* tree-inline.c (optimize_inline_calls): Set DECL_INLINED_FNS
[official-gcc.git] / gcc / alias.c
blob9b920b9f34fbfe0b4470e5774aa87cf48b9701da
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "flags.h"
37 #include "output.h"
38 #include "toplev.h"
39 #include "cselib.h"
40 #include "splay-tree.h"
41 #include "ggc.h"
42 #include "langhooks.h"
43 #include "timevar.h"
44 #include "target.h"
45 #include "cgraph.h"
46 #include "varray.h"
48 /* The alias sets assigned to MEMs assist the back-end in determining
49 which MEMs can alias which other MEMs. In general, two MEMs in
50 different alias sets cannot alias each other, with one important
51 exception. Consider something like:
53 struct S { int i; double d; };
55 a store to an `S' can alias something of either type `int' or type
56 `double'. (However, a store to an `int' cannot alias a `double'
57 and vice versa.) We indicate this via a tree structure that looks
58 like:
59 struct S
60 / \
61 / \
62 |/_ _\|
63 int double
65 (The arrows are directed and point downwards.)
66 In this situation we say the alias set for `struct S' is the
67 `superset' and that those for `int' and `double' are `subsets'.
69 To see whether two alias sets can point to the same memory, we must
70 see if either alias set is a subset of the other. We need not trace
71 past immediate descendants, however, since we propagate all
72 grandchildren up one level.
74 Alias set zero is implicitly a superset of all other alias sets.
75 However, this is no actual entry for alias set zero. It is an
76 error to attempt to explicitly construct a subset of zero. */
78 struct alias_set_entry GTY(())
80 /* The alias set number, as stored in MEM_ALIAS_SET. */
81 HOST_WIDE_INT alias_set;
83 /* The children of the alias set. These are not just the immediate
84 children, but, in fact, all descendants. So, if we have:
86 struct T { struct S s; float f; }
88 continuing our example above, the children here will be all of
89 `int', `double', `float', and `struct S'. */
90 splay_tree GTY((param1_is (int), param2_is (int))) children;
92 /* Nonzero if would have a child of zero: this effectively makes this
93 alias set the same as alias set zero. */
94 int has_zero_child;
96 typedef struct alias_set_entry *alias_set_entry;
98 static int rtx_equal_for_memref_p (rtx, rtx);
99 static rtx find_symbolic_term (rtx);
100 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
101 static void record_set (rtx, rtx, void *);
102 static int base_alias_check (rtx, rtx, enum machine_mode,
103 enum machine_mode);
104 static rtx find_base_value (rtx);
105 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
106 static int insert_subset_children (splay_tree_node, void*);
107 static tree find_base_decl (tree);
108 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
109 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
110 int (*) (rtx, int));
111 static int aliases_everything_p (rtx);
112 static bool nonoverlapping_component_refs_p (tree, tree);
113 static tree decl_for_component_ref (tree);
114 static rtx adjust_offset_for_component_ref (tree, rtx);
115 static int nonoverlapping_memrefs_p (rtx, rtx);
116 static int write_dependence_p (rtx, rtx, int, int);
118 static int nonlocal_mentioned_p_1 (rtx *, void *);
119 static int nonlocal_mentioned_p (rtx);
120 static int nonlocal_referenced_p_1 (rtx *, void *);
121 static int nonlocal_referenced_p (rtx);
122 static int nonlocal_set_p_1 (rtx *, void *);
123 static int nonlocal_set_p (rtx);
124 static void memory_modified_1 (rtx, rtx, void *);
126 /* Set up all info needed to perform alias analysis on memory references. */
128 /* Returns the size in bytes of the mode of X. */
129 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
131 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
132 different alias sets. We ignore alias sets in functions making use
133 of variable arguments because the va_arg macros on some systems are
134 not legal ANSI C. */
135 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
136 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
138 /* Cap the number of passes we make over the insns propagating alias
139 information through set chains. 10 is a completely arbitrary choice. */
140 #define MAX_ALIAS_LOOP_PASSES 10
142 /* reg_base_value[N] gives an address to which register N is related.
143 If all sets after the first add or subtract to the current value
144 or otherwise modify it so it does not point to a different top level
145 object, reg_base_value[N] is equal to the address part of the source
146 of the first set.
148 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
149 expressions represent certain special values: function arguments and
150 the stack, frame, and argument pointers.
152 The contents of an ADDRESS is not normally used, the mode of the
153 ADDRESS determines whether the ADDRESS is a function argument or some
154 other special value. Pointer equality, not rtx_equal_p, determines whether
155 two ADDRESS expressions refer to the same base address.
157 The only use of the contents of an ADDRESS is for determining if the
158 current function performs nonlocal memory memory references for the
159 purposes of marking the function as a constant function. */
161 static GTY(()) varray_type reg_base_value;
162 static rtx *new_reg_base_value;
164 /* We preserve the copy of old array around to avoid amount of garbage
165 produced. About 8% of garbage produced were attributed to this
166 array. */
167 static GTY((deletable)) varray_type old_reg_base_value;
169 /* Static hunks of RTL used by the aliasing code; these are initialized
170 once per function to avoid unnecessary RTL allocations. */
171 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
173 #define REG_BASE_VALUE(X) \
174 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
175 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
177 /* Vector of known invariant relationships between registers. Set in
178 loop unrolling. Indexed by register number, if nonzero the value
179 is an expression describing this register in terms of another.
181 The length of this array is REG_BASE_VALUE_SIZE.
183 Because this array contains only pseudo registers it has no effect
184 after reload. */
185 static GTY((length("alias_invariant_size"))) rtx *alias_invariant;
186 static GTY(()) unsigned int alias_invariant_size;
188 /* Vector indexed by N giving the initial (unchanging) value known for
189 pseudo-register N. This array is initialized in init_alias_analysis,
190 and does not change until end_alias_analysis is called. */
191 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
193 /* Indicates number of valid entries in reg_known_value. */
194 static GTY(()) unsigned int reg_known_value_size;
196 /* Vector recording for each reg_known_value whether it is due to a
197 REG_EQUIV note. Future passes (viz., reload) may replace the
198 pseudo with the equivalent expression and so we account for the
199 dependences that would be introduced if that happens.
201 The REG_EQUIV notes created in assign_parms may mention the arg
202 pointer, and there are explicit insns in the RTL that modify the
203 arg pointer. Thus we must ensure that such insns don't get
204 scheduled across each other because that would invalidate the
205 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
206 wrong, but solving the problem in the scheduler will likely give
207 better code, so we do it here. */
208 static bool *reg_known_equiv_p;
210 /* True when scanning insns from the start of the rtl to the
211 NOTE_INSN_FUNCTION_BEG note. */
212 static bool copying_arguments;
214 /* The splay-tree used to store the various alias set entries. */
215 static GTY ((param_is (struct alias_set_entry))) varray_type alias_sets;
217 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
218 such an entry, or NULL otherwise. */
220 static inline alias_set_entry
221 get_alias_set_entry (HOST_WIDE_INT alias_set)
223 return (alias_set_entry)VARRAY_GENERIC_PTR (alias_sets, alias_set);
226 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
227 the two MEMs cannot alias each other. */
229 static inline int
230 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
232 #ifdef ENABLE_CHECKING
233 /* Perform a basic sanity check. Namely, that there are no alias sets
234 if we're not using strict aliasing. This helps to catch bugs
235 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
236 where a MEM is allocated in some way other than by the use of
237 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
238 use alias sets to indicate that spilled registers cannot alias each
239 other, we might need to remove this check. */
240 if (! flag_strict_aliasing
241 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
242 abort ();
243 #endif
245 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
248 /* Insert the NODE into the splay tree given by DATA. Used by
249 record_alias_subset via splay_tree_foreach. */
251 static int
252 insert_subset_children (splay_tree_node node, void *data)
254 splay_tree_insert ((splay_tree) data, node->key, node->value);
256 return 0;
259 /* Return 1 if the two specified alias sets may conflict. */
262 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
264 alias_set_entry ase;
266 /* If have no alias set information for one of the operands, we have
267 to assume it can alias anything. */
268 if (set1 == 0 || set2 == 0
269 /* If the two alias sets are the same, they may alias. */
270 || set1 == set2)
271 return 1;
273 /* See if the first alias set is a subset of the second. */
274 ase = get_alias_set_entry (set1);
275 if (ase != 0
276 && (ase->has_zero_child
277 || splay_tree_lookup (ase->children,
278 (splay_tree_key) set2)))
279 return 1;
281 /* Now do the same, but with the alias sets reversed. */
282 ase = get_alias_set_entry (set2);
283 if (ase != 0
284 && (ase->has_zero_child
285 || splay_tree_lookup (ase->children,
286 (splay_tree_key) set1)))
287 return 1;
289 /* The two alias sets are distinct and neither one is the
290 child of the other. Therefore, they cannot alias. */
291 return 0;
294 /* Return 1 if the two specified alias sets might conflict, or if any subtype
295 of these alias sets might conflict. */
298 alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
300 if (set1 == 0 || set2 == 0 || set1 == set2)
301 return 1;
303 return 0;
307 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
308 has any readonly fields. If any of the fields have types that
309 contain readonly fields, return true as well. */
312 readonly_fields_p (tree type)
314 tree field;
316 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
317 && TREE_CODE (type) != QUAL_UNION_TYPE)
318 return 0;
320 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
321 if (TREE_CODE (field) == FIELD_DECL
322 && (TREE_READONLY (field)
323 || readonly_fields_p (TREE_TYPE (field))))
324 return 1;
326 return 0;
329 /* Return 1 if any MEM object of type T1 will always conflict (using the
330 dependency routines in this file) with any MEM object of type T2.
331 This is used when allocating temporary storage. If T1 and/or T2 are
332 NULL_TREE, it means we know nothing about the storage. */
335 objects_must_conflict_p (tree t1, tree t2)
337 HOST_WIDE_INT set1, set2;
339 /* If neither has a type specified, we don't know if they'll conflict
340 because we may be using them to store objects of various types, for
341 example the argument and local variables areas of inlined functions. */
342 if (t1 == 0 && t2 == 0)
343 return 0;
345 /* If one or the other has readonly fields or is readonly,
346 then they may not conflict. */
347 if ((t1 != 0 && readonly_fields_p (t1))
348 || (t2 != 0 && readonly_fields_p (t2))
349 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
350 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
351 return 0;
353 /* If they are the same type, they must conflict. */
354 if (t1 == t2
355 /* Likewise if both are volatile. */
356 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
357 return 1;
359 set1 = t1 ? get_alias_set (t1) : 0;
360 set2 = t2 ? get_alias_set (t2) : 0;
362 /* Otherwise they conflict if they have no alias set or the same. We
363 can't simply use alias_sets_conflict_p here, because we must make
364 sure that every subtype of t1 will conflict with every subtype of
365 t2 for which a pair of subobjects of these respective subtypes
366 overlaps on the stack. */
367 return set1 == 0 || set2 == 0 || set1 == set2;
370 /* T is an expression with pointer type. Find the DECL on which this
371 expression is based. (For example, in `a[i]' this would be `a'.)
