1 /* Tail merging for gimple.
2 Copyright (C) 2011-2014 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
33 const charD.1 * restrict outputFileName.0D.3914;
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
61 # SUCC: 7 [100.0%] (fallthru,exec)
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
83 # SUCC: 7 [100.0%] (fallthru,exec)
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
101 # VUSE <.MEMD.3923_11>
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
159 1. The pass first determines all groups of blocks with the same successor
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
190 #include "coretypes.h"
193 #include "stor-layout.h"
194 #include "trans-mem.h"
200 #include "hash-set.h"
201 #include "machmode.h"
202 #include "hard-reg-set.h"
204 #include "function.h"
205 #include "dominance.h"
208 #include "cfgcleanup.h"
209 #include "basic-block.h"
211 #include "hash-table.h"
212 #include "tree-ssa-alias.h"
213 #include "internal-fn.h"
215 #include "gimple-expr.h"
218 #include "gimple-iterator.h"
219 #include "gimple-ssa.h"
220 #include "tree-cfg.h"
221 #include "tree-phinodes.h"
222 #include "ssa-iterators.h"
223 #include "tree-into-ssa.h"
225 #include "gimple-pretty-print.h"
226 #include "tree-ssa-sccvn.h"
227 #include "tree-dump.h"
229 #include "tree-pass.h"
230 #include "trans-mem.h"
232 /* Describes a group of bbs with the same successors. The successor bbs are
233 cached in succs, and the successor edge flags are cached in succ_flags.
234 If a bb has the EDGE_TRUE/VALSE_VALUE flags swapped compared to succ_flags,
235 it's marked in inverse.
236 Additionally, the hash value for the struct is cached in hashval, and
237 in_worklist indicates whether it's currently part of worklist. */
241 /* The bbs that have the same successor bbs. */
243 /* The successor bbs. */
245 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
248 /* The edge flags for each of the successor bbs. */
250 /* Indicates whether the struct is currently in the worklist. */
252 /* The hash value of the struct. */
255 /* hash_table support. */
256 typedef same_succ_def value_type
;
257 typedef same_succ_def compare_type
;
258 static inline hashval_t
hash (const value_type
*);
259 static int equal (const value_type
*, const compare_type
*);
260 static void remove (value_type
*);
262 typedef struct same_succ_def
*same_succ
;
263 typedef const struct same_succ_def
*const_same_succ
;
265 /* hash routine for hash_table support, returns hashval of E. */
268 same_succ_def::hash (const value_type
*e
)
273 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
275 struct bb_cluster_def
277 /* The bbs in the cluster. */
279 /* The preds of the bbs in the cluster. */
281 /* Index in all_clusters vector. */
283 /* The bb to replace the cluster with. */
286 typedef struct bb_cluster_def
*bb_cluster
;
287 typedef const struct bb_cluster_def
*const_bb_cluster
;
293 /* The number of non-debug statements in the bb. */
295 /* The same_succ that this bb is a member of. */
296 same_succ bb_same_succ
;
297 /* The cluster that this bb is a member of. */
299 /* The vop state at the exit of a bb. This is shortlived data, used to
300 communicate data between update_block_by and update_vuses. */
302 /* The bb that either contains or is dominated by the dependencies of the
307 /* Macros to access the fields of struct aux_bb_info. */
309 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
310 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
311 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
312 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
313 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
315 /* Returns true if the only effect a statement STMT has, is to define locally
319 stmt_local_def (gimple stmt
)
321 basic_block bb
, def_bb
;
322 imm_use_iterator iter
;
327 if (gimple_vdef (stmt
) != NULL_TREE
328 || gimple_has_side_effects (stmt
)
329 || gimple_could_trap_p_1 (stmt
, false, false)
330 || gimple_vuse (stmt
) != NULL_TREE
)
333 def_p
= SINGLE_SSA_DEF_OPERAND (stmt
, SSA_OP_DEF
);
337 val
= DEF_FROM_PTR (def_p
);
338 if (val
== NULL_TREE
|| TREE_CODE (val
) != SSA_NAME
)
341 def_bb
= gimple_bb (stmt
);
343 FOR_EACH_IMM_USE_FAST (use_p
, iter
, val
)
345 if (is_gimple_debug (USE_STMT (use_p
)))
347 bb
= gimple_bb (USE_STMT (use_p
));
351 if (gimple_code (USE_STMT (use_p
)) == GIMPLE_PHI
352 && EDGE_PRED (bb
, PHI_ARG_INDEX_FROM_USE (use_p
))->src
== def_bb
)
361 /* Let GSI skip forwards over local defs. */
364 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
)
370 if (gsi_end_p (*gsi
))
372 stmt
= gsi_stmt (*gsi
);
373 if (!stmt_local_def (stmt
))
375 gsi_next_nondebug (gsi
);
379 /* VAL1 and VAL2 are either:
380 - uses in BB1 and BB2, or
381 - phi alternatives for BB1 and BB2.
