, CODE)
1246 /* A C compound statement to output to stdio stream STREAM the
1247 assembler syntax for an instruction operand that is a memory
1248 reference whose address is ADDR. ADDR is an RTL expression.
1250 On some machines, the syntax for a symbolic address depends on
1251 the section that the address refers to. On these machines,
1252 define the macro `ENCODE_SECTION_INFO' to store the information
1253 into the `symbol_ref', and then check for it here. */
1254 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1255 arc_print_operand_address (FILE, ADDR)
1257 /* This is how to output an element of a case-vector that is absolute. */
1258 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1259 do { \
1260 char label[30]; \
1261 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1262 fprintf (FILE, "\t.word "); \
1263 assemble_name (FILE, label); \
1264 fprintf(FILE, "\n"); \
1265 } while (0)
1267 /* This is how to output an element of a case-vector that is relative. */
1268 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1269 do { \
1270 char label[30]; \
1271 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1272 switch (GET_MODE (BODY)) \
1274 case E_QImode: fprintf (FILE, "\t.byte "); break; \
1275 case E_HImode: fprintf (FILE, "\t.hword "); break; \
1276 case E_SImode: fprintf (FILE, "\t.word "); break; \
1277 default: gcc_unreachable (); \
1279 assemble_name (FILE, label); \
1280 fprintf (FILE, "-"); \
1281 ASM_GENERATE_INTERNAL_LABEL (label, "L", REL); \
1282 assemble_name (FILE, label); \
1283 if (TARGET_COMPACT_CASESI) \
1284 fprintf (FILE, " + %d", 4 + arc_get_unalign ()); \
1285 fprintf(FILE, "\n"); \
1286 } while (0)
1288 /* ADDR_DIFF_VECs are in the text section and thus can affect the
1289 current alignment. */
1290 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
1291 do \
1293 if (GET_CODE (PATTERN (JUMPTABLE)) == ADDR_DIFF_VEC \
1294 && ((GET_MODE_SIZE (as_a <scalar_int_mode> \
1295 (GET_MODE (PATTERN (JUMPTABLE)))) \
1296 * XVECLEN (PATTERN (JUMPTABLE), 1) + 1) \
1297 & 2)) \
1298 arc_toggle_unalign (); \
1300 while (0)
1302 #define JUMP_ALIGN(LABEL) (arc_size_opt_level < 2 ? 2 : 0)
1303 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
1304 (JUMP_ALIGN(LABEL) \
1305 ? JUMP_ALIGN(LABEL) \
1306 : GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
1307 ? 1 : 0)
1308 /* The desired alignment for the location counter at the beginning
1309 of a loop. */
1310 /* On the ARC, align loops to 4 byte boundaries unless doing all-out size
1311 optimization. */
1312 #define LOOP_ALIGN(X) 0
1314 #define LABEL_ALIGN(LABEL) (arc_label_align (LABEL))
1316 /* This is how to output an assembler line
1317 that says to advance the location counter
1318 to a multiple of 2**LOG bytes. */
1319 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1320 do { \
1321 if ((LOG) != 0) fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
1322 if ((LOG) > 1) \
1323 arc_clear_unalign (); \
1324 } while (0)
1326 /* ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE, ALIGNMENT)
1327 Define this macro when you need to see the variable's decl in order to
1328 chose what to output. */
1329 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGNMENT) \
1330 arc_asm_output_aligned_decl_local (STREAM, DECL, NAME, SIZE, ALIGNMENT, 0)
1332 /* Debugging information. */
1334 /* Generate DBX and DWARF debugging information. */
1335 #ifdef DBX_DEBUGGING_INFO
1336 #undef DBX_DEBUGGING_INFO
1337 #endif
1338 #define DBX_DEBUGGING_INFO
1340 #ifdef DWARF2_DEBUGGING_INFO
1341 #undef DWARF2_DEBUGGING_INFO
1342 #endif
1343 #define DWARF2_DEBUGGING_INFO
1345 /* Prefer STABS (for now). */
1346 #undef PREFERRED_DEBUGGING_TYPE
1347 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1349 /* How to renumber registers for dbx and gdb. */
1350 #define DBX_REGISTER_NUMBER(REGNO) \
1351 ((TARGET_MULMAC_32BY16_SET && (REGNO) >= 56 && (REGNO) <= 57) \
1352 ? ((REGNO) ^ !TARGET_BIG_ENDIAN) \
1353 : (TARGET_MUL64_SET && (REGNO) >= 57 && (REGNO) <= 59) \
1354 ? ((REGNO) == 57 \
1355 ? 58 /* MMED */ \
1356 : ((REGNO) & 1) ^ TARGET_BIG_ENDIAN \
1357 ? 59 /* MHI */ \
1358 : 57 + !!TARGET_MULMAC_32BY16_SET) /* MLO */ \
1359 : (REGNO))
1361 #define DWARF_FRAME_REGNUM(REG) (REG)
1363 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (31)
1365 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 31)
1367 /* Frame info. */
1369 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
1371 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
1373 #define EH_RETURN_HANDLER_RTX arc_eh_return_address_location ()
1375 /* Turn off splitting of long stabs. */
1376 #define DBX_CONTIN_LENGTH 0
1378 /* Miscellaneous. */
1380 /* Specify the machine mode that this machine uses
1381 for the index in the tablejump instruction.