372 If there is no such DECL, or a unique decl cannot be determined,
373 NULL_TREE is returned. */
375 static tree
376 find_base_decl (tree t)
378 tree d0, d1, d2;
380 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
381 return 0;
383 /* If this is a declaration, return it. */
384 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
385 return t;
387 /* Handle general expressions. It would be nice to deal with
388 COMPONENT_REFs here. If we could tell that `a' and `b' were the
389 same, then `a->f' and `b->f' are also the same. */
390 switch (TREE_CODE_CLASS (TREE_CODE (t)))
392 case '1':
393 return find_base_decl (TREE_OPERAND (t, 0));
395 case '2':
396 /* Return 0 if found in neither or both are the same. */
397 d0 = find_base_decl (TREE_OPERAND (t, 0));
398 d1 = find_base_decl (TREE_OPERAND (t, 1));
399 if (d0 == d1)
400 return d0;
401 else if (d0 == 0)
402 return d1;
403 else if (d1 == 0)
404 return d0;
405 else
406 return 0;
408 case '3':
409 d0 = find_base_decl (TREE_OPERAND (t, 0));
410 d1 = find_base_decl (TREE_OPERAND (t, 1));
411 d2 = find_base_decl (TREE_OPERAND (t, 2));
413 /* Set any nonzero values from the last, then from the first. */
414 if (d1 == 0) d1 = d2;
415 if (d0 == 0) d0 = d1;
416 if (d1 == 0) d1 = d0;
417 if (d2 == 0) d2 = d1;
419 /* At this point all are nonzero or all are zero. If all three are the
420 same, return it. Otherwise, return zero. */
421 return (d0 == d1 && d1 == d2) ? d0 : 0;
423 default:
424 return 0;
428 /* Return 1 if all the nested component references handled by
429 get_inner_reference in T are such that we can address the object in T. */
432 can_address_p (tree t)
434 /* If we're at the end, it is vacuously addressable. */
435 if (! handled_component_p (t))
436 return 1;
438 /* Bitfields are never addressable. */
439 else if (TREE_CODE (t) == BIT_FIELD_REF)
440 return 0;
442 /* Fields are addressable unless they are marked as nonaddressable or
443 the containing type has alias set 0. */
444 else if (TREE_CODE (t) == COMPONENT_REF
445 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
446 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
447 && can_address_p (TREE_OPERAND (t, 0)))
448 return 1;
450 /* Likewise for arrays. */
451 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
452 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
453 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
454 && can_address_p (TREE_OPERAND (t, 0)))
455 return 1;
457 return 0;
460 /* Return the alias set for T, which may be either a type or an
461 expression. Call language-specific routine for help, if needed. */
463 HOST_WIDE_INT
464 get_alias_set (tree t)
466 HOST_WIDE_INT set;
468 /* If we're not doing any alias analysis, just assume everything
469 aliases everything else. Also return 0 if this or its type is
470 an error. */
471 if (! flag_strict_aliasing || t == error_mark_node
472 || (! TYPE_P (t)
473 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
474 return 0;
476 /* We can be passed either an expression or a type. This and the
477 language-specific routine may make mutually-recursive calls to each other
478 to figure out what to do. At each juncture, we see if this is a tree
479 that the language may need to handle specially. First handle things that
480 aren't types. */
481 if (! TYPE_P (t))
483 tree inner = t;
485 /* Remove any nops, then give the language a chance to do
486 something with this tree before we look at it. */
487 STRIP_NOPS (t);
488 set = lang_hooks.get_alias_set (t);
489 if (set != -1)
490 return set;
492 /* First see if the actual object referenced is an INDIRECT_REF from a
493 restrict-qualified pointer or a "void *". */
494 while (handled_component_p (inner))
496 inner = TREE_OPERAND (inner, 0);
497 STRIP_NOPS (inner);
500 /* Check for accesses through restrict-qualified pointers. */
501 if (TREE_CODE (inner) == INDIRECT_REF)
503 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
505 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
507 /* If we haven't computed the actual alias set, do it now. */
508 if (DECL_POINTER_ALIAS_SET (decl) == -2)
510 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
512 /* No two restricted pointers can point at the same thing.
513 However, a restricted pointer can point at the same thing
514 as an unrestricted pointer, if that unrestricted pointer
515 is based on the restricted pointer. So, we make the
516 alias set for the restricted pointer a subset of the
517 alias set for the type pointed to by the type of the
518 decl. */
519 HOST_WIDE_INT pointed_to_alias_set
520 = get_alias_set (pointed_to_type);
522 if (pointed_to_alias_set == 0)
523 /* It's not legal to make a subset of alias set zero. */
524 DECL_POINTER_ALIAS_SET (decl) = 0;
525 else if (AGGREGATE_TYPE_P (pointed_to_type))
526 /* For an aggregate, we must treat the restricted
527 pointer the same as an ordinary pointer. If we
528 were to make the type pointed to by the
529 restricted pointer a subset of the pointed-to
530 type, then we would believe that other subsets
531 of the pointed-to type (such as fields of that
532 type) do not conflict with the type pointed to
533 by the restricted pointer. */
534 DECL_POINTER_ALIAS_SET (decl)
535 = pointed_to_alias_set;
536 else
538 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
539 record_alias_subset (pointed_to_alias_set,
540 DECL_POINTER_ALIAS_SET (decl));
544 /* We use the alias set indicated in the declaration. */
545 return DECL_POINTER_ALIAS_SET (decl);
548 /* If we have an INDIRECT_REF via a void pointer, we don't
549 know anything about what that might alias. Likewise if the
550 pointer is marked that way. */
551 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
552 || (TYPE_REF_CAN_ALIAS_ALL
553 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
554 return 0;
557 /* Otherwise, pick up the outermost object that we could have a pointer
558 to, processing conversions as above. */
559 while (handled_component_p (t) && ! can_address_p (t))
561 t = TREE_OPERAND (t, 0);
562 STRIP_NOPS (t);
565 /* If we've already determined the alias set for a decl, just return
566 it. This is necessary for C++ anonymous unions, whose component
567 variables don't look like union members (boo!). */
568 if (TREE_CODE (t) == VAR_DECL
569 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
570 return MEM_ALIAS_SET (DECL_RTL (t));
572 /* Now all we care about is the type. */
573 t = TREE_TYPE (t);
576 /* Variant qualifiers don't affect the alias set, so get the main
577 variant. If this is a type with a known alias set, return it. */
578 t = TYPE_MAIN_VARIANT (t);
579 if (TYPE_ALIAS_SET_KNOWN_P (t))
580 return TYPE_ALIAS_SET (t);
582 /* See if the language has special handling for this type. */
583 set = lang_hooks.get_alias_set (t);
584 if (set != -1)
585 return set;
587 /* There are no objects of FUNCTION_TYPE, so there's no point in
588 using up an alias set for them. (There are, of course, pointers
589 and references to functions, but that's different.) */
590 else if (TREE_CODE (t) == FUNCTION_TYPE)
591 set = 0;
593 /* Unless the language specifies otherwise, let vector types alias
594 their components. This avoids some nasty type punning issues in
595 normal usage. And indeed lets vectors be treated more like an
596 array slice. */
597 else if (TREE_CODE (t) == VECTOR_TYPE)
598 set = get_alias_set (TREE_TYPE (t));
600 else
601 /* Otherwise make a new alias set for this type. */
602 set = new_alias_set ();
604 TYPE_ALIAS_SET (t) = set;
606 /* If this is an aggregate type, we must record any component aliasing
607 information. */
608 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
609 record_component_aliases (t);
611 return set;
614 /* Return a brand-new alias set. */
616 static GTY(()) HOST_WIDE_INT last_alias_set;
618 HOST_WIDE_INT
619 new_alias_set (void)
621 if (flag_strict_aliasing)
623 if (!alias_sets)
624 VARRAY_GENERIC_PTR_INIT (alias_sets, 10, "alias sets");
625 else
626 VARRAY_GROW (alias_sets, last_alias_set + 2);
627 return ++last_alias_set;
629 else
630 return 0;
633 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
634 not everything that aliases SUPERSET also aliases SUBSET. For example,
635 in C, a store to an `int' can alias a load of a structure containing an
636 `int', and vice versa. But it can't alias a load of a 'double' member
637 of the same structure. Here, the structure would be the SUPERSET and
638 `int' the SUBSET. This relationship is also described in the comment at
639 the beginning of this file.