382 Return true if the uses have the same gvn value. */
385 gvn_uses_equal (tree val1
, tree val2
)
387 gcc_checking_assert (val1
!= NULL_TREE
&& val2
!= NULL_TREE
);
392 if (vn_valueize (val1
) != vn_valueize (val2
))
395 return ((TREE_CODE (val1
) == SSA_NAME
|| CONSTANT_CLASS_P (val1
))
396 && (TREE_CODE (val2
) == SSA_NAME
|| CONSTANT_CLASS_P (val2
)));
399 /* Prints E to FILE. */
402 same_succ_print (FILE *file
, const same_succ e
)
405 bitmap_print (file
, e
->bbs
, "bbs:", "\n");
406 bitmap_print (file
, e
->succs
, "succs:", "\n");
407 bitmap_print (file
, e
->inverse
, "inverse:", "\n");
408 fprintf (file
, "flags:");
409 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
410 fprintf (file
, " %x", e
->succ_flags
[i
]);
411 fprintf (file
, "\n");
414 /* Prints same_succ VE to VFILE. */
417 ssa_same_succ_print_traverse (same_succ
*pe
, FILE *file
)
419 const same_succ e
= *pe
;
420 same_succ_print (file
, e
);
424 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
427 update_dep_bb (basic_block use_bb
, tree val
)
432 if (TREE_CODE (val
) != SSA_NAME
)
435 /* Skip use of global def. */
436 if (SSA_NAME_IS_DEFAULT_DEF (val
))
439 /* Skip use of local def. */
440 dep_bb
= gimple_bb (SSA_NAME_DEF_STMT (val
));
441 if (dep_bb
== use_bb
)
444 if (BB_DEP_BB (use_bb
) == NULL
445 || dominated_by_p (CDI_DOMINATORS
, dep_bb
, BB_DEP_BB (use_bb
)))
446 BB_DEP_BB (use_bb
) = dep_bb
;
449 /* Update BB_DEP_BB, given the dependencies in STMT. */
452 stmt_update_dep_bb (gimple stmt
)
457 FOR_EACH_SSA_USE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
458 update_dep_bb (gimple_bb (stmt
), USE_FROM_PTR (use
));
461 /* Calculates hash value for same_succ VE. */
464 same_succ_hash (const_same_succ e
)
466 inchash::hash
hstate (bitmap_hash (e
->succs
));
469 unsigned int first
= bitmap_first_set_bit (e
->bbs
);
470 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, first
);
477 for (gimple_stmt_iterator gsi
= gsi_start_nondebug_bb (bb
);
478 !gsi_end_p (gsi
); gsi_next_nondebug (&gsi
))
480 stmt
= gsi_stmt (gsi
);
481 stmt_update_dep_bb (stmt
);
482 if (stmt_local_def (stmt
))
486 hstate
.add_int (gimple_code (stmt
));
487 if (is_gimple_assign (stmt
))
488 hstate
.add_int (gimple_assign_rhs_code (stmt
));
489 if (!is_gimple_call (stmt
))
491 if (gimple_call_internal_p (stmt
))
492 hstate
.add_int (gimple_call_internal_fn (stmt
));
495 inchash::add_expr (gimple_call_fn (stmt
), hstate
);
496 if (gimple_call_chain (stmt
))
497 inchash::add_expr (gimple_call_chain (stmt
), hstate
);
499 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
501 arg
= gimple_call_arg (stmt
, i
);
502 arg
= vn_valueize (arg
);
503 inchash::add_expr (arg
, hstate
);
507 hstate
.add_int (size
);
510 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
512 flags
= e
->succ_flags
[i
];
513 flags
= flags
& ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
514 hstate
.add_int (flags
);
517 EXECUTE_IF_SET_IN_BITMAP (e
->succs
, 0, s
, bs
)
519 int n
= find_edge (bb
, BASIC_BLOCK_FOR_FN (cfun
, s
))->dest_idx
;
520 for (gphi_iterator gsi
= gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun
, s
));
524 gphi
*phi
= gsi
.phi ();
525 tree lhs
= gimple_phi_result (phi
);
526 tree val
= gimple_phi_arg_def (phi
, n
);
528 if (virtual_operand_p (lhs
))
530 update_dep_bb (bb
, val
);
534 return hstate
.end ();
537 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
538 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
539 the other edge flags. */
542 inverse_flags (const_same_succ e1
, const_same_succ e2
)
544 int f1a
, f1b
, f2a
, f2b
;
545 int mask
= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
547 if (e1
->succ_flags
.length () != 2)