1382 If we have pc relative case vectors, we start the case vector shortening
1383 with QImode. */
1384 #define CASE_VECTOR_MODE \
1385 ((optimize && (CASE_VECTOR_PC_RELATIVE || flag_pic)) ? QImode : Pmode)
1387 /* Define as C expression which evaluates to nonzero if the tablejump
1388 instruction expects the table to contain offsets from the address of the
1389 table.
1390 Do not define this if the table should contain absolute addresses. */
1391 #define CASE_VECTOR_PC_RELATIVE TARGET_CASE_VECTOR_PC_RELATIVE
1393 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
1394 CASE_VECTOR_SHORTEN_MODE_1 \
1395 (MIN_OFFSET, TARGET_COMPACT_CASESI ? MAX_OFFSET + 6 : MAX_OFFSET, BODY)
1397 #define CASE_VECTOR_SHORTEN_MODE_1(MIN_OFFSET, MAX_OFFSET, BODY) \
1398 ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
1399 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
1400 : (MIN_OFFSET) >= -128 && (MAX_OFFSET) <= 127 \
1401 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
1402 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 65535 \
1403 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, HImode) \
1404 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 \
1405 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, HImode) \
1406 : SImode)
1408 #define ADDR_VEC_ALIGN(VEC_INSN) \
1409 (exact_log2 (GET_MODE_SIZE (as_a <scalar_int_mode> \
1410 (GET_MODE (PATTERN (VEC_INSN))))))
1411 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
1412 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) \
1413 ASM_OUTPUT_ALIGN ((FILE), ADDR_VEC_ALIGN (TABLE))
1415 #define INSN_LENGTH_ALIGNMENT(INSN) \
1416 ((JUMP_TABLE_DATA_P (INSN) \
1417 && GET_CODE (PATTERN (INSN)) == ADDR_DIFF_VEC \
1418 && GET_MODE (PATTERN (INSN)) == QImode) \
1419 ? 0 : length_unit_log)
1421 /* Define if operations between registers always perform the operation
1422 on the full register even if a narrower mode is specified. */
1423 #define WORD_REGISTER_OPERATIONS 1
1425 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1426 will either zero-extend or sign-extend. The value of this macro should
1427 be the code that says which one of the two operations is implicitly
1428 done, NIL if none. */
1429 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1432 /* Max number of bytes we can move from memory to memory
1433 in one reasonably fast instruction. */
1434 #define MOVE_MAX 4
1436 /* Undo the effects of the movmem pattern presence on STORE_BY_PIECES_P . */
1437 #define MOVE_RATIO(SPEED) ((SPEED) ? 15 : 3)
1439 /* Define this to be nonzero if shift instructions ignore all but the
1440 low-order few bits.
1442 #define SHIFT_COUNT_TRUNCATED 1
1444 /* We assume that the store-condition-codes instructions store 0 for false
1445 and some other value for true. This is the value stored for true. */
1446 #define STORE_FLAG_VALUE 1
1448 /* Specify the machine mode that pointers have.