641 This function should be called only once per SUPERSET/SUBSET pair.
643 It is illegal for SUPERSET to be zero; everything is implicitly a
644 subset of alias set zero. */
646 void
647 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
649 alias_set_entry superset_entry;
650 alias_set_entry subset_entry;
652 /* It is possible in complex type situations for both sets to be the same,
653 in which case we can ignore this operation. */
654 if (superset == subset)
655 return;
657 if (superset == 0)
658 abort ();
660 superset_entry = get_alias_set_entry (superset);
661 if (superset_entry == 0)
663 /* Create an entry for the SUPERSET, so that we have a place to
664 attach the SUBSET. */
665 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
666 superset_entry->alias_set = superset;
667 superset_entry->children
668 = splay_tree_new_ggc (splay_tree_compare_ints);
669 superset_entry->has_zero_child = 0;
670 VARRAY_GENERIC_PTR (alias_sets, superset) = superset_entry;
673 if (subset == 0)
674 superset_entry->has_zero_child = 1;
675 else
677 subset_entry = get_alias_set_entry (subset);
678 /* If there is an entry for the subset, enter all of its children
679 (if they are not already present) as children of the SUPERSET. */
680 if (subset_entry)
682 if (subset_entry->has_zero_child)
683 superset_entry->has_zero_child = 1;
685 splay_tree_foreach (subset_entry->children, insert_subset_children,
686 superset_entry->children);
689 /* Enter the SUBSET itself as a child of the SUPERSET. */
690 splay_tree_insert (superset_entry->children,
691 (splay_tree_key) subset, 0);
695 /* Record that component types of TYPE, if any, are part of that type for
696 aliasing purposes. For record types, we only record component types
697 for fields that are marked addressable. For array types, we always
698 record the component types, so the front end should not call this
699 function if the individual component aren't addressable. */
701 void
702 record_component_aliases (tree type)
704 HOST_WIDE_INT superset = get_alias_set (type);
705 tree field;
707 if (superset == 0)
708 return;
710 switch (TREE_CODE (type))
712 case ARRAY_TYPE:
713 if (! TYPE_NONALIASED_COMPONENT (type))
714 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
715 break;
717 case RECORD_TYPE:
718 case UNION_TYPE:
719 case QUAL_UNION_TYPE:
720 /* Recursively record aliases for the base classes, if there are any. */
721 if (TYPE_BINFO (type) && BINFO_BASE_BINFOS (TYPE_BINFO (type)))
723 int i;
724 for (i = 0; i < BINFO_N_BASE_BINFOS (TYPE_BINFO (type)); i++)
726 tree binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
727 record_alias_subset (superset,
728 get_alias_set (BINFO_TYPE (binfo)));
731 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
732 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
733 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
734 break;
736 case COMPLEX_TYPE:
737 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
738 break;
740 default:
741 break;
745 /* Allocate an alias set for use in storing and reading from the varargs
746 spill area. */
748 static GTY(()) HOST_WIDE_INT varargs_set = -1;
750 HOST_WIDE_INT
751 get_varargs_alias_set (void)
753 #if 1
754 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
755 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
756 consistently use the varargs alias set for loads from the varargs
757 area. So don't use it anywhere. */
758 return 0;
759 #else
760 if (varargs_set == -1)
761 varargs_set = new_alias_set ();
763 return varargs_set;
764 #endif
767 /* Likewise, but used for the fixed portions of the frame, e.g., register
768 save areas. */
770 static GTY(()) HOST_WIDE_INT frame_set = -1;
772 HOST_WIDE_INT
773 get_frame_alias_set (void)
775 if (frame_set == -1)
776 frame_set = new_alias_set ();
778 return frame_set;
781 /* Inside SRC, the source of a SET, find a base address. */
783 static rtx
784 find_base_value (rtx src)
786 unsigned int regno;
788 switch (GET_CODE (src))
790 case SYMBOL_REF:
791 case LABEL_REF:
792 return src;
794 case REG:
795 regno = REGNO (src);
796 /* At the start of a function, argument registers have known base
797 values which may be lost later. Returning an ADDRESS
798 expression here allows optimization based on argument values
799 even when the argument registers are used for other purposes. */
800 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
801 return new_reg_base_value[regno];
803 /* If a pseudo has a known base value, return it. Do not do this
804 for non-fixed hard regs since it can result in a circular
805 dependency chain for registers which have values at function entry.
807 The test above is not sufficient because the scheduler may move
808 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
809 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
810 && regno < VARRAY_SIZE (reg_base_value))
812 /* If we're inside init_alias_analysis, use new_reg_base_value
813 to reduce the number of relaxation iterations. */
814 if (new_reg_base_value && new_reg_base_value[regno]
815 && REG_N_SETS (regno) == 1)
816 return new_reg_base_value[regno];
818 if (VARRAY_RTX (reg_base_value, regno))
819 return VARRAY_RTX (reg_base_value, regno);
822 return 0;
824 case MEM:
825 /* Check for an argument passed in memory. Only record in the
826 copying-arguments block; it is too hard to track changes
827 otherwise. */
828 if (copying_arguments
829 && (XEXP (src, 0) == arg_pointer_rtx
830 || (GET_CODE (XEXP (src, 0)) == PLUS
831 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
832 return gen_rtx_ADDRESS (VOIDmode, src);
833 return 0;
835 case CONST:
836 src = XEXP (src, 0);
837 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
838 break;
840 /* ... fall through ... */
842 case PLUS:
843 case MINUS:
845 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
847 /* If either operand is a REG that is a known pointer, then it
848 is the base. */
849 if (REG_P (src_0) && REG_POINTER (src_0))
850 return find_base_value (src_0);
851 if (REG_P (src_1) && REG_POINTER (src_1))
852 return find_base_value (src_1);
854 /* If either operand is a REG, then see if we already have
855 a known value for it. */
856 if (REG_P (src_0))
858 temp = find_base_value (src_0);
859 if (temp != 0)
860 src_0 = temp;
863 if (REG_P (src_1))
865 temp = find_base_value (src_1);
866 if (temp!= 0)
867 src_1 = temp;
870 /* If either base is named object or a special address
871 (like an argument or stack reference), then use it for the
872 base term. */
873 if (src_0 != 0
874 && (GET_CODE (src_0) == SYMBOL_REF
875 || GET_CODE (src_0) == LABEL_REF
876 || (GET_CODE (src_0) == ADDRESS
877 && GET_MODE (src_0) != VOIDmode)))
878 return src_0;
880 if (src_1 != 0
881 && (GET_CODE (src_1) == SYMBOL_REF
882 || GET_CODE (src_1) == LABEL_REF
883 || (GET_CODE (src_1) == ADDRESS
884 && GET_MODE (src_1) != VOIDmode)))
885 return src_1;
887 /* Guess which operand is the base address:
888 If either operand is a symbol, then it is the base. If
889 either operand is a CONST_INT, then the other is the base. */
890 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
891 return find_base_value (src_0);
892 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
893 return find_base_value (src_1);
895 return 0;
898 case LO_SUM:
899 /* The standard form is (lo_sum reg sym) so look only at the
900 second operand. */
901 return find_base_value (XEXP (src, 1));
903 case AND:
904 /* If the second operand is constant set the base
905 address to the first operand. */
906 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
907 return find_base_value (XEXP (src, 0));
908 return 0;
910 case TRUNCATE:
911 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
912 break;
913 /* Fall through. */
914 case HIGH:
915 case PRE_INC:
916 case PRE_DEC:
917 case POST_INC:
918 case POST_DEC:
919 case PRE_MODIFY:
920 case POST_MODIFY:
921 return find_base_value (XEXP (src, 0));
923 case ZERO_EXTEND:
924 case SIGN_EXTEND: /* used for NT/Alpha pointers */
926 rtx temp = find_base_value (XEXP (src, 0));
928 if (temp != 0 && CONSTANT_P (temp))
929 temp = convert_memory_address (Pmode, temp);
931 return temp;
934 default:
935 break;
938 return 0;
941 /* Called from init_alias_analysis indirectly through note_stores. */
943 /* While scanning insns to find base values, reg_seen[N] is nonzero if
944 register N has been set in this function. */
945 static char *reg_seen;
947 /* Addresses which are known not to alias anything else are identified
948 by a unique integer. */
949 static int unique_id;
951 static void
952 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
954 unsigned regno;
955 rtx src;
956 int n;
958 if (!REG_P (dest))
959 return;
961 regno = REGNO (dest);
963 if (regno >= VARRAY_SIZE (reg_base_value))
964 abort ();
966 /* If this spans multiple hard registers, then we must indicate that every
967 register has an unusable value. */
968 if (regno < FIRST_PSEUDO_REGISTER)
969 n = hard_regno_nregs[regno][GET_MODE (dest)];
970 else
971 n = 1;
972 if (n != 1)
974 while (--n >= 0)
976 reg_seen[regno + n] = 1;
977 new_reg_base_value[regno + n] = 0;
979 return;
982 if (set)
984 /* A CLOBBER wipes out any old value but does not prevent a previously
985 unset register from acquiring a base address (i.e. reg_seen is not
986 set). */
987 if (GET_CODE (set) == CLOBBER)
989 new_reg_base_value[regno] = 0;
990 return;
992 src = SET_SRC (set);
994 else
996 if (reg_seen[regno])
998 new_reg_base_value[regno] = 0;
999 return;
1001 reg_seen[regno] = 1;
1002 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1003 GEN_INT (unique_id++));
1004 return;
1007 /* If this is not the first set of REGNO, see whether the new value
1008 is related to the old one. There are two cases of interest:
1010 (1) The register might be assigned an entirely new value
1011 that has the same base term as the original set.
1013 (2) The set might be a simple self-modification that
1014 cannot change REGNO's base value.
