* configure.in: Remove special pex-cygwin consideration.
[official-gcc.git] / gcc / reload.c
blob866cd25038889ecdf8c2ae8283424af18e6f7885
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
73 Using a reload register for several reloads in one insn:
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
87 #define REG_OK_STRICT
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tm_p.h"
95 #include "insn-config.h"
96 #include "expr.h"
97 #include "optabs.h"
98 #include "recog.h"
99 #include "reload.h"
100 #include "regs.h"
101 #include "hard-reg-set.h"
102 #include "flags.h"
103 #include "real.h"
104 #include "output.h"
105 #include "function.h"
106 #include "toplev.h"
108 #ifndef REGISTER_MOVE_COST
109 #define REGISTER_MOVE_COST(m, x, y) 2
110 #endif
112 #ifndef REGNO_MODE_OK_FOR_BASE_P
113 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
114 #endif
116 #ifndef REG_MODE_OK_FOR_BASE_P
117 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
118 #endif
120 /* All reloads of the current insn are recorded here. See reload.h for
121 comments. */
122 int n_reloads;
123 struct reload rld[MAX_RELOADS];
125 /* All the "earlyclobber" operands of the current insn
126 are recorded here. */
127 int n_earlyclobbers;
128 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
130 int reload_n_operands;
132 /* Replacing reloads.
134 If `replace_reloads' is nonzero, then as each reload is recorded
135 an entry is made for it in the table `replacements'.
136 Then later `subst_reloads' can look through that table and
137 perform all the replacements needed. */
139 /* Nonzero means record the places to replace. */
140 static int replace_reloads;
142 /* Each replacement is recorded with a structure like this. */
143 struct replacement
145 rtx *where; /* Location to store in */
146 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
147 a SUBREG; 0 otherwise. */
148 int what; /* which reload this is for */
149 enum machine_mode mode; /* mode it must have */
152 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
154 /* Number of replacements currently recorded. */
155 static int n_replacements;
157 /* Used to track what is modified by an operand. */
158 struct decomposition
160 int reg_flag; /* Nonzero if referencing a register. */
161 int safe; /* Nonzero if this can't conflict with anything. */
162 rtx base; /* Base address for MEM. */
163 HOST_WIDE_INT start; /* Starting offset or register number. */
164 HOST_WIDE_INT end; /* Ending offset or register number. */
167 #ifdef SECONDARY_MEMORY_NEEDED
169 /* Save MEMs needed to copy from one class of registers to another. One MEM
170 is used per mode, but normally only one or two modes are ever used.
172 We keep two versions, before and after register elimination. The one
173 after register elimination is record separately for each operand. This
174 is done in case the address is not valid to be sure that we separately
175 reload each. */
177 static rtx secondary_memlocs[NUM_MACHINE_MODES];
178 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
179 #endif
181 /* The instruction we are doing reloads for;
182 so we can test whether a register dies in it. */
183 static rtx this_insn;
185 /* Nonzero if this instruction is a user-specified asm with operands. */
186 static int this_insn_is_asm;
188 /* If hard_regs_live_known is nonzero,
189 we can tell which hard regs are currently live,
190 at least enough to succeed in choosing dummy reloads. */
191 static int hard_regs_live_known;
193 /* Indexed by hard reg number,
194 element is nonnegative if hard reg has been spilled.
195 This vector is passed to `find_reloads' as an argument
196 and is not changed here. */
197 static short *static_reload_reg_p;
199 /* Set to 1 in subst_reg_equivs if it changes anything. */
200 static int subst_reg_equivs_changed;
202 /* On return from push_reload, holds the reload-number for the OUT
203 operand, which can be different for that from the input operand. */
204 static int output_reloadnum;
206 /* Compare two RTX's. */
207 #define MATCHES(x, y) \
208 (x == y || (x != 0 && (GET_CODE (x) == REG \
209 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
210 : rtx_equal_p (x, y) && ! side_effects_p (x))))
212 /* Indicates if two reloads purposes are for similar enough things that we
213 can merge their reloads. */
214 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
215 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
216 || ((when1) == (when2) && (op1) == (op2)) \
217 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
218 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
219 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
220 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
221 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
223 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
224 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
225 ((when1) != (when2) \
226 || ! ((op1) == (op2) \
227 || (when1) == RELOAD_FOR_INPUT \
228 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
231 /* If we are going to reload an address, compute the reload type to
232 use. */
233 #define ADDR_TYPE(type) \
234 ((type) == RELOAD_FOR_INPUT_ADDRESS \
235 ? RELOAD_FOR_INPADDR_ADDRESS \
236 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
237 ? RELOAD_FOR_OUTADDR_ADDRESS \
238 : (type)))
240 #ifdef HAVE_SECONDARY_RELOADS
241 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
242 enum machine_mode, enum reload_type,
243 enum insn_code *));
244 #endif
245 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int,
246 unsigned int));
247 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode, int));
248 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
249 static void dup_replacements PARAMS ((rtx *, rtx *));
250 static void combine_reloads PARAMS ((void));
251 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
252 enum reload_type, int, int));
253 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
254 enum machine_mode, enum machine_mode,
255 enum reg_class, int, int));
256 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
257 static struct decomposition decompose PARAMS ((rtx));
258 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
259 static int alternative_allows_memconst PARAMS ((const char *, int));
260 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
261 int, rtx, int *));
262 static rtx make_memloc PARAMS ((rtx, int));
263 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
264 int, enum reload_type, int, rtx));
265 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
266 static rtx subst_indexed_address PARAMS ((rtx));
267 static void update_auto_inc_notes PARAMS ((rtx, int, int));
268 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
269 int, enum reload_type,int, rtx));
270 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
271 enum machine_mode, int,
272 enum reload_type, int));
273 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int,
274 enum reload_type, int, rtx));
275 static void copy_replacements_1 PARAMS ((rtx *, rtx *, int));
276 static int find_inc_amount PARAMS ((rtx, rtx));
278 #ifdef HAVE_SECONDARY_RELOADS
280 /* Determine if any secondary reloads are needed for loading (if IN_P is
281 nonzero) or storing (if IN_P is zero) X to or from a reload register of
282 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
283 are needed, push them.
285 Return the reload number of the secondary reload we made, or -1 if
286 we didn't need one. *PICODE is set to the insn_code to use if we do
287 need a secondary reload. */
289 static int
290 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
291 type, picode)
292 int in_p;
293 rtx x;
294 int opnum;
295 int optional;
296 enum reg_class reload_class;
297 enum machine_mode reload_mode;
298 enum reload_type type;
299 enum insn_code *picode;
301 enum reg_class class = NO_REGS;
302 enum machine_mode mode = reload_mode;
303 enum insn_code icode = CODE_FOR_nothing;
304 enum reg_class t_class = NO_REGS;
305 enum machine_mode t_mode = VOIDmode;
306 enum insn_code t_icode = CODE_FOR_nothing;
307 enum reload_type secondary_type;
308 int s_reload, t_reload = -1;
310 if (type == RELOAD_FOR_INPUT_ADDRESS
311 || type == RELOAD_FOR_OUTPUT_ADDRESS
312 || type == RELOAD_FOR_INPADDR_ADDRESS
313 || type == RELOAD_FOR_OUTADDR_ADDRESS)
314 secondary_type = type;
315 else
316 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
318 *picode = CODE_FOR_nothing;
320 /* If X is a paradoxical SUBREG, use the inner value to determine both the
321 mode and object being reloaded. */
322 if (GET_CODE (x) == SUBREG
323 && (GET_MODE_SIZE (GET_MODE (x))
324 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
326 x = SUBREG_REG (x);
327 reload_mode = GET_MODE (x);
330 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
331 is still a pseudo-register by now, it *must* have an equivalent MEM
332 but we don't want to assume that), use that equivalent when seeing if
333 a secondary reload is needed since whether or not a reload is needed
334 might be sensitive to the form of the MEM. */
336 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
337 && reg_equiv_mem[REGNO (x)] != 0)
338 x = reg_equiv_mem[REGNO (x)];
340 #ifdef SECONDARY_INPUT_RELOAD_CLASS
341 if (in_p)
342 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
343 #endif
345 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
346 if (! in_p)
347 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
348 #endif
350 /* If we don't need any secondary registers, done. */
351 if (class == NO_REGS)
352 return -1;
354 /* Get a possible insn to use. If the predicate doesn't accept X, don't
355 use the insn. */
357 icode = (in_p ? reload_in_optab[(int) reload_mode]
358 : reload_out_optab[(int) reload_mode]);
360 if (icode != CODE_FOR_nothing
361 && insn_data[(int) icode].operand[in_p].predicate
362 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
363 icode = CODE_FOR_nothing;
365 /* If we will be using an insn, see if it can directly handle the reload
366 register we will be using. If it can, the secondary reload is for a
367 scratch register. If it can't, we will use the secondary reload for
368 an intermediate register and require a tertiary reload for the scratch
369 register. */
371 if (icode != CODE_FOR_nothing)
373 /* If IN_P is nonzero, the reload register will be the output in
374 operand 0. If IN_P is zero, the reload register will be the input
375 in operand 1. Outputs should have an initial "=", which we must
376 skip. */
378 enum reg_class insn_class;
380 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
381 insn_class = ALL_REGS;
382 else
384 const char *insn_constraint
385 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
386 char insn_letter = *insn_constraint;
387 insn_class
388 = (insn_letter == 'r' ? GENERAL_REGS
389 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
390 insn_constraint));
392 if (insn_class == NO_REGS)
393 abort ();
394 if (in_p
395 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
396 abort ();
399 /* The scratch register's constraint must start with "=&". */
400 if (insn_data[(int) icode].operand[2].constraint[0] != '='
401 || insn_data[(int) icode].operand[2].constraint[1] != '&')
402 abort ();
404 if (reg_class_subset_p (reload_class, insn_class))
405 mode = insn_data[(int) icode].operand[2].mode;
406 else
408 const char *t_constraint
409 = &insn_data[(int) icode].operand[2].constraint[2];
410 char t_letter = *t_constraint;
411 class = insn_class;
412 t_mode = insn_data[(int) icode].operand[2].mode;
413 t_class = (t_letter == 'r' ? GENERAL_REGS
414 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
415 t_constraint));
416 t_icode = icode;
417 icode = CODE_FOR_nothing;
421 /* This case isn't valid, so fail. Reload is allowed to use the same
422 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
423 in the case of a secondary register, we actually need two different
424 registers for correct code. We fail here to prevent the possibility of
425 silently generating incorrect code later.
427 The convention is that secondary input reloads are valid only if the
428 secondary_class is different from class. If you have such a case, you
429 can not use secondary reloads, you must work around the problem some
430 other way.
432 Allow this when a reload_in/out pattern is being used. I.e. assume
433 that the generated code handles this case. */
435 if (in_p && class == reload_class && icode == CODE_FOR_nothing
436 && t_icode == CODE_FOR_nothing)
437 abort ();
439 /* If we need a tertiary reload, see if we have one we can reuse or else
440 make a new one. */
442 if (t_class != NO_REGS)
444 for (t_reload = 0; t_reload < n_reloads; t_reload++)
445 if (rld[t_reload].secondary_p
446 && (reg_class_subset_p (t_class, rld[t_reload].class)
447 || reg_class_subset_p (rld[t_reload].class, t_class))
448 && ((in_p && rld[t_reload].inmode == t_mode)
449 || (! in_p && rld[t_reload].outmode == t_mode))
450 && ((in_p && (rld[t_reload].secondary_in_icode
451 == CODE_FOR_nothing))
452 || (! in_p &&(rld[t_reload].secondary_out_icode
453 == CODE_FOR_nothing)))
454 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
455 && MERGABLE_RELOADS (secondary_type,
456 rld[t_reload].when_needed,
457 opnum, rld[t_reload].opnum))
459 if (in_p)
460 rld[t_reload].inmode = t_mode;
461 if (! in_p)
462 rld[t_reload].outmode = t_mode;
464 if (reg_class_subset_p (t_class, rld[t_reload].class))
465 rld[t_reload].class = t_class;
467 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
468 rld[t_reload].optional &= optional;
469 rld[t_reload].secondary_p = 1;
470 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
471 opnum, rld[t_reload].opnum))
472 rld[t_reload].when_needed = RELOAD_OTHER;
475 if (t_reload == n_reloads)
477 /* We need to make a new tertiary reload for this register class. */
478 rld[t_reload].in = rld[t_reload].out = 0;
479 rld[t_reload].class = t_class;
480 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
481 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
482 rld[t_reload].reg_rtx = 0;
483 rld[t_reload].optional = optional;
484 rld[t_reload].inc = 0;
485 /* Maybe we could combine these, but it seems too tricky. */
486 rld[t_reload].nocombine = 1;
487 rld[t_reload].in_reg = 0;
488 rld[t_reload].out_reg = 0;
489 rld[t_reload].opnum = opnum;
490 rld[t_reload].when_needed = secondary_type;
491 rld[t_reload].secondary_in_reload = -1;
492 rld[t_reload].secondary_out_reload = -1;
493 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
494 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
495 rld[t_reload].secondary_p = 1;
497 n_reloads++;
501 /* See if we can reuse an existing secondary reload. */
502 for (s_reload = 0; s_reload < n_reloads; s_reload++)
503 if (rld[s_reload].secondary_p
504 && (reg_class_subset_p (class, rld[s_reload].class)
505 || reg_class_subset_p (rld[s_reload].class, class))
506 && ((in_p && rld[s_reload].inmode == mode)
507 || (! in_p && rld[s_reload].outmode == mode))
508 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
509 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
510 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
511 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
512 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
513 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
514 opnum, rld[s_reload].opnum))
516 if (in_p)
517 rld[s_reload].inmode = mode;
518 if (! in_p)
519 rld[s_reload].outmode = mode;
521 if (reg_class_subset_p (class, rld[s_reload].class))
522 rld[s_reload].class = class;
524 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
525 rld[s_reload].optional &= optional;
526 rld[s_reload].secondary_p = 1;
527 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
528 opnum, rld[s_reload].opnum))
529 rld[s_reload].when_needed = RELOAD_OTHER;
532 if (s_reload == n_reloads)
534 #ifdef SECONDARY_MEMORY_NEEDED
535 /* If we need a memory location to copy between the two reload regs,
536 set it up now. Note that we do the input case before making
537 the reload and the output case after. This is due to the
538 way reloads are output. */
540 if (in_p && icode == CODE_FOR_nothing
541 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
543 get_secondary_mem (x, reload_mode, opnum, type);
545 /* We may have just added new reloads. Make sure we add
546 the new reload at the end. */
547 s_reload = n_reloads;
549 #endif
551 /* We need to make a new secondary reload for this register class. */
552 rld[s_reload].in = rld[s_reload].out = 0;
553 rld[s_reload].class = class;
555 rld[s_reload].inmode = in_p ? mode : VOIDmode;
556 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
557 rld[s_reload].reg_rtx = 0;
558 rld[s_reload].optional = optional;
559 rld[s_reload].inc = 0;
560 /* Maybe we could combine these, but it seems too tricky. */
561 rld[s_reload].nocombine = 1;
562 rld[s_reload].in_reg = 0;
563 rld[s_reload].out_reg = 0;
564 rld[s_reload].opnum = opnum;
565 rld[s_reload].when_needed = secondary_type;
566 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
567 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
568 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
569 rld[s_reload].secondary_out_icode
570 = ! in_p ? t_icode : CODE_FOR_nothing;
571 rld[s_reload].secondary_p = 1;
573 n_reloads++;
575 #ifdef SECONDARY_MEMORY_NEEDED
576 if (! in_p && icode == CODE_FOR_nothing
577 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
578 get_secondary_mem (x, mode, opnum, type);
579 #endif
582 *picode = icode;
583 return s_reload;
585 #endif /* HAVE_SECONDARY_RELOADS */
587 #ifdef SECONDARY_MEMORY_NEEDED
589 /* Return a memory location that will be used to copy X in mode MODE.
590 If we haven't already made a location for this mode in this insn,
591 call find_reloads_address on the location being returned. */
594 get_secondary_mem (x, mode, opnum, type)
595 rtx x ATTRIBUTE_UNUSED;
596 enum machine_mode mode;
597 int opnum;
598 enum reload_type type;
600 rtx loc;
601 int mem_valid;
603 /* By default, if MODE is narrower than a word, widen it to a word.
604 This is required because most machines that require these memory
605 locations do not support short load and stores from all registers
606 (e.g., FP registers). */
608 #ifdef SECONDARY_MEMORY_NEEDED_MODE
609 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
610 #else
611 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
612 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
613 #endif
615 /* If we already have made a MEM for this operand in MODE, return it. */
616 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
617 return secondary_memlocs_elim[(int) mode][opnum];
619 /* If this is the first time we've tried to get a MEM for this mode,
620 allocate a new one. `something_changed' in reload will get set
621 by noticing that the frame size has changed. */
623 if (secondary_memlocs[(int) mode] == 0)
625 #ifdef SECONDARY_MEMORY_NEEDED_RTX
626 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
627 #else
628 secondary_memlocs[(int) mode]
629 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
630 #endif
633 /* Get a version of the address doing any eliminations needed. If that
634 didn't give us a new MEM, make a new one if it isn't valid. */
636 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
637 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
639 if (! mem_valid && loc == secondary_memlocs[(int) mode])
640 loc = copy_rtx (loc);
642 /* The only time the call below will do anything is if the stack
643 offset is too large. In that case IND_LEVELS doesn't matter, so we
644 can just pass a zero. Adjust the type to be the address of the
645 corresponding object. If the address was valid, save the eliminated
646 address. If it wasn't valid, we need to make a reload each time, so
647 don't save it. */
649 if (! mem_valid)
651 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
652 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
653 : RELOAD_OTHER);
655 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
656 opnum, type, 0, 0);
659 secondary_memlocs_elim[(int) mode][opnum] = loc;
660 return loc;
663 /* Clear any secondary memory locations we've made. */
665 void
666 clear_secondary_mem ()
668 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
670 #endif /* SECONDARY_MEMORY_NEEDED */
672 /* Find the largest class for which every register number plus N is valid in
673 M1 (if in range) and is cheap to move into REGNO.
674 Abort if no such class exists. */
676 static enum reg_class
677 find_valid_class (m1, n, dest_regno)
678 enum machine_mode m1 ATTRIBUTE_UNUSED;
679 int n;
680 unsigned int dest_regno ATTRIBUTE_UNUSED;
682 int best_cost = -1;
683 int class;
684 int regno;
685 enum reg_class best_class = NO_REGS;
686 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
687 unsigned int best_size = 0;
688 int cost;
690 for (class = 1; class < N_REG_CLASSES; class++)
692 int bad = 0;
693 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
694 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
695 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
696 && ! HARD_REGNO_MODE_OK (regno + n, m1))
697 bad = 1;
699 if (bad)
700 continue;
701 cost = REGISTER_MOVE_COST (m1, class, dest_class);
703 if ((reg_class_size[class] > best_size
704 && (best_cost < 0 || best_cost >= cost))
705 || best_cost > cost)
707 best_class = class;
708 best_size = reg_class_size[class];
709 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
713 if (best_size == 0)
714 abort ();
716 return best_class;
719 /* Return the number of a previously made reload that can be combined with
720 a new one, or n_reloads if none of the existing reloads can be used.
721 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
722 push_reload, they determine the kind of the new reload that we try to
723 combine. P_IN points to the corresponding value of IN, which can be
724 modified by this function.
725 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
727 static int
728 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
729 rtx *p_in, out;
730 enum reg_class class;
731 enum reload_type type;
732 int opnum, dont_share;
734 rtx in = *p_in;
735 int i;
736 /* We can't merge two reloads if the output of either one is
737 earlyclobbered. */
739 if (earlyclobber_operand_p (out))
740 return n_reloads;
742 /* We can use an existing reload if the class is right
743 and at least one of IN and OUT is a match
744 and the other is at worst neutral.
745 (A zero compared against anything is neutral.)
747 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
748 for the same thing since that can cause us to need more reload registers
749 than we otherwise would. */
751 for (i = 0; i < n_reloads; i++)
752 if ((reg_class_subset_p (class, rld[i].class)
753 || reg_class_subset_p (rld[i].class, class))
754 /* If the existing reload has a register, it must fit our class. */
755 && (rld[i].reg_rtx == 0
756 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
757 true_regnum (rld[i].reg_rtx)))
758 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
759 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
760 || (out != 0 && MATCHES (rld[i].out, out)
761 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
762 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
763 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
764 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
765 return i;
767 /* Reloading a plain reg for input can match a reload to postincrement
768 that reg, since the postincrement's value is the right value.
769 Likewise, it can match a preincrement reload, since we regard
770 the preincrementation as happening before any ref in this insn
771 to that register. */
772 for (i = 0; i < n_reloads; i++)
773 if ((reg_class_subset_p (class, rld[i].class)
774 || reg_class_subset_p (rld[i].class, class))
775 /* If the existing reload has a register, it must fit our
776 class. */
777 && (rld[i].reg_rtx == 0
778 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
779 true_regnum (rld[i].reg_rtx)))
780 && out == 0 && rld[i].out == 0 && rld[i].in != 0
781 && ((GET_CODE (in) == REG
782 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
783 && MATCHES (XEXP (rld[i].in, 0), in))
784 || (GET_CODE (rld[i].in) == REG
785 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
786 && MATCHES (XEXP (in, 0), rld[i].in)))
787 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
788 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
789 && MERGABLE_RELOADS (type, rld[i].when_needed,
790 opnum, rld[i].opnum))
792 /* Make sure reload_in ultimately has the increment,
793 not the plain register. */
794 if (GET_CODE (in) == REG)
795 *p_in = rld[i].in;
796 return i;
798 return n_reloads;
801 /* Return nonzero if X is a SUBREG which will require reloading of its
802 SUBREG_REG expression. */
804 static int
805 reload_inner_reg_of_subreg (x, mode, output)
806 rtx x;
807 enum machine_mode mode;
808 int output;
810 rtx inner;
812 /* Only SUBREGs are problematical. */
813 if (GET_CODE (x) != SUBREG)
814 return 0;
816 inner = SUBREG_REG (x);
818 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
819 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
820 return 1;
822 /* If INNER is not a hard register, then INNER will not need to
823 be reloaded. */
824 if (GET_CODE (inner) != REG
825 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
826 return 0;
828 /* If INNER is not ok for MODE, then INNER will need reloading. */
829 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
830 return 1;
832 /* If the outer part is a word or smaller, INNER larger than a
833 word and the number of regs for INNER is not the same as the
834 number of words in INNER, then INNER will need reloading. */
835 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
836 && output
837 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
838 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
839 != (int) HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
842 /* Record one reload that needs to be performed.
843 IN is an rtx saying where the data are to be found before this instruction.
844 OUT says where they must be stored after the instruction.
845 (IN is zero for data not read, and OUT is zero for data not written.)
846 INLOC and OUTLOC point to the places in the instructions where
847 IN and OUT were found.
848 If IN and OUT are both nonzero, it means the same register must be used
849 to reload both IN and OUT.
851 CLASS is a register class required for the reloaded data.
852 INMODE is the machine mode that the instruction requires
853 for the reg that replaces IN and OUTMODE is likewise for OUT.
855 If IN is zero, then OUT's location and mode should be passed as
856 INLOC and INMODE.
858 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
860 OPTIONAL nonzero means this reload does not need to be performed:
861 it can be discarded if that is more convenient.
863 OPNUM and TYPE say what the purpose of this reload is.
865 The return value is the reload-number for this reload.
867 If both IN and OUT are nonzero, in some rare cases we might
868 want to make two separate reloads. (Actually we never do this now.)
869 Therefore, the reload-number for OUT is stored in
870 output_reloadnum when we return; the return value applies to IN.
871 Usually (presently always), when IN and OUT are nonzero,
872 the two reload-numbers are equal, but the caller should be careful to
873 distinguish them. */
876 push_reload (in, out, inloc, outloc, class,
877 inmode, outmode, strict_low, optional, opnum, type)
878 rtx in, out;
879 rtx *inloc, *outloc;
880 enum reg_class class;
881 enum machine_mode inmode, outmode;
882 int strict_low;
883 int optional;
884 int opnum;
885 enum reload_type type;
887 int i;
888 int dont_share = 0;
889 int dont_remove_subreg = 0;
890 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
891 int secondary_in_reload = -1, secondary_out_reload = -1;
892 enum insn_code secondary_in_icode = CODE_FOR_nothing;
893 enum insn_code secondary_out_icode = CODE_FOR_nothing;
895 /* INMODE and/or OUTMODE could be VOIDmode if no mode
896 has been specified for the operand. In that case,
897 use the operand's mode as the mode to reload. */
898 if (inmode == VOIDmode && in != 0)
899 inmode = GET_MODE (in);
900 if (outmode == VOIDmode && out != 0)
901 outmode = GET_MODE (out);
903 /* If IN is a pseudo register everywhere-equivalent to a constant, and
904 it is not in a hard register, reload straight from the constant,
905 since we want to get rid of such pseudo registers.
906 Often this is done earlier, but not always in find_reloads_address. */
907 if (in != 0 && GET_CODE (in) == REG)
909 int regno = REGNO (in);
911 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
912 && reg_equiv_constant[regno] != 0)
913 in = reg_equiv_constant[regno];
916 /* Likewise for OUT. Of course, OUT will never be equivalent to
917 an actual constant, but it might be equivalent to a memory location
918 (in the case of a parameter). */
919 if (out != 0 && GET_CODE (out) == REG)
921 int regno = REGNO (out);
923 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
924 && reg_equiv_constant[regno] != 0)
925 out = reg_equiv_constant[regno];
928 /* If we have a read-write operand with an address side-effect,
929 change either IN or OUT so the side-effect happens only once. */
930 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
931 switch (GET_CODE (XEXP (in, 0)))
933 case POST_INC: case POST_DEC: case POST_MODIFY:
934 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
935 break;
937 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
938 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
939 break;
941 default:
942 break;
945 /* If we are reloading a (SUBREG constant ...), really reload just the
946 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
947 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
948 a pseudo and hence will become a MEM) with M1 wider than M2 and the
949 register is a pseudo, also reload the inside expression.