550 f1a
= e1
->succ_flags
[0];
551 f1b
= e1
->succ_flags
[1];
552 f2a
= e2
->succ_flags
[0];
553 f2b
= e2
->succ_flags
[1];
555 if (f1a
== f2a
&& f1b
== f2b
)
558 return (f1a
& mask
) == (f2a
& mask
) && (f1b
& mask
) == (f2b
& mask
);
561 /* Compares SAME_SUCCs E1 and E2. */
564 same_succ_def::equal (const value_type
*e1
, const compare_type
*e2
)
566 unsigned int i
, first1
, first2
;
567 gimple_stmt_iterator gsi1
, gsi2
;
569 basic_block bb1
, bb2
;
571 if (e1
->hashval
!= e2
->hashval
)
574 if (e1
->succ_flags
.length () != e2
->succ_flags
.length ())
577 if (!bitmap_equal_p (e1
->succs
, e2
->succs
))
580 if (!inverse_flags (e1
, e2
))
582 for (i
= 0; i
< e1
->succ_flags
.length (); ++i
)
583 if (e1
->succ_flags
[i
] != e1
->succ_flags
[i
])
587 first1
= bitmap_first_set_bit (e1
->bbs
);
588 first2
= bitmap_first_set_bit (e2
->bbs
);
590 bb1
= BASIC_BLOCK_FOR_FN (cfun
, first1
);
591 bb2
= BASIC_BLOCK_FOR_FN (cfun
, first2
);
593 if (BB_SIZE (bb1
) != BB_SIZE (bb2
))
596 gsi1
= gsi_start_nondebug_bb (bb1
);
597 gsi2
= gsi_start_nondebug_bb (bb2
);
598 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
599 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
600 while (!(gsi_end_p (gsi1
) || gsi_end_p (gsi2
)))
602 s1
= gsi_stmt (gsi1
);
603 s2
= gsi_stmt (gsi2
);
604 if (gimple_code (s1
) != gimple_code (s2
))
606 if (is_gimple_call (s1
) && !gimple_call_same_target_p (s1
, s2
))
608 gsi_next_nondebug (&gsi1
);
609 gsi_next_nondebug (&gsi2
);
610 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
611 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
617 /* Alloc and init a new SAME_SUCC. */
620 same_succ_alloc (void)
622 same_succ same
= XNEW (struct same_succ_def
);
624 same
->bbs
= BITMAP_ALLOC (NULL
);
625 same
->succs
= BITMAP_ALLOC (NULL
);
626 same
->inverse
= BITMAP_ALLOC (NULL
);
627 same
->succ_flags
.create (10);
628 same
->in_worklist
= false;
633 /* Delete same_succ E. */
636 same_succ_def::remove (same_succ e
)
638 BITMAP_FREE (e
->bbs
);
639 BITMAP_FREE (e
->succs
);
640 BITMAP_FREE (e
->inverse
);
641 e
->succ_flags
.release ();
646 /* Reset same_succ SAME. */
649 same_succ_reset (same_succ same
)
651 bitmap_clear (same
->bbs
);
652 bitmap_clear (same
->succs
);
653 bitmap_clear (same
->inverse
);
654 same
->succ_flags
.truncate (0);
657 static hash_table
<same_succ_def
> *same_succ_htab
;
659 /* Array that is used to store the edge flags for a successor. */
661 static int *same_succ_edge_flags
;
663 /* Bitmap that is used to mark bbs that are recently deleted. */
665 static bitmap deleted_bbs
;
667 /* Bitmap that is used to mark predecessors of bbs that are
670 static bitmap deleted_bb_preds
;
672 /* Prints same_succ_htab to stderr. */
674 extern void debug_same_succ (void);
676 debug_same_succ ( void)
678 same_succ_htab
->traverse
<FILE *, ssa_same_succ_print_traverse
> (stderr
);
682 /* Vector of bbs to process. */
684 static vec
<same_succ
> worklist
;
686 /* Prints worklist to FILE. */
689 print_worklist (FILE *file
)
692 for (i
= 0; i
< worklist
.length (); ++i
)
693 same_succ_print (file
, worklist
[i
]);
696 /* Adds SAME to worklist. */
699 add_to_worklist (same_succ same
)
701 if (same
->in_worklist
)
704 if (bitmap_count_bits (same
->bbs
) < 2)
707 same
->in_worklist
= true;
708 worklist
.safe_push (same
);
711 /* Add BB to same_succ_htab. */
714 find_same_succ_bb (basic_block bb
, same_succ
*same_p
)
718 same_succ same
= *same_p
;
724 /* Be conservative with loop structure. It's not evident that this test
725 is sufficient. Before tail-merge, we've just called
726 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
727 set, so there's no guarantee that the loop->latch value is still valid.