1449 After generation of rtl, the compiler makes no further distinction
1450 between pointers and any other objects of this machine mode. */
1451 /* ARCompact has full 32-bit pointers. */
1452 #define Pmode SImode
1454 /* A function address in a call instruction. */
1455 #define FUNCTION_MODE SImode
1457 /* Define the information needed to generate branch and scc insns. This is
1458 stored from the compare operation. Note that we can't use "rtx" here
1459 since it hasn't been defined! */
1460 extern struct rtx_def *arc_compare_op0, *arc_compare_op1;
1462 /* ARC function types. */
1463 enum arc_function_type {
1464 /* No function should have the unknown type. This value is used to
1465 indicate the that function type has not yet been computed. */
1466 ARC_FUNCTION_UNKNOWN = 0,
1468 /* The normal function type indicates that the function has the
1469 standard prologue and epilogue. */
1470 ARC_FUNCTION_NORMAL = 1 << 0,
1471 /* These are interrupt handlers. The name corresponds to the register
1472 name that contains the return address. */
1473 ARC_FUNCTION_ILINK1 = 1 << 1,
1474 ARC_FUNCTION_ILINK2 = 1 << 2,
1475 /* Fast interrupt is only available on ARCv2 processors. */
1476 ARC_FUNCTION_FIRQ = 1 << 3,
1477 /* The naked function type indicates that the function does not have
1478 prologue or epilogue, and that no stack frame is available. */
1479 ARC_FUNCTION_NAKED = 1 << 4
1482 /* Check if a function is an interrupt function. */
1483 #define ARC_INTERRUPT_P(TYPE) \
1484 (((TYPE) & (ARC_FUNCTION_ILINK1 | ARC_FUNCTION_ILINK2 \
1485 | ARC_FUNCTION_FIRQ)) != 0)
1487 /* Check if a function is a fast interrupt function. */
1488 #define ARC_FAST_INTERRUPT_P(TYPE) (((TYPE) & ARC_FUNCTION_FIRQ) != 0)
1490 /* Check if a function is normal, that is, has standard prologue and
1491 epilogue. */
1492 #define ARC_NORMAL_P(TYPE) (((TYPE) & ARC_FUNCTION_NORMAL) != 0)
1494 /* Check if a function is naked. */
1495 #define ARC_NAKED_P(TYPE) (((TYPE) & ARC_FUNCTION_NAKED) != 0)
1497 /* Called by crtstuff.c to make calls to function FUNCTION that are defined in
1498 SECTION_OP, and then to switch back to text section. */
1499 #undef CRT_CALL_STATIC_FUNCTION
1500 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1501 asm (SECTION_OP "\n\t" \
1502 "add r12,pcl,@" USER_LABEL_PREFIX #FUNC "@pcl\n\t" \
1503 "jl [r12]\n" \
1504 TEXT_SECTION_ASM_OP);
1506 /* This macro expands to the name of the scratch register r12, used for
1507 temporary calculations according to the ABI. */
1508 #define ARC_TEMP_SCRATCH_REG "r12"
1510 /* The C++ compiler must use one bit to indicate whether the function
1511 that will be called through a pointer-to-member-function is
1512 virtual. Normally, we assume that the low-order bit of a function
1513 pointer must always be zero. Then, by ensuring that the
1514 vtable_index is odd, we can distinguish which variant of the union
1515 is in use. But, on some platforms function pointers can be odd,
1516 and so this doesn't work. In that case, we use the low-order bit
1517 of the `delta' field, and shift the remainder of the `delta' field
1518 to the left. We needed to do this for A4 because the address was always
1519 shifted and thus could be odd. */
1520 #define TARGET_PTRMEMFUNC_VBIT_LOCATION \
1521 (ptrmemfunc_vbit_in_pfn)
1523 #define INSN_SETS_ARE_DELAYED(X) \
1524 (GET_CODE (X) == INSN \
1525 && GET_CODE (PATTERN (X)) != SEQUENCE \
1526 && GET_CODE (PATTERN (X)) != USE \
1527 && GET_CODE (PATTERN (X)) != CLOBBER \
1528 && (get_attr_type (X) == TYPE_CALL || get_attr_type (X) == TYPE_SFUNC))
1530 #define INSN_REFERENCES_ARE_DELAYED(insn) \
1531 (INSN_SETS_ARE_DELAYED (insn))
1533 #define CALL_ATTR(X, NAME) \
1534 ((CALL_P (X) || NONJUMP_INSN_P (X)) \
1535 && GET_CODE (PATTERN (X)) != USE \
1536 && GET_CODE (PATTERN (X)) != CLOBBER \
1537 && get_attr_is_##NAME (X) == IS_##NAME##_YES) \
1539 #define REVERSE_CONDITION(CODE,MODE) \
1540 (((MODE) == CC_FP_GTmode || (MODE) == CC_FP_GEmode \
1541 || (MODE) == CC_FP_UNEQmode || (MODE) == CC_FP_ORDmode \
1542 || (MODE) == CC_FPXmode || (MODE) == CC_FPU_UNEQmode \
1543 || (MODE) == CC_FPUmode) \
1544 ? reverse_condition_maybe_unordered ((CODE)) \
1545 : reverse_condition ((CODE)))
1547 #define ADJUST_INSN_LENGTH(X, LENGTH) \