1016 If neither case holds, reject the original base value as invalid.
1017 Note that the following situation is not detected:
1019 extern int x, y; int *p = &x; p += (&y-&x);
1021 ANSI C does not allow computing the difference of addresses
1022 of distinct top level objects. */
1023 if (new_reg_base_value[regno] != 0
1024 && find_base_value (src) != new_reg_base_value[regno])
1025 switch (GET_CODE (src))
1027 case LO_SUM:
1028 case MINUS:
1029 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1030 new_reg_base_value[regno] = 0;
1031 break;
1032 case PLUS:
1033 /* If the value we add in the PLUS is also a valid base value,
1034 this might be the actual base value, and the original value
1035 an index. */
1037 rtx other = NULL_RTX;
1039 if (XEXP (src, 0) == dest)
1040 other = XEXP (src, 1);
1041 else if (XEXP (src, 1) == dest)
1042 other = XEXP (src, 0);
1044 if (! other || find_base_value (other))
1045 new_reg_base_value[regno] = 0;
1046 break;
1048 case AND:
1049 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1050 new_reg_base_value[regno] = 0;
1051 break;
1052 default:
1053 new_reg_base_value[regno] = 0;
1054 break;
1056 /* If this is the first set of a register, record the value. */
1057 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1058 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1059 new_reg_base_value[regno] = find_base_value (src);
1061 reg_seen[regno] = 1;
1064 /* Called from loop optimization when a new pseudo-register is
1065 created. It indicates that REGNO is being set to VAL. f INVARIANT
1066 is true then this value also describes an invariant relationship
1067 which can be used to deduce that two registers with unknown values
1068 are different. */
1070 void
1071 record_base_value (unsigned int regno, rtx val, int invariant)
1073 if (invariant && alias_invariant && regno < alias_invariant_size)
1074 alias_invariant[regno] = val;
1076 if (regno >= VARRAY_SIZE (reg_base_value))
1077 VARRAY_GROW (reg_base_value, max_reg_num ());
1079 if (REG_P (val))
1081 VARRAY_RTX (reg_base_value, regno)
1082 = REG_BASE_VALUE (val);
1083 return;
1085 VARRAY_RTX (reg_base_value, regno)
1086 = find_base_value (val);
1089 /* Clear alias info for a register. This is used if an RTL transformation
1090 changes the value of a register. This is used in flow by AUTO_INC_DEC
1091 optimizations. We don't need to clear reg_base_value, since flow only
1092 changes the offset. */
1094 void
1095 clear_reg_alias_info (rtx reg)
1097 unsigned int regno = REGNO (reg);
1099 if (regno >= FIRST_PSEUDO_REGISTER)
1101 regno -= FIRST_PSEUDO_REGISTER;
1102 if (regno < reg_known_value_size)
1104 reg_known_value[regno] = reg;
1105 reg_known_equiv_p[regno] = false;
1110 /* If a value is known for REGNO, return it. */
1112 rtx
1113 get_reg_known_value (unsigned int regno)
1115 if (regno >= FIRST_PSEUDO_REGISTER)
1117 regno -= FIRST_PSEUDO_REGISTER;
1118 if (regno < reg_known_value_size)
1119 return reg_known_value[regno];
1121 return NULL;
1124 /* Set it. */
1126 static void
1127 set_reg_known_value (unsigned int regno, rtx val)
1129 if (regno >= FIRST_PSEUDO_REGISTER)
1131 regno -= FIRST_PSEUDO_REGISTER;
1132 if (regno < reg_known_value_size)
1133 reg_known_value[regno] = val;
1137 /* Similarly for reg_known_equiv_p. */
1139 bool
1140 get_reg_known_equiv_p (unsigned int regno)
1142 if (regno >= FIRST_PSEUDO_REGISTER)
1144 regno -= FIRST_PSEUDO_REGISTER;
1145 if (regno < reg_known_value_size)
1146 return reg_known_equiv_p[regno];
1148 return false;
1151 static void
1152 set_reg_known_equiv_p (unsigned int regno, bool val)
1154 if (regno >= FIRST_PSEUDO_REGISTER)
1156 regno -= FIRST_PSEUDO_REGISTER;
1157 if (regno < reg_known_value_size)
1158 reg_known_equiv_p[regno] = val;
1163 /* Returns a canonical version of X, from the point of view alias
1164 analysis. (For example, if X is a MEM whose address is a register,
1165 and the register has a known value (say a SYMBOL_REF), then a MEM
1166 whose address is the SYMBOL_REF is returned.) */
1169 canon_rtx (rtx x)
1171 /* Recursively look for equivalences. */
1172 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1174 rtx t = get_reg_known_value (REGNO (x));
1175 if (t == x)
1176 return x;
1177 if (t)
1178 return canon_rtx (t);
1181 if (GET_CODE (x) == PLUS)
1183 rtx x0 = canon_rtx (XEXP (x, 0));
1184 rtx x1 = canon_rtx (XEXP (x, 1));
1186 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1188 if (GET_CODE (x0) == CONST_INT)
1189 return plus_constant (x1, INTVAL (x0));
1190 else if (GET_CODE (x1) == CONST_INT)
1191 return plus_constant (x0, INTVAL (x1));
1192 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1196 /* This gives us much better alias analysis when called from
1197 the loop optimizer. Note we want to leave the original
1198 MEM alone, but need to return the canonicalized MEM with
1199 all the flags with their original values. */
1200 else if (MEM_P (x))
1201 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1203 return x;
1206 /* Return 1 if X and Y are identical-looking rtx's.
1207 Expect that X and Y has been already canonicalized.
1209 We use the data in reg_known_value above to see if two registers with
1210 different numbers are, in fact, equivalent. */
1212 static int
1213 rtx_equal_for_memref_p (rtx x, rtx y)
1215 int i;
1216 int j;
1217 enum rtx_code code;
1218 const char *fmt;
1220 if (x == 0 && y == 0)
1221 return 1;
1222 if (x == 0 || y == 0)
1223 return 0;
1225 if (x == y)
1226 return 1;
1228 code = GET_CODE (x);
1229 /* Rtx's of different codes cannot be equal. */
1230 if (code != GET_CODE (y))
1231 return 0;
1233 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1234 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1236 if (GET_MODE (x) != GET_MODE (y))
1237 return 0;
1239 /* Some RTL can be compared without a recursive examination. */
1240 switch (code)
1242 case REG:
1243 return REGNO (x) == REGNO (y);
1245 case LABEL_REF:
1246 return XEXP (x, 0) == XEXP (y, 0);
1248 case SYMBOL_REF:
1249 return XSTR (x, 0) == XSTR (y, 0);
1251 case VALUE:
1252 case CONST_INT:
1253 case CONST_DOUBLE:
1254 /* There's no need to compare the contents of CONST_DOUBLEs or
1255 CONST_INTs because pointer equality is a good enough
1256 comparison for these nodes. */
1257 return 0;
1259 default:
1260 break;
1263 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1264 if (code == PLUS)
1265 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1266 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1267 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1268 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1269 /* For commutative operations, the RTX match if the operand match in any
1270 order. Also handle the simple binary and unary cases without a loop. */
1271 if (COMMUTATIVE_P (x))
1273 rtx xop0 = canon_rtx (XEXP (x, 0));
1274 rtx yop0 = canon_rtx (XEXP (y, 0));
1275 rtx yop1 = canon_rtx (XEXP (y, 1));
1277 return ((rtx_equal_for_memref_p (xop0, yop0)
1278 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1279 || (rtx_equal_for_memref_p (xop0, yop1)
1280 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1282 else if (NON_COMMUTATIVE_P (x))
1284 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1285 canon_rtx (XEXP (y, 0)))
1286 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1287 canon_rtx (XEXP (y, 1))));
1289 else if (UNARY_P (x))
1290 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1291 canon_rtx (XEXP (y, 0)));
1293 /* Compare the elements. If any pair of corresponding elements
1294 fail to match, return 0 for the whole things.
1296 Limit cases to types which actually appear in addresses. */
1298 fmt = GET_RTX_FORMAT (code);
1299 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1301 switch (fmt[i])
1303 case 'i':
1304 if (XINT (x, i) != XINT (y, i))
1305 return 0;
1306 break;
1308 case 'E':
1309 /* Two vectors must have the same length. */
1310 if (XVECLEN (x, i) != XVECLEN (y, i))
1311 return 0;
1313 /* And the corresponding elements must match. */
1314 for (j = 0; j < XVECLEN (x, i); j++)
1315 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1316 canon_rtx (XVECEXP (y, i, j))) == 0)
1317 return 0;
1318 break;
1320 case 'e':
1321 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1322 canon_rtx (XEXP (y, i))) == 0)
1323 return 0;
1324 break;
1326 /* This can happen for asm operands. */
1327 case 's':
1328 if (strcmp (XSTR (x, i), XSTR (y, i)))
1329 return 0;
1330 break;
1332 /* This can happen for an asm which clobbers memory. */
1333 case '0':
1334 break;
1336 /* It is believed that rtx's at this level will never
1337 contain anything but integers and other rtx's,
1338 except for within LABEL_REFs and SYMBOL_REFs. */
1339 default:
1340 abort ();
1343 return 1;
1346 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1347 X and return it, or return 0 if none found. */
1349 static rtx
1350 find_symbolic_term (rtx x)
1352 int i;
1353 enum rtx_code code;
1354 const char *fmt;
1356 code = GET_CODE (x);
1357 if (code == SYMBOL_REF || code == LABEL_REF)
1358 return x;
1359 if (OBJECT_P (x))
1360 return 0;
1362 fmt = GET_RTX_FORMAT (code);
1363 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1365 rtx t;
1367 if (fmt[i] == 'e')
1369 t = find_symbolic_term (XEXP (x, i));
1370 if (t != 0)
1371 return t;
1373 else if (fmt[i] == 'E')
1374 break;
1376 return 0;
1380 find_base_term (rtx x)
1382 cselib_val *val;
1383 struct elt_loc_list *l;
1385 #if defined (FIND_BASE_TERM)
1386 /* Try machine-dependent ways to find the base term. */
1387 x = FIND_BASE_TERM (x);
1388 #endif
1390 switch (GET_CODE (x))
1392 case REG:
1393 return REG_BASE_VALUE (x);
1395 case TRUNCATE:
1396 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1397 return 0;
1398 /* Fall through. */
1399 case HIGH:
1400 case PRE_INC:
1401 case PRE_DEC:
1402 case POST_INC:
1403 case POST_DEC:
1404 case PRE_MODIFY:
1405 case POST_MODIFY:
1406 return find_base_term (XEXP (x, 0));
1408 case ZERO_EXTEND:
1409 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1411 rtx temp = find_base_term (XEXP (x, 0));
1413 if (temp != 0 && CONSTANT_P (temp))
1414 temp = convert_memory_address (Pmode, temp);
1416 return temp;
1419 case VALUE:
1420 val = CSELIB_VAL_PTR (x);
1421 if (!val)
1422 return 0;
1423 for (l = val->locs; l; l = l->next)
1424 if ((x = find_base_term (l->loc)) != 0)
1425 return x;
1426 return 0;
1428 case CONST:
1429 x = XEXP (x, 0);
1430 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1431 return 0;
1432 /* Fall through. */
1433 case LO_SUM:
1434 case PLUS:
1435 case MINUS:
1437 rtx tmp1 = XEXP (x, 0);
1438 rtx tmp2 = XEXP (x, 1);
1440 /* This is a little bit tricky since we have to determine which of
1441 the two operands represents the real base address. Otherwise this
1442 routine may return the index register instead of the base register.
1444 That may cause us to believe no aliasing was possible, when in
1445 fact aliasing is possible.