950 For machines that extend byte loads, do this for any SUBREG of a pseudo
951 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
952 M2 is an integral mode that gets extended when loaded.
953 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
954 either M1 is not valid for R or M2 is wider than a word but we only
955 need one word to store an M2-sized quantity in R.
956 (However, if OUT is nonzero, we need to reload the reg *and*
957 the subreg, so do nothing here, and let following statement handle it.)
959 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
960 we can't handle it here because CONST_INT does not indicate a mode.
962 Similarly, we must reload the inside expression if we have a
963 STRICT_LOW_PART (presumably, in == out in the cas).
965 Also reload the inner expression if it does not require a secondary
966 reload but the SUBREG does.
968 Finally, reload the inner expression if it is a register that is in
969 the class whose registers cannot be referenced in a different size
970 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
971 cannot reload just the inside since we might end up with the wrong
972 register class. But if it is inside a STRICT_LOW_PART, we have
973 no choice, so we hope we do get the right register class there. */
975 if (in != 0 && GET_CODE (in) == SUBREG
976 && (subreg_lowpart_p (in) || strict_low)
977 #ifdef CANNOT_CHANGE_MODE_CLASS
978 && !reg_classes_intersect_p
979 (class, CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)),
980 inmode))
981 #endif
982 && (CONSTANT_P (SUBREG_REG (in))
983 || GET_CODE (SUBREG_REG (in)) == PLUS
984 || strict_low
985 || (((GET_CODE (SUBREG_REG (in)) == REG
986 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
987 || GET_CODE (SUBREG_REG (in)) == MEM)
988 && ((GET_MODE_SIZE (inmode)
989 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
990 #ifdef LOAD_EXTEND_OP
991 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
992 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
993 <= UNITS_PER_WORD)
994 && (GET_MODE_SIZE (inmode)
995 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
996 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
997 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
998 #endif
999 #ifdef WORD_REGISTER_OPERATIONS
1000 || ((GET_MODE_SIZE (inmode)
1001 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1002 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1003 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1004 / UNITS_PER_WORD)))
1005 #endif
1007 || (GET_CODE (SUBREG_REG (in)) == REG
1008 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1009 /* The case where out is nonzero
1010 is handled differently in the following statement. */
1011 && (out == 0 || subreg_lowpart_p (in))
1012 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1013 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1014 > UNITS_PER_WORD)
1015 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1016 / UNITS_PER_WORD)
1017 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
1018 GET_MODE (SUBREG_REG (in)))))
1019 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1020 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1021 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1022 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1023 GET_MODE (SUBREG_REG (in)),
1024 SUBREG_REG (in))
1025 == NO_REGS))
1026 #endif
1027 #ifdef CANNOT_CHANGE_MODE_CLASS
1028 || (GET_CODE (SUBREG_REG (in)) == REG
1029 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1030 && REG_CANNOT_CHANGE_MODE_P
1031 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1032 #endif
1035 in_subreg_loc = inloc;
1036 inloc = &SUBREG_REG (in);
1037 in = *inloc;
1038 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1039 if (GET_CODE (in) == MEM)
1040 /* This is supposed to happen only for paradoxical subregs made by
1041 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1042 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1043 abort ();
1044 #endif
1045 inmode = GET_MODE (in);
1048 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1049 either M1 is not valid for R or M2 is wider than a word but we only
1050 need one word to store an M2-sized quantity in R.
1052 However, we must reload the inner reg *as well as* the subreg in
1053 that case. */
1055 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1056 code above. This can happen if SUBREG_BYTE != 0. */
1058 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1060 enum reg_class in_class = class;
1062 if (GET_CODE (SUBREG_REG (in)) == REG)
1063 in_class
1064 = find_valid_class (inmode,
1065 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1066 GET_MODE (SUBREG_REG (in)),
1067 SUBREG_BYTE (in),
1068 GET_MODE (in)),
1069 REGNO (SUBREG_REG (in)));
1071 /* This relies on the fact that emit_reload_insns outputs the
1072 instructions for input reloads of type RELOAD_OTHER in the same
1073 order as the reloads. Thus if the outer reload is also of type
1074 RELOAD_OTHER, we are guaranteed that this inner reload will be
1075 output before the outer reload. */
1076 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1077 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1078 dont_remove_subreg = 1;
1081 /* Similarly for paradoxical and problematical SUBREGs on the output.
1082 Note that there is no reason we need worry about the previous value
1083 of SUBREG_REG (out); even if wider than out,
1084 storing in a subreg is entitled to clobber it all
1085 (except in the case of STRICT_LOW_PART,
1086 and in that case the constraint should label it input-output.) */
1087 if (out != 0 && GET_CODE (out) == SUBREG
1088 && (subreg_lowpart_p (out) || strict_low)
1089 #ifdef CANNOT_CHANGE_MODE_CLASS
1090 && !reg_classes_intersect_p
1091 (class, CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)),
1092 outmode))
1093 #endif
1094 && (CONSTANT_P (SUBREG_REG (out))
1095 || strict_low
1096 || (((GET_CODE (SUBREG_REG (out)) == REG
1097 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1098 || GET_CODE (SUBREG_REG (out)) == MEM)
1099 && ((GET_MODE_SIZE (outmode)
1100 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1101 #ifdef WORD_REGISTER_OPERATIONS
1102 || ((GET_MODE_SIZE (outmode)
1103 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1104 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1105 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1106 / UNITS_PER_WORD)))
1107 #endif
1109 || (GET_CODE (SUBREG_REG (out)) == REG
1110 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1111 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1112 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1113 > UNITS_PER_WORD)
1114 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1115 / UNITS_PER_WORD)
1116 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1117 GET_MODE (SUBREG_REG (out)))))
1118 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1119 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1120 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1121 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1122 GET_MODE (SUBREG_REG (out)),
1123 SUBREG_REG (out))
1124 == NO_REGS))
1125 #endif
1126 #ifdef CANNOT_CHANGE_MODE_CLASS
1127 || (GET_CODE (SUBREG_REG (out)) == REG
1128 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1129 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1130 GET_MODE (SUBREG_REG (out)),
1131 outmode))
1132 #endif
1135 out_subreg_loc = outloc;
1136 outloc = &SUBREG_REG (out);
1137 out = *outloc;
1138 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1139 if (GET_CODE (out) == MEM
1140 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1141 abort ();
1142 #endif
1143 outmode = GET_MODE (out);
1146 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1147 either M1 is not valid for R or M2 is wider than a word but we only
1148 need one word to store an M2-sized quantity in R.
1150 However, we must reload the inner reg *as well as* the subreg in
1151 that case. In this case, the inner reg is an in-out reload. */
1153 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1155 /* This relies on the fact that emit_reload_insns outputs the
1156 instructions for output reloads of type RELOAD_OTHER in reverse
1157 order of the reloads. Thus if the outer reload is also of type
1158 RELOAD_OTHER, we are guaranteed that this inner reload will be
1159 output after the outer reload. */
1160 dont_remove_subreg = 1;
1161 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1162 &SUBREG_REG (out),
1163 find_valid_class (outmode,
1164 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1165 GET_MODE (SUBREG_REG (out)),
1166 SUBREG_BYTE (out),
1167 GET_MODE (out)),
1168 REGNO (SUBREG_REG (out))),
1169 VOIDmode, VOIDmode, 0, 0,
1170 opnum, RELOAD_OTHER);
1173 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1174 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1175 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1176 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1177 dont_share = 1;
1179 /* If IN is a SUBREG of a hard register, make a new REG. This
1180 simplifies some of the cases below. */
1182 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1183 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1184 && ! dont_remove_subreg)
1185 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1187 /* Similarly for OUT. */
1188 if (out != 0 && GET_CODE (out) == SUBREG
1189 && GET_CODE (SUBREG_REG (out)) == REG
1190 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1191 && ! dont_remove_subreg)
1192 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1194 /* Narrow down the class of register wanted if that is
1195 desirable on this machine for efficiency. */
1196 if (in != 0)
1197 class = PREFERRED_RELOAD_CLASS (in, class);
1199 /* Output reloads may need analogous treatment, different in detail. */
1200 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1201 if (out != 0)
1202 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1203 #endif
1205 /* Make sure we use a class that can handle the actual pseudo
1206 inside any subreg. For example, on the 386, QImode regs
1207 can appear within SImode subregs. Although GENERAL_REGS
1208 can handle SImode, QImode needs a smaller class. */
1209 #ifdef LIMIT_RELOAD_CLASS
1210 if (in_subreg_loc)
1211 class = LIMIT_RELOAD_CLASS (inmode, class);
1212 else if (in != 0 && GET_CODE (in) == SUBREG)
1213 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1215 if (out_subreg_loc)
1216 class = LIMIT_RELOAD_CLASS (outmode, class);
1217 if (out != 0 && GET_CODE (out) == SUBREG)
1218 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1219 #endif
1221 /* Verify that this class is at least possible for the mode that
1222 is specified. */
1223 if (this_insn_is_asm)
1225 enum machine_mode mode;
1226 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1227 mode = inmode;
1228 else
1229 mode = outmode;
1230 if (mode == VOIDmode)
1232 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1233 mode = word_mode;
1234 if (in != 0)
1235 inmode = word_mode;
1236 if (out != 0)
1237 outmode = word_mode;
1239 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1240 if (HARD_REGNO_MODE_OK (i, mode)
1241 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1243 int nregs = HARD_REGNO_NREGS (i, mode);
1245 int j;
1246 for (j = 1; j < nregs; j++)
1247 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1248 break;
1249 if (j == nregs)
1250 break;
1252 if (i == FIRST_PSEUDO_REGISTER)
1254 error_for_asm (this_insn, "impossible register constraint in `asm'");
1255 class = ALL_REGS;
1259 /* Optional output reloads are always OK even if we have no register class,
1260 since the function of these reloads is only to have spill_reg_store etc.
1261 set, so that the storing insn can be deleted later. */
1262 if (class == NO_REGS
1263 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1264 abort ();
1266 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1268 if (i == n_reloads)
1270 /* See if we need a secondary reload register to move between CLASS
1271 and IN or CLASS and OUT. Get the icode and push any required reloads
1272 needed for each of them if so. */
1274 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1275 if (in != 0)
1276 secondary_in_reload
1277 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1278 &secondary_in_icode);
1279 #endif
1281 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1282 if (out != 0 && GET_CODE (out) != SCRATCH)
1283 secondary_out_reload
1284 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1285 type, &secondary_out_icode);
1286 #endif
1288 /* We found no existing reload suitable for re-use.
1289 So add an additional reload. */
1291 #ifdef SECONDARY_MEMORY_NEEDED
1292 /* If a memory location is needed for the copy, make one. */
1293 if (in != 0 && (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
1294 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1295 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1296 class, inmode))
1297 get_secondary_mem (in, inmode, opnum, type);
1298 #endif
1300 i = n_reloads;
1301 rld[i].in = in;
1302 rld[i].out = out;
1303 rld[i].class = class;
1304 rld[i].inmode = inmode;
1305 rld[i].outmode = outmode;
1306 rld[i].reg_rtx = 0;
1307 rld[i].optional = optional;
1308 rld[i].inc = 0;
1309 rld[i].nocombine = 0;
1310 rld[i].in_reg = inloc ? *inloc : 0;
1311 rld[i].out_reg = outloc ? *outloc : 0;
1312 rld[i].opnum = opnum;
1313 rld[i].when_needed = type;
1314 rld[i].secondary_in_reload = secondary_in_reload;
1315 rld[i].secondary_out_reload = secondary_out_reload;
1316 rld[i].secondary_in_icode = secondary_in_icode;
1317 rld[i].secondary_out_icode = secondary_out_icode;
1318 rld[i].secondary_p = 0;
1320 n_reloads++;
1322 #ifdef SECONDARY_MEMORY_NEEDED
1323 if (out != 0 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
1324 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1325 && SECONDARY_MEMORY_NEEDED (class,
1326 REGNO_REG_CLASS (reg_or_subregno (out)),
1327 outmode))
1328 get_secondary_mem (out, outmode, opnum, type);
1329 #endif
1331 else
1333 /* We are reusing an existing reload,
1334 but we may have additional information for it.
1335 For example, we may now have both IN and OUT
1336 while the old one may have just one of them. */
1338 /* The modes can be different. If they are, we want to reload in
1339 the larger mode, so that the value is valid for both modes. */
1340 if (inmode != VOIDmode
1341 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1342 rld[i].inmode = inmode;
1343 if (outmode != VOIDmode
1344 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1345 rld[i].outmode = outmode;
1346 if (in != 0)
1348 rtx in_reg = inloc ? *inloc : 0;
1349 /* If we merge reloads for two distinct rtl expressions that
1350 are identical in content, there might be duplicate address
1351 reloads. Remove the extra set now, so that if we later find
1352 that we can inherit this reload, we can get rid of the
1353 address reloads altogether.
1355 Do not do this if both reloads are optional since the result
1356 would be an optional reload which could potentially leave
1357 unresolved address replacements.
1359 It is not sufficient to call transfer_replacements since
1360 choose_reload_regs will remove the replacements for address
1361 reloads of inherited reloads which results in the same
1362 problem. */
1363 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1364 && ! (rld[i].optional && optional))
1366 /* We must keep the address reload with the lower operand
1367 number alive. */
1368 if (opnum > rld[i].opnum)
1370 remove_address_replacements (in);
1371 in = rld[i].in;
1372 in_reg = rld[i].in_reg;
1374 else
1375 remove_address_replacements (rld[i].in);
1377 rld[i].in = in;
1378 rld[i].in_reg = in_reg;
1380 if (out != 0)
1382 rld[i].out = out;
1383 rld[i].out_reg = outloc ? *outloc : 0;
1385 if (reg_class_subset_p (class, rld[i].class))
1386 rld[i].class = class;
1387 rld[i].optional &= optional;
1388 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1389 opnum, rld[i].opnum))
1390 rld[i].when_needed = RELOAD_OTHER;
1391 rld[i].opnum = MIN (rld[i].opnum, opnum);
1394 /* If the ostensible rtx being reloaded differs from the rtx found
1395 in the location to substitute, this reload is not safe to combine
1396 because we cannot reliably tell whether it appears in the insn. */
1398 if (in != 0 && in != *inloc)
1399 rld[i].nocombine = 1;
1401 #if 0
1402 /* This was replaced by changes in find_reloads_address_1 and the new
1403 function inc_for_reload, which go with a new meaning of reload_inc. */
1405 /* If this is an IN/OUT reload in an insn that sets the CC,
1406 it must be for an autoincrement. It doesn't work to store
1407 the incremented value after the insn because that would clobber the CC.
1408 So we must do the increment of the value reloaded from,
1409 increment it, store it back, then decrement again. */
1410 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1412 out = 0;
1413 rld[i].out = 0;
1414 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1415 /* If we did not find a nonzero amount-to-increment-by,
1416 that contradicts the belief that IN is being incremented
1417 in an address in this insn. */
1418 if (rld[i].inc == 0)
1419 abort ();
1421 #endif
1423 /* If we will replace IN and OUT with the reload-reg,
1424 record where they are located so that substitution need
1425 not do a tree walk. */
1427 if (replace_reloads)
1429 if (inloc != 0)
1431 struct replacement *r = &replacements[n_replacements++];
1432 r->what = i;
1433 r->subreg_loc = in_subreg_loc;
1434 r->where = inloc;
1435 r->mode = inmode;
1437 if (outloc != 0 && outloc != inloc)
1439 struct replacement *r = &replacements[n_replacements++];
1440 r->what = i;
1441 r->where = outloc;
1442 r->subreg_loc = out_subreg_loc;
1443 r->mode = outmode;
1447 /* If this reload is just being introduced and it has both
1448 an incoming quantity and an outgoing quantity that are
1449 supposed to be made to match, see if either one of the two
1450 can serve as the place to reload into.
1452 If one of them is acceptable, set rld[i].reg_rtx
1453 to that one. */
1455 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1457 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1458 inmode, outmode,
1459 rld[i].class, i,
1460 earlyclobber_operand_p (out));
1462 /* If the outgoing register already contains the same value
1463 as the incoming one, we can dispense with loading it.
1464 The easiest way to tell the caller that is to give a phony
1465 value for the incoming operand (same as outgoing one). */
1466 if (rld[i].reg_rtx == out
1467 && (GET_CODE (in) == REG || CONSTANT_P (in))
1468 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1469 static_reload_reg_p, i, inmode))
1470 rld[i].in = out;
1473 /* If this is an input reload and the operand contains a register that
1474 dies in this insn and is used nowhere else, see if it is the right class
1475 to be used for this reload. Use it if so. (This occurs most commonly
1476 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1477 this if it is also an output reload that mentions the register unless
1478 the output is a SUBREG that clobbers an entire register.
1480 Note that the operand might be one of the spill regs, if it is a
1481 pseudo reg and we are in a block where spilling has not taken place.
1482 But if there is no spilling in this block, that is OK.
1483 An explicitly used hard reg cannot be a spill reg. */
1485 if (rld[i].reg_rtx == 0 && in != 0)
1487 rtx note;
1488 int regno;
1489 enum machine_mode rel_mode = inmode;
1491 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1492 rel_mode = outmode;
1494 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1495 if (REG_NOTE_KIND (note) == REG_DEAD
1496 && GET_CODE (XEXP (note, 0)) == REG
1497 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1498 && reg_mentioned_p (XEXP (note, 0), in)
1499 && ! refers_to_regno_for_reload_p (regno,
1500 (regno
1501 + HARD_REGNO_NREGS (regno,
1502 rel_mode)),
1503 PATTERN (this_insn), inloc)
1504 /* If this is also an output reload, IN cannot be used as
1505 the reload register if it is set in this insn unless IN
1506 is also OUT. */
1507 && (out == 0 || in == out
1508 || ! hard_reg_set_here_p (regno,
1509 (regno
1510 + HARD_REGNO_NREGS (regno,
1511 rel_mode)),
1512 PATTERN (this_insn)))
1513 /* ??? Why is this code so different from the previous?
1514 Is there any simple coherent way to describe the two together?
1515 What's going on here. */
1516 && (in != out
1517 || (GET_CODE (in) == SUBREG
1518 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1519 / UNITS_PER_WORD)
1520 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1521 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1522 /* Make sure the operand fits in the reg that dies. */
1523 && (GET_MODE_SIZE (rel_mode)
1524 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1525 && HARD_REGNO_MODE_OK (regno, inmode)
1526 && HARD_REGNO_MODE_OK (regno, outmode))
1528 unsigned int offs;
1529 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1530 HARD_REGNO_NREGS (regno, outmode));
1532 for (offs = 0; offs < nregs; offs++)
1533 if (fixed_regs[regno + offs]
1534 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1535 regno + offs))
1536 break;
1538 if (offs == nregs)
1540 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1541 break;
1546 if (out)
1547 output_reloadnum = i;
1549 return i;
1552 /* Record an additional place we must replace a value
1553 for which we have already recorded a reload.
1554 RELOADNUM is the value returned by push_reload
1555 when the reload was recorded.
1556 This is used in insn patterns that use match_dup. */
1558 static void
1559 push_replacement (loc, reloadnum, mode)
1560 rtx *loc;
1561 int reloadnum;
1562 enum machine_mode mode;
1564 if (replace_reloads)
1566 struct replacement *r = &replacements[n_replacements++];
1567 r->what = reloadnum;
1568 r->where = loc;
1569 r->subreg_loc = 0;
1570 r->mode = mode;
1574 /* Duplicate any replacement we have recorded to apply at
1575 location ORIG_LOC to also be performed at DUP_LOC.
1576 This is used in insn patterns that use match_dup. */
1578 static void
1579 dup_replacements (dup_loc, orig_loc)
1580 rtx *dup_loc;
1581 rtx *orig_loc;
1583 int i, n = n_replacements;
1585 for (i = 0; i < n; i++)
1587 struct replacement *r = &replacements[i];
1588 if (r->where == orig_loc)
1589 push_replacement (dup_loc, r->what, r->mode);
1593 /* Transfer all replacements that used to be in reload FROM to be in
1594 reload TO. */
1596 void
1597 transfer_replacements (to, from)
1598 int to, from;
1600 int i;
1602 for (i = 0; i < n_replacements; i++)
1603 if (replacements[i].what == from)
1604 replacements[i].what = to;
1607 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1608 or a subpart of it. If we have any replacements registered for IN_RTX,
1609 cancel the reloads that were supposed to load them.
1610 Return nonzero if we canceled any reloads. */
1612 remove_address_replacements (in_rtx)
1613 rtx in_rtx;
1615 int i, j;
1616 char reload_flags[MAX_RELOADS];
1617 int something_changed = 0;
1619 memset (reload_flags, 0, sizeof reload_flags);
1620 for (i = 0, j = 0; i < n_replacements; i++)
1622 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1623 reload_flags[replacements[i].what] |= 1;
1624 else
1626 replacements[j++] = replacements[i];
1627 reload_flags[replacements[i].what] |= 2;
1630 /* Note that the following store must be done before the recursive calls. */
1631 n_replacements = j;
1633 for (i = n_reloads - 1; i >= 0; i--)
1635 if (reload_flags[i] == 1)
1637 deallocate_reload_reg (i);
1638 remove_address_replacements (rld[i].in);
1639 rld[i].in = 0;
1640 something_changed = 1;
1643 return something_changed;
1646 /* If there is only one output reload, and it is not for an earlyclobber
1647 operand, try to combine it with a (logically unrelated) input reload
1648 to reduce the number of reload registers needed.
1650 This is safe if the input reload does not appear in
1651 the value being output-reloaded, because this implies
1652 it is not needed any more once the original insn completes.
1654 If that doesn't work, see we can use any of the registers that
1655 die in this insn as a reload register. We can if it is of the right
1656 class and does not appear in the value being output-reloaded. */
1658 static void
1659 combine_reloads ()
1661 int i;
1662 int output_reload = -1;
1663 int secondary_out = -1;
1664 rtx note;
1666 /* Find the output reload; return unless there is exactly one
1667 and that one is mandatory. */
1669 for (i = 0; i < n_reloads; i++)
1670 if (rld[i].out != 0)
1672 if (output_reload >= 0)
1673 return;
1674 output_reload = i;
1677 if (output_reload < 0 || rld[output_reload].optional)
1678 return;
1680 /* An input-output reload isn't combinable. */
1682 if (rld[output_reload].in != 0)
1683 return;
1685 /* If this reload is for an earlyclobber operand, we can't do anything. */
1686 if (earlyclobber_operand_p (rld[output_reload].out))
1687 return;
1689 /* If there is a reload for part of the address of this operand, we would
1690 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1691 its life to the point where doing this combine would not lower the
1692 number of spill registers needed. */
1693 for (i = 0; i < n_reloads; i++)
1694 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1695 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1696 && rld[i].opnum == rld[output_reload].opnum)
1697 return;
1699 /* Check each input reload; can we combine it? */
1701 for (i = 0; i < n_reloads; i++)
1702 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1703 /* Life span of this reload must not extend past main insn. */
1704 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1705 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1706 && rld[i].when_needed != RELOAD_OTHER
1707 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1708 == CLASS_MAX_NREGS (rld[output_reload].class,
1709 rld[output_reload].outmode))
1710 && rld[i].inc == 0
1711 && rld[i].reg_rtx == 0
1712 #ifdef SECONDARY_MEMORY_NEEDED
1713 /* Don't combine two reloads with different secondary
1714 memory locations. */
1715 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1716 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1717 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1718 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1719 #endif
1720 && (SMALL_REGISTER_CLASSES
1721 ? (rld[i].class == rld[output_reload].class)
1722 : (reg_class_subset_p (rld[i].class,
1723 rld[output_reload].class)
1724 || reg_class_subset_p (rld[output_reload].class,
1725 rld[i].class)))
1726 && (MATCHES (rld[i].in, rld[output_reload].out)
1727 /* Args reversed because the first arg seems to be
1728 the one that we imagine being modified
1729 while the second is the one that might be affected. */
1730 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1731 rld[i].in)
1732 /* However, if the input is a register that appears inside
1733 the output, then we also can't share.