1548 ((LENGTH) \
1549 = (GET_CODE (PATTERN (X)) == SEQUENCE \
1550 ? ((LENGTH) \
1551 + arc_adjust_insn_length ( \
1552 as_a <rtx_sequence *> (PATTERN (X))->insn (0), \
1553 get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)), \
1554 true) \
1555 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)) \
1556 + arc_adjust_insn_length ( \
1557 as_a <rtx_sequence *> (PATTERN (X))->insn (1), \
1558 get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1)), \
1559 true) \
1560 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1))) \
1561 : arc_adjust_insn_length ((X), (LENGTH), false)))
1563 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C,STR) ((C) == '`')
1565 #define INIT_EXPANDERS arc_init_expanders ()
1567 enum
1569 ARC_LRA_PRIORITY_NONE, ARC_LRA_PRIORITY_NONCOMPACT, ARC_LRA_PRIORITY_COMPACT
1572 /* The define_cond_exec construct is rather crude, as we can't have
1573 different ones with different conditions apply to different sets
1574 of instructions. We can't use an attribute test inside the condition,
1575 because that would lead to infinite recursion as the attribute test
1576 needs to recognize the insn. So, instead we have a clause for
1577 the pattern condition of all sfunc patterns which is only relevant for
1578 the predicated varaint. */
1579 #define SFUNC_CHECK_PREDICABLE \
1580 (GET_CODE (PATTERN (insn)) != COND_EXEC || !flag_pic || !TARGET_MEDIUM_CALLS)
1582 /* MPYW feature macro. Only valid for ARCHS and ARCEM cores. */
1583 #define TARGET_MPYW ((arc_mpy_option > 0) && TARGET_V2)
1584 /* Full ARCv2 multiplication feature macro. */
1585 #define TARGET_MULTI ((arc_mpy_option > 1) && TARGET_V2)
1586 /* General MPY feature macro. */
1587 #define TARGET_MPY ((TARGET_ARC700 && (!TARGET_NOMPY_SET)) || TARGET_MULTI)
1588 /* ARC700 MPY feature macro. */
1589 #define TARGET_ARC700_MPY (TARGET_ARC700 && (!TARGET_NOMPY_SET))
1590 /* Any multiplication feature macro. */
1591 #define TARGET_ANY_MPY \
1592 (TARGET_MPY || TARGET_MUL64_SET || TARGET_MULMAC_32BY16_SET)
1593 /* PLUS_DMPY feature macro. */
1594 #define TARGET_PLUS_DMPY ((arc_mpy_option > 6) && TARGET_HS)
1595 /* PLUS_MACD feature macro. */
1596 #define TARGET_PLUS_MACD ((arc_mpy_option > 7) && TARGET_HS)
1597 /* PLUS_QMACW feature macro. */
1598 #define TARGET_PLUS_QMACW ((arc_mpy_option > 8) && TARGET_HS)
1600 /* ARC600 and ARC601 feature macro. */
1601 #define TARGET_ARC600_FAMILY (TARGET_ARC600 || TARGET_ARC601)
1602 /* ARC600, ARC601 and ARC700 feature macro. */
1603 #define TARGET_ARCOMPACT_FAMILY \
1604 (TARGET_ARC600 || TARGET_ARC601 || TARGET_ARC700)
1605 /* Loop count register can be read in very next instruction after has
1606 been written to by an ordinary instruction. */
1607 #define TARGET_LP_WR_INTERLOCK (!TARGET_ARC600_FAMILY)
1609 /* FPU defines. */
1610 /* Any FPU support. */
1611 #define TARGET_HARD_FLOAT ((arc_fpu_build & (FPU_SP | FPU_DP)) != 0)
1612 /* Single precision floating point support. */
1613 #define TARGET_FP_SP_BASE ((arc_fpu_build & FPU_SP) != 0)
1614 /* Double precision floating point support. */
1615 #define TARGET_FP_DP_BASE ((arc_fpu_build & FPU_DP) != 0)
1616 /* Single precision floating point support with fused operation. */
1617 #define TARGET_FP_SP_FUSED ((arc_fpu_build & FPU_SF) != 0)
1618 /* Double precision floating point support with fused operation. */
1619 #define TARGET_FP_DP_FUSED ((arc_fpu_build & FPU_DF) != 0)
1620 /* Single precision floating point conversion instruction support. */
1621 #define TARGET_FP_SP_CONV ((arc_fpu_build & FPU_SC) != 0)
1622 /* Double precision floating point conversion instruction support. */
1623 #define TARGET_FP_DP_CONV ((arc_fpu_build & FPU_DC) != 0)
1624 /* Single precision floating point SQRT/DIV instruction support. */
1625 #define TARGET_FP_SP_SQRT ((arc_fpu_build & FPU_SD) != 0)
1626 /* Double precision floating point SQRT/DIV instruction support. */
1627 #define TARGET_FP_DP_SQRT ((arc_fpu_build & FPU_DD) != 0)
1628 /* Double precision floating point assist instruction support. */
1629 #define TARGET_FP_DP_AX ((arc_fpu_build & FPX_DP) != 0)
1630 /* Custom FP instructions used by QuarkSE EM cpu. */
1631 #define TARGET_FPX_QUARK (TARGET_EM && TARGET_SPFP \
1632 && (arc_fpu_build == FPX_QK))
1634 #endif /* GCC_ARC_H */