1447 We use a few simple tests to guess the base register. Additional
1448 tests can certainly be added. For example, if one of the operands
1449 is a shift or multiply, then it must be the index register and the
1450 other operand is the base register. */
1452 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1453 return find_base_term (tmp2);
1455 /* If either operand is known to be a pointer, then use it
1456 to determine the base term. */
1457 if (REG_P (tmp1) && REG_POINTER (tmp1))
1458 return find_base_term (tmp1);
1460 if (REG_P (tmp2) && REG_POINTER (tmp2))
1461 return find_base_term (tmp2);
1463 /* Neither operand was known to be a pointer. Go ahead and find the
1464 base term for both operands. */
1465 tmp1 = find_base_term (tmp1);
1466 tmp2 = find_base_term (tmp2);
1468 /* If either base term is named object or a special address
1469 (like an argument or stack reference), then use it for the
1470 base term. */
1471 if (tmp1 != 0
1472 && (GET_CODE (tmp1) == SYMBOL_REF
1473 || GET_CODE (tmp1) == LABEL_REF
1474 || (GET_CODE (tmp1) == ADDRESS
1475 && GET_MODE (tmp1) != VOIDmode)))
1476 return tmp1;
1478 if (tmp2 != 0
1479 && (GET_CODE (tmp2) == SYMBOL_REF
1480 || GET_CODE (tmp2) == LABEL_REF
1481 || (GET_CODE (tmp2) == ADDRESS
1482 && GET_MODE (tmp2) != VOIDmode)))
1483 return tmp2;
1485 /* We could not determine which of the two operands was the
1486 base register and which was the index. So we can determine
1487 nothing from the base alias check. */
1488 return 0;
1491 case AND:
1492 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1493 return find_base_term (XEXP (x, 0));
1494 return 0;
1496 case SYMBOL_REF:
1497 case LABEL_REF:
1498 return x;
1500 default:
1501 return 0;
1505 /* Return 0 if the addresses X and Y are known to point to different
1506 objects, 1 if they might be pointers to the same object. */
1508 static int
1509 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1510 enum machine_mode y_mode)
1512 rtx x_base = find_base_term (x);
1513 rtx y_base = find_base_term (y);
1515 /* If the address itself has no known base see if a known equivalent
1516 value has one. If either address still has no known base, nothing
1517 is known about aliasing. */
1518 if (x_base == 0)
1520 rtx x_c;
1522 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1523 return 1;
1525 x_base = find_base_term (x_c);
1526 if (x_base == 0)
1527 return 1;
1530 if (y_base == 0)
1532 rtx y_c;
1533 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1534 return 1;
1536 y_base = find_base_term (y_c);
1537 if (y_base == 0)
1538 return 1;
1541 /* If the base addresses are equal nothing is known about aliasing. */
1542 if (rtx_equal_p (x_base, y_base))
1543 return 1;
1545 /* The base addresses of the read and write are different expressions.
1546 If they are both symbols and they are not accessed via AND, there is
1547 no conflict. We can bring knowledge of object alignment into play
1548 here. For example, on alpha, "char a, b;" can alias one another,
1549 though "char a; long b;" cannot. */
1550 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1552 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1553 return 1;
1554 if (GET_CODE (x) == AND
1555 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1556 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1557 return 1;
1558 if (GET_CODE (y) == AND
1559 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1560 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1561 return 1;
1562 /* Differing symbols never alias. */
1563 return 0;
1566 /* If one address is a stack reference there can be no alias:
1567 stack references using different base registers do not alias,
1568 a stack reference can not alias a parameter, and a stack reference
1569 can not alias a global. */
1570 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1571 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1572 return 0;
1574 if (! flag_argument_noalias)
1575 return 1;
1577 if (flag_argument_noalias > 1)
1578 return 0;
1580 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1581 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1584 /* Convert the address X into something we can use. This is done by returning
1585 it unchanged unless it is a value; in the latter case we call cselib to get
1586 a more useful rtx. */
1589 get_addr (rtx x)
1591 cselib_val *v;
1592 struct elt_loc_list *l;
1594 if (GET_CODE (x) != VALUE)
1595 return x;
1596 v = CSELIB_VAL_PTR (x);
1597 if (v)
1599 for (l = v->locs; l; l = l->next)
1600 if (CONSTANT_P (l->loc))
1601 return l->loc;
1602 for (l = v->locs; l; l = l->next)
1603 if (!REG_P (l->loc) && !MEM_P (l->loc))
1604 return l->loc;
1605 if (v->locs)
1606 return v->locs->loc;
1608 return x;
1611 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1612 where SIZE is the size in bytes of the memory reference. If ADDR
1613 is not modified by the memory reference then ADDR is returned. */
1616 addr_side_effect_eval (rtx addr, int size, int n_refs)
1618 int offset = 0;
1620 switch (GET_CODE (addr))
1622 case PRE_INC:
1623 offset = (n_refs + 1) * size;
1624 break;
1625 case PRE_DEC:
1626 offset = -(n_refs + 1) * size;
1627 break;
1628 case POST_INC:
1629 offset = n_refs * size;
1630 break;
1631 case POST_DEC:
1632 offset = -n_refs * size;
1633 break;
1635 default:
1636 return addr;
1639 if (offset)
1640 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1641 GEN_INT (offset));
1642 else
1643 addr = XEXP (addr, 0);
1644 addr = canon_rtx (addr);
1646 return addr;
1649 /* Return nonzero if X and Y (memory addresses) could reference the
1650 same location in memory. C is an offset accumulator. When
1651 C is nonzero, we are testing aliases between X and Y + C.
1652 XSIZE is the size in bytes of the X reference,
1653 similarly YSIZE is the size in bytes for Y.
1654 Expect that canon_rtx has been already called for X and Y.
1656 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1657 referenced (the reference was BLKmode), so make the most pessimistic
1658 assumptions.
1660 If XSIZE or YSIZE is negative, we may access memory outside the object
1661 being referenced as a side effect. This can happen when using AND to
1662 align memory references, as is done on the Alpha.
1664 Nice to notice that varying addresses cannot conflict with fp if no
1665 local variables had their addresses taken, but that's too hard now. */
1667 static int
1668 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1670 if (GET_CODE (x) == VALUE)
1671 x = get_addr (x);
1672 if (GET_CODE (y) == VALUE)
1673 y = get_addr (y);
1674 if (GET_CODE (x) == HIGH)
1675 x = XEXP (x, 0);
1676 else if (GET_CODE (x) == LO_SUM)
1677 x = XEXP (x, 1);
1678 else
1679 x = addr_side_effect_eval (x, xsize, 0);
1680 if (GET_CODE (y) == HIGH)
1681 y = XEXP (y, 0);
1682 else if (GET_CODE (y) == LO_SUM)
1683 y = XEXP (y, 1);
1684 else
1685 y = addr_side_effect_eval (y, ysize, 0);
1687 if (rtx_equal_for_memref_p (x, y))
1689 if (xsize <= 0 || ysize <= 0)
1690 return 1;
1691 if (c >= 0 && xsize > c)
1692 return 1;
1693 if (c < 0 && ysize+c > 0)
1694 return 1;
1695 return 0;
1698 /* This code used to check for conflicts involving stack references and
1699 globals but the base address alias code now handles these cases. */
1701 if (GET_CODE (x) == PLUS)
1703 /* The fact that X is canonicalized means that this
1704 PLUS rtx is canonicalized. */
1705 rtx x0 = XEXP (x, 0);
1706 rtx x1 = XEXP (x, 1);
1708 if (GET_CODE (y) == PLUS)
1710 /* The fact that Y is canonicalized means that this
1711 PLUS rtx is canonicalized. */
1712 rtx y0 = XEXP (y, 0);
1713 rtx y1 = XEXP (y, 1);
1715 if (rtx_equal_for_memref_p (x1, y1))
1716 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1717 if (rtx_equal_for_memref_p (x0, y0))
1718 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1719 if (GET_CODE (x1) == CONST_INT)
1721 if (GET_CODE (y1) == CONST_INT)
1722 return memrefs_conflict_p (xsize, x0, ysize, y0,
1723 c - INTVAL (x1) + INTVAL (y1));
1724 else
1725 return memrefs_conflict_p (xsize, x0, ysize, y,
1726 c - INTVAL (x1));
1728 else if (GET_CODE (y1) == CONST_INT)
1729 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1731 return 1;
1733 else if (GET_CODE (x1) == CONST_INT)
1734 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1736 else if (GET_CODE (y) == PLUS)
1738 /* The fact that Y is canonicalized means that this
1739 PLUS rtx is canonicalized. */
1740 rtx y0 = XEXP (y, 0);
1741 rtx y1 = XEXP (y, 1);
1743 if (GET_CODE (y1) == CONST_INT)
1744 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1745 else
1746 return 1;
1749 if (GET_CODE (x) == GET_CODE (y))
1750 switch (GET_CODE (x))
1752 case MULT:
1754 /* Handle cases where we expect the second operands to be the
1755 same, and check only whether the first operand would conflict
1756 or not. */
1757 rtx x0, y0;
1758 rtx x1 = canon_rtx (XEXP (x, 1));
1759 rtx y1 = canon_rtx (XEXP (y, 1));
1760 if (! rtx_equal_for_memref_p (x1, y1))
1761 return 1;
1762 x0 = canon_rtx (XEXP (x, 0));
1763 y0 = canon_rtx (XEXP (y, 0));
1764 if (rtx_equal_for_memref_p (x0, y0))
1765 return (xsize == 0 || ysize == 0
1766 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1768 /* Can't properly adjust our sizes. */
1769 if (GET_CODE (x1) != CONST_INT)
1770 return 1;
1771 xsize /= INTVAL (x1);
1772 ysize /= INTVAL (x1);
1773 c /= INTVAL (x1);
1774 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1777 case REG:
1778 /* Are these registers known not to be equal? */
1779 if (alias_invariant)
1781 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1782 rtx i_x, i_y; /* invariant relationships of X and Y */
1784 i_x = r_x >= alias_invariant_size ? 0 : alias_invariant[r_x];
1785 i_y = r_y >= alias_invariant_size ? 0 : alias_invariant[r_y];
1787 if (i_x == 0 && i_y == 0)
1788 break;
1790 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1791 ysize, i_y ? i_y : y, c))
1792 return 0;
1794 break;
1796 default:
1797 break;
1800 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1801 as an access with indeterminate size. Assume that references
1802 besides AND are aligned, so if the size of the other reference is
1803 at least as large as the alignment, assume no other overlap. */
1804 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1806 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1807 xsize = -1;
1808 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1810 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1812 /* ??? If we are indexing far enough into the array/structure, we
1813 may yet be able to determine that we can not overlap. But we
1814 also need to that we are far enough from the end not to overlap
1815 a following reference, so we do nothing with that for now. */
1816 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1817 ysize = -1;
1818 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1821 if (CONSTANT_P (x))
1823 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1825 c += (INTVAL (y) - INTVAL (x));
1826 return (xsize <= 0 || ysize <= 0
1827 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1830 if (GET_CODE (x) == CONST)
1832 if (GET_CODE (y) == CONST)
1833 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1834 ysize, canon_rtx (XEXP (y, 0)), c);
1835 else
1836 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1837 ysize, y, c);
1839 if (GET_CODE (y) == CONST)
1840 return memrefs_conflict_p (xsize, x, ysize,
1841 canon_rtx (XEXP (y, 0)), c);
1843 if (CONSTANT_P (y))
1844 return (xsize <= 0 || ysize <= 0
1845 || (rtx_equal_for_memref_p (x, y)
1846 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1848 return 1;
1850 return 1;
1853 /* Functions to compute memory dependencies.