1734 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1735 If the same reload reg is used for both reg 69 and the
1736 result to be stored in memory, then that result
1737 will clobber the address of the memory ref. */
1738 && ! (GET_CODE (rld[i].in) == REG
1739 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1740 rld[output_reload].out))))
1741 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1742 rld[i].when_needed != RELOAD_FOR_INPUT)
1743 && (reg_class_size[(int) rld[i].class]
1744 || SMALL_REGISTER_CLASSES)
1745 /* We will allow making things slightly worse by combining an
1746 input and an output, but no worse than that. */
1747 && (rld[i].when_needed == RELOAD_FOR_INPUT
1748 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1750 int j;
1752 /* We have found a reload to combine with! */
1753 rld[i].out = rld[output_reload].out;
1754 rld[i].out_reg = rld[output_reload].out_reg;
1755 rld[i].outmode = rld[output_reload].outmode;
1756 /* Mark the old output reload as inoperative. */
1757 rld[output_reload].out = 0;
1758 /* The combined reload is needed for the entire insn. */
1759 rld[i].when_needed = RELOAD_OTHER;
1760 /* If the output reload had a secondary reload, copy it. */
1761 if (rld[output_reload].secondary_out_reload != -1)
1763 rld[i].secondary_out_reload
1764 = rld[output_reload].secondary_out_reload;
1765 rld[i].secondary_out_icode
1766 = rld[output_reload].secondary_out_icode;
1769 #ifdef SECONDARY_MEMORY_NEEDED
1770 /* Copy any secondary MEM. */
1771 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1772 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1773 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1774 #endif
1775 /* If required, minimize the register class. */
1776 if (reg_class_subset_p (rld[output_reload].class,
1777 rld[i].class))
1778 rld[i].class = rld[output_reload].class;
1780 /* Transfer all replacements from the old reload to the combined. */
1781 for (j = 0; j < n_replacements; j++)
1782 if (replacements[j].what == output_reload)
1783 replacements[j].what = i;
1785 return;
1788 /* If this insn has only one operand that is modified or written (assumed
1789 to be the first), it must be the one corresponding to this reload. It
1790 is safe to use anything that dies in this insn for that output provided
1791 that it does not occur in the output (we already know it isn't an
1792 earlyclobber. If this is an asm insn, give up. */
1794 if (INSN_CODE (this_insn) == -1)
1795 return;
1797 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1798 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1799 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1800 return;
1802 /* See if some hard register that dies in this insn and is not used in
1803 the output is the right class. Only works if the register we pick
1804 up can fully hold our output reload. */
1805 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1806 if (REG_NOTE_KIND (note) == REG_DEAD
1807 && GET_CODE (XEXP (note, 0)) == REG
1808 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1809 rld[output_reload].out)
1810 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1811 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1812 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1813 REGNO (XEXP (note, 0)))
1814 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1815 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1816 /* Ensure that a secondary or tertiary reload for this output
1817 won't want this register. */
1818 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1819 || (! (TEST_HARD_REG_BIT
1820 (reg_class_contents[(int) rld[secondary_out].class],
1821 REGNO (XEXP (note, 0))))
1822 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1823 || ! (TEST_HARD_REG_BIT
1824 (reg_class_contents[(int) rld[secondary_out].class],
1825 REGNO (XEXP (note, 0)))))))
1826 && ! fixed_regs[REGNO (XEXP (note, 0))])
1828 rld[output_reload].reg_rtx
1829 = gen_rtx_REG (rld[output_reload].outmode,
1830 REGNO (XEXP (note, 0)));
1831 return;
1835 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1836 See if one of IN and OUT is a register that may be used;
1837 this is desirable since a spill-register won't be needed.
1838 If so, return the register rtx that proves acceptable.
1840 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1841 CLASS is the register class required for the reload.
1843 If FOR_REAL is >= 0, it is the number of the reload,
1844 and in some cases when it can be discovered that OUT doesn't need
1845 to be computed, clear out rld[FOR_REAL].out.
1847 If FOR_REAL is -1, this should not be done, because this call
1848 is just to see if a register can be found, not to find and install it.
1850 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1851 puts an additional constraint on being able to use IN for OUT since
1852 IN must not appear elsewhere in the insn (it is assumed that IN itself
1853 is safe from the earlyclobber). */
1855 static rtx
1856 find_dummy_reload (real_in, real_out, inloc, outloc,
1857 inmode, outmode, class, for_real, earlyclobber)
1858 rtx real_in, real_out;
1859 rtx *inloc, *outloc;
1860 enum machine_mode inmode, outmode;
1861 enum reg_class class;
1862 int for_real;
1863 int earlyclobber;
1865 rtx in = real_in;
1866 rtx out = real_out;
1867 int in_offset = 0;
1868 int out_offset = 0;
1869 rtx value = 0;
1871 /* If operands exceed a word, we can't use either of them
1872 unless they have the same size. */
1873 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1874 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1875 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1876 return 0;
1878 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1879 respectively refers to a hard register. */
1881 /* Find the inside of any subregs. */
1882 while (GET_CODE (out) == SUBREG)
1884 if (GET_CODE (SUBREG_REG (out)) == REG
1885 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1886 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1887 GET_MODE (SUBREG_REG (out)),
1888 SUBREG_BYTE (out),
1889 GET_MODE (out));
1890 out = SUBREG_REG (out);
1892 while (GET_CODE (in) == SUBREG)
1894 if (GET_CODE (SUBREG_REG (in)) == REG
1895 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1896 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1897 GET_MODE (SUBREG_REG (in)),
1898 SUBREG_BYTE (in),
1899 GET_MODE (in));
1900 in = SUBREG_REG (in);
1903 /* Narrow down the reg class, the same way push_reload will;
1904 otherwise we might find a dummy now, but push_reload won't. */
1905 class = PREFERRED_RELOAD_CLASS (in, class);
1907 /* See if OUT will do. */
1908 if (GET_CODE (out) == REG
1909 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1911 unsigned int regno = REGNO (out) + out_offset;
1912 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1913 rtx saved_rtx;
1915 /* When we consider whether the insn uses OUT,
1916 ignore references within IN. They don't prevent us
1917 from copying IN into OUT, because those refs would
1918 move into the insn that reloads IN.
1920 However, we only ignore IN in its role as this reload.
1921 If the insn uses IN elsewhere and it contains OUT,
1922 that counts. We can't be sure it's the "same" operand
1923 so it might not go through this reload. */
1924 saved_rtx = *inloc;
1925 *inloc = const0_rtx;
1927 if (regno < FIRST_PSEUDO_REGISTER
1928 && HARD_REGNO_MODE_OK (regno, outmode)
1929 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1930 PATTERN (this_insn), outloc))
1932 unsigned int i;
1934 for (i = 0; i < nwords; i++)
1935 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1936 regno + i))
1937 break;
1939 if (i == nwords)
1941 if (GET_CODE (real_out) == REG)
1942 value = real_out;
1943 else
1944 value = gen_rtx_REG (outmode, regno);
1948 *inloc = saved_rtx;
1951 /* Consider using IN if OUT was not acceptable
1952 or if OUT dies in this insn (like the quotient in a divmod insn).
1953 We can't use IN unless it is dies in this insn,
1954 which means we must know accurately which hard regs are live.
1955 Also, the result can't go in IN if IN is used within OUT,
1956 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1957 if (hard_regs_live_known
1958 && GET_CODE (in) == REG
1959 && REGNO (in) < FIRST_PSEUDO_REGISTER
1960 && (value == 0
1961 || find_reg_note (this_insn, REG_UNUSED, real_out))
1962 && find_reg_note (this_insn, REG_DEAD, real_in)
1963 && !fixed_regs[REGNO (in)]
1964 && HARD_REGNO_MODE_OK (REGNO (in),
1965 /* The only case where out and real_out might
1966 have different modes is where real_out
1967 is a subreg, and in that case, out
1968 has a real mode. */
1969 (GET_MODE (out) != VOIDmode
1970 ? GET_MODE (out) : outmode)))
1972 unsigned int regno = REGNO (in) + in_offset;
1973 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1975 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1976 && ! hard_reg_set_here_p (regno, regno + nwords,
1977 PATTERN (this_insn))
1978 && (! earlyclobber
1979 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1980 PATTERN (this_insn), inloc)))
1982 unsigned int i;
1984 for (i = 0; i < nwords; i++)
1985 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1986 regno + i))
1987 break;
1989 if (i == nwords)
1991 /* If we were going to use OUT as the reload reg
1992 and changed our mind, it means OUT is a dummy that
1993 dies here. So don't bother copying value to it. */
1994 if (for_real >= 0 && value == real_out)
1995 rld[for_real].out = 0;
1996 if (GET_CODE (real_in) == REG)
1997 value = real_in;
1998 else
1999 value = gen_rtx_REG (inmode, regno);
2004 return value;
2007 /* This page contains subroutines used mainly for determining
2008 whether the IN or an OUT of a reload can serve as the
2009 reload register. */
2011 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2014 earlyclobber_operand_p (x)
2015 rtx x;
2017 int i;
2019 for (i = 0; i < n_earlyclobbers; i++)
2020 if (reload_earlyclobbers[i] == x)
2021 return 1;
2023 return 0;
2026 /* Return 1 if expression X alters a hard reg in the range
2027 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2028 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2029 X should be the body of an instruction. */
2031 static int
2032 hard_reg_set_here_p (beg_regno, end_regno, x)
2033 unsigned int beg_regno, end_regno;
2034 rtx x;
2036 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2038 rtx op0 = SET_DEST (x);
2040 while (GET_CODE (op0) == SUBREG)
2041 op0 = SUBREG_REG (op0);
2042 if (GET_CODE (op0) == REG)
2044 unsigned int r = REGNO (op0);
2046 /* See if this reg overlaps range under consideration. */
2047 if (r < end_regno
2048 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2049 return 1;
2052 else if (GET_CODE (x) == PARALLEL)
2054 int i = XVECLEN (x, 0) - 1;
2056 for (; i >= 0; i--)
2057 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2058 return 1;
2061 return 0;
2064 /* Return 1 if ADDR is a valid memory address for mode MODE,
2065 and check that each pseudo reg has the proper kind of
2066 hard reg. */
2069 strict_memory_address_p (mode, addr)
2070 enum machine_mode mode ATTRIBUTE_UNUSED;
2071 rtx addr;
2073 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2074 return 0;
2076 win:
2077 return 1;
2080 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2081 if they are the same hard reg, and has special hacks for
2082 autoincrement and autodecrement.
2083 This is specifically intended for find_reloads to use
2084 in determining whether two operands match.
2085 X is the operand whose number is the lower of the two.
2087 The value is 2 if Y contains a pre-increment that matches
2088 a non-incrementing address in X. */
2090 /* ??? To be completely correct, we should arrange to pass
2091 for X the output operand and for Y the input operand.
2092 For now, we assume that the output operand has the lower number
2093 because that is natural in (SET output (... input ...)). */
2096 operands_match_p (x, y)
2097 rtx x, y;
2099 int i;
2100 RTX_CODE code = GET_CODE (x);
2101 const char *fmt;
2102 int success_2;
2104 if (x == y)
2105 return 1;
2106 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2107 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2108 && GET_CODE (SUBREG_REG (y)) == REG)))
2110 int j;
2112 if (code == SUBREG)
2114 i = REGNO (SUBREG_REG (x));
2115 if (i >= FIRST_PSEUDO_REGISTER)
2116 goto slow;
2117 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2118 GET_MODE (SUBREG_REG (x)),
2119 SUBREG_BYTE (x),
2120 GET_MODE (x));
2122 else
2123 i = REGNO (x);
2125 if (GET_CODE (y) == SUBREG)
2127 j = REGNO (SUBREG_REG (y));
2128 if (j >= FIRST_PSEUDO_REGISTER)
2129 goto slow;
2130 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2131 GET_MODE (SUBREG_REG (y)),
2132 SUBREG_BYTE (y),
2133 GET_MODE (y));
2135 else
2136 j = REGNO (y);
2138 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2139 multiple hard register group, so that for example (reg:DI 0) and
2140 (reg:SI 1) will be considered the same register. */
2141 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2142 && i < FIRST_PSEUDO_REGISTER)
2143 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2144 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2145 && j < FIRST_PSEUDO_REGISTER)
2146 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2148 return i == j;
2150 /* If two operands must match, because they are really a single
2151 operand of an assembler insn, then two postincrements are invalid
2152 because the assembler insn would increment only once.
2153 On the other hand, a postincrement matches ordinary indexing
2154 if the postincrement is the output operand. */
2155 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2156 return operands_match_p (XEXP (x, 0), y);
2157 /* Two preincrements are invalid
2158 because the assembler insn would increment only once.
2159 On the other hand, a preincrement matches ordinary indexing
2160 if the preincrement is the input operand.
2161 In this case, return 2, since some callers need to do special
2162 things when this happens. */
2163 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2164 || GET_CODE (y) == PRE_MODIFY)
2165 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2167 slow:
2169 /* Now we have disposed of all the cases
2170 in which different rtx codes can match. */
2171 if (code != GET_CODE (y))
2172 return 0;
2173 if (code == LABEL_REF)
2174 return XEXP (x, 0) == XEXP (y, 0);
2175 if (code == SYMBOL_REF)
2176 return XSTR (x, 0) == XSTR (y, 0);
2178 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2180 if (GET_MODE (x) != GET_MODE (y))
2181 return 0;
2183 /* Compare the elements. If any pair of corresponding elements
2184 fail to match, return 0 for the whole things. */
2186 success_2 = 0;
2187 fmt = GET_RTX_FORMAT (code);
2188 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2190 int val, j;
2191 switch (fmt[i])
2193 case 'w':
2194 if (XWINT (x, i) != XWINT (y, i))
2195 return 0;
2196 break;
2198 case 'i':
2199 if (XINT (x, i) != XINT (y, i))
2200 return 0;
2201 break;
2203 case 'e':
2204 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2205 if (val == 0)
2206 return 0;
2207 /* If any subexpression returns 2,
2208 we should return 2 if we are successful. */
2209 if (val == 2)
2210 success_2 = 1;
2211 break;
2213 case '0':
2214 break;
2216 case 'E':
2217 if (XVECLEN (x, i) != XVECLEN (y, i))
2218 return 0;
2219 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2221 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2222 if (val == 0)
2223 return 0;
2224 if (val == 2)
2225 success_2 = 1;
2227 break;
2229 /* It is believed that rtx's at this level will never
2230 contain anything but integers and other rtx's,
2231 except for within LABEL_REFs and SYMBOL_REFs. */
2232 default:
2233 abort ();
2236 return 1 + success_2;
2239 /* Describe the range of registers or memory referenced by X.
2240 If X is a register, set REG_FLAG and put the first register
2241 number into START and the last plus one into END.
2242 If X is a memory reference, put a base address into BASE
2243 and a range of integer offsets into START and END.
2244 If X is pushing on the stack, we can assume it causes no trouble,
2245 so we set the SAFE field. */
2247 static struct decomposition
2248 decompose (x)
2249 rtx x;
2251 struct decomposition val;
2252 int all_const = 0;
2254 val.reg_flag = 0;
2255 val.safe = 0;
2256 val.base = 0;
2257 if (GET_CODE (x) == MEM)
2259 rtx base = NULL_RTX, offset = 0;
2260 rtx addr = XEXP (x, 0);
2262 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2263 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2265 val.base = XEXP (addr, 0);
2266 val.start = -GET_MODE_SIZE (GET_MODE (x));
2267 val.end = GET_MODE_SIZE (GET_MODE (x));
2268 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2269 return val;
2272 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2274 if (GET_CODE (XEXP (addr, 1)) == PLUS
2275 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2276 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2278 val.base = XEXP (addr, 0);
2279 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2280 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2281 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2282 return val;
2286 if (GET_CODE (addr) == CONST)
2288 addr = XEXP (addr, 0);
2289 all_const = 1;
2291 if (GET_CODE (addr) == PLUS)
2293 if (CONSTANT_P (XEXP (addr, 0)))
2295 base = XEXP (addr, 1);
2296 offset = XEXP (addr, 0);
2298 else if (CONSTANT_P (XEXP (addr, 1)))
2300 base = XEXP (addr, 0);
2301 offset = XEXP (addr, 1);
2305 if (offset == 0)
2307 base = addr;
2308 offset = const0_rtx;
2310 if (GET_CODE (offset) == CONST)
2311 offset = XEXP (offset, 0);
2312 if (GET_CODE (offset) == PLUS)
2314 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2316 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2317 offset = XEXP (offset, 0);
2319 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2321 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2322 offset = XEXP (offset, 1);
2324 else
2326 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2327 offset = const0_rtx;
2330 else if (GET_CODE (offset) != CONST_INT)
2332 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2333 offset = const0_rtx;
2336 if (all_const && GET_CODE (base) == PLUS)
2337 base = gen_rtx_CONST (GET_MODE (base), base);
2339 if (GET_CODE (offset) != CONST_INT)
2340 abort ();
2342 val.start = INTVAL (offset);
2343 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2344 val.base = base;
2345 return val;
2347 else if (GET_CODE (x) == REG)
2349 val.reg_flag = 1;
2350 val.start = true_regnum (x);
2351 if (val.start < 0)
2353 /* A pseudo with no hard reg. */
2354 val.start = REGNO (x);
2355 val.end = val.start + 1;
2357 else
2358 /* A hard reg. */
2359 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2361 else if (GET_CODE (x) == SUBREG)
2363 if (GET_CODE (SUBREG_REG (x)) != REG)
2364 /* This could be more precise, but it's good enough. */
2365 return decompose (SUBREG_REG (x));
2366 val.reg_flag = 1;
2367 val.start = true_regnum (x);
2368 if (val.start < 0)
2369 return decompose (SUBREG_REG (x));
2370 else
2371 /* A hard reg. */
2372 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2374 else if (CONSTANT_P (x)
2375 /* This hasn't been assigned yet, so it can't conflict yet. */
2376 || GET_CODE (x) == SCRATCH)
2377 val.safe = 1;
2378 else
2379 abort ();
2380 return val;
2383 /* Return 1 if altering Y will not modify the value of X.
2384 Y is also described by YDATA, which should be decompose (Y). */
2386 static int
2387 immune_p (x, y, ydata)
2388 rtx x, y;
2389 struct decomposition ydata;
2391 struct decomposition xdata;
2393 if (ydata.reg_flag)
2394 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2395 if (ydata.safe)
2396 return 1;
2398 if (GET_CODE (y) != MEM)
2399 abort ();
2400 /* If Y is memory and X is not, Y can't affect X. */
2401 if (GET_CODE (x) != MEM)
2402 return 1;
2404 xdata = decompose (x);
2406 if (! rtx_equal_p (xdata.base, ydata.base))
2408 /* If bases are distinct symbolic constants, there is no overlap. */
2409 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2410 return 1;
2411 /* Constants and stack slots never overlap. */
2412 if (CONSTANT_P (xdata.base)
2413 && (ydata.base == frame_pointer_rtx
2414 || ydata.base == hard_frame_pointer_rtx
2415 || ydata.base == stack_pointer_rtx))
2416 return 1;
2417 if (CONSTANT_P (ydata.base)
2418 && (xdata.base == frame_pointer_rtx
2419 || xdata.base == hard_frame_pointer_rtx
2420 || xdata.base == stack_pointer_rtx))
2421 return 1;
2422 /* If either base is variable, we don't know anything. */
2423 return 0;
2426 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2429 /* Similar, but calls decompose. */
2432 safe_from_earlyclobber (op, clobber)
2433 rtx op, clobber;
2435 struct decomposition early_data;
2437 early_data = decompose (clobber);
2438 return immune_p (op, clobber, early_data);
2441 /* Main entry point of this file: search the body of INSN
2442 for values that need reloading and record them with push_reload.
2443 REPLACE nonzero means record also where the values occur
2444 so that subst_reloads can be used.
2446 IND_LEVELS says how many levels of indirection are supported by this
2447 machine; a value of zero means that a memory reference is not a valid
2448 memory address.
2450 LIVE_KNOWN says we have valid information about which hard
2451 regs are live at each point in the program; this is true when
2452 we are called from global_alloc but false when stupid register
2453 allocation has been done.
2455 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2456 which is nonnegative if the reg has been commandeered for reloading into.
2457 It is copied into STATIC_RELOAD_REG_P and referenced from there
2458 by various subroutines.
2460 Return TRUE if some operands need to be changed, because of swapping
2461 commutative operands, reg_equiv_address substitution, or whatever. */
2464 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2465 rtx insn;
2466 int replace, ind_levels;
2467 int live_known;
2468 short *reload_reg_p;
2470 int insn_code_number;
2471 int i, j;
2472 int noperands;
2473 /* These start out as the constraints for the insn
2474 and they are chewed up as we consider alternatives. */
2475 char *constraints[MAX_RECOG_OPERANDS];
2476 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2477 a register. */
2478 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2479 char pref_or_nothing[MAX_RECOG_OPERANDS];
2480 /* Nonzero for a MEM operand whose entire address needs a reload. */
2481 int address_reloaded[MAX_RECOG_OPERANDS];
2482 /* Value of enum reload_type to use for operand. */
2483 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2484 /* Value of enum reload_type to use within address of operand. */
2485 enum reload_type address_type[MAX_RECOG_OPERANDS];
2486 /* Save the usage of each operand. */
2487 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2488 int no_input_reloads = 0, no_output_reloads = 0;
2489 int n_alternatives;
2490 int this_alternative[MAX_RECOG_OPERANDS];
2491 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2492 char this_alternative_win[MAX_RECOG_OPERANDS];
2493 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2494 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2495 int this_alternative_matches[MAX_RECOG_OPERANDS];
2496 int swapped;
2497 int goal_alternative[MAX_RECOG_OPERANDS];
2498 int this_alternative_number;
2499 int goal_alternative_number = 0;
2500 int operand_reloadnum[MAX_RECOG_OPERANDS];
2501 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2502 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2503 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2504 char goal_alternative_win[MAX_RECOG_OPERANDS];
2505 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2506 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2507 int goal_alternative_swapped;
2508 int best;
2509 int commutative;
2510 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2511 rtx substed_operand[MAX_RECOG_OPERANDS];
2512 rtx body = PATTERN (insn);
2513 rtx set = single_set (insn);
2514 int goal_earlyclobber = 0, this_earlyclobber;
2515 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2516 int retval = 0;
2518 this_insn = insn;
2519 n_reloads = 0;
2520 n_replacements = 0;
2521 n_earlyclobbers = 0;
2522 replace_reloads = replace;
2523 hard_regs_live_known = live_known;
2524 static_reload_reg_p = reload_reg_p;
2526 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2527 neither are insns that SET cc0. Insns that use CC0 are not allowed
2528 to have any input reloads. */
2529 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2530 no_output_reloads = 1;
2532 #ifdef HAVE_cc0
2533 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2534 no_input_reloads = 1;
2535 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2536 no_output_reloads = 1;
2537 #endif
2539 #ifdef SECONDARY_MEMORY_NEEDED
2540 /* The eliminated forms of any secondary memory locations are per-insn, so
2541 clear them out here. */
2543 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2544 #endif
2546 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2547 is cheap to move between them. If it is not, there may not be an insn
2548 to do the copy, so we may need a reload. */
2549 if (GET_CODE (body) == SET
2550 && GET_CODE (SET_DEST (body)) == REG
2551 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2552 && GET_CODE (SET_SRC (body)) == REG
2553 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2554 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2555 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2556 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2557 return 0;
2559 extract_insn (insn);
2561 noperands = reload_n_operands = recog_data.n_operands;
2562 n_alternatives = recog_data.n_alternatives;
2564 /* Just return "no reloads" if insn has no operands with constraints. */
2565 if (noperands == 0 || n_alternatives == 0)
2566 return 0;
2568 insn_code_number = INSN_CODE (insn);
2569 this_insn_is_asm = insn_code_number < 0;
2571 memcpy (operand_mode, recog_data.operand_mode,
2572 noperands * sizeof (enum machine_mode));
2573 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2575 commutative = -1;
2577 /* If we will need to know, later, whether some pair of operands
2578 are the same, we must compare them now and save the result.
2579 Reloading the base and index registers will clobber them
2580 and afterward they will fail to match. */
2582 for (i = 0; i < noperands; i++)
2584 char *p;
2585 int c;
2587 substed_operand[i] = recog_data.operand[i];
2588 p = constraints[i];
2590 modified[i] = RELOAD_READ;
2592 /* Scan this operand's constraint to see if it is an output operand,
2593 an in-out operand, is commutative, or should match another. */
2595 while ((c = *p))
2597 p += CONSTRAINT_LEN (c, p);
2598 if (c == '=')
2599 modified[i] = RELOAD_WRITE;
2600 else if (c == '+')
2601 modified[i] = RELOAD_READ_WRITE;
2602 else if (c == '%')
2604 /* The last operand should not be marked commutative. */
2605 if (i == noperands - 1)
2606 abort ();
2608 commutative = i;
2610 else if (ISDIGIT (c))
2612 c = strtoul (p - 1, &p, 10);
2614 operands_match[c][i]
2615 = operands_match_p (recog_data.operand[c],
2616 recog_data.operand[i]);
2618 /* An operand may not match itself. */
2619 if (c == i)
2620 abort ();
2622 /* If C can be commuted with C+1, and C might need to match I,
2623 then C+1 might also need to match I. */
2624 if (commutative >= 0)
2626 if (c == commutative || c == commutative + 1)
2628 int other = c + (c == commutative ? 1 : -1);
2629 operands_match[other][i]
2630 = operands_match_p (recog_data.operand[other],
2631 recog_data.operand[i]);
2633 if (i == commutative || i == commutative + 1)
2635 int other = i + (i == commutative ? 1 : -1);
2636 operands_match[c][other]
2637 = operands_match_p (recog_data.operand[c],
2638 recog_data.operand[other]);
2640 /* Note that C is supposed to be less than I.
2641 No need to consider altering both C and I because in
2642 that case we would alter one into the other. */
2648 /* Examine each operand that is a memory reference or memory address
2649 and reload parts of the addresses into index registers.
2650 Also here any references to pseudo regs that didn't get hard regs
2651 but are equivalent to constants get replaced in the insn itself
2652 with those constants. Nobody will ever see them again.