728 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
729 start of pre, we've kept that property intact throughout pre, and are
730 keeping it throughout tail-merge using this test. */
731 || bb
->loop_father
->latch
== bb
)
733 bitmap_set_bit (same
->bbs
, bb
->index
);
734 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
736 int index
= e
->dest
->index
;
737 bitmap_set_bit (same
->succs
, index
);
738 same_succ_edge_flags
[index
] = e
->flags
;
740 EXECUTE_IF_SET_IN_BITMAP (same
->succs
, 0, j
, bj
)
741 same
->succ_flags
.safe_push (same_succ_edge_flags
[j
]);
743 same
->hashval
= same_succ_hash (same
);
745 slot
= same_succ_htab
->find_slot_with_hash (same
, same
->hashval
, INSERT
);
749 BB_SAME_SUCC (bb
) = same
;
750 add_to_worklist (same
);
755 bitmap_set_bit ((*slot
)->bbs
, bb
->index
);
756 BB_SAME_SUCC (bb
) = *slot
;
757 add_to_worklist (*slot
);
758 if (inverse_flags (same
, *slot
))
759 bitmap_set_bit ((*slot
)->inverse
, bb
->index
);
760 same_succ_reset (same
);
764 /* Find bbs with same successors. */
767 find_same_succ (void)
769 same_succ same
= same_succ_alloc ();
772 FOR_EACH_BB_FN (bb
, cfun
)
774 find_same_succ_bb (bb
, &same
);
776 same
= same_succ_alloc ();
779 same_succ_def::remove (same
);
782 /* Initializes worklist administration. */
787 alloc_aux_for_blocks (sizeof (struct aux_bb_info
));
788 same_succ_htab
= new hash_table
<same_succ_def
> (n_basic_blocks_for_fn (cfun
));
789 same_succ_edge_flags
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
790 deleted_bbs
= BITMAP_ALLOC (NULL
);
791 deleted_bb_preds
= BITMAP_ALLOC (NULL
);
792 worklist
.create (n_basic_blocks_for_fn (cfun
));
795 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
797 fprintf (dump_file
, "initial worklist:\n");
798 print_worklist (dump_file
);
802 /* Deletes worklist administration. */
805 delete_worklist (void)
807 free_aux_for_blocks ();
808 delete same_succ_htab
;
809 same_succ_htab
= NULL
;
810 XDELETEVEC (same_succ_edge_flags
);
811 same_succ_edge_flags
= NULL
;
812 BITMAP_FREE (deleted_bbs
);
813 BITMAP_FREE (deleted_bb_preds
);
817 /* Mark BB as deleted, and mark its predecessors. */
820 mark_basic_block_deleted (basic_block bb
)
825 bitmap_set_bit (deleted_bbs
, bb
->index
);
827 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
828 bitmap_set_bit (deleted_bb_preds
, e
->src
->index
);
831 /* Removes BB from its corresponding same_succ. */
834 same_succ_flush_bb (basic_block bb
)
836 same_succ same
= BB_SAME_SUCC (bb
);
837 BB_SAME_SUCC (bb
) = NULL
;
838 if (bitmap_single_bit_set_p (same
->bbs
))
839 same_succ_htab
->remove_elt_with_hash (same
, same
->hashval
);
841 bitmap_clear_bit (same
->bbs
, bb
->index
);
844 /* Removes all bbs in BBS from their corresponding same_succ. */
847 same_succ_flush_bbs (bitmap bbs
)
852 EXECUTE_IF_SET_IN_BITMAP (bbs
, 0, i
, bi
)
853 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun
, i
));
856 /* Release the last vdef in BB, either normal or phi result. */
859 release_last_vdef (basic_block bb
)
861 for (gimple_stmt_iterator i
= gsi_last_bb (bb
); !gsi_end_p (i
);
862 gsi_prev_nondebug (&i
))
864 gimple stmt
= gsi_stmt (i
);
865 if (gimple_vdef (stmt
) == NULL_TREE
)
868 mark_virtual_operand_for_renaming (gimple_vdef (stmt
));
872 for (gphi_iterator i
= gsi_start_phis (bb
); !gsi_end_p (i
);
875 gphi
*phi
= i
.phi ();
876 tree res
= gimple_phi_result (phi
);
878 if (!virtual_operand_p (res
))
881 mark_virtual_phi_result_for_renaming (phi
);
887 /* For deleted_bb_preds, find bbs with same successors. */
890 update_worklist (void)
897 bitmap_and_compl_into (deleted_bb_preds
, deleted_bbs
);
898 bitmap_clear (deleted_bbs
);
900 bitmap_clear_bit (deleted_bb_preds
, ENTRY_BLOCK
);
901 same_succ_flush_bbs (deleted_bb_preds
);
903 same
= same_succ_alloc ();
904 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds
, 0, i
, bi
)
906 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
907 gcc_assert (bb
!= NULL
);
908 find_same_succ_bb (bb
, &same
);
910 same
= same_succ_alloc ();
912 same_succ_def::remove (same
);
913 bitmap_clear (deleted_bb_preds
);
916 /* Prints cluster C to FILE. */
919 print_cluster (FILE *file
, bb_cluster c
)
923 bitmap_print (file
, c
->bbs
, "bbs:", "\n");
924 bitmap_print (file
, c
->preds
, "preds:", "\n");
927 /* Prints cluster C to stderr. */
929 extern void debug_cluster (bb_cluster
);
931 debug_cluster (bb_cluster c
)
933 print_cluster (stderr
, c
);
936 /* Update C->rep_bb, given that BB is added to the cluster. */
939 update_rep_bb (bb_cluster c
, basic_block bb
)
942 if (c
->rep_bb
== NULL
)
948 /* Current needs no deps, keep it. */
949 if (BB_DEP_BB (c
->rep_bb
) == NULL
)
952 /* Bb needs no deps, change rep_bb. */
953 if (BB_DEP_BB (bb
) == NULL
)