1855 Since we process the insns in execution order, we can build tables
1856 to keep track of what registers are fixed (and not aliased), what registers
1857 are varying in known ways, and what registers are varying in unknown
1858 ways.
1860 If both memory references are volatile, then there must always be a
1861 dependence between the two references, since their order can not be
1862 changed. A volatile and non-volatile reference can be interchanged
1863 though.
1865 A MEM_IN_STRUCT reference at a non-AND varying address can never
1866 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1867 also must allow AND addresses, because they may generate accesses
1868 outside the object being referenced. This is used to generate
1869 aligned addresses from unaligned addresses, for instance, the alpha
1870 storeqi_unaligned pattern. */
1872 /* Read dependence: X is read after read in MEM takes place. There can
1873 only be a dependence here if both reads are volatile. */
1876 read_dependence (rtx mem, rtx x)
1878 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1881 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1882 MEM2 is a reference to a structure at a varying address, or returns
1883 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1884 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1885 to decide whether or not an address may vary; it should return
1886 nonzero whenever variation is possible.
1887 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1889 static rtx
1890 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1891 rtx mem2_addr,
1892 int (*varies_p) (rtx, int))
1894 if (! flag_strict_aliasing)
1895 return NULL_RTX;
1897 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1898 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1899 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1900 varying address. */
1901 return mem1;
1903 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1904 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1905 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1906 varying address. */
1907 return mem2;
1909 return NULL_RTX;
1912 /* Returns nonzero if something about the mode or address format MEM1
1913 indicates that it might well alias *anything*. */
1915 static int
1916 aliases_everything_p (rtx mem)
1918 if (GET_CODE (XEXP (mem, 0)) == AND)
1919 /* If the address is an AND, its very hard to know at what it is
1920 actually pointing. */
1921 return 1;
1923 return 0;
1926 /* Return true if we can determine that the fields referenced cannot
1927 overlap for any pair of objects. */
1929 static bool
1930 nonoverlapping_component_refs_p (tree x, tree y)
1932 tree fieldx, fieldy, typex, typey, orig_y;
1936 /* The comparison has to be done at a common type, since we don't
1937 know how the inheritance hierarchy works. */
1938 orig_y = y;
1941 fieldx = TREE_OPERAND (x, 1);
1942 typex = DECL_FIELD_CONTEXT (fieldx);
1944 y = orig_y;
1947 fieldy = TREE_OPERAND (y, 1);
1948 typey = DECL_FIELD_CONTEXT (fieldy);
1950 if (typex == typey)
1951 goto found;
1953 y = TREE_OPERAND (y, 0);
1955 while (y && TREE_CODE (y) == COMPONENT_REF);
1957 x = TREE_OPERAND (x, 0);
1959 while (x && TREE_CODE (x) == COMPONENT_REF);
1961 /* Never found a common type. */
1962 return false;
1964 found:
1965 /* If we're left with accessing different fields of a structure,
1966 then no overlap. */
1967 if (TREE_CODE (typex) == RECORD_TYPE
1968 && fieldx != fieldy)
1969 return true;
1971 /* The comparison on the current field failed. If we're accessing
1972 a very nested structure, look at the next outer level. */
1973 x = TREE_OPERAND (x, 0);
1974 y = TREE_OPERAND (y, 0);
1976 while (x && y
1977 && TREE_CODE (x) == COMPONENT_REF
1978 && TREE_CODE (y) == COMPONENT_REF);
1980 return false;
1983 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1985 static tree
1986 decl_for_component_ref (tree x)
1990 x = TREE_OPERAND (x, 0);
1992 while (x && TREE_CODE (x) == COMPONENT_REF);
1994 return x && DECL_P (x) ? x : NULL_TREE;
1997 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1998 offset of the field reference. */
2000 static rtx
2001 adjust_offset_for_component_ref (tree x, rtx offset)
2003 HOST_WIDE_INT ioffset;
2005 if (! offset)
2006 return NULL_RTX;
2008 ioffset = INTVAL (offset);
2011 tree offset = component_ref_field_offset (x);
2012 tree field = TREE_OPERAND (x, 1);
2014 if (! host_integerp (offset, 1))
2015 return NULL_RTX;
2016 ioffset += (tree_low_cst (offset, 1)
2017 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2018 / BITS_PER_UNIT));
2020 x = TREE_OPERAND (x, 0);
2022 while (x && TREE_CODE (x) == COMPONENT_REF);
2024 return GEN_INT (ioffset);
2027 /* Return nonzero if we can determine the exprs corresponding to memrefs
2028 X and Y and they do not overlap. */
2030 static int
2031 nonoverlapping_memrefs_p (rtx x, rtx y)
2033 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2034 rtx rtlx, rtly;
2035 rtx basex, basey;
2036 rtx moffsetx, moffsety;
2037 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2039 /* Unless both have exprs, we can't tell anything. */
2040 if (exprx == 0 || expry == 0)
2041 return 0;
2043 /* If both are field references, we may be able to determine something. */
2044 if (TREE_CODE (exprx) == COMPONENT_REF
2045 && TREE_CODE (expry) == COMPONENT_REF
2046 && nonoverlapping_component_refs_p (exprx, expry))
2047 return 1;
2049 /* If the field reference test failed, look at the DECLs involved. */
2050 moffsetx = MEM_OFFSET (x);
2051 if (TREE_CODE (exprx) == COMPONENT_REF)
2053 tree t = decl_for_component_ref (exprx);
2054 if (! t)
2055 return 0;
2056 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2057 exprx = t;
2059 else if (TREE_CODE (exprx) == INDIRECT_REF)
2061 exprx = TREE_OPERAND (exprx, 0);
2062 if (flag_argument_noalias < 2
2063 || TREE_CODE (exprx) != PARM_DECL)
2064 return 0;
2067 moffsety = MEM_OFFSET (y);
2068 if (TREE_CODE (expry) == COMPONENT_REF)
2070 tree t = decl_for_component_ref (expry);
2071 if (! t)
2072 return 0;
2073 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2074 expry = t;
2076 else if (TREE_CODE (expry) == INDIRECT_REF)
2078 expry = TREE_OPERAND (expry, 0);
2079 if (flag_argument_noalias < 2
2080 || TREE_CODE (expry) != PARM_DECL)
2081 return 0;
2084 if (! DECL_P (exprx) || ! DECL_P (expry))
2085 return 0;
2087 rtlx = DECL_RTL (exprx);
2088 rtly = DECL_RTL (expry);
2090 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2091 can't overlap unless they are the same because we never reuse that part
2092 of the stack frame used for locals for spilled pseudos. */
2093 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2094 && ! rtx_equal_p (rtlx, rtly))
2095 return 1;
2097 /* Get the base and offsets of both decls. If either is a register, we
2098 know both are and are the same, so use that as the base. The only
2099 we can avoid overlap is if we can deduce that they are nonoverlapping
2100 pieces of that decl, which is very rare. */
2101 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2102 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2103 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2105 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2106 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2107 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2109 /* If the bases are different, we know they do not overlap if both
2110 are constants or if one is a constant and the other a pointer into the
2111 stack frame. Otherwise a different base means we can't tell if they
2112 overlap or not. */
2113 if (! rtx_equal_p (basex, basey))
2114 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2115 || (CONSTANT_P (basex) && REG_P (basey)
2116 && REGNO_PTR_FRAME_P (REGNO (basey)))
2117 || (CONSTANT_P (basey) && REG_P (basex)
2118 && REGNO_PTR_FRAME_P (REGNO (basex))));
2120 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2121 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2122 : -1);
2123 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2124 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2125 -1);
2127 /* If we have an offset for either memref, it can update the values computed
2128 above. */
2129 if (moffsetx)
2130 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2131 if (moffsety)
2132 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2134 /* If a memref has both a size and an offset, we can use the smaller size.
2135 We can't do this if the offset isn't known because we must view this
2136 memref as being anywhere inside the DECL's MEM. */
2137 if (MEM_SIZE (x) && moffsetx)
2138 sizex = INTVAL (MEM_SIZE (x));
2139 if (MEM_SIZE (y) && moffsety)
2140 sizey = INTVAL (MEM_SIZE (y));
2142 /* Put the values of the memref with the lower offset in X's values. */
2143 if (offsetx > offsety)
2145 tem = offsetx, offsetx = offsety, offsety = tem;
2146 tem = sizex, sizex = sizey, sizey = tem;
2149 /* If we don't know the size of the lower-offset value, we can't tell
2150 if they conflict. Otherwise, we do the test. */
2151 return sizex >= 0 && offsety >= offsetx + sizex;
2154 /* True dependence: X is read after store in MEM takes place. */
2157 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2158 int (*varies) (rtx, int))
2160 rtx x_addr, mem_addr;
2161 rtx base;
2163 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2164 return 1;
2166 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2167 This is used in epilogue deallocation functions. */
2168 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2169 return 1;
2170 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2171 return 1;
2173 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2174 return 0;
2176 /* Unchanging memory can't conflict with non-unchanging memory.
2177 A non-unchanging read can conflict with a non-unchanging write.
2178 An unchanging read can conflict with an unchanging write since
2179 there may be a single store to this address to initialize it.
2180 Note that an unchanging store can conflict with a non-unchanging read
2181 since we have to make conservative assumptions when we have a
2182 record with readonly fields and we are copying the whole thing.
2183 Just fall through to the code below to resolve potential conflicts.
2184 This won't handle all cases optimally, but the possible performance
2185 loss should be negligible. */
2186 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2187 return 0;
2189 if (nonoverlapping_memrefs_p (mem, x))
2190 return 0;
2192 if (mem_mode == VOIDmode)
2193 mem_mode = GET_MODE (mem);
2195 x_addr = get_addr (XEXP (x, 0));
2196 mem_addr = get_addr (XEXP (mem, 0));
2198 base = find_base_term (x_addr);
2199 if (base && (GET_CODE (base) == LABEL_REF
2200 || (GET_CODE (base) == SYMBOL_REF
2201 && CONSTANT_POOL_ADDRESS_P (base))))
2202 return 0;
2204 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2205 return 0;
2207 x_addr = canon_rtx (x_addr);
2208 mem_addr = canon_rtx (mem_addr);
2210 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2211 SIZE_FOR_MODE (x), x_addr, 0))
2212 return 0;
2214 if (aliases_everything_p (x))
2215 return 1;
2217 /* We cannot use aliases_everything_p to test MEM, since we must look
2218 at MEM_MODE, rather than GET_MODE (MEM). */
2219 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2220 return 1;
2222 /* In true_dependence we also allow BLKmode to alias anything. Why
2223 don't we do this in anti_dependence and output_dependence? */
2224 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2225 return 1;
2227 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2228 varies);
2231 /* Canonical true dependence: X is read after store in MEM takes place.