2654 Finally, set up the preferred classes of each operand. */
2656 for (i = 0; i < noperands; i++)
2658 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2660 address_reloaded[i] = 0;
2661 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2662 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2663 : RELOAD_OTHER);
2664 address_type[i]
2665 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2666 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2667 : RELOAD_OTHER);
2669 if (*constraints[i] == 0)
2670 /* Ignore things like match_operator operands. */
2672 else if (constraints[i][0] == 'p'
2673 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2675 find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2676 recog_data.operand[i],
2677 recog_data.operand_loc[i],
2678 i, operand_type[i], ind_levels, insn);
2680 /* If we now have a simple operand where we used to have a
2681 PLUS or MULT, re-recognize and try again. */
2682 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2683 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2684 && (GET_CODE (recog_data.operand[i]) == MULT
2685 || GET_CODE (recog_data.operand[i]) == PLUS))
2687 INSN_CODE (insn) = -1;
2688 retval = find_reloads (insn, replace, ind_levels, live_known,
2689 reload_reg_p);
2690 return retval;
2693 recog_data.operand[i] = *recog_data.operand_loc[i];
2694 substed_operand[i] = recog_data.operand[i];
2696 else if (code == MEM)
2698 address_reloaded[i]
2699 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2700 recog_data.operand_loc[i],
2701 XEXP (recog_data.operand[i], 0),
2702 &XEXP (recog_data.operand[i], 0),
2703 i, address_type[i], ind_levels, insn);
2704 recog_data.operand[i] = *recog_data.operand_loc[i];
2705 substed_operand[i] = recog_data.operand[i];
2707 else if (code == SUBREG)
2709 rtx reg = SUBREG_REG (recog_data.operand[i]);
2710 rtx op
2711 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2712 ind_levels,
2713 set != 0
2714 && &SET_DEST (set) == recog_data.operand_loc[i],
2715 insn,
2716 &address_reloaded[i]);
2718 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2719 that didn't get a hard register, emit a USE with a REG_EQUAL
2720 note in front so that we might inherit a previous, possibly
2721 wider reload. */
2723 if (replace
2724 && GET_CODE (op) == MEM
2725 && GET_CODE (reg) == REG
2726 && (GET_MODE_SIZE (GET_MODE (reg))
2727 >= GET_MODE_SIZE (GET_MODE (op))))
2728 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2729 insn),
2730 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2732 substed_operand[i] = recog_data.operand[i] = op;
2734 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2735 /* We can get a PLUS as an "operand" as a result of register
2736 elimination. See eliminate_regs and gen_reload. We handle
2737 a unary operator by reloading the operand. */
2738 substed_operand[i] = recog_data.operand[i]
2739 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2740 ind_levels, 0, insn,
2741 &address_reloaded[i]);
2742 else if (code == REG)
2744 /* This is equivalent to calling find_reloads_toplev.
2745 The code is duplicated for speed.
2746 When we find a pseudo always equivalent to a constant,
2747 we replace it by the constant. We must be sure, however,
2748 that we don't try to replace it in the insn in which it
2749 is being set. */
2750 int regno = REGNO (recog_data.operand[i]);
2751 if (reg_equiv_constant[regno] != 0
2752 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2754 /* Record the existing mode so that the check if constants are
2755 allowed will work when operand_mode isn't specified. */
2757 if (operand_mode[i] == VOIDmode)
2758 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2760 substed_operand[i] = recog_data.operand[i]
2761 = reg_equiv_constant[regno];
2763 if (reg_equiv_memory_loc[regno] != 0
2764 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2765 /* We need not give a valid is_set_dest argument since the case
2766 of a constant equivalence was checked above. */
2767 substed_operand[i] = recog_data.operand[i]
2768 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2769 ind_levels, 0, insn,
2770 &address_reloaded[i]);
2772 /* If the operand is still a register (we didn't replace it with an
2773 equivalent), get the preferred class to reload it into. */
2774 code = GET_CODE (recog_data.operand[i]);
2775 preferred_class[i]
2776 = ((code == REG && REGNO (recog_data.operand[i])
2777 >= FIRST_PSEUDO_REGISTER)
2778 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2779 : NO_REGS);
2780 pref_or_nothing[i]
2781 = (code == REG
2782 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2783 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2786 /* If this is simply a copy from operand 1 to operand 0, merge the
2787 preferred classes for the operands. */
2788 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2789 && recog_data.operand[1] == SET_SRC (set))
2791 preferred_class[0] = preferred_class[1]
2792 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2793 pref_or_nothing[0] |= pref_or_nothing[1];
2794 pref_or_nothing[1] |= pref_or_nothing[0];
2797 /* Now see what we need for pseudo-regs that didn't get hard regs
2798 or got the wrong kind of hard reg. For this, we must consider
2799 all the operands together against the register constraints. */
2801 best = MAX_RECOG_OPERANDS * 2 + 600;
2803 swapped = 0;
2804 goal_alternative_swapped = 0;
2805 try_swapped:
2807 /* The constraints are made of several alternatives.
2808 Each operand's constraint looks like foo,bar,... with commas
2809 separating the alternatives. The first alternatives for all
2810 operands go together, the second alternatives go together, etc.
2812 First loop over alternatives. */
2814 for (this_alternative_number = 0;
2815 this_alternative_number < n_alternatives;
2816 this_alternative_number++)
2818 /* Loop over operands for one constraint alternative. */
2819 /* LOSERS counts those that don't fit this alternative
2820 and would require loading. */
2821 int losers = 0;
2822 /* BAD is set to 1 if it some operand can't fit this alternative
2823 even after reloading. */
2824 int bad = 0;
2825 /* REJECT is a count of how undesirable this alternative says it is
2826 if any reloading is required. If the alternative matches exactly
2827 then REJECT is ignored, but otherwise it gets this much
2828 counted against it in addition to the reloading needed. Each
2829 ? counts three times here since we want the disparaging caused by
2830 a bad register class to only count 1/3 as much. */
2831 int reject = 0;
2833 this_earlyclobber = 0;
2835 for (i = 0; i < noperands; i++)
2837 char *p = constraints[i];
2838 char *end;
2839 int len;
2840 int win = 0;
2841 int did_match = 0;
2842 /* 0 => this operand can be reloaded somehow for this alternative. */
2843 int badop = 1;
2844 /* 0 => this operand can be reloaded if the alternative allows regs. */
2845 int winreg = 0;
2846 int c;
2847 int m;
2848 rtx operand = recog_data.operand[i];
2849 int offset = 0;
2850 /* Nonzero means this is a MEM that must be reloaded into a reg
2851 regardless of what the constraint says. */
2852 int force_reload = 0;
2853 int offmemok = 0;
2854 /* Nonzero if a constant forced into memory would be OK for this
2855 operand. */
2856 int constmemok = 0;
2857 int earlyclobber = 0;
2859 /* If the predicate accepts a unary operator, it means that
2860 we need to reload the operand, but do not do this for
2861 match_operator and friends. */
2862 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2863 operand = XEXP (operand, 0);
2865 /* If the operand is a SUBREG, extract
2866 the REG or MEM (or maybe even a constant) within.
2867 (Constants can occur as a result of reg_equiv_constant.) */
2869 while (GET_CODE (operand) == SUBREG)
2871 /* Offset only matters when operand is a REG and
2872 it is a hard reg. This is because it is passed
2873 to reg_fits_class_p if it is a REG and all pseudos
2874 return 0 from that function. */
2875 if (GET_CODE (SUBREG_REG (operand)) == REG
2876 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2878 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2879 GET_MODE (SUBREG_REG (operand)),
2880 SUBREG_BYTE (operand),
2881 GET_MODE (operand));
2883 operand = SUBREG_REG (operand);
2884 /* Force reload if this is a constant or PLUS or if there may
2885 be a problem accessing OPERAND in the outer mode. */
2886 if (CONSTANT_P (operand)
2887 || GET_CODE (operand) == PLUS
2888 /* We must force a reload of paradoxical SUBREGs
2889 of a MEM because the alignment of the inner value
2890 may not be enough to do the outer reference. On
2891 big-endian machines, it may also reference outside
2892 the object.
2894 On machines that extend byte operations and we have a
2895 SUBREG where both the inner and outer modes are no wider
2896 than a word and the inner mode is narrower, is integral,
2897 and gets extended when loaded from memory, combine.c has
2898 made assumptions about the behavior of the machine in such
2899 register access. If the data is, in fact, in memory we
2900 must always load using the size assumed to be in the
2901 register and let the insn do the different-sized
2902 accesses.
2904 This is doubly true if WORD_REGISTER_OPERATIONS. In
2905 this case eliminate_regs has left non-paradoxical
2906 subregs for push_reloads to see. Make sure it does
2907 by forcing the reload.
2909 ??? When is it right at this stage to have a subreg
2910 of a mem that is _not_ to be handled specially? IMO
2911 those should have been reduced to just a mem. */
2912 || ((GET_CODE (operand) == MEM
2913 || (GET_CODE (operand)== REG
2914 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2915 #ifndef WORD_REGISTER_OPERATIONS
2916 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2917 < BIGGEST_ALIGNMENT)
2918 && (GET_MODE_SIZE (operand_mode[i])
2919 > GET_MODE_SIZE (GET_MODE (operand))))
2920 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2921 #ifdef LOAD_EXTEND_OP
2922 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2923 && (GET_MODE_SIZE (GET_MODE (operand))
2924 <= UNITS_PER_WORD)
2925 && (GET_MODE_SIZE (operand_mode[i])
2926 > GET_MODE_SIZE (GET_MODE (operand)))
2927 && INTEGRAL_MODE_P (GET_MODE (operand))
2928 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2929 #endif
2931 #endif
2933 /* This following hunk of code should no longer be
2934 needed at all with SUBREG_BYTE. If you need this
2935 code back, please explain to me why so I can
2936 fix the real problem. -DaveM */
2937 #if 0
2938 /* Subreg of a hard reg which can't handle the subreg's mode
2939 or which would handle that mode in the wrong number of
2940 registers for subregging to work. */
2941 || (GET_CODE (operand) == REG
2942 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2943 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2944 && (GET_MODE_SIZE (GET_MODE (operand))
2945 > UNITS_PER_WORD)
2946 && ((GET_MODE_SIZE (GET_MODE (operand))
2947 / UNITS_PER_WORD)
2948 != HARD_REGNO_NREGS (REGNO (operand),
2949 GET_MODE (operand))))
2950 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2951 operand_mode[i])))
2952 #endif
2954 force_reload = 1;
2957 this_alternative[i] = (int) NO_REGS;
2958 this_alternative_win[i] = 0;
2959 this_alternative_match_win[i] = 0;
2960 this_alternative_offmemok[i] = 0;
2961 this_alternative_earlyclobber[i] = 0;
2962 this_alternative_matches[i] = -1;
2964 /* An empty constraint or empty alternative
2965 allows anything which matched the pattern. */
2966 if (*p == 0 || *p == ',')
2967 win = 1, badop = 0;
2969 /* Scan this alternative's specs for this operand;
2970 set WIN if the operand fits any letter in this alternative.
2971 Otherwise, clear BADOP if this operand could
2972 fit some letter after reloads,
2973 or set WINREG if this operand could fit after reloads
2974 provided the constraint allows some registers. */
2977 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2979 case '\0':
2980 len = 0;
2981 break;
2982 case ',':
2983 c = '\0';
2984 break;
2986 case '=': case '+': case '*':
2987 break;
2989 case '%':
2990 /* The last operand should not be marked commutative. */
2991 if (i != noperands - 1)
2992 commutative = i;
2993 break;
2995 case '?':
2996 reject += 6;
2997 break;
2999 case '!':
3000 reject = 600;
3001 break;
3003 case '#':
3004 /* Ignore rest of this alternative as far as
3005 reloading is concerned. */
3007 p++;
3008 while (*p && *p != ',');
3009 len = 0;
3010 break;
3012 case '0': case '1': case '2': case '3': case '4':
3013 case '5': case '6': case '7': case '8': case '9':
3014 m = strtoul (p, &end, 10);
3015 p = end;
3016 len = 0;
3018 this_alternative_matches[i] = m;
3019 /* We are supposed to match a previous operand.
3020 If we do, we win if that one did.
3021 If we do not, count both of the operands as losers.
3022 (This is too conservative, since most of the time
3023 only a single reload insn will be needed to make
3024 the two operands win. As a result, this alternative
3025 may be rejected when it is actually desirable.) */
3026 if ((swapped && (m != commutative || i != commutative + 1))
3027 /* If we are matching as if two operands were swapped,
3028 also pretend that operands_match had been computed
3029 with swapped.
3030 But if I is the second of those and C is the first,
3031 don't exchange them, because operands_match is valid
3032 only on one side of its diagonal. */
3033 ? (operands_match
3034 [(m == commutative || m == commutative + 1)
3035 ? 2 * commutative + 1 - m : m]
3036 [(i == commutative || i == commutative + 1)
3037 ? 2 * commutative + 1 - i : i])
3038 : operands_match[m][i])
3040 /* If we are matching a non-offsettable address where an
3041 offsettable address was expected, then we must reject
3042 this combination, because we can't reload it. */
3043 if (this_alternative_offmemok[m]
3044 && GET_CODE (recog_data.operand[m]) == MEM
3045 && this_alternative[m] == (int) NO_REGS
3046 && ! this_alternative_win[m])
3047 bad = 1;
3049 did_match = this_alternative_win[m];
3051 else
3053 /* Operands don't match. */
3054 rtx value;
3055 /* Retroactively mark the operand we had to match
3056 as a loser, if it wasn't already. */
3057 if (this_alternative_win[m])
3058 losers++;
3059 this_alternative_win[m] = 0;
3060 if (this_alternative[m] == (int) NO_REGS)
3061 bad = 1;
3062 /* But count the pair only once in the total badness of
3063 this alternative, if the pair can be a dummy reload. */
3064 value
3065 = find_dummy_reload (recog_data.operand[i],
3066 recog_data.operand[m],
3067 recog_data.operand_loc[i],
3068 recog_data.operand_loc[m],
3069 operand_mode[i], operand_mode[m],
3070 this_alternative[m], -1,
3071 this_alternative_earlyclobber[m]);
3073 if (value != 0)
3074 losers--;
3076 /* This can be fixed with reloads if the operand
3077 we are supposed to match can be fixed with reloads. */
3078 badop = 0;
3079 this_alternative[i] = this_alternative[m];
3081 /* If we have to reload this operand and some previous
3082 operand also had to match the same thing as this
3083 operand, we don't know how to do that. So reject this
3084 alternative. */
3085 if (! did_match || force_reload)
3086 for (j = 0; j < i; j++)
3087 if (this_alternative_matches[j]
3088 == this_alternative_matches[i])
3089 badop = 1;
3090 break;
3092 case 'p':
3093 /* All necessary reloads for an address_operand
3094 were handled in find_reloads_address. */
3095 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3096 win = 1;
3097 badop = 0;
3098 break;
3100 case 'm':
3101 if (force_reload)
3102 break;
3103 if (GET_CODE (operand) == MEM
3104 || (GET_CODE (operand) == REG
3105 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3106 && reg_renumber[REGNO (operand)] < 0))
3107 win = 1;
3108 if (CONSTANT_P (operand)
3109 /* force_const_mem does not accept HIGH. */
3110 && GET_CODE (operand) != HIGH)
3111 badop = 0;
3112 constmemok = 1;
3113 break;
3115 case '<':
3116 if (GET_CODE (operand) == MEM
3117 && ! address_reloaded[i]
3118 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3119 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3120 win = 1;
3121 break;
3123 case '>':
3124 if (GET_CODE (operand) == MEM
3125 && ! address_reloaded[i]
3126 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3127 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3128 win = 1;
3129 break;
3131 /* Memory operand whose address is not offsettable. */
3132 case 'V':
3133 if (force_reload)
3134 break;
3135 if (GET_CODE (operand) == MEM
3136 && ! (ind_levels ? offsettable_memref_p (operand)
3137 : offsettable_nonstrict_memref_p (operand))
3138 /* Certain mem addresses will become offsettable
3139 after they themselves are reloaded. This is important;
3140 we don't want our own handling of unoffsettables
3141 to override the handling of reg_equiv_address. */
3142 && !(GET_CODE (XEXP (operand, 0)) == REG
3143 && (ind_levels == 0
3144 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3145 win = 1;
3146 break;
3148 /* Memory operand whose address is offsettable. */
3149 case 'o':
3150 if (force_reload)
3151 break;
3152 if ((GET_CODE (operand) == MEM
3153 /* If IND_LEVELS, find_reloads_address won't reload a
3154 pseudo that didn't get a hard reg, so we have to
3155 reject that case. */
3156 && ((ind_levels ? offsettable_memref_p (operand)
3157 : offsettable_nonstrict_memref_p (operand))
3158 /* A reloaded address is offsettable because it is now
3159 just a simple register indirect. */
3160 || address_reloaded[i]))
3161 || (GET_CODE (operand) == REG
3162 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3163 && reg_renumber[REGNO (operand)] < 0
3164 /* If reg_equiv_address is nonzero, we will be
3165 loading it into a register; hence it will be
3166 offsettable, but we cannot say that reg_equiv_mem
3167 is offsettable without checking. */
3168 && ((reg_equiv_mem[REGNO (operand)] != 0
3169 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3170 || (reg_equiv_address[REGNO (operand)] != 0))))
3171 win = 1;
3172 /* force_const_mem does not accept HIGH. */
3173 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3174 || GET_CODE (operand) == MEM)
3175 badop = 0;
3176 constmemok = 1;
3177 offmemok = 1;
3178 break;
3180 case '&':
3181 /* Output operand that is stored before the need for the
3182 input operands (and their index registers) is over. */
3183 earlyclobber = 1, this_earlyclobber = 1;
3184 break;
3186 case 'E':
3187 case 'F':
3188 if (GET_CODE (operand) == CONST_DOUBLE
3189 || (GET_CODE (operand) == CONST_VECTOR
3190 && (GET_MODE_CLASS (GET_MODE (operand))
3191 == MODE_VECTOR_FLOAT)))
3192 win = 1;
3193 break;
3195 case 'G':
3196 case 'H':
3197 if (GET_CODE (operand) == CONST_DOUBLE
3198 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3199 win = 1;
3200 break;
3202 case 's':
3203 if (GET_CODE (operand) == CONST_INT
3204 || (GET_CODE (operand) == CONST_DOUBLE
3205 && GET_MODE (operand) == VOIDmode))
3206 break;
3207 case 'i':
3208 if (CONSTANT_P (operand)
3209 #ifdef LEGITIMATE_PIC_OPERAND_P
3210 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3211 #endif
3213 win = 1;
3214 break;
3216 case 'n':
3217 if (GET_CODE (operand) == CONST_INT
3218 || (GET_CODE (operand) == CONST_DOUBLE
3219 && GET_MODE (operand) == VOIDmode))
3220 win = 1;
3221 break;
3223 case 'I':
3224 case 'J':
3225 case 'K':
3226 case 'L':
3227 case 'M':
3228 case 'N':
3229 case 'O':
3230 case 'P':
3231 if (GET_CODE (operand) == CONST_INT
3232 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3233 win = 1;
3234 break;
3236 case 'X':
3237 win = 1;
3238 break;
3240 case 'g':
3241 if (! force_reload
3242 /* A PLUS is never a valid operand, but reload can make
3243 it from a register when eliminating registers. */
3244 && GET_CODE (operand) != PLUS
3245 /* A SCRATCH is not a valid operand. */
3246 && GET_CODE (operand) != SCRATCH
3247 #ifdef LEGITIMATE_PIC_OPERAND_P
3248 && (! CONSTANT_P (operand)
3249 || ! flag_pic
3250 || LEGITIMATE_PIC_OPERAND_P (operand))
3251 #endif
3252 && (GENERAL_REGS == ALL_REGS
3253 || GET_CODE (operand) != REG
3254 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3255 && reg_renumber[REGNO (operand)] < 0)))
3256 win = 1;
3257 /* Drop through into 'r' case. */
3259 case 'r':
3260 this_alternative[i]
3261 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3262 goto reg;
3264 default:
3265 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3267 #ifdef EXTRA_CONSTRAINT_STR
3268 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3270 if (force_reload)
3271 break;
3272 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3273 win = 1;
3274 /* If the address was already reloaded,
3275 we win as well. */
3276 if (GET_CODE (operand) == MEM && address_reloaded[i])
3277 win = 1;
3278 /* Likewise if the address will be reloaded because
3279 reg_equiv_address is nonzero. For reg_equiv_mem
3280 we have to check. */
3281 if (GET_CODE (operand) == REG
3282 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3283 && reg_renumber[REGNO (operand)] < 0
3284 && ((reg_equiv_mem[REGNO (operand)] != 0
3285 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3286 || (reg_equiv_address[REGNO (operand)] != 0)))
3287 win = 1;
3289 /* If we didn't already win, we can reload
3290 constants via force_const_mem, and other
3291 MEMs by reloading the address like for 'o'. */
3292 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3293 || GET_CODE (operand) == MEM)
3294 badop = 0;
3295 constmemok = 1;
3296 offmemok = 1;
3297 break;
3299 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3301 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3302 win = 1;
3304 /* If we didn't already win, we can reload
3305 the address into a base register. */
3306 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3307 badop = 0;
3309 /* Address constraints are reloaded in Pmode, no matter
3310 what mode is given in the machine description. */
3311 operand_mode[i] = Pmode;
3312 break;
3315 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3316 win = 1;
3317 #endif
3318 break;
3321 this_alternative[i]
3322 = (int) (reg_class_subunion
3323 [this_alternative[i]]
3324 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3325 reg:
3326 if (GET_MODE (operand) == BLKmode)
3327 break;
3328 winreg = 1;
3329 if (GET_CODE (operand) == REG
3330 && reg_fits_class_p (operand, this_alternative[i],
3331 offset, GET_MODE (recog_data.operand[i])))
3332 win = 1;
3333 break;
3335 while ((p += len), c);
3337 constraints[i] = p;
3339 /* If this operand could be handled with a reg,
3340 and some reg is allowed, then this operand can be handled. */
3341 if (winreg && this_alternative[i] != (int) NO_REGS)
3342 badop = 0;
3344 /* Record which operands fit this alternative. */
3345 this_alternative_earlyclobber[i] = earlyclobber;
3346 if (win && ! force_reload)
3347 this_alternative_win[i] = 1;
3348 else if (did_match && ! force_reload)
3349 this_alternative_match_win[i] = 1;
3350 else
3352 int const_to_mem = 0;
3354 this_alternative_offmemok[i] = offmemok;
3355 losers++;
3356 if (badop)
3357 bad = 1;
3358 /* Alternative loses if it has no regs for a reg operand. */
3359 if (GET_CODE (operand) == REG
3360 && this_alternative[i] == (int) NO_REGS
3361 && this_alternative_matches[i] < 0)
3362 bad = 1;
3364 /* If this is a constant that is reloaded into the desired
3365 class by copying it to memory first, count that as another
3366 reload. This is consistent with other code and is
3367 required to avoid choosing another alternative when
3368 the constant is moved into memory by this function on
3369 an early reload pass. Note that the test here is
3370 precisely the same as in the code below that calls
3371 force_const_mem. */
3372 if (CONSTANT_P (operand)
3373 /* force_const_mem does not accept HIGH. */
3374 && GET_CODE (operand) != HIGH
3375 && ((PREFERRED_RELOAD_CLASS (operand,
3376 (enum reg_class) this_alternative[i])
3377 == NO_REGS)
3378 || no_input_reloads)
3379 && operand_mode[i] != VOIDmode)
3381 const_to_mem = 1;
3382 if (this_alternative[i] != (int) NO_REGS)
3383 losers++;
3386 /* If we can't reload this value at all, reject this
3387 alternative. Note that we could also lose due to
3388 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3389 here. */
3391 if (! CONSTANT_P (operand)
3392 && (enum reg_class) this_alternative[i] != NO_REGS
3393 && (PREFERRED_RELOAD_CLASS (operand,
3394 (enum reg_class) this_alternative[i])
3395 == NO_REGS))
3396 bad = 1;
3398 /* Alternative loses if it requires a type of reload not
3399 permitted for this insn. We can always reload SCRATCH
3400 and objects with a REG_UNUSED note. */
3401 else if (GET_CODE (operand) != SCRATCH
3402 && modified[i] != RELOAD_READ && no_output_reloads
3403 && ! find_reg_note (insn, REG_UNUSED, operand))
3404 bad = 1;
3405 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3406 && ! const_to_mem)
3407 bad = 1;
3409 /* We prefer to reload pseudos over reloading other things,
3410 since such reloads may be able to be eliminated later.
3411 If we are reloading a SCRATCH, we won't be generating any
3412 insns, just using a register, so it is also preferred.
3413 So bump REJECT in other cases. Don't do this in the
3414 case where we are forcing a constant into memory and
3415 it will then win since we don't want to have a different
3416 alternative match then. */
3417 if (! (GET_CODE (operand) == REG
3418 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3419 && GET_CODE (operand) != SCRATCH
3420 && ! (const_to_mem && constmemok))
3421 reject += 2;
3423 /* Input reloads can be inherited more often than output
3424 reloads can be removed, so penalize output reloads. */
3425 if (operand_type[i] != RELOAD_FOR_INPUT
3426 && GET_CODE (operand) != SCRATCH)
3427 reject++;
3430 /* If this operand is a pseudo register that didn't get a hard
3431 reg and this alternative accepts some register, see if the
3432 class that we want is a subset of the preferred class for this
3433 register. If not, but it intersects that class, use the
3434 preferred class instead. If it does not intersect the preferred
3435 class, show that usage of this alternative should be discouraged;
3436 it will be discouraged more still if the register is `preferred
3437 or nothing'. We do this because it increases the chance of
3438 reusing our spill register in a later insn and avoiding a pair
3439 of memory stores and loads.
3441 Don't bother with this if this alternative will accept this
3442 operand.
3444 Don't do this for a multiword operand, since it is only a
3445 small win and has the risk of requiring more spill registers,
3446 which could cause a large loss.