959 /* Bb needs last deps earlier than current, change rep_bb. A potential
960 problem with this, is that the first deps might also be earlier, which
961 would mean we prefer longer lifetimes for the deps. To be able to check
962 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
963 BB_DEP_BB, which is really BB_LAST_DEP_BB.
964 The benefit of choosing the bb with last deps earlier, is that it can
965 potentially be used as replacement for more bbs. */
966 if (dominated_by_p (CDI_DOMINATORS
, BB_DEP_BB (c
->rep_bb
), BB_DEP_BB (bb
)))
970 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
973 add_bb_to_cluster (bb_cluster c
, basic_block bb
)
978 bitmap_set_bit (c
->bbs
, bb
->index
);
980 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
981 bitmap_set_bit (c
->preds
, e
->src
->index
);
983 update_rep_bb (c
, bb
);
986 /* Allocate and init new cluster. */
992 c
= XCNEW (struct bb_cluster_def
);
993 c
->bbs
= BITMAP_ALLOC (NULL
);
994 c
->preds
= BITMAP_ALLOC (NULL
);
999 /* Delete clusters. */
1002 delete_cluster (bb_cluster c
)
1006 BITMAP_FREE (c
->bbs
);
1007 BITMAP_FREE (c
->preds
);
1012 /* Array that contains all clusters. */
1014 static vec
<bb_cluster
> all_clusters
;
1016 /* Allocate all cluster vectors. */
1019 alloc_cluster_vectors (void)
1021 all_clusters
.create (n_basic_blocks_for_fn (cfun
));
1024 /* Reset all cluster vectors. */
1027 reset_cluster_vectors (void)
1031 for (i
= 0; i
< all_clusters
.length (); ++i
)
1032 delete_cluster (all_clusters
[i
]);
1033 all_clusters
.truncate (0);
1034 FOR_EACH_BB_FN (bb
, cfun
)
1035 BB_CLUSTER (bb
) = NULL
;
1038 /* Delete all cluster vectors. */
1041 delete_cluster_vectors (void)
1044 for (i
= 0; i
< all_clusters
.length (); ++i
)
1045 delete_cluster (all_clusters
[i
]);
1046 all_clusters
.release ();
1049 /* Merge cluster C2 into C1. */
1052 merge_clusters (bb_cluster c1
, bb_cluster c2
)
1054 bitmap_ior_into (c1
->bbs
, c2
->bbs
);
1055 bitmap_ior_into (c1
->preds
, c2
->preds
);
1058 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1059 all_clusters, or merge c with existing cluster. */
1062 set_cluster (basic_block bb1
, basic_block bb2
)
1064 basic_block merge_bb
, other_bb
;
1065 bb_cluster merge
, old
, c
;
1067 if (BB_CLUSTER (bb1
) == NULL
&& BB_CLUSTER (bb2
) == NULL
)
1070 add_bb_to_cluster (c
, bb1
);
1071 add_bb_to_cluster (c
, bb2
);
1072 BB_CLUSTER (bb1
) = c
;
1073 BB_CLUSTER (bb2
) = c
;
1074 c
->index
= all_clusters
.length ();
1075 all_clusters
.safe_push (c
);
1077 else if (BB_CLUSTER (bb1
) == NULL
|| BB_CLUSTER (bb2
) == NULL
)
1079 merge_bb
= BB_CLUSTER (bb1
) == NULL
? bb2
: bb1
;
1080 other_bb
= BB_CLUSTER (bb1
) == NULL
? bb1
: bb2
;
1081 merge
= BB_CLUSTER (merge_bb
);
1082 add_bb_to_cluster (merge
, other_bb
);
1083 BB_CLUSTER (other_bb
) = merge
;
1085 else if (BB_CLUSTER (bb1
) != BB_CLUSTER (bb2
))
1090 old
= BB_CLUSTER (bb2
);
1091 merge
= BB_CLUSTER (bb1
);
1092 merge_clusters (merge
, old
);
1093 EXECUTE_IF_SET_IN_BITMAP (old
->bbs
, 0, i
, bi
)
1094 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun
, i
)) = merge
;
1095 all_clusters
[old
->index
] = NULL
;
1096 update_rep_bb (merge
, old
->rep_bb
);
1097 delete_cluster (old
);
1103 /* Return true if gimple operands T1 and T2 have the same value. */
1106 gimple_operand_equal_value_p (tree t1
, tree t2
)
1115 if (operand_equal_p (t1
, t2
, 0))
1118 return gvn_uses_equal (t1
, t2
);
1121 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1122 gimple_bb (s2) are members of SAME_SUCC. */
1125 gimple_equal_p (same_succ same_succ
, gimple s1
, gimple s2
)
1129 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
1132 enum tree_code code1
, code2