2232 Variant of true_dependence which assumes MEM has already been
2233 canonicalized (hence we no longer do that here).
2234 The mem_addr argument has been added, since true_dependence computed
2235 this value prior to canonicalizing. */
2238 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2239 rtx x, int (*varies) (rtx, int))
2241 rtx x_addr;
2243 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2244 return 1;
2246 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2247 This is used in epilogue deallocation functions. */
2248 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2249 return 1;
2250 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2251 return 1;
2253 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2254 return 0;
2256 /* If X is an unchanging read, then it can't possibly conflict with any
2257 non-unchanging store. It may conflict with an unchanging write though,
2258 because there may be a single store to this address to initialize it.
2259 Just fall through to the code below to resolve the case where we have
2260 both an unchanging read and an unchanging write. This won't handle all
2261 cases optimally, but the possible performance loss should be
2262 negligible. */
2263 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2264 return 0;
2266 if (nonoverlapping_memrefs_p (x, mem))
2267 return 0;
2269 x_addr = get_addr (XEXP (x, 0));
2271 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2272 return 0;
2274 x_addr = canon_rtx (x_addr);
2275 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2276 SIZE_FOR_MODE (x), x_addr, 0))
2277 return 0;
2279 if (aliases_everything_p (x))
2280 return 1;
2282 /* We cannot use aliases_everything_p to test MEM, since we must look
2283 at MEM_MODE, rather than GET_MODE (MEM). */
2284 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2285 return 1;
2287 /* In true_dependence we also allow BLKmode to alias anything. Why
2288 don't we do this in anti_dependence and output_dependence? */
2289 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2290 return 1;
2292 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2293 varies);
2296 /* Returns nonzero if a write to X might alias a previous read from
2297 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
2298 honor the RTX_UNCHANGING_P flags on X and MEM. */
2300 static int
2301 write_dependence_p (rtx mem, rtx x, int writep, int constp)
2303 rtx x_addr, mem_addr;
2304 rtx fixed_scalar;
2305 rtx base;
2307 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2308 return 1;
2310 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2311 This is used in epilogue deallocation functions. */
2312 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2313 return 1;
2314 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2315 return 1;
2317 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2318 return 0;
2320 if (constp)
2322 /* Unchanging memory can't conflict with non-unchanging memory. */
2323 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2324 return 0;
2326 /* If MEM is an unchanging read, then it can't possibly conflict with
2327 the store to X, because there is at most one store to MEM, and it
2328 must have occurred somewhere before MEM. */
2329 if (! writep && RTX_UNCHANGING_P (mem))
2330 return 0;
2333 if (nonoverlapping_memrefs_p (x, mem))
2334 return 0;
2336 x_addr = get_addr (XEXP (x, 0));
2337 mem_addr = get_addr (XEXP (mem, 0));
2339 if (! writep)
2341 base = find_base_term (mem_addr);
2342 if (base && (GET_CODE (base) == LABEL_REF
2343 || (GET_CODE (base) == SYMBOL_REF
2344 && CONSTANT_POOL_ADDRESS_P (base))))
2345 return 0;
2348 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2349 GET_MODE (mem)))
2350 return 0;
2352 x_addr = canon_rtx (x_addr);
2353 mem_addr = canon_rtx (mem_addr);
2355 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2356 SIZE_FOR_MODE (x), x_addr, 0))
2357 return 0;
2359 fixed_scalar
2360 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2361 rtx_addr_varies_p);
2363 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2364 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2367 /* Anti dependence: X is written after read in MEM takes place. */
2370 anti_dependence (rtx mem, rtx x)
2372 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/1);
2375 /* Output dependence: X is written after store in MEM takes place. */
2378 output_dependence (rtx mem, rtx x)
2380 return write_dependence_p (mem, x, /*writep=*/1, /*constp*/1);
2383 /* Unchanging anti dependence: Like anti_dependence but ignores
2384 the UNCHANGING_RTX_P property on const variable references. */
2387 unchanging_anti_dependence (rtx mem, rtx x)
2389 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/0);
2392 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2393 something which is not local to the function and is not constant. */
2395 static int
2396 nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2398 rtx x = *loc;
2399 rtx base;
2400 int regno;
2402 if (! x)
2403 return 0;
2405 switch (GET_CODE (x))
2407 case SUBREG:
2408 if (REG_P (SUBREG_REG (x)))
2410 /* Global registers are not local. */
2411 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2412 && global_regs[subreg_regno (x)])
2413 return 1;
2414 return 0;
2416 break;
2418 case REG:
2419 regno = REGNO (x);
2420 /* Global registers are not local. */
2421 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2422 return 1;
2423 return 0;
2425 case SCRATCH:
2426 case PC:
2427 case CC0:
2428 case CONST_INT:
2429 case CONST_DOUBLE:
2430 case CONST_VECTOR:
2431 case CONST:
2432 case LABEL_REF:
2433 return 0;
2435 case SYMBOL_REF:
2436 /* Constants in the function's constants pool are constant. */
2437 if (CONSTANT_POOL_ADDRESS_P (x))
2438 return 0;
2439 return 1;
2441 case CALL:
2442 /* Non-constant calls and recursion are not local. */
2443 return 1;
2445 case MEM:
2446 /* Be overly conservative and consider any volatile memory
2447 reference as not local. */
2448 if (MEM_VOLATILE_P (x))
2449 return 1;
2450 base = find_base_term (XEXP (x, 0));
2451 if (base)
2453 /* A Pmode ADDRESS could be a reference via the structure value
2454 address or static chain. Such memory references are nonlocal.
2456 Thus, we have to examine the contents of the ADDRESS to find
2457 out if this is a local reference or not. */
2458 if (GET_CODE (base) == ADDRESS
2459 && GET_MODE (base) == Pmode
2460 && (XEXP (base, 0) == stack_pointer_rtx
2461 || XEXP (base, 0) == arg_pointer_rtx
2462 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2463 || XEXP (base, 0) == hard_frame_pointer_rtx
2464 #endif
2465 || XEXP (base, 0) == frame_pointer_rtx))
2466 return 0;
2467 /* Constants in the function's constant pool are constant. */
2468 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2469 return 0;
2471 return 1;
2473 case UNSPEC_VOLATILE:
2474 case ASM_INPUT:
2475 return 1;
2477 case ASM_OPERANDS:
2478 if (MEM_VOLATILE_P (x))
2479 return 1;
2481 /* Fall through. */
2483 default:
2484 break;
2487 return 0;
2490 /* Returns nonzero if X might mention something which is not
2491 local to the function and is not constant. */
2493 static int
2494 nonlocal_mentioned_p (rtx x)
2496 if (INSN_P (x))
2498 if (GET_CODE (x) == CALL_INSN)
2500 if (! CONST_OR_PURE_CALL_P (x))
2501 return 1;
2502 x = CALL_INSN_FUNCTION_USAGE (x);
2503 if (x == 0)
2504 return 0;
2506 else
2507 x = PATTERN (x);
2510 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2513 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2514 something which is not local to the function and is not constant. */
2516 static int
2517 nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2519 rtx x = *loc;
2521 if (! x)
2522 return 0;
2524 switch (GET_CODE (x))
2526 case MEM:
2527 case REG:
2528 case SYMBOL_REF:
2529 case SUBREG:
2530 return nonlocal_mentioned_p (x);
2532 case CALL:
2533 /* Non-constant calls and recursion are not local. */
2534 return 1;
2536 case SET:
2537 if (nonlocal_mentioned_p (SET_SRC (x)))
2538 return 1;
2540 if (MEM_P (SET_DEST (x)))
2541 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2543 /* If the destination is anything other than a CC0, PC,
2544 MEM, REG, or a SUBREG of a REG that occupies all of
2545 the REG, then X references nonlocal memory if it is
2546 mentioned in the destination. */
2547 if (GET_CODE (SET_DEST (x)) != CC0
2548 && GET_CODE (SET_DEST (x)) != PC
2549 && !REG_P (SET_DEST (x))
2550 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2551 && REG_P (SUBREG_REG (SET_DEST (x)))
2552 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2553 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2554 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2555 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2556 return nonlocal_mentioned_p (SET_DEST (x));
2557 return 0;
2559 case CLOBBER:
2560 if (MEM_P (XEXP (x, 0)))
2561 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2562 return 0;
2564 case USE:
2565 return nonlocal_mentioned_p (XEXP (x, 0));
2567 case ASM_INPUT:
2568 case UNSPEC_VOLATILE:
2569 return 1;
2571 case ASM_OPERANDS:
2572 if (MEM_VOLATILE_P (x))
2573 return 1;
2575 /* Fall through. */
2577 default:
2578 break;
2581 return 0;
2584 /* Returns nonzero if X might reference something which is not
2585 local to the function and is not constant. */
2587 static int
2588 nonlocal_referenced_p (rtx x)
2590 if (INSN_P (x))
2592 if (GET_CODE (x) == CALL_INSN)
2594 if (! CONST_OR_PURE_CALL_P (x))
2595 return 1;
2596 x = CALL_INSN_FUNCTION_USAGE (x);
2597 if (x == 0)
2598 return 0;
2600 else
2601 x = PATTERN (x);
2604 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2607 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2608 something which is not local to the function and is not constant. */
2610 static int
2611 nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2613 rtx x = *loc;
2615 if (! x)
2616 return 0;
2618 switch (GET_CODE (x))
2620 case CALL:
2621 /* Non-constant calls and recursion are not local. */
2622 return 1;
2624 case PRE_INC:
2625 case PRE_DEC:
2626 case POST_INC:
2627 case POST_DEC:
2628 case PRE_MODIFY:
2629 case POST_MODIFY:
2630 return nonlocal_mentioned_p (XEXP (x, 0));
2632 case SET:
2633 if (nonlocal_mentioned_p (SET_DEST (x)))
2634 return 1;
2635 return nonlocal_set_p (SET_SRC (x));
2637 case CLOBBER:
2638 return nonlocal_mentioned_p (XEXP (x, 0));
2640 case USE:
2641 return 0;
2643 case ASM_INPUT:
2644 case UNSPEC_VOLATILE:
2645 return 1;
2647 case ASM_OPERANDS:
2648 if (MEM_VOLATILE_P (x))
2649 return 1;
2651 /* Fall through. */
2653 default:
2654 break;
2657 return 0;
2660 /* Returns nonzero if X might set something which is not
2661 local to the function and is not constant. */
2663 static int
2664 nonlocal_set_p (rtx x)
2666 if (INSN_P (x))
2668 if (GET_CODE (x) == CALL_INSN)
2670 if (! CONST_OR_PURE_CALL_P (x))
2671 return 1;