3448 Don't do this if the preferred class has only one register
3449 because we might otherwise exhaust the class. */
3451 if (! win && ! did_match
3452 && this_alternative[i] != (int) NO_REGS
3453 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3454 && reg_class_size[(int) preferred_class[i]] > 1)
3456 if (! reg_class_subset_p (this_alternative[i],
3457 preferred_class[i]))
3459 /* Since we don't have a way of forming the intersection,
3460 we just do something special if the preferred class
3461 is a subset of the class we have; that's the most
3462 common case anyway. */
3463 if (reg_class_subset_p (preferred_class[i],
3464 this_alternative[i]))
3465 this_alternative[i] = (int) preferred_class[i];
3466 else
3467 reject += (2 + 2 * pref_or_nothing[i]);
3472 /* Now see if any output operands that are marked "earlyclobber"
3473 in this alternative conflict with any input operands
3474 or any memory addresses. */
3476 for (i = 0; i < noperands; i++)
3477 if (this_alternative_earlyclobber[i]
3478 && (this_alternative_win[i] || this_alternative_match_win[i]))
3480 struct decomposition early_data;
3482 early_data = decompose (recog_data.operand[i]);
3484 if (modified[i] == RELOAD_READ)
3485 abort ();
3487 if (this_alternative[i] == NO_REGS)
3489 this_alternative_earlyclobber[i] = 0;
3490 if (this_insn_is_asm)
3491 error_for_asm (this_insn,
3492 "`&' constraint used with no register class");
3493 else
3494 abort ();
3497 for (j = 0; j < noperands; j++)
3498 /* Is this an input operand or a memory ref? */
3499 if ((GET_CODE (recog_data.operand[j]) == MEM
3500 || modified[j] != RELOAD_WRITE)
3501 && j != i
3502 /* Ignore things like match_operator operands. */
3503 && *recog_data.constraints[j] != 0
3504 /* Don't count an input operand that is constrained to match
3505 the early clobber operand. */
3506 && ! (this_alternative_matches[j] == i
3507 && rtx_equal_p (recog_data.operand[i],
3508 recog_data.operand[j]))
3509 /* Is it altered by storing the earlyclobber operand? */
3510 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3511 early_data))
3513 /* If the output is in a single-reg class,
3514 it's costly to reload it, so reload the input instead. */
3515 if (reg_class_size[this_alternative[i]] == 1
3516 && (GET_CODE (recog_data.operand[j]) == REG
3517 || GET_CODE (recog_data.operand[j]) == SUBREG))
3519 losers++;
3520 this_alternative_win[j] = 0;
3521 this_alternative_match_win[j] = 0;
3523 else
3524 break;
3526 /* If an earlyclobber operand conflicts with something,
3527 it must be reloaded, so request this and count the cost. */
3528 if (j != noperands)
3530 losers++;
3531 this_alternative_win[i] = 0;
3532 this_alternative_match_win[j] = 0;
3533 for (j = 0; j < noperands; j++)
3534 if (this_alternative_matches[j] == i
3535 && this_alternative_match_win[j])
3537 this_alternative_win[j] = 0;
3538 this_alternative_match_win[j] = 0;
3539 losers++;
3544 /* If one alternative accepts all the operands, no reload required,
3545 choose that alternative; don't consider the remaining ones. */
3546 if (losers == 0)
3548 /* Unswap these so that they are never swapped at `finish'. */
3549 if (commutative >= 0)
3551 recog_data.operand[commutative] = substed_operand[commutative];
3552 recog_data.operand[commutative + 1]
3553 = substed_operand[commutative + 1];
3555 for (i = 0; i < noperands; i++)
3557 goal_alternative_win[i] = this_alternative_win[i];
3558 goal_alternative_match_win[i] = this_alternative_match_win[i];
3559 goal_alternative[i] = this_alternative[i];
3560 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3561 goal_alternative_matches[i] = this_alternative_matches[i];
3562 goal_alternative_earlyclobber[i]
3563 = this_alternative_earlyclobber[i];
3565 goal_alternative_number = this_alternative_number;
3566 goal_alternative_swapped = swapped;
3567 goal_earlyclobber = this_earlyclobber;
3568 goto finish;
3571 /* REJECT, set by the ! and ? constraint characters and when a register
3572 would be reloaded into a non-preferred class, discourages the use of
3573 this alternative for a reload goal. REJECT is incremented by six
3574 for each ? and two for each non-preferred class. */
3575 losers = losers * 6 + reject;
3577 /* If this alternative can be made to work by reloading,
3578 and it needs less reloading than the others checked so far,
3579 record it as the chosen goal for reloading. */
3580 if (! bad && best > losers)
3582 for (i = 0; i < noperands; i++)
3584 goal_alternative[i] = this_alternative[i];
3585 goal_alternative_win[i] = this_alternative_win[i];
3586 goal_alternative_match_win[i] = this_alternative_match_win[i];
3587 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3588 goal_alternative_matches[i] = this_alternative_matches[i];
3589 goal_alternative_earlyclobber[i]
3590 = this_alternative_earlyclobber[i];
3592 goal_alternative_swapped = swapped;
3593 best = losers;
3594 goal_alternative_number = this_alternative_number;
3595 goal_earlyclobber = this_earlyclobber;
3599 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3600 then we need to try each alternative twice,
3601 the second time matching those two operands
3602 as if we had exchanged them.
3603 To do this, really exchange them in operands.
3605 If we have just tried the alternatives the second time,
3606 return operands to normal and drop through. */
3608 if (commutative >= 0)
3610 swapped = !swapped;
3611 if (swapped)
3613 enum reg_class tclass;
3614 int t;
3616 recog_data.operand[commutative] = substed_operand[commutative + 1];
3617 recog_data.operand[commutative + 1] = substed_operand[commutative];
3618 /* Swap the duplicates too. */
3619 for (i = 0; i < recog_data.n_dups; i++)
3620 if (recog_data.dup_num[i] == commutative
3621 || recog_data.dup_num[i] == commutative + 1)
3622 *recog_data.dup_loc[i]
3623 = recog_data.operand[(int) recog_data.dup_num[i]];
3625 tclass = preferred_class[commutative];
3626 preferred_class[commutative] = preferred_class[commutative + 1];
3627 preferred_class[commutative + 1] = tclass;
3629 t = pref_or_nothing[commutative];
3630 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3631 pref_or_nothing[commutative + 1] = t;
3633 memcpy (constraints, recog_data.constraints,
3634 noperands * sizeof (char *));
3635 goto try_swapped;
3637 else
3639 recog_data.operand[commutative] = substed_operand[commutative];
3640 recog_data.operand[commutative + 1]
3641 = substed_operand[commutative + 1];
3642 /* Unswap the duplicates too. */
3643 for (i = 0; i < recog_data.n_dups; i++)
3644 if (recog_data.dup_num[i] == commutative
3645 || recog_data.dup_num[i] == commutative + 1)
3646 *recog_data.dup_loc[i]
3647 = recog_data.operand[(int) recog_data.dup_num[i]];
3651 /* The operands don't meet the constraints.
3652 goal_alternative describes the alternative
3653 that we could reach by reloading the fewest operands.
3654 Reload so as to fit it. */
3656 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3658 /* No alternative works with reloads?? */
3659 if (insn_code_number >= 0)
3660 fatal_insn ("unable to generate reloads for:", insn);
3661 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3662 /* Avoid further trouble with this insn. */
3663 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3664 n_reloads = 0;
3665 return 0;
3668 /* Jump to `finish' from above if all operands are valid already.
3669 In that case, goal_alternative_win is all 1. */
3670 finish:
3672 /* Right now, for any pair of operands I and J that are required to match,
3673 with I < J,
3674 goal_alternative_matches[J] is I.
3675 Set up goal_alternative_matched as the inverse function:
3676 goal_alternative_matched[I] = J. */
3678 for (i = 0; i < noperands; i++)
3679 goal_alternative_matched[i] = -1;
3681 for (i = 0; i < noperands; i++)
3682 if (! goal_alternative_win[i]
3683 && goal_alternative_matches[i] >= 0)
3684 goal_alternative_matched[goal_alternative_matches[i]] = i;
3686 for (i = 0; i < noperands; i++)
3687 goal_alternative_win[i] |= goal_alternative_match_win[i];
3689 /* If the best alternative is with operands 1 and 2 swapped,
3690 consider them swapped before reporting the reloads. Update the
3691 operand numbers of any reloads already pushed. */
3693 if (goal_alternative_swapped)
3695 rtx tem;
3697 tem = substed_operand[commutative];
3698 substed_operand[commutative] = substed_operand[commutative + 1];
3699 substed_operand[commutative + 1] = tem;
3700 tem = recog_data.operand[commutative];
3701 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3702 recog_data.operand[commutative + 1] = tem;
3703 tem = *recog_data.operand_loc[commutative];
3704 *recog_data.operand_loc[commutative]
3705 = *recog_data.operand_loc[commutative + 1];
3706 *recog_data.operand_loc[commutative + 1] = tem;
3708 for (i = 0; i < n_reloads; i++)
3710 if (rld[i].opnum == commutative)
3711 rld[i].opnum = commutative + 1;
3712 else if (rld[i].opnum == commutative + 1)
3713 rld[i].opnum = commutative;
3717 for (i = 0; i < noperands; i++)
3719 operand_reloadnum[i] = -1;
3721 /* If this is an earlyclobber operand, we need to widen the scope.
3722 The reload must remain valid from the start of the insn being
3723 reloaded until after the operand is stored into its destination.
3724 We approximate this with RELOAD_OTHER even though we know that we
3725 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3727 One special case that is worth checking is when we have an
3728 output that is earlyclobber but isn't used past the insn (typically
3729 a SCRATCH). In this case, we only need have the reload live
3730 through the insn itself, but not for any of our input or output
3731 reloads.
3732 But we must not accidentally narrow the scope of an existing
3733 RELOAD_OTHER reload - leave these alone.
3735 In any case, anything needed to address this operand can remain
3736 however they were previously categorized. */
3738 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3739 operand_type[i]
3740 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3741 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3744 /* Any constants that aren't allowed and can't be reloaded
3745 into registers are here changed into memory references. */
3746 for (i = 0; i < noperands; i++)
3747 if (! goal_alternative_win[i]
3748 && CONSTANT_P (recog_data.operand[i])
3749 /* force_const_mem does not accept HIGH. */
3750 && GET_CODE (recog_data.operand[i]) != HIGH
3751 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3752 (enum reg_class) goal_alternative[i])
3753 == NO_REGS)
3754 || no_input_reloads)
3755 && operand_mode[i] != VOIDmode)
3757 substed_operand[i] = recog_data.operand[i]
3758 = find_reloads_toplev (force_const_mem (operand_mode[i],
3759 recog_data.operand[i]),
3760 i, address_type[i], ind_levels, 0, insn,
3761 NULL);
3762 if (alternative_allows_memconst (recog_data.constraints[i],
3763 goal_alternative_number))
3764 goal_alternative_win[i] = 1;
3767 /* Record the values of the earlyclobber operands for the caller. */
3768 if (goal_earlyclobber)
3769 for (i = 0; i < noperands; i++)
3770 if (goal_alternative_earlyclobber[i])
3771 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3773 /* Now record reloads for all the operands that need them. */
3774 for (i = 0; i < noperands; i++)
3775 if (! goal_alternative_win[i])
3777 /* Operands that match previous ones have already been handled. */
3778 if (goal_alternative_matches[i] >= 0)
3780 /* Handle an operand with a nonoffsettable address
3781 appearing where an offsettable address will do
3782 by reloading the address into a base register.
3784 ??? We can also do this when the operand is a register and
3785 reg_equiv_mem is not offsettable, but this is a bit tricky,
3786 so we don't bother with it. It may not be worth doing. */
3787 else if (goal_alternative_matched[i] == -1
3788 && goal_alternative_offmemok[i]
3789 && GET_CODE (recog_data.operand[i]) == MEM)
3791 operand_reloadnum[i]
3792 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3793 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3794 MODE_BASE_REG_CLASS (VOIDmode),
3795 GET_MODE (XEXP (recog_data.operand[i], 0)),
3796 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3797 rld[operand_reloadnum[i]].inc
3798 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3800 /* If this operand is an output, we will have made any
3801 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3802 now we are treating part of the operand as an input, so
3803 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3805 if (modified[i] == RELOAD_WRITE)
3807 for (j = 0; j < n_reloads; j++)
3809 if (rld[j].opnum == i)
3811 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3812 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3813 else if (rld[j].when_needed
3814 == RELOAD_FOR_OUTADDR_ADDRESS)
3815 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3820 else if (goal_alternative_matched[i] == -1)
3822 operand_reloadnum[i]
3823 = push_reload ((modified[i] != RELOAD_WRITE
3824 ? recog_data.operand[i] : 0),
3825 (modified[i] != RELOAD_READ
3826 ? recog_data.operand[i] : 0),
3827 (modified[i] != RELOAD_WRITE
3828 ? recog_data.operand_loc[i] : 0),
3829 (modified[i] != RELOAD_READ
3830 ? recog_data.operand_loc[i] : 0),
3831 (enum reg_class) goal_alternative[i],
3832 (modified[i] == RELOAD_WRITE
3833 ? VOIDmode : operand_mode[i]),
3834 (modified[i] == RELOAD_READ
3835 ? VOIDmode : operand_mode[i]),
3836 (insn_code_number < 0 ? 0
3837 : insn_data[insn_code_number].operand[i].strict_low),
3838 0, i, operand_type[i]);
3840 /* In a matching pair of operands, one must be input only
3841 and the other must be output only.
3842 Pass the input operand as IN and the other as OUT. */
3843 else if (modified[i] == RELOAD_READ
3844 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3846 operand_reloadnum[i]
3847 = push_reload (recog_data.operand[i],
3848 recog_data.operand[goal_alternative_matched[i]],
3849 recog_data.operand_loc[i],
3850 recog_data.operand_loc[goal_alternative_matched[i]],
3851 (enum reg_class) goal_alternative[i],
3852 operand_mode[i],
3853 operand_mode[goal_alternative_matched[i]],
3854 0, 0, i, RELOAD_OTHER);
3855 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3857 else if (modified[i] == RELOAD_WRITE
3858 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3860 operand_reloadnum[goal_alternative_matched[i]]
3861 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3862 recog_data.operand[i],
3863 recog_data.operand_loc[goal_alternative_matched[i]],
3864 recog_data.operand_loc[i],
3865 (enum reg_class) goal_alternative[i],
3866 operand_mode[goal_alternative_matched[i]],
3867 operand_mode[i],
3868 0, 0, i, RELOAD_OTHER);
3869 operand_reloadnum[i] = output_reloadnum;
3871 else if (insn_code_number >= 0)
3872 abort ();
3873 else
3875 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3876 /* Avoid further trouble with this insn. */
3877 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3878 n_reloads = 0;
3879 return 0;
3882 else if (goal_alternative_matched[i] < 0
3883 && goal_alternative_matches[i] < 0
3884 && optimize)
3886 /* For each non-matching operand that's a MEM or a pseudo-register
3887 that didn't get a hard register, make an optional reload.
3888 This may get done even if the insn needs no reloads otherwise. */
3890 rtx operand = recog_data.operand[i];
3892 while (GET_CODE (operand) == SUBREG)
3893 operand = SUBREG_REG (operand);
3894 if ((GET_CODE (operand) == MEM
3895 || (GET_CODE (operand) == REG
3896 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3897 /* If this is only for an output, the optional reload would not
3898 actually cause us to use a register now, just note that
3899 something is stored here. */
3900 && ((enum reg_class) goal_alternative[i] != NO_REGS
3901 || modified[i] == RELOAD_WRITE)
3902 && ! no_input_reloads
3903 /* An optional output reload might allow to delete INSN later.
3904 We mustn't make in-out reloads on insns that are not permitted
3905 output reloads.
3906 If this is an asm, we can't delete it; we must not even call
3907 push_reload for an optional output reload in this case,
3908 because we can't be sure that the constraint allows a register,
3909 and push_reload verifies the constraints for asms. */
3910 && (modified[i] == RELOAD_READ
3911 || (! no_output_reloads && ! this_insn_is_asm)))
3912 operand_reloadnum[i]
3913 = push_reload ((modified[i] != RELOAD_WRITE
3914 ? recog_data.operand[i] : 0),
3915 (modified[i] != RELOAD_READ
3916 ? recog_data.operand[i] : 0),
3917 (modified[i] != RELOAD_WRITE
3918 ? recog_data.operand_loc[i] : 0),
3919 (modified[i] != RELOAD_READ
3920 ? recog_data.operand_loc[i] : 0),
3921 (enum reg_class) goal_alternative[i],
3922 (modified[i] == RELOAD_WRITE
3923 ? VOIDmode : operand_mode[i]),
3924 (modified[i] == RELOAD_READ
3925 ? VOIDmode : operand_mode[i]),
3926 (insn_code_number < 0 ? 0
3927 : insn_data[insn_code_number].operand[i].strict_low),
3928 1, i, operand_type[i]);
3929 /* If a memory reference remains (either as a MEM or a pseudo that
3930 did not get a hard register), yet we can't make an optional
3931 reload, check if this is actually a pseudo register reference;
3932 we then need to emit a USE and/or a CLOBBER so that reload
3933 inheritance will do the right thing. */
3934 else if (replace
3935 && (GET_CODE (operand) == MEM
3936 || (GET_CODE (operand) == REG
3937 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3938 && reg_renumber [REGNO (operand)] < 0)))
3940 operand = *recog_data.operand_loc[i];
3942 while (GET_CODE (operand) == SUBREG)
3943 operand = SUBREG_REG (operand);
3944 if (GET_CODE (operand) == REG)
3946 if (modified[i] != RELOAD_WRITE)
3947 /* We mark the USE with QImode so that we recognize
3948 it as one that can be safely deleted at the end
3949 of reload. */
3950 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3951 insn), QImode);
3952 if (modified[i] != RELOAD_READ)
3953 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3957 else if (goal_alternative_matches[i] >= 0
3958 && goal_alternative_win[goal_alternative_matches[i]]
3959 && modified[i] == RELOAD_READ
3960 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3961 && ! no_input_reloads && ! no_output_reloads
3962 && optimize)
3964 /* Similarly, make an optional reload for a pair of matching
3965 objects that are in MEM or a pseudo that didn't get a hard reg. */
3967 rtx operand = recog_data.operand[i];
3969 while (GET_CODE (operand) == SUBREG)
3970 operand = SUBREG_REG (operand);
3971 if ((GET_CODE (operand) == MEM
3972 || (GET_CODE (operand) == REG
3973 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3974 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3975 != NO_REGS))
3976 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3977 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3978 recog_data.operand[i],
3979 recog_data.operand_loc[goal_alternative_matches[i]],
3980 recog_data.operand_loc[i],
3981 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3982 operand_mode[goal_alternative_matches[i]],
3983 operand_mode[i],
3984 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3987 /* Perform whatever substitutions on the operands we are supposed
3988 to make due to commutativity or replacement of registers
3989 with equivalent constants or memory slots. */
3991 for (i = 0; i < noperands; i++)
3993 /* We only do this on the last pass through reload, because it is
3994 possible for some data (like reg_equiv_address) to be changed during
3995 later passes. Moreover, we loose the opportunity to get a useful
3996 reload_{in,out}_reg when we do these replacements. */
3998 if (replace)
4000 rtx substitution = substed_operand[i];
4002 *recog_data.operand_loc[i] = substitution;
4004 /* If we're replacing an operand with a LABEL_REF, we need
4005 to make sure that there's a REG_LABEL note attached to
4006 this instruction. */
4007 if (GET_CODE (insn) != JUMP_INSN
4008 && GET_CODE (substitution) == LABEL_REF
4009 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4010 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4011 XEXP (substitution, 0),
4012 REG_NOTES (insn));
4014 else
4015 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4018 /* If this insn pattern contains any MATCH_DUP's, make sure that
4019 they will be substituted if the operands they match are substituted.
4020 Also do now any substitutions we already did on the operands.
4022 Don't do this if we aren't making replacements because we might be
4023 propagating things allocated by frame pointer elimination into places
4024 it doesn't expect. */
4026 if (insn_code_number >= 0 && replace)
4027 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4029 int opno = recog_data.dup_num[i];
4030 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4031 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4034 #if 0
4035 /* This loses because reloading of prior insns can invalidate the equivalence
4036 (or at least find_equiv_reg isn't smart enough to find it any more),
4037 causing this insn to need more reload regs than it needed before.
4038 It may be too late to make the reload regs available.
4039 Now this optimization is done safely in choose_reload_regs. */
4041 /* For each reload of a reg into some other class of reg,
4042 search for an existing equivalent reg (same value now) in the right class.
4043 We can use it as long as we don't need to change its contents. */
4044 for (i = 0; i < n_reloads; i++)
4045 if (rld[i].reg_rtx == 0
4046 && rld[i].in != 0
4047 && GET_CODE (rld[i].in) == REG
4048 && rld[i].out == 0)
4050 rld[i].reg_rtx
4051 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4052 static_reload_reg_p, 0, rld[i].inmode);
4053 /* Prevent generation of insn to load the value
4054 because the one we found already has the value. */
4055 if (rld[i].reg_rtx)
4056 rld[i].in = rld[i].reg_rtx;
4058 #endif
4060 /* Perhaps an output reload can be combined with another
4061 to reduce needs by one. */
4062 if (!goal_earlyclobber)
4063 combine_reloads ();
4065 /* If we have a pair of reloads for parts of an address, they are reloading
4066 the same object, the operands themselves were not reloaded, and they
4067 are for two operands that are supposed to match, merge the reloads and
4068 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4070 for (i = 0; i < n_reloads; i++)
4072 int k;
4074 for (j = i + 1; j < n_reloads; j++)
4075 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4076 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4077 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4078 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4079 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4080 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4081 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4082 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4083 && rtx_equal_p (rld[i].in, rld[j].in)
4084 && (operand_reloadnum[rld[i].opnum] < 0
4085 || rld[operand_reloadnum[rld[i].opnum]].optional)
4086 && (operand_reloadnum[rld[j].opnum] < 0
4087 || rld[operand_reloadnum[rld[j].opnum]].optional)
4088 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4089 || (goal_alternative_matches[rld[j].opnum]
4090 == rld[i].opnum)))
4092 for (k = 0; k < n_replacements; k++)
4093 if (replacements[k].what == j)
4094 replacements[k].what = i;
4096 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4097 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4098 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4099 else
4100 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4101 rld[j].in = 0;
4105 /* Scan all the reloads and update their type.
4106 If a reload is for the address of an operand and we didn't reload
4107 that operand, change the type. Similarly, change the operand number
4108 of a reload when two operands match. If a reload is optional, treat it
4109 as though the operand isn't reloaded.
4111 ??? This latter case is somewhat odd because if we do the optional
4112 reload, it means the object is hanging around. Thus we need only
4113 do the address reload if the optional reload was NOT done.
4115 Change secondary reloads to be the address type of their operand, not
4116 the normal type.
4118 If an operand's reload is now RELOAD_OTHER, change any
4119 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4120 RELOAD_FOR_OTHER_ADDRESS. */
4122 for (i = 0; i < n_reloads; i++)
4124 if (rld[i].secondary_p
4125 && rld[i].when_needed == operand_type[rld[i].opnum])
4126 rld[i].when_needed = address_type[rld[i].opnum];
4128 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4129 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4130 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4131 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4132 && (operand_reloadnum[rld[i].opnum] < 0
4133 || rld[operand_reloadnum[rld[i].opnum]].optional))
4135 /* If we have a secondary reload to go along with this reload,
4136 change its type to RELOAD_FOR_OPADDR_ADDR. */
4138 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4139 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4140 && rld[i].secondary_in_reload != -1)
4142 int secondary_in_reload = rld[i].secondary_in_reload;
4144 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4146 /* If there's a tertiary reload we have to change it also. */
4147 if (secondary_in_reload > 0
4148 && rld[secondary_in_reload].secondary_in_reload != -1)
4149 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4150 = RELOAD_FOR_OPADDR_ADDR;
4153 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4154 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4155 && rld[i].secondary_out_reload != -1)
4157 int secondary_out_reload = rld[i].secondary_out_reload;
4159 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4161 /* If there's a tertiary reload we have to change it also. */
4162 if (secondary_out_reload
4163 && rld[secondary_out_reload].secondary_out_reload != -1)
4164 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4165 = RELOAD_FOR_OPADDR_ADDR;
4168 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4169 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4170 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4171 else
4172 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4175 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4176 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4177 && operand_reloadnum[rld[i].opnum] >= 0
4178 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4179 == RELOAD_OTHER))
4180 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4182 if (goal_alternative_matches[rld[i].opnum] >= 0)
4183 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4186 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4187 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4188 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4190 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4191 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4192 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4193 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4194 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4195 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4196 This is complicated by the fact that a single operand can have more
4197 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4198 choose_reload_regs without affecting code quality, and cases that
4199 actually fail are extremely rare, so it turns out to be better to fix
4200 the problem here by not generating cases that choose_reload_regs will
4201 fail for. */
4202 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4203 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4204 a single operand.
4205 We can reduce the register pressure by exploiting that a
4206 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4207 does not conflict with any of them, if it is only used for the first of
4208 the RELOAD_FOR_X_ADDRESS reloads. */
4210 int first_op_addr_num = -2;
4211 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4212 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4213 int need_change = 0;
4214 /* We use last_op_addr_reload and the contents of the above arrays
4215 first as flags - -2 means no instance encountered, -1 means exactly
4216 one instance encountered.