;
1134 if (gimple_code (s1
) != gimple_code (s2
))
1137 switch (gimple_code (s1
))
1140 if (!gimple_call_same_target_p (s1
, s2
))
1143 t1
= gimple_call_chain (s1
);
1144 t2
= gimple_call_chain (s2
);
1145 if (!gimple_operand_equal_value_p (t1
, t2
))
1148 if (gimple_call_num_args (s1
) != gimple_call_num_args (s2
))
1151 for (i
= 0; i
< gimple_call_num_args (s1
); ++i
)
1153 t1
= gimple_call_arg (s1
, i
);
1154 t2
= gimple_call_arg (s2
, i
);
1155 if (!gimple_operand_equal_value_p (t1
, t2
))
1159 lhs1
= gimple_get_lhs (s1
);
1160 lhs2
= gimple_get_lhs (s2
);
1161 if (lhs1
== NULL_TREE
&& lhs2
== NULL_TREE
)
1163 if (lhs1
== NULL_TREE
|| lhs2
== NULL_TREE
)
1165 if (TREE_CODE (lhs1
) == SSA_NAME
&& TREE_CODE (lhs2
) == SSA_NAME
)
1166 return vn_valueize (lhs1
) == vn_valueize (lhs2
);
1167 return operand_equal_p (lhs1
, lhs2
, 0);
1170 lhs1
= gimple_get_lhs (s1
);
1171 lhs2
= gimple_get_lhs (s2
);
1172 if (TREE_CODE (lhs1
) != SSA_NAME
1173 && TREE_CODE (lhs2
) != SSA_NAME
)
1174 return (operand_equal_p (lhs1
, lhs2
, 0)
1175 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1
),
1176 gimple_assign_rhs1 (s2
)));
1177 else if (TREE_CODE (lhs1
) == SSA_NAME
1178 && TREE_CODE (lhs2
) == SSA_NAME
)
1179 return operand_equal_p (gimple_assign_rhs1 (s1
),
1180 gimple_assign_rhs1 (s2
), 0);
1184 t1
= gimple_cond_lhs (s1
);
1185 t2
= gimple_cond_lhs (s2
);
1186 if (!gimple_operand_equal_value_p (t1
, t2
))
1189 t1
= gimple_cond_rhs (s1
);
1190 t2
= gimple_cond_rhs (s2
);
1191 if (!gimple_operand_equal_value_p (t1
, t2
))
1194 code1
= gimple_expr_code (s1
);
1195 code2
= gimple_expr_code (s2
);
1196 inv_cond
= (bitmap_bit_p (same_succ
->inverse
, bb1
->index
)
1197 != bitmap_bit_p (same_succ
->inverse
, bb2
->index
));
1201 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (s1
))));
1202 code2
= invert_tree_comparison (code2
, honor_nans
);
1204 return code1
== code2
;
1211 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1212 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1213 processed statements. */
1216 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
, tree
*vuse
,
1224 if (gsi_end_p (*gsi
))
1226 stmt
= gsi_stmt (*gsi
);
1228 lvuse
= gimple_vuse (stmt
);
1229 if (lvuse
!= NULL_TREE
)
1232 if (!ZERO_SSA_OPERANDS (stmt
, SSA_OP_DEF
))
1233 *vuse_escaped
= true;
1236 if (!stmt_local_def (stmt
))
1238 gsi_prev_nondebug (gsi
);
1242 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1246 find_duplicate (same_succ same_succ
, basic_block bb1
, basic_block bb2
)
1248 gimple_stmt_iterator gsi1
= gsi_last_nondebug_bb (bb1
);
1249 gimple_stmt_iterator gsi2
= gsi_last_nondebug_bb (bb2
);
1250 tree vuse1
= NULL_TREE
, vuse2
= NULL_TREE
;
1251 bool vuse_escaped
= false;
1253 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1254 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1256 while (!gsi_end_p (gsi1
) && !gsi_end_p (gsi2
))
1258 gimple stmt1
= gsi_stmt (gsi1
);
1259 gimple stmt2
= gsi_stmt (gsi2
);
1261 /* What could be better than to this this here is to blacklist the bb
1262 containing the stmt, when encountering the stmt f.i. in
1264 if (is_tm_ending (stmt1
)
1265 || is_tm_ending (stmt2
))
1268 if (!gimple_equal_p (same_succ
, stmt1
, stmt2
))
1271 gsi_prev_nondebug (&gsi1
);
1272 gsi_prev_nondebug (&gsi2
);
1273 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1274 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1277 if (!(gsi_end_p (gsi1
) && gsi_end_p (gsi2
)))
1280 /* If the incoming vuses are not the same, and the vuse escaped into an
1281 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1282 which potentially means the semantics of one of the blocks will be changed.