2672 x = CALL_INSN_FUNCTION_USAGE (x);
2673 if (x == 0)
2674 return 0;
2676 else
2677 x = PATTERN (x);
2680 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2683 /* Mark the function if it is pure or constant. */
2685 void
2686 mark_constant_function (void)
2688 rtx insn;
2689 int nonlocal_memory_referenced;
2691 if (TREE_READONLY (current_function_decl)
2692 || DECL_IS_PURE (current_function_decl)
2693 || TREE_THIS_VOLATILE (current_function_decl)
2694 || current_function_has_nonlocal_goto
2695 || !targetm.binds_local_p (current_function_decl))
2696 return;
2698 /* A loop might not return which counts as a side effect. */
2699 if (mark_dfs_back_edges ())
2700 return;
2702 nonlocal_memory_referenced = 0;
2704 init_alias_analysis ();
2706 /* Determine if this is a constant or pure function. */
2708 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2710 if (! INSN_P (insn))
2711 continue;
2713 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2714 || volatile_refs_p (PATTERN (insn)))
2715 break;
2717 if (! nonlocal_memory_referenced)
2718 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2721 end_alias_analysis ();
2723 /* Mark the function. */
2725 if (insn)
2727 else if (nonlocal_memory_referenced)
2729 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2730 DECL_IS_PURE (current_function_decl) = 1;
2732 else
2734 cgraph_rtl_info (current_function_decl)->const_function = 1;
2735 TREE_READONLY (current_function_decl) = 1;
2740 void
2741 init_alias_once (void)
2743 int i;
2745 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2746 /* Check whether this register can hold an incoming pointer
2747 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2748 numbers, so translate if necessary due to register windows. */
2749 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2750 && HARD_REGNO_MODE_OK (i, Pmode))
2751 static_reg_base_value[i]
2752 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2754 static_reg_base_value[STACK_POINTER_REGNUM]
2755 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2756 static_reg_base_value[ARG_POINTER_REGNUM]
2757 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2758 static_reg_base_value[FRAME_POINTER_REGNUM]
2759 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2760 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2761 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2762 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2763 #endif
2766 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2767 to be memory reference. */
2768 static bool memory_modified;
2769 static void
2770 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2772 if (MEM_P (x))
2774 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2775 memory_modified = true;
2780 /* Return true when INSN possibly modify memory contents of MEM
2781 (ie address can be modified). */
2782 bool
2783 memory_modified_in_insn_p (rtx mem, rtx insn)
2785 if (!INSN_P (insn))
2786 return false;
2787 memory_modified = false;
2788 note_stores (PATTERN (insn), memory_modified_1, mem);
2789 return memory_modified;
2792 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2793 array. */
2795 void
2796 init_alias_analysis (void)
2798 unsigned int maxreg = max_reg_num ();
2799 int changed, pass;
2800 int i;
2801 unsigned int ui;
2802 rtx insn;
2804 timevar_push (TV_ALIAS_ANALYSIS);
2806 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2807 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2808 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2810 /* Overallocate reg_base_value to allow some growth during loop
2811 optimization. Loop unrolling can create a large number of
2812 registers. */
2813 if (old_reg_base_value)
2815 reg_base_value = old_reg_base_value;
2816 /* If varray gets large zeroing cost may get important. */
2817 if (VARRAY_SIZE (reg_base_value) > 256
2818 && VARRAY_SIZE (reg_base_value) > 4 * maxreg)
2819 VARRAY_GROW (reg_base_value, maxreg);
2820 VARRAY_CLEAR (reg_base_value);
2821 if (VARRAY_SIZE (reg_base_value) < maxreg)
2822 VARRAY_GROW (reg_base_value, maxreg);
2824 else
2826 VARRAY_RTX_INIT (reg_base_value, maxreg, "reg_base_value");
2829 new_reg_base_value = xmalloc (maxreg * sizeof (rtx));
2830 reg_seen = xmalloc (maxreg);
2831 if (! reload_completed && flag_old_unroll_loops)
2833 alias_invariant = ggc_calloc (maxreg, sizeof (rtx));
2834 alias_invariant_size = maxreg;
2837 /* The basic idea is that each pass through this loop will use the
2838 "constant" information from the previous pass to propagate alias
2839 information through another level of assignments.
2841 This could get expensive if the assignment chains are long. Maybe
2842 we should throttle the number of iterations, possibly based on
2843 the optimization level or flag_expensive_optimizations.
2845 We could propagate more information in the first pass by making use
2846 of REG_N_SETS to determine immediately that the alias information
2847 for a pseudo is "constant".
2849 A program with an uninitialized variable can cause an infinite loop
2850 here. Instead of doing a full dataflow analysis to detect such problems
2851 we just cap the number of iterations for the loop.
2853 The state of the arrays for the set chain in question does not matter
2854 since the program has undefined behavior. */
2856 pass = 0;
2859 /* Assume nothing will change this iteration of the loop. */
2860 changed = 0;
2862 /* We want to assign the same IDs each iteration of this loop, so
2863 start counting from zero each iteration of the loop. */
2864 unique_id = 0;
2866 /* We're at the start of the function each iteration through the
2867 loop, so we're copying arguments. */
2868 copying_arguments = true;
2870 /* Wipe the potential alias information clean for this pass. */
2871 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2873 /* Wipe the reg_seen array clean. */
2874 memset (reg_seen, 0, maxreg);
2876 /* Mark all hard registers which may contain an address.
2877 The stack, frame and argument pointers may contain an address.
2878 An argument register which can hold a Pmode value may contain
2879 an address even if it is not in BASE_REGS.
2881 The address expression is VOIDmode for an argument and
2882 Pmode for other registers. */
2884 memcpy (new_reg_base_value, static_reg_base_value,
2885 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2887 /* Walk the insns adding values to the new_reg_base_value array. */
2888 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2890 if (INSN_P (insn))
2892 rtx note, set;
2894 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2895 /* The prologue/epilogue insns are not threaded onto the
2896 insn chain until after reload has completed. Thus,
2897 there is no sense wasting time checking if INSN is in
2898 the prologue/epilogue until after reload has completed. */
2899 if (reload_completed
2900 && prologue_epilogue_contains (insn))
2901 continue;
2902 #endif
2904 /* If this insn has a noalias note, process it, Otherwise,
2905 scan for sets. A simple set will have no side effects
2906 which could change the base value of any other register. */
2908 if (GET_CODE (PATTERN (insn)) == SET
2909 && REG_NOTES (insn) != 0
2910 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2911 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2912 else
2913 note_stores (PATTERN (insn), record_set, NULL);
2915 set = single_set (insn);
2917 if (set != 0
2918 && REG_P (SET_DEST (set))
2919 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2921 unsigned int regno = REGNO (SET_DEST (set));
2922 rtx src = SET_SRC (set);
2923 rtx t;
2925 if (REG_NOTES (insn) != 0
2926 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2927 && REG_N_SETS (regno) == 1)
2928 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2929 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2930 && ! rtx_varies_p (XEXP (note, 0), 1)
2931 && ! reg_overlap_mentioned_p (SET_DEST (set),
2932 XEXP (note, 0)))
2934 set_reg_known_value (regno, XEXP (note, 0));
2935 set_reg_known_equiv_p (regno,
2936 REG_NOTE_KIND (note) == REG_EQUIV);
2938 else if (REG_N_SETS (regno) == 1
2939 && GET_CODE (src) == PLUS
2940 && REG_P (XEXP (src, 0))
2941 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2942 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2944 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2945 set_reg_known_value (regno, t);
2946 set_reg_known_equiv_p (regno, 0);
2948 else if (REG_N_SETS (regno) == 1
2949 && ! rtx_varies_p (src, 1))
2951 set_reg_known_value (regno, src);
2952 set_reg_known_equiv_p (regno, 0);
2956 else if (GET_CODE (insn) == NOTE
2957 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2958 copying_arguments = false;
2961 /* Now propagate values from new_reg_base_value to reg_base_value. */
2962 if (maxreg != (unsigned int) max_reg_num())
2963 abort ();
2964 for (ui = 0; ui < maxreg; ui++)
2966 if (new_reg_base_value[ui]
2967 && new_reg_base_value[ui] != VARRAY_RTX (reg_base_value, ui)
2968 && ! rtx_equal_p (new_reg_base_value[ui],
2969 VARRAY_RTX (reg_base_value, ui)))
2971 VARRAY_RTX (reg_base_value, ui) = new_reg_base_value[ui];
2972 changed = 1;
2976 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2978 /* Fill in the remaining entries. */
2979 for (i = 0; i < (int)reg_known_value_size; i++)
2980 if (reg_known_value[i] == 0)
2981 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2983 /* Simplify the reg_base_value array so that no register refers to
2984 another register, except to special registers indirectly through
2985 ADDRESS expressions.
2987 In theory this loop can take as long as O(registers^2), but unless
2988 there are very long dependency chains it will run in close to linear
2989 time.
2991 This loop may not be needed any longer now that the main loop does
2992 a better job at propagating alias information. */
2993 pass = 0;
2996 changed = 0;
2997 pass++;
2998 for (ui = 0; ui < maxreg; ui++)
3000 rtx base = VARRAY_RTX (reg_base_value, ui);
3001 if (base && REG_P (base))
3003 unsigned int base_regno = REGNO (base);
3004 if (base_regno == ui) /* register set from itself */
3005 VARRAY_RTX (reg_base_value, ui) = 0;
3006 else
3007 VARRAY_RTX (reg_base_value, ui)
3008 = VARRAY_RTX (reg_base_value, base_regno);
3009 changed = 1;
3013 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
3015 /* Clean up. */
3016 free (new_reg_base_value);
3017 new_reg_base_value = 0;
3018 free (reg_seen);
3019 reg_seen = 0;
3020 timevar_pop (TV_ALIAS_ANALYSIS);
3023 void
3024 end_alias_analysis (void)
3026 old_reg_base_value = reg_base_value;
3027 ggc_free (reg_known_value);
3028 reg_known_value = 0;
3029 reg_known_value_size = 0;
3030 free (reg_known_equiv_p);
3031 reg_known_equiv_p = 0;
3032 if (alias_invariant)
3034 ggc_free (alias_invariant);
3035 alias_invariant = 0;
3036 alias_invariant_size = 0;
3040 #include "gt-alias.h"