4217 If more than one instance has been encountered, we store the reload
4218 number of the first reload of the kind in question; reload numbers
4219 are known to be non-negative. */
4220 for (i = 0; i < noperands; i++)
4221 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4222 for (i = n_reloads - 1; i >= 0; i--)
4224 switch (rld[i].when_needed)
4226 case RELOAD_FOR_OPERAND_ADDRESS:
4227 if (++first_op_addr_num >= 0)
4229 first_op_addr_num = i;
4230 need_change = 1;
4232 break;
4233 case RELOAD_FOR_INPUT_ADDRESS:
4234 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4236 first_inpaddr_num[rld[i].opnum] = i;
4237 need_change = 1;
4239 break;
4240 case RELOAD_FOR_OUTPUT_ADDRESS:
4241 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4243 first_outpaddr_num[rld[i].opnum] = i;
4244 need_change = 1;
4246 break;
4247 default:
4248 break;
4252 if (need_change)
4254 for (i = 0; i < n_reloads; i++)
4256 int first_num;
4257 enum reload_type type;
4259 switch (rld[i].when_needed)
4261 case RELOAD_FOR_OPADDR_ADDR:
4262 first_num = first_op_addr_num;
4263 type = RELOAD_FOR_OPERAND_ADDRESS;
4264 break;
4265 case RELOAD_FOR_INPADDR_ADDRESS:
4266 first_num = first_inpaddr_num[rld[i].opnum];
4267 type = RELOAD_FOR_INPUT_ADDRESS;
4268 break;
4269 case RELOAD_FOR_OUTADDR_ADDRESS:
4270 first_num = first_outpaddr_num[rld[i].opnum];
4271 type = RELOAD_FOR_OUTPUT_ADDRESS;
4272 break;
4273 default:
4274 continue;
4276 if (first_num < 0)
4277 continue;
4278 else if (i > first_num)
4279 rld[i].when_needed = type;
4280 else
4282 /* Check if the only TYPE reload that uses reload I is
4283 reload FIRST_NUM. */
4284 for (j = n_reloads - 1; j > first_num; j--)
4286 if (rld[j].when_needed == type
4287 && (rld[i].secondary_p
4288 ? rld[j].secondary_in_reload == i
4289 : reg_mentioned_p (rld[i].in, rld[j].in)))
4291 rld[i].when_needed = type;
4292 break;
4300 /* See if we have any reloads that are now allowed to be merged
4301 because we've changed when the reload is needed to
4302 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4303 check for the most common cases. */
4305 for (i = 0; i < n_reloads; i++)
4306 if (rld[i].in != 0 && rld[i].out == 0
4307 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4308 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4309 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4310 for (j = 0; j < n_reloads; j++)
4311 if (i != j && rld[j].in != 0 && rld[j].out == 0
4312 && rld[j].when_needed == rld[i].when_needed
4313 && MATCHES (rld[i].in, rld[j].in)
4314 && rld[i].class == rld[j].class
4315 && !rld[i].nocombine && !rld[j].nocombine
4316 && rld[i].reg_rtx == rld[j].reg_rtx)
4318 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4319 transfer_replacements (i, j);
4320 rld[j].in = 0;
4323 #ifdef HAVE_cc0
4324 /* If we made any reloads for addresses, see if they violate a
4325 "no input reloads" requirement for this insn. But loads that we
4326 do after the insn (such as for output addresses) are fine. */
4327 if (no_input_reloads)
4328 for (i = 0; i < n_reloads; i++)
4329 if (rld[i].in != 0
4330 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4331 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4332 abort ();
4333 #endif
4335 /* Compute reload_mode and reload_nregs. */
4336 for (i = 0; i < n_reloads; i++)
4338 rld[i].mode
4339 = (rld[i].inmode == VOIDmode
4340 || (GET_MODE_SIZE (rld[i].outmode)
4341 > GET_MODE_SIZE (rld[i].inmode)))
4342 ? rld[i].outmode : rld[i].inmode;
4344 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4347 /* Special case a simple move with an input reload and a
4348 destination of a hard reg, if the hard reg is ok, use it. */
4349 for (i = 0; i < n_reloads; i++)
4350 if (rld[i].when_needed == RELOAD_FOR_INPUT
4351 && GET_CODE (PATTERN (insn)) == SET
4352 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
4353 && SET_SRC (PATTERN (insn)) == rld[i].in)
4355 rtx dest = SET_DEST (PATTERN (insn));
4356 unsigned int regno = REGNO (dest);
4358 if (regno < FIRST_PSEUDO_REGISTER
4359 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4360 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4361 rld[i].reg_rtx = dest;
4364 return retval;
4367 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4368 accepts a memory operand with constant address. */
4370 static int
4371 alternative_allows_memconst (constraint, altnum)
4372 const char *constraint;
4373 int altnum;
4375 int c;
4376 /* Skip alternatives before the one requested. */
4377 while (altnum > 0)
4379 while (*constraint++ != ',');
4380 altnum--;
4382 /* Scan the requested alternative for 'm' or 'o'.
4383 If one of them is present, this alternative accepts memory constants. */
4384 for (; (c = *constraint) && c != ',' && c != '#';
4385 constraint += CONSTRAINT_LEN (c, constraint))
4386 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4387 return 1;
4388 return 0;
4391 /* Scan X for memory references and scan the addresses for reloading.
4392 Also checks for references to "constant" regs that we want to eliminate
4393 and replaces them with the values they stand for.
4394 We may alter X destructively if it contains a reference to such.
4395 If X is just a constant reg, we return the equivalent value
4396 instead of X.
4398 IND_LEVELS says how many levels of indirect addressing this machine
4399 supports.
4401 OPNUM and TYPE identify the purpose of the reload.
4403 IS_SET_DEST is true if X is the destination of a SET, which is not
4404 appropriate to be replaced by a constant.
4406 INSN, if nonzero, is the insn in which we do the reload. It is used
4407 to determine if we may generate output reloads, and where to put USEs
4408 for pseudos that we have to replace with stack slots.
4410 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4411 result of find_reloads_address. */
4413 static rtx
4414 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4415 address_reloaded)
4416 rtx x;
4417 int opnum;
4418 enum reload_type type;
4419 int ind_levels;
4420 int is_set_dest;
4421 rtx insn;
4422 int *address_reloaded;
4424 RTX_CODE code = GET_CODE (x);
4426 const char *fmt = GET_RTX_FORMAT (code);
4427 int i;
4428 int copied;
4430 if (code == REG)
4432 /* This code is duplicated for speed in find_reloads. */
4433 int regno = REGNO (x);
4434 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4435 x = reg_equiv_constant[regno];
4436 #if 0
4437 /* This creates (subreg (mem...)) which would cause an unnecessary
4438 reload of the mem. */
4439 else if (reg_equiv_mem[regno] != 0)
4440 x = reg_equiv_mem[regno];
4441 #endif
4442 else if (reg_equiv_memory_loc[regno]
4443 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4445 rtx mem = make_memloc (x, regno);
4446 if (reg_equiv_address[regno]
4447 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4449 /* If this is not a toplevel operand, find_reloads doesn't see
4450 this substitution. We have to emit a USE of the pseudo so
4451 that delete_output_reload can see it. */
4452 if (replace_reloads && recog_data.operand[opnum] != x)
4453 /* We mark the USE with QImode so that we recognize it
4454 as one that can be safely deleted at the end of
4455 reload. */
4456 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4457 QImode);
4458 x = mem;
4459 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4460 opnum, type, ind_levels, insn);
4461 if (address_reloaded)
4462 *address_reloaded = i;
4465 return x;
4467 if (code == MEM)
4469 rtx tem = x;
4471 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4472 opnum, type, ind_levels, insn);
4473 if (address_reloaded)
4474 *address_reloaded = i;
4476 return tem;
4479 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4481 /* Check for SUBREG containing a REG that's equivalent to a constant.
4482 If the constant has a known value, truncate it right now.
4483 Similarly if we are extracting a single-word of a multi-word
4484 constant. If the constant is symbolic, allow it to be substituted
4485 normally. push_reload will strip the subreg later. If the
4486 constant is VOIDmode, abort because we will lose the mode of
4487 the register (this should never happen because one of the cases
4488 above should handle it). */
4490 int regno = REGNO (SUBREG_REG (x));
4491 rtx tem;
4493 if (subreg_lowpart_p (x)
4494 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4495 && reg_equiv_constant[regno] != 0
4496 && (tem = gen_lowpart_common (GET_MODE (x),
4497 reg_equiv_constant[regno])) != 0)
4498 return tem;
4500 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4501 && reg_equiv_constant[regno] != 0)
4503 tem =
4504 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4505 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4506 if (!tem)
4507 abort ();
4508 return tem;
4511 /* If the subreg contains a reg that will be converted to a mem,
4512 convert the subreg to a narrower memref now.
4513 Otherwise, we would get (subreg (mem ...) ...),
4514 which would force reload of the mem.
4516 We also need to do this if there is an equivalent MEM that is
4517 not offsettable. In that case, alter_subreg would produce an
4518 invalid address on big-endian machines.
4520 For machines that extend byte loads, we must not reload using
4521 a wider mode if we have a paradoxical SUBREG. find_reloads will
4522 force a reload in that case. So we should not do anything here. */
4524 else if (regno >= FIRST_PSEUDO_REGISTER
4525 #ifdef LOAD_EXTEND_OP
4526 && (GET_MODE_SIZE (GET_MODE (x))
4527 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4528 #endif
4529 && (reg_equiv_address[regno] != 0
4530 || (reg_equiv_mem[regno] != 0
4531 && (! strict_memory_address_p (GET_MODE (x),
4532 XEXP (reg_equiv_mem[regno], 0))
4533 || ! offsettable_memref_p (reg_equiv_mem[regno])
4534 || num_not_at_initial_offset))))
4535 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4536 insn);
4539 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4541 if (fmt[i] == 'e')
4543 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4544 ind_levels, is_set_dest, insn,
4545 address_reloaded);
4546 /* If we have replaced a reg with it's equivalent memory loc -
4547 that can still be handled here e.g. if it's in a paradoxical
4548 subreg - we must make the change in a copy, rather than using
4549 a destructive change. This way, find_reloads can still elect
4550 not to do the change. */
4551 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4553 x = shallow_copy_rtx (x);
4554 copied = 1;
4556 XEXP (x, i) = new_part;
4559 return x;
4562 /* Return a mem ref for the memory equivalent of reg REGNO.
4563 This mem ref is not shared with anything. */
4565 static rtx
4566 make_memloc (ad, regno)
4567 rtx ad;
4568 int regno;
4570 /* We must rerun eliminate_regs, in case the elimination
4571 offsets have changed. */
4572 rtx tem
4573 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4575 /* If TEM might contain a pseudo, we must copy it to avoid
4576 modifying it when we do the substitution for the reload. */
4577 if (rtx_varies_p (tem, 0))
4578 tem = copy_rtx (tem);
4580 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4581 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4583 /* Copy the result if it's still the same as the equivalence, to avoid
4584 modifying it when we do the substitution for the reload. */
4585 if (tem == reg_equiv_memory_loc[regno])
4586 tem = copy_rtx (tem);
4587 return tem;
4590 /* Record all reloads needed for handling memory address AD
4591 which appears in *LOC in a memory reference to mode MODE
4592 which itself is found in location *MEMREFLOC.
4593 Note that we take shortcuts assuming that no multi-reg machine mode
4594 occurs as part of an address.
4596 OPNUM and TYPE specify the purpose of this reload.
4598 IND_LEVELS says how many levels of indirect addressing this machine
4599 supports.
4601 INSN, if nonzero, is the insn in which we do the reload. It is used
4602 to determine if we may generate output reloads, and where to put USEs
4603 for pseudos that we have to replace with stack slots.
4605 Value is nonzero if this address is reloaded or replaced as a whole.
4606 This is interesting to the caller if the address is an autoincrement.
4608 Note that there is no verification that the address will be valid after
4609 this routine does its work. Instead, we rely on the fact that the address
4610 was valid when reload started. So we need only undo things that reload
4611 could have broken. These are wrong register types, pseudos not allocated
4612 to a hard register, and frame pointer elimination. */
4614 static int
4615 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4616 enum machine_mode mode;
4617 rtx *memrefloc;
4618 rtx ad;
4619 rtx *loc;
4620 int opnum;
4621 enum reload_type type;
4622 int ind_levels;
4623 rtx insn;
4625 int regno;
4626 int removed_and = 0;
4627 rtx tem;
4629 /* If the address is a register, see if it is a legitimate address and
4630 reload if not. We first handle the cases where we need not reload
4631 or where we must reload in a non-standard way. */
4633 if (GET_CODE (ad) == REG)
4635 regno = REGNO (ad);
4637 /* If the register is equivalent to an invariant expression, substitute
4638 the invariant, and eliminate any eliminable register references. */
4639 tem = reg_equiv_constant[regno];
4640 if (tem != 0
4641 && (tem = eliminate_regs (tem, mode, insn))
4642 && strict_memory_address_p (mode, tem))
4644 *loc = ad = tem;
4645 return 0;
4648 tem = reg_equiv_memory_loc[regno];
4649 if (tem != 0)
4651 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4653 tem = make_memloc (ad, regno);
4654 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4656 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4657 &XEXP (tem, 0), opnum,
4658 ADDR_TYPE (type), ind_levels, insn);
4660 /* We can avoid a reload if the register's equivalent memory
4661 expression is valid as an indirect memory address.
4662 But not all addresses are valid in a mem used as an indirect
4663 address: only reg or reg+constant. */
4665 if (ind_levels > 0
4666 && strict_memory_address_p (mode, tem)
4667 && (GET_CODE (XEXP (tem, 0)) == REG
4668 || (GET_CODE (XEXP (tem, 0)) == PLUS
4669 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4670 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4672 /* TEM is not the same as what we'll be replacing the
4673 pseudo with after reload, put a USE in front of INSN
4674 in the final reload pass. */
4675 if (replace_reloads
4676 && num_not_at_initial_offset
4677 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4679 *loc = tem;
4680 /* We mark the USE with QImode so that we
4681 recognize it as one that can be safely
4682 deleted at the end of reload. */
4683 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4684 insn), QImode);
4686 /* This doesn't really count as replacing the address
4687 as a whole, since it is still a memory access. */
4689 return 0;
4691 ad = tem;
4695 /* The only remaining case where we can avoid a reload is if this is a
4696 hard register that is valid as a base register and which is not the
4697 subject of a CLOBBER in this insn. */
4699 else if (regno < FIRST_PSEUDO_REGISTER
4700 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4701 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4702 return 0;
4704 /* If we do not have one of the cases above, we must do the reload. */
4705 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4706 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4707 return 1;
4710 if (strict_memory_address_p (mode, ad))
4712 /* The address appears valid, so reloads are not needed.
4713 But the address may contain an eliminable register.
4714 This can happen because a machine with indirect addressing
4715 may consider a pseudo register by itself a valid address even when
4716 it has failed to get a hard reg.
4717 So do a tree-walk to find and eliminate all such regs. */
4719 /* But first quickly dispose of a common case. */
4720 if (GET_CODE (ad) == PLUS
4721 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4722 && GET_CODE (XEXP (ad, 0)) == REG
4723 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4724 return 0;
4726 subst_reg_equivs_changed = 0;
4727 *loc = subst_reg_equivs (ad, insn);
4729 if (! subst_reg_equivs_changed)
4730 return 0;
4732 /* Check result for validity after substitution. */
4733 if (strict_memory_address_p (mode, ad))
4734 return 0;
4737 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4740 if (memrefloc)
4742 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4743 ind_levels, win);
4745 break;
4746 win:
4747 *memrefloc = copy_rtx (*memrefloc);
4748 XEXP (*memrefloc, 0) = ad;
4749 move_replacements (&ad, &XEXP (*memrefloc, 0));
4750 return 1;
4752 while (0);
4753 #endif
4755 /* The address is not valid. We have to figure out why. First see if
4756 we have an outer AND and remove it if so. Then analyze what's inside. */
4758 if (GET_CODE (ad) == AND)
4760 removed_and = 1;
4761 loc = &XEXP (ad, 0);
4762 ad = *loc;
4765 /* One possibility for why the address is invalid is that it is itself
4766 a MEM. This can happen when the frame pointer is being eliminated, a
4767 pseudo is not allocated to a hard register, and the offset between the
4768 frame and stack pointers is not its initial value. In that case the
4769 pseudo will have been replaced by a MEM referring to the
4770 stack pointer. */
4771 if (GET_CODE (ad) == MEM)
4773 /* First ensure that the address in this MEM is valid. Then, unless
4774 indirect addresses are valid, reload the MEM into a register. */
4775 tem = ad;
4776 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4777 opnum, ADDR_TYPE (type),
4778 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4780 /* If tem was changed, then we must create a new memory reference to
4781 hold it and store it back into memrefloc. */
4782 if (tem != ad && memrefloc)
4784 *memrefloc = copy_rtx (*memrefloc);
4785 copy_replacements (tem, XEXP (*memrefloc, 0));
4786 loc = &XEXP (*memrefloc, 0);
4787 if (removed_and)
4788 loc = &XEXP (*loc, 0);
4791 /* Check similar cases as for indirect addresses as above except
4792 that we can allow pseudos and a MEM since they should have been
4793 taken care of above. */
4795 if (ind_levels == 0
4796 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4797 || GET_CODE (XEXP (tem, 0)) == MEM
4798 || ! (GET_CODE (XEXP (tem, 0)) == REG
4799 || (GET_CODE (XEXP (tem, 0)) == PLUS
4800 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4801 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4803 /* Must use TEM here, not AD, since it is the one that will
4804 have any subexpressions reloaded, if needed. */
4805 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4806 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4807 VOIDmode, 0,
4808 0, opnum, type);
4809 return ! removed_and;
4811 else
4812 return 0;
4815 /* If we have address of a stack slot but it's not valid because the
4816 displacement is too large, compute the sum in a register.
4817 Handle all base registers here, not just fp/ap/sp, because on some
4818 targets (namely SH) we can also get too large displacements from
4819 big-endian corrections. */
4820 else if (GET_CODE (ad) == PLUS
4821 && GET_CODE (XEXP (ad, 0)) == REG
4822 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4823 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4824 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4826 /* Unshare the MEM rtx so we can safely alter it. */
4827 if (memrefloc)
4829 *memrefloc = copy_rtx (*memrefloc);
4830 loc = &XEXP (*memrefloc, 0);
4831 if (removed_and)
4832 loc = &XEXP (*loc, 0);
4835 if (double_reg_address_ok)
4837 /* Unshare the sum as well. */
4838 *loc = ad = copy_rtx (ad);
4840 /* Reload the displacement into an index reg.
4841 We assume the frame pointer or arg pointer is a base reg. */
4842 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4843 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4844 type, ind_levels);
4845 return 0;
4847 else
4849 /* If the sum of two regs is not necessarily valid,
4850 reload the sum into a base reg.
4851 That will at least work. */
4852 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4853 Pmode, opnum, type, ind_levels);
4855 return ! removed_and;
4858 /* If we have an indexed stack slot, there are three possible reasons why
4859 it might be invalid: The index might need to be reloaded, the address
4860 might have been made by frame pointer elimination and hence have a
4861 constant out of range, or both reasons might apply.
4863 We can easily check for an index needing reload, but even if that is the
4864 case, we might also have an invalid constant. To avoid making the
4865 conservative assumption and requiring two reloads, we see if this address
4866 is valid when not interpreted strictly. If it is, the only problem is
4867 that the index needs a reload and find_reloads_address_1 will take care
4868 of it.
4870 If we decide to do something here, it must be that
4871 `double_reg_address_ok' is true and that this address rtl was made by
4872 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4873 rework the sum so that the reload register will be added to the index.
4874 This is safe because we know the address isn't shared.
4876 We check for fp/ap/sp as both the first and second operand of the
4877 innermost PLUS. */
4879 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4880 && GET_CODE (XEXP (ad, 0)) == PLUS
4881 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4882 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4883 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4884 #endif
4885 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4886 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4887 #endif
4888 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4889 && ! memory_address_p (mode, ad))
4891 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4892 plus_constant (XEXP (XEXP (ad, 0), 0),
4893 INTVAL (XEXP (ad, 1))),
4894 XEXP (XEXP (ad, 0), 1));
4895 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4896 MODE_BASE_REG_CLASS (mode),
4897 GET_MODE (ad), opnum, type, ind_levels);
4898 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4899 type, 0, insn);
4901 return 0;
4904 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4905 && GET_CODE (XEXP (ad, 0)) == PLUS
4906 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4907 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4908 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4909 #endif
4910 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4911 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4912 #endif
4913 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4914 && ! memory_address_p (mode, ad))
4916 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4917 XEXP (XEXP (ad, 0), 0),
4918 plus_constant (XEXP (XEXP (ad, 0), 1),
4919 INTVAL (XEXP (ad, 1))));
4920 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4921 MODE_BASE_REG_CLASS (mode),
4922 GET_MODE (ad), opnum, type, ind_levels);
4923 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4924 type, 0, insn);
4926 return 0;
4929 /* See if address becomes valid when an eliminable register
4930 in a sum is replaced. */
4932 tem = ad;
4933 if (GET_CODE (ad) == PLUS)
4934 tem = subst_indexed_address (ad);
4935 if (tem != ad && strict_memory_address_p (mode, tem))
4937 /* Ok, we win that way. Replace any additional eliminable
4938 registers. */
4940 subst_reg_equivs_changed = 0;
4941 tem = subst_reg_equivs (tem, insn);
4943 /* Make sure that didn't make the address invalid again. */
4945 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4947 *loc = tem;
4948 return 0;
4952 /* If constants aren't valid addresses, reload the constant address
4953 into a register. */
4954 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4956 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4957 Unshare it so we can safely alter it. */
4958 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4959 && CONSTANT_POOL_ADDRESS_P (ad))
4961 *memrefloc = copy_rtx (*memrefloc);
4962 loc = &XEXP (*memrefloc, 0);
4963 if (removed_and)
4964 loc = &XEXP (*loc, 0);
4967 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4968 Pmode, opnum, type, ind_levels);
4969 return ! removed_and;
4972 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4973 insn);
4976 /* Find all pseudo regs appearing in AD
4977 that are eliminable in favor of equivalent values
4978 and do not have hard regs; replace them by their equivalents.
4979 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4980 front of it for pseudos that we have to replace with stack slots. */
4982 static rtx
4983 subst_reg_equivs (ad, insn)
4984 rtx ad;
4985 rtx insn;
4987 RTX_CODE code = GET_CODE (ad);
4988 int i;
4989 const char *fmt;
4991 switch (code)
4993 case HIGH:
4994 case CONST_INT:
4995 case CONST:
4996 case CONST_DOUBLE:
4997 case CONST_VECTOR:
4998 case SYMBOL_REF:
4999 case LABEL_REF:
5000 case PC:
5001 case CC0:
5002 return ad;
5004 case REG:
5006 int regno = REGNO (ad);
5008 if (reg_equiv_constant[regno] != 0)
5010 subst_reg_equivs_changed = 1;
5011 return reg_equiv_constant[regno];
5013 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5015 rtx mem = make_memloc (ad, regno);
5016 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5018 subst_reg_equivs_changed = 1;
5019 /* We mark the USE with QImode so that we recognize it
5020 as one that can be safely deleted at the end of
5021 reload. */
5022 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5023 QImode);
5024 return mem;
5028 return ad;
5030 case PLUS:
5031 /* Quickly dispose of a common case. */
5032 if (XEXP (ad, 0) == frame_pointer_rtx
5033 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5034 return ad;
5035 break;
5037 default:
5038 break;
5041 fmt = GET_RTX_FORMAT (code);
5042 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5043 if (fmt[i] == 'e')
5044 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5045 return ad;
5048 /* Compute the sum of X and Y, making canonicalizations assumed in an
5049 address, namely: sum constant integers, surround the sum of two
5050 constants with a CONST, put the constant as the second operand, and
5051 group the constant on the outermost sum.
5053 This routine assumes both inputs are already in canonical form. */
5056 form_sum (x, y)
5057 rtx x, y;
5059 rtx tem;
5060 enum machine_mode mode = GET_MODE (x);
5062 if (mode == VOIDmode)
5063 mode = GET_MODE (y);
5065 if (mode == VOIDmode)
5066 mode = Pmode;
5068 if (GET_CODE (x) == CONST_INT)
5069 return plus_constant (y, INTVAL (x));
5070 else if (GET_CODE (y) == CONST_INT)
5071 return plus_constant (x, INTVAL (y));
5072 else if (CONSTANT_P (x))
5073 tem = x, x = y, y = tem;
5075 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5076 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5078 /* Note that if the operands of Y are specified in the opposite
5079 order in the recursive calls below, infinite recursion will occur. */
5080 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5081 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5083 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5084 constant will have been placed second. */
5085 if (CONSTANT_P (x) && CONSTANT_P (y))
5087 if (GET_CODE (x) == CONST)
5088 x = XEXP (x, 0);
5089 if (GET_CODE (y) == CONST)
5090 y = XEXP (y, 0);
5092 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5095 return gen_rtx_PLUS (mode, x, y);
5098 /* If ADDR is a sum containing a pseudo register that should be
5099 replaced with a constant (from reg_equiv_constant),
5100 return the result of doing so, and also apply the associative
5101 law so that the result is more likely to be a valid address.
5102 (But it is not guaranteed to be one.)
5104 Note that at most one register is replaced, even if more are
5105 replaceable. Also, we try to put the result into a canonical form
5106 so it is more likely to be a valid address.
5108 In all other cases, return ADDR. */
5110 static rtx
5111 subst_indexed_address (addr)
5112 rtx addr;
5114 rtx op0 = 0, op1 = 0, op2 = 0;
5115 rtx tem;
5116 int regno;
5118 if (GET_CODE (addr) == PLUS)
5120 /* Try to find a register to replace. */
5121 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5122 if (GET_CODE (op0) == REG
5123 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5124 && reg_renumber[regno] < 0
5125 && reg_equiv_constant[regno] != 0)
5126 op0 = reg_equiv_constant[regno];
5127 else if (GET_CODE (op1) == REG
5128 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5129 && reg_renumber[regno] < 0
5130 && reg_equiv_constant[regno] != 0)
5131 op1 = reg_equiv_constant[regno];
5132 else if (GET_CODE (op0) == PLUS
5133 && (tem = subst_indexed_address (op0)) != op0)
5134 op0 = tem;
5135 else if (GET_CODE (op1) == PLUS
5136 && (tem = subst_indexed_address (op1)) != op1)
5137 op1 = tem;
5138 else
5139 return addr;
5141 /* Pick out up to three things to add. */
5142 if (GET_CODE (op1) == PLUS)
5143 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5144 else if (GET_CODE (op0) == PLUS)
5145 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5147 /* Compute the sum. */
5148 if (op2 != 0)
5149 op1 = form_sum (op1, op2);
5150 if (op1 != 0)
5151 op0 = form_sum (op0, op1);
5153 return op0;
5155 return addr;
5158 /* Update the REG_INC notes for an insn. It updates all REG_INC
5159 notes for the instruction which refer to REGNO the to refer
5160 to the reload number.