1283 TODO: make this check more precise. */
1284 if (vuse_escaped
&& vuse1
!= vuse2
)
1288 fprintf (dump_file
, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1289 bb1
->index
, bb2
->index
);
1291 set_cluster (bb1
, bb2
);
1294 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1298 same_phi_alternatives_1 (basic_block dest
, edge e1
, edge e2
)
1300 int n1
= e1
->dest_idx
, n2
= e2
->dest_idx
;
1303 for (gsi
= gsi_start_phis (dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1305 gphi
*phi
= gsi
.phi ();
1306 tree lhs
= gimple_phi_result (phi
);
1307 tree val1
= gimple_phi_arg_def (phi
, n1
);
1308 tree val2
= gimple_phi_arg_def (phi
, n2
);
1310 if (virtual_operand_p (lhs
))
1313 if (operand_equal_for_phi_arg_p (val1
, val2
))
1315 if (gvn_uses_equal (val1
, val2
))
1324 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1325 phi alternatives for BB1 and BB2 are equal. */
1328 same_phi_alternatives (same_succ same_succ
, basic_block bb1
, basic_block bb2
)
1335 EXECUTE_IF_SET_IN_BITMAP (same_succ
->succs
, 0, s
, bs
)
1337 succ
= BASIC_BLOCK_FOR_FN (cfun
, s
);
1338 e1
= find_edge (bb1
, succ
);
1339 e2
= find_edge (bb2
, succ
);
1340 if (e1
->flags
& EDGE_COMPLEX
1341 || e2
->flags
& EDGE_COMPLEX
)
1344 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1346 if (!same_phi_alternatives_1 (succ
, e1
, e2
))
1353 /* Return true if BB has non-vop phis. */
1356 bb_has_non_vop_phi (basic_block bb
)
1358 gimple_seq phis
= phi_nodes (bb
);
1364 if (!gimple_seq_singleton_p (phis
))
1367 phi
= gimple_seq_first_stmt (phis
);
1368 return !virtual_operand_p (gimple_phi_result (phi
));
1371 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1372 invariant that uses in FROM are dominates by their defs. */
1375 deps_ok_for_redirect_from_bb_to_bb (basic_block from
, basic_block to
)
1377 basic_block cd
, dep_bb
= BB_DEP_BB (to
);
1380 bitmap from_preds
= BITMAP_ALLOC (NULL
);
1385 FOR_EACH_EDGE (e
, ei
, from
->preds
)
1386 bitmap_set_bit (from_preds
, e
->src
->index
);
1387 cd
= nearest_common_dominator_for_set (CDI_DOMINATORS
, from_preds
);
1388 BITMAP_FREE (from_preds
);
1390 return dominated_by_p (CDI_DOMINATORS
, dep_bb
, cd
);
1393 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1394 replacement bb) and vice versa maintains the invariant that uses in the
1395 replacement are dominates by their defs. */
1398 deps_ok_for_redirect (basic_block bb1
, basic_block bb2
)
1400 if (BB_CLUSTER (bb1
) != NULL
)
1401 bb1
= BB_CLUSTER (bb1
)->rep_bb
;
1403 if (BB_CLUSTER (bb2
) != NULL
)
1404 bb2
= BB_CLUSTER (bb2
)->rep_bb
;
1406 return (deps_ok_for_redirect_from_bb_to_bb (bb1
, bb2
)
1407 && deps_ok_for_redirect_from_bb_to_bb (bb2
, bb1
));
1410 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1413 find_clusters_1 (same_succ same_succ
)
1415 basic_block bb1
, bb2
;
1417 bitmap_iterator bi
, bj
;
1419 int max_comparisons
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS
);
1421 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, 0, i
, bi
)
1423 bb1
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1425 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1426 phi-nodes in bb1 and bb2, with the same alternatives for the same
1428 if (bb_has_non_vop_phi (bb1
))
1432 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, i
+ 1, j
, bj
)
1434 bb2
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1436 if (bb_has_non_vop_phi (bb2
))
1439 if (BB_CLUSTER (bb1
) != NULL
&& BB_CLUSTER (bb1
) == BB_CLUSTER (bb2
))
1442 /* Limit quadratic behaviour. */
1444 if (nr_comparisons
> max_comparisons
)
1447 /* This is a conservative dependency check. We could test more
1448 precise for allowed replacement direction. */
1449 if (!deps_ok_for_redirect (bb1
, bb2
))
1452 if (!(same_phi_alternatives (same_succ
, bb1
, bb2
)))
1455 find_duplicate (same_succ
, bb1
, bb2
);
1460 /* Find clusters of bbs which can be merged. */
1463 find_clusters (void)
1467 while (!worklist
.is_empty ())
1469 same
= worklist
.pop ();
1470 same
->in_worklist
= false;
1471 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1473 fprintf (dump_file
, "processing worklist entry\n");
1474 same_succ_print (dump_file
, same
);
1476 find_clusters_1 (same
);
1480 /* Returns the vop phi of BB, if any. */
1483 vop_phi (basic_block bb
)
1487 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1490 if (! virtual_operand_p (gimple_phi_result (stmt
)))
1497 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1500 replace_block_by (basic_block bb1
, basic_block bb2
)
1508 bb2_phi
= vop_phi (bb2
);
1510 /* Mark the basic block as deleted. */
1511 mark_basic_block_deleted (bb1
);
1513 /* Redirect the incoming edges of bb1 to bb2. */
1514 for (i
= EDGE_COUNT (bb1
->preds
); i
> 0 ; --i
)
1516 pred_edge
= EDGE_PRED (bb1
, i
- 1);
1517 pred_edge
= redirect_edge_and_branch (pred_edge
, bb2
);
1518 gcc_assert (pred_edge
!= NULL
);
1520 if (bb2_phi
== NULL
)
1523 /* The phi might have run out of capacity when the redirect added an
1524 argument, which means it could have been replaced. Refresh it. */
1525 bb2_phi
= vop_phi (bb2
);
1527 add_phi_arg (bb2_phi
, SSA_NAME_VAR (gimple_phi_result (bb2_phi
)),
1528 pred_edge
, UNKNOWN_LOCATION
);
1531 bb2
->frequency
+= bb1
->frequency
;
1532 if (bb2
->frequency
> BB_FREQ_MAX
)
1533 bb2
->frequency
= BB_FREQ_MAX
;
1535 bb2
->count
+= bb1
->count
;
1537 /* Merge the outgoing edge counts from bb1 onto bb2. */
1538 gcov_type out_sum
= 0;
1539 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1541 e2
= find_edge (bb2
, e1
->dest
);
1543 e2
->count
+= e1
->count
;
1544 out_sum
+= e2
->count
;
1546 /* Recompute the edge probabilities from the new merged edge count.