5162 INSN is the insn for which any REG_INC notes need updating.
5164 REGNO is the register number which has been reloaded.
5166 RELOADNUM is the reload number. */
5168 static void
5169 update_auto_inc_notes (insn, regno, reloadnum)
5170 rtx insn ATTRIBUTE_UNUSED;
5171 int regno ATTRIBUTE_UNUSED;
5172 int reloadnum ATTRIBUTE_UNUSED;
5174 #ifdef AUTO_INC_DEC
5175 rtx link;
5177 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5178 if (REG_NOTE_KIND (link) == REG_INC
5179 && (int) REGNO (XEXP (link, 0)) == regno)
5180 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5181 #endif
5184 /* Record the pseudo registers we must reload into hard registers in a
5185 subexpression of a would-be memory address, X referring to a value
5186 in mode MODE. (This function is not called if the address we find
5187 is strictly valid.)
5189 CONTEXT = 1 means we are considering regs as index regs,
5190 = 0 means we are considering them as base regs.
5192 OPNUM and TYPE specify the purpose of any reloads made.
5194 IND_LEVELS says how many levels of indirect addressing are
5195 supported at this point in the address.
5197 INSN, if nonzero, is the insn in which we do the reload. It is used
5198 to determine if we may generate output reloads.
5200 We return nonzero if X, as a whole, is reloaded or replaced. */
5202 /* Note that we take shortcuts assuming that no multi-reg machine mode
5203 occurs as part of an address.
5204 Also, this is not fully machine-customizable; it works for machines
5205 such as VAXen and 68000's and 32000's, but other possible machines
5206 could have addressing modes that this does not handle right. */
5208 static int
5209 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5210 enum machine_mode mode;
5211 rtx x;
5212 int context;
5213 rtx *loc;
5214 int opnum;
5215 enum reload_type type;
5216 int ind_levels;
5217 rtx insn;
5219 RTX_CODE code = GET_CODE (x);
5221 switch (code)
5223 case PLUS:
5225 rtx orig_op0 = XEXP (x, 0);
5226 rtx orig_op1 = XEXP (x, 1);
5227 RTX_CODE code0 = GET_CODE (orig_op0);
5228 RTX_CODE code1 = GET_CODE (orig_op1);
5229 rtx op0 = orig_op0;
5230 rtx op1 = orig_op1;
5232 if (GET_CODE (op0) == SUBREG)
5234 op0 = SUBREG_REG (op0);
5235 code0 = GET_CODE (op0);
5236 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5237 op0 = gen_rtx_REG (word_mode,
5238 (REGNO (op0) +
5239 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5240 GET_MODE (SUBREG_REG (orig_op0)),
5241 SUBREG_BYTE (orig_op0),
5242 GET_MODE (orig_op0))));
5245 if (GET_CODE (op1) == SUBREG)
5247 op1 = SUBREG_REG (op1);
5248 code1 = GET_CODE (op1);
5249 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5250 /* ??? Why is this given op1's mode and above for
5251 ??? op0 SUBREGs we use word_mode? */
5252 op1 = gen_rtx_REG (GET_MODE (op1),
5253 (REGNO (op1) +
5254 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5255 GET_MODE (SUBREG_REG (orig_op1)),
5256 SUBREG_BYTE (orig_op1),
5257 GET_MODE (orig_op1))));
5260 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5261 || code0 == ZERO_EXTEND || code1 == MEM)
5263 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5264 type, ind_levels, insn);
5265 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5266 type, ind_levels, insn);
5269 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5270 || code1 == ZERO_EXTEND || code0 == MEM)
5272 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5273 type, ind_levels, insn);
5274 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5275 type, ind_levels, insn);
5278 else if (code0 == CONST_INT || code0 == CONST
5279 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5280 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5281 type, ind_levels, insn);
5283 else if (code1 == CONST_INT || code1 == CONST
5284 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5285 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5286 type, ind_levels, insn);
5288 else if (code0 == REG && code1 == REG)
5290 if (REG_OK_FOR_INDEX_P (op0)
5291 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5292 return 0;
5293 else if (REG_OK_FOR_INDEX_P (op1)
5294 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5295 return 0;
5296 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5297 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5298 type, ind_levels, insn);
5299 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5300 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5301 type, ind_levels, insn);
5302 else if (REG_OK_FOR_INDEX_P (op1))
5303 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5304 type, ind_levels, insn);
5305 else if (REG_OK_FOR_INDEX_P (op0))
5306 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5307 type, ind_levels, insn);
5308 else
5310 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5311 type, ind_levels, insn);
5312 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5313 type, ind_levels, insn);
5317 else if (code0 == REG)
5319 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5320 type, ind_levels, insn);
5321 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5322 type, ind_levels, insn);
5325 else if (code1 == REG)
5327 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5328 type, ind_levels, insn);
5329 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5330 type, ind_levels, insn);
5334 return 0;
5336 case POST_MODIFY:
5337 case PRE_MODIFY:
5339 rtx op0 = XEXP (x, 0);
5340 rtx op1 = XEXP (x, 1);
5342 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5343 return 0;
5345 /* Currently, we only support {PRE,POST}_MODIFY constructs
5346 where a base register is {inc,dec}remented by the contents
5347 of another register or by a constant value. Thus, these
5348 operands must match. */
5349 if (op0 != XEXP (op1, 0))
5350 abort ();
5352 /* Require index register (or constant). Let's just handle the
5353 register case in the meantime... If the target allows
5354 auto-modify by a constant then we could try replacing a pseudo
5355 register with its equivalent constant where applicable. */
5356 if (REG_P (XEXP (op1, 1)))
5357 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5358 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5359 opnum, type, ind_levels, insn);
5361 if (REG_P (XEXP (op1, 0)))
5363 int regno = REGNO (XEXP (op1, 0));
5364 int reloadnum;
5366 /* A register that is incremented cannot be constant! */
5367 if (regno >= FIRST_PSEUDO_REGISTER
5368 && reg_equiv_constant[regno] != 0)
5369 abort ();
5371 /* Handle a register that is equivalent to a memory location
5372 which cannot be addressed directly. */
5373 if (reg_equiv_memory_loc[regno] != 0
5374 && (reg_equiv_address[regno] != 0
5375 || num_not_at_initial_offset))
5377 rtx tem = make_memloc (XEXP (x, 0), regno);
5379 if (reg_equiv_address[regno]
5380 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5382 /* First reload the memory location's address.
5383 We can't use ADDR_TYPE (type) here, because we need to
5384 write back the value after reading it, hence we actually
5385 need two registers. */
5386 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5387 &XEXP (tem, 0), opnum,
5388 RELOAD_OTHER,
5389 ind_levels, insn);
5391 /* Then reload the memory location into a base
5392 register. */
5393 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5394 &XEXP (op1, 0),
5395 MODE_BASE_REG_CLASS (mode),
5396 GET_MODE (x), GET_MODE (x), 0,
5397 0, opnum, RELOAD_OTHER);
5399 update_auto_inc_notes (this_insn, regno, reloadnum);
5400 return 0;
5404 if (reg_renumber[regno] >= 0)
5405 regno = reg_renumber[regno];
5407 /* We require a base register here... */
5408 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5410 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5411 &XEXP (op1, 0), &XEXP (x, 0),
5412 MODE_BASE_REG_CLASS (mode),
5413 GET_MODE (x), GET_MODE (x), 0, 0,
5414 opnum, RELOAD_OTHER);
5416 update_auto_inc_notes (this_insn, regno, reloadnum);
5417 return 0;
5420 else
5421 abort ();
5423 return 0;
5425 case POST_INC:
5426 case POST_DEC:
5427 case PRE_INC:
5428 case PRE_DEC:
5429 if (GET_CODE (XEXP (x, 0)) == REG)
5431 int regno = REGNO (XEXP (x, 0));
5432 int value = 0;
5433 rtx x_orig = x;
5435 /* A register that is incremented cannot be constant! */
5436 if (regno >= FIRST_PSEUDO_REGISTER
5437 && reg_equiv_constant[regno] != 0)
5438 abort ();
5440 /* Handle a register that is equivalent to a memory location
5441 which cannot be addressed directly. */
5442 if (reg_equiv_memory_loc[regno] != 0
5443 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5445 rtx tem = make_memloc (XEXP (x, 0), regno);
5446 if (reg_equiv_address[regno]
5447 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5449 /* First reload the memory location's address.
5450 We can't use ADDR_TYPE (type) here, because we need to
5451 write back the value after reading it, hence we actually
5452 need two registers. */
5453 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5454 &XEXP (tem, 0), opnum, type,
5455 ind_levels, insn);
5456 /* Put this inside a new increment-expression. */
5457 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5458 /* Proceed to reload that, as if it contained a register. */
5462 /* If we have a hard register that is ok as an index,
5463 don't make a reload. If an autoincrement of a nice register
5464 isn't "valid", it must be that no autoincrement is "valid".
5465 If that is true and something made an autoincrement anyway,
5466 this must be a special context where one is allowed.
5467 (For example, a "push" instruction.)
5468 We can't improve this address, so leave it alone. */
5470 /* Otherwise, reload the autoincrement into a suitable hard reg
5471 and record how much to increment by. */
5473 if (reg_renumber[regno] >= 0)
5474 regno = reg_renumber[regno];
5475 if ((regno >= FIRST_PSEUDO_REGISTER
5476 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5477 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5479 int reloadnum;
5481 /* If we can output the register afterwards, do so, this
5482 saves the extra update.
5483 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5484 CALL_INSN - and it does not set CC0.
5485 But don't do this if we cannot directly address the
5486 memory location, since this will make it harder to
5487 reuse address reloads, and increases register pressure.
5488 Also don't do this if we can probably update x directly. */
5489 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5490 ? XEXP (x, 0)
5491 : reg_equiv_mem[regno]);
5492 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5493 if (insn && GET_CODE (insn) == INSN && equiv
5494 && memory_operand (equiv, GET_MODE (equiv))
5495 #ifdef HAVE_cc0
5496 && ! sets_cc0_p (PATTERN (insn))
5497 #endif
5498 && ! (icode != CODE_FOR_nothing
5499 && ((*insn_data[icode].operand[0].predicate)
5500 (equiv, Pmode))
5501 && ((*insn_data[icode].operand[1].predicate)
5502 (equiv, Pmode))))
5504 /* We use the original pseudo for loc, so that
5505 emit_reload_insns() knows which pseudo this
5506 reload refers to and updates the pseudo rtx, not
5507 its equivalent memory location, as well as the
5508 corresponding entry in reg_last_reload_reg. */
5509 loc = &XEXP (x_orig, 0);
5510 x = XEXP (x, 0);
5511 reloadnum
5512 = push_reload (x, x, loc, loc,
5513 (context ? INDEX_REG_CLASS :
5514 MODE_BASE_REG_CLASS (mode)),
5515 GET_MODE (x), GET_MODE (x), 0, 0,
5516 opnum, RELOAD_OTHER);
5518 else
5520 reloadnum
5521 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5522 (context ? INDEX_REG_CLASS :
5523 MODE_BASE_REG_CLASS (mode)),
5524 GET_MODE (x), GET_MODE (x), 0, 0,
5525 opnum, type);
5526 rld[reloadnum].inc
5527 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5529 value = 1;
5532 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5533 reloadnum);
5535 return value;
5538 else if (GET_CODE (XEXP (x, 0)) == MEM)
5540 /* This is probably the result of a substitution, by eliminate_regs,
5541 of an equivalent address for a pseudo that was not allocated to a
5542 hard register. Verify that the specified address is valid and
5543 reload it into a register. */
5544 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5545 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5546 rtx link;
5547 int reloadnum;
5549 /* Since we know we are going to reload this item, don't decrement
5550 for the indirection level.
5552 Note that this is actually conservative: it would be slightly
5553 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5554 reload1.c here. */
5555 /* We can't use ADDR_TYPE (type) here, because we need to
5556 write back the value after reading it, hence we actually
5557 need two registers. */
5558 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5559 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5560 opnum, type, ind_levels, insn);
5562 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5563 (context ? INDEX_REG_CLASS :
5564 MODE_BASE_REG_CLASS (mode)),
5565 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5566 rld[reloadnum].inc
5567 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5569 link = FIND_REG_INC_NOTE (this_insn, tem);
5570 if (link != 0)
5571 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5573 return 1;
5575 return 0;
5577 case MEM:
5578 /* This is probably the result of a substitution, by eliminate_regs, of
5579 an equivalent address for a pseudo that was not allocated to a hard
5580 register. Verify that the specified address is valid and reload it
5581 into a register.
5583 Since we know we are going to reload this item, don't decrement for
5584 the indirection level.
5586 Note that this is actually conservative: it would be slightly more
5587 efficient to use the value of SPILL_INDIRECT_LEVELS from
5588 reload1.c here. */
5590 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5591 opnum, ADDR_TYPE (type), ind_levels, insn);
5592 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5593 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5594 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5595 return 1;
5597 case REG:
5599 int regno = REGNO (x);
5601 if (reg_equiv_constant[regno] != 0)
5603 find_reloads_address_part (reg_equiv_constant[regno], loc,
5604 (context ? INDEX_REG_CLASS :
5605 MODE_BASE_REG_CLASS (mode)),
5606 GET_MODE (x), opnum, type, ind_levels);
5607 return 1;
5610 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5611 that feeds this insn. */
5612 if (reg_equiv_mem[regno] != 0)
5614 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5615 (context ? INDEX_REG_CLASS :
5616 MODE_BASE_REG_CLASS (mode)),
5617 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5618 return 1;
5620 #endif
5622 if (reg_equiv_memory_loc[regno]
5623 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5625 rtx tem = make_memloc (x, regno);
5626 if (reg_equiv_address[regno] != 0
5627 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5629 x = tem;
5630 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5631 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5632 ind_levels, insn);
5636 if (reg_renumber[regno] >= 0)
5637 regno = reg_renumber[regno];
5639 if ((regno >= FIRST_PSEUDO_REGISTER
5640 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5641 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5643 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5644 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5645 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5646 return 1;
5649 /* If a register appearing in an address is the subject of a CLOBBER
5650 in this insn, reload it into some other register to be safe.
5651 The CLOBBER is supposed to make the register unavailable
5652 from before this insn to after it. */
5653 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5655 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5656 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5657 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5658 return 1;
5661 return 0;
5663 case SUBREG:
5664 if (GET_CODE (SUBREG_REG (x)) == REG)
5666 /* If this is a SUBREG of a hard register and the resulting register
5667 is of the wrong class, reload the whole SUBREG. This avoids
5668 needless copies if SUBREG_REG is multi-word. */
5669 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5671 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5673 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5674 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5676 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5677 (context ? INDEX_REG_CLASS :
5678 MODE_BASE_REG_CLASS (mode)),
5679 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5680 return 1;
5683 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5684 is larger than the class size, then reload the whole SUBREG. */
5685 else
5687 enum reg_class class = (context ? INDEX_REG_CLASS
5688 : MODE_BASE_REG_CLASS (mode));
5689 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5690 > reg_class_size[class])
5692 x = find_reloads_subreg_address (x, 0, opnum, type,
5693 ind_levels, insn);
5694 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5695 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5696 return 1;
5700 break;
5702 default:
5703 break;
5707 const char *fmt = GET_RTX_FORMAT (code);
5708 int i;
5710 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5712 if (fmt[i] == 'e')
5713 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5714 opnum, type, ind_levels, insn);
5718 return 0;
5721 /* X, which is found at *LOC, is a part of an address that needs to be
5722 reloaded into a register of class CLASS. If X is a constant, or if
5723 X is a PLUS that contains a constant, check that the constant is a
5724 legitimate operand and that we are supposed to be able to load
5725 it into the register.
5727 If not, force the constant into memory and reload the MEM instead.
5729 MODE is the mode to use, in case X is an integer constant.
5731 OPNUM and TYPE describe the purpose of any reloads made.
5733 IND_LEVELS says how many levels of indirect addressing this machine
5734 supports. */
5736 static void
5737 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5738 rtx x;
5739 rtx *loc;
5740 enum reg_class class;
5741 enum machine_mode mode;
5742 int opnum;
5743 enum reload_type type;
5744 int ind_levels;
5746 if (CONSTANT_P (x)
5747 && (! LEGITIMATE_CONSTANT_P (x)
5748 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5750 rtx tem;
5752 tem = x = force_const_mem (mode, x);
5753 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5754 opnum, type, ind_levels, 0);
5757 else if (GET_CODE (x) == PLUS
5758 && CONSTANT_P (XEXP (x, 1))
5759 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5760 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5762 rtx tem;
5764 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5765 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5766 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5767 opnum, type, ind_levels, 0);
5770 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5771 mode, VOIDmode, 0, 0, opnum, type);
5774 /* X, a subreg of a pseudo, is a part of an address that needs to be
5775 reloaded.
5777 If the pseudo is equivalent to a memory location that cannot be directly
5778 addressed, make the necessary address reloads.
5780 If address reloads have been necessary, or if the address is changed
5781 by register elimination, return the rtx of the memory location;
5782 otherwise, return X.
5784 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5785 memory location.
5787 OPNUM and TYPE identify the purpose of the reload.
5789 IND_LEVELS says how many levels of indirect addressing are
5790 supported at this point in the address.
5792 INSN, if nonzero, is the insn in which we do the reload. It is used
5793 to determine where to put USEs for pseudos that we have to replace with
5794 stack slots. */
5796 static rtx
5797 find_reloads_subreg_address (x, force_replace, opnum, type,
5798 ind_levels, insn)
5799 rtx x;
5800 int force_replace;
5801 int opnum;
5802 enum reload_type type;
5803 int ind_levels;
5804 rtx insn;
5806 int regno = REGNO (SUBREG_REG (x));
5808 if (reg_equiv_memory_loc[regno])
5810 /* If the address is not directly addressable, or if the address is not
5811 offsettable, then it must be replaced. */
5812 if (! force_replace
5813 && (reg_equiv_address[regno]
5814 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5815 force_replace = 1;
5817 if (force_replace || num_not_at_initial_offset)
5819 rtx tem = make_memloc (SUBREG_REG (x), regno);
5821 /* If the address changes because of register elimination, then
5822 it must be replaced. */
5823 if (force_replace
5824 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5826 int offset = SUBREG_BYTE (x);
5827 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5828 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5830 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5831 PUT_MODE (tem, GET_MODE (x));
5833 /* If this was a paradoxical subreg that we replaced, the
5834 resulting memory must be sufficiently aligned to allow
5835 us to widen the mode of the memory. */
5836 if (outer_size > inner_size && STRICT_ALIGNMENT)
5838 rtx base;
5840 base = XEXP (tem, 0);
5841 if (GET_CODE (base) == PLUS)
5843 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5844 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5845 return x;
5846 base = XEXP (base, 0);
5848 if (GET_CODE (base) != REG
5849 || (REGNO_POINTER_ALIGN (REGNO (base))
5850 < outer_size * BITS_PER_UNIT))
5851 return x;
5854 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5855 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5856 ind_levels, insn);
5858 /* If this is not a toplevel operand, find_reloads doesn't see
5859 this substitution. We have to emit a USE of the pseudo so
5860 that delete_output_reload can see it. */
5861 if (replace_reloads && recog_data.operand[opnum] != x)
5862 /* We mark the USE with QImode so that we recognize it
5863 as one that can be safely deleted at the end of
5864 reload. */
5865 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5866 SUBREG_REG (x)),
5867 insn), QImode);
5868 x = tem;
5872 return x;
5875 /* Substitute into the current INSN the registers into which we have reloaded
5876 the things that need reloading. The array `replacements'
5877 contains the locations of all pointers that must be changed
5878 and says what to replace them with.
5880 Return the rtx that X translates into; usually X, but modified. */
5882 void
5883 subst_reloads (insn)
5884 rtx insn;
5886 int i;
5888 for (i = 0; i < n_replacements; i++)
5890 struct replacement *r = &replacements[i];
5891 rtx reloadreg = rld[r->what].reg_rtx;
5892 if (reloadreg)
5894 #ifdef ENABLE_CHECKING
5895 /* Internal consistency test. Check that we don't modify
5896 anything in the equivalence arrays. Whenever something from
5897 those arrays needs to be reloaded, it must be unshared before
5898 being substituted into; the equivalence must not be modified.
5899 Otherwise, if the equivalence is used after that, it will
5900 have been modified, and the thing substituted (probably a
5901 register) is likely overwritten and not a usable equivalence. */
5902 int check_regno;
5904 for (check_regno = 0; check_regno < max_regno; check_regno++)
5906 #define CHECK_MODF(ARRAY) \
5907 if (ARRAY[check_regno] \
5908 && loc_mentioned_in_p (r->where, \
5909 ARRAY[check_regno])) \
5910 abort ()
5912 CHECK_MODF (reg_equiv_constant);
5913 CHECK_MODF (reg_equiv_memory_loc);
5914 CHECK_MODF (reg_equiv_address);
5915 CHECK_MODF (reg_equiv_mem);
5916 #undef CHECK_MODF
5918 #endif /* ENABLE_CHECKING */
5920 /* If we're replacing a LABEL_REF with a register, add a
5921 REG_LABEL note to indicate to flow which label this
5922 register refers to. */
5923 if (GET_CODE (*r->where) == LABEL_REF
5924 && GET_CODE (insn) == JUMP_INSN)
5925 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5926 XEXP (*r->where, 0),
5927 REG_NOTES (insn));
5929 /* Encapsulate RELOADREG so its machine mode matches what
5930 used to be there. Note that gen_lowpart_common will
5931 do the wrong thing if RELOADREG is multi-word. RELOADREG
5932 will always be a REG here. */
5933 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5934 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5936 /* If we are putting this into a SUBREG and RELOADREG is a
5937 SUBREG, we would be making nested SUBREGs, so we have to fix
5938 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5940 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5942 if (GET_MODE (*r->subreg_loc)
5943 == GET_MODE (SUBREG_REG (reloadreg)))
5944 *r->subreg_loc = SUBREG_REG (reloadreg);
5945 else
5947 int final_offset =
5948 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5950 /* When working with SUBREGs the rule is that the byte
5951 offset must be a multiple of the SUBREG's mode. */
5952 final_offset = (final_offset /
5953 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5954 final_offset = (final_offset *
5955 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5957 *r->where = SUBREG_REG (reloadreg);
5958 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5961 else
5962 *r->where = reloadreg;
5964 /* If reload got no reg and isn't optional, something's wrong. */
5965 else if (! rld[r->what].optional)
5966 abort ();
5970 /* Make a copy of any replacements being done into X and move those
5971 copies to locations in Y, a copy of X. */
5973 void
5974 copy_replacements (x, y)
5975 rtx x, y;
5977 /* We can't support X being a SUBREG because we might then need to know its
5978 location if something inside it was replaced. */
5979 if (GET_CODE (x) == SUBREG)
5980 abort ();
5982 copy_replacements_1 (&x, &y, n_replacements);
5985 static void
5986 copy_replacements_1 (px, py, orig_replacements)
5987 rtx *px;
5988 rtx *py;
5989 int orig_replacements;
5991 int i, j;
5992 rtx x, y;
5993 struct replacement *r;
5994 enum rtx_code code;
5995 const char *fmt;
5997 for (j = 0; j < orig_replacements; j++)
5999 if (replacements[j].subreg_loc == px)
6001 r = &replacements[n_replacements++];
6002 r->where = replacements[j].where;
6003 r->subreg_loc = py;
6004 r->what = replacements[j].what;
6005 r->mode = replacements[j].mode;
6007 else if (replacements[j].where == px)
6009 r = &replacements[n_replacements++];
6010 r->where = py;
6011 r->subreg_loc = 0;
6012 r->what = replacements[j].what;
6013 r->mode = replacements[j].mode;
6017 x = *px;
6018 y = *py;
6019 code = GET_CODE (x);
6020 fmt = GET_RTX_FORMAT (code);
6022 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6024 if (fmt[i] == 'e')
6025 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6026 else if (fmt[i] == 'E')
6027 for (j = XVECLEN (x, i); --j >= 0; )
6028 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6029 orig_replacements);
6033 /* Change any replacements being done to *X to be done to *Y. */
6035 void
6036 move_replacements (x, y)
6037 rtx *x;
6038 rtx *y;
6040 int i;
6042 for (i = 0; i < n_replacements; i++)
6043 if (replacements[i].subreg_loc == x)
6044 replacements[i].subreg_loc = y;
6045 else if (replacements[i].where == x)
6047 replacements[i].where = y;
6048 replacements[i].subreg_loc = 0;
6052 /* If LOC was scheduled to be replaced by something, return the replacement.
6053 Otherwise, return *LOC. */
6056 find_replacement (loc)
6057 rtx *loc;
6059 struct replacement *r;
6061 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6063 rtx reloadreg = rld[r->what].reg_rtx;
6065 if (reloadreg && r->where == loc)
6067 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6068 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6070 return reloadreg;
6072 else if (reloadreg && r->subreg_loc == loc)
6074 /* RELOADREG must be either a REG or a SUBREG.
6076 ??? Is it actually still ever a SUBREG? If so, why? */
6078 if (GET_CODE (reloadreg) == REG)
6079 return gen_rtx_REG (GET_MODE (*loc),
6080 (REGNO (reloadreg) +
6081 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6082 GET_MODE (SUBREG_REG (*loc)),
6083 SUBREG_BYTE (*loc),
6084 GET_MODE (*loc))));
6085 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6086 return reloadreg;
6087 else
6089 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6091 /* When working with SUBREGs the rule is that the byte
6092 offset must be a multiple of the SUBREG's mode. */
6093 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6094 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6095 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6096 final_offset);
6101 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6102 what's inside and make a new rtl if so. */
6103 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6104 || GET_CODE (*loc) == MULT)
6106 rtx x = find_replacement (&XEXP (*loc, 0));
6107 rtx y = find_replacement (&XEXP (*loc, 1));
6109 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6110 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6113 return *loc;
6116 /* Return nonzero if register in range [REGNO, ENDREGNO)
6117 appears either explicitly or implicitly in X
6118 other than being stored into (except for earlyclobber operands).