1547 Use the sum of the new merged edge counts computed above instead
1548 of bb2's merged count, in case there are profile count insanities
1549 making the bb count inconsistent with the edge weights. */
1550 FOR_EACH_EDGE (e2
, ei
, bb2
->succs
)
1552 e2
->probability
= GCOV_COMPUTE_SCALE (e2
->count
, out_sum
);
1555 /* Do updates that use bb1, before deleting bb1. */
1556 release_last_vdef (bb1
);
1557 same_succ_flush_bb (bb1
);
1559 delete_basic_block (bb1
);
1562 /* Bbs for which update_debug_stmt need to be called. */
1564 static bitmap update_bbs
;
1566 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1567 number of bbs removed. */
1570 apply_clusters (void)
1572 basic_block bb1
, bb2
;
1576 int nr_bbs_removed
= 0;
1578 for (i
= 0; i
< all_clusters
.length (); ++i
)
1580 c
= all_clusters
[i
];
1585 bitmap_set_bit (update_bbs
, bb2
->index
);
1587 bitmap_clear_bit (c
->bbs
, bb2
->index
);
1588 EXECUTE_IF_SET_IN_BITMAP (c
->bbs
, 0, j
, bj
)
1590 bb1
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1591 bitmap_clear_bit (update_bbs
, bb1
->index
);
1593 replace_block_by (bb1
, bb2
);
1598 return nr_bbs_removed
;
1601 /* Resets debug statement STMT if it has uses that are not dominated by their
1605 update_debug_stmt (gimple stmt
)
1607 use_operand_p use_p
;
1609 basic_block bbdef
, bbuse
;
1613 if (!gimple_debug_bind_p (stmt
))
1616 bbuse
= gimple_bb (stmt
);
1617 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, oi
, SSA_OP_USE
)
1619 name
= USE_FROM_PTR (use_p
);
1620 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
1622 def_stmt
= SSA_NAME_DEF_STMT (name
);
1623 gcc_assert (def_stmt
!= NULL
);
1625 bbdef
= gimple_bb (def_stmt
);
1626 if (bbdef
== NULL
|| bbuse
== bbdef
1627 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbdef
))
1630 gimple_debug_bind_reset_value (stmt
);
1635 /* Resets all debug statements that have uses that are not
1636 dominated by their defs. */
1639 update_debug_stmts (void)
1645 EXECUTE_IF_SET_IN_BITMAP (update_bbs
, 0, i
, bi
)
1648 gimple_stmt_iterator gsi
;
1650 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1651 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1653 stmt
= gsi_stmt (gsi
);
1654 if (!is_gimple_debug (stmt
))
1656 update_debug_stmt (stmt
);
1661 /* Runs tail merge optimization. */
1664 tail_merge_optimize (unsigned int todo
)
1666 int nr_bbs_removed_total
= 0;
1668 bool loop_entered
= false;
1669 int iteration_nr
= 0;
1670 int max_iterations
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS
);
1672 if (!flag_tree_tail_merge
1673 || max_iterations
== 0)
1676 timevar_push (TV_TREE_TAIL_MERGE
);
1678 if (!dom_info_available_p (CDI_DOMINATORS
))
1680 /* PRE can leave us with unreachable blocks, remove them now. */
1681 delete_unreachable_blocks ();
1682 calculate_dominance_info (CDI_DOMINATORS
);
1686 while (!worklist
.is_empty ())
1690 loop_entered
= true;
1691 alloc_cluster_vectors ();
1692 update_bbs
= BITMAP_ALLOC (NULL
);
1695 reset_cluster_vectors ();
1698 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1699 fprintf (dump_file
, "worklist iteration #%d\n", iteration_nr
);
1702 gcc_assert (worklist
.is_empty ());
1703 if (all_clusters
.is_empty ())
1706 nr_bbs_removed
= apply_clusters ();
1707 nr_bbs_removed_total
+= nr_bbs_removed
;
1708 if (nr_bbs_removed
== 0)
1711 free_dominance_info (CDI_DOMINATORS
);
1713 if (iteration_nr
== max_iterations
)
1716 calculate_dominance_info (CDI_DOMINATORS
);
1720 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1721 fprintf (dump_file
, "htab collision / search: %f\n",
1722 same_succ_htab
->collisions ());
1724 if (nr_bbs_removed_total
> 0)
1726 if (MAY_HAVE_DEBUG_STMTS
)
1728 calculate_dominance_info (CDI_DOMINATORS
);
1729 update_debug_stmts ();
1732 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1734 fprintf (dump_file
, "Before TODOs.\n");
1735 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
1738 mark_virtual_operands_for_renaming (cfun
);
1744 delete_cluster_vectors ();
1745 BITMAP_FREE (update_bbs
);
1748 timevar_pop (TV_TREE_TAIL_MERGE
);