6120 References contained within the substructure at LOC do not count.
6121 LOC may be zero, meaning don't ignore anything.
6123 This is similar to refers_to_regno_p in rtlanal.c except that we
6124 look at equivalences for pseudos that didn't get hard registers. */
6127 refers_to_regno_for_reload_p (regno, endregno, x, loc)
6128 unsigned int regno, endregno;
6129 rtx x;
6130 rtx *loc;
6132 int i;
6133 unsigned int r;
6134 RTX_CODE code;
6135 const char *fmt;
6137 if (x == 0)
6138 return 0;
6140 repeat:
6141 code = GET_CODE (x);
6143 switch (code)
6145 case REG:
6146 r = REGNO (x);
6148 /* If this is a pseudo, a hard register must not have been allocated.
6149 X must therefore either be a constant or be in memory. */
6150 if (r >= FIRST_PSEUDO_REGISTER)
6152 if (reg_equiv_memory_loc[r])
6153 return refers_to_regno_for_reload_p (regno, endregno,
6154 reg_equiv_memory_loc[r],
6155 (rtx*) 0);
6157 if (reg_equiv_constant[r])
6158 return 0;
6160 abort ();
6163 return (endregno > r
6164 && regno < r + (r < FIRST_PSEUDO_REGISTER
6165 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6166 : 1));
6168 case SUBREG:
6169 /* If this is a SUBREG of a hard reg, we can see exactly which
6170 registers are being modified. Otherwise, handle normally. */
6171 if (GET_CODE (SUBREG_REG (x)) == REG
6172 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6174 unsigned int inner_regno = subreg_regno (x);
6175 unsigned int inner_endregno
6176 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6177 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6179 return endregno > inner_regno && regno < inner_endregno;
6181 break;
6183 case CLOBBER:
6184 case SET:
6185 if (&SET_DEST (x) != loc
6186 /* Note setting a SUBREG counts as referring to the REG it is in for
6187 a pseudo but not for hard registers since we can
6188 treat each word individually. */
6189 && ((GET_CODE (SET_DEST (x)) == SUBREG
6190 && loc != &SUBREG_REG (SET_DEST (x))
6191 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6192 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6193 && refers_to_regno_for_reload_p (regno, endregno,
6194 SUBREG_REG (SET_DEST (x)),
6195 loc))
6196 /* If the output is an earlyclobber operand, this is
6197 a conflict. */
6198 || ((GET_CODE (SET_DEST (x)) != REG
6199 || earlyclobber_operand_p (SET_DEST (x)))
6200 && refers_to_regno_for_reload_p (regno, endregno,
6201 SET_DEST (x), loc))))
6202 return 1;
6204 if (code == CLOBBER || loc == &SET_SRC (x))
6205 return 0;
6206 x = SET_SRC (x);
6207 goto repeat;
6209 default:
6210 break;
6213 /* X does not match, so try its subexpressions. */
6215 fmt = GET_RTX_FORMAT (code);
6216 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6218 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6220 if (i == 0)
6222 x = XEXP (x, 0);
6223 goto repeat;
6225 else
6226 if (refers_to_regno_for_reload_p (regno, endregno,
6227 XEXP (x, i), loc))
6228 return 1;
6230 else if (fmt[i] == 'E')
6232 int j;
6233 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6234 if (loc != &XVECEXP (x, i, j)
6235 && refers_to_regno_for_reload_p (regno, endregno,
6236 XVECEXP (x, i, j), loc))
6237 return 1;
6240 return 0;
6243 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6244 we check if any register number in X conflicts with the relevant register
6245 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6246 contains a MEM (we don't bother checking for memory addresses that can't
6247 conflict because we expect this to be a rare case.
6249 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6250 that we look at equivalences for pseudos that didn't get hard registers. */
6253 reg_overlap_mentioned_for_reload_p (x, in)
6254 rtx x, in;
6256 int regno, endregno;
6258 /* Overly conservative. */
6259 if (GET_CODE (x) == STRICT_LOW_PART
6260 || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6261 x = XEXP (x, 0);
6263 /* If either argument is a constant, then modifying X can not affect IN. */
6264 if (CONSTANT_P (x) || CONSTANT_P (in))
6265 return 0;
6266 else if (GET_CODE (x) == SUBREG)
6268 regno = REGNO (SUBREG_REG (x));
6269 if (regno < FIRST_PSEUDO_REGISTER)
6270 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6271 GET_MODE (SUBREG_REG (x)),
6272 SUBREG_BYTE (x),
6273 GET_MODE (x));
6275 else if (GET_CODE (x) == REG)
6277 regno = REGNO (x);
6279 /* If this is a pseudo, it must not have been assigned a hard register.
6280 Therefore, it must either be in memory or be a constant. */
6282 if (regno >= FIRST_PSEUDO_REGISTER)
6284 if (reg_equiv_memory_loc[regno])
6285 return refers_to_mem_for_reload_p (in);
6286 else if (reg_equiv_constant[regno])
6287 return 0;
6288 abort ();
6291 else if (GET_CODE (x) == MEM)
6292 return refers_to_mem_for_reload_p (in);
6293 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6294 || GET_CODE (x) == CC0)
6295 return reg_mentioned_p (x, in);
6296 else if (GET_CODE (x) == PLUS)
6297 return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6298 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6299 else
6300 abort ();
6302 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6303 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6305 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6308 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6309 registers. */
6312 refers_to_mem_for_reload_p (x)
6313 rtx x;
6315 const char *fmt;
6316 int i;
6318 if (GET_CODE (x) == MEM)
6319 return 1;
6321 if (GET_CODE (x) == REG)
6322 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6323 && reg_equiv_memory_loc[REGNO (x)]);
6325 fmt = GET_RTX_FORMAT (GET_CODE (x));
6326 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6327 if (fmt[i] == 'e'
6328 && (GET_CODE (XEXP (x, i)) == MEM
6329 || refers_to_mem_for_reload_p (XEXP (x, i))))
6330 return 1;
6332 return 0;
6335 /* Check the insns before INSN to see if there is a suitable register
6336 containing the same value as GOAL.
6337 If OTHER is -1, look for a register in class CLASS.
6338 Otherwise, just see if register number OTHER shares GOAL's value.
6340 Return an rtx for the register found, or zero if none is found.
6342 If RELOAD_REG_P is (short *)1,
6343 we reject any hard reg that appears in reload_reg_rtx
6344 because such a hard reg is also needed coming into this insn.
6346 If RELOAD_REG_P is any other nonzero value,
6347 it is a vector indexed by hard reg number
6348 and we reject any hard reg whose element in the vector is nonnegative
6349 as well as any that appears in reload_reg_rtx.
6351 If GOAL is zero, then GOALREG is a register number; we look
6352 for an equivalent for that register.
6354 MODE is the machine mode of the value we want an equivalence for.
6355 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6357 This function is used by jump.c as well as in the reload pass.
6359 If GOAL is the sum of the stack pointer and a constant, we treat it
6360 as if it were a constant except that sp is required to be unchanging. */
6363 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6364 rtx goal;
6365 rtx insn;
6366 enum reg_class class;
6367 int other;
6368 short *reload_reg_p;
6369 int goalreg;
6370 enum machine_mode mode;
6372 rtx p = insn;
6373 rtx goaltry, valtry, value, where;
6374 rtx pat;
6375 int regno = -1;
6376 int valueno;
6377 int goal_mem = 0;
6378 int goal_const = 0;
6379 int goal_mem_addr_varies = 0;
6380 int need_stable_sp = 0;
6381 int nregs;
6382 int valuenregs;
6384 if (goal == 0)
6385 regno = goalreg;
6386 else if (GET_CODE (goal) == REG)
6387 regno = REGNO (goal);
6388 else if (GET_CODE (goal) == MEM)
6390 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6391 if (MEM_VOLATILE_P (goal))
6392 return 0;
6393 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6394 return 0;
6395 /* An address with side effects must be reexecuted. */
6396 switch (code)
6398 case POST_INC:
6399 case PRE_INC:
6400 case POST_DEC:
6401 case PRE_DEC:
6402 case POST_MODIFY:
6403 case PRE_MODIFY:
6404 return 0;
6405 default:
6406 break;
6408 goal_mem = 1;
6410 else if (CONSTANT_P (goal))
6411 goal_const = 1;
6412 else if (GET_CODE (goal) == PLUS
6413 && XEXP (goal, 0) == stack_pointer_rtx
6414 && CONSTANT_P (XEXP (goal, 1)))
6415 goal_const = need_stable_sp = 1;
6416 else if (GET_CODE (goal) == PLUS
6417 && XEXP (goal, 0) == frame_pointer_rtx
6418 && CONSTANT_P (XEXP (goal, 1)))
6419 goal_const = 1;
6420 else
6421 return 0;
6423 /* Scan insns back from INSN, looking for one that copies
6424 a value into or out of GOAL.
6425 Stop and give up if we reach a label. */
6427 while (1)
6429 p = PREV_INSN (p);
6430 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6431 return 0;
6433 if (GET_CODE (p) == INSN
6434 /* If we don't want spill regs ... */
6435 && (! (reload_reg_p != 0
6436 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6437 /* ... then ignore insns introduced by reload; they aren't
6438 useful and can cause results in reload_as_needed to be
6439 different from what they were when calculating the need for
6440 spills. If we notice an input-reload insn here, we will
6441 reject it below, but it might hide a usable equivalent.
6442 That makes bad code. It may even abort: perhaps no reg was
6443 spilled for this insn because it was assumed we would find
6444 that equivalent. */
6445 || INSN_UID (p) < reload_first_uid))
6447 rtx tem;
6448 pat = single_set (p);
6450 /* First check for something that sets some reg equal to GOAL. */
6451 if (pat != 0
6452 && ((regno >= 0
6453 && true_regnum (SET_SRC (pat)) == regno
6454 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6456 (regno >= 0
6457 && true_regnum (SET_DEST (pat)) == regno
6458 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6460 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6461 /* When looking for stack pointer + const,
6462 make sure we don't use a stack adjust. */
6463 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6464 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6465 || (goal_mem
6466 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6467 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6468 || (goal_mem
6469 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6470 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6471 /* If we are looking for a constant,
6472 and something equivalent to that constant was copied
6473 into a reg, we can use that reg. */
6474 || (goal_const && REG_NOTES (p) != 0
6475 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6476 && ((rtx_equal_p (XEXP (tem, 0), goal)
6477 && (valueno
6478 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6479 || (GET_CODE (SET_DEST (pat)) == REG
6480 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6481 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6482 == MODE_FLOAT)
6483 && GET_CODE (goal) == CONST_INT
6484 && 0 != (goaltry
6485 = operand_subword (XEXP (tem, 0), 0, 0,
6486 VOIDmode))
6487 && rtx_equal_p (goal, goaltry)
6488 && (valtry
6489 = operand_subword (SET_DEST (pat), 0, 0,
6490 VOIDmode))
6491 && (valueno = true_regnum (valtry)) >= 0)))
6492 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6493 NULL_RTX))
6494 && GET_CODE (SET_DEST (pat)) == REG
6495 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6496 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6497 == MODE_FLOAT)
6498 && GET_CODE (goal) == CONST_INT
6499 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6500 VOIDmode))
6501 && rtx_equal_p (goal, goaltry)
6502 && (valtry
6503 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6504 && (valueno = true_regnum (valtry)) >= 0)))
6506 if (other >= 0)
6508 if (valueno != other)
6509 continue;
6511 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6512 continue;
6513 else
6515 int i;
6517 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6518 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6519 valueno + i))
6520 break;
6521 if (i >= 0)
6522 continue;
6524 value = valtry;
6525 where = p;
6526 break;
6531 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6532 (or copying VALUE into GOAL, if GOAL is also a register).
6533 Now verify that VALUE is really valid. */
6535 /* VALUENO is the register number of VALUE; a hard register. */
6537 /* Don't try to re-use something that is killed in this insn. We want
6538 to be able to trust REG_UNUSED notes. */
6539 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6540 return 0;
6542 /* If we propose to get the value from the stack pointer or if GOAL is
6543 a MEM based on the stack pointer, we need a stable SP. */
6544 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6545 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6546 goal)))
6547 need_stable_sp = 1;
6549 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6550 if (GET_MODE (value) != mode)
6551 return 0;
6553 /* Reject VALUE if it was loaded from GOAL
6554 and is also a register that appears in the address of GOAL. */
6556 if (goal_mem && value == SET_DEST (single_set (where))
6557 && refers_to_regno_for_reload_p (valueno,
6558 (valueno
6559 + HARD_REGNO_NREGS (valueno, mode)),
6560 goal, (rtx*) 0))
6561 return 0;
6563 /* Reject registers that overlap GOAL. */
6565 if (!goal_mem && !goal_const
6566 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6567 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6568 return 0;
6570 nregs = HARD_REGNO_NREGS (regno, mode);
6571 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6573 /* Reject VALUE if it is one of the regs reserved for reloads.
6574 Reload1 knows how to reuse them anyway, and it would get
6575 confused if we allocated one without its knowledge.
6576 (Now that insns introduced by reload are ignored above,
6577 this case shouldn't happen, but I'm not positive.) */
6579 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6581 int i;
6582 for (i = 0; i < valuenregs; ++i)
6583 if (reload_reg_p[valueno + i] >= 0)
6584 return 0;
6587 /* Reject VALUE if it is a register being used for an input reload
6588 even if it is not one of those reserved. */
6590 if (reload_reg_p != 0)
6592 int i;
6593 for (i = 0; i < n_reloads; i++)
6594 if (rld[i].reg_rtx != 0 && rld[i].in)
6596 int regno1 = REGNO (rld[i].reg_rtx);
6597 int nregs1 = HARD_REGNO_NREGS (regno1,
6598 GET_MODE (rld[i].reg_rtx));
6599 if (regno1 < valueno + valuenregs
6600 && regno1 + nregs1 > valueno)
6601 return 0;
6605 if (goal_mem)
6606 /* We must treat frame pointer as varying here,
6607 since it can vary--in a nonlocal goto as generated by expand_goto. */
6608 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6610 /* Now verify that the values of GOAL and VALUE remain unaltered
6611 until INSN is reached. */
6613 p = insn;
6614 while (1)
6616 p = PREV_INSN (p);
6617 if (p == where)
6618 return value;
6620 /* Don't trust the conversion past a function call
6621 if either of the two is in a call-clobbered register, or memory. */
6622 if (GET_CODE (p) == CALL_INSN)
6624 int i;
6626 if (goal_mem || need_stable_sp)
6627 return 0;
6629 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6630 for (i = 0; i < nregs; ++i)
6631 if (call_used_regs[regno + i])
6632 return 0;
6634 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6635 for (i = 0; i < valuenregs; ++i)
6636 if (call_used_regs[valueno + i])
6637 return 0;
6638 #ifdef NON_SAVING_SETJMP
6639 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6640 return 0;
6641 #endif
6644 if (INSN_P (p))
6646 pat = PATTERN (p);
6648 /* Watch out for unspec_volatile, and volatile asms. */
6649 if (volatile_insn_p (pat))
6650 return 0;
6652 /* If this insn P stores in either GOAL or VALUE, return 0.
6653 If GOAL is a memory ref and this insn writes memory, return 0.
6654 If GOAL is a memory ref and its address is not constant,
6655 and this insn P changes a register used in GOAL, return 0. */
6657 if (GET_CODE (pat) == COND_EXEC)
6658 pat = COND_EXEC_CODE (pat);
6659 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6661 rtx dest = SET_DEST (pat);
6662 while (GET_CODE (dest) == SUBREG
6663 || GET_CODE (dest) == ZERO_EXTRACT
6664 || GET_CODE (dest) == SIGN_EXTRACT
6665 || GET_CODE (dest) == STRICT_LOW_PART)
6666 dest = XEXP (dest, 0);
6667 if (GET_CODE (dest) == REG)
6669 int xregno = REGNO (dest);
6670 int xnregs;
6671 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6672 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6673 else
6674 xnregs = 1;
6675 if (xregno < regno + nregs && xregno + xnregs > regno)
6676 return 0;
6677 if (xregno < valueno + valuenregs
6678 && xregno + xnregs > valueno)
6679 return 0;
6680 if (goal_mem_addr_varies
6681 && reg_overlap_mentioned_for_reload_p (dest, goal))
6682 return 0;
6683 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6684 return 0;
6686 else if (goal_mem && GET_CODE (dest) == MEM
6687 && ! push_operand (dest, GET_MODE (dest)))
6688 return 0;
6689 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6690 && reg_equiv_memory_loc[regno] != 0)
6691 return 0;
6692 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6693 return 0;
6695 else if (GET_CODE (pat) == PARALLEL)
6697 int i;
6698 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6700 rtx v1 = XVECEXP (pat, 0, i);
6701 if (GET_CODE (v1) == COND_EXEC)
6702 v1 = COND_EXEC_CODE (v1);
6703 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6705 rtx dest = SET_DEST (v1);
6706 while (GET_CODE (dest) == SUBREG
6707 || GET_CODE (dest) == ZERO_EXTRACT
6708 || GET_CODE (dest) == SIGN_EXTRACT
6709 || GET_CODE (dest) == STRICT_LOW_PART)
6710 dest = XEXP (dest, 0);
6711 if (GET_CODE (dest) == REG)
6713 int xregno = REGNO (dest);
6714 int xnregs;
6715 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6716 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6717 else
6718 xnregs = 1;
6719 if (xregno < regno + nregs
6720 && xregno + xnregs > regno)
6721 return 0;
6722 if (xregno < valueno + valuenregs
6723 && xregno + xnregs > valueno)
6724 return 0;
6725 if (goal_mem_addr_varies
6726 && reg_overlap_mentioned_for_reload_p (dest,
6727 goal))
6728 return 0;
6729 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6730 return 0;
6732 else if (goal_mem && GET_CODE (dest) == MEM
6733 && ! push_operand (dest, GET_MODE (dest)))
6734 return 0;
6735 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6736 && reg_equiv_memory_loc[regno] != 0)
6737 return 0;
6738 else if (need_stable_sp
6739 && push_operand (dest, GET_MODE (dest)))
6740 return 0;
6745 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6747 rtx link;
6749 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6750 link = XEXP (link, 1))
6752 pat = XEXP (link, 0);
6753 if (GET_CODE (pat) == CLOBBER)
6755 rtx dest = SET_DEST (pat);
6757 if (GET_CODE (dest) == REG)
6759 int xregno = REGNO (dest);
6760 int xnregs
6761 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6763 if (xregno < regno + nregs
6764 && xregno + xnregs > regno)
6765 return 0;
6766 else if (xregno < valueno + valuenregs
6767 && xregno + xnregs > valueno)
6768 return 0;
6769 else if (goal_mem_addr_varies
6770 && reg_overlap_mentioned_for_reload_p (dest,
6771 goal))
6772 return 0;
6775 else if (goal_mem && GET_CODE (dest) == MEM
6776 && ! push_operand (dest, GET_MODE (dest)))
6777 return 0;
6778 else if (need_stable_sp
6779 && push_operand (dest, GET_MODE (dest)))
6780 return 0;
6785 #ifdef AUTO_INC_DEC
6786 /* If this insn auto-increments or auto-decrements
6787 either regno or valueno, return 0 now.
6788 If GOAL is a memory ref and its address is not constant,
6789 and this insn P increments a register used in GOAL, return 0. */
6791 rtx link;
6793 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6794 if (REG_NOTE_KIND (link) == REG_INC
6795 && GET_CODE (XEXP (link, 0)) == REG)
6797 int incno = REGNO (XEXP (link, 0));
6798 if (incno < regno + nregs && incno >= regno)
6799 return 0;
6800 if (incno < valueno + valuenregs && incno >= valueno)
6801 return 0;
6802 if (goal_mem_addr_varies
6803 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6804 goal))
6805 return 0;
6808 #endif
6813 /* Find a place where INCED appears in an increment or decrement operator
6814 within X, and return the amount INCED is incremented or decremented by.
6815 The value is always positive. */
6817 static int
6818 find_inc_amount (x, inced)
6819 rtx x, inced;
6821 enum rtx_code code = GET_CODE (x);
6822 const char *fmt;
6823 int i;
6825 if (code == MEM)
6827 rtx addr = XEXP (x, 0);
6828 if ((GET_CODE (addr) == PRE_DEC
6829 || GET_CODE (addr) == POST_DEC
6830 || GET_CODE (addr) == PRE_INC
6831 || GET_CODE (addr) == POST_INC)
6832 && XEXP (addr, 0) == inced)
6833 return GET_MODE_SIZE (GET_MODE (x));
6834 else if ((GET_CODE (addr) == PRE_MODIFY
6835 || GET_CODE (addr) == POST_MODIFY)
6836 && GET_CODE (XEXP (addr, 1)) == PLUS
6837 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6838 && XEXP (addr, 0) == inced
6839 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6841 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6842 return i < 0 ? -i : i;
6846 fmt = GET_RTX_FORMAT (code);
6847 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6849 if (fmt[i] == 'e')
6851 int tem = find_inc_amount (XEXP (x, i), inced);
6852 if (tem != 0)
6853 return tem;
6855 if (fmt[i] == 'E')
6857 int j;
6858 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6860 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6861 if (tem != 0)
6862 return tem;
6867 return 0;
6870 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6871 If SETS is nonzero, also consider SETs. */
6874 regno_clobbered_p (regno, insn, mode, sets)
6875 unsigned int regno;
6876 rtx insn;
6877 enum machine_mode mode;
6878 int sets;
6880 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6881 unsigned int endregno = regno + nregs;
6883 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6884 || (sets && GET_CODE (PATTERN (insn)) == SET))
6885 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6887 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6889 return test >= regno && test < endregno;
6892 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6894 int i = XVECLEN (PATTERN (insn), 0) - 1;
6896 for (; i >= 0; i--)
6898 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6899 if ((GET_CODE (elt) == CLOBBER
6900 || (sets && GET_CODE (PATTERN (insn)) == SET))
6901 && GET_CODE (XEXP (elt, 0)) == REG)
6903 unsigned int test = REGNO (XEXP (elt, 0));
6905 if (test >= regno && test < endregno)
6906 return 1;
6911 return 0;
6914 static const char *const reload_when_needed_name[] =
6916 "RELOAD_FOR_INPUT",
6917 "RELOAD_FOR_OUTPUT",
6918 "RELOAD_FOR_INSN",
6919 "RELOAD_FOR_INPUT_ADDRESS",
6920 "RELOAD_FOR_INPADDR_ADDRESS",
6921 "RELOAD_FOR_OUTPUT_ADDRESS",
6922 "RELOAD_FOR_OUTADDR_ADDRESS",
6923 "RELOAD_FOR_OPERAND_ADDRESS",
6924 "RELOAD_FOR_OPADDR_ADDR",
6925 "RELOAD_OTHER",
6926 "RELOAD_FOR_OTHER_ADDRESS"
6929 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6931 /* These functions are used to print the variables set by 'find_reloads' */
6933 void
6934 debug_reload_to_stream (f)
6935 FILE *f;
6937 int r;
6938 const char *prefix;
6940 if (! f)
6941 f = stderr;
6942 for (r = 0; r < n_reloads; r++)
6944 fprintf (f, "Reload %d: ", r);
6946 if (rld[r].in != 0)
6948 fprintf (f, "reload_in (%s) = ",
6949 GET_MODE_NAME (rld[r].inmode));
6950 print_inline_rtx (f, rld[r].in, 24);
6951 fprintf (f, "\n\t");
6954 if (rld[r].out != 0)
6956 fprintf (f, "reload_out (%s) = ",
6957 GET_MODE_NAME (rld[r].outmode));
6958 print_inline_rtx (f, rld[r].out, 24);
6959 fprintf (f, "\n\t");
6962 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6964 fprintf (f, "%s (opnum = %d)",
6965 reload_when_needed_name[(int) rld[r].when_needed],
6966 rld[r].opnum);
6968 if (rld[r].optional)
6969 fprintf (f, ", optional");
6971 if (rld[r].nongroup)
6972 fprintf (f, ", nongroup");
6974 if (rld[r].inc != 0)
6975 fprintf (f, ", inc by %d", rld[r].inc);
6977 if (rld[r].nocombine)
6978 fprintf (f, ", can't combine");
6980 if (rld[r].secondary_p)
6981 fprintf (f, ", secondary_reload_p");
6983 if (rld[r].in_reg != 0)
6985 fprintf (f, "\n\treload_in_reg: ");
6986 print_inline_rtx (f, rld[r].in_reg, 24);
6989 if (rld[r].out_reg != 0)
6991 fprintf (f, "\n\treload_out_reg: ");
6992 print_inline_rtx (f, rld[r].out_reg, 24);
6995 if (rld[r].reg_rtx != 0)
6997 fprintf (f, "\n\treload_reg_rtx: ");
6998 print_inline_rtx (f, rld[r].reg_rtx, 24);
7001 prefix = "\n\t";
7002 if (rld[r].secondary_in_reload != -1)
7004 fprintf (f, "%ssecondary_in_reload = %d",
7005 prefix, rld[r].secondary_in_reload);
7006 prefix = ", ";
7009 if (rld[r].secondary_out_reload != -1)
7010 fprintf (f, "%ssecondary_out_reload = %d\n",
7011 prefix, rld[r].secondary_out_reload);
7013 prefix = "\n\t";
7014 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7016 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7017 insn_data[rld[r].secondary_in_icode].name);
7018 prefix = ", ";
7021 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7022 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7023 insn_data[rld[r].secondary_out_icode].name);
7025 fprintf (f, "\n");
7029 void
7030 debug_reload ()
7032 debug_reload_to_stream (stderr);